
Transducers and 2D

Regular Expressions
João Rebelo Grifo Pires
Mestrado em Ciência de Computadores
Departamento de Ciência de Computadores

2018

Orientador
Nelma Resende Araújo Moreira, Professora Auxiliar,

Faculdade de Ciências da Universidade do Porto

Coorientador
Rogério Ventura Lages dos Santos Reis, Professor Auxiliar,

Faculdade de Ciências da Universidade do Porto

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ______/______/_________

Abstract

Regular expressions are a popular research field in Computer Science, which provide, among
other things, a compact way for representing regular languages. With that in mind, we propose
a definition of regular expressions for rational relations, which can be represented by finite
transducers.

We present some important results, like an upper-bound for the transducer equivalent to a
given two-dimensional regular expression.

We present extensions of some classical automata and regular expressions to transducers
and two-dimensional regular expressions, for instance the Thompson’s method and the state
elimination method.

On the other hand, partial derivatives have numerous applications in regular expressions,
which include the word problem. The word problem has already been defined and solved for
transducers, but we define partial derivatives for two-dimensional regular expressions and present
an algorithm for deciding this, without the need to convert the regular expression to an equivalent
transducer.

Furthermore, we present a method for deciding if two functional two-dimensional regular
expressions are equivalent, using the method we know for transducers. This implies the usage
of the presented methods for converting a two-dimensional regular expression to an equivalent
transducer.

Finally, we implement these new representations by the means of two-dimensional regular
expressions in FAdo system, as well as the subsequent algorithms and methods described.

Keywords: algorithms, automata, FAdo, partial derivatives, regular expressions, transducers,
two-dimensional regular expressions.

i

Resumo

Expressões regulares são um popular campo de investigação em Ciência de Computadores, que
providenciam, entre outras coisas, uma forma compacta de representar linguagens regulares.
Tendo isso em vista, propomos uma definição para expressões regulares de relações racionais,
que podem ser representadas por transdutores finitos.

Apresentamos alguns resultados importantes, como um majorante para o número de estados
do transdutor equivalente a uma dada expressão regular a duas dimensões.

Apresentamos extensões de métodos clássicos em autómatos e expressões regulares a transdu-
tores e expressões regulares a duas dimensões, por exemplo o método de Thompson e o método
de eliminação de estados.

Por outro lado, derivadas parciais têm numerosas aplicações em expressões regulares, o que
inclui o problema da palavra. Este problema estava já definido e resolvido para transdutores,
mas definimos neste trabalho derivadas parciais para expressões regulares a duas dimensões
e apresentamos um algoritmo para o problema da palavra, sem a necessidade de converter a
expressão regular para um transdutor equivalente.

Para além disso, apresentamos um método para decidir se duas expressões regulares a duas
dimensões funcionais são equivalentes, usando o método que conhecemos para transdutores. Isto
implica a utilização dos métodos apresentados para converter uma expressão regular a duas
dimensões num transdutor equivalente.

Finalmente, implementamos estas novas representações por forma de expressões regulares a
duas dimensões no sistema FAdo, bem como os algoritmos e métodos subsequentes.

Palavras-chave: algoritmos, autómatos, derivadas parciais, expressões regulares, expressões
regulares a duas dimensões, FAdo, transdutores.

iii

Acknowledgments

First of all, I would like to deeply thank Professors Nelma Moreira and Rogério Reis, who
provided the tools for this work, for all the patience, guidance and hard work throughout the last
years. I would also like to thank Professor Stavros Konstantinidis for his ideas and directions for
research.

I can not forget to thank my family and friends. In particular, my mom, Maria, for supporting
my studies, as well as my sister, Eloísa, for all the support and guidance. I would also like to
thank Pedro and Gonçalo for their wisdom.

Last, but not least, I want to thank the research project UID-MAT-00144-2013.

v

Para a avó Adelina

vi

Contents

Abstract i

Resumo iii

Acknowledgments v

Contents ix

List of Figures xi

Listings xiii

1 Introduction 1

2 Background 3

2.1 Formal Languages . 4

2.2 Finite Automata . 5

2.2.1 Deterministic Finite Automata . 5

2.2.2 Nondeterministic Finite Automata . 6

2.2.3 Equivalence Between DFAs and NFAs . 7

2.3 Regular Expressions . 9

2.3.1 Derivatives . 10

2.3.2 Partial Derivatives . 11

2.3.3 Linear Form . 15

vii

2.4 Equivalence Between REs and FAs . 18

2.4.1 State Elimination Method . 18

2.4.2 Thompson’s Method . 19

2.4.3 Brzozowski’s Method . 20

2.4.4 Antimirov’s Method . 20

3 Transducers 23

3.1 Binary Relations Over Words . 23

3.2 Transducers . 24

3.2.1 Finite Transducers . 24

3.2.2 Standard and Normal Form Transducers 26

3.3 Sequentialization of a Transducer . 27

3.3.1 Sequential Transducers . 27

3.3.2 Functional Transducers . 28

3.3.3 Functionality Test . 28

3.3.4 Witness of Non-Functionality . 30

3.3.5 Sequentialization of a Functional Transducer 30

4 2D-Regular Expressions 33

4.1 Standard 2D-Regular Expressions . 36

4.1.1 Partial Derivatives . 38

4.1.2 Linear Form . 42

4.2 General 2D-Regular Expressions . 45

4.2.1 Partial Derivatives . 45

4.2.2 Linear Form . 47

4.2.3 Converting a G2D-RE into a S2D-RE . 48

4.3 Equivalence Between S2D-REs and Transducers 53

4.3.1 Extension of Thompson’s Method to Transducers 53

4.3.2 Extension of the State Elimination Method to Transducers 55

viii

4.4 Applications of Linear Form . 56

4.4.1 Conversion from S2D-REs fo SFTs . 56

4.4.2 Conversion from G2D-REs fo SFTs . 61

4.5 Input and Output Projections of 2D-REs . 62

4.6 Word Problem . 63

4.7 Equivalence Between 2D-REs . 64

5 Implementation 65

5.1 Finite Automata and Regular Languages . 65

5.1.1 DFAs . 65

5.1.2 NFAs . 66

5.1.3 Regular Expressions . 67

5.2 Transducers . 68

5.2.1 Regular Expression Labeled Finite Transducers 69

5.2.2 Sequential Transducers and Functionality Test 70

5.3 2D-REs . 71

5.3.1 G2D-REs . 71

5.3.2 S2D-REs . 72

6 Conclusion and Future Work 75

Bibliography 77

ix

List of Figures

2.1 Diagram of the DFA ȧ2.2. 5

2.2 Diagram of the NFA ȧ2.4. 7

2.3 Diagram of the Lupanov’s NFA ȧ2.7. 8

2.4 Diagram of the minimal DFA that simulates ȧ2.7. 8

3.1 Diagram of the finite transducer ṫ3.7. 25

3.2 Diagram of the NFT ṫ3.14. 27

3.3 Diagram of the sequential transducer ṫ3.17. 28

3.4 Application of the functionality algorithm. 30

3.5 The sequentialization algorithm. 31

xi

Listings

5.1 DFA example in FAdo. 66
5.2 NFA example in FAdo. 66
5.3 Regular expression example in FAdo. 68
5.4 Derivatives and partial derivatives example in FAdo. 68
5.5 SFT example in FAdo. 69
5.6 NFT example in FAdo. 69
5.7 State elimination method for transducers example in FAdo. 69
5.8 Functionality test for a transducer example in FAdo. 70
5.9 Sequentialization of a transducer example in FAdo. 71
5.10 Parsing a G2D-RE example in FAdo. 72
5.11 Manipulation of S2D-REs example in FAdo. 73
5.12 Membership and equivalence between S2D-REs example in FAdo. 73

xiii

Chapter 1

Introduction

Regular expressions and automata theory are two popular fields in computer science, with
hundreds of papers and work over the years.

Transducers, which have also been studied in the last few decades, are a way to characterise
rational relations between words. Various formulations for transducers have been presented, for
instance Berstel [3], Choffrut [9] and Sakarovitch [26]. This work is motivated by the premise of
finding more compact ways to represent transducers, like there is for automata, namely, regular
expressions.

With that in mind, we present two models for such type of representation, a standard and a
general form. One can see the first as changing the alphabet from symbols to pairs of symbols,
and the second one as having for atoms an input and an output regular expression, that is, where
any word that can be generated from the regular expression over the input alphabet can produce
as output any word from the regular expression over the output alphabet.

We also present some classical automata theory methods, as well as some non-classic ones.
Thus, we analyse the works of Antimirov [2], Brzozowski [6] and Thompson [27], among others,
who have contributed with important methods that we try to extend to transducers, which include
the state elimination method and Thompson’s method. We take into consideration the work of
Antimirov on partial derivatives, and we define the corresponding notions to two-dimensional
regular expressions, where the designation refers to the fact that we have some notion of input
and output.

We also present one implementation of the model that we propose in the FAdo system [12],
a Python system that offers various tools for manipulating regular languages. Other systems
include Grail/Grail+ [15, 23], Vaucanson [28], OpenFST [25] and JFLAP [30]. Some of these
systems allow one to manipulate such objects within simple script environments. FAdo provides
a set of methods for manipulating automata, regular expressions, transducers and, as of this
work, two-dimensional regular expressions, on a Python shell.

With that in mind, this work also extends the capabilities of the FAdo system by implementing

1

2 Chapter 1. Introduction

important methods for both transducers and two-dimensional regular expressions. More
specifically, we present an implementation for finding a sequential transducer equivalent to
a given one, and two new implementations for testing the functionality of a transducer a witness
of non-functionality, as well as methods related to two-dimensional regular expressions, like
calculating the linear form and the set of partial derivatives with respect to a pair of symbols.
This work is founded on the theory of rational relations and transducers [3, 26].

The structure of the thesis is as follows. In the first two chapters, we present some important
background. Namely, in Chapter 2, we review some notions of classical automata theory and
regular expressions. In Chapter 3, on the other hand, we define binary relations over words and
transducers, and we present a new implementation of an algorithm for testing the functionality of
a transducer, as well as a method based on this algorithm to obtain a witness of non-functionality
of a given transducer. Finally, we present an algorithm for obtaining a sequential transducer
equivalent to a given functional transducer.

In Chapter 4, we present the main focus of this work. First, we start by defining two-
dimensional regular expressions, as well as some important characteristics. We continue by
analysing in more depth the two main models we propose, the standard form and the general
form. We finish this chapter by presenting methods for conversion between transducers and
two-dimensional regular expressions. We also define the word problem for transducers, and we
present a method for deciding this on the regular expression level.

In Chapter 5, we discuss the implementation in FAdo system of the definitions, methods
and algorithms presented in Chapter 4, as well as the newly implemented methods discussed in
Chapter 3.

We finish this thesis with Chapter 6, where we conclude the work and present some directions
for future research.

Chapter 2

Background

We start by introducing some basic knowledge [17]. Let S be a set. We denote the cardinality of
S by |S| and the set of all subsets of S by 2S . An alphabet is a finite nonempty set of symbols.
The Greek letters Σ and ∆ denote any two arbitrary alphabets. A word over Σ is a finite sequence
of symbols taken from Σ. The empty word is the word consisting in zero symbols and is denoted
by ε. For example, σ and τ are the symbols of the alphabet Σ = {σ, τ}, and ε, σ and σττσ are
words over Σ.

The set of all words, or word, including the empty word, over an alphabet Σ is denoted by
Σ∗. For example, if Σ = {σ, τ},

Σ∗ = {ε, σ, τ, σσ, στ, τσ, ττ, σσσ, . . .}.

The concatenation of two words w and w′ over Σ, denoted w · w′ or simply ww′, is the word
obtained by juxtaposing the word w′ at the end of the word w. For instance, the concatenation
of στ and τσ is σττσ. The concatenation of two words w and w′ can be defined recursively on
the structure of w′ as follows

wε = w

w
(
w′σ

)
=
(
ww′

)
σ, where σ ∈ Σ.

Therefore, the concatenation is an associative operation with identity element ε, that is, wε =
εw = w. Thus, the set Σ∗ with the concatenation operation is a monoid with the empty word as
identity.

The length of a word w, denoted by |w|, is the number of Σ-symbols in w. For instance, ε, σ
and σττσ have lengths 0, 1 and 4, respectively. The length of a word w ∈ Σ∗ can be defined
recursively on the structure of w as follows

|ε| = 0

|wσ| = |w| + 1, where σ ∈ Σ.

3

4 Chapter 2. Background

Let w be a word of the form uvx, where u, v, x ∈ Σ∗. We say that u is a prefix of w, v is an
infix and x is a suffix. If u 6= w, we say that u is a proper prefix of w. Similarly, if v 6= w and
x 6= w, v is a proper infix and x is a proper suffix of w, respectively. We say that two words, w
and w′ are conjugate if they are cyclic shifts of each other, that is, if there are words u, v ∈ Σ∗

such that w = uv and w′ = vu.

2.1 Formal Languages

Given an alphabet Σ, a language over Σ is a subset of Σ∗. The empty language is the empty
set, and is thus denoted by ∅. The set Σ∗ is called the universal language. The cardinality of a
language L is denoted by |L|.

On the set of languages, the usual set operations are defined, such as union, intersection and
difference. The concatenation of two languages L1 and L2 is denoted by L1 · L2, where the ·
operator is often omitted, and is the language

L1L2 = {w1w2 | w1 ∈ L1 ∧ w2 ∈ L2}.

The n-th power of a language L, denoted by Ln is defined recursively as

L0 = {ε} ,

Ln = Ln−1L, for n ≥ 1.

The Kleene closure of L is denoted by L∗ and is the set

L∗ =
⋃
i≥0
Li,

and the positive closure of L, denoted by L+, is the set

L+ =
⋃
i≥1
Li = LL∗.

The complement of L is denoted by L and is the set

L = Σ∗ \ L.

The class of regular languages over Σ is the smallest set that contains ∅ and the singletons
{σ}, for each σ ∈ Σ, and that is closed under union, concatenation and Kleene star. The class of
regular languages is also closed under the intersection and complement operations.

Given a language L, the constant part of L, denoted by ε(L), is defined by

ε(L) =

ε, if ε ∈ L,∅, otherwise.

2.2. Finite Automata 5

2.2 Finite Automata

Languages are usually represented by (finite) models. Finite automata are important such
models. In this section, we define two types of finite automata: deterministic finite automata
and nondeterministic finite automata.

2.2.1 Deterministic Finite Automata

Definition 2.1. A deterministic finite automaton (DFA) over an alphabet Σ is a quintuple

ȧ = (Q,Σ, δ, i, F),

where Q is the finite set of states, δ : Q × Σ → Q is the finite set of transitions, i ∈ Q is the
initial state and F ⊆ Q is the set of final states.

We can graphically represent a DFA using a transition diagram, which is a directed graph.
The vertices of the graph correspond to the states in Q and are represented by a circle. Each
transition from state p to state q, labeled by σ, δ(p, σ) = q, corresponds to an edge from p to q
labeled with σ. The initial state i is represented by a circle with an unlabeled incoming edge.
Final states are represented by double circles.

Example 2.2. Let ȧ2.2 = (Q,Σ, δ, i, F) be the DFA represented by the diagram in Figure 2.1,
where the set of states is Q = {0, 1, 2}, the alphabet is Σ = {σ, τ}, the initial state is i = 0, the
set of final states is F = {2}, and the transition function is defined by

δ(0, σ) = 2, δ(1, σ) = 2, δ(2, σ) = 2,

δ(0, τ) = 1, δ(1, τ) = 2, δ(2, τ) = 1.

0 1

2

σ

τ

τ

σ, τ

σ

Figure 2.1: Diagram of the DFA ȧ2.2.

Let δ : Q× Σ∗ → Q be an extension of the transition function to words. This extension is
recursively defined by

δ(p, ε) = p,

δ(p, σw) = δ(δ(p, σ), w), where w ∈ Σ∗, σ ∈ Σ.

6 Chapter 2. Background

Let ȧ be a DFA and (p, σ, q) a transition of ȧ. We say that σ is the label of the transition,
and we say that p has an outgoing transition (with label σ). A path of ȧ is a finite sequence
(p0, σ1, p1, . . . , σ`, p`), for some nonnegative integer `, such that each triplet (pi−1, σi, pi), where
i ≥ 1, is a transition of ȧ. We naturally define σ1 · · ·σ` as the label of the path. An accepting
path is a path where p0 is the initial state and p` is a final state. The language accepted by ȧ is
the set of the labels of all the accepting paths of ȧ and is denoted by L(ȧ). A state q ∈ Q is
accessible if there is a path from an initial state to q and coaccessible if there is a path from q to
a final state. The DFA ȧ is called trim if every state is accessible and coaccessible, that is, if it
appears in at least one accepting path of ȧ. Finally, we say that ȧ accepts w if w is the label of
an accepting path, that is, if δ(p0, w) = p`, where p0 is the initial state and p` ∈ F .

In Example 2.2, the path (0, τ, 1, σ, 2, σ, 2) is an accepting path, but the path (1, σ, 2, σ, 2) is
not. The label of the first path is τσσ and the label of the second path is σσ.

2.2.2 Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) is an extension of the DFA where each transition
can be from a state to a set of states instead of just one state. Moreover, a NFA can have more
than one initial state. An ε-NFA is defined exactly as a NFA except that transitions can be
labeled by ε. We often say NFA regardless of whether it accepts ε transitions or not.

Definition 2.3. A nondeterministic finite automaton (NFA) over an alphabet Σ is a quintuple

ȧ = (Q,Σ, δ, I, F),

where Q, Σ and F are defined as in Definition 2.1, δ ⊆ Q× Σ×Q is the finite set of transitions
and I ⊆ Q is the set of initial states.

We often right δ(p, σ) = q instead of δ(p, σ) = {q} when there is no risk of ambiguity.

Example 2.4. Let ȧ2.4 = (Q,Σ, δ, I, F) be the NFA represented by the diagram in Figure 2.2,
where the set of states is Q = {0, 1, 2}, the alphabet is Σ = {σ, τ}, the set of initial states is
I = {0}, the set of final states is F = {2}, and the transition function is defined by

δ(0, σ) = {0, 2} , δ(1, σ) = {1, 2} , δ(2, σ) = 2,

δ(0, τ) = 1, δ(1, τ) = 2, δ(2, τ) = 1.

As we did for DFA, we can extend the transition function δ to δ ⊆ Q×Σ∗×Q. This extension
is recursively defined by

δ(p, ε) = {p} ,

δ(p, σw) = δ(δ(p, σ), w), where w ∈ Σ∗, σ ∈ Σ.

Since δ(p, w) can be a set, we need to extend δ to δ ⊆ 2Q × Σ∗ ×Q. We can do this by

2.2. Finite Automata 7

0 1

2

σ

τ

τ

σ, τ

σ

σ

σ

Figure 2.2: Diagram of the NFA ȧ2.4.

δ(P,w) =
⋃
p∈P

δ(p, w),

where P ⊆ Q.

Let ȧ be a NFA and (p, σ, q) a transition of ȧ. As for DFA, we say that σ is the label of
the transition, and we say that p has an outgoing transition (with label σ). A path of ȧ is
a finite sequence (p0, σ1, p1, . . . , σ`, p`), for some nonnegative integer `, such that each triplet
(pi−1, σi, pi), where i ≥ 1, is a transition of ȧ. We naturally define σ1 · · ·σ` as the label of the
path. An accepting path is a path where p0 is the initial state and p` is a final state. The language
accepted by ȧ is the set of the labels of all the accepting paths of ȧ and is denoted by L(ȧ). The
NFA ȧ is called trim if every state is accessible and coaccessible. Finally, we say that ȧ accepts
w if there is an accepting path labeled by w, that is, if p` ∈ δ(p0, w), where p0 ∈ I and p` ∈ F .

Definition 2.5. Given a NFA ȧ and a state q ∈ Q, the right language of q is Lq(ȧ) =
{w ∈ Σ∗ | δ(q, w) ∩ F 6= ∅}.

We can see the language L(ȧ) of a NFA ȧ = (Q,Σ, δ, I, F) as the union

⋃
q∈I
Lq(ȧ).

2.2.3 Equivalence Between DFAs and NFAs

We say that two finite automata ȧ1 and ȧ2 are equivalent if and only if L(ȧ1) = L(ȧ2). It is clear
that DFAs are a special case of NFAs, where for every state, no two outgoing transitions have
the same label, and the set of initial states is a singleton. On the other hand, every NFA can be
converted into an equivalent DFA, as we will see later in this subsection.

Therefore, the class of languages accepted by DFAs is the same as the class of languages
accepted by NFAs. This class is exactly the class of regular languages. Proof of this fact and

8 Chapter 2. Background

that the class of languages accepted by finite automata are closed under union, concatenation
and Kleene star can be found in [17].

Every NFA can be simulated by a DFA, using the subset construction.

Definition 2.6 (Subset Construction). Let ȧ = (Q,Σ, δ, I, F) be an NFA. A DFA that simulates
ȧ is defined by D(ȧ) =

(
QD,Σ, δD, iD, FD

)
, where

• QD = {Pi | Pi = δ(I, w) ∧ w ∈ Σ∗} ⊆ 2Q;

• δD(Pi, σ) = δ(Pi, σ), where σ ∈ Σ;

• iD = I;

• FD =
{
Pi ∈ QD | Pi ∩ F 6= ∅

}
.

In the worst case, given a NFA ȧ with set of states Q, if QD = 2Q, then D(ȧ) has 2|Q| states,
thus being exponentially larger than ȧ. We now give an example of this using the Lupanov’s
family of automata [13].

Example 2.7 (Lupanov). Let ȧ2.7 = (Q,Σ, δ, I, F) be the NFA represented by the diagram in
Figure 2.3. We call this NFA Lupanov’s minimal 3-state NFA. The minimal DFA that simulates
ȧ2.7 has 8 states and is represented by the diagram in Figure 2.4.

0 1 2
σ1, σ2

σ2, σ3

σ3

σ1

σ2, σ3

σ1

Figure 2.3: Diagram of the Lupanov’s NFA ȧ2.7.

{0}

{}

{1} {0, 1}

{1, 2} {0, 1, 2}

{0, 2} {2}

σ3

σ1, σ2

σ1, σ2, σ3

σ2
σ3

σ1

σ2, σ3

σ
1

σ3

σ 1,
σ 2

σ1, σ2, σ3

σ1

σ 2

σ3

σ1

σ2, σ3

Figure 2.4: Diagram of the minimal DFA that simulates ȧ2.7.

2.3. Regular Expressions 9

A DFA is called minimal if there is no other equivalent DFA with fewer states. For every
DFA, there is an equivalent minimal DFA and the minimal DFA is unique up to renaming its
states. Minimization algorithms can be found in [22], [16] and [5].

2.3 Regular Expressions

Regular expressions are another model of defining regular languages that could be more compact
than the model of finite automata.

Definition 2.8. Let Σ be an alphabet, and let ε be the empty word over Σ. An ordinary regular
expression (over Σ) (RE for short) is either ∅ or an expression that can be defined by the following
grammar

r → ε | σ ∈ Σ | (r + r) | (r · r) | (r∗),

where the ∗ operator has precedence over both + and · operators, and · has higher precedence
than +. Thus, we can omit parenthesis. The operator · (concatenation) is often omitted. The
language associated with a regular expression r, defined by L(r), is recursively defined by

L(∅) = ∅, L(ε) = {ε} , L(σ) = {σ} ,

L(r1 + r2) = L(r1) ∪ L(r2), L(r1r2) = L(r1)L(r2), L(r∗1) = L(r1)∗.

