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Abstract

In this thesis, the theory of the electronic nonlinear optical conductivity of crystals
is explored under the independent electron and electron dipole approximations, with
relaxation considered at a phenomenological level.

The problem is treated in a semiclassical fashion: a quantum system of electrons
moving in the periodic potential of the crystal is coupled to a classical optical field.
The nonlinear conductivity is derived by means of a perturbative expansion of the
density matrix in powers of the optical field. Two equivalent formulations of the
perturbation theory are commonly used: the so-called velocity gauge and length
gauge methods. These methods are analyzed in detail here and new insights are
provided.

In the velocity gauge, a minimal coupling Hamiltonian is adopted and the optical
field couples only states with the same Bloch vector in the first Brillouin zone. The
treatment presented in this work differs from the one in the literature, as it is
developed in more general grounds: it retains its validity for finite band models
and circumvents the difficulties that have been traditionally associated with this
method. This formulation is well suited for numerical calculations, where it permits
nonlinear conductivities to be computed for any frequency, beyond the usual low
energy descriptions, without added difficulty.

The standard length gauge method, in its current form, dates back to the early
nineties. We revisit this approach and show that a clearer and more insightful use
of it can be made by having the nonlinear conductivity broken up into fundamental,
easily calculable, pieces, based on the possible resonances between optical frequencies
and band energies. Analogously to how a Fermi golden rule calculation gives the
linear optical response, the nonlinear conductivity can be obtained by evaluation of
a small number of integrals.

Regardless of the method used to derive it, the final expression for the nonlinear
conductivity is constrained by symmetry. Beyond the usual tensor relations derived
from specific crystal symmetries, general statements can be made on the basis of
overall permutation symmetry and time-reversal symmetry. Overall permutation
symmetry is defined here for complex frequencies over the entire Argand plane,
making it applicable even for lossy media. The signatures and consequences of
these two important symmetries are identified.

As a demonstration of the principles described here, the linear, second and third
order conductivity of monolayer graphene are studied, with the possibility of a sub-
strate induced gap.
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Chapter 1

Introduction

This thesis is entirely devoted to the study of the nonlinear optical properties of
solids, as encoded in a specific set of response functions: the nonlinear optical con-
ductivities. These are the central objects in perturbative treatments of nonlinear
optics and are responsible for a broad range of phenomena, from harmonic genera-
tion to the intensity dependent refractive index.

Schemes for computing these quantities were devised in the early sixties based
on standard perturbation theory. At the time, the focus was on the nonlinear
optical properties of dielectric inorganic solids and dilute media such as atomic gases.
For crystals, the complications brought by the existence of energy bands and the
extended character of the Bloch functions delayed progress until the nineties, when
clear and applicable formulas for the nonlinear conductivity were finally obtained.

Nonetheless, a survey of the literature will show such calculations to be involved
and opaque. It is my goal here to clarify the structure of these response functions
in the case of crystals and present methods by which they can be straightforwardly
computed. After the historic overview that will soon follow and a presentation of
the standard perturbation theory in Chapter 2, two new methods are described in
succeeding chapters.

The first method, presented in Chapter 4, is entirely new and resolves a decades
long problem concerning equivalent gauge choices. It is, in a sense, a reformulation
of the minimal coupling approach that extends its generality and frees it from any
unphysical infrared divergences.

The second method is given in Chapter 5 and is more of a close look at the
widely adopted perturbation theory of Aversa and Sipe that attempts to bring a
greater clarity to this theory by inspection of the existing resonances in the nonlinear
conductivity. It is shown that besides insight, considerable simplification of the
calculations can be achieved by the reasoning introduced here.

These methods provide complementary and improved ways to compute the non-
linear conductivity of crystals, both numerically and analytically. They are demon-
strated by calculations of the nonlinear optical response of a series of two-band
models. These models are first presented in Chapter 3.

Further understanding of the structure of the nonlinear conductivity follows from
symmetry constraints. The usual symmetries are reviewed and focus is placed on
(a generalized version of) overall permutation symmetry. The implications of these
symmetries, or their absence, are addressed in Chapter 6 of this work.

Chapter 7 summarizes the findings and discusses topics for future research.

7



1. INTRODUCTION

The subject of nonlinearities in condensed media is a complex one and some sim-
plifying assumptions must be made. The discussion presented here will be confined
to the electronic contribution to the nonlinear conductivity of crystals, typically
dominant at optical frequencies. Relaxation of the generated currents is introduced
via a phenomenological parameter (Section 2.5).

Additionally, two fundamental approximations are assumed throughout this the-
sis: the independent electron and the electric dipole approximations. The latter
consists of neglecting the spatial dispersion of the nonlinear conductivity and is
reasonable for most cases of interest, since the wavelength of light is usually much
greater than the unit cell size. Conversely, the neglect of electron-electron inter-
actions can be considered a drastic oversimplification. Still, attending to the com-
plexity of the nonlinear response of solids, it seems recommendable to first attain a
proper understanding of the response at the single electron level. Also, comparisons
with experiment suggest that, at least for gapless systems, qualitative agreement
can be found.

There is a certain elegance and simplicity in the structure of the nonlinear con-
ductivity that is easily lost beneath the formal weight of second and third order
perturbation theory and it is the purpose of this text to bring them forth.

1.1 Constitutive relation

The central equations of electrodynamics were discovered in the nineteen century,
first written down by Maxwell [1], and later rephrased by Heaviside [2] using his
vector calculus.

V-E=p/e (1.1)
V-B=0 (1.2)
VXE=-0B (1.3)
V X B = poeg OE + g 0,J (1.4)

Here, the fields E and B will be regarded as classical.

Considering the significant impact the field theory of electromagnetism had in
physics, and society in general, one could be inclined to think that the study of light,
an electromagnetic phenomenon, ought to have been exhausted by now. Yet, optics,
the branch of physics that explores the behavior and uses of light is ever evolving,
with new discoveries and inventions put forth every year. Part of this incessant
exploration is no doubt due to the richness of the underlying field theory and the
technological implications that stem from a greater control over the properties of
light. But equally significant is the diversity of scenarios that nature presents us
by means of a wide variety of materials through which light can propagate or be
absorbed.

When a light wave moves through any material, it affects the motion of the
charged particles therein, be they free carriers or bound charges. This charge mo-
tion builds up to a macroscopic current density J which acts as a source of new
electromagnetic waves. If the relation between the current density and the optical

8



1. INTRODUCTION

fields, termed the constitutive relation', is specified, then Eqs. 1.1-1.4 can be solved
for the optical field E(t), allowing for a complete description of the evolution of any
light pulse in the medium.

The constitutive relation J(E) can be rather complicated even for simple systems.
In attempting to formulate a description of some generality, it is natural to first
consider the limit of weak optical fields, sufficiently weak to merit a power series
expansion,

J)=IV®) +IDE) +-- + I + ... (1.5)

The first term in this expansion is a linear combination of the optical fields,
evaluated at any given time.

JAW () = /M aPe(t, vy Bt dt! (1.6)

with an implicit summation over repeated tensor indices o. The coefficients are our
response functions. This expression is however too general; some symmetries are
always present that constrain this linear relation. From causality, it follows that
oPe(t,t') = 0 for t' > t, and time translation symmetry? implies [3]

JPW(t) = /+Oo ot —t") Bt dt’ (1.7)

[e.e]

This is the usual definition of the optical conductivity. Similarly, we can take
higher powers of E into account,

+00 —+00
:/ / P (f g ) EOL) . B () dby . d,

(1.8)
This equation defines the nonlinear conductivity of order n. Specifying the form
of the nonlinear conductivities for a medium equates to deriving its constitutive
relation.
Eq. 1.8 is written in the time-domain. Often, the light pulse is well defined in
frequency (e.g. CW lasers) and it is then more useful to express the constitutive
relation in the frequency domain,

+ +
/ = / wdwl...dwn Uﬁal"'o‘"(wl,...,wn)Eo‘l(wl)...Ea”(wn) e Wit twn)t

(1.9)
with

+oo
E (1)) = / B (1) et gy (1.10)

o0

! Actually, it is more common to have the constitutive relation defined as the functional rela-
tionship between the electric polarization and the optical fields. The response function is then
the susceptibility instead of the conductivity - the connection between the two is explored in Ap-
pendix B. However, there are several reasons for why it is preferable to consider the electric current
instead of the polarization, especially in the presence of free carriers.

2Here it is meant that the entire system is to be translated, the field and the medium; the
optical experiment could be carried out at any time of the day, without it affecting the results.



1. INTRODUCTION

and

+o00 +0c0 ) ]
oPoon (L wy) = / e / ghoron(p gt et gy dt,
— 0o —0oQ

(1.11)

For the Fourier transforms in Eq. 1.11 to converge, the time-domain conductivity
must vanish for ¢; — +o00. In other words, the current is required to decay when the
optical field is removed in order for the frequency domain description to be sensible.
We will return to this point later (see Section 2.5). The convergence for negative
times is ensured by causality.

