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Abstract 

 

Nowadays, classical machine learning approaches fail to capture relational and hierarchical 

knowledge, being unable to find relations between two elements in a multi-dimensional way. 

To reach this objective and capture intermediary relations between a lower-level and higher-

level relation, we created a C-based program which processes a file with Prolog facts, and 

analyses them, building a relation network in which it iterates over and draws conclusions 

from. The result is a combination of learnt rules obtained by the usage of predicate invention 

on the different combinations of relations observed in the relation network. Such rules are 

simplified to the point that they are described by previously learnt lower-level rules. Such 

simplification of facts, and consequent rule synthetization is important, as it structures and 

organizes an initial input of data into something simpler to work with, and less redundant. 

While not acting as a substitute of a more advanced ILP system, it could be used as a pre-

processing step, simplifying its execution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FCUP 
Resumo 

iii 

Resumo 

 

Hoje em dia, as técnicas de machine learning não conseguem capturar conhecimento 

relacional e hierárquico, sendo incapazes de obter relações entre dois elementos de forma 

multidimensional. De forma a alcançar este objetivo e capturar relações intermédias entre 

uma relação de alto-nível e outra de baixo-nível, críamos um programa baseado em C que 

processa um ficheiro com factos Prolog e os analisa, criando uma rede de relações na qual 

itera e tira conclusões. O resultado é uma combinação de regras aprendidas através do uso 

de predicate invention nas diferentes combinações de relações observadas na rede de 

relações. Estas regras são simplificadas até ao ponto em que são descritas por regras de 

baixo-nível previamente aprendidas. Esta simplificação de factos, e a sua consequente 

sintetização de regras é importante, dado que estrutura e organiza um input inicial de 

informação em algo mais simples, maleável e menos redundante. Embora não seja um 

substituto para sistemas ILP mais avançados, pode ser utilizado como um passo de pré-

processamento, simplificando as suas execuções. 
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1 Introduction 

 

1.1 Motivation 

 

Nowadays, classical Machine Learning (ML) approaches fail to capture relational and 

hierarchical knowledge. As such, they are unable to find relations between two elements in 

a multi-dimensional way, either because they cannot process multi-dimensional data, or 

because they are under the assumption that the two datasets are isolated.  

 

Hierarchical Relational Learning (HRL) is essentially an extension on Hierarchy induction 

for propositional logic, which tries to bypass the specified limitations. It will base itself not 

onto probabilities, but onto logic programming by reviewing information relevant to the 

elements and attempting to find connections between them.  

 

Being able to learn Hierarchical Relational data from a set of elements brings a lot of benefits 

to further research into the given set. The immediate benefit that we obtain is the overall 

simplification of knowledge. If we can summarize higher-level terms by a combination of 

simpler terms, we are able to significantly decrease the complexity of our set, synthetizing 

them into a more compact structure.  

 

While it might seem a minor benefit at first, it is important to understand that by doing this, 

we are also able to remove a lot of redundancy in the dataset, making it overall more 

organized, structured and overall easier to work with. This simplification could be quite 

significant as ILP systems are computationally intensive. Assuming that the knowledge is 

simplified as described above, it could be considered as an important pre-processing of the 

data before feeding it into more complex learning programs.  

 

1.2 Objective 

 

In this work, our objective is to be able to learn relations recursively from our initial 

knowledge. We want to be able to observe the basic facts and with them, create new rules 

which will themselves be used for the learning of higher-level relations. This should be done 

automatically in a recursive way, until the desired higher-level relations are obtained and 
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simplified. We also want to learn that information without the need for constant user 

definitions of what the higher-level relations should be, as it happens in most cases with the 

usage of predicate invention. 

 

Most of current approaches fail to capture these relations without predefining some sort of 

support knowledge which will help guide their ILP systems into finding the desired relation, 

which is where our work hopes to innovate. By doing this, we can learn the relations that a 

given set of facts can represent, without the hindrance of a long setup for each and every 

higher-level relation we wish to learn. 

 

1.3 Summary 

 

In this thesis, we first begin by introducing relevant concepts and basic knowledge related 

to our work in chapter 2. These are useful to understand and contextualize our work, 

alongside state-of-the-art related research, which we present and discuss in chapter 3. In 

chapter 4, we discuss how we were able to create a C based program which accepts a file 

with a group of Prolog facts and is able to turn them into the objective of our work, which 

takes the form of learnt relations that are simplified by a single rule, each rule being 

comprised of two premises, with all rules being stored via usage of a list, which in turn acts 

as a sort of library. We test that program in different executions in chapter 5, observing its 

runtimes with different inputs. In chapter 6 we criticize and analyse our work in a more in-

depth fashion, comparing it to other solutions currently available, as well as pointing out its 

limitations and strong points. 
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2 Background 

 

This chapter covers basic knowledge and concepts that are required for the correct 

understanding of HRL, as well as its implication/relevance in the ML field. Each subsection 

will then cover either a field of study that is related in some way to our work, most of which 

are either used by, or are a branch of ML.  

 

2.1 First Order Logic 

 

First Order Logic (FOL) can be used as a way to represent knowledge in artificial 

intelligence. While propositional logic is perfectly capable of representing regular statements 

and facts, that is where the boundary lies. Should we need to represent something more 

than basic false/true propositions, like statements that are more complex, needing more 

expressive power, the First Order Logic (which is an extension to the Propositional Logic) 

would be a good solution to consider. 

 

First Order Logic is also called Predicate Logic due to the way that it is structured. In an 

expression, there will be an interaction between a subject and a predicate. Such interaction 

can make use of functions, connectives, and quantifiers as to express the intended meaning. 

However, all the sentences can fall into two categories, depending on their structure: atomic 

and complex.  

 

Atomic sentences are the most basic sentences, defined by N terms, which can be 

represented in a predicate(term1, term2, … , termN) fashion. More concretely, the sentence 

“Alice and Bob are siblings”, can be represented as siblings(alice, bob). Other examples 

might have a different number of terms but will always follow that same basic structure. On 

the other hand, complex sentences are a combination of atomic sentences while using 

connectives, in order to add another layer of meaning to a definition. For example, if we pick 

up the previous example and define P1 as siblings(alice, bob),and afterwards define P2 as 

siblings(bob, harriet), then a complex sentence could be (P1  ˄ P2). However, the 

conjunction connective isn’t the only one that allows the combination of atomic sentences to 

form complex ones. Amongst others, such connectives include ˅ or ¬ (which would 

represent disjunction and negation, respectively). Additionally, the universal quantifier ∀ and 
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the existential quantifier ∃, aswell as functions (which are used to evaluate objects) are also 

used in the formation of complex sentences. 

 

Through the processing of information belonging to a statement in this fashion, we can 

convert the meaning of a sentence in a mathematical expression that computers are able to 

recognize, process, and work upon.   

 

2.2 Logic Programming 

 

Logic programming (LP) is a programming paradigm that allows programs to be expressive 

and flexible through the usage of formal logic, in the format of sets of sentences in logical 

form. Such sentences, or rules, express meaning through the usage of clauses. Assuming 

we are using Prolog’s syntax (logic programming language), these rules follow a specific 

format, 

 

 

 

 

that can be read as “if body1(b1,b2,...,bn1) and body2(c1,c2,...,cn2) and …. and 

bodyN(d1,d2,...,dnN) then head(a1,a2,...an)”. The head of the rule is comprised by the 

statement that we wish to define, and consequently acts as a conclusion. The body of the 

rule contains the formulas that we will use as premises to test the preceding statement. One 

or more formulas can be present in the body of the rule, and the X indicates a sequence of 

Prolog terms. By using conjunction (H :- B1, B2), disjunction (H :- B1 ; B2) and other operators 

that will work as connectives, we can convey the specific meaning of a rule. More concretely 

if we have a rule such as: 

 

 

 

 

we can describe it less formally as “Laura is a parent if Laura is a mother, or if Laura is a 

father”.  

 

parent(laura) :- mother(laura) ; father(laura). 

head(a1,a2,...an) :- body1(b1,b2,...,bn1), body2(c1,c2,...,cn2),...bodyN(d1,d2,...,dnN) 
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It is also important to indicate that the body of an expression is optional in some cases. 

Should we wish to create an expression as a declarative statement, to later perform queries 

on it, we write a single rule predicate. The resulting expression is called a fact. This is usually 

done when we wish to introduce some sort of background knowledge (BK) for learning 

algorithms, where we can later execute queries on, where such facts are always true, and 

are formally known as axioms. The BK can be defined as a group of declarative and non-

declarative statements. In ML, the BK, alongside examples, which are normally divided in 

two subsets: positive and negative, although some systems can take only the positive class 

or even multiple classes [1]. 

 

Now to put it more concretely, if we go back to the previous example, we create a fact: 

 

 

 

 

Afterwards, we perform a query: 

 

 

 

 

Assuming that we defined parent correctly, the result would be the program returning true. 

Since Laura is a mother, then according to the clause we had previously defined she would 

be a parent. This is a concept that will be important to be familiar with, as it will help 

understanding our work while also being a vital part on building databases. 

 

2.3 Relational Machine Learning 

 

Relational learning (RL) refers to learning in a context where there may be relationships 

between learning examples, or on their components due to having complex internal 

structures. As such, the “relational” can refer to the internal or external relational structure 

as there are no essential differences between these two cases, depending solely on the 

definition of example. An internal relational structure of an example consists of multiple 

components where there might exist relations between them, although there are no direct 

relationships that directly connect one example to another. External relations are cases 

mother(laura). 

?- parent(laura). 
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where each example has a relatively simple definition, for instance, a node in a graph where 

each example is linked to another via a relation. This is due to the fact that an example being 

either internal/external is attributed to the context and the definition of the example itself [2]. 

RL goes beyond the conventional analysis of entities in isolation, to instead analyse 

networks of interconnected entities. This is crucial in several world applications such as 

citation analysis and fraud detection, where the limited information about one entity is not 

very helpful, in contrast to the connection between several entities across different tables 

and attributes. So, by refusing to treat data as identical and independently distributed (as it 

has been assumed as such on propositional data), we are able to model more complex 

relational structures that are neither identical nor independent, which is precisely what we 

observe in the real-world applications [3]. 

 

2.3.1 Inductive Logic Programming  

 

Inductive logic programming (ILP) is a form of machine learning which investigates the 

inductive construction of first-order clausal theories from examples and background 

knowledge. ILP is an intersection of ML and Logic Programming (LP), and its objective is to 

derive a hypothesis from a set of examples (both positive and negative) along with some 

known background knowledge.  

 

The way that the ILP differs from regular deduction is that in regular deduction we are aware 

of the theory, and use resolution as an inference mechanism as to have answers to our 

queries. In ILP however, we have the examples and their proper descriptions, yet we don’t 

have a general theory to describe them, in which case ILP algorithms may take advantage 

of inverse resolution where given the facts, we are able to induce the rules. ILP search can 

use bottom-up or top-down approaches. Bottom-up is when the search starts from the most 

specific clause that describes an example and is going to remove literals until we reach to 

the best, most general definition. Top-down works the opposite way, using the most general 

definition to reach the most specific one.  

 

Due to its expressive and declarative nature, ILP can address a multitude of situations and 

problems that are associated with ML, such as the case of classification, regression, 

clustering, often expanding upon existing propositional machine learning systems [4]. 
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2.3.1.1  Progol 

 

Hypothesis construction is the core of any ILP system and, unsurprisingly, there are many 

different techniques for constructing hypotheses, including Inverse Resolution (IR), Relative 

Least General Generalisations (RLGG), Inverse Implication (II), and Inverse Entailment (IE). 

Progol [5] is an ILP system which combines IE with general-to-specific search through a 

refinement graph. By using mode declarations, Progol is able to derive the most specific 

clause within the mode language, which is used to guide a refinement-graph search. Progol 

is one of the most influential ILP system, one that inspired different approaches (Aleph [6], 

XHAIL [7], Atom [8]), which in turn inspired other ILP systems to be created (ILED, being an 

incremental version of the XHAIL algorithm).  

 

To be able to derive its hypothesis, Progol needs to have a few specific components to work 

with, some of which we have already mentioned. First, we need BK, which is a group of facts 

and rules which Progol will refer to (similar to a library). That’s the ‘raw’ knowledge which 

we will use to setup the system. Additionally, we will need to feed it with positive and negative 

examples, which in conjunction with the facts will help with the induction. We also need to 

add the modes, which will help our system in knowing what we want to learn, and the 

structure in which it will do so. We will need to add two kinds of ‘mode’s. The first one, 

‘modeh’, is a mode declaration for head literals, and helps Progol learn the name of the 

concept/relation/predicate to be learned. The second one, ‘modeb’, is a mode declaration 

for body literals, and will indicate which predicates in the BK (with respective argument types 

and modes) are used to construct rules. 

 

More concretely, if we take it a step further and want to learn ‘parent’ as being either a father 

or a mother of another person, we could define the following modes: 

 

 

 

 

 

‘+’ signs represent input arguments, while ‘-‘ represent output arguments. ‘modeh’ will then 

teach Progol that the head literal we are looking for is called parent, and will be comprised 

by persons, with one acting as input and the other as output (person+ is parent of person-). 

:- modeh(*,parent(+person,-person)). 

:- modeb(*,father(+person,-person)). 

:- modeb(*,mother(+person,-person)). 
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‘modeb’ will do something similar, but on the predicates present in the BK. It will then learn 

that it can use ‘father’ and ‘mother’ on the body, each of them having a person as input and 

another as output.  

 

There is also a final detail, which is the ‘determination’. The determination tells Progol which 

predicates must be used to construct rules. In this case, it would be: 

 

 

 

 

Which would tell Progol that parent2/father2 and parent2/mother2 can be used to construct 

a definition for parent. 

