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Abstract

In recent decades, the offer of television content has seen an increase in viewing options, channels,
and programs. This new reality has made this service’s customers adopt increasingly diverse
and personal usage patterns. This makes the task of TV content distributors more difficult since
with the increase in the amount of television content it becomes difficult to anticipate customer
preferences and to recommend the best possible content. Taking this environment into account,
characterized by risk and uncertainty, it is necessary to adopt customer-focused strategies that
enable a television content offer that is better adjusted to the needs of each consumer.

Integrated into a project of a large Portuguese telecommunications company, this dissertation
aims to carry out an in-depth study of the impact that real-world events like characteristics of
football tournaments, news, Google search interest and weather have on sports live television
content viewing. To this end, data mining and causality techniques were applied to a dataset
of television audiences from the telecommunications company, along with several external data
sources referring to real-world events.

This dissertation studies the impact of external real-world events on sports TV audiences in
three ways: (1) A study of external data related to audience behavior for a specific time; (2) a
comparison of forecasting accuracy of a classic statistical approach - based on the past values of
the volume of clients - and a machine learning approach - based on the past values of the volume
of clients and sports related external real-world events; (3) a Granger causality analysis of the
effect of external real-world events in volume of clients and viewing times.

The results show a clear influence of external events on sports TV volume of clients and
viewing time. External factors such as tournaments characteristics, match popularity, match
interest and the home team effect proved to be the most informative about the TV audiences.

Keywords: real-world data; data fusion; forecasting sportscasts; ensemble methods; Granger
causality;
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Resumo

Nas últimas décadas, a oferta de conteúdos televisivos tem registado um aumento de opções de
visualização, canais e programas. Esta mudança de paradigma, fez com que os clientes deste
serviço adotassem padrões de uso cada vez mais diversificados e pessoais. Isto torna a tarefa dos
distribuidores de conteúdo televisivo mais difícil, pois com o aumento da quantidade de conteúdos
torna-se difícil antecipar a preferência dos clientes para assim recomendar o melhor conteúdo
possível. Tendo em conta este ambiente, caracterizado pelo risco e incerteza, é necessária a
adoção de estratégias focadas no cliente que permitam uma oferta de conteúdos televisivos mais
ajustada às necessidades de cada consumidor.

Integrada em um projeto de uma empresa de telecomunicações, esta dissertação tem como
objetivo realizar um estudo aprofundado do impacto que eventos do mundo real como a dinâmica
de torneios de futebol, notícias, interesse de pesquisa do Google ou clima têm na visualização
de conteúdo desportivos televisivos em direto. Com esse objetivo, técnicas de data mining e
causalidade foram aplicadas a um conjunto de dados de visualizações de televisão da empresa
de telecomunicações, juntamente com várias fontes de dados externas referentes a eventos do
mundo real.

Esta dissertação estuda o impacto de eventos externos do mundo real nas audiências de
conteúdos desportivos televisivos de três maneiras: (1) Um estudo de dados externos relacionados
ao comportamento do público em um momento específico; (2) uma comparação da precisão da
previsão de uma abordagem estatística clássica - com base nos valores anteriores do volume de
clientes - e uma abordagem de aprendizagem de máquina - com base nos valores anteriores e
em eventos externos do mundo real relacionados; (3) uma análise de causalidade de Granger do
efeito de eventos externos do mundo real no volume de e nos tempos de visualização.

Os resultados mostram uma clara influência de eventos externos no volume de clientes e no
tempo de visualização de programas desportivos televisivos. Fatores externos como a dinâmica de
campeonato, a popularidade dos jogo, o interesse gerado em volta do jogo e o afeto dos clientes
com o jogo mostraram-se os mais informativos sobre as audiências televisivas.

Palavras-chave: variáveis do mundo real; fusão de dados; previsão transmissão desportivas
em direto; métodos ensemble; causalidade de Granger;
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Chapter 1

Introduction

The distribution of TV content, in recent years, has seen an increase in terms of diversification of
channels, contents, and viewing options. Audiences are more and more fragmented, with people
watching TV at different times on different platforms. As a result, it is more difficult to outline
metrics about the profile of the users who consume this type of content.

At the same time, the fast development of networking, data storage, and data collection
capacity has enabled new levels of scientific discovery and economic value. Through big data
analytics, commercial enterprises can do better job at monitoring acceptance of products,
providing personalized services able to adapt to individual needs, and understanding their
business environment, potentially fueling competitive advantages and boosting the quality and
effectiveness of decision making.

In the context of this rapidly evolving television landscape and big data era, we set out to
examine high-dimensional data and gain insights into the relationship between real-world events
and the TV watching patterns. This new approach to television audience promises more stability
and predictability, for an industry typically characterized by risk and uncertainty.

1.1 Motivation

Although television consumption has decreased in recent years, sports TV live broadcasts are
still today one of the most popular broadcasting media content [101]. Understanding the drivers
that lead people to see sports content is, therefore, of great importance for a wide range of fields,
such as economics [7], broadcasting management [95] and marketing [100].

The drivers that lead people to see certain content can be categorized into two types:
individual variation or structural variation [106].

In the first case, the drivers of TV consumption are linked to individual characteristics. For
example, people who have a more active social life are not expected to have the same viewing
patterns as people who have fewer outside contacts. In the first case, people tend to be more

1
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selective in the content they seek, while in the second case, people have more varied viewing
patterns to get experiences they didn’t have in their normal life [79].

Although this type of individual analysis is useful in controlled environments, as it allows
explaining the consequences of exposure to television, it is not so useful when the objective is to
unveil mass behavior, generally of greater value to the industry [106].

The second perspective ignores the individual characteristics and uses aggregated audience
measurements (e.g., total viewing time of a certain program). This is an approach more focused
on finding structural patterns about audience behavior (e.g., what impact does the scheduling of
a program have on audience behavior).

In recent years, we have witnessed a growing interest in research that aims to develop tools
for real-world event detection and characterization (e.g., weather, football tournaments, twitter
trends). However, it is still not clear the effect that this type of events has on people’s engagement
in TV visualization (i.e., the structural patterns on audience behavior).

With the proliferation of social media usage by large portions of the population, coupled with
recent advances in data collection, storage, and management, have made it possible for research
organizations and data scientists to analyze massive amounts of data [55]. This knowledge can
have several important implications. First, TV distributors may be willing to adjust the content
and advertisements to the target audience. Second, TV recommender systems may leverage this
knowledge and adapt their recommendations accordingly.

1.2 Objectives

With this dissertation, we intend to conceive and develop a solution that will investigate causal
relation between external real-world events and live sports TV audiences, thus producing a more
accurate model of the users’ viewing patterns.

Therefore, the goal of our research was to address the following research questions:

• RQ1: What data sources will be useful for our problem?

• RQ2: What data analysis pipeline apply to our data?

• RQ3: What type of causal patterns they have?

• RQ4: How do these patterns affect the live sports TV audiences?

Having that in mind, for this work the main goals are:
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• Investigate external behavioural/opinion related data that may take an effect on enterprise
outcomes for a specific amount of time;

• Validate the effect taken, using data mining techniques and causality statistical analysis
methods to extract meaningful cause-effect patterns;

• Measure quantitatively and qualitatively the desirable effects on the specific business
outcome (TV volume of clients and viewing time);

• Present data-driven conclusions of the external factors/data that have the greatest impact
in viewing times and volume of clients, being the ultimate goal to find patterns that
maximize these parameters.

1.3 Contributions

This dissertation will have the following contributions:

• We research data sources and APIs that can have an impact on our business goal target
and generate a dataset with standardized data;

• We developed a pipeline of methods for the analysis of this data;

• We Present data-driven conclusions of the impact of events occurring in external factors
(such as the weather), in the TV service viewing times and volume of clients.

1.4 Organization

The remainder of the thesis is organized as follows. This section provides an introduction
and motivation for this work. Chapter 2 provides the background required for the proper
understanding of this work. Chapter 3 presents a literature review of forecasting in the Big
data era and its application in predicting sports live TV audiences. As well as, an overview of
causality analysis across different research areas, with special emphasis on the Granger causality
framework. Chapter 4 compares the accuracy of forecasting sports live TV audiences with a
simpler statistical method and a more complex machine learning method. The last, including
several external factors as input features of the model. Chapter 5 presents a causality analysis of
the impact of external factors on the service viewing time and volume of clients of a popular
local tournament. Finally, in chapter 6 the conclusions and future work are presented.





Chapter 2

Background

Over the past few decades, the amount of data generated has grown exponentially. According to
the International Data Corporation (IDC), the world’s data will grow 5x from 33 Zettabytes
(ZB) in 2018 to 175 ZB by 2025 [90].

With this increase of global data, a new term called big data has emerged. Big data, compared
with traditional datasets, includes a large amount of unstructured data that needs more real-time
analysis.

We can describe Big data as three main dimensions (The Three V’s) [40]:

• Volume. Refers to the magnitude of data, generally, several terabytes and petabytes;

• Variety. Refers to the structural heterogeneity in a dataset (structured, semi-structured,
and unstructured data);

• Velocity. Refers to the rate at which data are generated and the speed at which it should
be analyzed and acted upon.

In addition to the three V’s, other dimensions of big data have also been mentioned. These
include [40]:

• Veracity. IBM designated veracity as the fourth V, which represents the uncertainty
inherent in some data source;

• Variability. SAS introduced variability as the variation in the data flow rates;

• Value. According to Oracle, big data are often characterized by relatively “low-value
density”.

With the advance of science and technology, the developments in causality analysis have been
heavily influenced by the Big Data era, with a number of studies emerging in the last decades
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[42], such as education [26][49][51][62], medical science [73] [25], economics [56], epidemiology
[50][91], meteorology [32], environmental health [66] and sports [30][28].

Answering causal questions with big data leads to some unique new problems. For example,
public databases or data collected via web crawling or application program interfaces (APIs) are
unprecedentedly large, we have little intuition about what types of bias a dataset can suffer from
[42].

To uncover these hidden patterns in the data, the successful adoption of Data Mining
techniques or a combination of techniques will be important to the success of causality studies
[45].

The remainder of this chapter will introduce what new possibilities and challenges arise for
learning about causality in the era of big data.

2.1 Data analytics

There are two common situations in which data analysis can help solve a certain problem or
question. The first situation is when the problem is not new and historical data exists with the
results achieved (e.g., poor customer performance, malfunction of parts, etc...), such historical
data may be used to improve and optimize the presently used strategy to reach a decision. In a
second case, a certain question arises for the first time, and only little experience is available
(e.g., a new product, a large experiment). Here, the inclusion of data from similar problems can
be useful to discover and gain insights about the new problem [13].

Business analytics (BA) is the iterative exploration of an organization’s data to gain insight
and drive business planning by applying statistical analysis techniques [9]. Depending on the
purpose, we can arrange BA into 4 different types (Fig. 2.1): descriptive, diagnostic, predictive,
or prescriptive.

• Descriptive analytics. Here the goal is to try to unravel what happened and alert about
that fact. Describe the phenomenon through different means to capture the most important
dimensions;

• Diagnostic analytics. In this case, why something happened is explored. You need to
explore existing data or add data to get an answer. To find out the causes of the problem
visualization techniques are used;

• Predictive analytics. Future business imperatives, potential future outcomes and drivers
of observed phenomena are explored using statistical or data mining techniques. Some
examples include predicting the outcome of future sales of a product and the behavior of a
target customer segment;

• Prescriptive analytics. It goes a step beyond predictive analytics, combining decision
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options with predicting future outcomes. To assess the best decision that can be taken to
optimize business processes in the future, decision analysis tools such as optimization and
simulation are employed.

In figure 2.1 we can see the 4 types of business analysis and the question that each tries to
answer.

Figure 2.1: Types of Business Analytics [9].

2.1.1 Exploratory data analysis

We can look to practical data analysis as two wide phases: an exploratory phase and a confirmatory
phase. Exploratory data analysis (EDA) is concerned with isolating patterns and features of the
data and with revealing these to the analyst. Allowing a first touch with the data to effectively
analyze it and produce the best model that fits the data. A characteristic of exploratory analysis
is its flexibility, both in tailoring the analysis to the structure of the data and in responding to
patterns that successive steps of analysis uncover [71].

We can divide an EDA into four main components [1]:

• Univariate non-graphical. This data analysis is the simplest of the four because consists
of only one single variable. The main objective of a univariate analysis is to describe and
find patterns within it;

• Univariate graphical. To have a better view of the data, graphical methods are used.
Graphics such as: steam-and-leaf plots, histograms and box plots;

• Multivariate nongraphical. Multivariate non-graphical EDA techniques usually show
the relationship between two or more variables of the data through cross-tabulation or
statistics;

• Multivariate graphical. In the case of multivariate graphics visualization, some of the
most used types of graphics include: bar plot, scatter plot, multivariate chart, run chart,
bubble chart and heat map.
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Once EDA is complete and insights are drawn, its features can then be used for more
sophisticated data analysis or modeling, including machine learning.

Confirmatory data analysis is where you put your findings and arguments to trial. Traditional
statistical tools such as significance, inference, and confidence are used. This phase also
incorporates an analysis of another, closely related body of data and the step of validating
a result by collecting and analyzing new data [71].

2.1.2 Data collection

It is well known that the majority of the time for running machine learning end-to-end is spent
on preparing the data, which includes collecting, cleaning, analyzing, visualizing, and feature
engineering [92].

Generally, we can consider three types of data collection [92]: data acquisition, data labeling
and existing data. Data acquisition techniques can be used to discover, augment, or generate
new datasets. Data labeling can be applied when a dataset already exists however it is necessary
to add labels to individual examples. Finally, we can improve the existing data or use trained
models. Despite this distinction, these three methods can be used simultaneously.

2.1.3 Feature selection

Data of high dimensionality can significantly increase the memory storage requirements and
computational costs for data analytics. The curse of dimensionaltiy is another problem that
occurs in this type of data: when the volume of represented space increases, the data does not
keep up and becomes sparse [104].

We can solve these problems using dimensionality reduction, a techniques that reduce the
number of input variables in a dataset through feature extraction and feature selection. In the
first case, the original high dimensional dataset is projected in a new low dimensional space. This
type of approach is more suitable if the raw input data does not contain very comprehensive
features for a specific machine learning algorithm. A disadvantage of this type of approach is
that it creates a new set of features, making further analysis challenging as it does not retain
the physical meaning of the original features. In the second case, a subset of the most relevant
features for the model construction is select. This approach is best suited when real-world data
contains a large number of irrelevant, redundant and noisy features (Fig. 2.2). Removing these
variables by feature selection reduces storage and computational cost while avoiding significant
loss of physical information or degradation of learning performance [67].

Selecting some subset of a learning algorithm’s input variables, either using feature extraction
or feature selection, have the advantage of improving computational efficiency, overcome the
curse of dimensionality and building better generalization models that do not overfit to new data
[67].
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Figure 2.2: (a) Relevant, (b) redundant and (c) irrelevant features [67].

2.1.4 Data mining

Data mining is the central part of the process of Knowledge Discovery from Databases (KDD).
We can break the KDD process, presented in Fayyad et al. [34], into the following steps: data
selection, data cleaning, data transformation, data mining, pattern evaluation and interpretation.

Data mining is a process where the goal is to extract patterns and knowledge from large
amounts of data. In other words, finding either unusually frequent or infrequent relationships
between entries in a dataset.

2.1.4.1 Data mining methods

Four problems in data mining are considered fundamental to the mining process: clustering,
classification, association pattern mining, and outlier detection. Following [3] relationships
between data items can be classified in two different types:

• Relationships between columns. Here, the frequent or infrequent relationships between
the values in a particular row are determined. This relationship is either a positive or a
negative association pattern problem.

Supervised learning is a particular case that tries to find patterns of association between
columns. In this kind of data mining problem, a feature gains special importance (target
feature), and the goal is to use the others input features to predict this special attribute.
This problem is referred to as data classification or data regression;

• Relationships between rows. Here, the goal is to determine subsets of rows in which
the values in the corresponding columns are related. This can be seen either as a clustering
analysis if the goal is finding relationships where the subsets of rows are similar, or an
outlier analysis if the goal is finding a row that is very different from other rows. In the last
case, the outlier row can be also referred to as an unusual data point, or as an anomaly.



10 Chapter 2. Background

2.1.4.2 CRISP-DM

CRISP-DM stands for CRoss Industry Standard Process for Data Mining. It provides a uniform
framework and guidelines for data miners, and can be seen as a six phase pipeline (Fig. 2.3)
[5][108]:

• Business understanding. Is the first phase of CRISP-DM process and focuses on
understanding the project objectives and requirements from a business perspective, allowing
the definition of the concrete data mining problem and the plan to achieve the business
objectives;

• Data understanding. The data understanding stage starts with an initial data collection
and proceeds with the exploration of the data to get insights to form hypotheses. This
phase mainly serves to familiarize with the data and identify possible quality problems
that need to be resolved;

• Data preparation. The data preparation phase focuses on the selection and preparation
of the final dataset. To obtain this dataset a set of tasks has to be performed. Tasks such
as table, record, and attribute selection, data cleaning, construction of new attributes, and
transformation of data for modeling tools;

• Modeling. In this phase, occurs the selection and application of various modeling
techniques. Different parameters are set and different models are built for same data
mining problem;

• Evaluation. Before proceeding to the final deployment of the model, it is important to
evaluate it and review, through an in-depth analysis of each step executed to construct the
model, whether the model achieves the business objectives properly or not;

• Deployment. Finally, in the deployment phase, the knowledge gained will need to be
organized and presented in a way that the customer can use it. Being as simple as generating
a report or as complex as implementing a repeatable data mining process.

2.1.4.3 Temporal data mining

Temporal data mining can be described as the extraction of information contained in large
sequential databases. Where sequential databases correspond to data ordered by some index.
These records are usually ordered by time. However, there are examples of sequential data
without the notion of time as in the case of text documents, gene sequences, or football match
tournament. Here, although the notion of time is not so present, the order of records is of great
importance for the proper description and extraction of information from the data [64].
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Figure 2.3: The CRISP-DM life cycle [60].

2.2 Time series analysis

A time series is a set of observations xt, each one being recorded at a specific time t. We can
divide time series into two different types: discrete time series and Continuous time series.

• A discrete time series is one in which the set T0 of times at which observations are made is
a discrete set:

– A data-reporting interval that is infrequent (e.g., 1 point per minute) or irregular
(e.g., whenever a user logs in);

– Gaps where values are missing due to reporting interruptions (e.g., intermittent server
or network downtime).

• A Continuous time series are obtained when observations are recorded continuously over
some time interval, e.g., when T0 = [0,1].

2.2.1 Stationarity

A time series {Xt, t = 0,±1, ...} is considered stationarity if when compared to its shifted version
{Xt+h, t = 0,±1, ...} for each integer h it has similar statistical properties.

Looking only at the first- and second-order moments of Xt, we can described a stationary
time series as follows [19]:

Let {Xt} be a time series with E(X2
t ) <∞. The mean function of {Xt} is
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µX(t) = E(Xt) (2.1)

The covariance function of {Xt} is,

γX(r, s) = Cov(Xr, Xs) = E[(Xr − µX(r))(Xs − µ(s))] (2.2)

for all interegers r and s.

{XT } is (weakly) stationary if,

γX(t) is independent of t (2.3)

and

γX(t+ h, t) is independent of t for each h. (2.4)

2.2.2 Components of a time series

We can classify the patterns in a time series into 4 components: trend, seasonal, cyclical and
residual [53] [105].