Moreover, the set of all regular languages is denoted by RE.

Example 2.9. The language L(ȧ2.2) can be defined by the regular expression

r = (σ + τ (σ + τ)) (σ + τ (σ + τ))∗.

Given a finite set S ⊆ RE of REs, the language of S is defined by L(S) =
⋃
r∈S
L(r) = L

(∑
r∈S

r

)
,

that is, the language of a set of regular expressions is the same as the language of the disjunction
of the expressions in the set.

Definition 2.10. Let r1 and r2 be two REs over Σ. Then r1 is equivalent to r2, denoted r1 ∼ r2,
if L(r1) = L(r2).

Let r1 and r2 be two REs over Σ. We write r1 ≡ r2 when r1 and r2 are syntactically identical.

It is known that regular expressions form a Kleene Algebra [19]. In particular, we have the
unrolling property.

Remark 2.11 (Unrolling). For any RE r over Σ, we have that r∗ ∼ rr∗+ε. This is called unrolling
the regular expression r.

Definition 2.12. Let r be a regular expression over Σ.

10 Chapter 2. Background

1. The number of concatenations |r|· of r is the number of symbols · in r.

2. The number of disjunctions |r|+ of r is the number of symbols + in r.

3. The number of Kleene stars |r|∗ of r is the number of symbols ∗ in r.

Example 2.13. Consider the expression r = (σ + τ (σ + τ)) (σ + τ (σ + τ))∗ in Example 2.9.
Then |r|· = 3, |r|+ = 4 and |r|∗ = 1.

Definition 2.14. Let r be a regular expression over Σ.

1. The size |r| of r is the number of symbols in r (disregarding parenthesis).

2. The alphabetic size |r|Σ of r is the number of letters in r.

Example 2.15. Consider the expression r = (σ + τ (σ + τ)) (σ + τ (σ + τ))∗ in Example 2.9.
Then |r| = 16 and |r|Σ = 8.

Definition 2.16. Let r be a regular expression over Σ. The constant part of r, denoted by ε(r),
is defined as follows:

ε(r) =

ε, if ε ∈ L(r);

∅, otherwise.

If ε = ε(r) we also say that r has the empty word property (e.w.p.). The constant part of r
can also be recursively defined by

ε(∅) = ∅,

ε(ε) = ε,

ε(σ) = ∅, σ ∈ Σ,

ε(r1+r2) =

∅, if ε(r1) = ε(r2) = ∅,

ε, otherwise,

ε(r1r2) =

ε, if ε(r1) = ε(r2) = ε,

∅, otherwise,

ε(r∗1) = ε.

2.3.1 Derivatives

The derivatives of a regular expression were first introduced by Brzozowski in [6]. In the same
article, the author presents a method for obtaining a DFA from a given regular expression using
derivatives.

2.3. Regular Expressions 11

Definition 2.17 (Derivative). Let r be a regular expression over Σ. The derivative of r w.r.t. a
symbol σ ∈ Σ, denoted by dσ(r), is the regular expression recursively defined by

dσ(∅) = dσ(ε) = ∅,

dσ
(
σ′
)

=

ε, if σ′ = σ,

∅, otherwise,

dσ(r1 + r2) = dσ(r1) + dσ(r2)

dσ(r1r2) =

dσ(r1)r2 + dσ(r2), if ε(r1) = ε,

dσ(r1)r2, otherwise,

dσ(r∗1) = dσ(r1)r∗1,

where σ′ ∈ Σ and r1, r2 are also REs over Σ.

Example 2.18. Consider the regular expression r = (στ + τ)∗ τ over Σ = {σ, τ}. Then the
derivative of r w.r.t. σ is

dσ((στ + τ)∗ τ) = dσ((στ + τ)∗)τ + dσ(τ)

= dσ(στ + τ) (στ + τ)∗ τ + ∅

= (dσ(στ) + dσ(τ)) (στ + τ)∗ τ + ∅

= (τ + ∅) (στ + τ)∗ τ + ∅

∼ τ (στ + τ)∗ τ.

The definition of derivative of a regular expression r can be extended to a word w ∈ Σ∗ on
the structure of w by

dε(r) = r,

dwσ(r) = dσ(dw(r)).

The language of the derivative of a regular expression w.r.t. a symbol σ is the language
L(dσ(r)) = {w | σw ∈ L(r)}. We have that w ∈ L(r) if and only if ε(dw(r)) = ε, that is, if and
only if ε ∈ L(dw(r)).

Example 2.19. Let r = (στ + τ)∗ τ be the regular expression in Example 2.18. Then we have
that ττ ∈ L((στ + τ)∗ τ), since ε ∈ L(dττ ((στ + τ)∗ τ)).

Brzozowski proved that every regular expression has a finite number of distinct derivatives,
considering the set of regular expressions module ACI-equivalences and rε ∼ εr ∼ r, for every
RE r over Σ.

2.3.2 Partial Derivatives

The notion of partial derivative of a regular expression w.r.t. a symbol was first introduced by
Antimirov [2]. In the same article, the author presents a method for obtaining an NFA (instead

12 Chapter 2. Background

of a DFA like Brzozowski) from a given regular expression using partial derivatives.

We can extend the concatenation operation from regular expressions to sets of regular
expressions. Let · : 2RE × RE→ 2RE be such extension. The operation is recursively defined by

S · ∅ = ∅,

S · ε = S,

∅ · r2 = ∅,

{ε} · r2 = {r2} ,

{r1} · r2 = {r1r2} ,(
S ∪ S′

)
· r2 = (S · r2) ∪

(
S′ · r2

)
,

where S, S′ ⊆ 2RE, r1 ∈ RE \ {∅} and r2 ∈ RE \ {∅, ε}. We will often omit the · operator.

Definition 2.20 (Partial Derivatives). Let r be a regular expression over Σ. The set of partial
derivatives of r w.r.t. a symbol σ ∈ Σ, denoted ∂σ(r), is defined recursively on the structure of r
as follows:

∂σ(∅) = ∂σ(ε) = ∅,

∂σ
(
σ′
)

=

{ε} , if σ′ = σ,

∅, otherwise,

∂σ(r1 + r2) = ∂σ(r1) ∪ ∂σ(r2),

∂σ(r1r2) =

∂σ(r1)r2 ∪ ∂σ(r2), if ε(r1) = ε,

∂σ(r1)r2, otherwise,

∂σ(r∗1) = ∂σ(r1)r∗1,

where r2 is also a regular expression over Σ.

Example 2.21. Consider the expression r = (στ + τ)∗ τ in Example 2.18. The set of partial
derivatives of r w.r.t. σ is

∂σ((στ + τ)∗ τ) = ∂σ((στ + τ)∗)τ ∪ ε((στ + τ)∗)∂σ(τ)

= ∂σ(στ + τ) (στ + τ)∗ τ ∪ ε∂σ(τ)

= (∂σ(στ) ∪ ∂σ(τ)) (στ + τ)∗ τ ∪ ε∅

= (∂σ(σ)τ ∪ ε(σ)∂σ(τ) ∪ ∅) (στ + τ)∗ τ

= ({ε} τ ∪ ∅∅) (στ + τ)∗ τ

= {τ} (στ + τ)∗ τ

= {τ (στ + τ)∗ τ}

The set of partial derivatives of a regular expression r over Σ w.r.t. a word w ∈ Σ∗ can be

2.3. Regular Expressions 13

inductively defined by

∂ε(r) = {r} ,

∂wσ(r) = ∂σ(∂w(r)),

where given a set S ⊆ RE, ∂σ(S) =
⋃
r∈S

∂σ(r).

The language induced by partial derivatives is defined by L(∂σ(r)) = {w | σw ∈ L(r)}.

Remark 2.22. Let r be a regular expression over Σ and w ∈ Σ∗. Then L(dw(r)) = L(∂w(r)).

Definition 2.23. The set of all partial derivatives of a regular expression r over Σ w.r.t. words
is denoted by PD(r) and is such that

PD(r) =
⋃

w∈Σ∗
∂w(r).

Example 2.24. Consider the expression r = (στ + τ)∗ τ in Example 2.18. The set of all partial
derivatives of r w.r.t. words is

PD((στ + τ)∗ τ) = {(στ + τ)∗ τ, τ (στ + τ)∗ τ, ε} .

The set of all partial derivatives excluding the derivative by the empty word of a regular
expression r over Σ is denoted by ∂+(r), that is,

∂+(r) =
⋃

w∈Σ+

∂w(r).

Remark 2.25. For every regular expression r over Σ, PD(r) = {r} ∪ ∂+(r).

Let us take the regular expression r = (στ + τ)∗ τ from Example 2.18. Since r ∈ ∂+(r), we
have that ∂+((στ + τ)∗ τ) = PD((στ + τ)∗ τ) = {(στ + τ)∗ τ, τ (στ + τ)∗ τ, ε}.

Proposition 2.26. The set of all partial derivatives excluding the derivative by empty word, ∂+,
satisfies the following equalities

∂+(∅) = ∂+(ε) = ∅, (2.1)

∂+(σ) = {ε} , (σ ∈ Σ) , (2.2)

∂+(r1 + r2) = ∂+(r1) ∪ ∂+(r2), (2.3)

∂+(r1r2) = ∂+(r1)r2 ∪ ∂+(r2), (2.4)

∂+(r∗) = ∂+(r)r∗. (2.5)

Proof. The proof follows by induction on the structure of r. It is clear that (2.1) and (2.2) hold.
In the remaining cases, to prove that an inclusion ∂+(r) ⊆ E holds, for some RE r, we show by
induction on the length of w that ∂w(r) ⊆ E, for every w ∈ Σ+. Thus, we only need to prove
∂σ(r) ⊆ E and ∂wσ(r) ⊆ E, for σ ∈ Σ and w ∈ Σ∗.

Note that for any RE r over Σ and σ ∈ Σ, one has ∂σ
(
∂+(r)

)
⊆ ∂+(r) and ∂σ(r) ⊆ ∂+(r).

14 Chapter 2. Background

Now suppose that the claim is true for some REs r1 and r2. We need to consider three
induction cases.

1. Case r1 + r2.

By definition, we have that ∂σ(r1 + r2) = ∂σ(r1) ∪ ∂σ(r2), therefore one has ∂σ(r1 + r2) ⊆
∂+(r1) ∪ ∂+(r2). Also by definition, we have that ∂wσ(r1 + r2) = ∂σ(∂w(r1 + r2)) and
∂σ(∂w(r1 + r2)) ⊆

I.H.
∂σ
(
∂+(r1) ∪ ∂+(r2)

)
. Finally,

∂σ
(
∂+(r1) ∪ ∂+(r2)

)
= ∂σ

(
∂+(r1)

)
∪ ∂σ

(
∂+(r2)

)
⊆ ∂+(r1) ∪ ∂+(r2).

Therefore, ∂wσ(r1 + r2) ⊆ ∂+(r1) ∪ ∂+(r2).

Similarly, one proves that for every w ∈ Σ+, ∂w(r1) ⊆ ∂+(r1 + r2) and ∂w(r2) ⊆ ∂+(r1 + r2).

2. Case r∗1.

By definition, we have that ∂σ(r∗1) = ∂σ(r1)r∗1, and since ∂σ(r1) ⊆ ∂+(r1), we have
that ∂σ(r1)r∗1 ⊆ ∂+(r1)r∗1, that is, ∂σ(r∗1) ⊆ ∂+(r1)r∗1. Also by definition, ∂wσ(r∗1) =
∂σ(∂w(r∗1)) ⊆

I.H.
∂σ
(
∂+(r1)r∗1

)
= ∂σ

(
∂+(r1)

)
r∗1.

But we also have that

∂σ
(
∂+(r1)

)
r∗1 ∪ ∂σ(r∗1) ⊆ ∂+(r1)r∗1 ∪ ∂σ(r∗1)

= ∂+(r1)r∗1 ∪ ∂σ(r1)r∗1
⊆ ∂+(r1)r∗1 ∪ ∂+(r1)r∗1
= ∂+(r1)r∗1.

Therefore, ∂wσ(r∗1) ⊆ ∂+(r1)r∗1. Conversely, first note that ∂σ(r1)r∗1 = ∂σ(r∗1) ⊆ ∂+(r∗1).

On the other hand,

∂wσ(r1)r∗1 = ∂σ(∂w(r1))r∗1
⊆ ∂σ(∂w(r1))r∗1 ∪ ε(∂w(r1))∂σ(r∗1)

= ∂σ(∂w(r1)r∗1) ⊆
I.H.
∂σ
(
∂+(r∗1)

)
⊆ ∂+(r∗1).

Therefore, ∂wσ(r1)r∗1 ⊆ ∂+(r∗1).

3. Case r1r2.

By definition, we have

∂σ(r1r2) = ∂σ(r1)r2 ∪ ε(r1)∂σ(r2)

⊆ ∂σ(r1)r2 ∪ ∂σ(r2)

⊆ ∂+(r1)r2 ∪ ∂+(r2).

2.3. Regular Expressions 15

Also by definition,

∂wσ(r1r2) = ∂σ(∂w(r1r2))

⊆
I.H.
∂σ
(
∂+(r1)r2 ∪ ∂+(r2)

)
= ∂σ

(
∂+(r1)r2

)
∪ ∂σ

(
∂+(r2)

)
= ∂σ

(
∂+(r1)

)
r2 ∪ ε

(
∂+(r1)

)
∂σ(r2) ∪ ∂σ

(
∂+(r2)

)
⊆ ∂σ

(
∂+(r1)

)
r2 ∪ ∂σ(r2) ∪ ∂σ

(
∂+(r2)

)
⊆ ∂+(r1)r2 ∪ ∂+(r2) ∪ ∂+(r2)

= ∂+(r1)r2 ∪ ∂+(r2).

On the other hand, we have that ∂σ(r1)r2 ⊆ ∂σ(r1r2) ⊆ ∂+(r1r2) and ∂wσ(r1)r2 =
∂σ(∂w(r1))r2 ⊆ ∂σ(∂w(r1)r2) ⊆ ∂σ(∂w(r1r2)) ⊆

I.H.
∂σ
(
∂+(r1r2)

)
⊆ ∂+(r1r2).

Finally, if ε(r1) = ε, then ∂σ(r2) ⊆ ∂σ(r1r2) and ∂wσ(r2) = ∂σ(∂w(r2)) ⊆ ∂σ(∂w(r1r2)) =
∂wσ(r1r2). Thus, ∂w(r2) ⊆ ∂w(r1r2) for all w ∈ Σ+, and therefore ∂+(r2) ⊆ ∂+(r1r2).

On the other hand, if ε(r1) = ∅, we have that ∂+(r1) 6= ∅. We also have that there is
some r0 ∈ ∂+(r1) such that ε(r0) = ε, since w ∈ L(r) if and only if ε(dw(r)) = ε and
L(dw(r)) = L(∂w(r)). This implies that ∂w(r2) ⊆ ∂w(r0r2) for all w ∈ Σ+. We have
shown that ∂+(r1)r2 ⊆ ∂+(r1r2). In particular, r0r2 ∈ ∂+(r1r2). From these two facts we
conclude that ∂w(r2) ⊆ ∂w(r0r2) ⊆ ∂w

(
∂+(r1r2)

)
⊆ ∂+(r1r2).

This concludes the proof.

Antimirov [2] proved that the following inequalities hold∣∣∣∂+(r)
∣∣∣ ≤ |r|Σ , (2.6)

|PD(r)| ≤ |r|Σ + 1. (2.7)

Proposition 2.26 cam be used to prove the above inequalities via induction on the structure
of r. We can also conclude from these inequalities that the set of partial derivatives is finite.

2.3.3 Linear Form

The notion of linear form was introduced by Antimirov [2]. The linear form of a regular expression
allows one to compute the set of all partial derivatives w.r.t every symbol in the alphabet in a
single step.

Definition 2.27. Let r be a regular expression over Σ. The linear form of r, denoted lf(r) is

16 Chapter 2. Background

defined recursively on the structure of r as follows

lf(∅) = ∅;

lf(σ) = {(σ, ε)} , for σ ∈ Σ;

lf(r1 + r2) = lf(r1) ∪ lf(r2);

lf(r1 · r2) =

lf(r1) · r2, if ε(r1) = ∅;

lf(r1) · r2 ∪ lf(r2), otherwise;

lf(r∗1) = lf(r1) · r∗1;

where r1 and r2 are also REs over Σ, lf(r1) · r2 = {(σ, r · r2) | (σ, r) ∈ lf(r1)} and σ ∈ Σ.

Remark 2.28. Note that lf(r1 · r2) can also be defined as lf(r1 · r2) = lf(r1)r2 ∪ ε(r1)lf(r2).

Example 2.29. Consider the expression r = (στ + τ)∗ τ in Example 2.18. The linear form of r
is

lf(r) = lf((στ + τ)∗ τ)

= lf((στ + τ)∗)τ ∪ lf(τ)

= lf(στ + τ) (στ + τ)∗ τ ∪ {(τ, ε)}

= (lf(στ) ∪ lf(τ)) (στ + τ)∗ τ ∪ {(τ, ε)}

= (lf(σ)τ ∪ {(τ, ε)}) (στ + τ)∗ τ ∪ {(τ, ε)}

= ({(σ, ε)} τ ∪ {(τ, ε)}) (στ + τ)∗ τ ∪ {(τ, ε)}

= {(σ, τ) , (τ, ε)} (στ + τ)∗ τ ∪ {(τ, ε)}

= {(σ, τ (στ + τ)∗ τ) , (τ, (στ + τ)∗ τ) , (τ, ε)} .

Proposition 2.30. For any RE r, lf(r) is such that

r ∼
⋃

(σ,r′)∈lf(r)
σr′ ∪ ε(r).

Proof. The proof follows by induction on the structure of r. The base cases ∅ and σ are trivial
and left to the reader.

Now let us assume that the claim is true for r1 and r2 over Σ.

1. Case r1 + r2.

We have by definition that lf(r1 + r2) = lf(r1) ∪ lf(r2). By induction hypothesis, we have
that

r1 ∼
⋃

(σ1,r′1)∈lf(r1)
σ1r
′
1 ∪ ε(r1) and

r2 ∼
⋃

(σ2,r′2)∈lf(r2)
σ2r
′
2 ∪ ε(r2).

2.3. Regular Expressions 17

Therefore,

r1 + r2 ∼
⋃

(σ1,r′1)∈lf(r1)

σ1r
′
1 ∪ ε(r1) ∪

⋃
(σ2,r′2)∈lf(r2)

σ2r
′
2 ∪ ε(r2)

∼
⋃

(σ1,r′1)∈lf(r1)

σ1r
′
1 ∪

⋃
(σ2,r′2)∈lf(r2)

σ2r
′
2 ∪ ε(r1) ∪ ε(r2)

∼
⋃

(σ1,r′1)∈lf(r1)

σ1r
′
1 ∪

⋃
(σ2,r′2)∈lf(r2)

σ2r
′
2 ∪ ε(r1 + r2)

∼
⋃

(σ,r)∈lf(r1+r2)
σr ∪ ε(r1 + r2).

2. Case r1r2.

Note that from Remark 2.28 we have that lf(r1r2) = lf(r1)r2 ∪ ε(r1)lf(r2). By induction
hypothesis, we also have that

r1r2 ∼

 ⋃
(σ1,r′1)∈lf(r1)

σ1r
′
1 ∪ ε(r1)

 r2

∼
⋃

(σ1,r′1)∈lf(r1)

σ1r
′
1r2 ∪ ε(r1)

 ⋃
(σ2,r′2)∈lf(r2)

σ2r
′
2 ∪ ε(r2)

∼

⋃
(σ1,r′1)∈lf(r1)

σ1r
′
1r2 ∪ ε(r1)

⋃
(σ2,r′2)∈lf(r2)

σ2r
′
2 ∪ ε(r1)ε(r2)

∼
⋃

(σ1,r′1)∈lf(r1)

σ1r
′
1r2 ∪ ε(r1)

⋃
(σ2,r′2)∈lf(r2)

σ2r
′
2 ∪ ε(r1r2)

and since lf(r1)r2 ∪ ε(r1)lf(r2) = lf(r1r2), we have that

r1r2 ∼
⋃

(σ,r)∈lf(r1r2)
σr ∪ ε(r1r2).

3. Case r∗1.

From Remark 2.11, we have that r∗1 ∼ r1r
∗
1 + ε, and we can suppose that ε(r1) = ∅. By

induction hypothesis, we have that

r∗1 ∼ r1r
∗
1 + ε

∼
⋃

(σ,r)∈lf(r1)
σrr∗1 ∪ ε(r1)r∗1 ∪ {ε} .

But lf(r∗1) = lf(r1)r∗1, ε(r1) = ∅ and ε(r∗1) = ε. Therefore,

r∗1 ∼
⋃

(σ,r)∈lf(r∗1)
σr ∪ ε(r∗1).

This concludes the proof.

18 Chapter 2. Background

2.4 Equivalence Between REs and FAs

In this section, we present some methods for obtaining a regular expression from a given finite
automaton and vice-versa. The first method, the state elimination method, provides us a way
of obtaining a regular expression from a given finite automaton. The second method is the
Thompson’s method, which allows us to obtain an ε-NFA from a given RE. The third and forth
methods, due to Brzozowski and Antimirov, respectively, provide a way of obtaining a DFA and
a NFA from a given regular expression, respectively.

2.4.1 State Elimination Method

The method that we present here is adapted from the one presented by Hopcroft and Ullman in
[17].

Definition 2.31. A generalized finite automaton is a quintuple

ȧ = (Q,Σ, δ, I, F)

where Q, I, F , Σ are exactly the same as those defined for FAs, and δ ⊆ Q × RE × Q is the
finite set of transitions, where RE is the set of REs.

The state elimination method works as follows

• If the FA has more than one initial state, i1, . . . , in, add a new initial state i and ε transitions
from i to i1, . . . , in;

• Remove all the states that are not accessible or coaccessible;

• If there are no final states left, return as result ∅ and terminate;

• If the initial state s0 has in-degree not 0, add a new initial state i and an ε transition from
i to s0;

• If the automaton has several final states, f1, . . . , fn, add a new final state f which will be
the only final state, with ε transitions from f1, . . . , fn to f ;

• If the final state f has out-degree not 0, add a new final state f ′, which will be the only
final state, and an ε transition from f to f ′;

• Convert the FA into a generalized one, that is, replace the labels of the transitions with
REs. This means that when a transition from a state to another has more than one symbol
as its label, namely σ1, . . . , σn, the label of the transition becomes

n∑
i=1

σi;

• Delete the states, one by one, with exception to the initial and final states. To delete a
state s, replace each transitions (u, αu,s, s) and (s, αs,v, v), with u 6= s and s 6= v by a new
transiton from u to v which label is as follows

2.4. Equivalence Between REs and FAs 19

u s v u v
αu,s αs,v

αs,s

becomes
αu,sα

∗
s,sαs,v

u s v u v
αu,s αs,v

becomes
αu,sαs,v

If a transition from u to v already exists, with label αu,v, replace it with
(
αu,v + αu,sα

∗
s,sαs,v

)
or (αu,v + αu,sαs,v), respectively.

This method terminates when the automaton has only two states, the initial and final
states. The regular expression equivalent to the automaton is the expression that labels the only
transition from the initial state to the final state.

2.4.2 Thompson’s Method

The Thompson’s automaton was introduced by Thompson [27] and allows us to obtain a ε-NFA
from a given RE. Here we will present the construction proposed by Sheng Yu [31], which allows
the number of final states to be greater than 1.