 

2.3.1.2  Aleph 

 

Aleph [6] is an ILP system based on Progol (having evolved to emulate some of the 

functionality of several other ILP systems) and is the latest implementation of the IE 

algorithm. It differs from its predecessor by having developed search strategies, such as 

randomized search that help improve its performance. It is implemented in Prolog and can 

be run with either YAP [9] or SWI [10]. 

 

The objective of Aleph is that given: 

- A set of mode declarations M, 

- Background knowledge BK in the form of a normal program, 

- E+ positive examples represented as a set of facts, 

- E− negative examples represented as a set of facts. 

 

It returns a normal hypothesis H such that: 

- H is consistent with M, 

- ∀e ∈ E+, H ∪ B ⊨ e (i.e., is complete), 

- ∀e ∈ E−, H ∪ B ⊭ e (i.e., is consistent). 

 

:- determination(parent/2,father/2). 

:- determination(parent/2,mother/2). 
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To reach the desired hypothesis, Aleph follows a group of 4 simple steps. First, it selects a 

positive example to be generalized. If none exist, it stops; else it will proceed to the next 

step. From there, it constructs the most specific clause (called “bottom clause”) that entails 

the selected example and is consistent with the mode declarations. It searches for a clause 

that is more general than the previously constructed clause and that has the best score. 

Finally, it adds the clause to the current hypothesis and removes all the examples that were 

made redundant by it. [6] 

 

2.3.2 Hierarchical Relational Learning 

 

Hierarchical Relational Learning is the main topic on this work, and it is a subdivision of 

relational learning, with the goal of learning data in a multi-dimensional format from a set of 

given input. More specifically, we want to learn first-order rules in a hierarchical manner in a 

way that each level of search corresponds to learning new hierarchical concepts. 

 

For instance, continuing with the previous family example, if we were to introduce proper 

knowledge so that we could learn that: 

 

 

 

 

We could use that as our base knowledge, and from it learn a whole other layer of superior 

knowledge, such as for example: 

 

 

 

This will be the main objective of our work, to be able to learn such concepts, and be able 

to use it recursively as a base to other higher-level ones. While this example has been shown 

in Metagol’s page [11], it is a deprecated MIL system, and while it does learn grandparent, 

we need to feed it some substantial BK into it, which makes it ignore the relations that are 

in the middle (in this case, parent), only focusing instead on the higher relation 

(grandparent). This is precisely the issue that we want to address, by being able to learn the 

higher relation from the intermediate relations, which in turn are learnt from simple facts. 

 

parent(A,B) :- mother(A,B). 

parent(A,B) :- father(A,B). 

 

grandparent(A,B) :- parent(A,C) , parent(C,B). 
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3 State of the Art 

 

The analysis of the state of the art can be split onto three parts: the first one would be Andrew 

Cropper’s work. He is a very interesting starting point in our search for related and past work 

on HRL as he is an influential researcher on the ML and ILP areas, having published several 

works in the described field, gave several conferences and talks about machine learning, 

inductive learning or one of his two ILP systems, as well as two theses. A good part of his 

past work was also made in partnership with S. H. Muggleton, which was previously 

mentioned as the creator of Progol, the ILP system that Aleph was based on (as so many 

others). More importantly, however, is the fact that the ILP area was first introduced by 

Muggleton in a paper, back in 1991. Another significant aspect is that a lot of his work is still 

quite recent. 

 

The second part of our methodology is the search of related work through a query in Google 

Scholar. This query comprises the terms [ "hierarchical" "first-order logic" "rule learning" -

neural -probabilistic -robotic -"Hierarchical Pathology" -philosophy -Ontology ] which yields 

about 58 results, from which we selected 7 to discuss. We considered only this small number 

of results relevant due to the fact that HRL being somewhat of a novelty in the RL area. It 

isn’t as ‘popular’ or well defined as other areas such as predicate invention or logic 

programming. While there are a few examples where the analysis of hierarchies is observed 

in a learning context, there are very few works that approach HRL as specifically as we do, 

which makes our very specific query need to be satisfied by work that is tangentially related. 

 

The first three terms are related terms to the core of this work. The three following terms 

that were removed are due to being either too specific or that pertain to a specific area of 

machine learning that isn’t the focus of this work. The three final tags were removed due to 

being unrelated topics. An argument could be made that HRL is some sort of ontology, and 

that argument would be somewhat correct, however we aren’t interested in the Ontology 

area itself.  

 

The third part of our methodology is yet another query in Google Scholar, this time related 

with Predicate Invention. While it isn’t specifically the objective of our work, it represents a 

part of it, and so it needs to be addressed in our research. For this query, we used ["predicate 
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invention" "hierarchical" "rule learning" -probabilistic -robotic] and obtained about 20 results, 

from which we selected 5. These were much easier to select than the previous 7, as shown 

by the ration of obtained results/selected results. In this query, we searched for work that is 

related to predicate invention, which is an area that is broader than HRL. We were able to 

obtain interesting results that allowed us to create a subsection dedicated to PI, introducing 

both its usability and major concerns. 

 

In total, after selecting the ones that seemed to be relevant to our topic, the result was 2 

works from Andrew Cropper and 12 from our queries, as described below. 

 

The fourteen results which we decided to discuss were organized onto four different 

categories, each being important in its own way to our work, as well as the areas and main 

concerns related to it. The first subsection is about work that is related to automatic learning, 

or Hierarchical Learning, by either using graphs or higher order structures. The second 

subsection relates to the field of ILP itself, mostly observations about what the current state 

of the art is, as well as mentioning some interesting developments in the area. The third 

subsections will mostly analyse matters of complexity and optimization strategies regarding 

the execution of ILP based programs, and the final and fourth subsection will explore the 

predicate invention, as well as bring up some relevant issues and work currently done in the 

area. 

 

Together, these four subsections aim to contextualize our work into the current state of the 

art, regarding the ILP area and its current advances. Relational learning is an ever-evolving 

area, where its flexibility allows for different methods, algorithms, programs, and techniques 

to be used to further expand and improve it in different ways, be it in matters related to its 

execution time, to how correct the extrapolated data is from these techniques, or what type 

of data can be used (and how much of this data is previously prepared, in the case of 

predicate invention). 

 

3.1 Automatic and Hierarchical Learning 

 

One of the objectives of our work is to be able to simplify a given group of relations, obtained 

through the analysis of facts. Synthesizing knowledge in such a manner has the advantage 

of turning the data simpler, more readable, and easier to work with in general. In “Learning 
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higher-order logic programs” [12], Cropper et al. work towards a similar goal, although 

instead of using first-order logic as we do, they extend it as to allow the usage of higher-

order programs. The authors state that ILP, with its ability to learn first order programs, while 

being more expressive than traditional propositional programs, can still be worked on and 

expanded to allow the usage of such programs. Their initial data showed that an approach 

using meta-interpretative learning (MIL) would allow them to use higher-order programs, 

reducing the textual complexity required to express programs, which would in turn reduce 

the size of the hypothesis space and sample complexity. A simple overview about what is 

MIL and what can be accomplished with it can be found in Muggleton’s 2017 invited talk 

“Meta-Interpretive Learning: Achievements and Challenges” [13]. The procedure itself was 

very well structured, with the initial claim backed up by a simple example of how a Caesar’s 

cipher would be written in a significantly less complex way, essentially boosting 

performance. This was later proven true in the different experiments that they executed. 

 

To reach a conclusion, they decided to test it in several ways, each one with several different 

algorithms. The experiments were spread across four domains (robot strategies, chess 

playing, list transformations and string decryption) and two new MIL systems (Metagolho and 

HEXMILho). While we do not need to know the exact specifics of how the entire Metagol 

system works, we need to understand that there exists a prove_aux clause that tries to prove 

each atom in turn (atoms representing positive examples). Metagolho differs from Metagol 

by having a second prove_aux/3 clause in its meta-interpreter which allows it to prove an 

atom by fetching a clause from the interpreted background knowledge (IBK) and proving it 

through meta-interpretation. Metagolho‘s IBK differs from Metagol’s compiled background 

knowledge as the latter is proved deductively by calling Prolog. This simple change in the 

code allows for predicate invention, through the usage of conditions and functions, reducing 

the complexity of the rules that Metagol must learn. A similar approach was used on 

HEXMIL, although its inner workings are slightly different from Metagol. While Metagol 

searches for a proof using a meta-interpreter and SLD-resolution (Selective Linear Definite 

clause resolution), HEXMIL searches for proof by encoding the MIL problem as an Answer 

Set Programming (ASP) problem. ASP is a branch of logic programming meant to solve 

difficult (primarily NP-hard) search problems by modelling a representation, opposed to 

Prolog’s query derivation. ASP solvers employ efficient conflict propagation, which is 

important for detecting the derivability of negative examples 
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early during ASP search, making ASP implementations more efficient than Prolog 

implementations. To add support for higher-order definitions, it introduces a new ASP 

predicate called ibk which is responsible for encoding the higher-order atoms that occur in 

IBK, by encoding higher-order clauses as a mix of deduced atoms for first-order predicates 

and ibk atoms for those that involve predicates as arguments. 

 

The first test was to teach a robot what kind of drink (tea or coffee) it needed to pour onto a 

set of cups. Regarding methodology, there would be a random number of cups and a set of 

positive and negative examples. At the end, the accuracy and the learning times would be 

noted down, resulting in the higher order variations of Metagol and HEXMIL to have 

significantly better results, with Metagol showing a much better scalability than HEXMIL. 

 

The second test was based on chess, on the idea of advancing a black wall of pawns to the 

end of the board, as to attain promotion. The other pieces from the black set will not move 

and there would be no interference from the white pieces. Knowing this, and with the same 

methodology as the previous exercise (the difference being that instead of a random number 

of cups, it would be a random number of pawns), we reached similar conclusions, with 

Metagol’s results being 100% accurate past the first two examples. 

 

The third example was a more direct programming application, by attempting to learn a 

program that drops the last element from each sublist, given a list of lists. The methodology 

was similarly applied; however, the results were different from the past two. This time, while 

the Metagol results were consistent with what we have seen so far (by being vastly superior 

on the higher order version), the accuracy of the HEXMIL started near 100% with 2 training 

examples yet sank to 50% at 14. Similar poor results were seen on the learning times. Once 

again, these results were due to the poor scalability of ASP, and the inability to scale given 

more examples. 

 

The fourth and final example revisited the encryption example that was presented in the 

introduction. The methodology was like the past examples, with the only variation being the 

random problem specific value that was selected, in this case to decide the size of the string. 

The results were even more extreme than in the past example, with Metagolho exceeding 

the regular Metagol version in both accuracy (reaching 100% at 6 examples) and learning 
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times. HEXMIL on the other hand, failed to deliver results (even on the most basic scenarios) 

under the allowed time. 

 

The results from their work were pretty straightforward and supported the claim that 

compared to learning first-order programs, higher-order programs can improve learning 

performance. 

 

The usage of Hierarchical techniques aren’t, however, limited to Prolog based learning. 

While not exactly pertaining to the specific area of our work, Hierarchical Relational 

Inference (HRI), has a lot in common with HRL. More specifically, the approach that the 

authors of 2020’s paper “Hierarchical Relational Inference” [14] took regarding the problem 

that they identified was worth a notable mention in this section of our work. 

 

On the real world, the common-sense reasoning is based upon our knowledge of the objects 

that we encounter and their own specific interactions. The notions of abstract objects 

however, while having a somewhat intuitive concept to it, differ greatly in terms of supported 

behaviour. Different objects have different shapes, some are even deformable or not static. 

Some objects even have a complex behaviour, which can be independent in each of their 

parts, but behave differently as a whole, as is the case of an arm and fingers. To fix this 

issue, and to correctly identify these abstract differences, a new approach was based on a 

modelling of objects as hierarchies of parts, as to allow the distinction of different levels of 

abstraction consequently separating different hierarchies. They introduced a method that 

learns in an unsupervised fashion, able to learn from raw visual images as to discover 

objects, parts, as well as their relations, resulting in the correct identification of different 

levels of abstraction, improving at modelling synthetic and real-world videos.  

 

What was quite interesting however, was that HRI extends Neural Relational Inference (NRI) 

as to allow the inference of hierarchical interaction graphs to simplify the modelling of the 

dynamics of more complex objects, as well as allowing a mechanism to apply NRI to raw 

visual images that infer part-based object representations spanning multiple levels of 

abstraction. The result is that HRI is a valid method for prediction of abstract objects, 

outperforming consistently synthetic and real-world physics predictions. There is a negative 

aspect, which is that since it groups parts into objects based on spatial proximity, it may be 
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suboptimal in case of severe occlusions, although it can be fixed by increasing the hierarchy 

depth. 

 

While the application of hierarchical structures on MIL and HRI are certainly worth to 

mention, we do not want to lose sight of our goal. With that in mind, out of all the papers that 

were obtained from our query, this next one might be the most aligned with our work, as it 

entails automatic discovery of concepts, predicate invention and ILP. 

 

The paper itself is called “Automatic discovery of relational concepts by an incremental 

graph-based representation” [15], and as the authors put it, automatic discovery of concepts 

has been an elusive area in machine learning. While it is our objective in this work to make 

it work with HRL, a similar goal was also achieved in a different manner through the usage 

of a system called Automatic Discovery of Concepts (ADC), that automatically discovers 

concepts in robotic domains through the usage of predicate invention. Predication invention 

is, as defined by Kok and Domingos [16], the creation of new symbols, together with 

formulas that define them in terms of the symbols in the data, referring to both the creation 

of new predicate symbols and new constant symbols.  

 

The general concept for this idea is that an agent, using ADC, creates an incremental graph-

based representation with the information that it gathers while exploring its environments. 