In most circumstances, the first term in Eq. 1.5 will suffice. This is the regime
of linear optics, that we observe in our everyday experience. In it, a monochromatic
light wave incident on a transparent material will propagate at a medium-dependent
speed, whilst maintaining its frequency of oscillation. Stating it in the languages
of particles, if a light beam comprised of red photons is sent into the material, the
photons that shoot out on the other side will still be red photons. A monochromatic
beam may refract, diffract, experience birefringence and other linear effects, but
retains its frequency (color). If a secondary monochromatic beam is used, the first
beam is unaffected by its presence. Optical waves do not interact with each other,
nor do they significantly alter the optical properties of the medium they propagate
in.

These commonplaces no longer hold when the constitutive relation becomes non-
linear. The properties of the medium are then dependent on the intensity of illumi-
nation and optical waves experience medium-mediated interactions.

The reason a linear relation can often be assumed at optical frequencies is that
the optical fields are usually much weaker than the microscopic atomic fields that
bind the electrons. If coherent intense light is used however, as that provided by
lasers, then the higher order terms can no longer be neglected.

In these situations, the lowest order non-zero nonlinear term in Eq. 1.5 is often
sufficient to describe the light-matter interaction. This means that most considera-
tion is given to the second or third order conductivity. If the medium lacks inversion
symmetry, then the main focus lies on the second order conductivity, while in cen-
trosymmetric media all even orders in Eq. 1.5 vanish and the third order conductivity
is of greater interest.

1.06 um 7'y

AVAVAVAVAVAVAY KTP w 20
AVAVAVAVAVAVAY. ~

(a) (b)

Figure 1.1: Second harmonic generation: (a) A light beam at a wavelength
2mc/w = 1.06 pm (infrared) incident on a KTP crystal is converted into radia-
tion at 2mc¢/(2w) = 532nm (green light); (b) Energy-level diagram of the medium
illustrating the absorption of two infrared photons and emission of a green photon.
This process is commonly used in green laser pointers [1], where green laser light is
generated from infrared lasers.
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1. INTRODUCTION

Various nonlinear phenomena become possible due to the second and third order
conductivities. If we consider two light waves at frequencies w; and wq (for conve-
nience, let us suppose w; > 2ws), it can be gleaned from Eq. 1.9 that at second order
current oscillations will be induced at w; + wy (sum frequency generation - SFG),
wy —we (difference frequency generation - DFG), 2w, and 2w, (second harmonic gen-
eration - SHG). In the third order, more possibilities arise: 2w; +wq (SFG); wy 4 2ws
(SFG); 2wy — wy (DFG); wy — 2wy (DFG); 3w; and 3wy (third harmonic generation
- THG), among others. Crucially, the current is a source term in Maxwell’s equa-
tions and these oscillating currents will generate optical waves at these new optical
frequencies. It is then possible to have mixing of light waves to generate new waves
of distinct frequencies. The case of second harmonic generation is illustrated in
Fig. 1.1.

Many special cases exist, such as those involving DC fields (take for instance
wy=0 in the examples above), DC currents (the so-called shift [5], injection [5] and
jerk [6-8] currents) and the effects a light wave has on itself due to the changes it
causes in the medium it propagates (optical Kerr effect, intensity-dependent refrac-
tive index, self-phase modulation). These effects will not be discussed in this thesis
in any detail, as the emphasis lies in providing a framework that works for any set
of optical frequencies. Some of the main second and third order nonlinear effects
can be seen in Table 1.1, together with the nonlinear conductivities that describe
them. More appropriate and extensive discussions can be found in several standard
textbooks on the subject [3, 9, 10]. A useful resource letter written by Garmire [I 1]
compiles introductory references to the many specific topics encompassed by non-
linear optics.

Nonlinear conductivity | Nonlinear optical effects

o(w,w) Second harmonic generation

o(w,0) Linear electro-optic (Pockels) effect
o(w, —w) Photogalvanic effect; shift and injection currents
0(w,0,0) Quadratic electro-optic (DC Kerr) effect
o(w,w,w) Third harmonic generation
o(w,w,0) Field-induced second harmonic generation

Optical Kerr effect; intensity dependent refractive index;
self-phase modulation; self-focusing
Optical Kerr effect; intensity dependent refractive index;

0.0 :
0w, —12,9) cross-phase modulation
o(w,w, —2w) Two-color current injection
o(w, —w,0) Jerk, injection and shift currents

Table 1.1: Different frequency components of the nonlinear conductivity describe
distinct nonlinear optical effects. Specific references on most of these effects can be
found in [11].

11



1. INTRODUCTION

1.2 A historical overview

In 1961, Franken, Hill, Peters and Weinreich reported the first observation of optical
second harmonic generation [12]. At the Harrison Randall Laboratory of Physics in
Michigan, they had a beam of coherent red light, emitted by a ruby laser, traverse a
piece of crystalline quartz and form a saturated dark spot in a spectographic plate
standing on the other side. A smaller spot formed about thirty-five centimeters
to its left. That tiny spot was caused by the arrival of a few ultraviolet photons
generated in the quartz crystal and marked the birth of a new subfield of optics:
nonlinear optics.

Their discovery would not have been possible without Maiman’s invention of
the laser the previous year [13, 11]. It was the emergence of this new source of
intense coherent radiation (with field strengths up to the order of 107 V/m) that
was to propel a series of fundamental discoveries over the incoming decade on new
nonlinear optical phenomena [15], of which Franken’s et al observation of harmonic
generation was the first®. Conversely, nonlinear optics diversified available laser
technology and expanded its potential applications [1].

In the same month the work on second harmonic generation was presented,
another group reported the first observation of two-photon absorption [16]. This
was quickly followed by some theoretical order of magnitude estimations on the
two-photon absorption cross-section [17] (the possibility of multiphoton absorption
was first conceived and analyzed by Goeppert-Mayer in her PhD thesis, way back in
1931). Two-photon absorption is directly related to the real part of the third order
conductivity [3].

Optical mixing of a more general character, including sum-frequency genera-
tion [18] (observed by setting two ruby lasers at different temperatures), optical
rectification [19] and DC-field induced second harmonic generation [20], among oth-
ers, was explored during the early sixties. It was realized very early that much higher
conversion efficiencies in harmonic generation were possible if one ensured the in-
volved waves were phase-matched. Phase-matching of optical waves was achieved
by proper use of birefringent crystals [21, 22] (e.g. KDP). All these nonlinear ef-
fects were encompassed in the theoretical framework set by Armstrong et al in
1962 [23]. This work included a derivation of the nonlinear response functions based
on perturbation theory as well as an extensive discussion on the set of coupled wave
equations that resulted when the nonlinear constitutive relation was inserted in
Maxwell’s equations. The solutions of these wave equations describe optical mixing
and propagation effects in nonlinear media [3, 10].

The importance of symmetry was not left unnoticed in these early investigations.
At the time, a pertinent question was if the measured optical nonlinearities were due
to ionic or electronic motions (or both?). This was answered with a suggestion by
Kleinman [24] to take a closer look to the symmetry properties of the susceptibility
(or conductivity) tensors. Considerations of the crystal’s point symmetry had in fact
been used to discard the possibility of artifact in Franken’s et al experiment [12]. Tt
was known that the symmetry of the second order susceptibility (conductivity) was

3From the effects in Table 1.1, some of those involving DC fields form an exception as they do
not necessarily require intense laser light. The DC Kerr and Pockels effects were observed in the
second half of the nineteen century, much before the birth of the laser and are often presented as
precursors to the development of nonlinear optics [15].

12



1. INTRODUCTION

identical to that of piezoelectric tensors, which had already undergone proper classi-
fication for the various crystal symmetry groups [24, 25]. Kleinman pointed out that
the measurements that had been made of harmonic generation used optical frequen-
cies well below those of electronic transitions and well above ionic ones, therefore
the dispersion of the nonlinear tensors should be negligible if the nonlinearities were
due to electronic contributions and not so otherwise. The dispersionless tensors
have a greater symmetry and hence a smaller number of independent components,
which could be tested experimentally. It was soon confirmed that the electronic
contributions were in fact dominant [26].

Kleinman symmetry is a special case of overall permutation symmetry [3, 10].
This more general symmetry was demonstrated in [23] for lossless systems. An
extension of the validity of overall permutation symmetry was proved in [27] by
extending the domain region of the nonlinear conductivity to the complex plane
(see Section 2.5). The most interesting aspect of this symmetry is that it connects
different frequency components of the nonlinear conductivity, thereby providing a
link between distinct nonlinear effects. An example that was verified early on is
the connection between optical rectification and the linear electro-optic effect in
the “clamped lattice” regime [19]. Another consequence of this symmetry are the
Manley-Rowe relations [27-29] that relate the emitted and absorbed powers at dif-
ferent optical frequencies in lossless nonlinear media. Overall permutation symmetry
is discussed extensively in Chapter 6.

Nonlinear conductivities successfully provide us with a unified understanding
of nonlinear optics in the perturbative regime, but the actual calculation of the
nonlinear conductivity for a specific medium is challenging [3]. The cumbersome
expressions that follow directly from perturbation theory often come accompanied
with some subtle difficulties and require (sometimes considerable) analytical work
to be put in a form that can be of use. Most importantly, a requirement to accu-
rately evaluate such expressions is a detailed knowledge of the perturbation matrix
elements and the electronic energies of the system [30].