Definition 2.32. Let r be a regular expression over Σ. The Thompson’s automaton is constructed
recursively as follows

• Case ∅.

The Thompson’s automaton is given by ȧ∅ = ({q} ,Σ, δ, q, ∅), where δ(q, τ) = ∅, for each
τ ∈ Σ ∪ {ε}.

• Case ε.

The Thompson’s automaton is given by ȧε = ({q} ,Σ, δ, q, {q}), where δ(q, τ) = ∅, for each
τ ∈ Σ ∪ {ε}.

• Case σ.

The Thompson’s automaton is given by ȧσ = ({q, f} ,Σ, δ, q, {f}), where δ(q, σ) = f and
this is the only defined transition.

Now let r1 and r2 be two REs over Σ with Thompson’s automata ȧr1 = (Q1,Σ, δ1, q1, F1) and
ȧr2 = (Q2,Σ, δ2, q2, F2), respectively.

• Case r1r2.

The Thompson’s automaton is given by ȧr1r2 = (Q1 ∪Q2,Σ, δ, q1, F2), where L(ȧr1r2) =
L(ȧr1)L(ȧr2) and

δ(s, τ) = δ1(s, τ), if s ∈ Q1 and τ ∈ Σ, or s ∈ Q1 \ F1 and τ = ε,

δ(s, ε) = δ1(s, ε) ∪ {q2} , if s ∈ F1,

δ(s, τ) = δ2(s, σ), if s ∈ Q2 and τ ∈ Σ ∪ {ε} .

20 Chapter 2. Background

• Case r1 + r2.

The Thompson’s automaton is given by ȧr1+r2 = (Q1 ∪Q2 ∪ {q} ,Σ, δ, q, F1 ∪ F2), where
q /∈ Q1 ∪Q2, L(ȧr1+r2) = L(ȧr1) ∪ L(ȧr2) and

δ(q, ε) = {q1, q2} ,

δ(s, τ) = δ1(s, τ), if s ∈ Q1 and τ ∈ Σ ∪ {ε} ,

δ(s, τ) = δ2(s, τ), if s ∈ Q2 and τ ∈ Σ ∪ {ε} .

• Case r∗1.

The Thompson’s automaton is given by ȧr∗1 = (Q1 ∪ {q} ,Σ, δ, q, F1 ∪ {q}), where q /∈ Q1,
L
(
ȧr∗1

)
= L(ȧr1)∗ and

δ(q, ε) = {q1} ,

δ(s, ε) = δ1(s, ε) ∪ {q1} , if s ∈ F1,

δ(s, τ) = δ1(s, τ), if s ∈ Q1 and τ ∈ Σ, or s ∈ Q1 \ F1 and τ = ε.

The automaton constructed for r accepts the language L(r).

2.4.3 Brzozowski’s Method

Brzozowski [6] presented a method for obtaining a DFA equivalent to a given regular expression
using derivatives. The method builds an automaton where the states are derivatives of some
regular expression and the transitions from a state by a symbol are given by the derivative of the
RE from that state w.r.t. that symbol. Remember that every regular expression has a finite
number of distinct derivatives, considering the set of regular expressions module ACI-equivalences
and the fact that rε ∼ εr ∼ r, for every RE r over Σ, which we will denote by DACI+(r). This
fact is used in the method, in order to produce an automaton with a finite number of states.

Definition 2.33. Let r be a regular expression over Σ. The Brzozowski’s automaton for r is
the DFA ȧ = (Q,Σ, δ, i, F), where the set of states is Q = DACI+(r), the initial state is i = r,
the transition function is defined as δ(q, σ) = dσ(q), for all σ ∈ Σ and q ∈ DACI+(r), and the set
of final states is F =

{
q ∈ DACI+(r) | ε(q) = ε

}
. The DFA ȧ accepts the language L(r).

2.4.4 Antimirov’s Method

Antimirov [2] presented a method for obtaining a NFA equivalent to a given regular expression r
over Σ using partial derivatives. This automaton can be seen as a nondeterministic version of
the Brzozowski’s DFA. This NFA has at most |r|Σ + 1 states, as proved by Antimirov.

Definition 2.34. Let r be a regular expression over Σ. The partial derivative’s automaton for r
is given by the NFA ȧ = (Q,Σ, δ, i, F), where the set of states is Q = PD(r), the initial state is
i = r, the set of final states is F = {q ∈ PD(r) | ε(q) = ε} and the transition function is defined
as δ(q, σ) = ∂σ(q). The NFA ȧ accepts the language L(r).

2.4. Equivalence Between REs and FAs 21

Champarnaud and Ziadi [8] proved that Mirkin’s prebases [21] and partial derivatives lead
to identical NFAs. If we denote the Mirkin prebase of r by P(r), since the set of states of the
partial derivative’s automaton is Q = PD(r), then we have that PD(r) = P(r) ∪ {r}.

Since the linear form is an efficient way to compute the partial derivatives of a given RE r

over Σ, the transition function of the partial derivative’s automaton of r can be computed using
the linear form, more specifically

δ
(
r′, σ

)
=
{
r′′ |

(
σ, r′′

)
∈ lf

(
r′
)}
, for all r′ ∈ P(r) and σ ∈ Σ.

Chapter 3

Transducers

Transducers were first introduced by Elgot and Mezei [11]. Ginsberg [14] uses the term "a-
transducer", where "a" emphasises the presence of accepting states. Before introducing transducers,
we need to introduce relations over two alphabets [20].

3.1 Binary Relations Over Words

Definition 3.1. A relation ρ over Σ and ∆ is a subset of Σ∗ ×∆∗, that is,

ρ ⊆ {(x, y) | x ∈ Σ∗, y ∈ ∆∗}.

Example 3.2. The identity relation over an alphabet Σ is defined by

IdΣ = {(x, x) | x ∈ Σ∗}.

Since relations are sets, we have defined for relations the boolean operations like union and
intersection.

Definition 3.3 (Concatenation, Union, Kleene Closure). Let ρ1, ρ2 be two relations over Σ and
∆.

1. The concatenation of the two relations ρ1 and ρ2, denoted by ρ1 · ρ2, is a subset of Σ∗×∆∗

such that ρ1 · ρ2 = {(xx′, yy′) | (x, y) ∈ ρ1 ∧ (x′, y′) ∈ ρ2}. The operator · is often omitted.

2. The union of the two relations ρ1 and ρ2, denoted by ρ1 ∪ ρ2, is a subset of Σ∗ ×∆∗ and is
defined by ρ1 ∪ ρ2 = {(w,w′) | (w,w′) ∈ ρ1 ∨ (w,w′) ∈ ρ2}.

3. The Kleene closure of the relation ρ, ρ∗, is a subset of Σ∗ ×∆∗ such that ρ∗ =
⋃
n
ρn, where

ρn is the result of concatenating ρ with itself n times.

23

24 Chapter 3. Transducers

Let ρ be a relation over Σ and ∆ and let (x1, y1) , (x2, y2) ∈ ρ. The concatenation of
(x1, y1) and (x2, y2), denoted by the operator ·, is defined by (x1, y1) · (x2, y2) = (x1 · x2, y1 · y2).
The operator · is often omitted. The inverse of ρ, denoted by ρ−1, is defined by ρ−1 =
{(y, x) | (x, y) ∈ ρ}. The composition, denoted by the operator ◦, of a relation ρ1 over Σ1 and Σ2

and a relation ρ2 over Σ2 and Σ3 is the relation ρ1◦ρ2 = {(x, z) | ∃y ∈ Σ2 (x, y) ∈ ρ2 ∧ (y, z) ∈ ρ1}.

Definition 3.4. Let ρ be a relation over Σ and ∆. We say that ρ is rational if is a rational
subset of Σ∗ ×∆∗, that is, if it can be obtained by taking a finite number of finite subsets of
Σ∗ ×∆∗ and applying the union, concatenation and Kleene star operations a finite number of
times.

3.2 Transducers

Rational relations can be defined by models. Rational relations can be represented by models,
which include finite transducers. From now on, we will always refer to rational relations omitting
the word rational.

3.2.1 Finite Transducers

Definition 3.5. A (finite) transducer over Σ and ∆ is a sextuple

ṫ = (Q,Σ,∆, δ, I, F),

where Q is the set of states, δ ⊆ Q× Σ∗ ×∆∗ ×Q is the finite set of transitions, I is the set of
initial states and F is the set of final states. We say that Σ is the input alphabet and ∆ is the
output alphabet.

We can graphically represent a finite transducer using a transition diagram, which is a directed
graph. The vertices of the graph correspond to the states in Q and are represented by a circle.
Each transition from state p to state q, labeled by (w,w′), corresponds to an edge from p to q
labeled with (w,w′). The initial state i is represented by a circle with an unlabeled incoming
edge. Final states are represented by double circles.

We often write δ(p, (w,w′)) = q instead of δ(p, (w,w′)) = {q} when there is no risk of
ambiguity.

Remark 3.6. By convention, all states q of a transducer ṫ over Σ and ∆ have an implicit transition
from q to q labeled by (ε, ε).

Example 3.7. Let ṫ3.7 be the finite transducer represented by the diagram in Figure 3.1, where
the set of states is Q = {0, 1}, the input alphabet is Σ = {σ, τ}, the output alphabet is ∆ = {σ, τ},
the set of initial states is I = {0}, the set of final states is F = {0}, and the transition function

3.2. Transducers 25

is defined by

δ(0, (σ, σ)) = 0, δ(0, (σ, τ)) = 1,

δ(1, (τ, τ)) = 1, δ(1, (τ, σ)) = 0.

This transducer represents the left circular shift of words that begin with σ. One example of a
pair of words in the relation realised by ṫ3.7 is the pair (σστττ, στττσ).

0 1

(σ, σ) (σ, τ) (τ, τ)

(τ, σ)

Figure 3.1: Diagram of the finite transducer ṫ3.7.

Let ṫ be a finite transducer and (p, w,w′, q) a transition of ṫ. We say that (w,w′) is the label
of the transition, and we say that p has an outgoing transition (with label (w,w′)). A path of ṫ
is a finite sequence (p0, x1, y1, p1, . . . , x`, y`, p`), for some nonnegative integer `, such that each
tuple (pi−1, xi, yi, pi), where i ≥ 1, is a transition of ṫ. We naturally define (x1 · · ·x`, y1 · · · y`) as
the label of the path, where x1 · · ·x` is the input label and y1 · · · y` is the output label. We also

write p0
(x1···x`,y1···y`)

p` when there is a path from p0 to p` labeled by (x1 · · ·x`, y1 · · · y`). An
accepting path is a path where p0 is a initial state and p` is a final state. The relation realized by ṫ,
denoted by R

(
ṫ
)
, is the set of labels of all the accepting paths of ṫ. The set of all possible outputs

of ṫ when given the input word w, denoted by ṫ(w), is the set ṫ(w) =
{
w′ | (w,w′) ∈ R

(
ṫ
)}
.

The domain of ṫ, denoted by Dom
(
ṫ
)
, is the set set of all words w over Σ∗ such that ṫ(w) 6= ∅.

The inverse of ṫ, denoted by ṫ−1, is the transducer that results from switching both the input
and output alphabets and the input and output labels of each transition of ṫ. Given another
transducer ṡ, the composition of ṫ and ṡ is the transducer that realizes the relation R

(
ṫ
)
◦R(ṡ).

The transducer ṫ is called trim if every state is accessible and coaccessible, that is, if it appears
in at least one accepting path of ṫ.

Remark 3.8. It follows by definition that for every transducer ṫ, its inverse ṫ−1 realizes the inverse
of the inverse of the relation realized by ṫ.

We can extend δ to δ ⊆ 2Q × Σ∗ ×∆∗ ×Q by

δ(P, (w,w′)) =
⋃
p∈P

δ(p, (w,w′)),

where P ⊆ Q.

Definition 3.9. Let ṫ1 and ṫ2 be two transducers over Σ and ∆. We say that ṫ1 is equivalent to
ṫ2, denoted by ṫ1 ≡ ṫ2, if R

(
ṫ1
)

= R
(
ṫ2
)
.

26 Chapter 3. Transducers

3.2.2 Standard and Normal Form Transducers

Definition 3.10. Let ṫ = (Q,Σ,∆, δ, I, F) be a transducer over Σ and ∆. We say that ṫ is a
standard form transducer (SFT, for short), or say that ṫ is in standard form, if the transition
function, δ, is such that

δ ⊆ Q× (Σ ∪ {ε})× (∆ ∪ {ε})×Q,

that is, if for every transition (p, τ, τ ′, q), we have that τ ∈ Σ ∪ {ε} and τ ′ ∈ Σ ∪ {ε}.

Example 3.11. The transducer in Example 3.7 is a transducer in standard form.

Note that a SFT is a finite transducer where we restrict the labels of the transitions to either
symbols or the empty word. Therefore, everything that is valid for finite transducers is also valid
for SFTs.

Remark 3.12. Every transducer ṫ over Σ and ∆ has a SFT equivalent to it.

Definition 3.13. Let ṫ = (Q,Σ,∆, δ, I, F) be a transducer over Σ and ∆. We say that ṫ is
a normal form transducer (NFT, for short), or say that ṫ is in normal form, if the transition
function, δ, is such that

δ ⊆ Q× ((Σ ∪ {ε})× {ε} ∪ {ε} × (∆ ∪ {ε}))×Q,

that is, if for every transition (p, τ, τ ′, q), we have that either τ is a symbol and τ ′ is ε, τ is ε and
τ ′ is a symbol, or both τ and τ ′ are ε.

Example 3.14. Let ṫ3.14 be the NFT represented by the diagram in Figure 3.2, where the set of
states is Q = {0, 1, 2, 3, 4, 5}, the input alphabet is Σ = {σ, τ}, the output alphabet is ∆ = {σ, τ},
the set of initial states is I = {0}, the set of final states is F = {0}, and the transition function
is defined by

δ(0, (σ, ε)) = {2, 3} , δ(1, (τ, ε)) = {4, 5} , δ(2, (ε, σ)) = 0,

δ(3, (ε, τ)) = 1, δ(4, (ε, τ)) = 1, δ(5, (ε, σ)) = 0.

Note that a NFT is a SFT where the labels of the transitions are such that at least the input
symbol or the output symbol is ε. Therefore, everything that is valid for SFTs is also valid for
NFTs.

Remark 3.15. Every SFT ṫ1 over Σ and ∆ has a NFT equivalent to it. Therefore, every transducer
ṫ2 over Σ and ∆ has a NFT equivalent to it.

The NFT in Example 3.14 is a NFT equivalent to the transducer in Example 3.7.

3.3. Sequentialization of a Transducer 27

0

2

3 1 4

5

(σ, ε)

(σ, ε)
(τ, ε)

(τ, ε)(ε, σ)

(ε, τ)

(ε, τ)
(ε, σ)

Figure 3.2: Diagram of the NFT ṫ3.14.

3.3 Sequentialization of a Transducer

Contrary to ordinary automata, it is not true that any finite transducer is equivalent to a
deterministic one, as explained by Lothaire in [20]. In fact, the notion of determinism in
transducers is different than the notion of determinism in regular automata. In this section
we discuss the notion of sequential transducers and the fact that a transducer has a equivalent
sequential transducer if it has the functionality property.

3.3.1 Sequential Transducers

Definition 3.16. A (finite) sequential transducer over Σ and ∆ is a septuple

ṫ = (Q,Σ,∆, δ, i, F, T)

where Q, Σ, ∆, and F are exactly the same as in Definition 3.5, i is the single initial state,
δ ⊆ Q× Σ→ ∆∗ ×Q is the transition function and T : Q→ ∆∗ a function called the terminal
function. Thus, a sequential transducer is a transducer that is input deterministic, that is, for
every q ∈ Q, there are no two outgoing transitions from q with the same input label.

Sequential transducers are represented exactly like finite transducers. The terminal function
is represented by an outgoing edge from q to no other state labeled by the word T (q). If T (q) = ε,
we often omit the edge that represents T (q). If T (q) = w, where w ∈ ∆∗, that means that we
can add the word w to all outputs in that state. A relation over Σ and ∆ that is realized by a
sequential transducer is called a sequential function.

Example 3.17. Let ṫ3.17 be the sequential transducer represented by the diagram in Figure 3.3,
where the set of states is Q = {0, 1}, the input alphabet is Σ = {σ, τ}, the output alphabet is
∆ = {σ, τ}, the initial state is 0, the set of final states is F = {0, 1}, the transition function is
defined by

δ(0, (σ, ε)) = 1, δ(1, (σ, σ)) = 1, δ(1, (τ, τ)) = 1,

28 Chapter 3. Transducers

and the terminal function is defined by

T (0) = ε, T (1) = σ.

As we will see later, this sequential transducer is equivalent to the transducer in Example 3.7.

0 1
(σ, ε)

(σ, σ) , (τ, τ)

σ

Figure 3.3: Diagram of the sequential transducer ṫ3.17.

3.3.2 Functional Transducers

Definition 3.18. Let ṫ = (Q,Σ,∆, δ, I, F) be a transducer over Σ and ∆, and let

i
(w1,w′1)

q
(w2,w′2)

q and

i′
(w1,w′′1)

q′
(w2,w′′2)

q′

be two paths with the same input label, where i, i′ ∈ I. These two paths are called twin. We say
that ṫ has the twins property if for any pair of twin paths, the output is such that w′2 and w′′2 are
conjugate and w′1w′2w′1 · · · = w′′1w

′′
2w
′′
2 · · · .

The twins property was first formulated for transducers in Choffrut [9] (see also Berstel [3]).

Definition 3.19. Let ṫ be a transducer over Σ and ∆. We say that ṫ is functional if for any
w ∈ Σ∗, ṫ(w) is either empty or a singleton.

As proved by Lothaire in [20], a transducer has an equivalent sequential transducer if and
only if it satisfies the twins property.

Remark 3.20. We can observe that a transducer ṫ over Σ and ∆ has an equivalent sequential
transducer if it is functional.

3.3.3 Functionality Test

In this subsection we will discuss an algorithm to determine if a transducer is functional, which is
an adaptation of the algorithm presented by Allauzen and Mohri [1] and we revert to that article
for more detailed informations. Another algorithm was introduced by Béal, Carton, Prieur and
Sakarovitch [7].

3.3. Sequentialization of a Transducer 29

Definition 3.21. Let ṫ be a transducer over Σ and ∆ and x, y ∈ Σ∗. The residue of x by y is
defined by y−1x, that is, if x = wu and y = wv, then y−1x = u, where w, u, v ∈ Σ∗ and w is the
longest common prefix of x and y.

Let ṫ be a transducer over Σ and ∆. The definition of residues can be extended to paths by
considering the input and output labels of the path, that is, if π = (p0, w1, w

′
1, p1, . . . , w`, w

′
`, p`)

is a path and (w,w′) = (w1 · · ·w`, w′1 · · ·w′`) then the residue of π is w′−1w.

Lemma 3.22. A transducer ṫ over Σ and ∆ is functional if and only if

R
(
ṫ−1
)
◦R

(
ṫ
)

= IdDom(ṫ−1◦ṫ).

Proof. By definition of ṫ−1, w′ ∈
(
ṫ−1 ◦ ṫ

)
(w) if and only if there exists w′′ such that w ∈ ṫ(w′′)

and w′ ∈ ṫ(w′′). If ṫ is functional, then w = w′, and thus R
(
ṫ−1) ◦R(ṫ) = IdDom(ṫ−1◦ṫ). On the

other hand, if R
(
ṫ−1) ◦R(ṫ) = IdDom(ṫ−1◦ṫ), then w = w′, therefore ṫ is functional.

Lemma 3.22 leads to an efficient method for checking whether a transducer is functional or
not. This method consists of checking if for a given transducer ṫ, one has that R

(
ṫ−1) ◦R(ṫ) is

the identity relation and is described in Theorem 3.23.

Theorem 3.23. Let ṫ = (Q,Σ,∆, δ, I, F) be a transducer over Σ and ∆. There exists an
algorithm for testing if ṫ realizes the identity relation in O(|δ| + |∆| |Q|) time.

Proof. First, we assume that ṫ has only one intial state. If it has more than one initial state, a
new initial state i is added with (ε, ε) transitions from i to every q ∈ I and make i as the only
initial state. Next, for every state we compute the residue of any path from the initial state to
such state. Since we are only interested in states that are both accessible and coaccessible, we
trim the transducer. It is clear that if we have a transition (p, w,w′, q), then the residue of q is
given by R[q] = w−1R[p]w′, where R[p] is the residue of p. Trivially, the residue of the initial
state i is ε. Thus, we only need to compute the residue of a state once, which can be done in
linear time [1]. The algorithm returns FALSE if at some point, for a state that has already a
residue found, a residue from another path is different from that residue. On the other hand,
for every f ∈ F we have that if the relation is the identity relation, then R[f] = ε. Thus, if
there is any f ∈ F such that R[f] 6= ε, then the algorithm also returns FALSE. If neither of these
contradictions hold, the algorithm returns TRUE after every residue is computed.

Theorem 3.23 together with Lemma 3.22 gives an efficient algorithm for testing if a transducer
is functional.

Corollary 3.24. Let ṫ = (Q,Σ,∆, δ, I, F) be a transducer over Σ and ∆. There exists an
algorithm for testing the functionality of ṫ in O

(
|δ|2 + |∆| |Q|2

)
time.

Proof. The proof follows directly from Theorem 3.23, Lemma 3.22 and the fact that the number
of states of ṫ−1 ◦ ṫ is in O

(
|Q|2

)
and the number of transitions in O

(
|δ|2

)
.

30 Chapter 3. Transducers

Example 3.25. Consider the transducers in Figure 3.4. On the left side, we have a transducer ṫ
that is not functional. On the right, we have the transducer that realizes the relation R

(
ṫ−1)◦R(ṫ).

0

1

2

3 4

(σ1, τ
1)

(σ1 , τ1)

(σ1 , τ1)

(σ1, ε
)

(σ2, τ2) 0

1

2

3

4

5 6

(τ 1
, τ

1)

(τ1, τ1)

(τ1, τ1)
(τ1 , τ1)

(τ1 , τ1)

(τ1, ε)

(ε, τ1)

(ε,
ε)

(τ2, τ2)

Figure 3.4: Application of the functionality algorithm.

3.3.4 Witness of Non-Functionality

In this subsection we discuss a modification of the algorithm presented in the previous section in
order to produce a new method for obtaining a witness of non-functionality of a non-functional
transducer.

Definition 3.26. Let ṫ be a non-functional transducer over Σ and ∆. A witness of non-
functionality of ṫ is a triple (w,w′, w′′), where w ∈ Σ∗ and w′, w′′ ∈ ṫ(w).

Example 3.27. Consider the transducer ṫ on the left of Figure 3.4. A witness of non-functionality
of ṫ is the triple (σ1σ1σ2, τ1τ1τ2, τ1τ2).

The algorithm that we present relies on the assumption that when the algorithm presented
in Theorem 3.23 finds a different residue for some state, then there are two paths from the initial
state to that state that take the same word as input but produce different outputs. Thus, we
only have to run a depth-first search [10] from that state, stopping when we reach a final state.

3.3.5 Sequentialization of a Functional Transducer

As we saw in Subsection 3.3.2, a transducer has an equivalent sequential transducer if it is
functional. We now present an algorithm adapted from the one presented by Allauzen and Mohri
[1] and is a variant of the determinization algorithm for automata. The main difference is that
the algorithm would fail to terminate if the transducer provided was non-functional. To prevent
this, we test if the transducer is functional beforehand.