From that, it identifies sub-graphs, which will each be an instance of potential relational 

concepts. Similar sub-graphs will be grouped, and general concept definitions are induced 

with Inductive Logic Programming and predicate invention. They used different examples as 

to test the efficiency of their algorithm, and the results were positive, with it being able to 

learn the concepts in a satisfactory way.  

 

They conclude their work by saying that automatic concept discovery has been a difficult 

task in machine learning, but they managed to contribute to that area by creating a new 

algorithm that successfully discovered relational concepts while exploring unknown 

definitions. Having reached this far however, there is still room for improvement, such as 

introducing intelligent exploration strategies, or produce definitions of concepts from 

unconnected sub-graphs.  
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Hierarchical and/or automatic learning are thus very desired and sought-after solutions, not 

only for their automatization, but for the capacity that they have to greatly simplify the 

relations or complexity of operations involved in future learning.  

 

3.2 Flexibility and limitations of ILP 

 

The best way to start this subsection is by first getting a good grasp about the current state 

of ILP. As such, “Inductive logic programming at 30: a new introduction” [17], isn’t as much 

as to prove a statement or theory, but instead acts more as an in-depth introduction to what 

is ILP, the main goals, how advanced the area is compared to when it was first introduced 

30 years ago [18], as well as a comparison of several different ILP systems and a more 

profound analysis of four in specific (Aleph, TILDE, ASPAL, and Metagol). There are also 

comments on the application areas of ILP, limitations and future work. 

 

It starts by presenting some basic concepts and definitions of what ILP is and compares it 

to traditional ML applications on three different examples: concept learning, string 

transformations and sorting. The conclusion at the end of the subsections was that ILP was 

a step ahead in terms of creating human readable hypothesis and have the capability of 

generalizing beyond the training data, being more data-efficient, while many other forms of 

ML are known quite the opposite, clearly illustrating the difference between ILP to most ML 

approaches. If we are to compare it further, we can see that the ILP has an obvious 

advantage compared to regular ML techniques (as it happens for tabled ones or decision 

tree learners) in matters of more complex representations, such as infinite relations by a 

single expression, more complex relational theories and algorithms, the capacity to reuse 

learned knowledge, as well as the innate ability to support relational data such as graphs. 

 

The document further shows more information related to the basic building blocks of an ILP 

system, which are the learning setting (how to represent examples), representation 

language (how to represent BK and hypotheses), language bias (how to define the 

hypothesis space) and the search method (how to search the hypothesis space). They 

scrutinized the settings that an ILP system is built on and organized the information of 

several systems, arranging them in a table. It included several ILP systems, such as Progol, 

Aleph, Metagol and HEXMIL. With all these systems displayed, further descriptions were 

made on the following subsections where they approached the different kinds of hypotheses, 
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how to use the background knowledge effectively and its caveats, language bias (which 

include the mode declarations that are used by Aleph to indicate which predicate symbols 

may appear in a clause, how often, and their argument types) and the search method which 

include the top-down and bottom-up approach. Afterall, we cannot forget that in the end, ILP 

systems are tools made for a specific job in mind, each system having its strengths and 

weaknesses, and thus need to be chosen accordingly.  

 

When comparing the multitudes of different ILP systems, they also compared different 

features, such as their noise handling capacity, if they were optimal, if they could handle 

infinite domains, if they were recursive and at last if they supported predicate invention, as 

shown in Table 1.  

From these features, it is interesting to note that while the four’s results in the table are 

somewhat spread out in terms of what the different ILP’s can or can’t support, almost all of 

them are unable to handle predicate invention. In a table with 14 ILP systems, only two can 

handle PI, while other three handle it only partially. This lack of success at integrating PI into 

ILP systems is attributed to three major reasons: the uncertainty of when to create a new 

symbol, how to invent a new symbol and how many arguments does it need to have, and a 

metric to evaluate the quality of a symbol, allowing us to either keep or discard invented 

Table 1 - Simplified comparison of ILP systems 
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symbols. This lack of support is a bit concerning, considering the optimizations that PI can 

bring us, if done right. 

 

Specifically, Aleph is a ILP system which is based on Progol, but its implementation is easier 

to use. While it uses a top-down approach to find the best hypothesis, it isn’t pure as it adds 

a higher bound (the most general hypothesis) and a lower bound (most specific hypothesis) 

to the hypothesis space, making it very efficient at identifying relevant constant symbols that 

may appear in a hypothesis. However, since it learns its hypothesis through inverse 

entailment (IE), it struggles to learn recursive programs and optimal programs. Additionally, 

Aleph uses lots of parameters in its learning, which shape the resulting output. This heavily 

impacts the learning performance, and it produces results which are not desired if we aim 

for optimization. Still, despite its disadvantages, it has a sturdy and easily available 

implementation with good empirical performance, making it one of the most popular ILP 

systems available. 

 

They conclude that while there have been major strides in the ILP area, predicate invention, 

and the usage of higher-order logic for hypotheses to name a few. Still, there is room for 

improvement, for example with language biases, probabilistic ILP and the capacity to read 

from raw data. All three of these would be impressive achievements, easily becoming a 

major breakthrough in not only ILP, but for the field of AI as a whole. 

 

For instance, the application of inductive logic programming in data mining is something that 

can be quite profitable, especially when dealing with more complex structures such as 

graphs or multiple tables, which involve multiple relations. In “Foundations of Rule Learning”, 

Fürnkranz et al. [19], the “Relational Features” section dedicates itself fully to the goal of 

going beyond simple relational analysis and applying it to more than a single data structure, 

which was one of the advantages of RL, as we had seen on the first section of this work. 

While it may not be related to learning data in a hierarchical manner, it is an interesting 

review about how to expand the level of dimensions that we are able to learn at once, as 

well as the relations between them. 

 

Another great perk of ILP, is that while it is very flexible and powerful on its own, it can be 

used conjointly with other tools. In fact, in the introductory part of our work, we have 

mentioned the limitations of propositional logic, however that isn’t to say that it isn’t useful 
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while used with inductive logic. This specific work from Lavrač and Flach [20] aimed to use 

propositionalization as a transformation method. They mentioned the limitation of being 

unable to deal with nondeterminate local variables in the body of hypothesis clauses yet 

argue that it can be overcome by systematic first-order feature construction using a particular 

individual-centered feature bias.  

 

They used LINUS, an ILP learner which induces hypotheses in the form of constrained 

deductive hierarchical database (DHDB) clauses. They employed a method as to effectively 

use background knowledge in learning both propositional and relational descriptions. 

Afterwards, they went one step further and overcame the DINUS (LINUS’s successor) 

restriction of determinate literals. This was done by employing an individual-centered 

representation, which in turn would allow the LINUS hypothesis language to be extended in 

a way to learn nondeterminate DHDB clauses. Further actions to increase the efficiency of 

the algorithm were considered, such as the usage of the descriptive learner Tertius to 

generate only features that correlated sufficiently with the class attributes. Additionally, they 

concluded that there is a trade-off between how much effort a learner puts between the 

steps of the hypothesis generation process (rule construction, body construction, feature 

construction). Through alterations in one of the three, they would be able to solve complex 

relational learning tasks, although depending on the case, they would be somehow limited 

on their execution. This didn’t seem to be an issue, since “concept learning and program 

synthesis are two very different tasks, which are probably not solvable with one and the 

same learning method” [20]. 

 

3.3 Complexity and optimization of ILP approaches 

 

In the previous subsection we were able to get more familiarized with ILP and the multitude 

of ways that it can be used, however there are of course drawbacks. Putting it in a more 

concrete way, one of the issues of ILP is that while it is a very flexible machine learning 

technique which allows induction on first-order logic theories, it has the flaw of being 

relatively time-consuming. This will of course depend on the coverage test used by most ILP 

systems and how efficient their resolution decision procedure is; however, a large 

hypothesis search space will definitely be an issue on the most complex cases. 
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This was the problem brought up in Ferreira’s work [21], problem which he proposed to solve 

through the usage of propositional logic-based inference. However, there was an issue 

regarding the lengthy formulas that propositionalization of first-order logic would create. 

Unfortunately, while he certainly brings up a few interesting issues and speculations on the 

viability of his offered solutions, there are no definitive answers as to whether propositional 

logic for ILP would be beneficial as to reduce the formulas’ size. 

 

While the attempt to decrease the hypothesis, space wasn’t entirely successful, it isn’t a 

recent problem. In fact, in the Inductive Logic Programming book [22], there is a section 

(Extension of the Top-Down Data-Driven Strategy to ILP) where amidst the problem solving 

of the chapter, the idea of reducing the hypothesis space by covering a seed example was 

mentioned. We had seen previously that Aleph is one of the ILP systems that adds an upper 

and lower bound on the hypothesis space, effectively diminishing the time needed to find 

relevant symbols for the hypothesis. However, the Top-Down Data-Driven strategy, which 

was popularized by the AQ (Algorithm quasi-optimal Aq, with its initial version developed in 

1969 by Ryszard S. Michalski) family, has not yet been transferred to ILP, since that if it 

would, the idea of reducing the hypothesis space by covering a seed example would make 

ILP systems such as Aleph to not benefit from the associated data-driven specialization 

operator. 

 

This is troublesome, so they ended up presenting the data-driven strategy of AQ in the book 

and show how they managed to extend it to ILP, later evaluating an implementation of AQ 

in the system Propal [22]. 

 

Another technique that attempts to fight this problem of having a big hypothesis space is the 

Top Directed Theory Derivation (TDTD). This method is used and discussed in LIN’s 

dissertation [23], where they assert that it works due to the usage of the logic program ⊤ 

theory as a declarative bias that defines the search space. It differs from Inverse Entailment 

(as is the case of Aleph) as it derives the hypothesis deductively. It uses clauses in ⊤ theory 

to replace the hypothesized theory itself in the refutation for individual examples that make 

this forward/deductive computation feasible. Due to now benefitting from the deduction 

completeness, ⊤ no longer suffers from the incompleteness that might be found in IE-based 

methods.  
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The researcher used this knowledge and proceeded to create and implement a new ILP 

system for TDTD. This system would be able to efficiently learn multi-clauses problems 

correctly and in an efficient manner due to being an example-driven method, effectively 

bounding the search space. Furthermore, it does not suffer from redundancy and while 

efficient, it is also complete, being able to integrate both abduction and induction at the same 

phase, which results in both abductive and inductive hypothesis being able to be learnt at 

the same time.  

 

3.4 Predicate Invention overview and analysis 

 

When we are learning relations or concepts in certain domains, our capacity of acquiring 

new information depends on the available vocabulary that our domain possesses. By 

vocabulary, we mean the predicates, functions, and constant symbols, which will appear on 

the facts and the rules that will be used as background knowledge. 

 

With that in mind, predicate invention is a method that allows to expand a given theoretical 

vocabulary to allow certain definitions based on observation of our predicates. While 

methods to achieve that goal vary between ILP systems and other techniques that are used 

in research, such predicates will be for the most part previously defined, with its contents 

either added at the same time of learning, or afterwards. It is important to note that while 

predicate invention is a powerful learning method, it is limited by how big the vocabulary can 

be augmented, and we need to know to some degree what to expect from the learning, we 

can’t learn new definitions in a totally ‘blind’ way. 

 

Stephan Kramer discussed higher-level learning from data in his paper [24] which was 

presented at IJCAI 2020. In it, he discussed about several symbolic higher-level 

representations, such as feature construction and constructive induction, predicate 

invention, and a few others, arguing that these approaches can benefit from each other to 

solve current issues in machine learning. 

 

Kramer addresses the vocabulary issue by first discriminating three types of predicate 

invention methods. The first one is a reformulation approach, which as its name implies, 

introduces a new intermediate predicate by reformulating an already existing one. This is 

done to represent a theory in a more compact way and can be used as a way to either 
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optimize a theory or correct it should the theory fail. Opposed to this method, where there is 

too much information, demand-driven approaches are used in situations when there is not 

enough knowledge to correctly represent or learn a theory. The final method, called clause-

refinement is used to make an over-general clause consistent by adding a literal that 

contains a new predicate. However, before the clause is changed and refined, there is a 

need to understand which clause of the theory was the one to blame for the instances that 

were covered incorrectly. For that end, different methods will use a different mix of 

knowledge at their disposal, such as positive and negative examples, or other clauses to 

discriminate between different instances. 

 

After mentioning some example methods, the author identifies the excess of options for 

predicate invention, and a lack of options to assess the utility of candidates as prominent 

problems on current research. He also mentions that another big issue is the 

comprehensibility of new predicates, which is something that has been studied and 

discussed in the past, with some attempts at solving that issue being made. He specifically 

mentions Metagol as an enabler of ‘substantial progress’. In fact, there were attempts to 

create a general framework for predicate invention at a meta-level [25]. 

 

The matter related to the complexity of the predicates and how little comprehensible they 

can be is a matter that has been studied and is a big hindrance to both the development of 

the area, as well as minimizing the optimal learning process of the user. Suryanto and 

Compton [26] attempted to develop machine learning techniques which would speed up 

acquisition from an expert. They argued that once the expert shared some knowledge to the 

program, the program would generalise such knowledge to keep knowledge acquisition to 

a minimum. This process of generalization should be completely hidden from the expert. 

They were able to reach such a goal, minimizing the knowledge acquisition by up to 50%. 

 

Such a goal was attained by using Ripple Down Rules (RDR), which allowed them to reduce 

the need for knowledge engineering.  Due to having a lack of internal structure, RDR is 

unable to generate by itself intermediate conclusions, yet it is this same aspect which allows 

it to be quick and easy to build and maintain RDR systems. RDR is able to accept previously 

defined intermediate conclusions, yet that would defy the point of the user identifying 

reasons for a conclusion. The ideal solution (and consequently the author’s objective) is to 

use predicate invention to use in conjunction with RDR to generate intermediate 
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conclusions, while assessing their usefulness and removing the unwanted ones. They 

conclude by presenting a table of different examples, all of which having fewer rules than 

the user had to introduce. 