• Trend(T [t]): is a pattern with a long-term increase or decrease in the data and represents
the mean rate of change with respect to time;

• Seasonality(S[t]): is a periodical fluctuation where the same pattern occurs at a regular
interval of time. Seasonality is always of a fixed and known frequency;

• Cyclical(C[t]): fluctuations that are not of a fixed frequency. Compared to seasonality, the
average length of cycles is longer than the length of a seasonal pattern, and the magnitudes
of cycles tend to be more variable than the magnitudes of seasonal patterns;

• Residual(e[t]): fluctuations that are purely random and irregular.

Figure 2.4 shows the trend, cyclical and residual components of a time series.



2.2. Time series analysis 13

Figure 2.4: Time Series Components.

2.2.3 Time series decomposition

To better visualize the patterns, it is helpful to split a time series into is components such as
trends, seasonality, cyclic variance, and residuals. When decomposition a time series usually the
trend and cycle are combined into a single trend-cycle component (sometimes called a trend
component for simplicity). Thus, during the decomposing, we can see the time series as being
formed by three components: a trend-cycle component, a seasonal component and a residual
component.

To decompose the data into its components there are basically two methods: additive
decomposition and multiplicative decomposition. The additive decomposition is the most suitable
if the magnitude of the seasonal fluctuations, or the variation around the trend-cycle, does
not vary with the level of the time series. On the other hand, if the variation on the seasonal
component, or the variation around the trend-cycle, appears to be proportional to the level of
the time series then the multiplicative decomposition must be chosen [53].

The additive decomposition formula:

Y [t] = T [t] + S[t] + C[t] + e[t] (2.5)

The multiplicative decomposition formula:

Y [t] = T [t] ∗ S[t] ∗ C[t] ∗ e[t] (2.6)



14 Chapter 2. Background

2.3 Time series forecasting

The forecasting process is used in a wide range of areas such as the stock market, weather,
electricity demand and business. Forecasting time series data provides organizations with valuable
information that allows anticipate business outcomes and make important decisions [72].

Forecasting methods may be broadly classified into three different types [22]:

• Judgemental forecasts. A forecast made on subjective information. Based essentially
on intuition and knowledge about the company or market, although some quantitative
information can also be included;

• Univariate methods. Where future values of a single time series are assumed to be based
exclusively on past values, possibly modeled by a time function such as the linear trend;

• Multivariate methods. Here, in addition to the dependence on previous values, more
additional time-series variables, called the predictor or explanatory variables, are used to
forecast future values. A multivariate forecast may be composed of more than one equation
if the variables are jointly dependent.

2.3.1 Univariate time series models

Univariate time series models are a class of specifications where a model tries to predict a variable
using only information contained in their past values (possibly current and past values) of an error
term [20]. An important class of time series models is the family of AutoRegressive Integrated
Moving Average (ARIMA) models.

2.3.1.1 ARIMA

ARIMA is a univariate time series method which is based on the premise that information in the
past values of the time series alone is enough to predict future values. Presented by Box et al.
[16], is on of the most popular time series forecasting techniques. The ARIMA model is defined
by 3 parameters (p, d, q) where p is the number of autoregressive terms(AR), d is the number of
differences(I) and q is the number of moving averages(MA). An ARIMA model is one where the
time series was differenced at least once to make it stationary and you combine the AR(p) and
the MA(q) terms. ARIMA’s forecast model is given by the following equation:

yt = θ0 + ϕ1yt−1 + ϕ2yt−2 + ...+ ϕpyt−p + εt − θ1εt−1 − θ2εt−2 − ...− θqεt−q (2.7)

where, at time period t, yt is the actual value and εt is the random error; ϕi(i = 1, 2, ..., p)
and θj(j = 0, 1, 2, ..., q) are the AR term and MA term, respectively. Random errors, εt, are
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assumed to be independently and identically distributed with a mean of zero and a constant
variance of σ2 [109].

2.3.2 Multivariate time series model

One problem with the ARIMA model is that is mostly limited to linear univariate time series and
do not scale well to multivariate time series. Other approaches use vector autoregression (VAR),
a generalization of the AR-based models, that captures relationships between multiple time series.
However, VAR models (as in the case of AR models) do not capture non-linearity relationships
[99]. Machine Learning (ML) methods have been emerging in the literature as viable alternatives
to univariate time series models that captures non-linearity relations [98]. In particular, ensemble
methods stand out as one of the most used methods for time series forecasting [107] [65].

When we have a high-dimensional dataset extracted from multiple sources, where features
have heterogeneous physical properties, a single regressor or classifier does not have the power to
learn the information contained in the aggregated data. One solution is to use each data modality
to train a different regressor, with the outputs of all models combined to get more accurate
prediction results. Applications that take advantage of multiple data sources to make a more
informed decision are called data fusion applications. On the other hand, solutions that combine
the outcome of several different supervised learning algorithms are called ensemble methods [87].

2.3.2.1 Ensemble methods

The idea behind ensemble methods is to combine several simpler models in order to improve
predictive performance over a single estimator [87]. Two major approaches can be used to
combine the weak estimators:

• Bagging. Learns from weak prediction models independently and combines them following
either the aggregation averages (regression analysis) or the majority vote (classification
analysis) [17]; This type of technique is designed to improve the stability and accuracy of
machine learning algorithms. It also reduces the variance and overfitting of the model.

• Boosting. Is an ensemble technique that creates a prediction model by joining the
predictions of weak prediction models (such as decision trees or neural networks). These
weak estimators are added sequentially to the collection with each of them trying to improve
the general ensemble’s performance. While boosting is a general algorithm for building an
ensemble out of simpler models, it is more effectively applied to models with high bias and
low variance [14];
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Random forest

Random forest [18] is a bagging method that is fast, robust to noise, does not overfit and offers
possibilities for explanation and visualization of its output [46]. The main idea of bagging is
to average many noisy but roughly unbiased models in order to reduce the variance. Trees are
simple models that do not capture complex interactions, so they are ideal candidates for bagging.

The combined regression formula for random forest can be expressed as follows:

F̂ (x) = 1
K

K∑
k=1

ti(x) (2.8)

where F̂ (x) represents the combined regression model, ti is a single decision tree regression
model, K is the number of regression trees.

Gradient boosting

Opposed to a random forest, whose final result is the mode or the average of the results obtained
by the trees in the ensemble, where the trees are independent of each other, in the case of
Gradient Boosting [38] it works sequentially where each new tree included in the model depends
on previous trees. Random Forest makes a multitude of trees that try to capture uncorrelated
features, while each tree learner’s in Gradient Boosting depends on the output of the previous
tree [14].

F̂ (x) =
K∑

i=1
γihi(x) + c (2.9)

Where γi can be thought of as the learning rate, the c value is there to initialise the model
and hi(x) is the decision trees we are trying to fit over our residuals.

hi(x) = y − Fi(x) (2.10)

Thus in the gradient boosting the final model is built as a series of subsequent models where
each model is trying to fit over the residual values calculated by it’s previous models. Compared
to a random forest, being a boosting based method, gradient boosting is more successfully applied
to models with high bias and low variance [14].

Extreme gradient boosting - XGBoost

Extreme Gradient Boosting (XGBoost) [23], is an advanced supervised algorithm designed as an
optimized implementation of the Gradient Boosting framework, XGBoost’s loss function adds a
smoothing term, which helps to smooth out the final learned weights to avoid overfitting. In
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addition, XGBoost also supports row and column sampling to solve the overfitting problem. It
also uses first and second-order gradient statistics to optimize the loss function. It also has low
runtimes, as parallel and distributed computing ensures faster learning [110].

The estimated output of a tree ensemble model can be expressed as the sum of the prediction
score of all trees:

ŷi =
K∑

k=1
fk(xi), fk ∈ F (2.11)

Where K represents the number of trees used in the model, F the space of regression trees,
fk represents the (k-th tree) and xi represents the features corresponding to sample i.

Loss functions are the most basic expression in ML problems, and the augmentation process
continues until the objective function can no longer be minimized [? ? ].

φ =
∑

i

l(ŷi, yi) +
∑

k

Ω(fk) (2.12)

Where l is a loss function, Ω is a term for penalizing the complexity of the model.

The algorithm minimizes φ by iteratively introducing each fk. Assuming that a ensemble
currently contains K trees. We add a new tree fK+1 that minimizes

∑
i

l(ŷi, yi + fK+1(xi)) +
∑

k

Ω(fk) (2.13)

2.4 Causality analysis

We can define causality as a generic relationship between an effect and a cause. Often we look
at causality intuitively. (e.g.: We had a bad grade on the exam because we didn’t study enough,
We get a sore throat because we do not wear enough clothes, etc...) However, when we deal with
causality data a difference between statistical correlation and causation needs to be considered
[53]. For example, when there is a rise in temperatures, a beach resort owner may observe a
high number of ice-cream sales and a high number of drownings. A strong correlation between
ice-cream sales and the number of drownings exists, however, the first one was not the cause
of the second one. They are both caused by a third variable - temperature. People eat more
ice-creams on hot days when they are also more likely to go swimming.

Current machine learning systems work, largely, in a statistical, or model-free mode, theoret-
ically limiting the power and performance of the system. The ability to learn causality, following
a model of reality, is considered a significant component of human-level intelligence and can serve
as the foundation of Artificial intelligence (AI) [83].
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2.4.1 Overview

If we want to understand the causal relationships in the data, different questions must be taken
into account. Each task assuming a different (related) question that we want to answer: (1)
Which variables could change the value of another variable? and (2) What is the impact of
changing the value of a specific variable in a different one?

The first is a causal discovery problem and the second a causal inference problem [42].

For the causal discovery problem, researchers attempt to determining whether there exists a
causal relationship between a variable and another. In the example of the beach resort, answering
the question is the temperature rise responsible for the increase of drownings?

For causal inference problem, researchers investigate to what extent manipulating the value
of a potential cause would influence a possible effect. Still in the same example, answering the
question how much temperatures rise drownings?

Data for learning causality can take three classes. Observational data, where data arise from
observing a system in a ‘steady state’ without any interventions. Interventional data, that comes
from (randomized) intervention experiments. Finally, a mixture of the two can also be used to
study causality [48] [42].

2.4.2 Time series causality

Two important properties present in causality are [33]:

• Temporal precedence. Causes precede their effects.

• Physical influence. Manipulation of the cause changes the effects.

In time series analysis, most approaches to causality make use of the first aspect of temporal
precedence. Among these approaches, the definition introduced by Granger [41] is probably the
most prominent and most widely used concept [33].

2.4.2.1 Granger causality

Following Granger [41] causality relationship occurs on two principles:

1. The effect does not precede its cause in time;

2. The causal series contains unique information about the series being caused that is not
available otherwise.
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Let At be a stationary stochastic process, At the set of past values (At−1, At−2, ..., At−∞)
and At the set of past and present values (At, At−1, ..., At−∞). Denote the optimum, unbiased,
least-squares predictor of At using the set of values Bt by Pt(A|B). Consequently, Pt(X|X) will
be the optimum predictor of Xt using only past of Xt series. Denote the predictor error as
εt(A|B) = At − Pt(A|B) and the variance of the error as σ2(εt(A|B)). Finally, let Ut be all the
information in the universe accumulated since time t-1 and let Ut − Yt be all this information
apart from the series Yt [41].

Then, we say that Xt is causing Yt, denoted by Xt ⇒Yt, if we are better able to predict Yt

using all available information than if the information apart from Xt had been used.

σ2(Y |U) < σ2(Y |U −X) (2.14)

Furthermore, we say that feedback is occurring, which is denoted Yt ⇔Xt, i.e., feedback is
said to occur when Xt is causing Yt and also Yt is causing Xt.

σ2(X|U) < σ2(X|U − Y )

σ2(Y |U) < σ2(Y |U − Y )
(2.15)

Finally, we say that Instantaneous causality is occurring, denoted by Xt ⇒Yt, if the current
value of Yt is better predicted if the present value of Xt is also included.

σ2(Y |U,X) < σ2(Y |U) (2.16)





Chapter 3

Literature review

The ability to predict future events is of real value for companies, as this knowledge allows them
to make better enterprise decisions and therefore have a greater market success [37].

In the specific case of the TV content distribution, this specialized knowledge it has been
extracted through a small audience sampling strategy. However, this type of strategy is not
nearly as effective. With the increase of available content (TV channels, programs and viewing
options), the television audience is increasingly fragmented [58]. As a result, there were changes
in the profile of the audience and in the viewing patterns. Although there has been a great deal
of research on modeling individual and group preferences [21, 86], the impact of real-world events
on user preferences is still a poorly understood topic.

This chapter contains literature review related to forecasting using external sources (Section
3.1) and learning causal relations from Big data (Section 3.2)

3.1 Forecasting using external sources

Forecasting is the process of predicting future values of some continuous time-series data.
Generally, the forecast is produced by projecting the identified trend and seasonal cycles of the
data (see section 2.2.3) into the future and discarding the irregular component [78].

With the rise of the big data era, a wide range of data have been generated in various domains.
This new reality created several opportunities for gains through forecasting with Big Data. The
forecasting of time series data provides organizations useful information that is necessary for
making important decisions [72]. At present, there is increased research into using Big Data for
obtaining accurate weather forecasts and the results are promissing [102]. The energy sector has
also taken advantage of this new reality. As is the case of Selim et al. [97] where the authors
explore the impact that including external features can have in terms of prediction accuracy,
namely, in short-term energy forecasting. For this purpose, four computation models have
been tested: Long Short-Term Memory neural networks (LSTM), Support Vector Regression
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(SVR), Gradient Boosted Trees, and Facebook Prophet. In addition, the predictive accuracy
was compared using the Root Mean Square Error (RMSE) and Mean Absolute Percentage Error
(MAPE). The results showed that multivariate algorithms using external features outperform
univariate algorithms, and that multivariate algorithms achieve reasonable accuracy even without
using past step energy consumption as an input feature.

On the other hand, the appearance of social media provides researchers with a new source
of easily accessible data about individuals, society and, potentially, the world in general [94].
Such open source indicators have been shown to be effective at monitoring disease emergence
and progression. In Mesquita et al. [74], a methodology was developed that discriminates search
patterns related to general information (media drive) and search patterns related to infection
(disease drive). With this information, it was possible to improve the results of disease outbreaks
forecasting. In addition, a Granger causality test found out whether the number of cases and
media preceded the search for disease-related terms.

Other studies go further and also study the individual importance that external features have
on forecasting, as in [81] where traffic accidents were detected using an XGBoost machine learning
model and SHAP (SHapley Additive exPlanation) a game-theoretical approach to explain the
results and analyze the importance of the individual features.

Finally, sports organizations have recently realized the science value available in external
sources [63]. Predicting results of sports matches is one of the fields that has been using external
data to improve the accuracy of its models.

3.1.1 Using external features to forecast TV viewership

Over time, TV ratings and viewership forecast accuracy have decreased due to the fragmentation
of consumer behavior [77]. Understanding the behavior of TV viewership is essential for an
accurately targeted recommendation of TV content and, in general, has a decision support system.
A new area of research has emerged that improves forecasting accuracy combining external
features to the EPG metadata [75]. For example in Nixon et al. [80] the authors improve the
accuracy of the audience forecasting by (1) adding content categories extracted from the EPG
metadata as new features and (2) collecting and adding to the learning model specific event
occurrences (e.g. finale of a popular program) that link to audience outliers. The results of this
study shown that content-based features have a greater impact on prediction than event-based
features. This study manually associates the external events to TV programming in the EPG,
resulting in only 5% of links between events and EPG metadata, meaning event features have
less impact on the evaluating results. Compared to our solution, we use an automatic method
that has a higher connection rate (we cover this topic in detail in section 4.2).

A slightly different approach was taken in Khryashchev et al. [59], where the authors selected
5 predictors to forecast aggregate TV viewership base on viewing behavior prior to the broadcast,
and showed that combining multiple models through an ensemble method is the most accurate
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method to predict tv viewership. An 11% improvement was achieved over the baseline model.

Although some studies use external real-world features to improve the accuracy of sports
attendance [82] [76] prediction and ultimately study the impact these features have on viewing
patterns. Few studies address this problem in the specific case of sports live TV broadcasting.

Our research adds to the literature on improving the accuracy of sports TV viewership
forecasts. More specifically, it investigates the value of ML techniques and the inclusion of
external factors to forecasting football live TV broadcasting.

3.2 Learning causal relations from Big Data

With the advance of science and technology, the developments on causality analysis have also been
overwhelmingly influenced by the age of Big Data [45]. The availability of multiple heterogeneous
datasets presents new opportunities to big data analytics because the knowledge that can be
acquired from multiple data sources would not be possible from any individual source alone [10].

The ability to learn causality is considered a significant component of human-level intelligence
can serve as a fundamental component for AI [42]. However, nowadays, a lot of learning machines
are improved by optimizing parameters over a stream of observational inputs received from the
environment. These systems cannot reason about interventions and retrospection and, therefore,
cannot serve as the basis for strong AI [83].

Time series analysis, especially the Granger causality test [41], has gained increasing interest
in the last few decades. It has been applied in a range of studies in which the goal is to discover
the relationships between different variables, with special emphasis on economics [57]. These
econometric methods have also been adapted to a large range of different areas as energy [24],
environmental health [111], or companies decision support systems like in Lim and Tucker [68]
where the authors propose a framework that identifies influential term groups having causal
relationships with real-world enterprise outcomes from Twitter data. Besides that, appropriate
time lags between the influential term groups and the enterprise outcome are also identified. To
achieve this they exploited a co-occurrence network analysis model to discover influential term
groups, two time series models and a Granger causality analysis model.

3.2.1 Causality analysis in sports

Causal relationships in team sports such as football, basketball or baseball have also attracted
increasing interest in the last couple of decades, with a large number of studies developed [47] [54]
[31]. Understand the determinants of demand for professional sports is an important research
topic for a variety of stakeholders [15]. For example, in Karanfil [57] a study was conducted
on the causal relationship that rivalry between two teams has on their performance. In other
words, if there is a rivalry, the performance of a club maybe be expected to affect that of its rival.



24 Chapter 3. Literature review

For this purpose the rivals of the most competitive football competitions were extracted, and a
granger causality framework was developed. The study show that only a small percentage of the
competitions (11 out of 23) can be qualified as performance-based rivalries. Other example is
Hsu et al. [52], where a statistical analysis found out the impact of competitive pressure on the
performance of a kicker (a key player in the NFL) in decisive moments of a match. Particularly,
this study explores the situational effect in natural-field setting contexts on pressure kicks in the
NFL 2000–2017. Natural-field conditions such as temperature, wind speed, field environment,
the pressure faced by the players, and offensive and defensive strategies at crucial moments of
a match are studied. The results showed that psychological/situational variables could play
a more important role in pressure kicks. Other example, in Lago-Peñas et al. [61], examine
the relationship between the national teams’ ELO rating (originally developed for rating chess
players) and the number of migrating players in the "big-five" leagues. Finally, in Hall et al. [43]
was explored the relationship that payroll has on performance, or vice versa, and it has been
shown that the hypothesis that higher payrolls granger causes better performance cannot be
rejected.

3.2.2 Causality in televised sports content

Sports broadcasts is known to have the largest share of TV audiences [35] and given the increasingly
fragmented scenario of TV audiences, it has generated a growing interest in understanding the
determinants of television demand. However, despite the importance of sportscasts, few studies
investigate the factors of indirect demand for sports events, measured by TV viewership. The
literature on television audience demand is still relatively underdeveloped compared to the
literature analyzing live attendance [89] [6] [29]. Despite that, two studies stood out when
compared to our research problem.