The ability to compute the second and third order conductivities is of great value
in determining the materials of interest for applications and in the design of optical
devices involving nonlinear processes [3, 31]. It can also be useful in retrieving
information about the materials themselves [1, 31]. The nonlinear optical properties
of crystals are known to be more sensitive to the details of the wavefunctions and
eigenergies than their linear counterparts, making the accuracy of such calculations
a more stringent test on the validity of band structure theories [30, 32].

During the seventies, the focus was on atomic and molecular gases. For suffi-
ciently simple molecules, ab initio calculations of the dipole matrix elements were
possible and found good agreement with experiment [3, 33, 31]. This was the case
for harmonic generation in alkali-metal vapours [34], with their simple hydrogen-like
spectra, and for molecular hydrogen [33], where calculations of the third order sus-
ceptibility matched the measured values of Raman gain and of the spontaneous Ra-
man cross-section. For more complex systems, semiempirical methods were adopted
with measured values of transition energies and oscillator strengths incorporated into
the calculation [3]. A pioneering effort in this front were the works on p-nitroaniline 4

4Qrganic compounds like p-nitroaniline with highly charge-correlated 7 electron states attracted
great interest at the time due to their unusually high optical nonlinearities. This makes it perhaps
less surprising that graphene was later shown to have a strong nonlinear optical response.
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1. INTRODUCTION

that used well established molecular orbital calculations to obtain quantitative pre-
dictions for the second order susceptibility® [35-338]. These ultimately reproduced
the experimental data rather well [35].

Comprehensive studies of the nonlinear optical response of crystals came much
later. The first measurements showing the dispersion of the second order conduc-
tivity were presented in [39]. Some correlation was found between critical points of
the band structure and pronounced features in the nonlinear optical response. The-
oretically, the first proper full band structure calculation was performed by Fong
and Shen [10] on zincblende semiconductors using an empirical pseudopotential
approach to predict the behavior of the nonlinear conductivity over an extended
frequency range®. It is worth emphasizing that one of their conclusions was that
the k-dependence of the dipole matrix elements could not be ignored”. A decade
later, their work was expanded on by a research group from University of Toronto
that presented their own full band structure calculations on the nonlinear optical
response of semiconductors [5, 30, 32, 411—11], using empirical tight binding mod-
els and, later, density functional theory. Their works included comparisons between
different methods of obtaining the perturbation matrix elements [30], a study on the
anisotropy in the third order response of silicon [11] and, in 1990, the first calcula-
tions of the third order conductivities of semiconductors over an extended frequency
range [32]. That it took decades from the development of the general framework for
solids [25] to its application to specific systems is a testament to the complexity of
the task.

Most of the works discussed so far used a minimal coupling Hamiltonian,

H = Hy(t,p + e A(t)) (1.12)

where Hy is the unperturbed Hamiltonian of the crystal and A(t) is the vector
potential: E(t) = —0d;A. A non-obvious consequence of the choice of gauge em-
ployed in Eq. 1.12 is that apparent unphysical infrared divergences permeate the
perturbative results. This can be seen by noting that A(w) = —iE(w)/w, giving
a factor of w™" in the n-th order nonlinear conductivity (see Section 2.4) that, if
not cancelled, leads to an infinite DC response. This happens even for insulators
with no free charge carriers present, a clearly unphysical situation. The cancella-
tions do occur, of course, and the divergences are only apparent, as can be shown
by careful manipulations. Aspnes [15] provided one of the first demonstrations of
this for crystals of zincblende symmetry. The difficulty is there for the nonlinear
optical response of atomic systems too [10], but is aggravated in the case of solids by
the complexity of the expressions [17]. It sets the perturbation theory on a delicate
ground, where approximations easily result in nonsensical answers and it ultimately
led this approach to fall in disfavor. This serves also as a warning to the reader:
some care should be taken when revisiting this older literature, since these prob-
lems were not yet fully understood and would not be appropriately addressed until

5 Actually, the calculations concerned the second order hyperpolarisability. But for our purposes
here, it does not matter whether we are talking about hyperpolarisabilities, susceptibilities or
conductivities; it all amounts to the same, since they are easily converted into each other (when
ignoring local field effects).

SPrevious attempts used phenomenological models around the critical points and/or focused
only on the optical response at zero frequency.

"For the sake of simplicity, theorists are sometimes tempted to take them as constants.
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1. INTRODUCTION

the nineties [17—19], when alternative formulations were proposed and the previous
failures were recognized in hindsight as being the result of sum rule violations.

The natural solution was then to adopt a different gauge. Sipe and Ghahra-
mani [17], basing themselves on a previous work [50], did just that and developed
an approach that was inherently free from infrared divergences and provided the
first generally applicable expressions for the nonlinear conductivity. Alternative
approaches were derived from density functional theory, including the works of
Levine [51], which introduces a position dependent field and takes the limit to an
uniform field at the end of the calculation, and Dal Corso et al [52, 53], that opted
to perform the calculations in real space with Wannier functions.

However, the most successful and popular method in current use is the one
introduced by Aversa and Sipe [19], based on a dipole interaction term:

H = Hy(t,p) — et - E(t) (1.13)

It corresponds to a different, but equivalent, gauge choice than Eq. 1.12. The
associated perturbation theory has no spurious divergences, no difficulties emerge
from band truncation and it allows for a clean separation of intraband and inter-
band contributions. The representation of the position operator in the Bloch basis
is nontrivial [51] (see Section 2.3), but this was proven not to be an obstacle in com-
puting the nonlinear conductivity [18, 19]. With the use of this Hamiltonian and
the removal of artificial divergences, actual physical divergences could be identified
in the relaxation-free limit that were related to new interesting physical effects, such
as the shift and injection currents [5, 19, 55].

As mentioned before, the discussion presented here is confined to systems of
non-interacting electrons and spatially uniform electric fields (at the atomic scale).
Exciton effects, quadrupole moments and electron-electron interactions are certainly
important, but reside outside the scope of this thesis. If this historical review offers
any perspective, it should be that enough difficulties are present already at the single
electron level to merit a detailed discussion.

The use of Eq. 1.12 is often referred to as the velocity gauge and Eq. 1.13 as
the length gauge. The apparent discrepancies in the derived results despite gauge
invariance was a decades-long puzzle that only recently got properly resolved [56].
We shall return to this question (Section 2.4), when listing the advantages and
disadvantages for each gauge; most of the current text is dedicated to clarifying
aspects of these two perturbation methods and presenting additional refinements.
We start by revisiting the standard perturbation theory calculation of the nonlinear
response.

15



Chapter 2

Perturbation theory

In order to perform the expansion of the current in the optical fields (Eq. 1.5), we
must recur to quantum mechanical perturbation theory. The general case is first
reviewed with relevant notation established for future use. The specific nonlinear
response functions of interest are then identified and the role of gauge fixing dis-
cussed.

2.1 Density matrix formalism

An ensemble of quantum systems can be described by a density operator p evolving
in time according to the von Neumann equation:

iR = [}AI,/B} (2.1)

The statistical average of any observable can be obtained by tracing its product
with the density operator, O = (O) = Tr(O p), and therefore all the dynamics of
the ensemble is contained in Eq. 2.1. Consider the Hamiltonian

H(t) = Hy+ V(t) (2.2)

where the first term on the right hand side is assumed to be well understood and
have known eigenstates |i,) with energies ¢,, and the second term couples a set of
observables O% to external classical fields £,

V(t) = O B*(t) (2.3)

This term is assumed to be small and a perturbative treatment will ensue.

In the absence of the perturbation, the system is assumed to be in thermal equi-
librium and the density matrix is time-independent and diagonal in the eigenbasis
of Hy. The perturbation is switched on at ¢ = —oo. To describe the time evolution
of the ensemble, we must solve Eq. 2.1 with p(—o0) = po.

In the interaction picture, the von Neumann equation takes the form

ih () = | Vi(t), pr (1) (2.4)
with



2. PERTURBATION THEORY

where Uy(t) = e~ 7"t is the time evolution operator associated to the unperturbed
Hamiltonian.
The solution to Eq. 2.4 can be written as

ity ==y [ i) i@t == [ 103 ) B (26)

o hJ) oo

Transforming back to the Schrodinger picture,

i3 [ OEDIOF€). a0 Oul—0) B (1)
:ﬁo_% /_ O — 1), pu(t! — )] (') d¥’ (2.7)

From here the usual perturbative approach is followed. In zeroth order in
the perturbation, the density operator is described by the equilibrium distribution

pO(t) = po-
In first order,

0 =5 [ A OF — ). B (2.8)

In second order,

5 (1) = (—;.L) [t [ an 105 - 0,007 0 - 0. ) B 0) B0

(2.9)
Generalizing to order n,

S\t to
(1) = <—;) / dt,, / At [OF (ty, — 1), ... [0 (t1 — 1), po.. ] BV (t1)...E* (L)
. - (2.10)

This is the general structure of the perturbative solutions to Eq. 2.1.

A consequence of the perturbative solutions having the form of nested commu-
tators is that their trace must always be zero. Indeed, it follows from Eq. 2.7 that
Tr p = Tr po and Tr p™ = 0 for n > 0.