Definition 3.28. Let ṫ = (Q,Σ,∆, δ, I, F) be a transducer over Σ and ∆. A pair (w′, q) ∈ ∆∗×Q
is called a half-edge.

3.3. Sequentialization of a Transducer 31

The algorithm that was implemented is based on finding sets of half-edges (which will be the
states of the transducer) and consists of a set of methods. We will only describe the algorithm.
For further information, we refer to [1].

We start with a transducer that is in standard form and trim. If the transducer is not
functional, the algorithm simply returns None, since there is no sequential transducer equivalent
to the transducer given. If the transducer is functional, then we start computing an equivalent
sequential transducer. As referred above, the states of the equivalent sequential transducer are
sets of half-edges. The states are computed by using a function that given a set of half-edges S
and an input letter σ returns the union, for (u, q) ∈ S, of the set of half-edges (uvw, r) such that
there are, in the transducer, an edge (p, σ, v, q) and a path (q, ε, w, r). As an auxiliary step, we
compute, for a set of half-edges U , the longest common prefix of the words u such that there is a
pair (u, q) ∈ U . After that, we erase that prefix from the half-edges (u, q) ∈ U .

We now have the conditions to compute the sequential transducer. We use the method
described to find every state, using the longest common prefix determined for the output labels.

Example 3.29. Consider the transducers in Figure 3.5. On the left side, we have the transducer
that realizes the circular left shift of words starting with a σ. In the right, we have an equivalent
sequential transducer obtained by applying the method described.

0 1

(σ, σ) (σ, τ) (τ, τ)

(τ, σ) ε, 0
σ, 0
τ, 1

(σ, ε)

(σ, σ) , (τ, τ)

σ

Figure 3.5: The sequentialization algorithm.

Chapter 4

2D-Regular Expressions

In this chapter, we discuss the notions of two dimensional (2D) regular expressions. The idea is
to define transductions in a more compact form.

Definition 4.1. An atomic 2D regular expression (or A2D-RE for short) over Σ×∆, where Σ
and ∆ are alphabets, is an expression of the type (r1, r2), where r1 and r2 are regular expressions
over Σ and ∆, respectively.

Definition 4.2. A (general) 2D regular expression (or G2D-RE, or 2D-RE, for short) over Σ×∆,
where Σ and ∆ are alphabets, is an expression that is either ∅ or can be defined by the grammar

g → (r1, r2) | (g ⊕ g) | (g � g) |
(
g~
)
,

where r1, r2 are regular expressions over Σ and ∆, respectively. The operator � is often omitted.
We often use +, · and ∗ instead of ⊕, � and ~, respectively, when there is no risk of ambiguity.

We denote by G2D-RE the set of all G2D-REs.

Example 4.3. Let Σ = {σ} and ∆ = {τ}. Then g = ((σ, τ) + (ε, τ)∗) (σ, ε) + (ε, τ) is a 2D-RE
over Σ×∆.

Remark 4.4. Every A2D-RE is also a G2D-RE.

Definition 4.5. Let g be a 2D-RE over Σ×∆. The relation defined by a 2D-RE, denoted by
T (g), is inductively defined on the structure of g by

T (∅) = ∅,

T ((r1, r2)) = L(r1)× L(r2),

T (g1g2) =
{(
xx′, yy′

)
| (x, y) ∈ T (g1) ∧

(
x′, y′

)
∈ T (g2)

}
= T (g1)T (g2),

T (g1 + g2) = T (g1) ∪ T (g2),

T (g∗1) =
⋃
n

T (gn1) = (T (g1))∗ ,

where r1, r2 are regular expressions over Σ and ∆, respectively.

33

34 Chapter 4. 2D-Regular Expressions

Let G be a set of G2D-REs over Σ×∆. We have that T (G) =
⋃
g∈G

T (g).

Definition 4.6. Let g1, g2 be two 2D-RE over Σ ×∆. We say that g1 and g2 are equivalent,
denoted by g1 ∼ g2, if T (g1) = T (g2).

Lemma 4.7. Let g be a 2D-REs over Σ×∆. The following equivalences hold

(ε, ε) g ∼ g (ε, ε) ∼ g, (4.1)

∅g ∼ g∅ ∼ ∅, (4.2)

∅+ g ∼ g + ∅ ∼ g, (4.3)

∅∗ ∼ (ε, ε) . (4.4)

Proof. (4.1) Note that, by definition,

T ((ε, ε) g) =
{(
w1w2, w

′
1w
′
2
)
|
(
w1, w

′
1
)
∈ T ((ε, ε)) ∧

(
w2, w

′
2
)
∈ T (g)

}
=
{(
εw2, εw

′
2
)
|
(
w2, w

′
2
)
∈ T (g)

}
=
{(
w2, w

′
2
)
|
(
w2, w

′
2
)
∈ T (g)

}
= T (g).

Analogously, one proves that g (ε, ε) ∼ g.

(4.2) We have, by definition, T (∅g) = {(w1w2, w
′
1w
′
2) | (w1, w

′
1) ∈ T (∅) ∧ (w2, w

′
2) ∈ T (g)} =

∅ = T (∅). Analogously, one proves that g∅ ∼ ∅.

(4.3) We have, by definition, T (∅+ g) = T (∅) ∪ T (g) = ∅ ∪ T (g) = T (g). Analogously, one
proves that g + ∅ ∼ g.

(4.4) We have, by definition, T (∅∗) =
⋃
n
T (∅n) = T

(
∅0
)

= ∅0 = {(ε, ε)} = T ((ε, ε)).

Definition 4.8. A standard 2D regular expression (or S2D-RE for short) over Σ×∆, where Σ
and ∆ are alphabets, is an expression that is either ∅ or can be defined by the grammar

s→ (a1, a2) | (s⊕ s) | (s� s) |
(
s~
)
,

a1 → ε | σ ∈ Σ,

a2 → ε | σ ∈ ∆,

where the operator � is often omitted. We often use +, · and ∗ instead of ⊕, � and ~, respectively,
when there is no risk of ambiguity.

Remark 4.9. Any S2D-RE is also a G2D-RE.

We denote by S2D-RE the set of all S2D-REs.

Example 4.10. Let g = ((σ, τ) + (ε, τ)∗) (σ, ε) + (ε, τ) be the 2D-RE in Example 4.3. We have
that g is also a S2D-RE.

35

Definition 4.11. Let g be a 2D-RE over Σ×∆ and op ∈ {·,+, ∗,�,⊕,~} be an operator. The
number of occurrences of op in g is denoted by |g|op.

Example 4.12. Let g = ((σ, τ) + (ε, τ)∗) (σ, ε) + (ε, τ) be the 2D-RE in Example 4.3. Then, we
have

1. |g|· = 0.

2. |g|+ = 0.

3. |g|∗ = 0.

4. |g|� = 1.

5. |g|⊕ = 2.

6. |g|~ = 1.

Definition 4.13. Let g be a G2D-RE over Σ×∆.

1. The input-alphabetic size |g|Σ of g is the number of letters on the input parts of g.

2. The output-alphabetic size |g|∆ of g is the number of letters on the output parts of g.

3. The number of non-ε atoms |g|Σ×∆ of g is the number of atoms (r1, r2) in g where r1, r2

are REs over Σ and ∆, respectively, and neither r1 nor r2 is ε.

4. The number of atoms |g|(ε,ε) of s is the number of atoms (r1, r2) in g, where r1 and r2 are
regular expressions over Σ and ∆, respectively, and either r1 or r2 can be ε, but not both.

5. The number of (ε, ε) |g|(ε,ε) in g is the number of (ε, ε) in g.

6. The alphabetic size |g|Σ∪∆ of g is the number of letters in g, that is, |g|Σ∪∆ = |g|Σ + |g|∆.

7. The size |g| of g is the number of symbols in g, disregarding parenthesis.

Example 4.14. Let g = ((σ, τ) + (ε, τ)∗) (σ, ε) + (ε, τ) be the 2D-RE in Example 4.3. Then, we
have

1. |g|Σ = 2, since there are two σ’s in g.

2. |g|∆ = 3, since there are three τ ’s in g.

3. |g|Σ×∆ = 1.

4. |g|(ε,ε) = 4.

5. |g|Σ∪∆ = 2 + 3 = 5, since there are five letters in g.

6. |g| = |g|·+|g|++|g|∗+|g|�+|g|⊕+|g|~+|g|(ε,ε)+|g|(ε,ε)+|(σ, τ)|+|(ε, τ)|+|(σ, ε)|+|(ε, τ)| =
|g|·+ |g|+ + |g|∗+ |g|�+ |g|⊕+ |g|~ + |g|(ε,ε) + |g|(ε,ε) + (|σ| + |τ |) + (|ε| + |τ |) + (|σ| + |ε|) +
(|ε| + |τ |) = 0 + 0 + 0 + 1 + 2 + 1 + 4 + 0 + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) = 16.

36 Chapter 4. 2D-Regular Expressions

4.1 Standard 2D-Regular Expressions

In this section, we will discuss some definitions and results particular to S2D-REs.

Definition 4.15. Let s be a S2D-RE over Σ×∆. Then s is said to be normalised if every atom
is either (σ, ε) or (ε, σ′).

Definition 4.16. Let s be a S2D-RE over Σ×∆. The S2D constant part of s, denoted by ε(s),
is defined by

ε(s) =

(ε, ε) , if (ε, ε) ∈ T (s);

∅, otherwise.

We can extend this definition to a set of S2D-REs S by

ε(S) =

(ε, ε) , if ∃s ∈ S : ε(s) = (ε, ε) ,

∅, otherwise.

We also need to consider the cases where only input (output) is necessarily ε, that is, we need
to consider expressions s over Σ×∆ such that ∃w′ ∈ ∆∗ (ε, w′) ∈ T (s) (∃w ∈ Σ∗ (w, ε) ∈ T (s)).
More formally, we need to consider the cases where we have a restriction of T (s) where the input
(output) is ε.

Definition 4.17. Let s be a S2D-RE over Σ×∆. The S2D input-constant part of s, denoted
by εin(s), is defined recursively on the structure of s by

εin(∅) = ∅,

εin((ε, ε)) = (ε, ε) ,

εin((σ, ε)) = ∅,

εin
((
ε, σ′

))
=
(
ε, σ′

)
,

εin
((
σ, σ′

))
= ∅,

εin(s1 + s2) = εin(s1) + εin(s2),

εin(s1s2) = εin(s1)εin(s2),

εin(s∗) = (εin(s))∗ ,

for every σ ∈ Σ, σ′ ∈ ∆.

The S2D output-constant part of s, denoted by εout(s), is defined in the exact same way as
εin(s), except that εout((ε, σ′)) = ∅ and εout((σ, ε)) = (σ, ε).

Example 4.18. Let g = ((σ, τ) + (ε, τ)∗) (σ, ε) + (ε, τ) be the 2D-RE in Example 4.3. We have

4.1. Standard 2D-Regular Expressions 37

that

εin(g) = εin(((σ, τ) + (ε, τ)∗) (σ, ε) + (ε, τ))

= εin(((σ, τ) + (ε, τ)∗) (σ, ε)) + εin((ε, τ))

= εin((σ, τ) + (ε, τ)∗)εin((σ, ε)) + (ε, τ)

= (εin((σ, τ)) + εin((ε, τ)∗)) ∅+ (ε, τ)

= (∅+ εin((ε, τ))∗) ∅+ (ε, τ)

= (∅+ (ε, τ)∗) ∅+ (ε, τ)

∼ (ε, τ)∗ ∅+ (ε, τ)

∼ (ε, τ) ,

and

εout(g) = εout(((σ, τ) + (ε, τ)∗) (σ, ε) + (ε, τ))

= εout(((σ, τ) + (ε, τ)∗) (σ, ε)) + εout((ε, τ))

= εout((σ, τ) + (ε, τ)∗)εout((σ, ε)) + ∅

= (εout((σ, τ)) + εout((ε, τ)∗)) (σ, ε) + ∅

= (∅+ εout((ε, τ))∗) (σ, ε) + ∅

= (∅+ ∅∗) (σ, ε) + ∅

∼ (∅+ ∅∗) (σ, ε)

∼ ∅∗ (σ, ε)

∼ (ε, ε) (σ, ε)

∼ (σ, ε) .

Lemma 4.19. Let s be a S2D-RE over Σ × ∆. Then T (εin(s)) = T (s) ∩ ({ε} ×∆∗) and
T (εout(s)) = T (s) ∩ (Σ∗ × {ε}).

Proof. We only prove the first equality, since the second follows from the first one by symmetry.
We proceed by induction on the structure of s. The base cases ∅, (σ, ε), (ε, σ′) and (σ, σ′) are
trivial. Now let us suppose that we have that the claim is true for S2D-REs s1 and s2 over Σ×∆.
The case s1+s2 is also trivial, since T (εin(s1 + s2)) = T (εin(s1) + εin(s1)) = T (εin(s1))∪T (εin(s2)).
For the concatenation case, we have that

T (εin(s1s2)) = T (εin(s1)εin(s2)) = T (εin(s1))T (εin(s2))

=
I.H.

(T (s1) ∩ ({ε} ×∆∗)) (T (s2) ∩ ({ε} ×∆∗))

= {(ε, w1) | (ε, w1) ∈ T (s1)} {(ε, w2) | (ε, w2) ∈ T (s2)}

= {(ε, w1) (ε, w2) | (ε, w1) ∈ T (s1) ∧ (ε, w2) ∈ T (s2)}

= {(ε, w1) (ε, w2) | (ε, w1) (ε, w2) ∈ T (s1)T (s2)}

= {(ε, w1w2) | (ε, w1w2) ∈ T (s1s2)}

= T (s1s2) ∩ ({ε} ×∆∗) .

38 Chapter 4. 2D-Regular Expressions

On the other hand, since for all n ≥ 0 we have that (T (s) ∩ ({ε} ×∆∗))n = T (s)n∩({ε} ×∆∗),
the result follows for s∗1.

Remark 4.20. We have from Lemma 4.19 that

T (εin(s)) = {(ε, w′) | (ε, w′) ∈ T (s)}

and T (εout(s)) = {(w, ε) | (w, ε) ∈ T (s)}.

4.1.1 Partial Derivatives

We can extend the concatenation operation from S2D-REs to sets of S2D-REs. Let · : 2S2D-RE ×
S2D-RE→ 2S2D-RE be such extension. The operation is recursively defined by

S · ∅ = ∅,

S · (ε, ε) = S,

∅ · s2 = ∅,

{(ε, ε)} · s2 = {s2} ,

{s1} · s2 = {s1s2} ,(
S ∪ S′

)
· s2 = (S · s2) ∪

(
S′ · s2

)
,

where S, S′ ⊆ 2S2D-RE, s1 ∈ S2D-RE \ {∅} and s2 ∈ S2D-RE \ {∅, (ε, ε)}. We will often omit the
· operator.

Definition 4.21. Let s be a S2D-RE over Σ×∆. The set of partial derivatives of s with respect
to a pair (σ1, ε), where σ1 ∈ Σ ((ε, σ2), where σ2 ∈ ∆), denoted by ∂(σ1,ε)(s) (∂(ε,σ2)(s)), is

4.1. Standard 2D-Regular Expressions 39

defined recursively on the structure of s by

∂(σ1,ε)(∅) = ∂(ε,σ2)(∅) = ∅,

∂(σ1,ε)((ε, ε)) = ∂(ε,σ2)((ε, ε)) = ∅,

∂(σ1,ε)
((
ε, σ′2

))
= ∂(ε,σ2)

((
σ′1, ε

))
= ∅,

∂(σ1,ε)
((
σ′1, ε

))
=

{(ε, ε)} , if σ1 = σ′1,

∅, otherwise,

∂(ε,σ2)
((
ε, σ′2

))
=

{(ε, ε)} , if σ2 = σ′2,

∅, otherwise,

∂(σ1,ε)
((
σ′1, σ

′
2
))

=

{(ε, σ
′
2)} , if σ1 = σ′1,

∅, otherwise,

∂(ε,σ2)
((
σ′1, σ

′
2
))

=

{(σ
′
1, ε)} , if σ2 = σ′2,

∅, otherwise,

∂(σ1,ε)(s1 + s2) = ∂(σ1,ε)(s1) ∪ ∂(σ1,ε)(s2),

∂(ε,σ2)(s1 + s2) = ∂(ε,σ2)(s1) ∪ ∂(ε,σ2)(s2),

∂(σ1,ε)(s1s2) = ∂(σ1,ε)(s1)s2 ∪ εin(s1)∂(σ1,ε)(s2),

∂(ε,σ2)(s1s2) = ∂(ε,σ2)(s1)s2 ∪ εout(s1)∂(ε,σ2)(s2),

∂(σ1,ε)(s
∗
1) = ∂(σ1,ε)(s1)s∗1,

∂(ε,σ2)(s∗1) = ∂(ε,σ2)(s1)s∗1,

where s2 is also a S2D-RE over Σ×∆.

Lemma 4.22. Let s be a S2D-RE over Σ×∆. The relations defined by ∂(σ,ε)(s) and ∂(ε,σ′)(s),
denoted by T

(
∂(σ,ε)(s)

)
and T

(
∂(ε,σ′)(s)

)
, respectively, verify the following equalities

T
(
∂(σ,ε)(s)

)
=
{(
w,w′

)
|
(
σw,w′

)
∈ T (s)

}
,

T
(
∂(ε,σ′)(s)

)
=
{(
w,w′

)
|
(
w, σ′w′

)
∈ T (s)

}
.

Proof. Since the proof for both equalities is analogous by symmetry, we will only prove the first
one. The proof follows by induction on the structure of s.

The base cases ∂(σ,ε)(∅), ∂(σ,ε)((ε, ε)), ∂(σ,ε)((σ1, ε)), ∂(σ,ε)((ε, σ2)) and ∂(σ1,ε)((σ′1, σ′2)) hold
trivially.

Now let us suppose that the claim is true for S2D-REs s1 and s2.

40 Chapter 4. 2D-Regular Expressions

1. Case s1 + s2.

T
(
∂(σ,ε)(s1 + s2)

)
= T

(
∂(σ,ε)(s1) ∪ ∂(σ,ε)(s2)

)
= T

(
∂(σ,ε)(s1)

)
∪ T

(
∂(σ,ε)(s2)

)
=

I.H.

{(
w,w′

)
|
(
σw,w′

)
∈ T (s1)

}
∪
{(
w,w′

)
|
(
σw,w′

)
∈ T (s2)

}
=
{(
w,w′

)
|
(
σw,w′

)
∈ T (s1) ∨

(
σw,w′

)
∈ T (s2)

}
=
{(
w,w′

)
|
(
σw,w′

)
∈ (T (s1) ∪ T (s2))

}
=
{(
w,w′

)
|
(
σw,w′

)
∈ T (s1 + s2)

}
.

2. Case s1s2.

We have that T
(
∂(σ,ε)(s1s2)

)
= T

(
∂(σ,ε)(s1)s2 ∪ εin(s1)∂(σ,ε)(s2)

)
= T

(
∂(σ,ε)(s1)s2

)
∪

T
(
εin(s1)∂(σ,ε)(s2)

)
. We now need to consider two cases, the case when εin(s1) = ∅

and the case when εin(s1) 6= ∅.

If εin(s1) = ∅, we have that

T
(
∂(σ,ε)(s1s2)

)
= T

(
∂(σ,ε)(s1)s2

)
∪ ∅

= T
(
∂(σ,ε)(s1)

)
T (s2)

=
I.H.

{(
w1, w

′
1
)
|
(
σw1, w

′
1
)
∈ T (s1)

} {(
w2, w

′
2
)
|
(
w2, w

′
2
)
∈ T (s2)

}
=
{(
w1w2, w

′
1w
′
2
)
|
(
σw1, w

′
1
)
∈ T (s1) ∧

(
w2, w

′
2
)
∈ T (s2)

}
=
{(
w,w′

)
|
(
σw,w′

)
∈ T (s1s2)

}
.

If εin(s1) 6= ∅, we have that

T
(
∂(σ,ε)(s1s2)

)
=T

(
∂(σ,ε)(s1)s2

)
∪ T

(
εin(s1)∂(σ,ε)(s2)

)
=

I.H.

{(
w,w′

)
|
(
σw,w′

)
∈ T (s1s2)

}
∪
{(
ε, w′1

)
|
(
ε, w′1

)
∈ T (s1)

} {(
w2, w

′
2
)
|
(
σw2, w

′
2
)
∈ T (s2)

}
=
{(
w,w′

)
|
(
σw,w′

)
∈ T (s1s2)

}
∪
{(
w2, w

′
1w
′
2
)
|
(
ε, w′1

)
∈ T (s1) ∧

(
σw2, w

′
2
)
∈ T (s2)

}
.

But {(w2, w
′
1w
′
2) | (ε, w′1) ∈ T (s1) ∧ (σw2, w

′
2) ∈ T (s2)} ⊆ {(w,w′) | (σw,w′) ∈ T (s1s2)}.

Therefore, T
(
∂(σ,ε)(s1s2)

)
= {(w,w′) | (σw,w′) ∈ T (s1s2)}.

3. Case s∗1.

T
(
∂(σ,ε)(s∗1)

)
= T

(
∂(σ,ε)(s1)s∗1

)
=

I.H.

{(
w,w′

)
|
(
σw,w′

)
∈ T (s1)

}
T (s∗1)

=
{
(w1, w2)

(
w′1, w

′
2
)
| (σw1, w2) ∈ T (s1) ∧

(
w′1, w

′
2
)
∈ T (s∗1)

}
=
{(
w1w

′
1, w2w

′
2
)
|
(
σw1w

′
1, w2w

′
2
)
∈ T (s1s

∗
1)
}
.

4.1. Standard 2D-Regular Expressions 41

Since T (s∗1) = T (s1s
∗
1 + (ε, ε)) = T (s1s

∗
1)∪T ((ε, ε)) = T (s1s

∗
1)∪{(ε, ε)}, and since σ is not

ε,

∂(σ,ε)(s∗1) =
{(
w1w

′
1, w2w

′
2
)
|
(
σw1w

′
1, w2w

′
2
)
∈ T (s∗1)

}
=
{(
w,w′

)
∈ T (s∗1)

}
This concludes the proof.

The set of partial derivatives of a S2D-RE over Σ ×∆ w.r.t. a pair (σ1, ε) extends to the
partial derivatives of a set of S2D-REs by

∂(σ,ε)(S) =
⋃
s∈S

∂(σ,ε)(s),

where S ⊆ S2D-RE.

Lemma 4.23. Let s be a S2D-RE over Σ×∆. The following equalities hold

εin(εout(s)) = εout(εin(s)) = ε(s),

εin
(
∂(ε,σ′)(s)

)
= ∂(ε,σ′)(εin(s)),

εout
(
∂(σ,ε)(s)

)
= ∂(σ,ε)(εout(s)).

Proof. For the first equality, we will only prove that εout(εin(s)) = ε(s) since the proof for
εin(εout(s)) = ε(s) is analogous. We have that T (εout(εin(s))) = {(w, ε) | (w, ε) ∈ T (εin(s))}, and
since T (εin(s)) = {(ε, w′) | (ε, w′) ∈ T (s)}, we have that T (εout(εin(s))) = {(ε, ε)} if T (εin(s)) 6= ∅
and T (εout(s)) 6= ∅, which happens exactly when (ε, ε) ∈ T (s), that is, if ε(s) = (ε, ε). Otherwise,
we have that either T (εin(s)) = ∅ or T (εout(s)) = ∅, that is, ε(s) = ∅. Thus, εout(εin(s)) = ε(s).