 

Another interesting example from an attempt of understanding the comprehensibility of 

certain concepts related to machine learning can be observed in Muggleton’s 2018 article 

“Ultra-Strong Machine Learning: comprehensibility of programs learned with ILP” [27]. 

Muggleton pointed the performance of comprehensibility of generated hypothesis as lacking, 

opposed to predictive accuracy due to the fact of the latter being more easily evaluated in 

the past, the first measure was mostly ignored which would end up favouring statistical over 

symbolic machine learning approaches.  

 

The author then proceeded to do two human experiments as to discriminate what are the 

involved elements that affect our comprehension in matters related to machine learning. 

They observed that the comprehensibility was affected by both the complexity of the 

program, as well as anonymous predicate symbols. The participants couldn’t learn the 

relational concepts on their own, although they could apply those same definitions when 

given by the ILP system. They then conclude that these findings point to the fact that there 

is a class of relation concepts that are hard to learn for humans, yet easy to understand if 

assisted by an abstract explanation. 

 

Muggleton also worked on another issue related to predicate invention, which is the lack of 

theoretical results, caused (at least partially) due to a lack of theoretical framework for 

describing PI. The author then proceeds to give a small introduction to PI and its relation to 

ILP, then further detailing logical theorems related to both areas [28]. 
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4 Hierarchy Discovery 

 

In this chapter we address the process of designing a solution towards our objective, which 

is the recursive learning of higher-level knowledge, with the background knowledge we input 

at the start as a base. From these relations, we then learn further knowledge from them, 

until we learn all the possible relations, within our specified range. 

 

This section will be split into three subsections, each of them encompassing a significant 

part of the designed code (module). This division will be made in accordance with the sub-

problem that the respective module will be trying to solve.  

 

For the initial setup of our work, the usage of Aleph and YAP was considered, yet we felt 

that the employment of Aleph as to create rules for YAP to be able to process was overdoing 

it, as our work is somewhat more limited than the broad, general usage that Aleph would 

allow, as it will be explained further down this section. With that in mind, we instead opted 

to use another language to create our own, simpler, and more specific analysis of relations, 

so that we could create a purpose-built program towards our goal. This was done in a way 

that it also allows modifications within the code as to process other knowledge than family 

trees (which was the example that we used from the beginning of our work). 

 

At first, we considered either C or Java (Java in specific would have been very interesting 

to work with due to its object-oriented nature) yet ended up settling on C due to being faster 

overall, and much more flexible, attributes which are important for our work as we weren’t 

sure at the beginning what we needed to reach our goal, or what kind of structures to use. 

Additionally, the fact that C is faster is a good thing all-round in most projects, but benefits 

us specially, as relational learning is quite heavy, complexity wise. The subsequent work 

was done in Linux (specifically Ubuntu 64-bit, with the usage of GCC compiler). 
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4.1 Knowledge Structure 

 

While the decision of discarding Aleph and YAP gave us a lot more freedom and control on 

our work, it also made it that we have no initial knowledge processing, nor a structure that 

can hold all that information. This is what the first module is going to be about: obtaining the 

BK, creating a structure that is able to hold all of that information without loss, and in an easy 

enough way that we are able to iterate over it for post processing.  

 

Figure 1 shows the 6-member family which was used to test and develop our work through 

its different stages. It is a static and concrete example, which allowed us more stability in 

terms of development and results. It is also the example that we use throughout this chapter 

to explain its functionalities. It represents a simple family tree via a directed graph, with blue 

arrows indicating that a node A is a father to a node B, or orange arrows indicating that a 

node C is mother of a node D. Ideally, we would like to group all our BK in such a structure, 

so that we can work over this ‘condensed’ form, instead of scattered bits of information.  

 

Applying this design into code was a bit trickier, however. C doesn’t have a native graph 

structure, as it has for Lists for instance. One option was to use community made libraries, 

but we instead preferred to create a custom structure as to give us more control and 

flexibility. A fundamental point is that we aren’t aware of how much or how little the family is 

supposed to expand. In this case, we know it is six, but we need to have a structure that can 

George 

Ken Laura 

Harriet 

Alice Bob 

Figure 1 - Test Family 
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handle N nodes of family members, so we decided to create a list, due to its expanding 

potential. The list has its structure detailed in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

This list has 4 fields in each node. ‘Node name’ refers to the name of the family member, for 

example Laura. ‘Visited’ acts as a flag, which is needed on another module, as a way to 

keep track of progress. ‘Next’ is a pointer towards the next node of the list, and ‘Connected 

List’ acts as an adjacency list. The format of the adjacency list is displayed on Figure 3. 

 

 

 

 

 

 

 

 

 

 

Similarly, this list also has 4 fields in each node. For the relationship of Laura with Harriet, 

for instance, we can define the following: ‘Linked Name’, which refers to the name of the 

node that is connected to, ‘Harriet’. ‘Direction’ indicates whether the relationship is ingoing 

or outgoing. This is important as explained further in this chapter, being in this specific case 

‘Out’. ‘RelName’ is the name of the relationship, in this case being ‘Mother’. ‘Next’ is a pointer 

to the next node. 

NULL Next Head 
 
• Node Name 
• Visited 
• Connected List 
• Next 

  
• Node Name 
• Visited 
• Connected List 
• Next Node 

 

Figure 2 - Graph List 

NULL Next Head 
 
• Linked Name 
• Direction 
• RelName 
• Next 

  
• Linked Name 
• Direction 
• RelName 
• Next 

Figure 3 - Connected List 
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 With these Lists set up, we now have a solid structure to hold the BK from the family tree, 

without losing any information in the process. However, if we look closely at how the Graph 

List is defined, we notice that instead of the graph shown on Figure 1, we have instead 

(depending on the order that we process the BK) something similar to Figure 4. 

 

It is important to point out that this is not an issue since each node has a list of their adjacent 

nodes, the Connected List. This makes it so that while the Graph List is a collection of nodes 

which in this case represent the family members, each node is responsible for being aware 

of their own relations to other nodes. This differs from regular graphs, where the information 

of a relation is on the relation itself, whereas here, all the information is instead stored on 

the nodes. This makes it easier for us to obtain all the relations of a node, by merely peeking 

into the Connected List. With a more concrete example, by examining the Connected List of 

the node ‘Harriet’, we see 2 relations: [Bob, Out, Mother] and [Alice, Out, Mother]. 

 

Another important feature that we need to mention for future reference is the fact that on the 

Group List, each node has a ‘Direction’ variable, being either Out or In. This was created 

initially to navigate back and forth between nodes, however another solution was soon 

found, and it became obsolete, until later was used for another purpose, which will be 

thoroughly described in the third subsection. For now, it is important to know that this In/Out 

variable serves the following purpose: for each Out-relation present in a node A, describing 

an outgoing relation from A to B, there will be an ‘inverse’ In-relation present in node B, 

NULL 

Head 

George 

Ken Laura 

Harriet 

Alice Bob 

Figure 4 - Graph Order 
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describing an ingoing relation from A to B. The relation itself is not an exact inverse of the 

Out relation (for example, the ‘inverse’ of a Mother, could be either a Daughter or a Son), 

and it is added to the Connect List of the node.  

 

With that in mind, and if we pick up the previous example of the node ‘Harriet’, its Connected 

List has 4 nodes instead of the previous 2: [Bob, Out, Mother], [Alice, Out, Mother], [Laura, 

In, InvMother] and [Ken, In, InvFather]. While this way to represent relations might be a bit 

confusing and unintuitive at start, it brings us some advantages in the third subsection. The 

relations that we end up having aren’t as straightforward as the ones in Figure 1, but 

nonetheless serve a similar purpose, as it allows the nodes to be more conscious of their 

surroundings, making it possible for them to consider all their relations (both outgoing and 

ingoing) when looking for higher level relations. 

 

So far, we are able to tackle all our objectives for this module. We can obtain the BK without 

losses, hold that same BK in an organized and familiar way via the usage of a structure 

similar to a graph, which only leaves the issue of how to iterate over the different nodes of 

the graph. We considered two major choices on how to go about this, each with its own 

drawbacks. The first option would be, for each node in the Graph List, to add a pointer in all 

the Connected List nodes. That way, each node of the Graph List will not only be aware of 

the ingoing and outgoing relations that they have, but each of those relations will have a 

pointer to the other node they are related to. The second option would be to simply create a 

function which would iterate over the Graph List, looking for the specific node. This would 

imply that we would need to have some sort of Key to guarantee uniqueness, which we 

would use to find the specific node. Both options are viable on different contexts. Should we 

have a small graph, the second option would potentially be better, as an iteration over a 

small Graph List wouldn’t affect much the overall performance of the program. With larger 

datasets however, a better choice might be the usage of a pointer towards the adjacent 

nodes. In theory, the program would have a heavier initial execution as it would need 

additional steps to setup the structure properly. However, we are trading off that bulky start 

by a more convenient and easier search mechanism later into the execution. The larger the 

final graph becomes, the more searches will need to be executed post setup for the learning 

of higher relations, and thus we would save up time by already having the pointers at hand 

instead of executing an iterative function repeatedly. For our example however, we decided 

to go with the second choice, as the test family has a low number of nodes.  
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We thus reached the conclusion of the first module. With all the information now able to be 

contained in our custom graph, with the capacity to iterate over it as we need, we are now 

ready to proceed into the next step of the execution: the extraction of relationship groupings. 

 

4.2 Relationship Grouping Extraction 

 

In the first module of our program, we are able to create a structure for a general 

representation of the background knowledge that we obtained. However, while it is useful to 

create an iterable graph to serve as our basis, we need to extract more particular 

information, specifically related to the relations. The names of the nodes, as well as most of 

the information regarding the ingoing and outgoing relations pertaining to them will be 

discarded, as what we are after right now, in this module, is the network of relations, and 

what unique groupings we can observe and extract from said network.  

 

The relations that we obtained from the input of BK were all singular, as in they were only 

relations that linked two nodes via a singular relation (Mother/Father or their ‘inverse’ 

Daughter/Son). By linking these singular relations by their common nodes, we were then 

able to create the network that is the Graph List. Now that we have all that information 

grouped up, we want to extract all the possible combinations of non-singular relations, 

between certain limits which will be detailed more ahead. 

 

4.2.1 Structure 

 

To extract all the information that we need, we need to create specific structures. The fact 

that we don’t know how many relation groupings we might have makes it so that we want 

once again a structure that we can expand upon. So, we decided to use a list for that end. 

This time, the structure will need to hold different nodes, each symbolizing a different relation 

grouping. We also need to store in each node the relations that make up the grouping, as 

well as the order that they appear in. Applying a similar design from the first module, the 

following structure was created: 



FCUP 
Hierarchy Discovery 

30 

 

 

 

 

 

 

 

 

 

Figure 5 represents the Group List, which is responsible of holding all the relationship 

groupings that we will encounter. Each node has a ‘Name’, which is generated upon its 

creation. The names are on a RelX format, with X being an incremental number, resulting in 

the first node being called Rel1, the second Rel2, until we learn all the N groupings of a 

Graph List, resulting in RelN being learnt. ‘Relations’ is a variable that shows the number of 

relations that are in a specific grouping. ‘Next’ is a pointer to the next node, while ‘Rel Order’ 

is a list that holds all the relations of the grouping, as well as their order. The structure is 

shown on Figure 6. 

 

This time, the list itself has a linked ‘Value’ besides its list of nodes. This value is updated 

more ahead in the processing of the list, and on the third module, for the higher-level 

learning. It will be a flag to indicate if the content of a grouping is only made of ‘regular’ 

relations, only made of ‘inverse’ relations, or a mix of both. The nodes have a ‘Rel Name’, 

which is the name of the relation, and a ‘Next’ pointer, pointing towards the next node. 

 

NULL Next Head 
 
• Name 
• Relations 
• Rel Order 
• Next 

 
• Name 
• Relations 
• Rel Order 
• Next 

 

Figure 5 - Group List 

NULL Next Head 
 
 
• Rel Name 
• Next 

 
 
• Rel Name 
• Next 

 

Value 

Figure 6 - Rel List 
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Figure 7 helps us put all the pieces together, into a coherent structure: we have a Group 

List, which is responsible of holding all the relationship groupings that we will find on a given 

Graph List. A relationship grouping is a set of two or more successive relations found on the 

graph, resulting of an aggregation of multiple singular relations. The Group List saves all 

these groupings, without repetition. Each Group Node (orange blocks) generates a ‘Name’ 

for its newfound groupings (in this case, Rel1, Rel2 and Rel3) and saves the number of 

‘Relations’ (respectively 2, 2 and 3 relations) that the grouping has. The relations as well as 

their order (Father->Mother for Rel1, Mother->InvMother for Rel2 and InvMother->Mother-

>Father for Rel3) are saved in a Rel List structure (blue blocks). The Rel List saves a set of 

nodes, each node having a ‘Rel Name’ in it (Rel Names being the relations names).  

 

We can compare our objective in this module to combinatorial analysis. We want to get all 

the possible combinations of relations that we can observe on Figure 1, and save them on 

a Group List, with each node saving a single combination. 

 

Next Head 

 
• Name = Rel1 
• Relations = 2 
• Rel Order 
• Next 

 
• Name = Rel2 
• Relations = 2 
• Rel Order 
• Next 

 

 Head 
Father 

Next 

Mother 

NULL 

  Head 
Mother 

Next 

InvMother 

NULL 

  
• Name = Rel3 
• Relations = 3 
• Rel Order 
• Next 
  

  Head 
InvMother 

Next 

Mother 

NULL 

Father 

Next 

NULL 

Figure 7 - Concrete Group List 
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This set of structures is solid enough that it allows us to save all the important information 

that we need in order to process the Graph List and extract all of our desired information 

into an organized and simple format for us to understand, and later work on. Now that the 

inner workings of the structures have been clarified, we can now move on to the main code 

of the second module. 