These solutions were formulated in the time domain. For the case of an harmonic
perturbation or, more generally, in the case that the classical fields have a spectrum
localized around some central frequency, it is useful to express the density operator
and the perturbation theory in the frequency domain,

plw) = /_+O° dt p(t) e™! (2.11)

o0

The perturbative solutions could be expressed in the frequency domain by Fourier
transformation of Eqgs. 2.8-2.10, but an easier derivation results by returning to the
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2. PERTURBATION THEORY

equation of motion (Eq. 2.1) and using the representation provided by the eigenstates
of H()Z

Z.hatpab = [Ho, p]ab + [Va p]ab = Pab AEab + [Va p]ab (212)

with A€y, = €, — €. Applying a Fourier transform,

“+oo
(hw — A€ap) pap(w) = / V(t), p(t)]ape™" dt (2.13)
giving the recursion relation
W) = /+OO[<9 P ()] B(1) € dt
ab hw — Aeqy, J_ oo ’ ab

+o00 400 dw’ dw" Oa (n— 1( )]ab . / )
/ / oo he—he, D @NEMw-w W) (214)

Once again, we note that the perturbation is small and that p(® (w) = po (27) 6(w).
In linear order,

= gy 0%, o 0%, o
(1) . 1 y P0Jab  1Ha . y P0lab o
) = [ GR eI ) (2m) b - ) = N Ew) (215)

(e o]

In second order,

400 ptoo dw1 dWQ Oag p(l)(wl)]ab
E* 2 — W —
pab / / o 27 hw — Acyp (w2) (27) d(w — w1 — wa)
oo dwo oo dwy 1 1
= JRS— — OO&Q Oal
»/—oo 27 — 0o 27 hwy + hwy — Aegp ’hwl—AEO[ 7p0] b
x B (wl)Eaz (WQ) (27’[‘) (5(&) — w1 — w2) (216)

where o stands for the Hadamard product: (Ao B)., = Ay Bap.

The notation just used is probably unfamiliar to the reader. Since it is often
employed in this text, it is here exemplified by making the commutator structure at
second order explicit,

as 1 a1 7:00 7100 ac a2
|:O ) m}l _ AE °© [O 7p0] ZOCLC ﬁw1 Aecb Z hwl Aeaco (217)

where, at this point, the inner commutator could also be expanded. This notation
is the one used in [50, 57] and is useful in abbreviating expressions.
In general,

+0oo +o0
o deon du 1 o 1 o
Pap ( ) / o / o hw1++hu)n—Aeo O hw1 Ae [O ,po].,,

—o0 00 ab
X Ewy)... B (wy) 27m)0(w — w1 -+ —wy) (2.18)

Often, when performing this type of computations, the commutators are ex-
panded in all their glorious detail, with final expressions containing many terms

18



2. PERTURBATION THEORY

and patterns that hard to recognize if not for diagrammatic techniques, when they
exist. While the commutators will inevitably be expanded to perform specific com-
putations in any given system, there is great value in maintaining this condensed
notation until such is required. General properties are often more easily found and
proven by manipulation of these expressions. Much of this thesis work builds on
a proper appreciation of the structure of nested commutators in Eq. 2.18 and its
generalization.

It is also worth noting that while Eqs. 2.8-2.10 are written in operator form,
Eqgs. 2.15-2.18 involve matrices in the representation set by the eigenstates of Hy.
Nothing was assumed about the spectrum of Hy, which may therefore involve either
discrete energy levels or a continuum (bands) or both.

2.2 Response functions

A particular application of perturbation theory is the calculation of response func-
tions (let us call them, say, o), that describe how some observables of interest

JP = (JP) = Tr(jﬁ /3) are affected by the presence of the external fields £(¢). In

nonlinear optics, J would be the electric current and E the electric field, but for
now the setting remains completely general.

A notation is introduced at this point that shall prove useful in abbreviating
calculations,

+o0 +o0
ﬁ(”)(t)z/ dtn---/ dty poron(t —ty, ...t —t,) EY(ty) ... B (t,) (2.19)

o0 oo

for n > 1.
Comparing with Eq. 2.10, we see that

N e i\" Ao A ~
Pt "(tl, e tn) = <_ﬁ> [OI"(—tn), ...[011 (—tl), po]...] @(tl — tg)...@(tn_l — tn)G)(tn)
(2.20)
Likewise, we can define in the frequency domain,

+oo +oo
ﬁ(") (w) = / dwn/ dun P (W, e wp) BN (wr) . B (wy) (27) 0(w—wy...—wp)

oo 2T o 2T
(2.21)
which, by comparison with Eq. 2.18, gives
o ) = ! o |O% _ o [0, po]
Js wl""’wn_hw1+~~+hwn—A6 o e . Pol - - .
(2.22)

It is now straightforward to express a general response function using the previous
definitions. If we consider the relation between a set of observables J? and the
external fields, then for sufficiently weak fields a power series expansion may be
appropriate,
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2. PERTURBATION THEORY

A

(JPY(E) = (J5O 4 (JAHD ¢ (JHD 4 (2.23)

where

R +oo +o0o
<J5>(">(t)z/ dtn---/ dty oPoron(t —ty .t —t,) E*(ty) ... B (t,)

. (2.24)
It can also be expressed in the frequency domain,

. “+oo +oo
(Jﬁ>(n)(w)5/ duwn / @Uﬁal.-.an(wh.”,wn)

oo 21 oo 2T
X BN wy)... B (wy) (27) 6(w — w1 -+ — wy)
(2.25)

The relation J(E) is, in the regime where perturbation theory is valid, captured
by the time-domain or frequency domain response functions defined in Eqs. 2.24
and 2.25, respectively. Relating this to previous definitions, it is clear that any such
response function will always be obtained from Eqs. 2.20 and 2.22 by tracing over
the observable of interest,

U'Balman (tla e 7tn> = Tr(jﬁ pAOéln-Oln (t17 Tt ’tn)) (226)
o (g, w) = Tr(JP 0 (wy, wn)) (2.27)

If written explicitly,

P () =

(—2>nTr (72 1057 (~tn), (O3 (1), o)-.]) Otr — 12)..O(tn1 — £)O(t)  (2:28)

JP? 1
Baq...an ) = ba O O
7 (@1, ;) Zabhw1+--.+hwn—Aeab[ ooy = e ° L0 ol b

(2.29)

The quantities defined in Eqgs. 2.19 and 2.21 are themselves response functions
of sort, describing the relation between the density operator (an observable) and the
classical fields. But the expressions in Eqs 2.28 and 2.29 are, of course, the ones of
greater interest for us here. As highlighted in the previous section, the frequency
components of the nonlinear conductivity are particularly useful in nonlinear op-
tics and Eq. 2.29 is the main reason we undertook this review of density matrix
perturbation theory.

As a side note, it is useful to know that, when calculating response functions,
the structure of the perturbative solutions in Eqs. 2.28 and 2.29 can be rearranged
in the following way:
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2. PERTURBATION THEORY

oforan(y ) =

i

<h>nﬁ ([)0 [@?1(—151), o [@?n(_tn),ﬁ] D Ot1 — t2).-O(tn_1 — 1,)O(tn)

(2.30)
oPon (G ) =
(=" Z(PO) o _ o...|O0% ! o J?| ...
- aa " hwy + Ae "hwy + -+ Rwy, + A€ e
(2.31)

Eqgs. 2.30 and 2.31 are completely equivalent to Egs. 2.28 and 2.29. To go from
one formulation to another is a matter of changing indices and moving commutators
around with the cyclic property of the trace: Tr(A[B,C]) = Tr(C[A, B]). The
perturbation is no longer being commuted with the thermal equilibrium distribution
po, but instead acts on the observable J”, which can be advantageous. Another
advantage of this way of writing the perturbation theory is the decomposition of the
response functions into a sum of contributions over each state, since p, is diagonal
in the basis of eigenstates of Hy. This type of expression is common in perturbative
treatments of the nonlinear optics of atomic systems [3].

A fairly important point is left to be discussed, as the application of the previous
formulas to derive the nonlinear conductivity of a quantum system is not as direct as
it may seem. Inspection of Eq. 2.29 suggests that the frequency w; plays a somewhat
different role than wo, for example, since it is placed in more denominators, but this is
not the case. It follows from Eq. 2.25 that only the symmetrical part of the nonlinear
conductivity survives the integration and is therefore physical. By symmetrical part
it is meant the part that respects intrinsic permutation symmetry:

gf i (L wyy ) = o i (s wis ) (2.32)
for any 7,5 € {1,...,n}.