The second and third equalities have analogous proofs. Therefore, we will only explicitly
prove εin

(
∂(ε,σ′)(s)

)
= ∂(ε,σ′)(εin(s)). We have that

T
(
εin
(
∂(ε,σ′)(s)

))
=
{(
ε, w′

)
|
(
ε, w′

)
∈ T

(
∂(ε,σ′)(s)

)}
=
{(
ε, w′

)
|
(
ε, σ′w′

)
∈ T (s)

}
=
{(
w,w′

)
|
(
w, σ′w′

)
∈ T (εin(s))

}
= T

(
∂(ε,σ′)(εin(s))

)
.

This concludes the proof.

The set of partial derivatives of a S2D-RE s over Σ×∆ w.r.t. a pair (w, ε), where w ∈ Σ∗,
can be inductively defined by

∂(ε,ε)(s) = {s} ,

∂(σw,ε)(s) = ∂(w,ε)
(
∂(σ,ε)(s)

)
.

Similarly, one can define the set of partial derivatives of a S2D-RE s over Σ×∆ w.r.t. a pair
(ε, w′), where w′ ∈ ∆∗.

42 Chapter 4. 2D-Regular Expressions

Proposition 4.24. For any S2D-RE s over Σ×∆, the following equalities hold

T
(
∂(w,ε)(s)

)
=
{(
w1, w

′) | (ww1, w
′) ∈ T (s)

}
,

T
(
∂(ε,w′)(s)

)
=
{(
w,w′1

)
|
(
w,w′w′1

)
∈ T (s)

}
.

Proof. By induction on |w|. The first and second equalities are analogously proved, thus we will
only explicitly prove the first one. The base case, when w = ε is trivial. Now let us suppose the
claim is true for some w ∈ Σ∗. Then, we have that

T
(
∂(σw,ε)(s)

)
=
{(
w1, w

′
1
)
|
(
σw1, w

′
1
)
∈ T

(
∂(w,ε)(s)

)}
=

I.H.

{(
w1, w

′
1
)
|
(
σw1, w

′) ∈ {(w2, w
′) | (ww2, w

′) ∈ T (s)
}}

=
{(
w1, w

′
1
)
|
(
σww1, w

′) ∈ T (s)
}
.

We can also extend the set of partial derivatives of a S2D-RE s over Σ ×∆ w.r.t. a pair
(w,w′) ∈ Σ∗ ×∆∗ by

∂(w,w′)(s) = ∂(w,ε)
(
∂(ε,w′)(s)

)
.

Proposition 4.25. For any S2D-RE s over Σ×∆, we have that

T
(
∂(w,ε)

(
∂(ε,w′)(s)

))
=
{(
w1, w

′
1
)
|
(
ww1, w

′w′1
)
∈ T (s)

}
.

Proof. Follows directly from Proposition 4.24.

Corollary 4.26. For any S2D-RE s over Σ×∆ and (w,w′) ∈ Σ∗×∆∗, we have that (w,w′) ∈ T (s)
if and only if ε

(
∂(w,w′)(s)

)
= (ε, ε).

Proof. Follows directly from Proposition 4.25.

4.1.2 Linear Form

We will now define the linear form of a S2D-RE s. Later in this chapter we will present a method,
using this notion, to obtain a transducer that realizes the same relation as s that on average has
less states than the result using Thompson’s method.

Definition 4.27. Let s be a S2D-RE over Σ×∆. The linear form of s, denoted lf(s) is defined

4.1. Standard 2D-Regular Expressions 43

recursively on the structure of s as follows

lf(∅) = lf((ε, ε)) = ∅,

lf((σ, ε)) = {((σ, ε) , (ε, ε))} ,

lf
((
ε, σ′

))
=
{((

ε, σ′
)
, (ε, ε)

)}
,

lf
((
σ, σ′

))
=
{((

σ, σ′
)
, (ε, ε)

)}
,

lf(s1 + s2) = lf(s1) ∪ lf(s2),

lf(s1 · s2) =

lf(s1) · s2, if ε(s1) = ∅,

lf(s1) · s2 ∪ lf(s2), otherwise,

lf(s∗1) = lf(s1) · s∗1,

where lf(s1) · s2 = {(p, s · s2) | (p, s) ∈ lf(s1)} and s1 and s2 are also S2D-REs over Σ×∆, σ ∈ Σ,
σ′ ∈ ∆. To the first element in each pair of lf we call head and we call tail to the second element.

The case for (σ, σ′) is not necessary, since we have that (σ, σ′) = (σ, ε) (ε, σ′), but this produces
a more succinct set. Thus, and in order to obtain all possible linear forms for (σ, σ′), we can also
define the extended linear form, denoted lfext(s) in the exact same way as we defined the linear
form, except that

lfext((σ, σ′)) = {((σ, ε) , (ε, σ′)) , ((ε, σ′) , (σ, ε)) , ((σ, σ′) , (ε, ε))}, and

lfext((σ, σ′) · s1) = {((σ, ε) , (ε, σ′) s1) , ((ε, σ′) , (σ, ε) s1) , ((σ, σ′) , s1)}.

Proposition 4.28. For any S2D-RE s over Σ×∆, lf(s) is such that

s ∼
⋃

((τ,τ ′),s′)∈lf(s)
(τ, τ ′) s′ ∪ ε(s),

where τ ∈ Σ ∪ {ε} and τ ′ ∈ ∆ ∪ {ε}.

Proof. The proof follows by induction on the structure of s. The base cases ∅, (σ, ε), (ε, σ′),
(σ, σ′) trivially hold. Let us now suppose that the claim is true for some s1 and s2.

1. Case s1 + s2.

We have that lf(s1 + s2) = lf(s1) ∪ lf(s2). By induction hypothesis, we know that

s1 ∼
⋃

((τ1,τ ′1),s′1)∈lf(s1)
(τ1, τ

′
1) s′1 ∪ ε(s1) and

s2 ∼
⋃

((τ2,τ ′2),s′2)∈lf(s2)
(τ2, τ

′
2) s′2 ∪ ε(s2).

44 Chapter 4. 2D-Regular Expressions

Therefore,

s1 + s2 ∼
⋃

((τ1,τ ′1),s′1)∈lf(s1)

(
τ1, τ

′
1
)
s′1 ∪ ε(s1) ∪

⋃
((τ2,τ ′2),s′2)∈lf(s2)

(
τ2, τ

′
2
)
s′2 ∪ ε(s2)

=
⋃

((τ1,τ ′1),s′1)∈lf(s1)

(
τ1, τ

′
1
)
s′1 ∪

⋃
((τ2,τ ′2),s′2)∈lf(s2)

(
τ2, τ

′
2
)
s′2 ∪ ε(s1) ∪ ε(s2)

=
⋃

((τ1,τ ′1),s′1)∈lf(s1)

(
τ1, τ

′
1
)
s′1 ∪

⋃
((τ2,τ ′2),s′2)∈lf(s2)

(
τ2, τ

′
2
)
s′2 ∪ ε(s1 + s2)

=
⋃

((τ,τ ′),s′)∈lf(s1+s2)

(
τ, τ ′

)
s′ ∪ ε(s1 + s2).

2. Case s1s2.

Note that lf(s1s2) can also be defined as lf(s1)s2 ∪ ε(s1)lf(s2). By induction hypothesis, we
have that

s1 · s2 ∼

 ⋃
((τ1,τ ′1),s′1)∈lf(s1)

(
τ1, τ

′
1
)
s′1 ∪ ε(s1)

 ·
 ⋃

((τ2,τ ′2),s′2)∈lf(s2)

(
τ2, τ

′
2
)
s′2 ∪ ε(s2)

∼

⋃
((τ1,τ ′1),s′1)∈lf(s1)

(
τ1, τ

′
1
)
s′1s2 ∪ ε(s1)

⋃
((τ2,τ ′2),s′2)∈lf(s2)

(
τ2, τ

′
2
)
s′2 ∪ ε(s1)ε(s2)

=
⋃

((τ1,τ ′1),s′1)∈lf(s1)

(
τ1, τ

′
1
)
s′1s2 ∪ ε(s1)

⋃
((τ2,τ ′2),s′2)∈lf(s2)

(
τ2, τ

′
2
)
s′2 ∪ ε(s1s2),

and since lf(s1)s2 ∪ ε(s1)lf(s2) = lf(s1s2), we have that

s1s2 ∼
⋃

((τ,τ ′),s′)∈lf(s1s2)
(τ, τ ′) s′ ∪ ε(s1s2).

3. Case s∗1.

We have that s∗1 ∼ s1s
∗
1+(ε, ε), and we can suppose that ε(s1) = ∅. By induction hypothesis,

we have that

s∗1 ∼ s1s
∗
1 + (ε, ε)

∼
⋃

((τ,τ ′),s′)∈lf(s1)

(
τ, τ ′

)
s′s∗1 ∪ ε(s1)s∗1 ∪ {(ε, ε)} .

But lf(s∗1) = lf(s1)s∗1, ε(s1) = ∅ and ε(s∗1) = (ε, ε), thus

s∗1 ∼
⋃

((τ,τ ′),s′)∈lf(s∗1)
(τ, τ ′) s′ ∪ ε(s∗1).

This concludes the proof.

4.2. General 2D-Regular Expressions 45

4.2 General 2D-Regular Expressions

In this section, we will discuss some definitions and results particular to G2D-REs. The definition
of S2D-constant part naturally extends to G2D-REs, where for the base case (r1, r2), we have

ε((r1, r2)) =

(ε, ε) , if ε(r1) = ε(r2) = ε,

∅, otherwise.

We can extend this definition to a set of G2D-REs G by

ε(G) =

(ε, ε) , if ∃g ∈ G : ε(g) = (ε, ε) ,

∅, otherwise.

Definition 4.29. Let g be a G2D-RE over Σ×∆. The G2D input-constant part of g, denoted
by εin(g), is defined recursively on the structure of g as follows:

εin(∅) = ∅;

εin((r1, r2)) =

(ε, r2) , if ε(r1) = ε;

∅, otherwise;

εin(g1 + g2) = εin(g1) + εin(g2);

εin(g1g2) = εin(g1)εin(g2);

εin(g∗) = (εin(g))∗ ,

for every r1 over Σ and r2 over ∆.

One can also define the G2D-RE output-constant part of g, in the exact same way as εin(g),
except that

εout((r1, r2)) =

(r1, ε) , if ε(r2) = ε,

∅, otherwise.

Lemma 4.30. Let g be a G2D-RE over Σ × ∆. Then T (εin(g)) = T (g) ∩ ({ε} ×∆∗) and
T (εout(g)) = T (g) ∩ (Σ∗ × {ε}).

Proof. The proofs for the base case ∅ and the concatenation, union and Kleene star cases follow
the same structure as the proof of Lemma 4.19.

The base case (r1, r2) follows directly from the definition of εin((r1, r2)).

4.2.1 Partial Derivatives

We can extend the concatenation operation from G2D-REs to sets of G2D-REs, like we did for
S2D-REs.

46 Chapter 4. 2D-Regular Expressions

Definition 4.31. Let g be a G2D-RE over Σ×∆. The set of partial derivatives of g with respect
to a pair (σ, ε), where σ ∈ Σ ((ε, σ′), where σ′ ∈ ∆), denoted ∂(σ,ε)(g) (∂(ε,σ′)(g)), is defined
recursively on the structure of g as follows:

∂(σ,ε)(∅) = ∂(ε,σ′)(∅) = ∅,

∂(σ,ε)((r1, r2)) = ∂σ(r1)× {r2} ,

∂(ε,σ′)((r1, r2)) = {r1} × ∂σ′(r2),

∂(σ,ε)(g1 + g2) = ∂(σ,ε)(g1) ∪ ∂(σ,ε)(g2),

∂(ε,σ′)(g1 + g2) = ∂(ε,σ′)(g1) ∪ ∂(ε,σ′)(g2),

∂(σ,ε)(g1g2) = ∂(σ,ε)(g1)g2 ∪ εin(g1)∂(σ,ε)(g2),

∂(ε,σ′)(g1g2) = ∂(ε,σ′)(g1)g2 ∪ εout(g1)∂(ε,σ′)(g2),

∂(σ,ε)(g∗1) = ∂(σ,ε)(g1)g∗1,

∂(ε,σ′)(g∗1) = ∂(ε,σ′)(g1)g∗1,

where r1, r2 are REs over Σ and ∆, respectively, and g1 and g2 are also G2D-REs over Σ×∆.

We can trivially extend Lemma 4.22 to G2D-REs.

Lemma 4.32. Let g be a G2D-RE over Σ×∆. The relations defined by ∂(σ,ε)(g) and ∂(ε,σ′)(g),
denoted by T

(
∂(σ,ε)(g)

)
and T

(
∂(ε,σ′)(g)

)
, respectively, verify the following equalities

T
(
∂(σ,ε)(g)

)
=
{(
w,w′

)
|
(
σw,w′

)
∈ T (g)

}
,

T
(
∂(ε,σ′)(g)

)
=
{(
w,w′

)
|
(
w, σ′w′

)
∈ T (g)

}
.

Proof. The proof follows the same structure as the proof for Lemma 4.22, for the ∅, concatenation,
union and Kleene star.

For the base case (r1, r2), where r1, r2 are REs over Σ and ∆, respectively, we have that:

T
(
∂(σ,ε)((r1, r2))

)
=
{(
w,w′

)
|
(
w,w′

)
∈ ∂(σ,ε)((r1, r2))

}
=
{(
w,w′

)
|
(
w,w′

)
∈ ∂σ(r1)× {r2}

}
=
{(
w,w′

)
| w ∈ ∂σ(r1) ∧ w′ ∈ L(r2)

}
=
{(
w,w′

)
| σw ∈ L(r1) ∧ w′ ∈ L(r2)

}
=
{(
w,w′

)
|
(
σw,w′

)
∈ L(r1)× L(r2)

}
=
{(
w,w′

)
|
(
σw,w′

)
∈ T ((r1, r2))

}
.

Analogously, one can prove that T
(
∂(ε,σ′)((r1, r2))

)
= {(w,w′) | (w, σ′w′) ∈ T ((r1, r2))}.

The set of partial derivatives of a G2D-RE over Σ×∆ w.r.t. a pair (σ1, ε) extends to the
partial derivatives of a set of G2D-REs by

∂(σ,ε)(G) =
⋃
g∈G

∂(σ,ε)(g),

where G ⊆ G2D-RE.

4.2. General 2D-Regular Expressions 47

Lemma 4.33. Let g be a G2D-RE over Σ×∆. The following equalities hold

εin(εout(g)) = εout(εin(g)) = ε(g),

εin
(
∂(ε,σ′)(g)

)
= ∂(ε,σ′)(εin(g)),

εout
(
∂(σ,ε)(g)

)
= ∂(σ,ε)(εout(g)).

Proof. Analogous to proof of Lemma 4.23.

Proposition 4.34. For any G2D-RE g over Σ×∆, the following equalities hold

T
(
∂(w,ε)(g)

)
=
{(
w1, w

′) | (ww1, w
′) ∈ T (g)

}
,

T
(
∂(ε,w′)(g)

)
=
{(
w,w′1

)
|
(
w,w′w′1

)
∈ T (g)

}
.

Proof. Analogous to proof of Proposition 4.24.

We can also extend the set of partial derivatives of a G2D-RE g over Σ ×∆ w.r.t. a pair
(w,w′) ∈ Σ∗ ×∆∗ by

∂(w,w′)(g) = ∂(w,ε)
(
∂(ε,w′)(g)

)
.

Proposition 4.35. For any G2D-RE g over Σ×∆, we have that

T
(
∂(w,ε)

(
∂(ε,w′)(g)

))
=
{(
w1, w

′
1
)
|
(
ww1, w

′w′1
)
∈ T (g)

}
.

Proof. Follows directly from Proposition 4.34.

Corollary 4.36. For any G2D-RE g over Σ×∆ and (w,w′) ∈ Σ∗ ×∆∗, we have that (w,w′) ∈
T (g) if and only if ε

(
∂(w,w′)(g)

)
= (ε, ε).

Proof. Follows directly from Proposition 4.35.

4.2.2 Linear Form

We will now define the linear form of a G2D-RE g. Later in this chapter we will present a method
for obtaining a transducer that realizes the same relation as g that uses the linear form of g.

Definition 4.37. Let r1 and r2 be REs over Σ and ∆, respectively. Then the linear form of
(r1, r2) is defined by

lf((r1, r2)) = lf(r1)× lf(r2) ∪ ε((ε, r2)) (lf(r1)× {(ε, ε)}) ∪ ε((r1, ε)) ({(ε, ε)} × lf(r2)),

where A×B = {((σ, σ′) , (r, r′)) | (σ, r) ∈ A ∧ (σ′, r′) ∈ B}.

48 Chapter 4. 2D-Regular Expressions

The subexpression ε((ε, r2)) (lf(r1)× {(ε, ε)}) appears from the fact that, regardless of the
value of ε(r1), if ε(r2) = ε, then we need to include lf(r1)× {(ε, ε)}.

Proposition 4.38. For any G2D-RE g over Σ×∆, lf(g) is such that

g ∼
⋃

((τ,τ ′),g′)∈lf(g)

(
τ, τ ′

)
g′ ∪ ε(g).

Proof. The proof follows the same structure as the proof for Proposition 4.28, therefore we
will only explicitly prove the base case (r1, r2). But since r1 ∼

⋃
(σ,r′1)∈lf(r1)

σr′1 ∪ ε(r1) and

r2 ∼
⋃

(σ,r′2)∈lf(r2)
σr′2 ∪ ε(r2), we have that

(r1, r2) ∼

 ⋃
(σ,r′1)∈lf(r1)

σr′1 ∪ ε(r1)

×
 ⋃

(σ,r′2)∈lf(r2)

σr′2 ∪ ε(r2)

∼

 ⋃
(σ,r′1)∈lf(r1)

σr′1

×
 ⋃

(σ,r′2)∈lf(r2)

σr′2

 ∪
 ⋃

(σ,r′1)∈lf(r1)

σr′1

× ε(r2)

∪ ε(r1)×

 ⋃
(σ,r′2)∈lf(r2)

σr′2

 ∪ ε(r1)× ε(r2),

we have that (r1, r2) ∼
⋃

((τ,τ ′),(r′1,r′2))∈lf((r1,r2))
(τ, τ ′) (r′1, r′2) ∪ ε((r1, r2)).

4.2.3 Converting a G2D-RE into a S2D-RE

Lemma 4.39. Let r1, r2 be regular expressions over Σ and r3, r4 regular expressions over ∆.
Then, the following equivalences hold

(r1r2, r3r4) ∼ (r1, r3) (r2, r4) , (4.5)

(r1, r3) ∼ (r1, ε) (ε, r3) , (4.6)

(r∗1, ε) ∼ (r1, ε)∗ , (4.7)

(ε, r∗3) ∼ (ε, r3)∗ , (4.8)

(r1 + r2, r3) ∼ (r1, r3) + (r2, r3) , (4.9)

(r1, r3 + r4) ∼ (r1, r3) + (r1, r4) . (4.10)

Proof. (4.5) Follows directly from the concatenation case of Definition 4.5.

(4.6) Particular case of equivalence (4.5).

(4.7) Observe that T ((r1, ε)∗) =
⋃
n
T ((r1, ε)n). Now note that, from equivalence (4.5), we

have (r1, ε)2 = (r1, ε) (r1, ε) = (r1r1, εε) =
(
r2

1, ε
)
. In fact, we can prove by induction that

(r1, ε)n ∼ (rn1 , ε), for every n ≥ 0. Thus, (r∗1, ε) ∼ (r1, ε)∗.

4.2. General 2D-Regular Expressions 49

(4.8) Analogous to equivalence (4.7).

(4.9) Note that, by definition, T ((r1, r3) + (r2, r3)) = T ((r1, r3)) ∪ T ((r2, r3)), which is, by
definition again, L(r1)× L(r3) ∪ L(r2)× L(r3). By distributivity property, we get

L(r1)× L(r3) ∪ L(r2)× L(r3) = (L(r1) ∪ L(r2))× L(r3),

which is, by definition, T ((r1 + r2, r3)).

(4.10) Analogous to equivalence (4.9).

Lemma 4.39 gives the tools we need to convert a G2D-RE in a S2D-RE that realizes the
same relation, as we will see later in this subsection.

Before defining this, let us define an application f that allows us to obtain a S2D-RE equivalent
to a given G2D-RE g over Σ×∆, which is presented as follows

f((ε, ε)) = (ε, ε) ,

f((σ, ε)) = (σ, ε) ,

f
((
ε, σ′

))
=
(
ε, σ′

)
,

f
((
σ, σ′

))
=
(
σ, σ′

)
,

f((r∗1, ε)) = f((r1, ε))~,

f((ε, r∗2)) = f((ε, r2))~,

f((r1, r2)) = f((r1, ε))� f((ε, r2)),

f
((
r1r
′
1, r2r

′
2
))

= f((r1, r2))� f
((
r′1, r

′
2
))
,

f
((
r1 + r′1, r2

))
= f((r1, r2))⊕ f

((
r′1, r2

))
,

f
((
r1, r2 + r′2

))
= f((r1, r2))⊕ f

((
r1, r

′
2
))
,

f
(
g � g′

)
= f(g)� f

(
g′
)
,

f
(
g ⊕ g′

)
= f(g)⊕ f

(
g′
)
,

f
(
g~
)

= f(g)~,

for every σ ∈ Σ, σ′ ∈ ∆, r1 and r2 REs over Σ, r2 and r′2 REs over ∆, and where g′ is also a
G2D-RE over Σ×∆. The rule f((r1, r2)) = f((r1, ε))� f((ε, r2)) is only needed if either r1 ≡ r∗

or r2 ≡ r∗.

We now present some examples. Note that the order in which we present the rules gives a
deterministic method for converting a G2D-RE into a S2D-RE.

Example 4.40. Let us convert ((ab)∗ + c, (a+ b)∗) into an equivalent S2D-RE.

50 Chapter 4. 2D-Regular Expressions

Applying the application described, we have

((ab)∗ + c, (a+ b)∗) ∼ ((ab)∗, (a+ b)∗) + (c, (a+ b)∗)

∼ ((ab)∗, ε) (ε, (a+ b)∗) + (c, (a+ b)∗)

∼ (ab, ε)∗ (ε, (a+ b)∗) + (c, (a+ b)∗)

∼ ((a, ε) (b, ε))∗ (ε, (a+ b)∗) + (c, (a+ b)∗)

∼ ((a, ε) (b, ε))∗ (ε, a+ b)∗ + (c, (a+ b)∗)

∼ ((a, ε) (b, ε))∗ ((ε, a) + (ε, b))∗ + (c, (a+ b)∗)

∼ ((a, ε) (b, ε))∗ ((ε, a) + (ε, b))∗ + (c, ε) (ε, (a+ b)∗)

∼ ((a, ε) (b, ε))∗ ((ε, a) + (ε, b))∗ + (c, ε) (ε, a+ b)∗

∼ ((a, ε) (b, ε))∗ ((ε, a) + (ε, b))∗ + (c, ε) ((ε, a) + (ε, b))∗

which is a S2D-RE.

Example 4.41. Let us convert (a+ b+ c∗, (a+ b) c) into an equivalent S2D-RE.