3.2.2.1 Determinants of demand for televised live football: features of german
national football team

This study, presented by Feddersen and Rott [35], analyzes all the TV broadcasts of the German
national football team from January 1993 to June 2008. The analysis is based on television
ratings generated by the Growth from Knowledge (GfK). This data source estimates viewership
from a representative panel of 5,640 households that contain approximately 13,000 people.
Nonsporting determinants of viewing like weather conditions (temperature, precipitation, etc.),
the broadcasting network, and student holidays were used. This study tries to build a bridge
between determinants of demand from the sports economic perspective and determinants of
demand from a classical critical success factor analysis, and from a media economics perspective.
A regression analysis was applied, and with this, it has concluded that the demand for a sportscast
depends mostly on the sporting competition of the match and its relevance within the context of
the tournament. Moreover, viewers prefer a national team with more experienced players and
matches with an opponent of high quality with a greater reputation. This study also showed
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that some sport-unrelated factors have explanatory powers, such as kickoff time and weather
conditions.

3.2.2.2 Determinants of football TV audience: the straight and ancillary affects of
the presence of the local team on the FIFA world cup

In Uribe et al. [101] four FIFA World Cup competitions (2002, 2006, 2010, 2014) have been used
to evaluate the determinants of their TV audience size. Through multiple regression analyses,
the study tested the explanatory power of independent variables to predict TV audience size.
The independent variables incorporated were:

• Home team effect (presence of the national team);

• Outcome uncertainty (competitive balance or symmetry among teams and fans’ interest);

• Match quality (teams with higher reputation);

• Team familiarity:

– The number of years that the team has been in competition;

– The presence of a team that is geographically close;

• Scheduling (day and scheduling of the match).

The results showed that when the national team qualifies for the tournament, the home team
effect is the most relevant predictor of audience size, followed by match quality and scheduling
variables.

From these two studies we can concluded that the main determinants of sports TV viewership
are elements associated with the attractiveness of the match, namely: the match quality and
importance, the outcome uncertainty, and audience identification with a team. Besides that,
sports indirect factors (e.g. weather, news or social media trends), which is the main focus of our
study, showed to also have explanatory power on the number of television audiences.

The present study builds on, and fills some gaps in, the literature by (1) extracting data
of traditional sports related explanatory variables – outcome uncertainty, match quality and
match importance – and examining indirect factors related to football matches – news generated
by a football match, twitter teams’ popularity and meteorological factors –, (2) improving TV
viewership prediction accuracy using real-world data and (3) using a causality analysis to identify
influential real-world events on the volume and view patterns of the television clients. The
pipeline of the proposed solution is presented in figure 3.1.

Although many existing expert and intelligent systems for determinants of sports TV
viewership enable computers to analyze the correlation between real-world events and TV
viewership, limited contributions have been made to analyze causal effects of real-world events



26 Chapter 3. Literature review

on TV viewership. Moreover, to the best of our knowledge, no studies have explored the causal
relationships between real-world data and TV viewership in such a wide range of external events.

Figure 3.1: Proposed solution.
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Data description

For this work, one of the main goals is to perform a review on various web scraping APIs that
gather pertinent data about real-world events. This external data, together with the measurement
of television audience data provided by a telecommunication company, would allow us to study
the impact of the external events on both the volume of clients and the viewing time of football
live TV content.

Five types of data are employed in this work. First, the TV demand for football games
is studied through the number of viewers and total viewing time of each game; second, the
characteristics of the competition are explored through the outcome uncertainty and the match
quality; third, the interest generated by a game is measured via the game’s news count and
google search popularity; fourth, the team’s popularity is measured by the number of followers
on one of the most popular social networks today; five, weather factors are taken into account,
through several atmospheric quantities (e.g., precipitation, temperature, etc...).

Pooling data from such a wide range of external sources and joining them with the TV
demand for football games leads to an exclusive data set, which is a key part and a major
strength of this research.

The remainder of this chapter introduces the multidimensional dataset used for the forecasting
and causality analysis and examines them by doing an exploratory data analysis for preliminary
data understanding. It ends with a discussion about the challenges faced throughout the
development, how they were overcome, and the main limitations of the built multidimensional
dataset.

4.1 Data sources

The most valuable data for the goals and tasks of our project is in the form of timestamps and
football match details. Taking this into account and inspired by prior theoretical constructs we
collect external factors that could potentially affect football live TV broadcasts from four broad
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categories, namely:

1. The characteristics of football competition. Following the discoveries in [85], [101],
[35], and [4] where it was shown that factors inherent to competition (e.g., outcome
uncertainty and match quality) can affect viewing patterns, we use data from a free football
betting portal (Football-Data) providing historical results and odds. Although Football-Data
portal has games for the main European leagues, other types of tournaments such as cups
tournaments are not present. In order to obtain these missing tournaments, we use Sports
DB data source, an open crowd-sourced database of sports artwork and metadata with a free
API built by its users. It has historical and future data from several national/international
tournaments. (e.g., Champions league, Europa league, etc...). Finally, we use ESPN’s
Soccer Power Index (SPI), an international and club rating system designed to be the best
possible representation of a team’s current overall skill level. It as rating data back to 1888
(from more than 550,000 different matches);

2. The interest generated by a match. Inspired by the findings of Mesquita et al. [74]
were has been shown that the use Google search trends can provide relevant information
about mass behaviors, we use the same Google tool to find the popularity of match-related
search terms. In addition, we also explore the impact of the number of news in the viewing
patterns through Público newspapers (one of the most popular local newspapers);

3. Teams’ popularity. To measure the impact that teams’ popularity has on television
patterns, we use the Twitter API to extract the number of followers for each team;

4. Meteorological factors. Weather factors are also believed to have an impact on viewing
patterns [35] [11], so the telecommunications company provided weather data for 675
different geographic points. As television data is related to local audiences, weather data is
collected from local weather stations.

To support the development of the thesis research, the telecommunication company made
available a television database containing TV programs records, with information about the
number of viewers and total viewing time. As this is proprietary data, all customer counts
and the sum of second values will be normalized between 0 and 1. Channel names will also be
anonymized by generic labels (e.g., Channel 1, Channel 2, etc...)

Table 4.1 shows a summary of all the raw data sources used.

Finally, mention that the data source used are available in different ways. The television
audience data is available through Apache Hive; the Público newspaper, Google trends, and
Twitter data are available through a JSON API; the other sources are available in CSV (Comma-
Separated Values) files.
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Table 4.1: Raw Data Sources

Description External Data Data Type
Football-Data

i) Historical football res-
ults and odds.

X

Characteristics of football competition

Sports DB
i) Historical and future
data from various na-
tional/international tour-
naments.

X

Soccer SPI
i) International football
teams’ and matches rating
system.

X

Público
i) "Público" newspaper
API;
ii) Allows you to search
for a specific topic, defining
a time interval.

X
Interest generated by a match

Google Trends
i) Analyzes the popularity
search queries in Google
Search and allows the user
to compare the volume of
searches between different
terms.

X

Twitter
i) Lets you read and
write Twitter data such as:
tweets, users, direct mes-
sages, lists, trends, media,
locations.
ii)

X Teams’ popularity

Company
i) Average weather fore-
casts for 675 geographical
points;
ii) This is a weather fore-
cast with the generation of
values by timestamp (every
3 hours): the forecast val-
ues are generated at 0h on
D day for 8 timestamps on
D + 1.

X Meteorological factors

Company
i) EPG metadata with
total viewing time and
volume of clients.

Television Audience

https://www.football-data.co.uk/
https://www.thesportsdb.com/
https://projects.fivethirtyeight.com/soccer-predictions/?ex_cid=rrpromo
https://www.publico.pt/api/list/ultimas
https://trends.google.com/trends/?geo=PT
https://developer.twitter.com/en/products/twitter-api


30 Chapter 4. Data description

4.2 Data aggregation

This section presents the process that takes the raw data from the data sources and converts it
to a more friendly format, ready to be used by forecasting and causality methods. We will start
by detailing the process of extracting data from each external data source, then we will present
the methodology used to merge the external data with television demand data.

4.2.1 Data sources extraction

Before we can do any kind of data processing or storage, we need to extract the data from the
corresponding data sources. We start our extraction by gathering the television audience data as
this would be a baseline to merge with the remaining datasets.

4.2.1.1 Television audience

The telecommunications company made the television data available through an Hadoop cluster.
We use a Spark SQL script (also provided by the telecommunication company) to extract the
television audience dataset (Listing 4.1).

� �
spark_connection = spark_session()

query = ’ ’ ’
SELECT

∗
FROM c l u s t e r _ t a b l e . t e l ev i s ion_aud iences
’ ’ ’

sports_timeseries = spark_connection.sql(query)

sports_timeseries = sports_timeseries.toPandas()� �
Listing 4.1: Code snippet of the spark function used that establishes a connection to the cluster.

The dataset used comprises television programs from 40 different channels between March
2019 and March 2021. During this period, we obtained TV session data from around 1,000,000
distinct programs with information such as the start/end time of the program, the title and the
volume and the total viewing time of the clients. Table 4.2 summarizes all features present in
this dataset.

4.2.1.2 Characteristics of football competition

To study the impact of external events on television data, the selected football tournaments
are of great importance, as tournaments with little representation in television data will not
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Table 4.2: Description of the television audience dataset features.

Feature Description DType Non-Null Count
ChannelName TV channel name object 1072435

Title Program name object 1072435
StartTime Program start time object 1072435
EndTime Program end Time object 1072435
Category Category object 1072435
Genre Genre object 1072435

TotalViewTime Normalized total viewing time int64 1072435
ClientsVolume Normalized number of clients int64 1072435

be the best indicator of the impact of external events on TV audiences. Thus, we decided
to extract football matches from the most competitive local football tournaments: Liga NOS,
LEDMAN LigaPro, Taça de Portugal and Taça da Liga. As well as football matches from the
most competitive international football tournaments [57]: La Liga, Premier League, Bundesliga,
Champions League, Serie A, Ligue 1, Europa League and International Champions Cup.

We start by extracting the characteristics of football competition data from the Football-data
data source. This data source includes historical data from the major European leagues with
information such as match results, match statistics, and match odds from several different
bookmakers. The following following football tournaments were extracted:

• Liga NOS

• La Liga;

• Premier League;

• Bundesliga;

• Serie A;

• Ligue 1;

To extract the remaining data from the other football tournaments we use the Sport DB
data source, this data source only has information about the result of the game. The following
football tournaments were extracted:

• LEDMAN LigaPro

• Taça de Portugal

• Taça da Liga

• Champions League

• Serie A
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• Ligue 1

• Europa League

• International Champions Cup

The data from each competition were extracted for three different seasons (2018/2019,
2019/2020 and 2020/2021), which comprises games in the television data period (from March
2019 to March 2021). Each football tournament for a given season has its own CSV file.

After extracting the different football tournaments datasets, we decided to concatenate them
all. Furthermore, for a better understanding of the data, they were divided into three different
datasests: one with the all the match results (table 4.3), another with all the match stats (table
4.6) and another with the all the match odds (table 4.5).

Table 4.3: Description of the results dataset features.

Feature Description DType Non-Null Count
Date Game day object 8296

HomeTeam Home team name object 8296
AwayTeam Away team name object 8296
FTHG Full time home team goals float64 8169
FTAG Full time away team goals float64 8169
Div Competition name object 8296
Time Game hour object 3896
Round Game round object 2268

Table 4.4: Description of the match stats dataset features.

Feature Description DType Non-Null Count
Date Game day object 6028

HomeTeam Home team name object 6028
AwayTeam Away team name object 6028

HS Home team shots int64 6028
AS Away team shots int64 6028
HST Home team shots on target int64 6028
AST Away team shots on target int64 6028
HC Home team corners int64 6028
AC Home team corners int64 6028
HF Home team fouls Committed int64 6028
AF Away team fouls Committed int64 6028
HY Home team yellow Cards int64 6028
AY Away team yellow Cards int64 6028
HR Home team red Cards int64 6028
AR Away team red Cards int64 6028

Referee Match referee object 1088
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Table 4.5: Description of the odds dataset features.

Feature Description DType Non-Null Count
Date Game day object 6028

HomeTeam Home team name object 6028
AwayTeam Away team name object 6028

BWH Bet&Win home win odds float64 6025
BWD Bet&Win draw odds float64 6025
BWA Bet&Win away win odds float64 6025
WHH William Hill home win odds float64 6024
WHD William Hill draw odds float64 6024
WHA William Hill away win odds float64 6024
VCH VC Bet home win odds float64 6024
VCD VC Bet draw odds float64 6024
VCA VC Bet away win odds float64 6024
IWH Interwetten home win odds float64 6024
IWD Interwetten draw odds float64 6024
IWA Interwetten away win odds float64 6024
B365H Bet365 home win odds float64 6024
B365D Bet365 draw odds float64 6024
B365A Bet365 away win odds float64 6024
PSH PH = Pinnacle home win odds float64 6010
PSD PD = Pinnacle draw odds float64 6010
PSA PA = Pinnacle away win odds float64 6010

Following BORLAND and MACDONALD [15] we decided that it was important to have the
ranking of football matches. For each league to establish the classification of the clubs in each
journey, the following rules for comparing teams are applied:

1. Highest number of points in the entire competition;

2. Greater difference between the number of goals scored and the number of goals conceded
by clubs in matches played throughout the competition;

3. Highest number of victories in the entire competition;

4. Highest number of goals scored in the entire competition.

To determine the ranking in each league we use the individual competition datasets from
Football-Data and Sports DB. In the case of knockout competitions, the ranking values are those
of previous league matches. If the previous match is not related to a league competition, then
the ranking value in that game is set to null. Table 4.6 summarizes the resulting features from
this generated ranking dataset. Note that ranking features are pre-match features to prevent
data leakage (i.e., predicting the output, using a feature that at the time of prediction cannot be
available).
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Table 4.6: Description of the ranking dataset features.

Feature Description DType Non-Null Count
Date Game Day object 7388

HomeTeam Home Team Name object 7388
AwayTeam Away Team Name object 7388
PointsH Home Team Points float64 7123
PointsA Away Team Points float64 7132

GoalsForH Goals For Home Team float64 7123
GoalsForA Goals For Away Team float64 7132
GoalsAH Goals Against Home Team float64 7123
GoalsAA Goals Against Away Team float64 7132
GoalDiffH Goal Difference For Home Team float64 7123
GoalDiffA Goal Difference For Away Team float64 7132
WinsH Home Team Wins float64 7123
WinsA Away Team Wins float64 7132
DrawsH Home Team Draws float64 7123
DrawsA Away Team Draws float64 7132
LossesH Home Team Losses float64 7123
LossesA Away Team Losses float64 7132
RankH Home Team Ranking float64 7123
RankA Away Team Ranking float64 7132

Data collection referring to the characteristics of football competition is completed with data
extraction of the teams’ overall skill (before a match) for the selected matches.

For this purpose, we use a soccer system based on ESPN Soccer Power Index (SPI). In this
system, every team has an offensive and defensive rating that expresses the number of goals
it would be expected to score and concede, respectively, against an average team on a neutral
field. The SPI rating is the combination of the two values (offensive and defensive rating) and
represents the percentage of points a team would expect to take if it always played against the
average team. In addition to the SPI rating, this data source also provides other projections,
such as the result probabilities or the importance of a game for a team (e.g., whether it will be
decisive to win the league or not). These two projections, as in the case of SPI rating, range
between 0 and 100. Table 4.7 presents the features used from the Soccer SPI data source.

4.2.1.3 Interest generated by a match

Finding the popularity of search terms related to a football match can provide insight into the
interest generated by a match. In this sense we collect the number of news related to a football
match and also the popularity of Google search terms related to the football matches and the
individual teams.

Thus, for each match, the number of news from 5 days before the start of the game until a
day before was collected from a local newspaper (Público). A description of the dataset features
is shown in Table 4.8. We use the Público JSON:API to get the news count. This returns all
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Table 4.7: Description of the Soccer SPI dataset features.

Feature Description DType Non-Null Count
Season Season year int64 28936
Date Match day object 28936
League League name object 28936
Team1 Home team name object 28936
Team2 Away team name object 28936
Spi1 Soccer Power Index - Home team overall strength float64 28936
Spi2 Soccer Power Index - Away team overall strength float64 28936
Prob1 Home team win probability float64 28936
Prob2 Away team win probability float64 28936
Probtie Draw probability float64 28936

ProjScore1 Home team goals projection float64 28936
ProjScore2 Away team goals projection float64 28936
Importance1 Home team match importance float64 28936
Importance2 Away team match importance float64 28936

news between the start and end time specified for the search query. Note that only 10 news
items at most are returned, however this number is more than enough for the time period used.

Table 4.8: Description of the counted news dataset features.

Feature Description DType Non-Null Count
Date Match day object 3642

HomeTeam Home team name object 3642
AwayTeam Away team name object 3642

CountedNews Counted news before the match int64 3642

In addition, the google search terms popularity referring to a match are also collected (Table
4.9). For this purpose, we use Pytrends, an Unofficial JSON API for Google Trends, which allows
the download of Google Trends reports. Data was extracted only from Portugal. It provides a
normalized number (between 0 and 100) indicating the search popularity of the term.

Table 4.9: Description of the Google trends dataset features.

Feature Description DType Non-Null Count
StartTime Start Time of the Match object 3074
HomeTeam Home team name object 3074
AwayTeam Away team name object 3074
WeekInterest Match week popularity float64 3074

WeekInterestVs Match week popularity float64 3074
DayInterest Match day popularity float64 3074

DayInterestVs Match day popularity float64 3074
HourInterest Match hour popularity float64 2982

HourInterestVs Match hour popularity float64 2982

Finally, as the data extracted in Table 4.9 measures interest in the game as a whole, we
decided to also extract Google search trends for each individual team.
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Table 4.10: Description of the Google Trends teams dataset features.

Feature Description DType Non-Null Count
StartTime Start time of a match object 3589
HomeTeam Home team name object 3589
AwayTeam Away team name object 3589

Lag0InterestHome Home team popularity (Match Day) float64 3516
Lag0InterestAway Away team popularity (Match Day) float64 3516
Lag1InterestHome Home team popularity (1 Day Before) float64 3516
Lag1InterestAway Away team popularity (1 Day Before) float64 3516
Lag2InterestHome Home team popularity (2 Days Before) float64 3516
Lag2InterestAway Away team popularity (2 Days Before) float64 3516
Lag3InterestHome Home team popularity (3 Days Before) float64 3516
Lag3InterestAway Away team popularity (3 Days Before) float64 3516

4.2.1.4 Teams’ popularity

The popularity of a team, namely, the number of supporters can also be one of the impacting
factors in the TV numbers. As we do not have access to the exact number of supporters for each
team, we use the number of followers on twitter in order to simulate the popularity of each team.
Twitter provides a search application program interface (API) for extracting accounts related
to some search keyword. To obtain the data required to our study, we required the Twitter
search API the accounts for all the teams’ presented in our dataset. In order to avoid secondary
accounts only verified Twitter accounts are considered. Table 4.11 shows the resulting dataset
features. Team location information is also collected along with each team’s followers count.

Table 4.11: Description of the Twitter dataset Features.