Any function that does not respect intrinsic permutation symmetry could be
added to the nonlinear conductivity without affecting the resulting current. When
wishing to infer physical information from the nonlinear conductivity, it is therefore
an absolutely necessary step to symmetrize the expression in Eq. 2.29 to ensure
that the conductivity obeys intrinsic permutation symmetry. In second order, for
instance,

Baaz Baza

0™ (wr,wa) = 0™ (wa, w1 ) (2.33)

must be guaranteed by extracting the symmetrical part of the conductivities derived
from Eq. 2.29 with n = 2,

g™ (W, wa) = 5 (0711 (wi, ws) + 072 (wa, wn)) (2.34)

N —

2.3 The covariant derivative

Returning to our problem of finding the nonlinear optical response of crystalline
solids, we apply the formalism just developed to the dynamics of an electron moving
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in the periodic potential of a crystal:

~ 132
Hy= 4+ V(2) (2.35)

where p = ||p|| and V(r) has the periodicity of a given Bravais lattice {R,}.
Bloch’s theorem states that the eigenfunctions of an Hamiltonian Hy with dis-
crete translation symmetry have the form

Ura(T) = €57 e (7) (2.36)
where uy,(r) is periodic in the Bravais lattice uy,(r + R,,) = uka(r), k is the Bloch
vector and a the band index [58]. The Bloch vector k is a good quantum number

that, in the thermodynamic limit, takes any value in the First Brillouin Zone (FBZ).
In this limit, sums over k become integrals over the FBZ. For instance, the closure
relation

Z Z |¢ka> <¢ka| = i — / ((217:;1 Z |¢ka> <¢ka| = j- (237)

where d is the dimensionality of the system (and its FBZ).
In the eigenvalue equation,

-HO |77Z)ka> = €ka W)ka) (238)

the energies €y, are defined continuously over the FBZ, forming multiple energy
bands, labeled by the band index a.
With these definitions, the Bloch basis is normalized according to

(Uialtien) = (27)* 6 6(k — K') (2.39)

Operators that are invariant under the lattice translations are diagonal in k and
their matrix elements are denoted as follows

(thral O |thies) = O (2m)? 6(k — K) (2.40)

As an example, the equilibrium distribution for a system of independent electrons
is the Fermi-Dirac distribution

- 1

oo = f(Hp) = - 241
Po f( 0) 1 4 e(Ho—p)/kBT ( )
with p as the chemical potential, and it is clearly diagonal in the eigenbasis of Hy,
(Yral Do [trn) = (P0)ay (27)7 3(k = K') = fica Oup (27)" (k — K') (2.42)

where ]
fka = f(Eka) = (243)

1 + elexa—w)/kBT
The carrier concentration n. is determined by the chemical potential, with the
density matrix normalized so that Tr(pg) = ne.
The full Hamiltonian H includes not only the crystalline potential but also a
term )A)(t) that couples the quantum electron motion to the classical optical field.
The specific form of this coupling will depend on our choice of gauge. For the length
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gauge Hamiltonian in Eq. 1.13, the coupling has the form we have been considering
(Eq. 2.3), where E“ is the electric field and the observable O corresponds to the
electric dipole moment:

V(t) = ei® E*(t) (2.44)

To use perturbation theory and find the nonlinear conductivities of this sys-
tem, it is necessary to write the perturbation in the eigenbasis of the unperturbed

Hamiltonian H,. That is, it is required to write the position operator in the Bloch
basis [H4],

(Uwa| 7 i) = /dgr Viera (1) 7% Py (1)

= /d?’r e Tk, (1) 1 € KT U (r) = /d3r e KTy, (1) (—i 3% e“”) ugep (1)

9 » | N >
= — /d?’l‘ e*zk r ’u,ltla(r) et k-r Ukb(r) +1 /d31‘ efzk T Ui/a(ﬂ et k-r UL(I')

Ok, Okq
. a . S e 1. % 8u r
= i g, el 8 32 00 [ @i 2t (2.45)

Uu. C.

where we used the periodicity of the wuy,(r) functions to separate the integral over
all real space into an integral over the unit cell and a sum over the Bravais lattice
sites. The lattice sum evaluates to a Dirac delta,

D etkRn = (2r)° (k) (2.46)

Ve

where v, is the volume of the unit cell. Substituting in Eq. 2.45,

= —i 0 (20)0%0(k — K) + (27)40(k — k') Ui / d*rup, (v) 0%ug(r) | (2.47)

Henceforth, the derivative notation is abbreviated: 0% = 0/0k,.

The first term in Eq. 2.47 makes it clear that the position operator is not diagonal
in k, linking states with neighbouring Bloch vectors. The quantity in parenthesis
is closely related to the geometrical phase [59] and is a well-known object in the
exploration of geometry in electronic structure theory [60]: the non-abelian Berry
connection

Aﬁab =1 (uka|8°‘ukb> =

/ d*r ug, (r) 0% (1) (2.48)

Uu. C.

1
Ve
Replacing it in Eq. 2.47,

= —i8q (27)20%0(k — K') 4+ (2m)4 5 (k — K') AL,

= (2m)"5(k — )i (345 0% — i AfLyy)
— (@n)"5(k — K)i Dy (2:49)
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where we used integration by parts to write the position operator’s matrix elements
in terms of the covariant derivative:

Dg, = 00y 0% — i AL, (2.50)

It’s standard in quantum mechanics to take the momentum operator as the
derivative in real space. And vice-versa, the position operator in the eigenbasis of
momentum is a derivative in reciprocal space. If instead of plane waves, Bloch waves
are considered, the position operator becomes a covariant derivative. In operator
form, we summarize the previous derivation with the statement 7* = i D

If some of the steps in the previous derivation look dubious, this is due to the
position operator not being strictly defined in the Bloch basis. The equalities are
to be understood as identities between distributions and can be made rigorous with
the use of test functions.

It should be noted that the difficulty is defining the position operator in the
Bloch basis was not entirely unexpected. Under periodic boundary conditions, in
a finite crystal, the position operator is notably undefined in the space generated
by the Bloch states. The position operator is also not invariant under lattice trans-
lations, which means that the perturbation to our Hamiltonian, in a length gauge
formulation, breaks the translation symmetry of the lattice.

However, all this turns out to be no real obstacle in developing the perturba-
tion theory, since the perturbation, and the position operator, appear only inside
commutators and these are well-defined [19, 57], even when the perturbation itself
isn'’t:

(D, 0] =00 — 09" —i[A*, 0]
(9°0) —i[A*, O] (2.51)

whose matrix elements are well-defined and diagonal in k,

(D%, Olias = (0% Ouap) = 1 Y (Ao Oer — ARy Orcac) (2.52)

An useful example is the covariant differentiation of the equilibrium distribution,
[D%, polkab = 0% fia Oab — T Aty A ficba (2.53)

with A figa = fio — Jxa-
Another instance of a commutator with the position operator comes from eval-
uating the matrix elements of the current operator,

R 1€ .5 =~ ie

~ Ao e - N
JP = —et? = - (77 H] = = [#7, Hy) = -5 [DP, H] (2.54)
which in the Bloch basis becomes,
e e .
Jfab = _ﬁ {DB7 H(]]kab = _ﬁ <866ka 6ab +1 Aiab AEkab> (255)

with A€k = €xa — €xb-
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The emergence of the covariant derivative is deeply related to the existence of
another gauge symmetry, beyond that of the classical electromagnetic field. Any
physical prediction of the theory should remain invariant under the transformation

|wka> — €i¢k“ ‘ﬁka> (256)

However, the k-derivative transforms as'

(Vka| 1 0% i) — €@ =%a) (150 [thiep) + Sty (0% Dica) (Vca| Uica) (2.57)

This is compensated by the transformation properties of the Berry connection,

iab — eii(bka Aiab eid)kb - 50,() (aa(bka) (258)

implying that the covariant derivative will transform as
Dﬁab — ¢H(Pxb—¢Ka) Dﬁab (259)

leaving only the phase factors. These cancel whenever traces are evaluated (Eq. 2.29).
In this way, gauge invariance of physical predictions under these phase transfor-
mations is ensured.

2.4 A tale of two gauges

2.4.1 Length gauge

Once the length gauge perturbation (Eq. 2.44) is written in the Bloch basis, the pre-
vious formulas (Eq. 2.29) for nonlinear response functions can be used, immediately
giving the linear and nonlinear conductivities upon substitution of the observable
O% by the dipole operator er® = ie D*. The resulting formula for the optical con-
ductivity is equivalent to Kubo’s formula [01], when expressed in frequency space,

7P (w) = Tr (jﬁ ﬁ“(w))

_ / d’k Jlfba [TaaPO]kab

(27T)d ob hw — Aekab

d’k s [0 ol
=i a2 ka 2.60
e / (27T)d Z hw — Aekab ( )

a,

Replacing the current for the commutator in Eq. 2.54,

d D H
Ba __ze dk Okba o
o) =~ E:M A2 (D" ol (261)

'Remember that the “matrix elements” of the derivative actually represent the operation of
differentiating everything to its right:

dd Kk’

Gyt (Vral 1% 1) (real) = 80" (ral)) = (1O () + (0 dra) (Wal ) €7 20

Wl 010 = [ G
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This is a fairly compact expression for the optical conductivity. As far as rec-
ognizing patterns and building general proofs, this type of expression can be quite
useful. But if one desires to compute the nonlinear optical response of a specific ma-
terial, the commutators must be expanded (Eqs. 2.53 and 2.55) and the dependence
on the band energies and Berry connections exposed in detail. Since it is instructive
to inspect the formula for the conductivity when written explicitly (and this is easy
to do in linear order):

. 2 d . 9 d B o
Bar, )y 1€ ﬂ B a e / d°k Ao Akan Aexab A
o7 (w) = /(27T)d za:@ €ka 0% fra + AL 2 s — Aeras Jxba

(2.62)

The first and second terms in Eq. 2.62 correspond to intraband and interband
transitions, respectively. In a system with completely filled /empty bands (insulator),
no intraband transitions are possible and only the second term survives. On the
other hand, the linear response of a metallic or semiconductor system with free
carriers is dominated by the first term at low frequencies (fuv much smaller than
the gap). In the length gauge, it is always possible to discern the electron motion
in terms of a succession of intra- and interband transitions [19], but it becomes
increasingly less transparent in the final expressions as higher orders of perturbation
theory are considered.