First, observe that (a+ b, a+ b) ∼ (a, a) + (a, b) + (b, a) + (b, b). Now, we have

(a+ b+ c∗, (a+ b) c)

∼ (a+ b+ c∗, a+ b) (ε, c)

∼ ((a+ b, a+ b) + (c∗, a+ b)) (ε, c)

∼ (((a, a) + (a, b) + (b, a) + (b, b)) + (c∗, a+ b)) (ε, c)

∼ ((a, a) + (a, b) + (b, a) + (b, b) + (c∗, a+ b)) (ε, c)

∼ ((a, a) + (a, b) + (b, a) + (b, b) + ((c∗, a) + (c∗, b))) (ε, c)

∼ ((a, a) + (a, b) + (b, a) + (b, b) + (c∗, a) + (c∗, b)) (ε, c)

∼ ((a, a) + (a, b) + (b, a) + (b, b) + (c∗, ε) (ε, a) + (c∗, b)) (ε, c)

∼ ((a, a) + (a, b) + (b, a) + (b, b) + (c, ε)∗ (ε, a) + (c∗, b)) (ε, c)

∼ ((a, a) + (a, b) + (b, a) + (b, b) + (c, ε)∗ (ε, a) + (c∗, ε) (ε, b)) (ε, c)

∼ ((a, a) + (a, b) + (b, a) + (b, b) + (c, ε)∗ (ε, a) + (c, ε)∗ (ε, b)) (ε, c)

which is a S2D-RE.

Example 4.42. Let us convert ((ab)∗ + c, (a+ b)∗) (a+ b+ c∗, (a+ b) c) in an equivalent S2D-
RE.

Since

((ab)∗ + c, (a+ b)∗) ∼ ((a, ε) (b, ε))∗ ((ε, a) + (ε, b))∗ + (c, ε) ((ε, a) (ε, b))∗

and

(a+ b+ c∗, (a+ b) c) ∼ ((a, a) + (a, b) + (b, a) + (b, b) + (c, ε)∗ (ε, a) + (c, ε)∗ (ε, b)) (ε, c)

4.2. General 2D-Regular Expressions 51

we conclude that

((ab)∗ + c, (a+ b)∗) (a+ b+ c∗, (a+ b) c)

∼ ((a, ε) (b, ε))∗ ((ε, a) + (ε, b))∗ + (c, ε) ((ε, a) (ε, b))∗

((a, a) + (a, b) + (b, a) + (b, b) + (c, ε)∗ (ε, a) + (c, ε)∗ (ε, b)) (ε, c)

which is a S2D-RE.

Example 4.43. Let us convert ((ab)∗ + c, (a+ b)∗)∗ in an equivalent S2D-RE. Since

((ab)∗ + c, (a+ b)∗) ∼ ((a, ε) (b, ε))∗ ((ε, a) + (ε, b))∗ + (c, ε) ((ε, a) (ε, b))∗

we conclude that

((ab)∗ + c, (a+ b)∗)∗ ∼ (((a, ε) (b, ε))∗ ((ε, a) + (ε, b))∗ + (c, ε) ((ε, a) (ε, b))∗)∗

which is a S2D-RE.

The method that we will present now always produces a normalised S2D-RE. The above
method, on the other hand, can produce a S2D-RE that is not necessarily normalised.

Theorem 4.44. For every G2D-RE, there is a normalised S2D-RE equivalent to it.

Proof. Let r1, r2 be two REs over Σ and r3, r4 be two REs over ∆. Let us consider the following
equivalences

(r1, r3) ∼ (r1, ε) (ε, r3) (4.11)

(r1 + r2, ε) ∼ (r1, ε) + (r2, ε) (4.12)

(ε, r3 + r4) ∼ (ε, r3) + (ε, r4) (4.13)

(r1r2, ε) ∼ (r1, ε) (r2, ε) (4.14)

(ε, r3r4) ∼ (ε, r3) (ε, r4) (4.15)

(r∗1, ε) ∼ (r1, ε)∗ (4.16)

(ε, r∗3) ∼ (ε, r3)∗ (4.17)

Let g be a G2D-RE over Σ×∆. Let us prove by induction that g has a normalised S2D-RE
equivalent to it.

The base cases (ε, ε), (σ, ε) and (ε, σ′) are trivially S2D-REs. For (σ, σ′) we only need to
apply (4.11).

For the case (r1, r3), it is trivial to prove by induction that the equivalences are sufficient to
produce a normalised S2D-RE equivalent to g. The idea is to use (4.11) and then use (4.12)–(4.17)
according to the symbol appearing in the expression.

Now suppose that we have two G2D-RE g1, g2 over Σ×∆. By induction hypothesis, g1 and
g2 both have normalised S2D-REs equivalent to them, let them be g′1 and g′2. Therefore, g1g2,
g1 + g2 and g∗1 have normalised S2D-REs g′1g′2, g′1 + g′2 and g′1

∗, respectively.

52 Chapter 4. 2D-Regular Expressions

Note that except for (4.11), which is only applied once for each atom, all the equivalences
produce an expression which is obtained from the one on the left side with less operators on the
RE-level than the ones on the right side. Therefore, we know that this method terminates.

This concludes the proof.

Theorem 4.45. Let g be a G2D-RE. The normalised S2D-RE s equivalent to g, obtained from
Theorem 4.44, verifies the following equalities:

1. |s|� = |g|� + |g|· + |g|Σ×∆.

2. |s|⊕ = |g|⊕ + |g|+.

3. |s|~ = |g|~ + |g|∗.

4. |s|Σ×∆ = |g|Σ + |g|∆.

Proof. Let us prove this by induction.

The base cases (ε, ε), (σ, ε), (ε, σ′) and (σ, σ′) are left to the reader.

For the case (r, r′), where r and r′ are REs over Σ and ∆, the equalities follow directly from
Theorem 4.44, since the number of operations ⊕, � and ~ is 0. Remember that for |(r, r′)|Σ×∆
to be non 0 both r and r′ need to be different from ε.

Now suppose that g and g′, with equivalent normalised S2D-REs s and s′, respectively, satisfy
the equalities. We now need to consider three cases. We will only prove one of them since the
other two are analogous.

Let us consider the case gg′.∣∣ss′∣∣� = |s|� +
∣∣s′∣∣� + 1

=
I.H.

(
|g|� + |g|· + |g|Σ×∆

)
+
(∣∣g′∣∣� +

∣∣g′∣∣· + ∣∣g′∣∣Σ×∆

)
+ 1

=
(
|g|� +

∣∣g′∣∣� + 1
)

+
(
|g|· +

∣∣g′∣∣·)+
(
|g|Σ×∆ +

∣∣g′∣∣Σ×∆

)
=
∣∣gg′∣∣� +

∣∣gg′∣∣· + ∣∣gg′∣∣Σ×∆

which proves 1. ∣∣ss′∣∣⊕ = |s|⊕ +
∣∣s′∣∣⊕

=
I.H.

(
|g|⊕ + |g|+

)
+
(∣∣g′∣∣⊕ +

∣∣g′∣∣+)
=
(
|g|⊕ +

∣∣g′∣∣⊕)+
(
|g|+ +

∣∣g′∣∣+)
=
∣∣gg′∣∣⊕ +

∣∣gg′∣∣+

4.3. Equivalence Between S2D-REs and Transducers 53

which proves 2. ∣∣ss′∣∣~ = |s|~ +
∣∣s′∣∣~

=
I.H.

(
|g|~ + |g|∗

)
+
(∣∣g′∣∣~ +

∣∣g′∣∣∗)
=
(
|g|~ +

∣∣g′∣∣~)+
(
|g|∗ +

∣∣g′∣∣∗)
=
∣∣gg′∣∣~ +

∣∣gg′∣∣∗
which proves 3. ∣∣ss′∣∣Σ×∆ = |s|Σ×∆ +

∣∣s′∣∣Σ×∆

=
I.H.

(|g|Σ + |g|∆) +
(∣∣g′∣∣Σ +

∣∣g′∣∣∆)
=
(
|g|Σ +

∣∣g′∣∣Σ)+
(
|g|∆ +

∣∣g′∣∣∆)
=
∣∣gg′∣∣Σ +

∣∣gg′∣∣∆
which proves 4, thus concluding the proof.

4.3 Equivalence Between S2D-REs and Transducers

In this section we will discuss some methods for obtaining a S2D-RE that realizes the same
relation as a given transducer and vice-versa. These methods are, all in all, extensions or
modifications of methods for automata.

4.3.1 Extension of Thompson’s Method to Transducers

In this subsection, we will see that the Thompson’s method for converting a regular expression
into an automaton can be extended to transducers, that is, we can adapt this method for
converting a S2D-RE into a transducer that realizes the exact same relation.

Theorem 4.46. Given a S2D-RE, there is a standard form transducer that realizes the same
relation.

Proof. The proof follows by induction.

Let us consider the base case, when the S2D-RE is simply (τ1, τ2), where τ1 ∈ (Σ ∪ {ε}) and
τ2 ∈ (∆ ∪ {ε}). Consider, then, the following transducer ṫ(τ1,τ2)

i f
(τ1, τ2)

We can see trivially that T ((τ1, τ2)) = R
(
ṫ(τ1,τ2)

)
.

54 Chapter 4. 2D-Regular Expressions

Suppose that we have, for the following cases, two S2D-RE s1 and s2, and let ṫs1 and ṫs2 be
the transducers for the expressions s1 and s2, respectively. We know that, by construction, ṫs1

and ṫs2 have only one initial and one final state.

Let us also consider that we have that T (s1) = R
(
ṫs1

)
and T (s2) = R

(
ṫs2

)
. The transducers

presented follow the convention that the initial states for ṫs1 and ṫs2 are i1 and i2, respectively,
and that f1 and f2 are the final states, respectively. The states i and f are new initial and final
states that we need to add, respectively.

Consider the following transducer, ṫs1s2

i1 f1 i2 f2
(ε, ε)

ṫs1 ṫs2

Let (w,w′) ∈ T (s1s2). Then, by definition, there are x, x′, y, y′ such that w = xx′ and w′ = yy′,
and (x, y) ∈ T (s1) and (x′, y′) ∈ T (s2). By hypothesis, (x, y) ∈ R

(
ṫs1

)
and (x′, y′) ∈ R

(
ṫs2

)
.

Then, (x, y) (ε, ε) (x′, y′) ∈ R
(
ṫs1s2

)
.

But (x, y) (ε, ε) (x′, y′) = (x, y) (x′, y′) = (xx′, yy′) = (w,w′). Hence, (w,w′) ∈ R
(
ṫs1s2

)
.

Conversely, let us consider that (w,w′) ∈ R
(
ṫs1s2

)
. Then, by definition of path, there are

x, x′, y, y′ such that w = xx′ and w′ = yy′, and (x, y) ∈ R
(
ṫs1

)
and (x′, y′) ∈ R

(
ṫs2

)
. By induction

hypothesis, (x, y) ∈ T (s1) and (x′, y′) ∈ T (s2). Then (x, y) (ε, ε) (x′, y′) ∈ T (s1s2).

But (x, y) (ε, ε) (x′, y′) = (x, y) (x′, y′) = (xx′, yy′) = (w,w′). Hence, (w,w′) ∈ T (s1s2).

This proves that T (s1s2) = R
(
ṫs1s2

)
.

Consider the following two transducer, ṫs1+s2 and ṫs∗1 , respectively

i

i1

i2

f1

f2

f

(ε, ε)

(ε, ε)

(ε, ε)

(ε, ε)

ṫs1

ṫs2

i i1 f1 f

(ε, ε)

(ε, ε)(ε, ε)

(ε, ε)

ṫs1

It can be proved in a similar way that T (s1 + s2) = R
(
ṫs1+s2

)
and T (s∗1) = R

(
ṫs∗1

)
.

4.3. Equivalence Between S2D-REs and Transducers 55

Remark 4.47. For any S2D-RE, the transducer obtained by applying the Thompson’s method is
a SFT. If the S2D-RE is normalised, then the transducer obtained is a NFT.

4.3.2 Extension of the State Elimination Method to Transducers

The state elimination method for obtaining a RE from a given automaton can be extended to
transducers in order to obtain a S2D-RE from a given SFT.

Definition 4.48. A generalized transducer (or Regular Expression Labeled transducer) is a
sextuple

ṫ = (Q,Σ,∆, δ, I, F)

where Q, I, F , Σ, ∆ are exactly the same as those defined for SFTs, and δ ⊆ Q× S2D-RE→ Q

is the finite set of transitions.

Theorem 4.49. Given a SFT, there is a S2D-RE that realizes the same relation.

Proof. The state elimination method works as follows

• If the transducer has more than one initial state, i1, . . . , in, add a new initial state i and
(ε, ε) transitions from i to i1, . . . , in;

• Remove all the states that are not accessible or coaccessible;

• If there are no final states left, return as result ∅ and terminate;

• If the initial state s0 has in-degree not 0, add a new initial state i and an (ε, ε) transition
from i to s0;

• If the transducer has several final states, f1, . . . , fn, add a new final state f which will be
the only final state, with (ε, ε) transitions from f1, . . . , fn to f ;

• If the final state f has out-degree not 0, add a new final state f ′, which will be the only
final state, and an (ε, ε) transition from f to f ′;

• Convert the transducer into a generalized one, that is, replace the labels of the transitions
with S2D-RE. This means that when a transition from a state to another has more than
one atom as its label, namely (σ1, σ

′
1) , . . . , (σn, σ′n), the label of the transition becomes

n∑
i=1

(σi, σ′i);

• Delete the states, one by one, with exception to the initial and final states. To delete a
state s, replace each transitions (u, αu,s, s) and (s, αs,v, v), with u 6= s and s 6= v by a new
transiton from u to v which label is as follows

56 Chapter 4. 2D-Regular Expressions

u s v u v
αu,s αs,v

αs,s

becomes
αu,sα

∗
s,sαs,v

u s v u v
αu,s αs,v

becomes
αu,sαs,v

If a transition from u to v already exists, with label αu,v, replace it with
(
αu,v + αu,sα

∗
s,sαs,v

)
or (αu,v + αu,sαs,v), respectively.

This method terminates when the transducer has only two states, the initial and final states.
The S2D-RE equivalent to the SFT is the expression that labels the only transition from the
initial state to the final state.

The correction of this algorithm trivially follows from definition of path.

4.4 Applications of Linear Form

In this section, we discuss some methods to obtain a transducer from a given 2D-RE, either
standard or general. The methods are applications of the notion of linear form.

4.4.1 Conversion from S2D-REs fo SFTs

Definition 4.50. Let s be a S2D-RE over Σ1 ×∆1. The linear-form-transducer of s, denoted
by ṫlf(s), is a transducer such that ṫlf(s) = (Q,Σ,∆, δ, I, F) and Q = π(s) ∪ {s}, I = {s},
F = {s1 | s1 ∈ Q ∧ ε(s1)} = {(ε, ε)}, δ = {(s1, (σ1, σ2) , s2) | ((σ1, σ2) , s2) ∈ lf(s1) ∧ s1 ∈ Q},
Σ = Σ1 and ∆ = ∆1.

The set π(s) is a set that satisfies the following proposition, which is proved alongside
Proposition 4.54.

Proposition 4.51. Let s be a S2D-RE over Σ×∆. Then the set π(s) satisfies

π(∅) = ∅,

π((ε, ε)) = ∅,

π((σ, ε)) = {(ε, ε)} ,

π
((
ε, σ′

))
= {(ε, ε)} ,

π
((
σ, σ′

))
= {(ε, ε)} ,

π(s1 + s2) = π(s1) ∪ π(s2),

π(s1s2) = π(s1)s2 ∪ π(s2),

π(s∗1) = π(s1)s∗1.

4.4. Applications of Linear Form 57

Lemma 4.52. Let s be a S2D-RE over Σ×∆. The set Tr(s), inductively defined by

Tr(∅) = Tr((ε, ε)) = ∅,

T r((σ, ε)) = Tr
((
ε, σ′

))
= Tr

((
σ, σ′

))
= ∅,

T r(s1 + s2) = Tr(s1) ∪ Tr(s2),

T r(s1s2) = Tr(s1)s2 ∪ Tr(s2) ∪ F (s1)s2 × lf(s2),

T r(s∗1) = Tr(s1)s∗1 ∪ F (s1)s∗1 × lf(s∗1),

is such that Tr(s) = {(s1, (τ, τ ′) , s2) | ((τ, τ ′) , s2) ∈ lf(s1) ∧ s1 ∈ π(s)}. The set F (s) is the set
of final states in the linear-form-transducer of s, that is, F (s) = {s′ | s′ ∈ π(s) ∧ ε(s′) = (ε, ε)}.

Proof. We follow by induction on the structure of s. The base cases ∅ and (ε, ε) are trivial. The
cases (σ, ε), (ε, σ′) and (σ, σ′) are analogous to each other, so we will only explicitly present the
last one.

We have that π((σ, σ′)) = {(ε, ε)} and lf((ε, ε)) = ∅.

Therefore, {(s1, (σ, σ′) , s2) | ((σ, σ′) , s2) ∈ lf(s1) ∧ s1 ∈ {(ε, ε)}} = ∅.

Now let us suppose the claim is true for some 2D-REs s1 and s2.

• Case s1 + s2.

We have that

Tr(s1 + s2) =Tr(s1) ∪ Tr(s2)

=
I.H.

{(
s′1,
(
τ, τ ′

)
, s′2
)
|
((
τ, τ ′

)
, s′2
)
∈ lf

(
s′1
)
∧ s′1 ∈ π(s1)

}
∪
{(
s′1,
(
τ, τ ′

)
, s′2
)
|
((
τ, τ ′

)
, s′2
)
∈ lf

(
s′1
)
∧ s′1 ∈ π(s2)

}
=
{(
s′1,
(
τ, τ ′

)
, s′2
)
|
((
τ, τ ′

)
, s′2
)
∈ lf

(
s′1
)
∧ s′1 ∈ π(s1) ∪ π(s2)

}
=
{(
s′1,
(
τ, τ ′

)
, s′2
)
|
((
τ, τ ′

)
, s′2
)
∈ lf

(
s′1
)
∧ s′1 ∈ π(s1 + s2)

}
.

• Case s1s2.

We have that

Tr(s1s2) =Tr(s1)s2 ∪ Tr(s2) ∪ F (s1)s2 × lf(s2)

=
I.H.

{(
s′1,
(
τ, τ ′

)
, s′2
)
|
((
τ, τ ′

)
, s′2
)
∈ lf

(
s′1
)
∧ s′1 ∈ π(s1)

}
{s2}

∪
{(
s′1,
(
τ, τ ′

)
, s′2
)
|
((
τ, τ ′

)
, s′2
)
∈ lf

(
s′1
)
∧ s′1 ∈ π(s2)

}
∪ F (s1)s2 × lf(s2)

=
{(
s′1s2,

(
τ, τ ′

)
, s′2s2

)
|
((
τ, τ ′

)
, s′2
)
∈ lf

(
s′1
)
∧ s′1 ∈ π(s1)

}
∪ F (s1)s2 × lf(s2) ∪

{(
s′1,
(
τ, τ ′

)
, s′2
)
|
((
τ, τ ′

)
, s′2
)
∈ lf

(
s′1
)
∧ s′1 ∈ π(s2)

}
.

Since F (s1)s2×lf(s2) = {(s′1s2, (τ, τ ′) , s′2) | s′1 ∈ F (s1) ∧ ((τ, τ ′) , s′2) ∈ lf(s2)} and lf(s1s2) =
lf(s1)s2 ∪ ε(s1)lf(s2), we have that{(

s′1s2,
(
τ, τ ′

)
, s′2s2

)
|
((
τ, τ ′

)
, s′2
)
∈ lf

(
s′1
)
∧ s′1 ∈ π(s1)

}
∪ F (s1)s2 × lf(s2)

=
{(
s′′1,
(
τ, τ ′

)
, s′′2
)
|
((
τ, τ ′

)
, s′′2
)
∈ lf

(
s′′1
)
∧ s′′1 ∈ π(s1)s2

}
.

58 Chapter 4. 2D-Regular Expressions

Thus,

Tr(s1s2) =
{(
s′′1,
(
τ, τ ′

)
, s′′2
)
|
((
τ, τ ′

)
, s′′2
)
∈ lf

(
s′′1
)
∧ s′′1 ∈ π(s1)s2

}
∪
{(
s′′1,
(
τ, τ ′

)
, s′′2
)
|
((
τ, τ ′

)
, s′′2
)
∈ lf

(
s′′1
)
∧ s′′1 ∈ π(s2)

}
=
{(
s′′1,
(
τ, τ ′

)
, s′′2
)
|
((
τ, τ ′

)
, s′′2
)
∈ lf

(
s′′1
)
∧ s′′1 ∈ π(s1)s2 ∪ π(s2)

}
=
{(
s′′1,
(
τ, τ ′

)
, s′′2
)
|
((
τ, τ ′

)
, s′′2
)
∈ lf

(
s′′1
)
∧ s′′1 ∈ π(s1s2)

}
.

• Case s∗1.

We have that

Tr(s∗1) = Tr(s1)s∗1 ∪ F (s1)s∗1 × lf(s∗1)

=
I.H.

{(
s′1,
(
τ, τ ′

)
, s′2
)
|
((
τ, τ ′

)
, s′2
)
∈ lf

(
s′1
)
∧ s′1 ∈ π(s1)

}
s∗1 ∪ F (s1)s∗1 × lf(s∗1)

=
{(
s′1s
∗
1,
(
τ, τ ′

)
, s′2s

∗
1
)
|
((
τ, τ ′

)
, s′2
)
∈ lf

(
s′1
)
∧ s′1 ∈ π(s1)

}
∪ F (s1)s∗1 × lf(s∗1).

Since F (s1)s∗1 × lf(s∗1) = {(s′1s∗1, (τ, τ ′) , s′2) | s′1 ∈ F (s1) ∧ ((τ, τ ′) , s′2) ∈ lf(s∗1)} and lf(s∗1) =
lf(s1)s∗1, we have that{(

s′1s
∗
1,
(
τ, τ ′

)
, s′2s

∗
1
)
|
((
τ, τ ′

)
, s′2
)
∈ lf

(
s′1
)
∧ s′1 ∈ π(s1)

}
∪ F (s1)s∗1 × lf(s∗1)

=
{(
s′′1,
(
τ, τ ′

)
, s′′2
)
|
((
τ, τ ′

)
, s′′2
)
∈ lf

(
s′′1
)
∧ s′′1 ∈ π(s1)s∗1

}
.

Thus,

Tr(s∗1) =
{(
s′′1,
(
τ, τ ′

)
, s′′2
)
|
((
τ, τ ′

)
, s′′2
)
∈ lf

(
s′′1
)
∧ s′′1 ∈ π(s1)s∗1

}
=
{(
s′′1,
(
τ, τ ′

)
, s′′2
)
|
((
τ, τ ′

)
, s′′2
)
∈ lf

(
s′′1
)
∧ s′′1 ∈ π(s∗1)

}
.

This concludes the proof.

Corollary 4.53. For any S2D-RE s,

Tr(s) ∪ s× lf(s) = {(s1, (τ, τ ′) , s2) | ((τ, τ ′) , s2) ∈ lf(s1) ∧ s1 ∈ π(s) ∪ {s}}.

Proof. Trivial from Lemma 4.52.

Proposition 4.54. Let s be a S2D-RE over Σ×∆. Then T (s) = R
(
ṫlf(s)

)
.

Proof. The proof follows by induction on the structure of s. The case ∅ is trivial. The cases (σ, ε),
(ε, σ′) and (σ, σ′) are analogous and therefore we will only explicitly show the first one. It is
obvious that T ((σ, ε)) = {(σ, ε)}. On the other hand, the linear-form-transducer of (σ, ε) is such
that, by definition, Q = π((σ, ε)) ∪ {(σ, ε)} = {(ε, ε)} ∪ {(σ, ε)} = {(σ, ε) , (ε, ε)}, I = {(σ, ε)},
F = {(ε, ε)} and δ = Tr((σ, ε))∪(σ, ε)× lf((σ, ε)) = {((σ, ε) , (σ, ε) , (ε, ε))}, and has the following
representation.