Feature Description DType Non-Null Count
Team Football team name object 427

FollowersCount Number of followers float64 282
Location Location of the team object 282

4.2.1.5 Meteorological factors

As described in the section 3, meteorology is known to have an impact on TV patterns. So,
in order to test the effect in our specific case of live broadcasts of football matches, weather
forecasts from 675 different geographical points were aggregate by the average, resulting in more
than 6000 weather forecasts (every 3 hours from January 2019 to January 2021). A summary
description of the features is presented in Table 4.12.
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Table 4.12: Description of the Weather dataset features.

Feature Description DType Non-Null Count
Predictiondate Weather forecast date object 6000
WindSpeed Atmospheric quantity float64 6000

WindDirection Atmospheric quantity float64 6000
Temp Atmospheric quantity float64 6000

AirDensity Atmospheric quantity float64 6000
Pressure Atmospheric quantity float64 6000
Radiation Atmospheric quantity float64 6000

HR Atmospheric quantity float64 6000
Precipitation Atmospheric quantity float64 6000

Table 4.13 gives an overview of the resulting collected datasets detailing the datasets provided
as input and the number of rows and columns resulting from the extraction.

Note that although we have introduced the features using camel case naming convention (to
promote the understanding of the data), from now on we will refer to the features using only the
snake case naming convention (e.g., home_team, away_team).
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Table 4.13: Structured Data Sources

Dataset Name Description Input Dataset(s) Shape (Rows,
Columns)

results Match results (e.g. goals,
full time result, etc...)

Football-Data, The
Sports DB

(8296, 10)

match_stats Stats about the game
(e.g. red/yellow cards)

Football-Data (6028, 16)

odds Football odds Football-Data (6028, 62)
rank League ranking before

a certain game for the
home/away team

results (7388, 21)

spi Contains match-by-
match SPI ratings (e.g.
importance of a game)

Soccer SPI (28936, 15)

counted_news The number of news in
the "Público" newspaper,
related to a particular
game, from 5 days before
the game until the day
before a match

results, Público (3642, 4)

google_trends Interest generated by a
game in the week, day
and hour before starting.

results, Google Trends (3074, 9)

google_trends_teams Interest generated by the
teams’ of a given game
in each of the last four
days.

results, Google Trends (3589, 14)

twitter Number of twitter follow-
ers for a given team.

Twitter (427, 3)

meteo_mean Average weather fore-
casts for 675 geograph-
ical points.

Weather Company (6000, 9)

sports_timeseries Program names and
information about those
programs.(watching
time, volume of clients)

Telecommunication com-
pany

(1072435, 12)

4.2.2 Final dataset construction

After completing the selection of pertinent APIs and extract the raw data from the external
sources, we begin piecing together the multiple datasets collected under heterogeneous conditions.

To merge external data and EPG data, some unique match features have to be taken into
account, namely: the timestamp of the match, the home team name, and the away team name.

In cases where these features are not explicitly available, it is necessary to extract them from
other features or sources. This is the case of television audience data, where the information
regarding the names of the teams is contained in the title of the program.
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Figure 4.1: Merge datasets using date as key.

After we have explored the structure and organization of the platforms, our findings support
that we should guide our implementation of the data fusion by two major tasks identified:

1. Merge the television audience data with the football matches information;

2. Merge the remaining external datasets.

In this chapter, we will only cover the data fusion of the results dataset with the EPG dataset.
Once we have an association between the program title and the game identifier, the merge of the
remaining tables becomes trivial.

4.2.2.1 Results and television audience

To merge the television audience data with the football matches, the following tasks were outlined:

1. Merge datasets taking into account the football match date;

2. Drop rows with no association between the program title and the tournament;

3. Drop rows with no association between the program title and the teams’ names;

4. Filter live content related to football matches.

The data fusion starts by joining football matches and programs that took place on the same
day, for that purpose an inner join was applied. Figure 4.1 shows the final result (table bellow)
of the join of the Results with the Television Audience dataset (the two tables at the top).

After an analysis of the titles referring to football game programs, we verified that the
competition appeared in all cases as a prefix of the program title. With this information, we
created a dictionary that matches the competition at the beginning of the program title and the
competition present in the Div feature (Listing 4.2). Figure 4.2 shows the final result of this
filtering.
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� �
{’F1’: (’LIGUE 1’, ’LIGUE 1 2020’, ’LIGA FRANCESA’),

’CL’: (’LIGA DOS CAMPEOES’, ’CHAMPIONS LEAGUE’, ’UEFA CHAMPIONS LEAGUE’),

’EL’: (’UEFA EUROPA LEAGUE’, ’LIGA EUROPA’, ’TACA UEFA’),

’P1’: (’LIGA NOS’, ’LIGA NOS 2017/18 ’, ’LIGA NOS 2018/19’, ’LIGA NOS

2016/17’),

’D1’: ’BUNDESLIGA’,

’E0’: ’PREMIER LEAGUE’,

’I1’: (’LIGA ITALIANA’, ’LIGA ITALIANA 2020’),

’SP1’: (’LA LIGA’, ’LIGA ESPANHOLA’),

’TP’: ’TACA DE PORTUGAL’,

’P2’: ’SEGUNDA LIGA’,

’IC’: (’INTERNATIONAL CHAMPIONS CUP’, ’JOGO DE PREPARACAO’, ’JOGO PARTICULAR’),

’TL’: ’TA A DA LIGA’}� �
Listing 4.2: League dictionary.

Figure 4.2: Competition filtering.

After cleaning out football matches that didn’t meet the competition in the title of EPG
metadata, we started filtering the teams’ names. First, we found that most program names that
refer to live football broadcasts on TV have the following pattern:

Tournament − HomeTeamX AwayTeam − Moreinfo

Based on this knowledge, we use 5 different regex to extract each component of the program
title (Listing 4.3). Final result is presented in figure 4.3.
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� �
television_df[’comp_str’] =

television_df[’Title’].str.extract(r’^(?:[^-]*\-){0}([^-(]*)’)

television_df[’match_str’] =

television_df[’Title’].str.extract(r’^(?:[^-]*\-){1}([^-(]*)’)

television_df[’home_team_str’] =

television_df[’Title’].str.extract(r’^(?:[^-]*\-){1}([^-X]*)’)

television_df[’away_team_str’] =

television_df[’Title’].str.extract(r’^(?:[^X]*X){1}([^-(]*)’)

television_df[’more_info_str’] =

television_df[’Title’].str.extract(r’^(?:[^-]*\-){2}([^-(]*)’)� �
Listing 4.3: Title extraction regex

Figure 4.3: Extracting relevant labels from the program title (Regex).

After extracting the names of the teams from the EPG metadata, it was necessary to compare
the match_str column in figure 4.3 with the game identifier columns. To this end, we start by
creating a new column, with an identically format to match_str feature:

HomeTeamX AwayTeam

In figure 4.4 we can see the new match column created using the home_team and away_team
features.

Figure 4.4: New feature Match with the name of the match in a identical format to the program
title.

Once these two identical columns were created, a function was applied to measure the distance
between the two string (Figure 4.5). For this purpose, SequenceMatcher function from the difflib
package was used. This is based on the gestalt pattern matching algorithm, presented by Ratcliff
and Metzener [88]:
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Dro = 2Km

|S1|+ |S2|
(4.1)

where S1 and S2 are the strings we want to compute the similarity and Km the number of
matching characters. The similarity of the two string can assume values between 0 (no match of
any letter) and 1 (a complete match).

Figure 4.5: Similarity function applied to the string extracted from the title and the string
created based on the teams’ names features.

After measuring the similarity between the two match columns, for each unique program, we
selected the highest similarity value.

Finally, a threshold is applied and small similarity values are removed (Figure 4.6).

Figure 4.6: Rows with low similarity are removed

As a game may be broadcast live and deferred on the same day, we use a regex with specific
channel information to filter live football matches (listing 4.4). The result is in figure (figure 4.7)

� �
channel_1_live =

channel_1[channel_1[’program_title_dsc’].str.contains("DIRETO")]

channel_2_live =

channel_2[channel_2[’program_title_dsc’].str.contains("(DIRETO)")]� �
Listing 4.4: Live programs extraction regex
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Figure 4.7: Deferred programs are removed

After having a connection between the programs and the football matches completed, the
union of the other tables was more or less straightforward using the identifiers: timestamp, home
team name, and away team name.

4.3 Exploratory data analysis

To understand patterns that can provide valuable information to test hypotheses and to check
assumptions we apply an exploratory data analysis (EDA). This chapter describes the methods
used for this purpose as well as the main results of the analysis.

4.3.1 Number of football matches used

We start our exploratory data analysis by doing a quantitative analysis of the framework used to
merge the different tables.

In the figure 4.8 we have the number of rows in each of the data sources before the data
fusion (horizontal bar chart on the left) and after the data fusion (horizontal bar char on the
right). Here the reference point is the results table (orange horizontal bar), where all available
football matches are. We can see that except for the spi, odds, match_stats (where only data for
some tournaments are available) and google_trends_teams, google_trends, twitter (where rate
limit and API specifications made it impossible to search for some matches) all the other data
sources had a match utilization rate close to 100%.
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Figure 4.8: Total number of matches in each external dataset before the data fusion (left-hand
side) and after the data fusion (right-hand side). Note that the number of rows on the right have
duplicates (i.e., games broadcast in more than one channel) and are not directly comparable
with the number of rows on the left (no duplicates).

We also plot the number of matches used from the original results table. For this purpose,
we use a pie chart with the percentages of used data (matches that merged with the EPG data)
and unused data. The final result is in figure 4.9.

Figure 4.9: Number of games used from the original results table (percentage).

We can see through this visualization that 40% of the games were successfully joined to the
EPG metadata. If we look even closer, we can see that 20% of these matches are related to La
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Liga (SP1). This may be explained considering that it is one of the most prominent contents
on Sport Channel 2 (figure 4.10). After La Liga, we have the Premier League (E0) with the
highest percentage (more precisely 18%) of matches in the data. Once again this makes sense
based on the major content of this competition on Sport Channel 1. Next, we have the Liga
NOS (P1) with 17% of the matches, which can be explained by a large amount of content both
in the Sport Channel 1 and Sport Channel 3. After that, we have Bundesliga (D1) with 11%,
Serie A (I1) with 9%, and the remaining matches, except for the International Cup (IC), Taça
da Liga (TL) and Taça de Portugal (TP) that have an insignificant amount of game, are more or
less distributed among the other competitions.

Figure 4.10: Number of rows for each competition (percentage).

Given the diversity of match competitions and the fact that we are fetching different
competitions from different data sources, these are encouraging results. Even more, compared
to other manual approaches in the literature, where only 5% of external data were successfully
linked to EPG metadata [80]. The unused data can be explained by the following reasons:

• Date out of range. Games before March 2019 or after March 2021 are discarded because
there is no television audience data for those periods;

• Before similarity threshold. Discarded games before the similarity threshold are a
strong indication that they were not broadcast on television, as they did not even match a
program on a given day;

• After similarity threshold. Games can be dropped after the similarity threshold if they
do not occur in the television audience data or it can also be a mismatch;

• Deferred television content. Finally, it may happen that some matches are not
broadcast live.

4.3.2 Number of live football broadcasts

In figures 4.11 and 4.12 we can see the distribution of programs in our dataset by channel and
competition, respectively. At the channel level, we see a large amount of programs related to
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Sports Channel 1 and Sports Channel 2.

Figure 4.11: Bar plot - Number of live
football broadcasts per channel.

Figure 4.12: Bar plot - Number of live
football broadcasts per competition.

At the competition level, a large amount of programs related to Liga NOS and La Liga.
Which shows that although La Liga has more extracted games (fig. 4.9), Liga NOS has more
live TV football broadcasts of the same game.

4.3.3 Distribution of Viewing Time and Clients Volume per Competition

In this visualization, the goal is to check which competitions have the largest audience in total
and on average, in the last case normalized by the duration of the programs; In Figure 4.13 in
the three-bar plots at the top, which represent the total viewing time, clients volume and total
viewing time per client, we can see a clear dominance of the competition Liga NOS (P1). In
the case of the three-bar plots at the bottom, which represent the average of the same features
normalized by the duration of the program, we can see that the visualization patterns are more
evenly distributed across all the competitions, with a slight dominance of views in the Taça da
Liga (TL), Taça de Portugal (TP), and Liga NOS (P1).

To have a more refined view of the data variability or dispersion over the different football
competitions (“minimum”, first quartile (Q1), median, third quartile (Q3), “maximum”, and
outliers), we decided to apply two box plots (Figure 4.14 and 4.15);

In Figure 4.14 the values of each competition are spread out over the y-axis range counted
clients and in Figure 4.15 over the y-axis range summed seconds;

When we look at the clients’ count box plot (Figure 4.14) we observe that there is a greater
variability for P1, EL, TL and TP counted clients. The medians (which generally will be close
to the average) are all at the same level. However the box plots in these examples show very
different distributions of counted clients. In the case of TP and EL, larger outliers are also
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Figure 4.13: Bar plots - The three bar plots at the top represent the total of total viewing time,
clients volume and total viewing time per client for each competition; the three bar plots at the
bottom represent the average value of the same features, normalized by the program duration

observed.
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Figure 4.14: Box plot - Depicting groups of numerical data through their quartiles (clients
volume)

On the other hand, when we look at the sum of seconds (Figure 4.15), we can observe that
the competitions P1, EL, TP, and TL have more dispersed summed seconds points (longer
boxes). This idea is confirmed when we look at the ranges of each competition (extreme values
at the end of two whiskers). In this case, having TP and TL the longest ranges (two knockout
competitions).

Figure 4.15: Box plot - Depicting groups of numerical data through their quartiles (total viewing
time)
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4.3.4 Correlation Analysis

Finally, we decided to analyze the correlation of the external features with the target variables
counted clients and summed seconds. After doing some high-level analysis, we decided to go into
more detail on the relationships that exist between the different features and apply a correlation
matrix using the Pearson correlation method. The Pearson correlation rxy, defined by F.R.S.
[39], measures the the degree of linear relationship between two continuous variables in a sample
and can be measure as follows:

rxy = n
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xiyi −

∑
xi

∑
yi√

n
∑
x2

i − (
∑
xi)2

√
n

∑
y2

i − (
∑
yi)2

(4.2)

Where n is the number of observations and xi, yi are the ith observation of the value of x
and y, respectively. The rxy assumes values between -1 and 1. A value of ± 1 indicates a perfect
degree of association between the two variables. On the other hand, a value of 0 represents no
linear relationship. In this case, a significant correlation coefficient is considered if its value is
greater than or equal to 0.3. To compute the Pearson correlation we apply the corr function
from the python package pandas.

Based on Uribe et al. [101] where it has been shown that public affection for competition is
important in predicting television audiences, we applied Pearson’s correlation to four different
datasets:

• All competitions. The idea here is to assess the overall impact of external features on
viewing time and customer count;

• Local competitions. To assess whether there is a greater association with regard to local
competitions, we have gathered the games from the following local competitions: Liga
NOS, ledman liga pro, Taça de Portugal and Taça da liga;

• International competitions. To confirm the home team effect, we used a dataset with data
referring to international competitions: Serie A, La Liga, Bundesliga, Premier League, Uefa
Champions League, Uefa Europa League and International Cup.

In figure 4.16 we have the resulting correlation matrix for all tournaments, from this we can
draw the following conclusions:

1. It is only possible to observe an association between the number of news and the two target
features (cells outlined in red);

2. A moderate negative correlation occurs between the SPI and ranking features. This makes
sense, considering that a lower ranking corresponds to stronger teams;

3. The remaining correlations are between features that measure the same external factor
(e.g. temperature, radiation)
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Figure 4.16: All competition correlation matrix.

In the specific case of local games (Figure 4.17), the number of relevant associations is higher
(seven in total). Furthermore, the strength of correlation between the external features and the
target features is greater in the case of the viewing time feature (summed_seconds). We can
see that features like spi, news count and followers count have a moderate to strong correlation
when compared to the data from all competitions.

In the specific case of followers count, this can be explained in part by the home team effect
(audience connection with the team). In other words, the television audience sampling is best
represented by the count of followers of local teams. Knowing the followers count of a football
team in Russia (probably quite a few) won’t tell you much about that team’s popularity in
Portugal. This feature also has a strong association with match quality and match interest
features, which makes sense as it is an indirect driver of these variables (e.g., a game with a
greater number of followers will likely also be a game with better teams)

Another relevant fact of this visualization is the negative correlation between the features of
Google searches interest and the target variables. Indicating that on days with fewer Google
searches, the TV audiences increase.
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Figure 4.17: Local competition correlation matrix.

Finally, we look only for the international games. From Figure 4.18 it becomes clear that
external events have a weak correlation with visualization patterns. This confirms that external
events are best represented when looking at local games.

Figure 4.18: International competition correlation matrix.

4.4 Conclusion

In this chapter, we have presented all the external data sources used as well as the methodology
used to join the external data sources with the EPG metadata. The data fusion methodology
used achieves a usage rate of around 40%, taking into account that not all football matches are
broadcast live on TV, these are encouraging results. At the same time, due to API request limits
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and missing data tournaments, some football matches were left with a smaller set of information
from external events. Despite this, the vast majority of matches have complete set of events data,
thus forming a rich dataset of live football matches and external events, ready to be applied to
confirmatory analysis.

We also found that, in terms of quantity of content, Sports Channel 1 is the channel with
the greatest number of live TV broadcasts, and Liga NOS the competition with the most content
of this type. In addition, we also discovered that in average knockout tournaments have a higher
audience.

This chapter also served to realize that competitions with little connection to the public are
less affected by external events.



Chapter 5

Machine learning aproach to football
TV forecasting

This chapter provides an overview of the methodology used to forecast football live broadcasts
taking advantage of the rich dataset create on section 4.

Through an empirical study, a series of machine learning methods are compared. In the end,
closely following methodology applied in Selim et al. [97] and in Neagu [78], the most accurate
machine learning model forecasting the TV audiences is compared against a simpler statistical
model, to check and validate the obtained results.

Comparing results with and without both content and external features allows us to verify
whether (1) the model is flexible enough to use different kinds of attributes (2) how the different
kinds of attributes affects the forecasting accuracy.

In addition, to see the impact that external features have on TV viewership, and inspired by
Parsa et al. [81], Feddersen and Rott [35] and Uribe et al. [101], we apply a popular method of
output model explainability.

How different data subsets affects the model accuracy and features importance is also tested
using different tournaments splits.

5.1 Methodology

5.1.1 Sample

To test the effect of external features, we broke the data created in section 4 into two different
datasets: a univariate time series of the volume of clients without external features and a
multivariate time series dataset with all external features.

In addition, we split the data based on the football tournament region (local and international)

53
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to test the accuracy of the forecasting models on different data subsets. This results in three
different datasets: the original dataset with matches from all tournaments, a dataset with matches
from local tournaments and a dataset with matches from international tournaments.

The predictor variables that we use have frequently been identified as relevant drivers of TV
audience of football games and closely follow the variable specifications that are used by Uribe
et al. [101], Nixon et al. [80] and [59]. Table 5.1 shows the top rows of the dataset used.