 

4.2.2 Execution 

 

This subsection will now explain in detail how the code is executed through examples and 

pseudo code. The way that module 2 works is straightforward and doesn’t need much setup. 

The function that we use to discover the relation groupings is called discoveryFunction(). 

 

Before we get into details about how the function itself works, we need to take a step back 

and remind ourselves of our goal. We want to obtain all the relation groupings in a given 

Graph List, where the size of the groupings will be >=2 up to a certain limit. The limit itself 

currently needs to be decided by the user. For our testing on the Figure 1 graph, we used 

an upper limit of 4. While the upper limit can be anything that the user desires, a good 

recommendation for a ‘default’ minimum value is the maximum number of steps which would 

take to reach from the higher node on the family tree, down to the bottom one. In Figure 1’s 

case it would be 2, but we picked 4 to see how the program would handle hopping between 

different nodes that are not necessarily transitive (which in this case would be something 

different than a parent or grandparent, since the example that we are working with only has 

3 generations throughout its 6 nodes). 

 

The pseudo code for the relationship groupings is as follows. Assuming that we have an 

already setup Graph List called ‘graphList’ and an upper limit called ‘maxScope’ = 4, Figure 

8 shows the code that is executed. 
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This block of code guarantees that we get all the relation groupings that we need. The inner 

While cycle makes sure that we iterate over all the nodes in the Group List, while the outer 

cycle makes sure that we execute that same piece of code for grouping size of 2, 3 and 4. 

This adds all the different groupings to the Group List in a sorted way, which is useful for 

later operations. 

 

The code calls the discoveryFunction() a total of three times (for this example). This function 

is a recursive function, meaning that it repeatedly calls itself until the conditions to do so 

aren’t met anymore. It works in a similar way as a cycle, but more convenient due to the way 

it executes in this scenario, sharing some of the structures, and creating new ones when 

needed.  

 

To support this function, there is a small group of auxiliary functions which we will also 

mention. Such functions turn the code more legible, avoiding repeated instances of code 

and turning the discoveryFunction() significantly more compact. 

 

The discoveryFunction() is defined as discoveryFunction(node, currentCycle, groupList, 

relList, relName, familyList). ‘node’ is the current node we are iterating on, ‘currentCycle’ is 

the current grouping sizes we are searching for, ‘groupList’ is our end goal, slowly being 

worked upon. ‘relList’ is a temporary list which saves the group of relations we are exploring, 

‘relName’ is the relation we are considering to add on the current step to the ‘relList’ and 

‘familyList’ is a pointer to the initial Group List. The pseudo-code of the function is shown on 

Figure 9. 

01 create a Group List called groupList; 
02 create a Rel List called relList; 
03 create a Group Node called groupNode; 
04 create a char variable temp = “1”; 
05 create an int variable i = 2; 
06 
07 while i <= maxScope 
08  groupNode = head of graphList; 
09  while groupNode is not NULL 
10   groupList = discoveryFunction(groupNode, i, groupList, relList, temp, graphList); 
11  groupNode = groupNode->node; 
12  i = i + 1; 

Figure 8 - Module 2 initial execution 
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On this function, we have 3 major parts of the code. Tackling them one at a time, we have: 

initialization of variables and setup of the relList (lines 01-13), the while cycle (lines 16-29), 

closure and return of the function (lines 32-34).   

 

First, we create a variable called ‘tempConnectNode’. This is a temporary node which we 

use to iterate over a node’s adjacency list. Then, we proceed to mark the current node we 

are in right now as visited. The next block of code regards the relList. Initially, the ‘relName’ 

01 create a List Connect Node named tempConnectNode; 
02 tempConnectNode = node->connected->head; 
03 set node->visited to 1; 
04 
05 if relName is not “1” 
06  if relList->head is NULL 
07   then relList->head = newRelNode(relName) 
08  else 
09   create Rel Node called tempRelNode; 
10   tempRelNode = relList->head; 
11   while tempRelNode has next 
12    tempRelNode = tempRelNode->next; 
13   tempRelNode->next = newRelNode(relName); 
14 
15 
16 while tempConnectNode is not NULL 
17  if currentCycle > 0 and tempConnectNode hasn’t been visited 
18   groupList = discoveryFunction(tempConnectNode, currentCycle-1, 
groupList, relList, tempConnectNode->relName, familyList); 
19  else if currentCycle = 0 
20   if relList exists in groupList 
21    set node->visited = 0; 
22    remove last node from relList; 
23    return groupList; 
24   else 
25    set node->visited = 0; 
26    concatenate groupList with newGroupNode(relList); 
27    remove last node from relList; 
28    return groupList; 
29  tempConnectNode = tempConnectNode->next; 
30 
31 
32 set relList->head to NULL; 
33 set node->visited to 0; 
34 return groupList; 

Figure 9 - Module 2 initial execution 
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is set as “1” from our initial execution. So, for now, we can safely ignore this part. Should the 

‘relName’ be different than “1” (which happens for every single case after the first), 

depending on whether the ‘relList’ is empty or not, it either creates a new Rel Node and set 

it as ‘relList’->head, or creates a new Rel Node and adds it to the end of the ‘relList’. 

 

The second part of this function deals with most of the processing that goes into analysing 

and managing the ‘groupList’ itself. First, it checks if we haven’t reached for the end of the 

adjacency list, as we iterate over it. If not, it tests whether ‘currentCycle’ is zero and if the 

adjacency node we plan to test hasn’t been visited yet. If both conditions are met, we call 

the function once more, with the adjacency node we are currently evaluating as ‘node’, 

decrease the ‘currentCycle’ by 1, and pass the relation’s name of the adjacency node as 

’relName’. We can consider the ‘currentCycle’ as some sort of step counter. If its value isn’t 

zero, we can call the function once more, guaranteeing that we can only “stretch” as much 

as the initial value of ‘currentCycle’ allows us to. Should it be zero instead, we evaluate the 

information that we currently have. We test whether the ‘relList’ that we have built up until 

now exists in ‘groupList’ via the usage of an auxiliary function. Should it exist, we want to 

ignore this path. We set the node we currently are as not visited; remove the last node we 

added to the ‘relList’ and return an unchanged ‘groupList’. However, if the ‘relList’ didn’t exist 

in the ‘groupList’, then we create a new Group Node from that ‘relList’ and add it to the end 

of the ‘groupList’. We make sure to set the current node we are in as not visited, remove the 

final node of the ‘relList’ and return an updated ‘groupList’. Finally, when the moment comes 

that we iterated over all the adjacency list of the original node, the cycle breaks. We set the 

‘relList’ head to NULL, and the current node (which should be the initial one) to not visited 

before returning the ‘groupList’. We do this because the discoveryFunction() iterates over 

the adjacency list of a node. Of course, it visits other nodes, as to obtain the groupings of a 

certain size, yet all those groupings have the initial node as a start. In our main() function 

are two cycles, as we seen in Figure 8. The inner one is responsible to execute the 

discoveryFunction() for a certain grouping size on all of the nodes of the Group List. This 

means that if we don’t clear the ‘relList’, after the full execution of the first node, we will have 

a single relation in our ‘relList’, which is NOT what we want. It will get worse from there, as 

each call to the recursive function on our main() will add another relation to the list. Similarly, 

we set the initial node as not visited so that there are no remains/traces from previous 

executions. 
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This function uses an iterative deepening algorithm search, where its visual representation 

can be seen on Figure 10. If we start from the ‘Ken’ node (having set the visited at 1) while 

looking for groupings of size 2, we start by exploring our single adjacency for the node: 

‘Harriet’. We note the relation’s name of the relation we used on our ‘step’, which would be 

‘Father’. Now on the node Harriet, we set it as visited and iterate over the node’s adjacency 

list. Assuming that we see a relation to ‘Ken’ as the head of ‘Harriet’s Rel List, we ignore it, 

since we had set the node’s ‘visited’ variable to 1. We then check the next adjacency, which 

could be to ‘Laura’. Since it wasn’t visited, we explore that adjacency, adding the relation’s 

name ‘InvMother to the ‘relList’, which is currently [‘Father’,InvMother’]. At this point, the 

number of steps will be zero, moment which we compare our current ‘relList’ and see if it 

exists in any node of the ‘groupList’. Since it doesn’t, we create a new node and add it to the 

list. We set the ‘visited’ of ‘Laura’ to 0 and remove the final node from the ‘relList’, returning 

it to the state it was when we first arrived at Harriet. We then repeat this process for ‘Alice’ 

and ‘Bob’, adding [‘Father’,’Mother’] from Ken-Harriet-Alice, but not for Ken-Harriet-Bob, as 

it already exists in the ‘groupList’ from the previous step. This will conclude the cycle for 

‘Ken’, yet the inner cycle of the main() function will repeat this process for all nodes. And 

once that is done, it will complete all of this process for a number of steps higher than the 

previous execution (assuming we haven’t reached the max limit). 

 

On Figure 10 we can see the example just described. Blue lines represent the relations 

which we can use to reach other nodes, green arrows represent an extension of the 

discovery function and red arrows represent the backtracking. Additionally, green arrows 

add the relation’s name to the ‘relList’, set the ‘visited’ bit to 1 and decrease the 

‘currentCycle’ by 1, while red arrows remove the relation’s name from the ‘relList’, subtract 

the relation’s name, set the ‘visited’ bit back to 0 and increase the ‘currentCycle’ by 1.  
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Each movement of the function is numbered according to how it executes. The order by 

which the function visits adjacent nodes is entirely dependent to the order of which the nodes 

were added there in the first place. However, the order doesn’t matter for our purpose as we 

end up visiting all possibilities, regardless of where we start. 

 

As far as auxiliary functions go, there are a couple of worthy mentions. Other than functions 

that help in creating structures themselves, there is testRelList() which is responsible of 

iterating over the ‘groupList’ and discover if a given ‘relList’ is already present. The 

concatGroupList() is the function that adds a Group Node on the ‘groupList’ (setting it as 

head if the list is empty), while also making sure to name the ‘groupNode’ correctly, 

according to the number of the node.  

 

There is also one final function, copyRelList(), which copies the content of the ‘relList’ that 

we use to keep our path. This function is called when we wish to create a new Group Node 

and obtain a new ‘relList’ for that node. We can’t exactly copy the original Relation List, since 

we would copy the pointer to the address in the memory, and as the list would change as 

we would iterate over the Graph List, so would all the pointers in all the Group Nodes.  

 

By the end of the execution of the second module of the code, we will have the structure 

represented in Figure 11. 
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Figure 10 - Discovery Function Trace 
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Assuming we executed the code with a starting ‘currentCycle’ of 2, and with an upper limit 

of N, we have as a result a ‘groupList’ which contains all of the different relationship 

groupings observable in the Graph List, in a binary fashion (this limitation will be explained 

more ahead). As seen in Figure 11, we have (X-1) groupings of 2 relations, (Y-X) groupings 

of 3 relations and so on, until we reach the final set of groupings, comprised of groupings 

with N relations. 

 

The limitation that was mentioned on the previous paragraph, referred to the fact that due 

to how the search mechanism worked, we can only obtain relations which are in essence, 

paths between two nodes. Assuming a general familiar context, we can have a relationship 

where a node A is a parent of node B, and the only restriction for this to be true, is that there 

needs to be a relation connecting these two nodes (in this case could be either mother of 

father), and nothing else. If we try this idea on higher level concepts, such as grandparents, 

while we are executing more steps, the idea remains the same. We have a linear path all 

the way from the node A (which will be the grandparent) all the way to the node C, which 

will be the grandchildren. There will be some degree of transitivity to it, as we need to have 

parent(A,B) and parent(B,C) to have grandparent(A,C), however our search function will be 

able to get there with no issues due to jumping from node to node the way that we explained 

in Figure 10.  

NULL 

… 

… next Head 
 
• Name = Rel1 
• Relations = 2 
• Rel Order 
• Next 

 
• Name = Rel2 
• Relations = 2 
• Rel Order 
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• Name = RelX 
• Relations = 3 
• Rel Order 
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• Relations = 4 
• Rel Order 
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• Name = RelZ 
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• Rel Order 
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… 

Figure 11 - Second Module Output 
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Now, let’s have a more complex example. How would our program be able to identify 

siblings? We can identify a node A being a sibling to a node C, if parent(B,A) and parent(B,C) 

are both true. Here lies a problem to the identification of non-transitive relations. If our 

program can only extend to one node at a time, how will it be able to identify these two 

relations and thus learn the sibling relationship? The answer lies in the In/Out and ‘inverse’ 

relations that we mentioned previously on our first subsection. We will mention them in more 

detail on the third subsection, as the third module will be responsible for the higher-level 

learning, but for now, it suffices to say that non-transitive relations are able to be observed 

and learnt upon by our program.  

 

If we think about the sibling’s example, we can locate one easily on Figure 1, with ‘George’ 

being the father, and ‘Bob’ and ‘Alice’ being the children. In this case, if we consider George 

as a starting node, we can classify those three nodes as not only a graph, but also as a 

binary tree. And that’s where the limitation of the program lies at. It can only learn new 

information from binary tree structures. When the term binary tree is used here, we do not 

mean the whole graph in itself, but rather, the starting node where the program executes the 

second module from. As we explained previously, the search mechanism works in a similar 

fashion as a depth search algorithm. That same algorithm will be repeated over each of the 

N individual nodes, which in essence, will be a depth search over N different binary trees. 