(σ, ε) (ε, ε)
(σ, ε)

4.4. Applications of Linear Form 59

It is obvious that R
(
ṫlf((σ, ε))

)
= {(σ, ε)}.

Now let us suppose that we have s1 and s2 such that T (s1) = R
(
ṫlf(s1)

)
and T (s2) = R

(
ṫlf(s2)

)
,

and let Qi, Ii, Fi and δi, be the set of states, the set of initial states, the set of final states, and
the set of transitions of ṫlf(si), for i = 0, 1.

• Case s1 + s2.

We construct a transducer ṫ from ṫlf(s1) and ṫlf(s2) such that Q = π(s1) ∪ π(s2) ∪
{s1 + s2} = π(s1 + s2) ∪ {s1 + s2}. On the other hand, I = {s1 + s2} and F = F ′1 ∪ F ′2 ∪
ε(s1 + s2) {s1 + s2}, where F ′i = Fi if si /∈ Fi or if si ∈ Fi and si ∈ π(si), and F ′i = Fi \{si},
otherwise. Therefore, F = {q ∈ Q | ε(q) = {(ε, ε)}}. Finally, δ = Tr(s1 + s2) ∪ (s1 + s2)×
lf(s1 + s2), and from Corollary 4.53 this is {(s′1, (τ, τ ′) , s′2) | ((τ, τ ′) , s′2) ∈ lf(s′1) ∧ s′1 ∈ Q}.
Therefore, ṫ is a linear-form-transducer for s1 + s2.

We know that T (s1 + s2) = T (s1) ∪ T (s2). Therefore, for a pair of words (w,w′) such
that w ∈ Σ∗ and w′ ∈ ∆∗ we know that if (w,w′) ∈ T (s1 + s2) then either (w,w′) ∈ T (s1)
or (w,w′) ∈ T (s2). W.l.o.g., let us consider that (w,w′) ∈ T (s1). Thus, by induction
hypothesis, we know that there is an accepting path (s1, (τ1, τ

′
1) , s′1, (τ2, τ

′
2) , . . . , s′n), where

((τ1, τ
′
1) , s′1) ∈ lf(s1), where w = τ1 · · · τn, w′ = τ ′1 · · · τ ′n, and by definition we know that

s′1 ∈ π(s1). Therefore, s′1 ∈ Q. On the other hand, lf(s1 + s2) = lf(s1) ∪ lf(s2), thus
((τ1, τ

′
1) , s′1) ∈ lf(s1 + s2) and by construction (s′1, (τ2, τ

′
2) , . . . , s′n) is a valid path from s′1

in ṫ and since s′n ∈ F ′1, we have that s′n ∈ F , that is, the path where we replace the first
state s1 by s1 + s2 is an accepting path in ṫ as well. Therefore, (w,w′) ∈ R

(
ṫ
)
.

Conversely, we can prove that if (w,w′) ∈ R
(
ṫ
)
then (w,w′) ∈ T (s1 + s2).

• Case s1s2.

We construct a transducer ṫ from ṫlf(s1) and ṫlf(s2) such that Q = π(s1)s2∪π(s2)∪{s1s2} =
π(s1s2)∪{s1s2}. On the other hand, I = {s1s2} and F = ε(s2)F1s2∪F2∪ ε(s1s2) {s1s2} =
{s ∈ Q | ε(s) = {(ε, ε)}}. Finally, δ = Tr(s1s2) ∪ (s1s2) × lf(s1s2), and we know from
Corollary 4.53 that this is {(s′1, (τ, τ ′) , s′2) | ((τ, τ ′) , s′2) ∈ lf(s′1) ∧ s′1 ∈ Q}. Therefore, ṫ is
a linear-form-transducer for s1s2.

We know that T (s1s2) = T (s1)T (s2). Therefore, for a pair of words (w,w′) such that w ∈ Σ∗

and w′ ∈ ∆∗ we know that if (w,w′) ∈ T (s1s2), then there exist x, x′ ∈ Σ∗ and y, y′ ∈ ∆∗

such that w = xx′, w′ = yy′, (x, y) ∈ T (s1) and (x′, y′) ∈ T (s2). Thus, by induction
hypothesis, we know that there is one accepting path (s1, (τ1, τ

′
1) , s′1, . . . , (τn, τ ′n) , s′n) in

ṫlf(s1) such that x = τ1 · · · τn, y = τ ′1 · · · τ ′n, ((τ1, τ
′
1) , s′1) ∈ lf(s1) and s′n ∈ F1, and one

accepting path
(
s2,
(
τn+1, τ

′
n+1

)
, s′n+1, . . . , (τm, τ ′m) , s′m

)
in ṫlf(s2) such that x′ = τn+1 · · · τm,

y′ = τ ′n+1 · · · τ ′m,
((
τn+1, τ

′
n+1

)
, s′n+1

)
∈ lf(s2) and s′m ∈ F2, which means that s′m ∈ F ,

where m > n. By construction, we know that if we take the first path and concatenate s2

to each of the states in such path, we obtain a valid path in ṫ from the initial state s1s2

to a state s′ns2. Also by construction, if we take the second path and we concatenate the
state s2 to s′n we obtain a valid path in ṫ from s′ns2 to a final state s′′m. Therefore, the
path

(
s1s2, (τ1, τ

′
1) , s′1s2, . . . , s

′
ns2,

(
τn+1, τ

′
n+1

)
, s′n+1, . . . , (τm, τ ′m) , s′m

)
is a valid path in ṫ

60 Chapter 4. 2D-Regular Expressions

where s1s2 is an initial state and s′m a final state in ṫ, thus the path is an accepting one.
Therefore, (xx′, yy′) = (w,w′) ∈ R

(
ṫ
)
.

Conversely, we can prove that if (w,w′) ∈ R
(
ṫ
)
then (w,w′) ∈ T (s1s2).

• Case s∗1.

We construct a transducer ṫ from ṫlf(s1) such that Q = π(s1)s∗1 ∪ {s∗1} = π(s∗1) ∪ {s∗1}. I =
{s∗1} and F = F1s

∗
1∪{s∗1} = {s ∈ Q | ε(s) = {(ε, ε)}}. Finally, δ = Tr(s∗1)∪ s∗1× lf(s∗1), and

from Corollary 4.53 we know that this is {(s′1, (τ, τ ′) , s′2) | ((τ, τ ′) , s′2) ∈ lf(s′1) ∧ s′1 ∈ Q}.
Therefore, ṫ is a linear-form-transducer for s∗1.

We know that T (s∗1) = (T (s1))∗. Therefore, for a pair of words (w,w′) such that w ∈ Σ∗

and w′ ∈ ∆∗ we know that if (w,w′) ∈ T (s∗) then there exist x1, . . . , xn ∈ Σ∗ and
y1, . . . , yn ∈ ∆∗ such that w = x1 · · ·xn and w′ = y1 · · · yn and each (xi, yi) ∈ T (s1). Thus,
by induction hypothesis, we know that for each (xi, yi) there is an accepting path pi in
ṫlf(s1) (

s∗1, (τ1i, τ
′
1i) , s′1i, . . . ,

(
τmii, τ

′
mii

)
, s′mii

)
where xi = τ1i · · · τmii and yi = τ ′1i · · · τ ′mii

. Now let p′i be a path obtained from pi by
concatenating s∗1 to each state, except the first one. On the other hand, given the final state
s′mi

s∗1 in p′i, we replace the first state in p′i+1 by that final state s′mii
s∗1. By construction,

we know that each p′i is a valid path in ṫ.

We now construct a path p from each p′i such that we "concatenate" each p′i to p′i+1, that is,
since the final state of each p′i is the first state of p′i+1, the "concatenation" of p′i and p′i+1 is(

s′mi−1i−1s
∗
1, (τ1i, τ

′
1i) , . . . ,

(
τmii, τ

′
mii

)
, s′mii

s∗1,
(
τ1(i+1), τ

′
1(i+1)

)
, . . . , s′mi+1i+1

)
.

Thus, p is a valid path in ṫ. Since p is from s∗1 ∈ I to s′mnns
∗
1 ∈ F1s

∗
1, which means that

s′mnns
∗
1 ∈ F , we have that p is an accepting path in ṫ. Therefore, (x1 · · ·xn, y1 · · · yn) =

(w,w′) ∈ R
(
ṫ
)
.

Conversely, we can prove that if (w,w′) ∈ R
(
ṫ
)
then (w,w′) ∈ T (s∗1).

This concludes the proof.

Theorem 4.55. For any S2D-RE s the following inequality hold

|π(s) ∪ {s}| ≤ |s|Σ∪∆ + |s|Σ×∆ + 1.

Proof. Follows directly from Proposition 4.54.

4.4. Applications of Linear Form 61

4.4.2 Conversion from G2D-REs fo SFTs

Definition 4.56. Let g be a G2D-RE over Σ1 ×∆1. The linear-form-transducer of g, denoted
by ṫlf(g), is a transducer such that ṫlf(g) = (Q,Σ,∆, δ, I, F) and Q = π(g) ∪ {g}, I = {g}, F =
{g1 | g1 ∈ Q ∧ ε(g1)} = {(ε, ε)}, δ = {(g1, (τ1, τ2) , g2) | ((τ1, τ2) , g2) ∈ lf(g1) ∧ g1 ∈ Q}, Σ = Σ1

and ∆ = ∆1.

The proof for the following proposition is provided alongside proof for Proposition 4.60.

Proposition 4.57. Let g be a G2D-RE over Σ×∆. Then the set π(g) satisfies

π(∅) = ∅,

π((r1, r2)) = π(r1)× π(r2) ∪ π(r1)× {ε} ∪ {ε} × π(r2),

π(g1 + g2) = π(g1) ∪ π(g2),

π(g1g2) = π(g1)g2 ∪ π(g2),

π(g∗1) ⊆ π(g1)g∗1,

where, for any r over an arbitrary alphabet Σ1, π(r) satisfies

π(∅) = π(ε) = ∅,

π(σ) = {ε} ,

π(r1 + r2) = π(r1) ∪ π(r2),

π(r1r2) = π(r1)r2 ∪ π(r2),

π(r∗1) = π(r1)r∗1.

Lemma 4.58. Let g be a G2D-RE over Σ×∆. The set Tr(g), inductively defined by

Tr(∅) = ∅

Tr((r1, r2)) =
{(
g1,
(
τ, τ ′

)
, g2
)
|
((
τ, τ ′

)
, g2
)
∈ lf(g1) ∧ g1 ∈ π((r1, r2))

}
Tr(g1 + g2) = Tr(g1) ∪ Tr(g2)

Tr(g1g2) = Tr(g1)g2 ∪ Tr(g2) ∪ F (g1)g2 × lf(g2)

Tr(g∗1) = Tr(g1)g∗1 ∪ F (g1)g∗1 × lf(g∗1)

is such that Tr(g) = {(g1, (τ, τ ′) , g2) | ((τ, τ ′) , g2) ∈ lf(g1) ∧ g1 ∈ π(g)}.

Proof. This follows by induction on the structure of g. The base cases are trivial and the other
cases are proved exactly as in Lemma 4.52.

Corollary 4.59. For any G2D-RE g,

Tr(g) ∪ g × lf(g) = {(g1, (τ, τ ′) , g2) | ((τ, τ ′) , g2) ∈ lf(g1) ∧ g1 ∈ π(g) ∪ {g}}.

Proof. Trivial from Lemma 4.58.

62 Chapter 4. 2D-Regular Expressions

Proposition 4.60. Let g be a G2D-RE over Σ×∆. Then T (g) = R
(
ṫlf(g)

)
.

Proof. This follows by induction on the structure of g. We will only show the base cases since
the rest of the proof follows the same structure as the proof for Proposition 4.54.

The case ∅ is trivial. For the case (r1, r2), let us suppose that we have (w,w′) ∈ T ((r1, r2)). By
definition, we know that w ∈ L(r1) and w′ ∈ L(r2). From Proposition 4.38 and by construction,
we know that if w = τ1 · · · τn and w′ = τ ′1 · · · τ ′n, where each τi ∈ Σ∪{ε} and each τ ′i ∈ ∆∪{ε}, then
there is a path in ṫlf((r1, r2)) from the state (r1, r2) to the state (ε, ε) with label (τ1 · · · τn, τ ′1 · · · τ ′n),
and since the state (ε, ε) is a final state, the path is accepting. Therefore, (w,w′) ∈ R

(
ṫlf((r1, r2))

)
.

Conversely, we can prove that if (w,w′) ∈ R
(
ṫlf((r1, r2))

)
, then (w,w′) ∈ T ((r1, r2)).

Theorem 4.61. For any G2D-RE g the following inequality holds

|π(g) ∪ {g}| ≤ |g|Σ∪∆ + |g|Σ × |g|∆ + 1.

Proof. This follows directly from Proposition 4.60.

4.5 Input and Output Projections of 2D-REs

In this section, we explore different applications of input and output projections of G2D-REs.

Definition 4.62. The input-projection regular expression of a G2D-RE g over Σ×∆, denoted
by πi(g), is a regular expression defined recursively on the structure of g as follows, for every r1

over Σ and r2 over ∆

πi(∅) = ∅,

πi((r1, r2)) = r1,

πi(g1g2) = πi(g1)πi(g2),

πi(g1 + g2) = πi(g1) + πi(g2),

πi(g∗1) = πi(g1)∗,

where g1, g2 are also G2D-REs over Σ×∆.

Definition 4.63. The output-projection regular expression of a 2D-RE g over Σ×∆, denoted
by πo(g), is a regular expression defined recursively on the structure of g as follows, for every r1

over Σ and r2 over ∆

πo(∅) = ∅,

πo((r1, r2)) = r2,

πo(g1g2) = πo(g1)πo(g2),

πo(g1 + g2) = πo(g1) + πo(g2),

πo(g∗1) = πo(g1)∗,

4.6. Word Problem 63

where g1, g2 are also G2D-REs over Σ×∆.

We now present a method for getting a transducer that realizes the same relation as a A2D-RE
(r1, r2) over Σ×∆.

Theorem 4.64. Let (r1, r2) be a A2D-RE over Σ×∆. Then there is a transducer that realizes
the same relation as g obtained from the automata equivalent to πi((r1, r2)) and πo((r1, r2)).

Proof. Observe that, from (4.6) in Lemma 4.39, we have that (r1, r2) ∼ (r1, ε) (ε, r2).

Now let ȧ(r1) and ȧ(r2) be the automata equivalent to r1 and r2, respectively, where by
definition, r1 = πi((r1, r2)) and r2 = πo((r1, r2)). From ȧ(r1) we construct a transducer where
the output labels of each transition are ε. It is obvious that the transducer obtained realizes the
same relation as T ((r1, ε)).

On the other hand, from ȧ(r2) we construct a transducer where the input labels of each
transition are ε. It is obvious that the transducer obtained realizes the same relation as T ((ε, r2)).

Now we can concatenate these two transducers, which produces a transducer that realizes the
concatenation of the two relations T ((r1, ε)) and T ((ε, r2)), that is, a transducer that realizes
the same relation as T ((r1, ε) (ε, r2)) = T ((r1, r2)).

Corollary 4.65. From Theorem 4.64, we can construct an extension of the Thompson’s method
for G2D-RE.

Proof. Use the method described in Theorem 4.64 for the base cases (r1, r2), (r1, ε), (ε, r2) and
(ε, ε). The rest of the proof is the same as the proof for Theorem 4.46.

4.6 Word Problem

One of the most important problems in the theory of computation is the word problem. In our
case, this problem translates to the following definition.

Definition 4.66. Given a S2D-RE s over Σ×∆, the word problem, for a pair of words (w,w′),
where w ∈ Σ∗ and w′ ∈ ∆∗, is to decide whether (w,w′) ∈ T (s).

This problem is decidable and we will now present an algorithm for deciding this. We will
analyse the problem for S2D-REs, but the problem can be seen for G2D-REs, either by extending
the methods to G2D-REs or by applying a conversion from G2D-RE to S2D-RE prior to applying
the method described.

From Corollary 4.26, we know that (w,w′) ∈ T (s) if and only if ε
(
∂(w,w′)(s)

)
= (ε, ε).

Therefore, we only need to compute ∂(w,w′)(s) and verify if ε
(
∂(w,w′)(s)

)
= (ε, ε).

64 Chapter 4. 2D-Regular Expressions

4.7 Equivalence Between 2D-REs

As seen in Berstel [3], the problem of deciding wether two relations are the same is undecidable.
Even so, there is a class of transducers for which this problem is decidable. We now revisit this
to present a method for deciding if two 2D-RE represent the same relation. Berstel presents a
proof for the decidability of the problem of deciding wether two sequential transducers realize the
same relation or not. Moreover, a transducer is equivalent to a sequential one if it is functional.

Definition 4.67. Let s (g) be a S2D-RE (G2D-RE) over Σ×∆. Then s (g) is functional if the
transducer that realizes the same relation is either functional or sequential.

Theorem 4.68. Let r and r′ be two functional 2D-REs (either standard or general) over Σ×∆.
Then the problem of deciding wether r and r′ realize the same relation is decidable.

Proof. Let ṫ and ṫ′ be two transducers that realize the same relation as r and r′, respectively.
Then it is decidable if ṫ and ṫ′ realize the same relation. The method, described in [3], is to see if
the following two conditions hold

• Dom
(
ṫ
)

= Dom
(
ṫ′
)
;

• R
(
ṫ
)
∪R

(
ṫ′
)
is functional.

Hence, we can see if πi(r) = πi(r′) using the methods for automata. The second condition
can be verified using a method for testing if a transducer is functional.

Remark 4.69. Note that for any given 2D-RE (either S2D-RE or G2D-RE) we can produce the
transducer that realizes the same relation and test if it is functional or not. Then, for two given
2D-REs, if the two transducers that realize the same relations are functional, Theorem 4.68 lets
us know if we can determine if the two 2D-REs realize the same relation or not. If either is not
functional, we can not apply this method.

Chapter 5

Implementation

In this chapter, we will discuss the implementation in FAdo [12, 24], a tool written in Python for
finite automata and regular languages manipulation. We will start by introducing some methods
already in FAdo prior to this work, in the first two sections, and the newly introduced ones in
the last section.

FAdo is organized in modules. Each module is organized in classes. An object in a class
can have attributes and methods to manipulate such objects. Some classes can use or produce
objects of a class in a different module.

Some objects, like FAs and transducers can be viewed using a graphical tool. In order to
obtain the graphical representation, one should use the method display(). This method as an
optional argument, strict, which has the value False by default. If this value is True, each
state will be displayed with its name, instead of the index that represents such state.

5.1 Finite Automata and Regular Languages

In this section, we will discuss some of the methods present in FAdo for finite automata and
regular languages manipulation, as well as some examples.

5.1.1 DFAs

The fa module defines the classes representing finite automata. Since different types of automata
have similarities between each other, FAdo provides a parent class, FA, that defines the basic
structure of finite automata. The attributes of a FA object are

• States: The set of states, represented by a list where each state is represented by an
index;

• Sigma: The alphabet, represented by a set of symbols;

65

66 Chapter 5. Implementation

• Initial: The index of the initial state;

• Final: The set of final states;

• delta: The transition function, represented by a dictionary.

The class FA also implements the methods necessary to manipulate one object of this class.
Some examples of such methods are addState: adds a state with a given name to the set of
states; deleteState: deletes a state with a given index from the set of states; and setFinal:
sets the set of final states to a given list of states.

The class DFA inherits the attributes and methods present in OFA, a subclass of FA. In FAdo,
FA is the abstract class for finite automata, and OFA is the base class for one way automata.
The DFA present in Figure 2.1 can be built in FAdo using the following code

>>> from FAdo.fa import *
>>> a = DFA()

>>> a.addState()

0

>>> a.addState()

1

>>> a.addState()

2

>>> a.setInitial(0)

>>> a.addFinal(2)

>>> a.addTransition(0,’a’,2)

>>> a.addTransition(0,’b’,1)

>>> a.addTransition(1,’a’,2)

>>> a.addTransition(1,’b’,2)

>>> a.addTransition(2,’a’,2)

>>> a.addTransition(2,’b’,1)

Listing 5.1: DFA example in FAdo.

5.1.2 NFAs

The NFA class is the class that implements NFAs. Like the DFA class, it is a subclass of OFA.
The attributes of a NFA object are the same as in FA, except that instead of Initial being the
index of the initial state, it is the set of indexes of the initial states.

The class OFA also has a method called regexpSE, that converts a finite automaton to an
equivalent regular expression, by applying the state elimination method. The NFA present in
Figure 2.2 can be built in FAdo using the following code

>>> n = DFA()

>>> n.addState()

0

5.1. Finite Automata and Regular Languages 67

>>> n.addState()

1

>>> n.addState()

2

>>> n.addInitial(0)

>>> n.addFinal(2)

>>> n.addTransition(0,’a’,2)

>>> n.addTransition(0,’b’,1)

>>> n.addTransition(0,’a’,0)

>>> n.addTransition(1,’a’,2)

>>> n.addTransition(1,’b’,2)

>>> n.addTransition(1,’a’,1)

>>> n.addTransition(2,’a’,2)

>>> n.addTransition(2,’b’,1)

Listing 5.2: NFA example in FAdo.

and the regular expression equivalent to such NFA can be obtained by n.regexpSE().

5.1.3 Regular Expressions

The reex module is the one that allows the tools to manipulate regular expressions. The main
class in reex is the class regexp, which has as attributes

• val: A symbol;

• Sigma: The alphabet of symbols;

• arg: An argument of an operation.

From Definition 2.8, we know that a regular expression can be either ∅ (the emptyset class)
or an expression given by the grammar in such definition, which can be ε (the epsilon class),
an atom which consists of a symbol from the alphabet (the atom class, where the symbol is given
by the val attribute), a disjunction of expressions (the disj class, where the expressions on the
left and on the right are given by the attributes arg1 and arg2, respectively), a concatenation of
expressions (the concat class, where the expressions on the left and on the right are given by the
same attributes as the disj class) and the Kleene star of an expression (the star class, where the
expression argument is given by the attribute arg). Since concatenations and disjunctions have
characteristics in common (for instance, both have a left and a right argument), they are both
subclasses of a connective class that implements the characteristics and methods they have
in common. In a similar way, neither emptyset nor epsilon have an argument or a symbol,
and like disjunctions and concatenations, they have other characteristics in common. Therefore,
they both inherit attributes and methods from a superclass called specialConstant.

FAdo provides a function to parse a regular expression from a given word, using the global
method str2regexp, which takes str, the word to be parsed, as an argument. The regular
expression in Example 2.9 can be parsed in FAdo using

68 Chapter 5. Implementation

>>> from FAdo.reex import *
>>> r = str2regexp("(a+b(a+b))(a+b(a+b))*")

>>> r

concat(disj(atom(a),concat(atom(b),disj(atom(a),atom(b)))),

star(disj(atom(a),concat(atom(b),disj(atom(a),atom(b))))))

>>> print r

(a + (b (a + b))) (a + (b (a + b)))*

Listing 5.3: Regular expression example in FAdo.