The second order conductivity is obtained from Eq. 2.29 for n = 2,

3 d DB H} 1
Bagag — 6_ d k § [ ) 210 kpa Daz Doq
7 (wr,c2) h / (2m)® £ hwy + hws — Aégap "hey — Ae D%, pol Yab

(2.63)

A detailed treatment of this expression can be found in Appendix F. Right now,
it is enough to note some differences with the linear case that already indicate a
significant increase in complexity. The first, unavoidable complication is that we
are dealing with a higher rank tensor, with more elements to consider. Second,
in addition to a purely intraband contribution (where only the derivative part of
the position operator is applied) and a purely interband contribution (where only
the Berry connection part of the position operator is used), there are mixed terms
related to processes where both intra and interband transitions occur. For instance,
an electron might first transition from a valence to a conduction band and then have
an intraband transition to a neighbouring k-point. This leads to the appearance of
derivatives of Berry connections? and other complications. Third, when moving
past linear order, the derivatives will act on the energy denominators as well: notice
how 92 will act on (fw; — Ae)™! in Eq. 2.63. This will enable higher order poles to
emerge, further complicating matters. None of these problems are beyond our ability
to manage, but they are what makes a computation of the nonlinear conductivity
nontrivial.

Finally, we consider the third order conductivity,

2More precisely, generalized derivatives of Berry connections [19] (see Chapter 5).
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JBQI&ZQS (w17w27w3) -

ol d DP. H

i / d*k Z [ ’ O} kba D()zg7 1 o DO/Q, o [Doq’po]
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(2.64)

And the pattern is clear for anyone wishing to pursue higher orders of perturba-
tion theory.

In principle, it seems this would already conclude one of the central topics of
this work: how to efficiently compute the nonlinear optical conductivity of crystals?
Egs. 2.63 and 2.64 do provide appropriate formulae for such endeavour, but the
condensed notation hides a lot of complexity.

If V(t) stood for an atomic potential, similar expressions to Eqgs. 2.63 and 2.64
would describe the nonlinear optical response for atomic systems. There would be
no integration over the FBZ and the position operator would not be a covariant
derivative (r, are then well-defined matrix elements), but all else would remain
unchanged. In such case, one could fully expand the commutators and, with a
proper knowledge of the energy levels and dipole matrix elements, obtained from ab
initio calculations or spectroscopic measurements, the dispersion of the nonlinear
conductivity could be accurately predicted®. Even the complexity of a general n-th
order conductivity would not seem too bad, with diagrammatic methods that can
identify the various terms and the possibility of using symmetry to generate them
from a single term?.

Unfortunately, the situation is very different for crystals precisely because of the
presence of a covariant derivative and the need to perform an integration. Atomic
and free electron systems are special cases in a sense, obtained upon taking the
appropriate limits. If the derivative part of the position operator is ignored, leaving
only the non-abelian Berry connection A, then at each k in the FBZ the response is
identical to that of an atomic system. If only the k-derivative part of the position
operator is retained, a purely intraband contribution will be all that is left and the
nonlinear response will be akin to that of a free electron gas. The presence of the
crystalline potential is then reflected only in the dispersion relation €y,. This type
of nonlinear response results purely from intraband motion and could be directly
derived via a Boltzmann equation approach.

In crystals, where the perturbation is the full covariant derivative, the dynamics
is more interesting and more complex. Whenever one desires to go a step higher in
perturbation theory, the entirety of the expression for the density matrix at previous
order must be differentiated, and also commuted with A, implying a very steep
increase in the number of terms to evaluate and the complexity of the objects that
are to be evaluated. In Chapter 5, we will deal with this complexity and attempt
to cast the nonlinear conductivity in as simple a form as possible by breaking it
into smaller pieces, according with existing resonances in the FBZ. For the moment,
the inherent difficulties of the length gauge should provide sufficient justification to
consider other possibilities.

3 Assuming the independent electron and electric dipole approximations are reasonable.
4See pages 70-74 (Section 4.3) of [3].
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2.4.2 Velocity gauge

Equivalent but distinct descriptions of the dynamics of a quantum system can be
reached by performing unitary transformations on the states and operators: [¢)) —
u |v)) and O — UOU'. The unitary transformation may be time-dependent, in
which case the Hamiltonian transforms as follows (see Appendix A)

H—UOHU () + i h(0uU@) U (1) (2.65)

A particular time-dependent unitary transformation () = e~#¢™ A%/ with
—0,A(t) = E(t), applied to Eq. 1.13 leads to the familiar minimal coupling Hamil-
tonian (Eq. 1.12),

~ (PHeA)? - . P e epTAN(t) | e At)?
H=x_"""\7 =—+V + 2.
2m + V(r) 2m + (r) + m 2m ( 66)
where we identify the perturbation
. e e? A(t)?
t) = —p™* A%(t _ 2.
V( ) m P ( ) + 2m ( 67)

The last piece in Eq. 2.67 is neglected as it merely introduces a time-dependent
phase shift in the wave functions and has no impact on the dynamics of the density
matrix or the other observables of the theory®. This form of the perturbation is
alluded to in the literature as the “velocity gauge”, presumably because the coupling
in Eq. 2.67 is close® to ev®(t) A%(t). The passage from the length to the velocity
gauge is described in greater detail in Appendix A.

Once again, the coupling has the form in Eq. 2.3 with O = e p* /m and A% as
the classical field. This seems to be a much simpler perturbation than the length
gauge version, with well defined matrix elements in the Bloch basis. Indeed, the
momentum operator could be expressed using the following commutator

m

P == H] (2.68)
which is diagonal in k. The commutator may be expanded,
im
Plab = T [, Holwab
m
= — [D%, Hylka
3 [D®, Hokab
m .
— % (anka 5ab +1 Aﬁab Aekab) (269)

thereby reducing the ingredients necessary to an evaluation of the nonlinear conduc-
tivity down to a knowledge of the energies and the non-abelian Berry connection,
same as in the length gauge.

At this point, it seems the substitution of O~ by e p®/m in Eq. 2.29 would return
expressions for the nonlinear conductivity. However, the velocity gauge formulation
deviates from the perturbative treatment of Section 2.2 in a few ways. A minor point

5An easy way to discern this is to note that in any equation of motion the Hamiltonian always
appears inside a commutator. The term in question, being a number, commutes with any operator.
5The difference is just an number, since v(t) = (p + e A(t))/m. See Eq. 2.70
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2. PERTURBATION THEORY

is that it is written in terms of the vector potential A(¢) and not the electric field as
intended, but this is no obstacle, since in the frequency domain A(w) = —i E(w)/w.
As such, it should be enough to include the factor (=)™ /w; ... w, in the n-the order
nonlinear conductivity to account for the conversion of the potential vector into an
electric field. A more fundamental difference of the velocity gauge approach lies in
the current (or velocity) operator that has now a direct dependence on the optical
field:

re ve
h Wl

Chapter 4 will expand on this point, but here this can be taken into account with
only a slight change in the linear response function formula. The ensemble average
of the current is

JAt) = —ed® = — [fP H] =  Hy] — —Aﬂ( ) (2.70)

2
JO(t) = T (JB ) ‘T ([fﬁ ] ) ~Cmy(p) AP(1)
h m
:%Tr< >——Tr ) AB(1)
1e a oA
= S (7, /1) ) — "= A%(1) (2.71)
The last term in Eq. 2.71 is linear in the potential vector and therefore contributes

to perturbation theory only in first order. As a result, there is an additional term
in the linear conductivity,

m

2

d
o (w) = d k Z Jise (D%, Polyas T 11e € 550‘ (2.72)
mhw m)d hw Aeka kab " mw

where ¢ is the Kronecker delta.

This is the velocity gauge version of Eq. 2.61. A curious aspect of this way of
writing it is that the Drude conductivity promptly follows when interband transitions
are ignored. Pulling from the results of the next subsection, we introduce relaxation
in the previous formula by making the substitution w — w+i/7 with 7 = y~! > 0. If
we additionally set the off-diagonal momentum matrix elements to zero (decoupling
the electronic bands),

inee® gy Me€T §ha — a?2(0)

S — L€ spa M€ T g 0 0(0)
() m(w+i/7')6 m(l—iwT) l—idwr

5P (2.73)

a known result from Drude’s theory of metals.
The derivation of the second order conductivity is already parallel to the length
gauge formulation,

OﬁaloQ (Wl, w2> _

(3 63 / ddk Z o 1 [ i ]
_ —F— O
hm? wy wy hwl + Aekab P hwy — Ae b po

kab

(2.74)
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and the same is true for third order,

gParazas (w1, wa,ws) = — et / d’k Z [TB’HO] kba
T hm3 wi wa w3 (27T)d " huwy + hwso + hws — Aekap
X [p™3, ! o |p“2, o o [p®, po] (2.75)
hwy + hwe — Ae fwy — Ae Kab

There are no derivatives in Eqs. 2.72, 2.74 and 2.75, except for those required in
assessing the momentum matrix elements (Eq. 2.69). The nonlinear conductivity is
a sum over independent contributions, one for each k-point in the FBZ. Hence, the
nonlinear optical response, when expressed in the velocity gauge, is identical to that
of a collection of atoms, each labeled by a Bloch vector. This is no surprise, since
the minimal coupling Hamiltonian preserves the translation symmetry of the lattice
and the Bloch vector k remains a good quantum number even after the coupling
with the optical field is introduced.