 

To be more concrete about what our program can’t handle, let’s assume there is a term for 

a sibling relationship with specifically 3 children, called superSibling. It will be something 

akin to a triplet, but not necessarily born at the same time. superSibling(A,B,C) is true if 

parent(D,A), parent(D,B), parent(D,C) are all true. However, our program will only be able 

to process at most 2 out of 3 relations (depending on how the graph was built, it could either 

go ADB, ADC, BDA…but no matter what path it chooses, one relation will always be left 

out). While it is a valid concern, which will be addressed in chapter 5, it is enough for the 

moment being to solely learn from binary trees. 
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4.3 Common factor detection and hierarchical learning 

 

On the first and second module we processed our BK and data in different ways that allowed 

us to obtain data structures that were important to set up our end goal. On our first module, 

we organize our BK into a graph, so that we can iterate over the set of nodes. On the second 

module, we take advantage of the relation ‘network’ and are able to obtain all the possible 

relation groupings of different sizes, all of them saved in a sorted list. For the third module, 

our objective finally aligns with this thesis’ objective: Hierarchical Learning.  

 

With all the pre-processing concluded, in this subsection we use the ‘groupList’ and its 

different groupings to build a library of different possible relations. Just like the previous 

modules, we start by creating a structure to hold the knowledge of the different rules that we 

will learn, and then analyse the code which allowed us to obtain the Hierarchical rules. 

 

4.3.1 Structure 

 

When thinking of how we wanted the structure to be built, we first had to think about how 

the rules themselves would look like. If we are to learn grandparent(A,C), we will need to 

keep the information that grandparent(A,C) :- parent(A,B), parent(B,C). And if we want to go 

one level above that, grandgrandparent(A,C) :- grandparent(A,B), parent(B,C). Once again, 

we do find a binary pattern, but we can’t discard the possibility that the structures we thought 

so far were only binary due to them being transitive. As we seen on the previous module, 

the siblings relationship also had two conditions, but what about an uncle, for example? 

 

uncle(A,D):- parent(B,C), parent(C,D), parent(B,A). In other words, A will be uncle of D, if 

there is a node B which is grandparent of D, and that same node B is also parent of A.  This 

makes perfect sense, and if we think about it further, the three initial parent conditions can 

be once again simplified to two. However, there is also a second way to think of this problem: 

A will be uncle of D, if A and C are siblings, and if C is parent of D. As for which of the two 

definitions will be the one that the program chooses, will of course depend on how the initial 

graph was created, but Figure 12 is able to sum up these two situations in a very clear way. 
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In this Figure, the nodes are individuals of a family, and P is a relation of parent (either 

mother or father). On both option 1 and 2 the family tree is the same, just mirrored. The 

yellow and green outlines represent the simplification of a grouping (of two relations) into a 

single relation, called Rel1 for Option 1 and Rel2 for option2. As mentioned on the previous 

paragraph, there are two ways of representing the uncle relation. The program might learn 

the grouping [Parent,Parent] on the left as Rel1 (Rel1 being the grandparent relation) and 

Rel3 (which will be the uncle relation) will be defined as Rel3:- Rel1,Parent (A uncle D, if B 

grandparent D, and if B parent A). However, if the program chooses to first learn the 

grouping [Parent,Parent] on the right as Rel2 (Rel2 being a brother relation), Rel3 will be 

defined as Rel3:- Rel2,Parent (A uncle D, if A sibling C, and if C parent D).  

 

Depending on what relation the code learns first (Rel1 or Rel2), the resulting Rel3 will also 

be different. However, before moving on, there are two important points we need to make: 

first, this is not an issue, since that given a big enough graph, both scenarios will be added 

regardless. Second, this confirms that non transitive relations are not an issue for us to turn 

into the format RelX1:- RelX2, RelX3. 

 

Now knowing the kind of format that the structure needs to take, and what arguments to 

keep, we can proceed and create our list to hold the learnt relations: 

Option 1 

P 

P 

P 

P 

Rel3 

Rel3 

Rel2 

Rel1 

D 

A  

B 

C 

D 

A  

B 

C 

P 

P 

P 

B 

D A  

A  C 

D 

Option 2 

P 

Figure 12 - Hierarchical Learning Alternatives 
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This time, the structure detailed on Figure 13 is much more straightforward, and opposed to 

the other two modules, doesn’t hold a list in each node. We save ‘RelName’ as the name of 

the learnt relation, in a format similar to how we learnt the ones in the Group List, however 

this time, the nodes follow the ‘learnX’ format, with X starting from 1 and increasing each 

node. ‘Rel1’ and ‘Rel2’ are the two relations that make up the new relation. 

 

Now that we have a standardized format for all the relations that we want to learn, we now 

move into the execution section of the code. 

 

4.3.2 Concepts and execution 

 

We now have all the pieces that we need to progress into our final step, which is the writing 

of the function that learns relations recursively. So, our current objective is, from the Group 

List that we created, process those groupings of relations into rules of binary components, 

as we have mentioned previously. To that end, we need to split the execution part into two 

steps.  

 

The first one is to try and find a common factor between the groupings of size two that we 

have. This is so that we can simplify the learning process. In our family’s case, we learn a 

relation that would be parent, which was previously mentioned in this document. As a 

reminder: 

 

parent(A,B) :- mother(A,B) ; father(A,B). 

NULL Next Head 
 
• RelName 
• Rel1 
• Rel2 
• Next 

 
• RelName 
• Rel1 
• Rel2 
• Next 

 

Figure 13 - Join List 
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In other words, A is parent of B if A is mother of B, or if A is father of B. We can learn this by 

observing our groupings. We take the groupings in pairs and compare the first and second 

value of each grouping. Then, if we see similarities, we can simplify the common factor and 

thus create a new rule from this observation. More concretely, for this example we observe 

something as seen on Figure 14.  

 

 

In the first step, we identify that mother (in rel1 and rel2) and father (in rel3 and rel4) are 

common elements. We select them, and create a new rule, called learn1 (which is the parent 

relation). From four relations, we now are down to two, however we can see that this time, 

we have once again a common factor. learn1 is the common factor, and the mother and 

father are already part of another relation: learn1 itself. So, from four relations, we can 

compress them into one, which will heavily simplify our relation learning. 

 

There is, however, one small issue that we need to address. As we added the relations to 

the graph on the first module, we also added the ‘inverse’ ones, invFather and invMother. 

This is an issue as it could mess up with our analysis. If we consider the fact that we have 

4 different singular relations (mother, father, invMother, invFather) instead of two, then we 

have more than 4 different groupings of size two. We have instead, 16 different 

combinations, and we are able to learn little from it. But once again, that’s not a problem 

since father/mother aren’t different than invFather/invMother.  

 

rel1 = mother, mother 

rel2 = mother, father 

rel3 = father, mother 

rel4 = father, father 

rel1-2 = mother, Learn1 

rel3-4 = father, Learn1 

learn1: - mother; father 
Applying Learn1… 

rel1-4 = learn1, learn1 

Figure 14 - Common Factor Analysis Concept 
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While this is a bold statement, the addition of the ‘inverse’ 

relations is not a change that is made to the relations in 

the graph itself, as in their meaning isn’t that different from 

a father/mother. As far as the learning process is 

concerned, father/mother are similar relations to 

invFather/invMother, because in the end, they are the 

same relation, linking the same nodes. The only thing that 

changes, is the direction and their name, which only 

happens as to allow us to learn nontransitive relations. To 

better understand what we mean, we need to take a look 

at Figure 15. 

Instead of nodes, however, let’s think of A and C as gates to castles, while what links them 

is a bridge. A and C share that same bridge. The bridge that connects both gates is the 

same. However, the terms ‘leaving’ and ‘exiting’ differ on where we are. So, for example, if 

we go on the AB direction, when we pass A gate, we are ‘exiting’ that gate, while when we 

reach B gate we are ‘entering’ that gate. Entering and leaving are two faces of the same 

coin. Now, if we are to apply the same logic on our nodes, from A’s point of view, they are 

B’s parent. And that’s because they are on the outgoing perspective on the relationship. B, 

on the other hand, is the Child of A since they are on the incoming perspective of the 

relationship. This is the same situation as of the bridge example. The terms are different 

(within the code), but the bridge is there, and is the same for both nodes. 

 

There are two reasons for this to happen. First, is due to implementation. There is no variable 

which represents a relation father/mother on our code as some sort of intermediary node 

between two nodes. The relation itself is part of a node, and an inverse version of that same 

relation is found on the linked node. The second reason is that, by implementing it this way, 

we can learn nontransitive relations. If we take once again the example of learning siblings’ 

child 

parent 

parent 

A  

C 

A  

C 

Figure 15 - Bridge Analogy 

P 

P 

P 

A  

B 

C 
A  

B 

C 

P 

Rel(C,A) :- parent, parent 

Rel(C,A) :- parent, parent 

Figure 16 - Learning without perspective 
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relations, we conclude that to learn that A and C are siblings, we need to know that there is 

a B node such that B is parent of A, and B is parent of C. If we had implemented the relations 

in a unitary way, which no matter the direction, the relation’s name would always be the 

same, we would end up with Figure 16’s scenario. While the relation of C and A on the left 

is one of siblings, the second module would save that grouping the same way that it would 

save a grouping of a grandparent relation (example on the right, where C is A’s grandparent). 

 

On the other hand, if we are to add ‘perspective’ on the two nodes that are connected by the 

relationship, we end up getting very different results. 

 

 

As shown in Figure 17, both cases were processed into new relations on the second module 

of the code, assuming that they took the path C->B->A. We now know that the ‘child’ relation 

(which is for invFather/invMother what parent is to mother/father) means that there is a 

shared node for the two relations, allowing us to invert the relation name back to the original, 

and describe a siblings relationship, where we previously couldn’t. While Figure 16’s result 

was the same relation for both cases, in Figure 17 we now have two different relations added 

to the Group List. 

 

Now that we explained why it is important for both mother/father, as well as 

invMother/invFather to exist, we need to fix the problem related to the analysis of ‘inverse’ 

relations. The solution is trivial. As we are building the Group List on module 2, when we 

create new group nodes, we made sure to keep a counter, which initializes on 0. Each 

mother/father that is added to its ‘relList’ increases the counter by 1. Each 

invMother/invFather decreases the counter by 1. Once the ‘relList’ is added to the group 

node, we compare the variable ‘relations’ from the group node (which keeps track of the size 

of its ‘relList’) to the counter. If the ‘relations’ is equal to the counter, that group node only 

P 

P 

P 

A  

B 

C 
A  

B 

C 

C 

Rel(C,A) :- child, parent 

Rel(C,A) :- parent, parent 

Figure 17 - Learning with perspective 
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contains mother/father relations. If the ‘relations’ is equal to -counter, we know that the group 

node only contains invMother/invFather relations. Any other value means a mix of those 

relations. We then set the ‘value’ variable of the ‘relList’ as 1, -1 or 0 depending on these 

three cases. Then, we simply compare group nodes with the same ‘value’. That guarantees 

that we can analyse common factors for mother/father, and their ‘counterpart’ 

invMother/invFather independently. 

 

This first step is executed while the Join List is created, and the two first nodes are then 

added. The function that creates the Join List is createJoinList(groupList), where groupList 

is the groupList resulting from module 2. The code is as shown on Figure 18. 

 

 

01 create Join List called joinList; 
02 create Join Node called joinNode; 
03 create Group Node called groupNode1; 
04 create Group Node called groupNode2; 
05 groupNode1 = groupList->head; 
06 groupNode2 = groupNode1->next; 
07 
08 while groupNode1 exists and its grouping size is 2 
09  while groupNode2 exists and its grouping size is 2 
10   if groupNode1’s value is different than 0 and it is equal to groupNode2’s value 
11    joinNode = commonFactorAnalysis(groupNode1,groupNode2); 
12    if joinNode isn’t NULL 
13     add joinNode to joinList 
14   groupNode2 = groupNode2->next; 
15  groupNode1 = groupNode1->next; 
16  groupNode2 = groupNode1->next; 
17 return joinList; 

Figure 18 - Join List Creation 
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The common factor analysis is shown on Figure 19. 

 

Once that the createJoinList() is executed, we have two initial nodes in it. The order depends 

on the order of the relations from the second module, but we should have learn1 :- mother ; 

father and learn2 :- invMother ; invFather. There is a small detail that we need to be aware 

of. These two initial relations are a disjunction, while the other relations that we learn are be 

a conjunction. This happens because what we do with the common factor analysis is to point 

out that learn1 is either a mother or a father. With future relations, for example grandparent, 

we conclude that learn3 is a parent of a parent. Both need to be true; it is not an option as 

in the previous case. 

 

Now that the first preparatory step is done, we still need to do one last thing before we 

execute the function that takes care of recursively learning the relations. We need to iterate 

over the Group List and swap every single mother/father and invMother/invFather’ by learn1 

and learn2. The function is trivial, only iterating over the Group List. On each ‘groupNode’ it 

iterates over the ‘relList’ and through an if statement, we identify which of the two cases we 

have in that Rel Node and simply redefine the ‘relName’.  