We can use FAdo to calculate the derivative of a regular expression w.r.t. a symbol using
the method derivative. The partial derivatives of a RE w.r.t. a symbol can be calculated
using partialDerivatives. We can also calculate the linear form and the set of all partial
derivatives. These methods can be used as follows

>>> r.derivative(’a’).reduced()

star(disj(atom(a),concat(atom(b),disj(atom(a),atom(b)))))

>>> r.partialDerivatives(’a’)

{star(disj(atom(a),concat(atom(b),disj(atom(a),atom(b)))))}

Listing 5.4: Derivatives and partial derivatives example in FAdo.

where reduced() is a method that applies some simplification methods, using equivalences like
r + ∅ ∼ r.

Finally, we can compute the NFA equivalent to a given RE with nfaThompson(), which
uses Thompson’s method and nfaPD() which uses the partial derivatives. FAdo does not allow
one to use Brzozowski’s method since there is no support for ACI+ equivalences.

FAdo also provides a method toNFA to produce the NFA equivalent to the given RE, which
uses by default the partial derivatives’ method. The name of the method to be used can be passed
by the argument nfa_method. For instance, r.toNFA(nfa_method = ’nfaThompson’)

computes the NFA equivalent to r using Thompson’s method.

5.2 Transducers

The module transducers in FAdo provides the tools for manipulation of transducers. The
superclass for each type of transducers that FAdo implements is Transducer, which inherits
from the class nfa seen in the previous section. This class has a new attribute, Output: the
set of output symbols. We consider Sigma to be the set of input symbols. SFTs and NFTs are
implemented by classes SFT and NFT, respectively, and both are subclasses of a parent class
GFT, the general form transducer, which is what we called in Section 3.2 a finite transducer. This
parent class implements, among others, a new addTransition method, which allows to have
input and output labels.

5.2. Transducers 69

The SFT in Example 3.11 and the NFT in Example 3.14 can be constructed in FAdo using

>>> from FAdo.transducers import *
>>> sft = SFT()

>>> sft.addState()

0

>>> sft.addState()

1

>>> sft.addInitial(0)

>>> sft.addFinal(0)

>>> sft.addTransition(0, ’a’, ’a’, 0)

>>> sft.addTransition(0, ’a’, ’b’, 1)

>>> sft.addTransition(1, ’b’, ’b’, 1)

>>> sft.addTransition(1, ’b’, ’a’, 0)

Listing 5.5: SFT example in FAdo.

and

>>> nft = sft.toNFT()

Listing 5.6: NFT example in FAdo.

respectively. The method toNFT() converts a given SFT in an equivalent NFT.

We will now present some newly added classes and methods to the transducers module.

5.2.1 Regular Expression Labeled Finite Transducers

Regular expression labeled finite transducers, as seen in Definition 4.48, are a type of transducers
that allow 2D-REs as labels of its transitions. Finite automata also have a similar definition
(Definition 2.31). FAdo provides a class to represent generalized finite automata, the GFA class.
This is useful for the state elimination method.

With that in mind, regular expression labeled finite transducers are implemented in FAdo by
the class RELFT, inheriting from the GFA class. Like we did for the Transducer class, we add
a new attribute Output: the set of output symbols. This class has some methods based on the
implementation of the similar methods in GFA.

The method regexpSE was added to the SFT class in transducers module, which
implements the extension of the state elimination method presented in Chapter 4. One can apply
this method to the transducer in Example 3.11. The method regexpSE can be used as follows

>>> s2dsft = sft.regexpSE()

>>> s2dsft

StarS2D(DisjS2D(AtomS2D(a/a),ConcatS2D(AtomS2D(a/b),

ConcatS2D(StarS2D(AtomS2D(b/b)),AtomS2D(b/a)))))

>>> print s2dsft

70 Chapter 5. Implementation

(a/a + a/b ((b/b)* b/a))*

Listing 5.7: State elimination method for transducers example in FAdo.

5.2.2 Sequential Transducers and Functionality Test

Sequential transducers were not yet implemented in FAdo, as well as the method described in
Section 3.3 for testing the functionality of a transducer. Therefore, a new method was added to
the SFT class, functionalIdentity, which uses the method identity. The last method
tests if the relation realized by a given transducer is equivalent to the identity relation.

On the other hand, as seen in Section 3.3 as well, an algorithm for converting a SFT into an
equivalent sequential transducer, provided the SFT is functional, was also newly added to FAdo.
Thus, the SFT class now has a method toSeq, which sequentializes a given SFT. Since FAdo
did not yet support sequential transducers, the class SeqFT was added to the transducers
module.

This new class is a subclass of SFT, and its attributes are the same as SFT except for a new
one, TerminalFunction: a dictionary that represents the terminal function defined for the
sequential transducer. This class implements a method called addTerminalFunction, that
given two attributes, srci and w adds the the representation of T (srci) = w to the SeqFT
object.

The examples Example 3.25 and Example 3.29 can be seen in FAdo by

>>> sft2 = SFT()

>>> sft2.addState()

0

>>> sft2.addState()

1

>>> sft2.addState()

2

>>> sft2.addState()

3

>>> sft2.addState()

4

>>> sft2.addInitial(0)

>>> sft2.addFinal(4)

>>> sft2.addTransition(0, ’a’, ’x’, 1)

>>> sft2.addTransition(0, ’a’, ’x’, 2)

>>> sft2.addTransition(1, ’a’, ’x’, 3)

>>> sft2.addTransition(2, ’a’, ’@epsilon’, 3)

>>> sft2.addTransition(3, ’b’, ’y’, 4)

>>> sft2.functionalityIdentityP()

False

Listing 5.8: Functionality test for a transducer example in FAdo.

5.3. 2D-REs 71

and

>>> seqsft = sft.toSeq()

Listing 5.9: Sequentialization of a transducer example in FAdo.

respectively.

We can obtain a witness of non-functionality using the method described in this work using
nonFunctionalIdW, which is implemented inside the SFT class.

5.3 2D-REs

In this section, we will discuss the implementation of the newly added reex2d module to FAdo,
which implements the notions discussed in Chapter 4.

Since REs and 2D-REs have characteristics in common, we can define a parent class for
both REs and 2D-REs, a class called RegularExpression, with a single attribute, Sigma:
an alphabet of symbols. For REs, it will be the alphabet of symbols, and for 2D-REs, it will be
the input alphabet of symbols. There are some methods that can also be defined in this parent
class. These methods will have different implementations in REs, S2D-REs and G2D-REs, but
the name of these methods is the same for all three types.

5.3.1 G2D-REs

The implementation of G2D-REs is very similar to the implementation of REs. The basic
structure follows the same idea as the basic structure for REs. The main class in module reex2d
is a class called G2Dre, which is a subclass of RegularExpression, thus inheriting the Sigma
attribute. The new attributes of G2Dre comparatively to RegularExpression are

• Output: The output alphabet of symbols;

• reexi: The input regular expression (over Sigma);

• reexo: The output regular expression (over Output).

As referred above, the basic structure of G2D-REs follows a structure similar to the classes that
represent REs. From Definition 4.2, we know that a regular expression can be either ∅ (the
EmptysetG2D class) or an expression given by the grammar in such definition, which can be an
atom (r1, r2) which is a pair of regular expressions r1 and r2 over Σ and ∆, respectively (the
AtomAtom class, where r1 and r2 are given by reexi and reexo attributes, respectively), a
disjunction of expressions (the DisjG2D class, where the expressions on the left and on the
right are given by the attributes arg1 and arg2, respectively), a concatenation of expressions

72 Chapter 5. Implementation

(the ConcatG2D class, where the expressions on the left and on the right are given by the
same attributes as the DisjG2D class) and the Kleene star of an expression (the StarG2D
class, where the argument is given by the attribute arg). Similarly to REs, we have the classes
ConnectiveG2D and SpecialConstatG2D. Additionally, since it eases the implementation,
we have the classes AtomEpsilon and EpsilonAtom, for the special cases of when the output
and the input is ε, respectively. Furthermore, when both the input and output expressions are ε,
we have the class EpsilonEpsilon.

The reex2d module provides a function to parse a G2D-RE from a given word, using the
global method str2G2D, which takes str, the word to be parsed, as an argument. The parser
used requires atoms to be encapsulated under square brackets. If the word represents a S2D-RE,
the method standardP returns True after the parsing is done and the expression given is an
object of the S2Dre class, which is discussed in the next subsection. For instance, the G2D-RE
((a+ b)∗a, ba) (ε, a∗), can be parsed in FAdo using

>>> from FAdo.reex2d import *
>>> g = str2G2D("[(a+b)*a/ba][@epsilon/a*]")

>>> g

ConcatG2D(AtomAtom((a + b)* a/b a),EpsilonAtom(a*))

>>> print g

[[(a + b)* a/b a] [@epsilon/a*]]

Listing 5.10: Parsing a G2D-RE example in FAdo.

Furthermore, if we want to convert this G2D-RE into an equivalent S2D-RE, we can
use g.toStandard(). This conversion follows the application provided in the beginning
of Subsection 4.2.3. This method has an argument which is by default False (normalised),
which handles if one wants to convert the G2D-RE into an equivalent normalised one, which
uses Theorem 4.44.

We can convert an A2D-RE to an equivalent SFT using the Thompson’s method described
in Theorem 4.64 using g.sftThompson(). This method takes as argument nfa_method, the
method to use for converting the RE into the equivalent NFA, which is by default nfaThompson.
Note that since an A2D-RE is a particular case of G2D-REs (that is, since it is generated by the
rule for (r1, r2)), A2D-REs are represented by the AtomAtom, AtomEpsilon and EpsilonAtom
classes.

The methods related to partial derivatives and linear form are discussed in the next subsection,
since the names of these methods are the same, thus having the same usage. The implementation,
though, differs from G2D-REs to S2D-REs.

5.3.2 S2D-REs

Since S2D-REs are a particular case of G2D-REs, the main class we use to represent S2D-REs,
S2Dre, is a subclass of G2Dre. The implementation structure is the same as G2D-REs. Namely,

5.3. 2D-REs 73

we have the classes EmptysetS2D, EpsilonS2D, LeftEpsilonS2D, RightEpsilonS2D,
AtomS2D, DisjS2D, ConcatS2D and StarS2D, as well as the classes ConnectiveS2D and
SpecialConstantS2D.

We can parse the S2D-RE in Example 4.10, calculate the linear form and equivalent SFT
using the linear form method and Thompson’s method as follows

>>> s = str2S2D("(a/b+@epsilon/b*)a/@epsilon+@epsilon/b")

>>> s

DisjS2D(ConcatS2D(DisjS2D(AtomS2D(a/b),

StarS2D(LeftEpsilonS2D(b))),RightEpsilonS2D(a)),LeftEpsilonS2D(b))

>>> print s

(a/b + (@epsilon/b)*) a/@epsilon + @epsilon/b

>>> s.linearForm()

{(’@epsilon’, ’b’):

{ConcatS2D(StarS2D(LeftEpsilonS2D(b)),RightEpsilonS2D(a)),

EpsilonS2D()}, (’a’, ’@epsilon’): {EpsilonS2D()}, (’a’, ’b’):

{RightEpsilonS2D(a)}}

>>> s.linearForm(extended=True)

{(’@epsilon’, ’b’): {ConcatS2D(RightEpsilonS2D(a),RightEpsilonS2D(a)),

ConcatS2D(StarS2D(LeftEpsilonS2D(b)),RightEpsilonS2D(a)), EpsilonS2D()},

(’a’, ’@epsilon’): {ConcatS2D(LeftEpsilonS2D(b),RightEpsilonS2D(a)),

EpsilonS2D()}, (’a’, ’b’): {RightEpsilonS2D(a)}}

>>> sftpd1 = s.toSFT()

>>> sftpd2 = s.toSFT(sft_method="sftThompson")

Listing 5.11: Manipulation of S2D-REs example in FAdo.

Furthermore, if we want to check if a pair of words is in the relation realized by the S2D-RE
or if we want to check if two S2D-REs, we can use

>>> s.evalWordP(("aa","bbbbb"))

True

>>> s1 = str2S2D("a/b")

>>> s2 = str2S2D("b/a")

>>> s3 = str2S2D("a/@epsilon@epsilon/b")

>>> s1.equivalentP(s2)

False

>>> s1.equivalentP(s3)

True

Listing 5.12: Membership and equivalence between S2D-REs example in FAdo.

Chapter 6

Conclusion and Future Work

In this work, we presented a new way to represent binary relations over words by means of some
type of regular expressions.

We started by introducing some of the work known for automata and regular expressions
and on the following chapters we extended some of these definitions, theorems and algorithms.
Unfortunately, not everything that can be applied to automata can be applied to transducers.
For instance, we know that one can determine if two FA ȧ1 and ȧ2 are equivalent, that is, if
L(ȧ1) = L(ȧ2) or not, but from [3], since it is undecidable to know if two rational relations are
equivalent, this is undecidable for transducers as well, since the relation realized by a transducer
is a special type of relation. Even so, as we presented in this work, some popular methods can be
extended to transducers, for instance, we have the state elimination method and the Thompson’s
method, two of the methods usually taught on an introductory computation models’ class.

In Section 3.3, we introduced sequential transducers. In [20], the author presents a method
for minimizing a sequential transducer. This method is not yet implemented in FAdo, since it
uses a different representation of transducers. It might be interesting to implement this method
in FAdo by either adapting the method to the representation in FAdo, or by implementing this
new representation alongside with the already present.

In Section 4.4, we presented efficient algorithms for obtaining a transducer from a given
2D-RE. This is an important fact, since these methods are efficient both in time and space, so
there is no trade off of one for the other.

Since this work is just an introduction to 2D-regular expressions, there is a lot of work that
can follow. For instance, one can study the applications of this to code theory. For this, we
revert to Konstantinidis, Meijer, Moreira and Reis [18] and for symbolic transducers, we revert
to Veanes [29].

One theme that is very interesting to study is to find a way to characterise 2D-REs where the
linear-form transducer is functional. This is studied for deterministic regular languages in [4].

It might be interesting as well to find out if (G2D-RE,⊕,�,~, ∅, (ε, ε)) forms a Kleene

75

76 Chapter 6. Conclusion and Future Work

algebra. For that, we revert to Kozen [19].

Finally, one can study the number of states on average produced by the linear-form method
w.r.t. the size of the 2D-RE. This study would make sense for both S2D-REs and G2D-REs.

Better characterisation of different 2D-regular expressions might lead to finding an algorithm
for deciding if two functional 2D-regular expressions are equivalent or not, without the need to
convert each to an equivalent transducer.

Bibliography

[1] Cyril Allauzen and Mehryar Mohri. Efficient algorithms for testing the twins property. J.
Autom. Lang. Comb., 8(2):117–144, April 2003. ISSN: 1430-189X.

[2] Valentin M. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theoretical Computational Science, 155(2):291–319, 1996.

[3] Jean Berstel. Transductions and context-free languages. Ed. Teubner, pages 1–278, 1979.

[4] Anne Brüggemann-Klein and Derick Wood. Deterministic regular languages. In Alain Finkel
and Matthias Jantzen, editors, STACS 92, 9th Annual Symposium on Theoretical Aspects of
Computer Science, Cachan, France, February 13-15, 1992, Proceedings, volume 577 of Lecture
Notes in Computer Science, pages 173–184. Springer, 1992. doi:10.1007/3-540-55210-3_182.

[5] Janusz A. Brzozowski. Canonical regular expressions and minimal state graphs for definite
events. In Mathematical theory of Automata, Volume 12 of MRI Symposia Series, pages
529–561. Polytechnic Press, Polytechnic Institute of Brooklyn, N.Y., 1962.

[6] Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, October
1964. ISSN: 0004-5411. doi:10.1145/321239.321249.

[7] Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch. Squaring
transducers: an efficient procedure for deciding functionality and sequentiality. Theoretical
Computer Science, 292(1):45 – 63, 2003. ISSN: 0304-3975. Selected Papers in honor of Jean
Berstel. doi:https://doi.org/10.1016/S0304-3975(01)00214-6.

[8] Jean-Marc Champarnaud and Djelloul Ziadi. From mirkin’s prebases to antimirov’s word
partial derivatives. Fundam. Inf., 45(3):195–205, January 2001. ISSN: 0169-2968.

[9] Christian Choffrut. Une caracterisation des fonctions sequentielles et des fonctions sous-
sequentielles en tant que relations rationnelles. Theoretical Computer Science, 5(3):325 –
337, 1977. ISSN: 0304-3975. doi:https://doi.org/10.1016/0304-3975(77)90049-4.

[10] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001. ISBN: 0070131511.

[11] C. C. Elgot and J. E. Mezei. On relations defined by generalized finite automata. IBM J.
Res. Dev., 9(1):47–68, January 1965. ISSN: 0018-8646. doi:10.1147/rd.91.0047.

77

http://dl.acm.org/citation.cfm?id=873977.873979
http://dx.doi.org/10.1007/3-540-55210-3_182
http://dx.doi.org/10.1145/321239.321249
http://dx.doi.org/https://doi.org/10.1016/S0304-3975(01)00214-6
http://dx.doi.org/https://doi.org/10.1016/S0304-3975(01)00214-6
http://dl.acm.org/citation.cfm?id=1219957.1219960
http://dl.acm.org/citation.cfm?id=1219957.1219960
http://dx.doi.org/https://doi.org/10.1016/0304-3975(77)90049-4
http://dx.doi.org/https://doi.org/10.1016/0304-3975(77)90049-4
http://dx.doi.org/10.1147/rd.91.0047

78 Bibliography

[12] Tools for Formal Languages manipulation FAdo. http://fado.dcc.fc.up.pt, 2018.

[13] Yuan Gao, Nelma Moreira, Rogério Reis, and Sheng Yu. A survey on operational state
complexity. J. Autom. Lang. Comb., 21(4):251–310, June 2016. ISSN: 1430-189X.

[14] Seymour Ginsburg. Algebraic and Automata-Theoretic Properties of Formal Languages.
Elsevier Science Inc., New York, NY, USA, 1975. ISBN: 0444105867.

[15] Western University. Grail+. http://www.csit.upei.ca/ ccampeanu/grail/, 2018.

[16] John E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton.
Technical report, Stanford, CA, USA, 1971.

[17] John E. Hopcroft and Jeffrey D. Ullman. Introduction To Automata Theory, Languages,
And Computation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1990. ISBN: 020102988X.

[18] Stavros Konstantinidis, Casey Meijer, Nelma Moreira, and Rogério Reis. Symbolic
manipulation of code properties. Journal of Automata, Languages and Combinatorics,
23(1–3):243–269, 2018. doi:10.25596/jalc-2018-243.

[19] D. Kozen. A completeness theorem for kleene algebras and the algebra of regular events.
Inf. Comput., 110(2):366–390, May 1994. ISSN: 0890-5401. doi:10.1006/inco.1994.1037.

[20] M. Lothaire. Applied Combinatorics on Words. Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 2005. doi:10.1017/CBO9781107341005.

[21] Boris G. Mirkin. An algorithm for constructing a base in a language of regular expressions.
Engineering Cybernetics, 5:51–57, 1966.

[22] Edward F. Moore. Gedanken-experiments on sequential machines. The Journal of Symbolic
Logic, 23(1), 1958.

[23] Darrell Raymond and Derick Wood. Grail: A c++ library for automata and expressions. J.
Symb. Comput., 17(4):341–350, April 1994. ISSN: 0747-7171. doi:10.1006/jsco.1994.1023.

[24] Rogério Reis and Nelma Moreira. Fado: tools for finite automata and regular expressions
manipulation. 2002.

[25] OpenFST Library. Google Research and NYU’s Courant Institute.
http://www.openfst.org/twiki/bin/view/fst/webhome, 2018.

[26] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, New
York, NY, USA, 2009. ISBN: 0521844258, 9780521844253.

[27] Ken Thompson. Programming techniques: Regular expression search algorithm. Commun.
ACM, 11(6):419–422, June 1968. ISSN: 0001-0782. doi:10.1145/363347.363387.

[28] Vaucanson. The vaucanson project. http://vaucanson-project.org, 2018.

http://fado.dcc.fc.up.pt
http://dl.acm.org/citation.cfm?id=3173515.3173516
http://dl.acm.org/citation.cfm?id=3173515.3173516
http://www.csit.upei.ca/~ccampeanu/Grail/
http://dx.doi.org/10.25596/jalc-2018-243
http://dx.doi.org/10.25596/jalc-2018-243
http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1017/CBO9781107341005
http://dx.doi.org/10.1006/jsco.1994.1023
http://www.openfst.org/twiki/bin/view/FST/WebHome
http://dx.doi.org/10.1145/363347.363387
http://vaucanson-project.org

Bibliography 79

[29] Margus Veanes. Applications of symbolic finite automata. In Proceedings of the 18th
International Conference on Implementation and Application of Automata, CIAA’13, pages
16–23, Berlin, Heidelberg, 2013. Springer-Verlag. ISBN: 978-3-642-39273-3. doi:10.1007/978-
3-642-39274-0_3.

[30] JFLAP. Experimenting with formal languages. http://www.jflap.org, 2018.

[31] Sheng Yu. Handbook of formal languages, vol. 1. chapter Regular Languages, pages 41–110.
Springer-Verlag, Berlin, Heidelberg, 1997. ISBN: 3-540-60420-0.

http://dx.doi.org/10.1007/978-3-642-39274-0_3
http://www.jflap.org
http://dl.acm.org/citation.cfm?id=267846.267848

	Abstract
	Resumo
	Acknowledgments
	Contents
	List of Figures
	Listings
	1 Introduction
	2 Background
	2.1 Formal Languages
	2.2 Finite Automata
	2.2.1 Deterministic Finite Automata
	2.2.2 Nondeterministic Finite Automata
	2.2.3 Equivalence Between DFAs and NFAs

	2.3 Regular Expressions
	2.3.1 Derivatives
	2.3.2 Partial Derivatives
	2.3.3 Linear Form

	2.4 Equivalence Between REs and FAs
	2.4.1 State Elimination Method
	2.4.2 Thompson's Method
	2.4.3 Brzozowski's Method
	2.4.4 Antimirov's Method

	3 Transducers
	3.1 Binary Relations Over Words
	3.2 Transducers
	3.2.1 Finite Transducers
	3.2.2 Standard and Normal Form Transducers

	3.3 Sequentialization of a Transducer
	3.3.1 Sequential Transducers
	3.3.2 Functional Transducers
	3.3.3 Functionality Test
	3.3.4 Witness of Non-Functionality
	3.3.5 Sequentialization of a Functional Transducer

	4 2D-Regular Expressions
	4.1 Standard 2D-Regular Expressions
	4.1.1 Partial Derivatives
	4.1.2 Linear Form

	4.2 General 2D-Regular Expressions
	4.2.1 Partial Derivatives
	4.2.2 Linear Form
	4.2.3 Converting a G2D-RE into a S2D-RE

	4.3 Equivalence Between S2D-REs and Transducers
	4.3.1 Extension of Thompson's Method to Transducers
	4.3.2 Extension of the State Elimination Method to Transducers

	4.4 Applications of Linear Form
	4.4.1 Conversion from S2D-REs fo SFTs
	4.4.2 Conversion from G2D-REs fo SFTs

	4.5 Input and Output Projections of 2D-REs
	4.6 Word Problem
	4.7 Equivalence Between 2D-REs

	5 Implementation
	5.1 Finite Automata and Regular Languages
	5.1.1 DFAs
	5.1.2 NFAs
	5.1.3 Regular Expressions

	5.2 Transducers
	5.2.1 Regular Expression Labeled Finite Transducers
	5.2.2 Sequential Transducers and Functionality Test

	5.3 2D-REs
	5.3.1 G2D-REs
	5.3.2 S2D-REs

	6 Conclusion and Future Work
	Bibliography