Table 5.1: Sample of the all_data dataframe.

channel_name program_title_dsc home_team away_team event_start_time_local event_end_time_local External Features summed_seconds counted_clients
channel_name_SP1CH2 PREMIER LEAGUE - CRYSTAL PALACE X BRIGHTON & H... Crystal Palace Brighton 2019-03-09 12:30:00 2019-03-09 14:30:00 ... 0.009916 0.026400
channel_name_SP1CH2 HD PREMIER LEAGUE - CRYSTAL PALACE X BRIGHTON & H... Crystal Palace Brighton 2019-03-09 12:30:00 2019-03-09 14:30:00 ... 0.009129 0.021598
channel_name_SP1CH1 HD LIGA NOS - MARÍTIMO X MOREIRENSE (DIRETO) Maritimo Moreirense 2019-03-09 15:30:00 2019-03-09 17:40:00 ... 0.031389 0.049866
channel_name_SP1CH1 LIGA NOS - MARÍTIMO X MOREIRENSE (DIRETO) Maritimo Moreirense 2019-03-09 15:30:00 2019-03-09 17:40:00 ... 0.041676 0.066752
channel_name_SP1CH2 HD PREMIER LEAGUE - MAN. CITY X WATFORD (DIRETO) Man City Watford 2019-03-09 17:30:00 2019-03-09 19:30:00 ... 0.017220 0.049345

Before embarking on model development, it is worth emphasizing that, in our forecasting
context, the criterion for a good model is that it predicts well and has good explanatory power
so that we can validate the effect of external events on TV audiences. Taking this requirements
into account, 4 models were selected: a linear model (ARIMA) and 3 ensemble nonlinear models
(Random forest, Gradient boosting and XGBoost).

5.1.2 ARIMA

In this research, an ARIMA methodology was conducted to compare its performance with the
events-based machine learning model. To fit ARIMA to the available time series, the following
steps were executed.

1. Determine the right order of differencing(d): To check stationariy we use the
Augmented Dickey Fuller test from the statsmodels package. The null hypothesis of the
ADF test is that the time series is non-stationary. So, if the p-value of the test is less than
the significance level (0.05) we can reject with 95% of confidence that the time series is
non-stationary;

2. Find the right order of the AR term (p): To find the number of AR terms we use
a partial autocorrelation (PACF) plot, this type of plot evaluates the pure correlation
between a lag and the series. We take the order of the AR term to be equal to as many
lags that crosses the significance limit in the PACF plot;

3. Find the right order of the MA term (q): To find the number of MA terms we use
a autocorrelation (ACF) plot, which is the autocorrelation between an observation and
another observation at a prior time step that includes direct and indirect dependence
information. As in PACF, we take the order of the MA term to be equal to as many lags
that crosses the significance limit in the ACF plot. For the final model identification of the
AR and MA terms, we use the specification in table 5.2;
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4. Evaluate ARIMA model using a walk-forward validation: to see how effective our
model really would have been in the past data, we use a walk-forward approach to predict
the TV viewership.

Table 5.2: Table used for ARMA identification.

Conditional Mean Model ACF Behavior PACF Behavior
AR(p) Tails off gradually Cuts off after p lags
MA(q) Cuts off after q lags Tails off gradually
ARMA(p,q) Tails off gradually Tails off gradually

5.1.3 Random Forest, Gradient Boosting and XGBoost

To compare the performance of ML methods to traditional statistical ones in TV viewership
forecasting, we apply 3 ensemble methods. We choose this three machine learning methods
because they are a compromise between performance and explainability (see section 2).

To fit all the 3 ensemble methods, the following steps were executed.

1. Feature selection: To reduce computational costs and to avoid the curse of dimensionality
we remove redundant features from the model. The following methods are used to feature
selection:

(a) Missing Values. Find any columns with a missing fraction greater than a specified
threshold (features with a value greater than 0.30 missing values are removed);

(b) Single Unique Values. Find any features that have only a single unique value;

(c) Collinear Features. Collinear (highly correlated) features (features with a correlation
magnitude greater than 0.97 are removed).

2. Imputer: for completing missing values we use an imputer.

3. Normalize data: To guarantee that our algorithm can generalize better on the test set
we apply a normalization to our data.

4. Add time variables: in order to capture trends, season and cyclical patterns from the
multivariate dataset we add the following time based features:

• Month;

• Year;

• Week;

• Day;

• Dayofweek;
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• Dayofyear;

• Is_month_end;

• Is_month_start;

• Is_quarter_end;

• Is_quarter_start;

• Is_year_end;

• Is_year_start;

• Elapsed.

5. One hot encoding: in order to assess the impact of some categorical external features
we apply one hot encoding to the following features:

• div;

• result_home (Only used in lagged features to avoid data leakage);

• result_away (Only used in lagged features to avoid data leakage);

• channel_name;

• home_team;

• away_team.

6. Add lagging variables: As these three machine learning methods evaluate the data
points without making connections to previous information (as opposed to linear models,
for example), and following the implementation in Khryashchev et al. [59], we define the
lags of a given football match broadcast live on a given channel as follows: the N home
team football matches and N away team football matches, on the same channel as the
actual live TV broadcast, that take place before the actual match;

7. Backtesting: To access the performance of the models on the historical data, two
backtesting strategies (a special type of cross-validation applied to time series data) were
addressed: sliding window and expanding window. This type of approach allows evaluating
the ability of predictive models to generalize, avoiding at the same time overfitting [12].
Figure 5.1 illustrates the validation process of the sliding window strategy in n different
data splits. New points are added at the front (gray window) and the older points are
removed as the window moves ahead. In the case of expanding window (figure 5.2), the
only difference is that the previous points are not removed and are used to predict the
points ahead.

For model training, we used the XGBoost packages and the Scikit-learn library [84].
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Figure 5.1: Sliding window. Figure 5.2: Expanding window.

5.1.4 Machine learning parameters optimization

To consider what is the best set of parameters for testing the impact of external events data on
machine learning forecasting models, we have designed an exhaustive search test to assess which
of the following parameters are a good match:

• Model. The goal here is to outline which machine learning model is most accurate in our
specific forecasting problem. Three models were used for this purpose: a random forest, a
gradient boosting and XGBoost model;

• Cross Validation. In this, we focused on verifying which backtesting approach is most
appropriate for our irregular time series. For this purpose, we test two types of approaches:
sliding window (more appropriate to test high-frequency data) and expanding window
(more appropriate for time series with larger intervals between points);

• Train size. To check the best training window size (in the case of the sliding window) and
initial starting window size (in the case of expanding window), we tested our models with
four different train sizes: 100, 500, 1000, and 1500;

• Test size. To determine the best forecast window size to apply for each backtesting
method, the following test sizes were selected: 200, 100, 50, 25 and 1;

• Lags for the football live broadcasts. Since there is a tradeoff between the number
of lags and the number of predictions (the greater the number of lags, the more football
live TV broadcasts are dropped), we also tested which is the most suitable choice for this
parameter;

• Normalizer. Finally, we test whether normalizing our data to a smaller scale helps
improving the accuracy of television audiences forecasting. For this purpose we tested the
StandardScaler and the MinMaxScaler (We use the raw data as a baseline).

Note that we do not do any tuning to the models, we use the default configuration parameters
for all three models, with the number of threads set to three (except for the gradient boosting
model which currently does not allow parallelization). Future work should be done in this
direction.
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Table 5.1 shows the lists of manually defined values for the exhaustive search test.

Table 5.3: Set of values for each paramater used in the exhaustive search test.

Parameter Range of values
Model [RandomForestRegressor, GradientBoostingRegressor, XGBoost]
Cross validation [Sliding Window, Expanding Window]
Train size [100, 500, 1000, 1500]
Test size [200, 100, 50, 25, 1]
Lags size [1,2,3, 4, 5]
Normalizer [Raw, StandardScaler, MinMaxScaler]

5.1.5 Model evaluation

Once a model has been generated and tested, its performance should be evaluated. In this study,
three forecast error measures, namely, Root Mean Squared Error (RMSE), Normalized Root
Mean Squared Error and Symmetric Mean Absolute Percentage Error (SMAPE) were employed
for model evaluation and model comparison.

RMSE expresses the standard deviation of the residuals. The lower the RMSE, the better is
the forecasting model. It can be represented by the following equation:

RMSE =

√∑n
t=1(ŷt − yt)

n

where yt is the actual observation, ŷt is the forecast at period t, and n is the number of
different predictions.

As we are testing models with possibly different scales (all tournaments data, local tournaments
data and international tournaments data) we also use a normalized version of RMSE, given by
the following equation.

NRMSE = RMSE

ymax − ymin

where ymax and ymin are the maximum and minimum value observed, respectively.

Finally, we use sMAPE (Symmetric Mean Absolute Percentage Error) as a relative error
measure. This measure is easy to understand because it provides the error in terms of percentage.
The SMAPE value can never be greater than 200%.

SMAPE = 100%
n

n∑
t=1

|ŷt − yt|
|ŷt|+ |yt|
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5.1.6 Model interpretation

To interpret the output of the model we use SHAP (SHapley Additive exPlanations), proposed
by Lundberg and Lee [70], SHAP is based on game theory and it offers a means to estimate the
contribution of each feature. Features with higher absolute shapely values are more important
for the forecasting outcome. Shapely values are determined through:

φi =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!
n! [fS∪{i}(xS∪{i})− fS(xs)] (5.1)

Where φi is the shapley value for feature i, f the black box model and the N is a group of n
features used to predict an output.

Lundberg and Lee [69] developed a practical package in Python that is able to calculate
SHAP values for different techniques including XGBoost.

5.2 Results

5.2.1 Machine learning parameters optimization

Through an empirical comparison of three machine learning models (random forest, gradient
boosting and an xgboost model) for predicting TV ratings, we decided to use XGBoost as our
final evaluation model since it is the one with the most consistent results throughout the tests
(table 5.4).

Table 5.4: Overview of the results across all the different models.

Model # tests Average RMSE Average SMAPE Average Total Time
Random Forest 84 2728.53 37.80 3824.03
Gradient Boosting 84 2737.12 44.55 2922.95
XGBoost 84 2680.30 39.15 1121.70

Moreover, we also concluded that for xgboost the best train/test split results are the 1000/1
and 1500/1 ratios. Finally, the best lag for split 1000/1 is two and for split 1500/1 is four. For
our final evaluation, we choose to use the 1000/1 split with a match lag of two since would allow
was to test more football matches live broadcasts. Despite that, in our final test, as we are
using different data subsets, in some cases we choose to use a smaller train size (with the same
train/size ration) and a smaller match lag size as well.
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Table 5.5: The set of parameters for the best RMSE and the best SMAPE among all the different
models.

Best RMSE
Model Backtesting Normalizer Lags Train Size Test Size RMSE SMAPE total_time
Random Forest GameBasedEWCV StandardScaler 4 1500 1 1806.30 35.44 1132.41
Gradient Boosting GameBasedEWCV StandardScaler 4 1500 1 2020.84 45.40 1080.79
XGBoost GameBasedSWCV StandardScaler 4 1500 1 1907.23 41.15 266.39

Best SMAPE
Random Forest GameBasedEWCV Raw 1 1500 1 2295.72 33.43 5545.69
Gradient Boosting GameBasedSWCV StandardScaler 3 1000 1 2189.65 40.39 4228.14
XGBoost GameBasedEWCV StandardScaler 2 1000 1 1936.83 34.17 1711.95

In this test, 2 different types of normalization were also tested, specifically: StandardScaler
and MinMaxScaler. We use a StandardScaler normalization approach in our final evaluation
since it was the normalizer with the best results (see appendix A for more details).

5.2.2 ARIMA - Univariate approach

After the calculation of the match lag for the machine learning models, some matches end up
being removed. To have a more reliable comparison, between the different models, only the
matches used in the machine learning models were considered in the ARIMA model.

As described in the previous section, we start by performing a stationarity check. In the
different data aggregations, the null hypothesis that the series is non-stationary was rejected
(p-value < 0.05). It was not necessary to apply no differentiation (d=0). To find de AR term (p)
and de MA term (q) we applied the PACF and ACF plot, respectively. We verified, in all the
cases, that the ACF cuts off after 1 lags, and PACF decays, so ARIMA(0,0,1) (or MA(1)) is the
chosen model.

Figure 5.3 displays the results of the expanding window cross validation for the error measures
presented in subsection 5.1.5 (The orange dot line plot represents the prediction value). In the all
tournaments model, the accuracy is close to 0.07 in NRMSE and 59.01% in the SMAPE. In local
tournaments, the accuracy is close to 0.08 in NRMSE and 40.39% in the SMAPE. Finally, in the
international tournaments model, for the same error measures, the accuracy is 0.17 and 55.31%.
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Figure 5.3: ARIMA walk forward results.

Visually we can notice that although there are certain differences among the tournament
models, they all underfit the true values. We also verified that the prediction of games for local
competitions had better results.

5.2.3 XGBoost - Multivariate approach

To assess the impact that external sources data have on TV viewership forecast, we start by
applying the pipeline described in subsection 5.1.4. We use a training size of 150 and a lag of 1 in
the local tournament dataset so that we can make a comparison against the results of the general
model. For the same reason, we use a training size of 300 in the international tournament data,
keeping the number of lags the same of the all tournaments dataset (2 lags). For the remaining
parameters, we use the choices made in the subsection 5.2.1 .

Fig. 5.4 displays the results of the expanding window cross validation using the multivariate
approach. In the all tournaments model, the accuracy is close to 0.02 in NRMSE and 21.30% in
the SMAPE. In local tournaments, the accuracy is close to 0.03 in NRMSE and 19.11% in the
SMAPE. Finally, in the international tournaments model, the accuracy is 0.06 and 24.01% for
the NRMSE and SMAPE measures, respectively.
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Figure 5.4: XGBoost expanding window results.

Comparing the two models, we can see that the univariate approach has more difficulty in
tracking customer count variations over time. On the other hand, we noticed in both cases
difficulty tracking outliers (approximately the game index 1600 and 680 in the first and second
plot of figure 5.4, respectively), this may happen since we do not have all the external event
information available. To get around this, a possible solution presented in Nixon et al. [80] would
be to first look at all outliers and determine whether they report a specific TV event or not.
Nevertheless, the results support the hypothesis that the inclusion of external features, especially
when it is difficult to capture the TV seasonality and trend components, due to the irregularity
of the time series, can bring advantages in terms of TV demand prediction.

Table 5.6 shows the RMSE, NRMSE and SMAPE values for each model across all data splits.
The XGBoost model obtains the highest accuracy. On the other hand, the ARIMA model has a
shorter execution time across all the splits.

Table 5.6: Summary of the accuracy results.

Method Tournament RMSE NRMSE SMAPE(%) Time(s)
ARIMA All 8710.97 0.07 59.01 445.85
ARIMA Pt 9618.18 0.08 40.39 133.092

MoARIMA Int 5377.07 0.17 55.31 308.42
XGBoost All 2210.03 0.02 21.30 5116.18
XGBoost Pt 3366.78 0.03 19.11 573.79
XGBoost Int 1839.56 0.06 24.01 2671.74
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5.2.3.1 Features importance analysis

In order to determine the impact of features on the model’s predictions, we use the SHAP method
(Section 5.1.6).

Figure 5.5 shows the all tournaments SHAP plot of the features that the model relies on
most to make its predictions.

Figure 5.5: All competitions shap.

We can see that the lagged features of volume of clients are the most important features in
the model. This makes sense considering that the customer count over the course of a tournament
does not vary much for the same team matches (i.e., a team that had many viewers in the last
games is expected to also have in the following ones). Particularly, when we compare the lagged
values for the home and away team the customer count value of the away team has a greater
impact on the model (i.e. lag_1_counted_clients_away and lag_2_counted_clients_away). We
also found that lagged external features have an lower impact on the model, which makes sense
considering that these are more distant events to the match time.

Duration and start time of a match are the next two most important features after the lagged
counted_clients, and lower values of these features correspond to a lower customers count. The
transmission channel also has an impact on customer count (channel_name_Sports Channel 1,
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channel_name_Sports Channel 2.

In terms of external-based features we can see that, in general, higher values for match quality
(spi1, spi2, goals_diff_h, points_a, importance2 ) and match interest features (counted_news)
result in higher customer count values. On the other hand, higher outcome uncertainty values
(probtie) result in lower customer count. Although logic tells us otherwise (i.e. more spectators
are attracted to watch matches in which the outcome possibilities of the competing teams are
equally balanced), Forrest and Simmons [36] showed that tournaments where matches with
unbalanced teams are in bigger number, the impact of outcome uncertainty is usually negative
(weak home team hosts a weak away side). Finally, The weather conditions have, as expected
(sunnier and warmer weather decreases demand for television broadcasts [35]), influence on
television customer count (pressure, temp and precipitation).

Figure 5.6: Portuguese competitions shap.

When we only consider local matches (Fig. 5.6) we see that the model relies more or less
on the same content-related features (lag_1_counted_clients, lag_1_counted_clients_home,
duration, event_start_time_local and event_start_time_local) to forecast customer count. In
the case of event-related features, highlight the emergence of teams’ popularity as one of the
most important features (followers_count_home and followers_count_away). This fact confirms
once again that the supporters’ affection for local teams has an impact on the customer count,
as shown in Uribe et al. [101].
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Figure 5.7: International competitions shap.

Finally, we conducted the same SHAP method in the dataset with international matches and
the result is shown in figure 5.7. Here a great emphasis is given to features related to the match
quality (spi1 and spi2 ). This may indicate that when there is no local team present, fans are
essentially looking for a high quality matches. Another curious fact about this visualization is
the impact that different tournaments have on customer count. A positive shapley value in the
case of Serie A and Champions League tournaments (div_I1, div_CL) and a negative shapley
value in the case of Bundesliga e La Liga tournaments div_D1 and div_SP1 ). This fact once
again may be due to the home team effect as Serie A has a very famous local player (Cristiano
Ronaldo) and the Champions League being a tournament open to teams from all over Europe
also has, in some matches, the presence of local teams.

5.3 Conclusions

In this work, we compare four forecasting algorithms for time series - ARIMA, Random Forest,
Gradient boosting and XGBoost for the problem of TV viewership forecasting. We show that the
inclusion of content-based features and external-based features, using a multivariate approach,
considerably increase the accuracy of the TV viewership forecast compared to the univariate
base model that takes into account only previous television audiences counts. Considering
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the general case (dataset from all tournaments), and taking the RMSE as the error measure,
the inclusion of external features using a multivariate approach resulted in an improvement of
roughly 70% in model accuracy. In addition, we apply SHAP, a method that estimates the
importance of features through shapley values. From this analysis we conclude that, in general,
the content-based features have a bigger impact on the model’s predictions, closely followed by
external-based features such as match quality and match interest. Finally, based on the different
dataset aggregations, we conclude that people’s affection to a competition (home team effect)
also has an impact on TV customer count.



Chapter 6

Impact of external factors in the ser-
vice viewing time and volume of cli-
ents

In order to go one step further in evaluating the impact of external events on TV viewership,
and confirm the results obtained in section 5, we apply a causal relationship analysis framework
between real-world data (weather, news, google trends) and TV sports viewership. To do so, we
employ an econometric framework based on time series methods.

In this chapter, we will start describing the methodology used in the construction of the
econometric framework and all the hypotheses formed. We will finish presenting a case study
involving several external factors and a popular local football tournament.

6.1 Methodology

6.1.1 Sample

For this study, a general to specific procedure was used. In this sense, a set of case studies were
applied. These case studies were used to explore the causal relationship between real-world data
in TV viewership in complete season (19/20) for a specific football tournament (Liga NOS).

It should be noted that, despite having a dataset with a large number of football matches
referring to several local and international competitions (see chapter 4), this study only considers
the impact of external events on a local football tournament, more specifically, on the Liga NOS
for the 19/20 season. The main reason is that it is very difficult to quantify the impact of external
events in such a diverse environment of competition and competitive structures. For example,
the spectators’ affection for a local tournament is different from the affection for an international
tournament [101] [8]. Also, tournaments with different competitive structures (i.e., cup and league

67
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tournaments) cannot be compared directly, intuitively the impact of external events will have on
a three-point rule tournament, where the most regular team wins the championship, is different
from an elimination tournament, where fewer matches are played and the unpredictability of
results prevails. However, this two assumption has not been investigated in this study. This can
be tested in future research.