 

1 create Join Node called joinNode; 
2 create Rel Node called relNode1; 
3 create Rel Node called relNode2; 
4 create a string called string1; 
5 create a string called string2;  
6 
7 relNode1 = groupNode1->relOrder->head; 
8 relNode2 = groupNode2->relOrder->head; 
9 
10 if relNode1->relName is the same as relNode2->relName 
11  joinNode = createJoinNode(relNode1->next->relName, relNode2->next->relName); 
12  return joinNode; 
13 else 
14  copy relNode1->relName into string1; 
15  copy relNode2->relName into string2; 
16  relNode1 = relNode1->next; 
17  relNode2 = relNode2->next; 
18  if relNode1->relName is the same as relNode2->relName 
19   joinNode = createJoinNode(string1,string2); 
20   return joinNode; 
21 return NULL; 
 

Figure 19 - Common Factor Analysis 
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Once all the relation names are swapped, we simply need to create the function that 

automates all the learning process. The function itself is called pandora() and is supported 

by a group of auxiliary functions. Initially, we first observe the Group List. If we go back to 

Figure 11, we know that the output of the second module is a list of groupings, sorted on 

their grouping size. All the relations have been simplified as we just described, but that step 

didn’t change the groupings size whatsoever. We create a pointer to the first node of the 

Group List and we iterate over it. On each Group Node, we create two pointers: one to the 

first node of its Rel List, and another to the node after that. We then call an auxiliary function 

to try and locate this pair of relations on the Join List nodes. If we are successful, the auxiliary 

function returns the Join Node’s ‘relName’. If the pairing doesn’t exist however, pandora() 

creates a new Join Node in the Join List with the pair being used as ‘rel1’ and ‘rel2’. When 

it runs those arguments once more, we have a match, called learnX. The function then 

proceeds to edit the ‘relList’ where it learnt the function. The first Rel Node is cut off, with 

the head of the Rel List pointing at the second node. We edit the ‘relName’ to be equal to 

learnX, and decrease the ‘relations’ of the Group Node by one, in accordance with the 

change of size that we made. Now, once pandora() executes its code once again, it confirms 

if ‘relations’ is bigger than 1. If it is, it continues learning the relations from the Group Node, 

until its size is only 1, with its relations being simplified down to only one relation.  

 

All of these learned relations are saved on the Join List, which acts as a ‘library’ of sorts, 

while that same knowledge is applied, and at the same time extracted, from the Group List. 

The function pandora(groupList, joinList) has the known ‘groupList’ and the previously 

created ‘joinList’ as arguments. Its code is detailed on Figure 20. 
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With getJoin() (line 14) being the function that checks on a given ‘joinList’ if both ‘rel1’ and 

‘rel2’ are present in any node, and cutHead() (line 18) being the replacer function that 

removes the first node of a Rel List and swap the second node’s relation by ‘tempRel’. 

 

As pandora() progresses through the Group List, it first learns from basic 2 sized groupings, 

then uses the relations from those groupings to learn on the groupings of size 3 and so on, 

until all of the Group List nodes have been simplified to a single relation each. 

 

 

 

 

 

 

 

 

 

01 create a Group Node called groupNode; 
02 create a Rel Node called relNode; 
03 create three strings called rel1, rel2, tempRel; 
04 groupNode = groupList->head; 
05 
06 while groupNode isn’t NULL 
07  if the size of groupNode is 1 
08   groupNode = groupNode ->next; 
09  else 
10   relNode = groupNode->relOrder->head; 
11   copy relNode->relName into rel1; 
12   relNode = relNode->next; 
13   copy relNode->relName into rel2; 
14   execute getJoin(joinList, rel1, rel2) and copy its output into tempRel; 
15   if tempRel isn’t NULL 
16    create joinNode and add it to joinList; 
17   else 
18   run cutHead(groupNode->relOrder, tempRel); 
19    decrease groupNode->relations by 1; 
20 return joinList; 

Figure 20 - Pandora Function 
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5 Results 

 

In this chapter we present the results for different execution cases, indicating the facts that 

were used as knowledge, a rough calculation of their execution time, and we also decided 

to test all those cases with another way of iterating through the Graph List.  

 

In chapter 4, we pointed out that we had considered two ways of executing our program, 

which were the call of an iterative function over the Graph List each time we wish to get the 

reference of a node, implying the usage of the node names as keys as way of search, or 

creating an adjacency pointer on the adjacency list instead of the name, which would point 

us directly at the target node. We start by observing the results on the initial method that we 

picked to iterate: the iterative function. All these tests were executed in a Virtual Machine, 

running Ubuntu 64-bit, with 10gb of RAM, and 60GB of storage. The program itself was 

compiled using GCC and executed through the Linux terminal. Table 2 and Table 3 display 

the execution time in seconds. Module 1, Module 2, and Module 3 refer to the three modules 

of the code, described in the fourth chapter, with the total runtime of the program in the final 

column. As for the relevant arguments used in the program, all executions were done with 

a maximum number of steps of 4.  

 

5.1 Method 1 - Iterative Function 

 

5.1.1  Input and output 

 

The first test involves using the knowledge that we used to build the Graph List from Figure 

1 as control. The facts were only 6, as seen on Figure 21. 

 

 

 

 

 

 

 

 

Father(ken,harriet)  Mother(laura,harriet) 

Father(george,alice)  Mother(harriet,alice) 

Father(george,bob)  Mother(harriet,bob) 

Figure 21 - Control Input 
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The learnt relations from this input are depicted on Figure 22. 

 

 

 

 

 

 

 

 

 

 

 

With ‘Learn’ being the relation’s name, ‘arg1’ being the first argument in the learnt relation, 

and ‘arg2’ being the second argument. 

 

The second test involves using a slightly larger family, described by 18 facts, shown in Figure 

23. 

 

 

 

With the output shown in Figure 24. 

 

Learn: Learn1, arg1: Father , arg2: Mother 

Learn: Learn2, arg1: InvFather , arg2: InvMother 

Learn: Learn3, arg1: Learn1 , arg2: Learn2 

Learn: Learn4, arg1: Learn1 , arg2: Learn1 

Learn: Learn5, arg1: Learn2 , arg2: Learn2 

Learn: Learn6, arg1: Learn3 , arg2: Learn1 

Learn: Learn7, arg1: Learn3 , arg2: Learn2 

Learn: Learn8, arg1: Learn7 , arg2: Learn2 

Figure 22 - Control Output 

Father(ken,harriet) 

Father(george,alice) 

Father(george,bob) 

Mother(laura,harriet) 

Mother(harriet,alice) 

Mother(harriet,bob) 

Mother(alice,penelope) 

Father(andrew,james) 

Father(andrew,jennifer) 

Father(christopher,arthur) 

Father(christopher,victoria) 

Father(james,charlotte) 

Father(james,colin) 

Mother(christine,james) 

Mother(christine,jennifer) 

Mother(penelope,victoria) 

Mother(victoria,charlotte) 

Mother(victoria,colin) 

Figure 23 - Control+ Input 
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The third test scenario involves removing a single relation from Control+ input, which acts 

as a ‘bridge’ between two sub families. These subfamilies will act as clusters, independent 

from one another, and the input to such a scenario is depicted on Figure 25. 

 

 

 

Learn: Learn1, arg1: Mother , arg2: Father 

Learn: Learn2, arg1: InvFather , arg2: InvMother 

Learn: Learn3, arg1: Learn1 , arg2: Learn2 

Learn: Learn4, arg1: Learn1 , arg2: Learn1 

Learn: Learn5, arg1: Learn2 , arg2: Learn2 

Learn: Learn6, arg1: Learn3 , arg2: Learn1 

Learn: Learn7, arg1: Learn3 , arg2: Learn2 

Learn: Learn8, arg1: Learn4 , arg2: Learn2 

Learn: Learn9, arg1: Learn4 , arg2: Learn1 

Learn: Learn10, arg1: Learn5 , arg2: Learn1 

Learn: Learn11, arg1: Learn5 , arg2: Learn2 

Learn: Learn12, arg1: Learn6 , arg2: Learn1 

Learn: Learn13, arg1: Learn7 , arg2: Learn2 

Learn: Learn14, arg1: Learn8 , arg2: Learn1 

Learn: Learn15, arg1: Learn10 , arg2: Learn2 

Learn: Learn16, arg1: Learn7 , arg2: Learn1 

Learn: Learn17, arg1: Learn8 , arg2: Learn2 

Learn: Learn18, arg1: Learn6 , arg2: Learn2 

Learn: Learn19, arg1: Learn11 , arg2: Learn1 

Figure 24 - Control+ Output 

Father(ken,harriet) 

Father(george,alice) 

Father(george,bob) 

Mother(laura,harriet) 

Mother(harriet,alice) 

Mother(harriet,bob) 

 

Father(andrew,james) 

Father(andrew,jennifer) 

Father(christopher,arthur) 

Father(christopher,victoria) 

Father(james,charlotte) 

Father(james,colin) 

Mother(christine,james) 

Mother(christine,jennifer) 

Mother(penelope,victoria) 

Mother(victoria,charlotte) 

Mother(victoria,colin) 

Figure 25 - Control+ Clustered Input 
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The resulting learnt relations are shown on Figure 26. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At last, the fourth test case was a larger family, with twice as many relations as from the 

Control+ case. The input is detailed on Figure 27. 

 

 

Learn: Learn1, arg1: Father , arg2: Mother 

Learn: Learn2, arg1: InvFather , arg2: InvMother 

Learn: Learn3, arg1: Learn1 , arg2: Learn2 

Learn: Learn4, arg1: Learn1 , arg2: Learn1 

Learn: Learn5, arg1: Learn2 , arg2: Learn2 

Learn: Learn6, arg1: Learn3 , arg2: Learn1 

Learn: Learn7, arg1: Learn3 , arg2: Learn2 

Learn: Learn8, arg1: Learn4 , arg2: Learn2 

Learn: Learn9, arg1: Learn5 , arg2: Learn1 

Learn: Learn10, arg1: Learn7 , arg2: Learn2 

Learn: Learn11, arg1: Learn7 , arg2: Learn1 

Learn: Learn12, arg1: Learn8 , arg2: Learn2 

Learn: Learn13, arg1: Learn8 , arg2: Learn1 

Learn: Learn14, arg1: Learn6 , arg2: Learn1 

Learn: Learn15, arg1: Learn6 , arg2: Learn2 

Learn: Learn16, arg1: Learn9 , arg2: Learn2 

Figure 26 - Control+ Clustered Output 

Father(ken,harriet) 

Father(george,alice) 

Father(george,bob) 

Mother(laura,harriet) 

Mother(harriet,alice) 

Mother(harriet,bob) 

Mother(alice,penelope) 

Father(andrew,james) 

Father(andrew,jennifer) 

Father(christopher,arthur) 

Father(christopher,victoria) 

Father(james,charlotte) 

Father(james,colin) 

Mother(christine,james) 

Mother(christine,jennifer) 

Mother(penelope,victoria) 

Mother(victoria,charlotte) 

Mother(victoria,colin) 

Father(colin,julie) 

Father(don,randy) 

Father(don,mike) 

Father(don,anne) 

Mother(rosie,randy) 

Mother(rosie,mike) 

Mother(rosie,anne) 

Father(elmer,don) 

Mother(mildred,don) 

Mother(esther,rosie) 

Mother(esther,ron) 

Mother(julie,esther) 

Father(randy,blair) 

Father(ron,katarina) 

Mother(katarina,ashe) 

Mother(katarina,jax) 

Father(garen,ashe) 

Father(garen,jax) 

Father(jax,lux) 

Mother(leona,lux) 

Mother(ashe,annie) 

Father(darius,annie) 

Figure 27 - Control+ Extended Input 
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From all these facts were obtained the results shown on Figure 28. 

 

 

All these cases serve a specific purpose, which is described on the next section. As for a 

comparison of runtime between these four cases (as well as sub timers for each module), 

each case was executed 10 times, with their runtimes being averaged out in seconds, 

resulting in Table 2. 

 

 

 

 

 

 

 

 

 Module 1 Module 2 Module 3 Total 

Control 0.0000846 0.0000861 0.0000255 0.0001962 

Control+ 0.0001253 0.0006404 0.0001305 0.0008962 

Control+ Cluster 0.0001145 0.0003981 0.0000706 0.0005832 

Control+ Ext. 0.0001998 0.0017487 0.0001618 0.0021103 

Table 2 - Method 1 Runtimes in seconds 

Learn: Learn1, arg1: Mother , arg2: Father 

Learn: Learn2, arg1: InvFather , arg2: InvMother 

Learn: Learn3, arg1: Learn1 , arg2: Learn2 

Learn: Learn4, arg1: Learn1 , arg2: Learn1 

Learn: Learn5, arg1: Learn2 , arg2: Learn2 

Learn: Learn6, arg1: Learn3 , arg2: Learn1 

Learn: Learn7, arg1: Learn3 , arg2: Learn2 

Learn: Learn8, arg1: Learn4 , arg2: Learn2 

Learn: Learn9, arg1: Learn4 , arg2: Learn1 

Learn: Learn10, arg1: Learn5 , arg2: Learn1 

Learn: Learn11, arg1: Learn5 , arg2: Learn2 

Learn: Learn12, arg1: Learn6 , arg2: Learn1 

Learn: Learn13, arg1: Learn7 , arg2: Learn2 

Learn: Learn14, arg1: Learn8 , arg2: Learn1 

Learn: Learn15, arg1: Learn10 , arg2: Learn2 

Learn: Learn16, arg1: Learn7 , arg2: Learn1 

Learn: Learn17, arg1: Learn8 , arg2: Learn2 

Learn: Learn18, arg1: Learn6 , arg2: Learn2 

Learn: Learn19, arg1: Learn11 , arg2: Learn1 

Learn: Learn20, arg1: Learn9 , arg2: Learn1 

Learn: Learn21, arg1: Learn9 , arg2: Learn2 

Learn: Learn22, arg1: Learn11 , arg2: Learn2 

Learn: Learn23, arg1: Learn10 , arg2: Learn1 

Figure 28 - Control+ Extended Output 
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5.1.2  Analysis 

 

In the previous section, we showed a lot of information related to the different inputs that we 

used. In this section, we make sense of all that was shown, as well as analysing the runtimes 

accordingly. We will also use a visual representation of Table 2 (Figure 29), to better 

understand the values. 