2.4.3 Length vs velocity gauge

What effectively happens when moving from a length to a velocity gauge descrip-
tion is that the unitary transformation U(t) decouples the system in k. Because the
transformation is unitary, the two descriptions are nonetheless entirely equivalent.
This can be further confirmed by manipulating the nonlinear conductivity expres-
sions from one formulation to another, showing that they are, in fact, the same
expressions, just written rather differently (e. g. with some cycling of commutators,
relabelling of indices and, most importantly, the use of a few sum rules [57], Eq. 2.75
can be shown to be one and the same as Eq. 2.64).

Unfortunately, the fundamental principle of gauge invariance was not enough to
prevent published results using length and velocity gauge methods to differ sub-
stantially. This was a source of confusion and debate for a while, but eventually it
became clear that the difficulty resided in the approximations that are inevitably
made in any calculation of the optical properties of matter.

The Hilbert space of the Hamiltonian in Eq. 2.35 is infinite dimensional. A
computation of the optical response then requires an infinite number of states, for
atomic and condensed matter systems alike. This is hardly practical. In practice,
one always limits the analysis to a subspace of the space of states that is assumed
to properly describe the physics. In the case of crystals, the valence and conduction
bands nearest to the Fermi level are expected to be sufficient for any computation
of physical properties. But the validity of such approximations is seldom ensured.

The equivalence of the length and velocity gauge is broken by band truncation.
Perhaps the simplest way to expose this is through the violation of sum rules: for
our crystal Hamiltonian in Eq. 2.35, the following commutator identity is trivially
verified

N h?
(77, [, Hol] = —— & (2.76)

m
but such identities require a sum over an infinite number of bands. If some interme-
diate states are removed, the identity no longer holds. Since Eq. 2.76 is employed in
the manipulations that bring the expressions from the length to the velocity gauge
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form, one can begin to envision how their equivalence is lost when truncating the
Hilbert space. This is the argument given originally in [48, 49].

When is band truncation appropriate? This is difficult to answer due to the
integration over the FBZ, but we can attempt an estimation [57]. Transitions to
higher energy bands can be removed if their contribution to the summation in the
nonlinear conductivity is negligible. If we imagine starting with a given unperturbed
Hamiltonian Hy and deforming it by increasing the energy separation A between
our subspace of interest and its complement (while maintaining the eigenstates un-
changed), then intuitively we expect that at some point the contributions from
outside our subspace will be too far off in energy to be relevant. This should indeed
be true if the perturbation is much smaller than A. For the length gauge, a rough
estimation is that this would be the case for e A*E%(w)/A < 1. The condition is
more restrictive and harder to justify in the velocity gauge: (e p®E*(w)/mw)/A ~
e A*AE*(w)/wA = e A E%(w)/w < 1, which always fails for sufficiently small
frequencies w. We conclude then, that if both of the previous conditions are sat-
isfied (e. g. by having very small momentum matrix elements), band truncation
is appropriate for both gauges and their results should remain approximately the
same.

There is, however, no guarantee that this will be the case and in the velocity
gauge the approximation breaks down in the DC limit, when all bands are required
for accurate computation. Indeed, the velocity gauge is known to give wrong an-
swers. Due to the w™! factors, the nonlinear conductivity appears to diverge in
the limit w — 0, even for the case of insulators, where no carriers are present and
the response must physically be zero. It is zero in the length gauge and, by gauge
invariance, so must be in the velocity gauge, with some cancellations making it that
the conductivity only appears to diverge. But once a finite number of bands is con-
sidered and the equivalence between gauges is broken, the velocity gauge approach
is the one that suffers the most, as the delicate cancellations that exist in the DC
limit fail and the results are nonsense. Unphysical infrared divergences plague the
velocity gauge, rendering it inoperable for most realistic calculations.

In truth, one rarely starts with a many band calculation that is later truncated
to an appropriate subspace. More often, an effective Hamiltonian is defined in that
subspace as the starting point and the velocity gauge expressions are then utterly
inappropriate. The reasons for why the minimal coupling Hamiltonian is so much
more sensitive to approximations are discussed further in Chapter 4.

At this point, it should be clear that despite being equivalent, each choice of
gauge has its advantages and disadvantages, as it usual with gauge fixing. To close
this discussion off, it is helpful to summarize them for both the length and velocity
gauge perspectives, as well as consider when each would be preferable.

The length gauge is, currently, the standard for computations of the nonlin-
ear conductivity. The perturbation breaks the translation symmetry of the lattice,
causing transitions between neighbouring k-points in the FBZ through a covariant
derivative. The presence of covariant differentiation is responsible for more compli-
cated expressions for the nonlinear conductivities, with a complexity that increases
dramatically with the order of the perturbation. Still, the formalism is solid and the
results well behaved, with no unphysical infrared divergences. Because of versatility
of these expressions, that work well for finite band models, this approach is to be
favored when pursuing analytical answers using effective Hamiltonians.
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Contrarily, the velocity gauge preserves translation symmetry and no derivatives
are involved, other than those required for the momentum matrix elements. The
energy denominators involve simple poles only and the contributions from each point
in the FBZ are independent. For this reason, it is the approach to use in numerical
computations using tight-binding and other band structure models that provide
bands defined over the entirety of the FBZ. As it stands, spurious divergences plague
the velocity gauge formulation, but these problems are resolved in Chapter 4.

Before ending our discussion of the perturbation theory behind a typical calcu-
lation of the nonlinear optical conductivity, there is, alas, yet one more issue to cope
with. A careful look at the denominators in previous equations raises the question:
what happens when w = Ae? In other words, what happens under resonance con-
ditions? This is particularly relevant in solids, where, once the optical frequency is
above the gap, the resonance condition will be always met for some points in the
FBZ. The truth is that most of the expressions presented so far are not strictly
physical, nor do they make much mathematical sense, since they always diverge for
resonant frequencies. This can be resolved by extending the frequencies into the
Argand plane.

2.5 Complex frequencies

A careful inspection of the formulas derived in previous sections raises some subtle
issues. For any frequency w for which a resonance exists, the denominators in
Eq. 2.29 are zero and the conductivity is strictly undefined. This difficulty traces
back to Eq. 1.11 where the existence of a frequency domain nonlinear conductivity
relies on the convergence of the Fourier transform. When ignoring any kind of
relaxation mechanism, the response to an impulse given at an instant of time can
last forever: o(t = +00) # 0 and the Fourier transform diverges. This problem can
be circumvented by extending the definition in Eq. 1.11 to complex frequencies in
the upper half-plane [3],

/Bal Qi (Wl n
yo o

+o0 too
/ / Bal a" tl) ... 7t ) w1ty ... eltbntn dtl L dtn

[e.e]

+00 400 ) )
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T (2.77)

with w = Re(w) and 7 = Im(®).

The extension to complex frequencies can be interpreted in two ways. One is
to consider the response function in Eq. 2.77 to be associated not to monochro-
matic waves, but to fields that are adiabatically switched on from the infinite past
E(w)e ®“te,

A different perspective is to look at complex frequencies as a simple phenomeno-
logical method to introduce relaxation into the system. As stated in Eq. 2.77, the
nonlinear conductivity in the frequency domain o'(wy, ..., w,) = o(@,...,w,) is ob-
tained from a Fourier transform of a time domain response function that has the form
o' (t1, ... tn) = o(t1,...,t,) e 7 ... e 7 and satisfies the condition ¢/ (t; = 00) = 0.
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This approach to relaxation is most certainly too simplistic to properly account for
all the possible relaxation mechanisms that are observed in experiments, but it pro-
vides a direct and easy way to obtain sensible answers and it has advantages relative
to the traditional approach of adding an phenomenological term to the equation of
motion (Eq. 2.1) [56, 62]. For simplicity, we here take the imaginary part of the fre-
quencies to be a constant 7, but more generally we could have 7 = y(w). It would
only be required that the function v(w) be even, in order for the reality condition”
to be maintained.

When the relaxation-free limit is considered, where the imaginary parts of the
frequencies are taken to zero from above, the integrand in Eq. 2.29 can always be
defined as a distribution by making use of the Sokhotski-Plemelj theorem,

d’k gk y—0F d%k Ok dik
N B —A 2.
/ (2m) hiv — Aex ][ (2m)? hw — Aey 7”/ (2m)d gic 0 (he ex) (2.78)

For an atomic system, the distribution will be defined relative to an integral over
the frequencies (Eq. 1.9) and relies on the condition that the spectral width of E(w)
be much greater than . For a crystal, the distribution is already accommodated by
the presence of an integration over the FBZ and no restrictions must be applied to
the optical fields considered. By taking the limit v — 0% in the expression®
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(2.79)

the nonlinear conductivity can be defined as a regular function for real frequencies
and vanishing relaxation. It is implicitly assumed in this reasoning that no more
than a single denominator diverges at a given k. Otherwise, a singular nonlinear
conductivity in the relaxation-free limit becomes a possibility®.

In Eq. 2.79, the nonlinear conductivity can be further extended into the lower
half-plane by analytic continuation [27]. In this way, Eq. 2.79 provides a valid
expression over the entire complex frequency plane, even in regions where Eq. 2.77
no longer applies and the response function is, therefore, no longer physical.