We chose the Liga NOS tournament because is the competition with the greatest impact
in terms of television audience (see section 4.3.3), and the 19/20 season for being the only one
available that brings together all the matches from an entire season. Table 6.1 shows the top
rows of the sample used for the causality analysis.

Table 6.1: Sample of the Liga NOS 19/20 dataset.

event_start_time_local home_team away_team spi_match counted_news precipitation external_features counted_clients_shift1 summed_seconds_shift1
2019-08-10 19:00:00 Gil Vicente FC Porto 60.025 3.0 0.000000 (...) 0.391411 0.171781
2019-08-10 21:10:00 Benfica F.C. Paços de Ferreira 59.440 1.0 0.000000 (...) 0.505247 0.378332
2019-08-11 18:30:00 Maritimo Sporting CP 53.475 3.0 0.005786 (...) 0.353997 0.269769
2019-08-11 21:00:00 Sp Braga Moreirense 51.335 3.0 0.000297 (...) 0.545166 0.404101
2019-08-12 20:15:00 Vitoria Setubal Tondela 41.245 1.0 0.000000 (...) 0.343146 0.125612

6.1.2 Granger causality test

To establish whether real-world event data can affect and hence predict future TV viewership
fluctuations, will use a Granger causality test [41]. The essential principle of Granger causality
analysis is to test whether the past values of one variable X (the driving variable) help explain
the current values of another variable Y (the response variable).

There are many ways to apply this Granger causality test, in our specific case we follow an
approach in Hamilton [44] that uses a bivariate vector autoregression. This assumes a lag length
p, and estimates the restricted and unrestricted equation by ordinary least squares(OLS).

yt = c0 +
p∑

i=1
γiyt−i + et (6.1)

yt = c1 +
p∑

i=1
αiyt−i +

p∑
i=1

βixt−i + ut (6.2)

Then an F test of the null hypothesis is conducted,

H0 : β1 = β2 = ... = βp = 0 (6.3)

And the sum of squared residual from the restricted model [6.1] and the unrestricted model
[6.2] are compared,

RSS0 =
T∑

t=1
ê2

t RSS1 =
T∑

t=1
û2

t (6.4)
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The F-test is conducted by the following expression:

F = (RSS0 −RSS1)/p
RSS1/(T − 2p− 1) (6.5)

If the critical value of F at 95% probability level is lower than the observed value of F [6.5],
we reject the null hypothesis(H0).

To apply the Granger causality test, we use grangercausalitytests function from the
package statsmodels [96]. The significance level we use is 5% and if the p-value of a pair of
variables is smaller than 0.05, we could say with 95% confidence that a predictor x causes a
response y. The null hypothesis test (H0) is that the lagged values of x does not Granger cause
y. For this problem, we run the Granger test with only one lag (p=1). This choice happens
for two reasons. First, in this study, we are more interested in the short-term impact of events
on viewing time and volume of clients that in long-term (as seen in section 5 the short-term
impact events have a closer relationship with the TV audience). Second, a bigger lag than one,
in the Liga NOS case study, corresponds to a different football match between two other teams
(as shown in the table 6.1) and although the events that affected other matches (between two
different teams) can also affect the next one, for the sake of simplicity, we chose to just study the
impact of events before a match.

Although the Granger causality test used can provide support about a hypothesis, note that
being a bivariate analyses, this test cannot account for indirect links or common drivers.

6.1.3 Unit root test

The Granger causality test assumes series stationary. So before conducting causality tests, in
order not to have false estimates, we first test whether the series is stationary or not. For this
purpose, we use the augmented Dickey Fuller Dickey and Fuller [27] unit root test.

In the case of non-stationarity, differentiation is applied to the series in order to make them
stationary, thus removing trends and seasonality. The differenced series can be written as:

y
′
t = yt − yt−1 (6.6)

This results in T − 1 values, since the first value cannot be differentiated.

6.1.4 Variables

Based on prior knowledge and studies (see section 3), it was hypothesized that:

1. Match result uncertainty Granger causes TV viewership;
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2. Participant teams’ quality Granger causes TV viewership;

3. Participant teams’ interest Granger causes TV viewership;

4. Participant teams’ popularity Granger causes TV viewership;

5. Weather conditions Granger causes TV viewership;

6. Scheduling Granger causes TV viewership;

7. TV-network Granger causes TV viewership.

In order to make a better assessment of these hypotheses, a set of variables were selected
within the scope of each external factor (see table 6.2).

Table 6.2: Summary of the external variables used for the causality analysis.

Factor Variable Description

Outcome uncertainty
’probtie’ Match tie probability
’b365_d’ Match draw odds

Match quality

’goals_diff_match’ The average goals difference for the home and away team
’goals_a_match’ The average goals against for the home and away team
’losses_match’ The average number of losses for the home and away team
’rank_match’ The average raking of the match
’spi_match’ The average strength of the home and away team
’importance_match’ The average importance of the home and away team

Match interest

’counted_news’ Number of news in the days before the match
’week_interest’ Number of google searches in the week preceding the match
’day_interest’ Number of google searches in the day preceding the match
’hour_interest’ Number of google searches in the hour preceding the match

Match popularity ’followers_count_match’ Sum of the number of followers of the home and away team on twitter

Weather
’wind_speed’

Atmospheric quantity just before the start of the match’temp’
’precipitation’

Scheduling
’day_of_week’ Day of the week
’hour’ Hour

TV-network ’counted_channels’ Number of channels a match was broadcast live

The outcome uncertainty is referred to as one of the most important factors in public
forecasting of sporting events [36] [95] [89] [85]. In this way, we measure the impact of this factor
through a draw projection produced by the SPI and a draw odd on b365 bookmakers.

The match quality and the match popularity of the game are other factors that possibly
influence the number of television audiences [101] [29]. In order to obtain these match values,
we follow the implementation in BORLAND and MACDONALD [15] and grouped the features
referring to the home and away team into a single feature. In this study, n teams are considered.
The ranking of each team based on performance is {T1, T2, T3, ..., Tn}, where Ti identifies the
ranking of the ith team i. Knowing that the success of competing teams can be measured by
rank-oder of each team (e.g., Ti, Tj). The quality of the match can be expressed by the average
rank-order of competing teams [15].

(Ti + Tj)/2 (6.7)
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Search patterns have also proved useful in give informing about mass behavior [74]. Therefore,
we use Google search trends match features. In addition, the number of news in the 5 days
preceding the game is also used as an interest factor.

Broadcast related factors are also considered to have an impact in terms of television audiences
[103] [80]. Thus, we used the day of the week and the game time as scheduling factors and the
number of channels that broadcast the game as a broadcast factor.

6.2 Results

6.2.1 Case study for Liga NOS 19/20

To verify the proposed methodology we use seven cases studies. On one hand, a general case
study with all Liga NOS matches validates whether or not external events have predictive power
on TV volume and viewing time of Liga NOS live content. On the other hand, six teams case
studies evaluates the external events predictive power across different teams context, providing
more accurate information about the Liga NOS TV audience behavior. For this purpose, we
select two teams with big TV customer engagement (FC Porto and Sporting CP), two teams with
medium customer engagement (Sp Braga and Famalicão FC) and two teams with low customer
engagement (Rio Ave and CD Aves). The average viewing time and the volume of customers per
team in Liga NOS in the 19/20 season is shown in figure 6.1.

Figure 6.1: TV viewing time and client volume for Liga NOS 19/20 teams. The red bars represent
the six teams’ case studies selected.

The results of the Granger causality test applied to the different external factors on the
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volume a viewing time are presented in table 6.3 and table 6.4, respectively. The results elucidate
on two crucial issues. First, when we look at all NOS league matches, it appears that at the
significance level of 5%, with the exception of precipitation and the day of the week, all the
other external events have predictive power on customer volume and viewing time. Second, the
number of external events that have predictive power on customer volume and viewing time is
higher in teams with lower customer engagement.

Table 6.3: Granger causality tests (counted_clients).

All FC Porto Sporting CP Sp Braga Famalicão FC Rio Ave CD Aves
Null hypothesis p-value Result p-value Result p-value Result p-value Result p-value Result p-value Result p-value Result

’probtie’ does not Granger cause ’counted_clients’ 0.0000 Reject 0.0867 Accept 0.6143 Accept 0.8870 Accept 0.0034 Reject 0.1921 Accept 0.0004 Reject
’b365_d’ does not Granger cause ’counted_clients’ 0.0001 Reject 0.1024 Accept 0.2384 Accept 0.9503 Accept 0.0466 Reject 0.2165 Accept 0.0019 Reject
’goals_diff_match’ does not Granger cause ’counted_clients’ 0.0000 Reject 0.0295 Reject 0.1620 Accept 0.7904 Accept 0.0128 Reject 0.0006 Reject 0.0033 Reject
’goals_a_match’ does not Granger cause ’counted_clients’ 0.0000 Reject 0.7543 Accept 0.7006 Accept 0.8435 Accept 0.0662 Accept 0.0003 Reject 0.1893 Accept
’losses_match’ does not Granger cause ’counted_clients’ 0.0000 Reject 0.4064 Accept 0.6864 Accept 0.7200 Accept 0.0109 Reject 0.0049 Reject 0.0097 Reject
’rank_match’ does not Granger cause ’counted_clients’ 0.0000 Reject 0.2069 Accept 0.7721 Accept 0.5389 Accept 0.0755 Accept 0.0114 Reject 0.0004 Reject
’spi_match’ does not Granger cause ’counted_clients’ 0.0000 Reject 0.0189 Reject 0.1661 Accept 0.1338 Accept 0.0549 Accept 0.0001 Reject 0.0000 Reject
’importance_match’ does not Granger cause ’counted_clients’ 0.0000 Reject 0.4718 Accept 0.0616 Accept 0.2455 Accept 0.6542 Accept 0.0410 Reject 0.7404 Accept
’counted_news’ does not Granger cause ’counted_clients’ 0.0000 Reject 0.0712 Reject 0.8655 Accept 0.4417 Accept 0.0074 Reject 0.0101 Reject 0.0080 Reject
’week_interest’ does not Granger cause ’counted_clients’ 0.0174 Reject 0.0463 Reject 0.0294 Reject 0.4990 Accept 0.6846 Accept 0.1537 Accept 0.2734 Accept
’day_interest’ does not Granger cause ’counted_clients’ 0.0217 Reject 0.5412 Accept 0.3345 Accept 0.7482 Accept 0.6846 Accept 0.0044 Reject 0.1663 Accept
’hour_interest’ does not Granger cause ’counted_clients’ 0.0011 Reject 0.8177 Accept 0.1920 Accept 0.7616 Accept 0.6846 Accept 0.1719 Accept 0.8842 Accept
’followers_count_match’ does not Granger cause ’counted_clients’ 0.0000 Reject 0.9855 Accept 0.0015 Reject 0.0334 Reject 0.0092 Reject 0.0001 Reject 0.0000 Reject
’wind_speed’ does not Granger cause ’counted_clients’ 0.0406 Reject 0.6981 Accept 0.8237 Accept 0.8694 Accept 0.4784 Accept 0.7426 Accept 0.3271 Accept
’temp’ does not Granger cause ’counted_clients’ 0.0002 Reject 0.1423 Accept 0.4837 Accept 0.7689 Accept 0.3547 Accept 0.1547 Accept 0.0461 Reject
’precipitation’ does not Granger cause ’counted_clients’ 0.7665 Accept 0.2098 Accept 0.3977 Accept 0.9242 Accept 0.2605 Accept 0.0460 Reject 0.6049 Accept
’day_of_week’ does not Granger cause ’counted_clients’ 0.1271 Accept 0.7066 Accept 0.8005 Accept 0.8991 Accept 0.6788 Accept 0.5085 Accept 0.9602 Accept
’hour’ does not Granger cause ’counted_clients’ 0.0000 Reject 0.0439 Reject 0.4416 Accept 0.3463 Accept 0.9038 Accept 0.0679 Accept 0.0356 Reject
’counted_channels’ does not Granger cause ’counted_clients’ 0.0000 Reject 0.3661 Accept 0.0751 Accept 0.3118 Accept 0.2214 Accept 0.7996 Accept 0.1803 Accept

Table 6.4: Granger causality tests (summed_seconds).

All FC Porto Sporting CP Sp Braga Famalicão FC Rio Ave CD Aves
Null hypothesis p-value Result p-value Result p-value Result p-value Result p-value Result p-value Result p-value Result

’probtie’ does not Granger cause ’summed_seconds’ 0.0000 Reject 0.0182 Reject 0.3254 Accept 0.9719 Accept 0.0018 Reject 0.0317 Reject 0.0008 Reject
’b365_d’ does not Granger cause ’summed_seconds’ 0.0000 Reject 0.0229 Reject 0.6316 Accept 0.3151 Accept 0.0509 Accept 0.0602 Accept 0.0093 Reject
’goals_diff_match’ does not Granger cause ’summed_seconds’ 0.0000 Reject 0.0012 Reject 0.1322 Accept 0.0494 Reject 0.0006 Reject 0.0000 Reject 0.0015 Reject
’goals_a_match’ does not Granger cause ’summed_seconds’ 0.0000 Reject 0.5233 Accept 0.8175 Accept 0.2116 Accept 0.0060 Reject 0.0000 Reject 0.1572 Accept
’losses_match’ does not Granger cause ’summed_seconds’ 0.0000 Reject 0.2266 Accept 0.5867 Accept 0.1566 Accept 0.0006 Reject 0.0004 Reject 0.0014 Reject
’rank_match’ does not Granger cause ’summed_seconds’ 0.0000 Reject 0.0574 Accept 0.5626 Accept 0.0879 Accept 0.0031 Reject 0.0012 Reject 0.0007 Reject
’spi_match’ does not Granger cause ’summed_seconds’ 0.0000 Reject 0.0001 Reject 0.0677 Accept 0.0005 Reject 0.0009 Reject 0.0000 Reject 0.0001 Reject
’importance_match’ does not Granger cause ’summed_seconds’ 0.0000 Reject 0.4289 Accept 0.0207 Reject 0.0090 Reject 0.8476 Accept 0.0076 Reject 0.9655 Accept
’counted_news’ does not Granger cause ’summed_seconds’ 0.0000 Reject 0.2665 Accept 0.8224 Accept 0.2365 Accept 0.0048 Reject 0.0013 Reject 0.0266 Reject
’week_interest’ does not Granger cause ’summed_seconds’ 0.0018 Reject 0.0435 Reject 0.0019 Reject 0.8584 Accept 0.7787 Accept 0.0145 Reject 0.5736 Accept
’day_interest’ does not Granger cause ’summed_seconds’ 0.0005 Reject 0.2743 Accept 0.5419 Accept 0.7161 Accept 0.7787 Accept 0.0669 Accept 0.5039 Accept
’hour_interest’ does not Granger cause ’summed_seconds’ 0.0018 Reject 0.4230 Accept 0.3488 Accept 0.7097 Accept 0.7787 Accept 0.2556 Accept 0.8311 Accept
’followers_count_match’ does not Granger cause ’summed_seconds’ 0.0000 Reject 0.7152 Accept 0.0001 Reject 0.0000 Reject 0.0008 Reject 0.0000 Reject 0.0000 Reject
’wind_speed’ does not Granger cause ’summed_seconds’ 0.0661 Reject 0.5088 Accept 0.9282 Accept 0.6149 Accept 0.7900 Accept 0.2108 Accept 0.1525 Reject
’temp’ does not Granger cause ’summed_seconds’ 0.0004 Reject 0.1188 Accept 0.4082 Accept 0.5284 Accept 0.5312 Accept 0.3216 Accept 0.3206 Reject
’precipitation’ does not Granger cause ’summed_seconds’ 0.8115 Accept 0.0687 Accept 0.0645 Accept 0.9183 Accept 0.7712 Accept 0.0487 Reject 0.1143 Accept
’day_of_week’ does not Granger cause ’summed_seconds’ 0.0550 Accept 0.2471 Accept 0.7584 Accept 0.3185 Accept 0.5503 Accept 0.6911 Accept 0.3115 Accept
’hour’ does not Granger cause ’summed_seconds’ 0.0000 Reject 0.0894 Accept 0.2426 Accept 0.6625 Accept 1.0000 Accept 0.0726 Accept 0.1062 Accept
’counted_channels’ does not Granger cause ’summed_seconds’ 0.0005 Reject 0.9896 Accept 0.4560 Accept 0.8331 Accept 0.4655 Accept 0.8014 Accept 0.7287 Accept

Table 6.5 presents an overview of the causal analysis results: the number of matches analyzed,
the number of external events related to TV audience and the factors that affected TV audience,
in each case.

Looking at these results in more detail, if we consider the results across the different teams,
it can be concluded that:

• The outcome uncertainty (H1) mostly affects the sum of seconds. This may indicate
that the uncertainty measure has a bigger impact during the game’s progression. For
example, may be related to games that ended the first half with a tie or the existence of a
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Table 6.5: Summary of live matches under analysis.

Teams Number of live matches
under analysis

Number of variables
influencing counted clients

Number of variables
influencing summed
seconds

Factors influencing
counted clients

Factors influencing
summed seconds

All 283 17 17

outcome uncertainty(2),
match quality(6),
match interest(4),
match popularity(1),
scheduling(1),
weather(5),
TV-network(1)

outcome uncertainty(2),
match quality(6),
match interest(4),
match popularity(1),
scheduling(1),
weather(4),
TV-network(1)

FC Porto 33 5 5
match quality(2),
match interest(1),
scheduling(1)

outcome uncertainty(2),
match quality(2),
match interest(1)

Sporting CP 30 2 3
math interest(1),
match popularity(1)

match quality(1),
math interest(1),
match popularity(1)

Sp Braga 27 1 4 match popularity(1)
match quality(3),
match popularity(1)

FC Famalicão 18 6 8

outcome uncertainty(2),
match quality(2),
match interest(1),
match popularity(1)

outcome uncertainty(1),
match quality(5),
match interest(1),
match popularity(1)

Rio Ave 30 10 11

match quality(6),
match interest(2),
match popularity(1)
weather(1)

outcome uncertainty(1),
match quality(6),
match interest(2),
match popularity(1),
weather(1)

CD Aves 27 10 10

outcome uncertainty(2),
match quality(4),
match interest(1),
match popularity(1),
weather(3),
scheduling(1)

outcome uncertainty(2),
match quality(4),
match interest(1),
match popularity(1),
weather(1)

penalty shootout definition [2];

• Match quality (H2) proved to be one of the most important factors, only in the Sporting
CP and Sp Braga customers count no external feature showed any causality effect;

• Match interest (H3), mainly through news counting, has also show to have predictive
power over television audiences.

• Match popularity (H4), as in the case of match quality, it also proved to be one of the
most important factors in television audiences. Only in the FC Porto case no effect was
verified;

• The weather factor (H5) only in the case of teams with low customer engagement
it has shown to have a predictive effect. This may suggest that fans of teams with less
engagement do not have as stronger bond with their team and let themselves be carried
away by external factors;

• Scheduling (H6) showed to have an impact only on the counting of customers of two
teams (FC Porto and CD Aves). These results are not surprising given that we are only
considering games from one competition, the game schedule is very similar throughout the
league;

• Channel counting (H7) proved to be an irrelevant factor in predicting television
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audiences. This suggests that when a game is played on more than one channel, people
spread across different channels.