The first example that we showed was meant to be used as a control. That was the family 

that we used throughout the development of our program, and the family that we used to 

explain our implementation, so it makes sense that we use it as a starting point, a reference 

to the other examples.  

 

By observing its output, we see ‘Learn1’ and ‘Learn2’ that are disjunctive, as previously 

mentioned, acting as Parent and Child, respectively. The remaining relations are 

conjunctive, pertaining to all the relations that we were able to observe in that Graph List. 

So, for instance, ‘Learn3’ having ‘Learn1’ and ‘Learn2’ as arguments, can be written down 

mathematically as one of the two options shown on Figure 30. 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

Module 1 Module 2 Module 3 Total

Method 1 runtimes (seconds)

Control Control+ Control+ Cluster Control+ Ext.

Figure 29 - Visual representation of method 1 runtimes (seconds) 



FCUP 
Results 

56 

 

 

 

 

 

 

 

 

 

 

 

 

Now, while at first glance we perceive these relations as different, they are one and the 

same, representing a parent (B) and two children (A,C). While the relation is the same in 

both cases, what changes is the order by which module 2 iterated over the nodes. For the 

upper left example, module 2 iterated CBA, while on the lower right example, it iterated as 

ABC. What is important to take from this example, is that not only these two relations show 

the same example, but we are able to represent it as a relation of parents. If we have a 

function that unfolds and prints the relations that were learnt, we could have (A Learn3 C) 

which would be converted into (A Learn1 Learn2 C) which in turn would notice an inverse 

term on Learn 2 and would understand that there is a node from which the left and right side 

of the expression branch out from, resulting in a (B Learn1 A ˄ B Learn1 C). This would 

correspond as a sibling’s relation. 

 

The second example used, Control+ was an extension to the original Control test, as a way 

to observe how much the runtimes would increase, with three times as many facts. If we 

refer to Table 2, we can observe that while Module 1 wasn’t affected so much, Module 2 

and Module 3 run times increased close to eight and five-fold respectively. As expected, this 

iterable function approach scales terribly with the more facts that are added. 

 

The third example was meant to test how well or how bad the program performed when the 

family wasn’t a unified family. We removed a single fact, which split the Control+ family into 

two families. Once again, Module 1 wasn’t much affected, while Module 2 and Module 3 run 

times were decreased by almost half. This makes sense, since that if we have smaller 

Parent 

Child 

Child 

Parent 

Learn3 = (Father v Mother) ˄ (InvFather v InvMother) 

Learn3 = (InvFather v InvMother) ˄ (Father v Mother) 

A

C 

B 

A

C 

B 

Figure 30 - Conjunction and Disjunction cases 
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clusters instead of a big family, there are quite a lot less paths that we can use. In fact, even 

the number of learnt rules are smaller. 

 

The fourth and final example is an extension on Control+, doubling the number of facts that 

were given to the program. Once more, as we compare the different values, we observe that 

Module 1 has a very steady increase, while Module 2 and Module 3 abruptly increase once 

again, showing the poor scalability of this method. 

 

5.2 Method 2 – Adjacency Pointers 

 

The analysis of this second method, as well as the runtimes will be explained here, in a 

single section, opposed to the previous split of 2 sections for the presentation of method 1. 

This is simply because both the input and output were the same for all four tests, the only 

thing changing being the run times, as shown in Table 3 and Figure 31.  

 

 Module 1 Module 2 Module 3 Total 

Control 0.0001049 0.0000615 0.0000290 0.0001954 

Control+ 0.0001599 0.0002996 0.0000894 0.0005489 

Control+ Cluster 0.0001532 0.0002257 0.0000612 0.0004401 

Control+ Ext. 0.0002750 0.0008137 0.0001658 0.0012545 

Table 3 - Method 2 Runtimes in seconds 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

Module 1 Module 2 Module 3 Total

Method 2 runtimes (seconds)

Control Control+ Control+ Cluster Control+ Ext.

Figure 31 - Visual representation of method 2 runtimes (seconds) 
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Comparing the two tables and graphs, we can see some very interesting results. The first 

thing that we notice is that for the most part, all values from Method 2 seem be lower than 

those from Method 1. Now to discriminate in a more specific, and more example-oriented 

way: 

 

In the Control test, we can observe that Module 1 and Module 3 run times are higher on 

method 2 than on method 1, opposed to Module 2, which decreased. This was expected, as 

we predicted that Module 1 would become ‘bulkier’ as it had to prepare a pointer for each 

adjacency (which if remember from our implementation, means two pointers for each 

adjacency). Module 2 would become lighter due to the ease which it would jump between 

nodes, instead of iterating through the full list to find the target node. Module 3’s increase 

was minor, and from the 10 results collected, we could see that it was due to 2 anomalies 

on the runtimes, which lightly spiked the results (opposed to only one on the 10-set of Control 

test from Method 1). We believe that by running the program a higher number of times, this 

value will stabilize very closely to the value obtained in Method 1. However, despite all these 

changes, the total runtime of the test is almost the same for both methods. 

 

 On Control+ test, the differences in scalability between the two methods become more 

apparent. Module 1 continues to act as predicted, taking more time due to being more loaded 

on Method 2, but besides the first module, all values across the board decreased. The total 

value of 8,962x10-4s decreased to 5,489x10-4s. We were able to see the difference 

immediately after only doubling the number of facts that were given to the program. Although 

as not as noticeable, we also observe the same pattern in Control+ Clustered, with Module 

1 runtimes being the exception on the otherwise decrease in runtime. 

 

On the final test, Module 1 runtime is still higher than on Method 1, however it increases 

steadily on this method as well. The remaining values are now vastly different from the ones 

obtained from the first method, and now clearly prove that Method 2 has much better 

scalability, as the results showed roughly a 41% decrease in execution time on the larger 

test that was covered. 
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6 Conclusion 

 

Hierarchical Relational Learning is quite an intimidating topic to be working on. Despite the 

fact that the starting point and the objective of this task are distinctly described, there was 

no clear way about how to actually connect the dots. Of course, despite the complexity of 

the task, our work is nowhere near complete or extensive as the creation of Aleph, or other 

ILP systems. This is fine, as we are comparing projects of different magnitudes, both on the 

sense of the time it took for development, as well as their capabilities and end product. As 

previously stated, this work is only meant to be somewhat of an alternative to a small part 

of Aleph’s capabilities, extending them for our own specific goals. Still, we hope that our 

contribution, however small, will be useful in the development of the ILP area. 

 

The current literature for HRL is not as well developed as other ML areas are. Since we are 

trying to learn intermediate rules that were not declared previously, we need to include 

predicate invention in at least part of our work. However, we have seen that a lot of ILP 

systems have problems integrating predicate invention in their execution, with some only 

being partly able to do so. There are many concerns related to how and when should 

predicate invention be used, and how well we can evaluate such rules. The fact that it is 

done in conjunction with the induction of rules, some of which might be wrong or too 

redundant/broad to be useful, makes the result a bit uncertain, which we think is why this 

area is still so early in development.  

 

To address this issue, we decided to take a step back. We discarded mechanisms that were 

too complex, avoided attempting to learn with uncertainty and instead created a program 

which would learn from knowledge that was undoubtedly true. We learn from the facts that 

are presented as base knowledge and don’t try to induce or generalise new cases that we 

come across. We iterate over the network of relations that we built from the facts and archive 

all the relations that we can observe, them simplifying them by representing the higher-level 

ones with a mix of lower-level ones. While it is somewhat of a naïve approach, and sensitive 

to missing information (the Control+ compared to the Control+ Cluster proved that point), it 

learns the information that it is supposed to, potentially acting as some pre-processing for 

more complex ILP systems. 
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Regarding the structure of our work, the division of the code into modules also greatly helped 

for its development, as it allowed us to partition the main and more complex issues into 

smaller issues, which we were then able to tackle individually. A complex problem is, more 

often than not, just an aggregated of smaller problems. We only need to identify them and 

work on them properly. With that in mind, the critique of our work will also follow this similar 

module structure, as to address each module’s issues, and then concluding by an overall 

conclusion of the program as a whole. 

 

The first module is probably the simplest of the three as it takes care of receiving and 

structuring the BK into an iterable graph. There is little room for comments here, besides the 

optimization of how the knowledge gets obtained, and the two methods that we previously 

discussed for the iteration. 

 

For the second module, there is quite a lot more to talk about, as this is where the base of 

the actual learning is. The learning will happen with whatever the Group List is able to extract 

from the BK. This potentially limits what we can learn on the next module so it’s important 

to discuss about the limitations of this step. 

 

As previously discussed, we observed that the way that the Group List obtains knowledge 

is through a depth like search in a collection of binary trees (each of them having a node 

from the Graph List as top node) and is thus limited by relations with at most two nodes 

involved (independently if the relations involved are transitive or not). If we observe the 

superSiblings example once more, it’s very clear that we can’t obtain the full knowledge of 

the whole relation at once on a Group List node due to reasons we explained on chapter 4. 

However, even if we were able to extend our program to allow the learning of relationships 

with 3 related nodes, we would face on the third module a similar issue that we faced on 

Figure 16 and Figure 17. 
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More concretely, if were to define SuperSibling as is shown on Figure 32, we would need a 

definition similar to superSibling(A,C,D), where we ignore at most one node (in this case it 

would be node B, which will serve as an undefined node that would link all three nodes from 

the rule, similar to how node B was ‘ignored’ in Figure 16’s example) as to make the 

connection happen. Depending on our solution, we could ignore node B and have two 2-

sized relations (CBA, ABD) like how we did previously, or ignore none and have all three 

relations defined ‘properly’ (BC, BA, BD). However, no matter which option we pick, we need 

to increase the number of nodes that is saved as information in our structures by at least 

one, or completely change the way the code works. But this is not the single issue that we 

have related to this situation. If we increase the number of nodes needed for a relation to 4, 

we once again bump into this problem.  

 

A possible fix for this issue in future work could be done by a rework of the inner workings 

of the code with this issue specifically in mind. Taking Figure 32 as example, if we were to 

execute the search on node B, we could send a ‘seeker’ to each of the outgoing relations. 

From each of these seekers, they would observe the relations (similar to how our second 

module currently looks for groupings) first by backtracking back to B, and then exploring 

other outgoing relations from B. In our case we would have [CBA,CBD] for seeker C, 

[ABC,ABD] for seeker A, and [DBA, DBC] for seeker D. We would then join the results, 

taking into consideration to remove duplicates with the same nodes on the extremities (ABC 

= CBA), which would result in [CBA,CBD,ABD]. Now, we can notice that CBD is transitive, 

as (CBA,ABD) = CBD. However, that’s more of an optimization issue, about how compact 

and non-redundant the rules are. This can be easily fixed by detecting transitivity in the given 

groupings. The conclusion that we want to take from this is that it might be possible by the 

solution described above, although computationally more expensive, which is to be 

P 
P 

A  

B 

C D 

P 

Figure 32 - superSibling representation 
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expected. If the increase in complexity isn’t an issue however, another option could be the 

implementation of a hypergraph. This would imply rewriting most of the code as well as the 

structures themselves, but if we managed to efficiently use hypernodes, we would be able 

to process the superSiblings()  problem, since that our limitation by using graphs was the 

edges of the graph only connecting two nodes. By contrast, hypergraphs have hyperedges 

which allow several nodes to be connected by the same connection, removing that barrier. 

 

The third module is relatively simple to analyse, although not as simple as the first one. 

Being mostly the module that is in charge of processing the results of module 2, there is only 

a point or two where it can ‘fail’. First, the commonFactorAnalysis() is slightly tailored to the 

examples at hand and assumes there are only two types of facts (mother/father). Should it 

not be the case, it could prove to be an issue. If there is only one fact the function is not 

needed. If there are more than two however, the function needs to be adapted to process 

the three, or four different results, which could prove to be a problem, as it would significantly 

increase the complexity of this function. On the other hand, it would also significantly 

compress the learnt rules, avoiding much redundancy.  

 

The other issue is described on Figure 12, which is depending on how the Graph List is built, 

the Group List learns relations in a different way. As we mentioned previously, it isn’t an 

issue in graphs that are sufficiently large, as both the case on the left and the case on the 

right are found. On smaller examples, what we end up learning can be more limited. This is, 

however, not really an issue as both ways to build the relation will end up building the exact 

same relation in different ways.  

 

Overall, our work results in a simple and lightweight program. While it can’t learn as much 

as ILP systems, its simplicity has the advantage of not dawdling with probabilities, as we are 

extracting relations from the BK, and not trying to create/define them based on probabilistic 

models or previously prepared definitions. In fact, since we partially integrate predicate 

invention on the final module in an automatic way (without the user needing to create the 

predicates beforehand) it allows a much bigger automatization of the learning process. Of 

course, it suffers more from other probabilistic approaches from lack of knowledge, since 

we cannot learn from a relationship grouping that is not present on the Group List.  

 



FCUP 
Conclusion 

63 

While the names of the output learnt relations only differ in the number following “learn”, we 

can simply extract the learnt knowledge and swap the terms in a post analysis of the results 

as a way to make it more human-friendly.  

 

In matters of how much we can generalise the code for BK’s other than a family 

representation, while there is one or another term that need to be swapped out depending 

on our BK and initial terms, there is virtually no setup needed, opposed to more complicated 

programs. Additionally, we have seen that, for now, it can only learn relations in a binary 

fashion, choking when dealing with relations that have 3 or more nodes to consider at the 

same time. This peculiarity however can be addressed in future work, hopefully expanding 

it to non-binary relations. A final positive note about our program is that it can learn from 

families that have clusters of nodes. Of course, there is a limit to how many relation 

groupings we can obtain from small clusters, but nonetheless, with the way that the program 

was implemented, it is possible to do it. 
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