6.2.2 Conclusions

This causality analysis sought to examine the relevance of the presence of the external features as
a predictor of audience size of sports TV viewership. For this purpose, seven different case studies
from Liga NOS (19/20) were analyzed: a general case with all the teams, two big customer
engagement teams, two medium customer engagement teams and two low customer engagement
teams.

The results showed that, in general, all external events used in this study have a cause-effect
relationship on TV viewership. Also, matches of teams with less customer engagement are more
likely to be affected by external events. Which can be an indication that supporters of this type
of teams do not have a stronger bond with their teams and are much more influenced by external
events.

Furthermore, the match quality, match interest, match popularity and outcome uncertainty
have shown to be the external factors most closely related to variations on television audiences.

Finally, the scheduling of a program and the channel counting did not produce relevant effects
on television audiences.
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Conclusion

We present in this dissertation (1) a pipeline for the generation of external data related to live
football matches, (2) a multivariate machine learning model that uses the external data as input
to predict sportscast customer counts, and (3) a quantitative and qualitative characterizations
(through a SHAP and Granger causality analysis) of the relationships between external events
and television audiences.

The results showed a high connection rate of external data and EPG metadata data,
a multivariate approach with better accuracy in sports broadcast prediction than classical
approaches, and a large number of events detected as having a cause-and-effect relationship
in sports television audiences. Our findings further support the usefulness of online data to
understand television behaviors. Data sources such as news, twitter API and Google trends
proved to be of great value in predicting television audiences. That said, we can affirm that the
main goals proposed for this work were achieved.

7.1 Future work

Finally, some limitations should be noted, which also suggest future research directions. First,
although a large amount of real-world events have been extracted, improvements are still possible.
For example, anomaly detection can be used to determine whether a particular spike in data
refers to a specific television event (e.g., a national holiday). This information can be included in
the data to detect new peaks.

Second, our main focus is not to achieve the best possible model accuracy, but rather to
analyze the effect of external features on forecast accuracy, for better results the application of
hyper-parameter tuning can be of great value.

Third, and last, the causality analysis results are based on bivariate time series models.
Future research should investigate causal relationships between external real-world events and
TV viewing patterns within a multivariate Granger causality framework. In addition, the use

75
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of a different causal discovery framework can bring more confidence in the obtained results. A
possible alternative to Granger causality test is PCMCIplus [93], an conditional independence
(CI) based method for linear and nonlinear, lagged and contemporaneous causal discovery from
observational time series.
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Appendix

A.1 Data description

Figure A.1: Total number of matches before (left-hand side) and after (right-hand side) merging
the TV data.

77
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Figure A.2: Total number of matchs before (left-hand side) and after (right-hand side) merging
the audimetria data.

Figure A.3: Number of rows for each category (percentage).

Figure A.4: Number of rows for each genre (percentage).
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Figure A.5: Number of football matches per team.

Figure A.6: Liga NOS correlation matrix.
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A.2 Forecasting

Figure A.7: Best Number of lags - Total time.

Figure A.8: Best test size - RMSE.
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Figure A.9: Best test size - SMAPE.

Figure A.10: Best number of lags - RMSE.
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Figure A.11: Best number of lags - SMAPE.

Figure A.12: ACF - All data tournaments.

Figure A.13: ACF - PT data tournaments.
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Figure A.14: ACF - INT data tournaments.

Figure A.15: PACF - All data tournaments.

Figure A.16: PACF - PT data tournaments.
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Figure A.17: PACF - INT data tournaments.
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Table A.1: ML Otimization 1.

model cv normalizer nr_lags train_size test_size average_rmse average_smape total_time
RandomForestRegressor GameBasedSWCV Raw 3 1000 200 3706.0498960365385 39.7302459453925 54.11983680725098
RandomForestRegressor GameBasedSWCV Raw 3 1000 100 3668.289500891574 38.529127362601024 107.9681453704834
RandomForestRegressor GameBasedSWCV Raw 3 1000 50 3455.3675048554305 37.66949976425352 226.47514200210568
RandomForestRegressor GameBasedSWCV Raw 3 1000 25 3314.7309485633677 37.180082040711795 453.9058928489685
RandomForestRegressor GameBasedSWCV Raw 3 1000 1 2298.412108294931 36.34892079992363 12040.131406068802
RandomForestRegressor GameBasedSWCV Raw 3 500 200 4214.342340965056 43.78670715315725 33.9584527015686
RandomForestRegressor GameBasedSWCV Raw 3 500 100 4130.461484916516 43.34843046862709 75.33814311027527
RandomForestRegressor GameBasedSWCV Raw 3 500 50 3983.437215968483 42.83163736767815 155.1508195400238
RandomForestRegressor GameBasedSWCV Raw 3 500 25 3798.424670753127 42.575482792988 307.45371174812317
RandomForestRegressor GameBasedSWCV Raw 3 500 1 2497.724071637427 41.16600761063873 7765.464665889741
RandomForestRegressor GameBasedSWCV Raw 3 100 200 5155.891500504162 56.37158551192106 6.685309410095215
RandomForestRegressor GameBasedSWCV Raw 3 100 100 5481.380351708985 59.29821806863805 14.048025608062744
RandomForestRegressor GameBasedSWCV Raw 3 100 50 5194.77540564189 58.523197430937 28.86410927772522
RandomForestRegressor GameBasedSWCV Raw 3 100 25 5070.1456875768545 58.300544669834004 57.84924030303955
RandomForestRegressor GameBasedSWCV Raw 3 100 1 3434.845627828054 56.327596440576755 1464.6191947460175
RandomForestRegressor GameBasedEWCV Raw 3 1000 200 3682.667747373743 37.529730211629456 73.65422272682191
RandomForestRegressor GameBasedEWCV Raw 3 1000 100 3563.3199770099573 36.162704509895775 154.84128379821775
RandomForestRegressor GameBasedEWCV Raw 3 1000 50 3419.0352754836103 35.616715288141855 340.0500769615173
RandomForestRegressor GameBasedEWCV Raw 3 1000 25 3242.876275157204 35.50390997455579 683.9615490436554
RandomForestRegressor GameBasedEWCV Raw 3 1000 1 2211.0198847926267 34.48011240244559 18087.566040039066
RandomForestRegressor GameBasedEWCV Raw 3 500 200 3848.46834318046 41.202571895724475 80.06620025634766
RandomForestRegressor GameBasedEWCV Raw 3 500 100 3695.0292116667574 39.533228700747046 194.50869631767281
RandomForestRegressor GameBasedEWCV Raw 3 500 50 3594.558160509824 38.77050580304678 424.2103862762451
RandomForestRegressor GameBasedEWCV Raw 3 500 25 3439.316200412324 37.98811176078539 853.4885265827179
RandomForestRegressor GameBasedEWCV Raw 3 500 1 2270.289692982456 36.9013057562199 22294.21680045128
RandomForestRegressor GameBasedEWCV Raw 3 100 200 3916.1849803247374 42.833328120775136 83.77978825569153
RandomForestRegressor GameBasedEWCV Raw 3 100 100 3838.90443224637 42.100409770783756 203.3322696685791
RandomForestRegressor GameBasedEWCV Raw 3 100 50 3656.2712042808225 40.746542826326326 443.44845700263977
RandomForestRegressor GameBasedEWCV Raw 3 100 25 3464.1536898759755 40.0376511519279 904.1711683273317
RandomForestRegressor GameBasedEWCV Raw 3 100 1 2289.0508597285066 38.58246165403375 23445.678170681
GradientBoostingRegressor GameBasedSWCV Raw 3 1000 200 3969.4714822230817 48.87422717352109 18.988256931304928
GradientBoostingRegressor GameBasedSWCV Raw 3 1000 100 3634.3989220133744 46.14523452112621 38.002966642379754
GradientBoostingRegressor GameBasedSWCV Raw 3 1000 50 3338.643002314909 44.23184474900579 81.24786543846129
GradientBoostingRegressor GameBasedSWCV Raw 3 1000 25 3287.756011561851 43.284069777693325 161.205002784729
GradientBoostingRegressor GameBasedSWCV Raw 3 1000 1 2207.6149657455003 41.85411243160705 4148.813942909241
GradientBoostingRegressor GameBasedSWCV Raw 3 500 200 4109.774254891519 49.3225489291841 14.321879863739015
GradientBoostingRegressor GameBasedSWCV Raw 3 500 100 4135.166720691699 47.78845503919351 30.5623836517334
GradientBoostingRegressor GameBasedSWCV Raw 3 500 50 3891.294393952353 47.21014091141185 63.02297592163086
GradientBoostingRegressor GameBasedSWCV Raw 3 500 25 3696.5205322504994 46.747616703222675 127.48227405548096
GradientBoostingRegressor GameBasedSWCV Raw 3 500 1 2316.540069096487 43.16493120704754 3236.487483024597
GradientBoostingRegressor GameBasedSWCV Raw 3 100 200 5162.05857896951 54.594869545555184 4.075878381729127
GradientBoostingRegressor GameBasedSWCV Raw 3 100 100 5487.177830942675 56.24679141799687 8.58015775680542
GradientBoostingRegressor GameBasedSWCV Raw 3 100 50 5166.608052645603 54.64687550587631 17.390042781829838
GradientBoostingRegressor GameBasedSWCV Raw 3 100 25 4971.582061315213 53.687418995733005 34.39503502845764
GradientBoostingRegressor GameBasedSWCV Raw 3 100 1 3253.2599528825126 51.85948319098275 872.6290094852448
GradientBoostingRegressor GameBasedEWCV Raw 3 1000 200 3782.0349313916295 48.1281373399335 25.99597454071045
GradientBoostingRegressor GameBasedEWCV Raw 3 1000 100 3528.4028288563977 46.53507339455989 53.0957190990448
GradientBoostingRegressor GameBasedEWCV Raw 3 1000 50 3318.750223039333 45.29383126036858 115.60547280311584
GradientBoostingRegressor GameBasedEWCV Raw 3 1000 25 3262.1111990483405 43.893278190443105 234.07537865638733
GradientBoostingRegressor GameBasedEWCV Raw 3 1000 1 2200.3767162253635 42.60565773791 6009.481504201888
GradientBoostingRegressor GameBasedEWCV Raw 3 500 200 3779.614458802546 46.70463344300247 29.295054197311398
GradientBoostingRegressor GameBasedEWCV Raw 3 500 100 3710.57198888166 46.33627073515704 68.3689341545105
GradientBoostingRegressor GameBasedEWCV Raw 3 500 50 3504.093919835091 45.08854095428536 150.38038182258606
GradientBoostingRegressor GameBasedEWCV Raw 3 500 25 3359.868617121325 44.4696084076346 304.9062716960907
GradientBoostingRegressor GameBasedEWCV Raw 3 500 1 2180.957175569972 42.68831537140807 7836.913321495056
GradientBoostingRegressor GameBasedEWCV Raw 3 100 200 3867.2938443101643 48.941893852950066 31.029099464416504
GradientBoostingRegressor GameBasedEWCV Raw 3 100 100 3763.1039717501217 47.782485670381725 73.03226733207704
GradientBoostingRegressor GameBasedEWCV Raw 3 100 50 3555.836491293848 46.72806730480952 162.02217626571658
GradientBoostingRegressor GameBasedEWCV Raw 3 100 25 3397.379659507557 45.605712806854655 325.99882078170776
GradientBoostingRegressor GameBasedEWCV Raw 3 100 1 2177.9264688707026 43.647867586280384 8516.618428230286
XGBoost GameBasedSWCV Raw 3 1000 200 3863.781407756306 45.77917285069972 47.39369654655457
XGBoost GameBasedSWCV Raw 3 1000 100 3646.328722943777 40.03057807089064 55.62584376335144
XGBoost GameBasedSWCV Raw 3 1000 50 3472.332625401592 38.48680570838649 101.32467436790466
XGBoost GameBasedSWCV Raw 3 1000 25 3260.877691298597 38.593527872865636 168.47873330116272
XGBoost GameBasedSWCV Raw 3 1000 1 2178.2903594970708 36.735563208564095 4777.061422586441
XGBoost GameBasedSWCV Raw 3 500 200 4465.299498225081 45.06312735136294 32.457359790802
XGBoost GameBasedSWCV Raw 3 500 100 4211.573377353277 43.77383866950175 72.66784286499023
XGBoost GameBasedSWCV Raw 3 500 50 4107.02538430189 43.23099199540097 140.8762502670288
XGBoost GameBasedSWCV Raw 3 500 25 3815.934383136729 42.38201722923958 279.73216104507446
XGBoost GameBasedSWCV Raw 3 500 1 2333.6945932343688 38.89722492176225 6609.552387714386
XGBoost GameBasedSWCV Raw 3 100 200 5266.383388117785 52.84760417404097 16.23098063468933
XGBoost GameBasedSWCV Raw 3 100 100 5636.289448769456 55.731963166159105 36.9958176612854
XGBoost GameBasedSWCV Raw 3 100 50 5258.846832853888 52.74561811936102 74.95019102096558
XGBoost GameBasedSWCV Raw 3 100 25 5009.893012603822 52.72673479232557 140.69506287574768
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Table A.2: ML Optimization 2.

model cv normalizer nr_lags train_size test_size average_rmse average_smape total_time
XGBoost GameBasedSWCV Raw 3 100 1 3225.2557044741247 49.8813203101933 3609.530901193619
XGBoost GameBasedEWCV Raw 3 1000 200 3750.850880119569 41.22885957451293 19.963659286499023
XGBoost GameBasedEWCV Raw 3 1000 100 3513.071201073665 38.99853499960307 39.423140287399285
XGBoost GameBasedEWCV Raw 3 1000 50 3338.017232706784 37.51394799087824 101.31896686553956
XGBoost GameBasedEWCV Raw 3 1000 25 3268.6800635056165 38.03934436475061 211.11594986915588
XGBoost GameBasedEWCV Raw 3 1000 1 2046.3976667020727 34.776526193821375 4894.0226640701285
XGBoost GameBasedEWCV Raw 3 500 200 4074.783518094183 43.193116720594006 27.89009380340576
XGBoost GameBasedEWCV Raw 3 500 100 3864.7653079431057 42.26130413769675 58.731938600540154
XGBoost GameBasedEWCV Raw 3 500 50 3684.710181737436 40.78930096286434 147.4188561439514
XGBoost GameBasedEWCV Raw 3 500 25 3481.731290619347 40.11742242476265 284.4610757827759
XGBoost GameBasedEWCV Raw 3 500 1 2106.1129453889807 36.10060906764353 7001.348330259322
XGBoost GameBasedEWCV Raw 3 100 200 4115.945705221503 45.032049762068176 38.45863986015321
XGBoost GameBasedEWCV Raw 3 100 100 3906.0669034433736 43.53242410007149 75.54423213005066
XGBoost GameBasedEWCV Raw 3 100 50 3742.093090125649 42.63148936548725 157.58381962776184
XGBoost GameBasedEWCV Raw 3 100 25 3516.117374850889 41.18967099228936 298.5614049434662
XGBoost GameBasedEWCV Raw 3 100 1 2126.0134331022987 37.119872747550176 7502.74641776085
RandomForestRegressor GameBasedSWCV Raw 1 1000 1 2318.844217894096 37.2273062053145 3599.034618377685
RandomForestRegressor GameBasedSWCV Raw 1 1500 1 2329.850944881889 34.447132580862224 3958.798049926758
RandomForestRegressor GameBasedEWCV Raw 1 1000 1 2219.4942544126598 34.60876288102262 6814.964159250258
RandomForestRegressor GameBasedEWCV Raw 1 1500 1 2295.717734033246 33.43139959524121 5545.685058116913
GradientBoostingRegressor GameBasedSWCV Raw 1 1000 1 2347.2675831492293 44.971272771051524 3327.034697532654
GradientBoostingRegressor GameBasedSWCV Raw 1 1500 1 2394.5458040694125 42.899642960455054 3469.250072479248
GradientBoostingRegressor GameBasedEWCV Raw 1 1000 1 2307.5718983600696 44.171913736336144 6525.2578592300415
GradientBoostingRegressor GameBasedEWCV Raw 1 1500 1 2446.438535680814 44.46339465974699 4844.091957569121
XGBoost GameBasedSWCV Raw 1 1000 1 2187.2308384000853 36.83687022532297 1100.5306572914124
XGBoost GameBasedSWCV Raw 1 1500 1 2166.830516559872 36.323230440918906 1014.6342906951904
XGBoost GameBasedEWCV Raw 1 1000 1 2111.5356690957638 36.50563714438999 1692.596221446991
XGBoost GameBasedEWCV Raw 1 1500 1 2236.150109639005 37.372751596176855 1299.4606153964994
RandomForestRegressor GameBasedSWCV Raw 2 1000 1 2211.926260575296 36.10074231119805 7248.769802570343
RandomForestRegressor GameBasedSWCV Raw 2 1500 1 2187.525410557185 34.37060319777106 8839.340185403824
RandomForestRegressor GameBasedEWCV Raw 2 1000 1 2126.9419543147205 33.80110821491891 6933.495932102203
RandomForestRegressor GameBasedEWCV Raw 2 1500 1 2124.5655131964813 33.731383603297736 4751.2728168964395
GradientBoostingRegressor GameBasedSWCV Raw 2 1000 1 2193.3741121203184 41.33259739817113 3989.8834688663483
GradientBoostingRegressor GameBasedSWCV Raw 2 1500 1 2265.4970370749465 42.377174429319524 3477.119590759277
GradientBoostingRegressor GameBasedEWCV Raw 2 1000 1 2157.8839560030774 41.01135284147993 9413.28144645691
GradientBoostingRegressor GameBasedEWCV Raw 2 1500 1 2223.035929953081 42.0492241505691 4409.2675235271445
XGBoost GameBasedSWCV Raw 2 1000 1 2198.4955064842948 36.83103099620195 1219.0861229896545
XGBoost GameBasedSWCV Raw 2 1500 1 2020.3374980062333 35.32573605401454 948.181412935257
XGBoost GameBasedEWCV Raw 2 1000 1 1946.8922367039472 34.84645443365595 1721.405157327652
XGBoost GameBasedEWCV Raw 2 1500 1 1922.389783880228 35.84476642921196 1108.5054922103882
RandomForestRegressor GameBasedSWCV Raw 3 1000 1 2256.4411405529954 36.006961952053 4241.555945873261
RandomForestRegressor GameBasedSWCV Raw 3 1500 1 2166.675434782609 35.160904785141 2880.6214141845703
RandomForestRegressor GameBasedEWCV Raw 3 1000 1 2222.4645276497695 34.31799211480069 6429.641725778579
RandomForestRegressor GameBasedEWCV Raw 3 1500 1 2122.082282608696 34.25178509360545 3298.3995435237885
GradientBoostingRegressor GameBasedSWCV Raw 3 1000 1 2204.8513407511123 41.75696280928624 4145.254520654677
GradientBoostingRegressor GameBasedSWCV Raw 3 1500 1 2249.6359791019345 42.86568590300865 2654.418081998825
GradientBoostingRegressor GameBasedEWCV Raw 3 1000 1 2197.382554649236 42.267875476786855 6045.91342806816
GradientBoostingRegressor GameBasedEWCV Raw 3 1500 1 2306.6717163864714 44.872385193910894 2983.467916965485
XGBoost GameBasedSWCV Raw 3 1000 1 2178.2903594970708 36.735563208564095 1219.3828699588776
XGBoost GameBasedSWCV Raw 3 1500 1 2143.3759700396786 37.99842260991666 699.8271613121033
XGBoost GameBasedEWCV Raw 3 1000 1 2046.3976667020727 34.776526193821375 1609.4011120796204
XGBoost GameBasedEWCV Raw 3 1500 1 2099.603337607954 38.13654983450874 774.7586960792543
RandomForestRegressor GameBasedSWCV Raw 4 1000 1 2394.067086743044 36.70503498907944 3737.586535215378
RandomForestRegressor GameBasedSWCV Raw 4 1500 1 1860.2328828828827 36.08702088445203 1072.405715227127
RandomForestRegressor GameBasedEWCV Raw 4 1000 1 2305.191129296236 35.51595954334872 5166.855430841446
RandomForestRegressor GameBasedEWCV Raw 4 1500 1 1842.665855855856 35.56622963980941 1132.2231962680814
GradientBoostingRegressor GameBasedSWCV Raw 4 1000 1 2303.9191024764123 42.81261906487772 3766.469014406204
GradientBoostingRegressor GameBasedSWCV Raw 4 1500 1 2056.719405699793 44.96703460393751 1033.7150120735166
GradientBoostingRegressor GameBasedEWCV Raw 4 1000 1 2242.132516534592 41.97885892575295 4959.297845363617
GradientBoostingRegressor GameBasedEWCV Raw 4 1500 1 2076.663494422083 46.90711585696148 1072.3307764530182
XGBoost GameBasedSWCV Raw 4 1000 1 2245.943138376976 36.92979079296786 1071.3803193569183
XGBoost GameBasedSWCV Raw 4 1500 1 1912.185145747554 39.139749063955215 266.98941540718084
XGBoost GameBasedEWCV Raw 4 1000 1 2285.180293051974 38.46170710124408 1320.623999834061
XGBoost GameBasedEWCV Raw 4 1500 1 1954.6809245960133 41.75096119059626 276.0710322856903
RandomForestRegressor GameBasedSWCV Raw 5 1000 1 2437.982375 37.1264738927781 2946.8899490833282
RandomForestRegressor GameBasedEWCV Raw 5 1000 1 2387.7054000000007 36.17327852215854 3676.536447763443
GradientBoostingRegressor GameBasedSWCV Raw 5 1000 1 2429.476208985436 44.06614984080062 3033.673850774765
GradientBoostingRegressor GameBasedEWCV Raw 5 1000 1 2323.7163581708296 42.803359257289685 3643.17679810524
XGBoost GameBasedSWCV Raw 5 1000 1 2363.262372816801 40.05258119977466 855.6241252422333
XGBoost GameBasedEWCV Raw 5 1000 1 2187.9537487339967 37.35658001819323 983.0889019966124
RandomForestRegressor GameBasedSWCV MinMaxScaler 1 1000 1 2333.4502678027998 37.33043393835542 3565.5427017211914
RandomForestRegressor GameBasedSWCV MinMaxScaler 1 1500 1 2363.243272090989 34.55554192081193 3866.550012588501
RandomForestRegressor GameBasedEWCV MinMaxScaler 1 1000 1 2197.15256238588 34.39212105092966 6690.454813957214
RandomForestRegressor GameBasedEWCV MinMaxScaler 1 1500 1 2312.47154855643 33.528978912846306 5367.857131481172
GradientBoostingRegressor GameBasedSWCV MinMaxScaler 1 1000 1 2319.926375156827 44.17171819382777 3293.7797474861145
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Table A.3: ML Optimization 3.

model cv normalizer nr_lags train_size test_size average_rmse average_smape total_time
GradientBoostingRegressor GameBasedSWCV MinMaxScaler 1 1500 1 2410.319133840038 43.051812168078506 3492.2310972213745
GradientBoostingRegressor GameBasedEWCV MinMaxScaler 1 1000 1 2295.6200968466587 43.5658557794429 6132.707284688951
GradientBoostingRegressor GameBasedEWCV MinMaxScaler 1 1500 1 2465.1536171061207 43.984631269392004 4877.285618305206
XGBoost GameBasedSWCV MinMaxScaler 1 1000 1 2188.365427702139 38.13481893645784 1086.6356797218325
XGBoost GameBasedSWCV MinMaxScaler 1 1500 1 2197.8509407702604 36.67009210921329 1010.0395185947418
XGBoost GameBasedEWCV MinMaxScaler 1 1000 1 2055.019395512484 36.360139040105906 1673.4600839614868
XGBoost GameBasedEWCV MinMaxScaler 1 1500 1 2173.1308299412563 36.19949753930434 1289.5096921920774
RandomForestRegressor GameBasedSWCV MinMaxScaler 2 1000 1 2208.395592216583 36.30659997471644 4180.3569502830505
RandomForestRegressor GameBasedSWCV MinMaxScaler 2 1500 1 2192.0843695014664 34.353153113505805 3850.632691383362
RandomForestRegressor GameBasedEWCV MinMaxScaler 2 1000 1 2142.445456852792 33.86819900518506 6945.276827335358
RandomForestRegressor GameBasedEWCV MinMaxScaler 2 1500 1 2144.3209237536653 33.77007549880525 4776.2260060310355
GradientBoostingRegressor GameBasedSWCV MinMaxScaler 2 1000 1 2190.2985730895043 41.22053785727324 4025.312801599503
GradientBoostingRegressor GameBasedSWCV MinMaxScaler 2 1500 1 2239.7762034600737 41.51424071626386 3507.409679889679
GradientBoostingRegressor GameBasedEWCV MinMaxScaler 2 1000 1 2158.858222493764 41.4941544298386 6469.391637802124
GradientBoostingRegressor GameBasedEWCV MinMaxScaler 2 1500 1 2211.133484530295 42.44217680541336 4348.428189516068
XGBoost GameBasedSWCV MinMaxScaler 2 1000 1 2186.23327777188 36.31388937950688 1201.42777967453
XGBoost GameBasedSWCV MinMaxScaler 2 1500 1 2023.4619434921624 35.57158666175898 939.358984708786
XGBoost GameBasedEWCV MinMaxScaler 2 1000 1 1937.0982236870248 34.36719450733297 1706.4073662757874
XGBoost GameBasedEWCV MinMaxScaler 2 1500 1 1928.2078679328088 35.713966811267255 1099.8832330703738
RandomForestRegressor GameBasedSWCV MinMaxScaler 3 1000 1 2286.726900921659 36.446449935585974 4224.441247463225
RandomForestRegressor GameBasedSWCV MinMaxScaler 3 1500 1 2173.91597826087 35.021738360121304 2872.768575668335
RandomForestRegressor GameBasedEWCV MinMaxScaler 3 1000 1 2209.371947004608 34.25246592109258 6409.599452018738
RandomForestRegressor GameBasedEWCV MinMaxScaler 3 1500 1 2151.887092391304 34.27505434113574 3276.436587333679
GradientBoostingRegressor GameBasedSWCV MinMaxScaler 3 1000 1 2185.432998234849 40.50439412930528 4196.924350023271
GradientBoostingRegressor GameBasedSWCV MinMaxScaler 3 1500 1 2249.521232094019 42.88625435375951 2729.768505573273
GradientBoostingRegressor GameBasedEWCV MinMaxScaler 3 1000 1 2178.349593578136 42.471104178609494 6177.137480020522
GradientBoostingRegressor GameBasedEWCV MinMaxScaler 3 1500 1 2256.8825159549724 43.87691794526553 3053.8535475730896
XGBoost GameBasedSWCV MinMaxScaler 3 1000 1 2198.6965124044 36.413734465654436 1194.0440948009489
XGBoost GameBasedSWCV MinMaxScaler 3 1500 1 2160.749551814536 38.98033414045487 696.3106682300568
XGBoost GameBasedEWCV MinMaxScaler 3 1000 1 2049.434075110588 34.55500607634965 1594.839802980423
XGBoost GameBasedEWCV MinMaxScaler 3 1500 1 2072.0564904655125 35.53362286184222 766.2456450462341
RandomForestRegressor GameBasedSWCV MinMaxScaler 4 1000 1 2399.043371522095 36.76851510836936 3740.952360868454
RandomForestRegressor GameBasedSWCV MinMaxScaler 4 1500 1 1860.4732432432431 36.6309199865274 1074.9881489276886
RandomForestRegressor GameBasedEWCV MinMaxScaler 4 1000 1 2291.4388870703765 34.916471005105855 5195.764693737029
RandomForestRegressor GameBasedEWCV MinMaxScaler 4 1500 1 1871.4516216216214 36.43573040367989 1144.7403745651245
GradientBoostingRegressor GameBasedSWCV MinMaxScaler 4 1000 1 2327.011396016789 44.295160449955304 3777.786843776703
GradientBoostingRegressor GameBasedSWCV MinMaxScaler 4 1500 1 2052.022267017961 45.4360268284212 1028.492398262024
GradientBoostingRegressor GameBasedEWCV MinMaxScaler 4 1000 1 2243.572365627223 43.0442573619892 4993.198346138001
GradientBoostingRegressor GameBasedEWCV MinMaxScaler 4 1500 1 2040.0774608451711 45.56226187576114 1073.3818678855896
XGBoost GameBasedSWCV MinMaxScaler 4 1000 1 2253.413465833898 37.33895437668914 1061.0233399868014
XGBoost GameBasedSWCV MinMaxScaler 4 1500 1 1938.910794679109 40.58635336564635 264.6457359790802
XGBoost GameBasedEWCV MinMaxScaler 4 1000 1 2305.8784161956337 37.978082592160895 1313.9850635528564
XGBoost GameBasedEWCV MinMaxScaler 4 1500 1 1979.4742423392638 39.12590338700152 272.5810582637787
RandomForestRegressor GameBasedSWCV MinMaxScaler 5 1000 1 2387.4708750000004 36.658675875906695 2963.280436754227
RandomForestRegressor GameBasedEWCV MinMaxScaler 5 1000 1 2379.60905 36.0573331651631 3692.1636216640472
GradientBoostingRegressor GameBasedSWCV MinMaxScaler 5 1000 1 2384.795294429161 42.823763334918105 3070.666026353836
GradientBoostingRegressor GameBasedEWCV MinMaxScaler 5 1000 1 2331.267483113555 44.53910036010842 3663.337689161301
XGBoost GameBasedSWCV MinMaxScaler 5 1000 1 2414.327536644936 41.20128397732574 836.9485085010529
XGBoost GameBasedEWCV MinMaxScaler 5 1000 1 2293.1688221740724 38.453825267140736 978.1710772514343
RandomForestRegressor GameBasedSWCV StandardScaler 1 1000 1 2319.795934266586 37.365128411698606 3641.300252199173
RandomForestRegressor GameBasedSWCV StandardScaler 1 1500 1 2370.695748031497 34.75326601026014 3917.67414522171
RandomForestRegressor GameBasedEWCV StandardScaler 1 1000 1 2187.2995313451 34.38861943578919 6741.242140054705
RandomForestRegressor GameBasedEWCV StandardScaler 1 1500 1 2316.577716535433 33.608865539207144 5387.13155412674
GradientBoostingRegressor GameBasedSWCV StandardScaler 1 1000 1 2339.6442874253808 44.81152478812725 3290.5484726428986
GradientBoostingRegressor GameBasedSWCV StandardScaler 1 1500 1 2396.075876024571 43.03433008023989 3468.1598551273346
GradientBoostingRegressor GameBasedEWCV StandardScaler 1 1000 1 2331.395010639295 44.039444350448456 6113.321495771407
GradientBoostingRegressor GameBasedEWCV StandardScaler 1 1500 1 2474.247051815736 44.7922750579721 4838.380365610124
XGBoost GameBasedSWCV StandardScaler 1 1000 1 2195.3223032123487 37.530431339125336 1086.6644024848938
XGBoost GameBasedSWCV StandardScaler 1 1500 1 2188.9759029006077 37.38099928908629 1005.9918255805968
XGBoost GameBasedEWCV StandardScaler 1 1000 1 2085.1458799416746 36.26730507608007 1683.3263010978699
XGBoost GameBasedEWCV StandardScaler 1 1500 1 2194.589288993561 36.29311999864078 1291.1696856021879
RandomForestRegressor GameBasedSWCV StandardScaler 2 1000 1 2216.328790186125 36.30725980335009 4181.044786930084
RandomForestRegressor GameBasedSWCV StandardScaler 2 1500 1 2186.391979472141 34.419234038826076 3862.7343163490295
RandomForestRegressor GameBasedEWCV StandardScaler 2 1000 1 2128.885922165821 33.75575730521062 6967.796255350114
RandomForestRegressor GameBasedEWCV StandardScaler 2 1500 1 2161.2294574780053 33.929855081869306 4783.639132261276
GradientBoostingRegressor GameBasedSWCV StandardScaler 2 1000 1 2170.3879967709295 41.44397899039246 4029.446592330933
GradientBoostingRegressor GameBasedSWCV StandardScaler 2 1500 1 2270.360715172616 42.23864947305904 3503.219154119492
GradientBoostingRegressor GameBasedEWCV StandardScaler 2 1000 1 2179.041904439825 40.649691779271215 6543.149601697924
GradientBoostingRegressor GameBasedEWCV StandardScaler 2 1500 1 2227.8134558390752 40.923084802300174 4338.5649394989005
XGBoost GameBasedSWCV StandardScaler 2 1000 1 2215.1034030381797 37.68532408144394 1195.0971713066099
XGBoost GameBasedSWCV StandardScaler 2 1500 1 2031.0318718180279 36.42439277076746 937.179381608963
XGBoost GameBasedEWCV StandardScaler 2 1000 1 1936.8250033867541 34.16630755827482 1711.952437877655
XGBoost GameBasedEWCV StandardScaler 2 1500 1 1915.526115585283 34.76286745858516 1102.7084839344022
RandomForestRegressor GameBasedSWCV StandardScaler 3 1000 1 2294.893870967742 36.26368352757309 4232.045913696289
RandomForestRegressor GameBasedSWCV StandardScaler 3 1500 1 2176.0991847826085 34.701492747117435 2863.2938861846924
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Table A.4: ML Optimization 4.

model cv normalizer nr_lags train_size test_size average_rmse average_smape total_time
RandomForestRegressor GameBasedEWCV StandardScaler 3 1000 1 2204.7046428571425 34.287379660461674 6402.415554523468
RandomForestRegressor GameBasedEWCV StandardScaler 3 1500 1 2132.401440217392 33.933130682633696 3284.289610862732
GradientBoostingRegressor GameBasedSWCV StandardScaler 3 1000 1 2189.6472003102667 40.3888098889645 4228.144110202788
GradientBoostingRegressor GameBasedSWCV StandardScaler 3 1500 1 2219.767436960677 40.826844012638134 2696.5973682403564
GradientBoostingRegressor GameBasedEWCV StandardScaler 3 1000 1 2195.922797097557 42.540665147884546 6120.381167650225
GradientBoostingRegressor GameBasedEWCV StandardScaler 3 1500 1 2288.414561856821 44.30031705890666 3077.322019815445
XGBoost GameBasedSWCV StandardScaler 3 1000 1 2193.372548519741 36.75005463594066 1204.3154654502866
XGBoost GameBasedSWCV StandardScaler 3 1500 1 2195.0892051302867 37.93219541727224 697.434014081955
XGBoost GameBasedEWCV StandardScaler 3 1000 1 2084.584971047766 34.75744069704436 1594.775661945343
XGBoost GameBasedEWCV StandardScaler 3 1500 1 2128.6044655105343 38.31779679227408 766.4617712497711
RandomForestRegressor GameBasedSWCV StandardScaler 4 1000 1 2429.547381342062 37.14687381169315 3745.8853721618652
RandomForestRegressor GameBasedSWCV StandardScaler 4 1500 1 1901.6402702702703 36.49279415702447 1072.7347722053528
RandomForestRegressor GameBasedEWCV StandardScaler 4 1000 1 2295.1282160392802 35.547432707516194 5170.691815614699
RandomForestRegressor GameBasedEWCV StandardScaler 4 1500 1 1806.297207207208 35.43967816302241 1132.4108135700224
GradientBoostingRegressor GameBasedSWCV StandardScaler 4 1000 1 2303.018880562769 42.19342901734023 3798.990427732468
GradientBoostingRegressor GameBasedSWCV StandardScaler 4 1500 1 2064.837015984069 45.77768461606592 1048.15900182724
GradientBoostingRegressor GameBasedEWCV StandardScaler 4 1000 1 2261.552289409047 43.43654284260303 5125.759004831314
GradientBoostingRegressor GameBasedEWCV StandardScaler 4 1500 1 2020.8419898446411 45.40342299629504 1080.7909457683563
XGBoost GameBasedSWCV StandardScaler 4 1000 1 2249.6273933693938 37.535262457687104 1066.058252096176
XGBoost GameBasedSWCV StandardScaler 4 1500 1 1907.2297458476846 41.15325490045501 266.3869683742523
XGBoost GameBasedEWCV StandardScaler 4 1000 1 2277.6446705925878 38.23297341745223 1319.1018443107605
XGBoost GameBasedEWCV StandardScaler 4 1500 1 1909.5570430583787 38.41278527947679 273.60980558395386
RandomForestRegressor GameBasedSWCV StandardScaler 5 1000 1 2446.752575 36.96383171674293 2964.639957666397
RandomForestRegressor GameBasedEWCV StandardScaler 5 1000 1 2371.332425 36.0180220601322 3696.570827722549
GradientBoostingRegressor GameBasedSWCV StandardScaler 5 1000 1 2408.7536183793945 43.220644516087425 3035.998885154724
GradientBoostingRegressor GameBasedEWCV StandardScaler 5 1000 1 2293.577607085484 42.164086029421405 3692.504406929016
XGBoost GameBasedSWCV StandardScaler 5 1000 1 2420.3551104545595 38.15603942367722 844.6354706287384
XGBoost GameBasedEWCV StandardScaler 5 1000 1 2167.8439937114717 37.05300265547635 986.7595613002777

Figure A.18: Portuguese competitions prediction.
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Figure A.19: International competitions prediction.

Figure A.20: Total time.



90 Appendix A. Appendix

A.3 Case Study for Liga NOS.

Figure A.21: Liga NOS time series plot.
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A.4 Case Study for FC Porto

Figure A.22: FC Porto time series plot.

Figure A.23: Granger Causality FC Porto - Counted Clients.
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Figure A.24: Granger Causality FC Porto - Summed Seconds.
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A.5 Case Study for Sporting CP

Figure A.25: Sporting CP time series plot.

Figure A.26: Granger Causality Sporting CP - Counted Clients.
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Figure A.27: Granger Causality Sporting CP - Summed Seconds.

A.6 Case study for Famalicão FC

Figure A.28: Famalicão FC time series plot.
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Figure A.29: Granger Causality Famalicão FC - Counted Clients.
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Figure A.30: Granger Causality Famalicão FC - Summed Seconds.
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A.7 Case study for Sp Braga

Figure A.31: Sp Braga time series plot.

Figure A.32: Granger Causality Sp Braga - Counted Clients.
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Figure A.33: Granger Causality Sp Braga - Summed Seconds.

A.8 Case study for CD Aves

Figure A.34: CD Aves time series plot.
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Figure A.35: Granger Causality CD Aves - Counted Clients.
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Figure A.36: Granger Causality CD Aves - Summed Seconds.
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A.9 Case study for Rio Ave

Figure A.37: Rio Ave time series plot.
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Figure A.38: Granger Causality Rio Ave - Counted Clients.
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Figure A.39: Granger Causality Rio Ave - Summed Seconds.
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