"The time-domain conductivity must be real. See Egs. 6.4 and 6.5.

8Same reasoning applies to the velocity gauge expressions.

9This does happen for certain frequency combinations and these are real physical divergences
of the nonlinear conductivity (e. g. current injection).
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Chapter 3

Two-band models in two
dimensions

In the course of this thesis, there will be much discussion on the properties of the
nonlinear conductivity and the techniques presented to compute it. To validate
these, examples of physical systems with simple yet interesting nonlinear optical
properties are required.

In this chapter, a popular condensed matter system is described that will serve
this purpose: monolayer graphene. It is the first and most studied two-dimensional
crystal (d = 2 in both real and reciprocal space). The lower dimensionality re-
duces the number of tensor components to be evaluated and alleviates the effort
in the numerical integration over the FBZ. Hexagonal boron nitride crystals are
also considered by adding a mass term to the graphene Hamiltonian, opening a gap
and breaking the inversion symmetry of the graphene lattice. In introducing these
systems, general modelling strategies are delineated, together with the process of
retrieving the relevant information from them.

As far as the nonlinear optical properties are concerned, within the current for-
malism (Chapter 2), the specification of the band structure €y, and the non-abelian
Berry connection Ay, is all that matters and equates to defining the electronic sys-
tem under study. In principle, these could be provided by any of the standard band
structure theories!. In this text, we steer wide from sophisticated density functional
theory calculations, which could perhaps provide more accurate results, but that are
not necessary for our intent of studying response functions of systems of independent
electrons. For us, intuitive, straightforward tight binding models will do the job.

3.1 The connection with tight binding

In a tight binding description [58], the Hilbert space is defined through a Wannier
basis {¢a(r —R,,)}, with A as the label that identifies the orbital inside the unit cell
and R, as a vector from the Bravais lattice. There is at least one state per atom in
the crystal (an infinite number in the thermodynamic limit) and the wavefunction
pA(r — R,,) is assumed to be well-localized around the position R,, + &, where §,

Tt is perhaps worth mentioning that not only the band structure, but also some information
on the stationary states must be provided by the model, so that the Berry connection may be
calculated.
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represents the position of the A orbital relative to the unit cell center. This basis is
orthogonal by construction,

/dSr oN(r—Ry,) on(r —R,) = 0xx Or, R, (3.1)

The tight binding Hamiltonian is derived by specifying the coupling between
closely spaced Wannier orbitals in the crystal, as well as any relevant on-site energies.
Often, nearest neighbour or next-to-nearest neighbour hoppings are sufficient to
capture the physics.

=D Z [oa(r = Rn)) tax (R, Rin) {ox (r — Ripy)| (3.2)

AN Ry Ry

where t)y are the tight binding parameters and due to the translation symmetry of
the lattice,

tw (R, Ry) =t (R, — Ryy) (3.3)

A second basis, which we shall name the sublattice Bloch basis, can be con-
structed by Fourier transform,

Ui (1 \/v_cZe’k Rat0) o0 (r — R,y) (3.4)

with k in the FBZ. It is also orthogonal,

/d3r Ui (r) Wi (r)

=, Z o'k R t63) =ik’ (Rin+6,) /d3r ey (r—Rp)oa(r —Ry)

Rn.Rm
= U Z ek (Bn+8x) o =ik (Rm+6,) I OR,, Ry
Rn.Rp
—, Z ez’(kfk’)-Rn Sxv ei(kfk’)-ts)\
= 0w (2m)?65(k — k) (3.5)

Rewriting the Hamiltonian in the sublattice Bloch basis will show k to be a good
quantum number,

. d%k
= [ 5 3 o) (oo (i (3.6)

27
AN
with

(Ho)iaw = Z tav (Ry,) e R gk (01=0x) (3.7)

The basis functions in Eq. 3.4 are indeed Bloch functions, with the form of
Eq. 2.36, but are not, usually, the eigenstates of the tight binding Hamiltonian. The
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Hamiltonian can, however, be diagonalized and the stationary states represented in
the sublattice Bloch basis,

Via(T Z kax Via(T (3.8)

The energy eigenstates must also form an orthogonal basis,

/d31‘ ¢k/ ¢kb ch/ /\/Ckb/\/ I'\Illt/A/ (I‘)\I/k,\(r)

AN
= (27T)d o(k — k/) Z CleaxCkbA
= (2m)0(k — K) bap (3.9)

Orthogonality of ¢y, (r) translates into the following condition on the coefficients
of Eq. 3.8,

Z ClearCikbA = Oab (3.10)
X

which just means that the representation of the energy eigenstates 1y,(r) in the
sublattice Bloch basis is given by orthogonal vectors.

Having all the proper definitions and normalization issues settled, we can pro-
ceed to our quantities of interest. The eigenvalues associated to iy, give the band
structure,

Z (Ho)wax CkaXN' = €ka CkaA (3.11)
)\/

and from the energy eigenstates, we calculate the non-abelian Berry connection,
i

Ay = o) = = [ @i (6) 0*uar)

[

- vi / d’r e i, (r) (07 (e (1))

- i Z/ d3r 6Zk rcl*(aA \Ijl*d\(r) (aa (e_ik.rckb)\' \Ifk)\/ (I‘)))

Ve AN
_Zz Z / dPr RNk ol (r — Ry)
AN R Rom
X (0% (7™ TR0 e o (r = Ry))) (3.12)

The derivative will act on two factors: the coefficient ¢,y and the phase factor.
The first term,
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cha)\ (0%cicpar) Z / dr ox(r—Ry)ea(r —Ry)e k(R —Ran) ik-(8y=65)
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The second term,
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where the last two steps were mere definitions:

SA)\/(RR) = /d3I' gpf\(r) (I‘ — Rn — 6>\/) (,OX(I‘ — Rn) (315)

Sl = Z S)\)\’<Rn) ok R 6ik-(6y—6x) (316)
Assembling the two terms, we have the general form of the Berry connection,

Kab = Z Char (0% C1pr) + Z Chan CkbX Skaw (3.17)

A AN

This is a more general expression than the one typically employed in the litera-

ture. We can take the limit were the Wannier states are not only orthogonal, but

so localized that no overlap exists between them. In that case?,

2Note that this approximation becomes harder to justify for models with more than one orbital
per atom. For such systems, there is surely overlap between orbitals and the approximation equates
to assuming that, for whatever reason, the following integral is negligible: [ d®r 3 (r)r oy (r) =0,
with A # .
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Sxv(Ry) = 6xxv 0,0 San (0) (3.18)

where

Sy (0) = (/ Pr |g0,\(r)|2r> L8y =0 (3.19)

since 9, stands for the average position of the orbital A in the unit cell. In the limit
of no overlap, the Berry connection simplifies to

kab = ZZ Ckan (0% Cxr) (3.20)
A

This is the formula we shall use to compute A from tight binding models.

It is worth pointing out that the notion of a Berry connection implies the exis-
tence of an Hamiltonian defined over a space of parameters, over which A could be
integrated to give the Berry phase [59]. In band structure theories, the parameter
is the Bloch vector k and the parameter space is the First Brillouin Zone. The
parametric Hamiltonian I:IO(k) is defined® through the matrix elements in Eq. 3.7.
Its eigenvalues provide the band structure and the eigenstates, through Eq. 3.20,
permit us to compute the non-abelian Berry connection.

ﬁo(k) can have any dimension, depending on the number of orbitals per unit
cell. For simplicity, we will focus on systems with a single orbital per atom and two
atoms per unit cell. That is to say, on two-band models.

3.2 Berryology of the two-band model

Any two-band model can be written as a combination of Pauli matrices,

Hy(k) = do(k) + 6 - d(k) (3.21)

with ¢ = (6,,6y,0), for some functions d(k) = (d,(k), d,(k), d.(k)).

This Hamiltonian could be derived from tight binding as described before or
from a low energy effective theory, valid only in a restricted region of the FBZ, or
by any other means by which a two-band description of the electron dynamics could
be constructed. In this subsection, we derive the band structure and the Berry
connection for the generic two-band model in Eq 3.21.

The study of the two-band model is of special importance. The two-band model is
the condensed matter analogue of the two-level atom, providing as simple a model as
possible, making analytical calculations feasible and allowing the concepts to emerge
clearly, while still being complex enough to merit attention and to have a wide range
of applicability, describing any situation where incident photon frequencies connect
a single pair of bands around the Fermi surface. A still simpler model is the single
band model, which is appropriate to describe metallic systems at low frequencies,
but permits only intraband transitions and is a bit too simple for our goals here.
The two-band model contains combinations of intra- and interband transitions that
make the dynamics of the electron under optical excitation nontrivial and introduces
most of the key concepts relevant for more complicated multiband systems.

3See Section 4.5 for further details.
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A particular Hamiltonian can be specified through the dy and d functions. The
first term dyp(k) in Eq. 3.21 merely shifts the energies (in a k-dependent fashion).
Likewise, the modulus of d(k) determines the band structure, but has no impact
on the nature of the eigenstates®. The stationary states, and therefore the Berry
connection, are a function only of the direction of d(k). All geometrical properties
of the system fall on this versor field d(k), that can be seen as a map between the
FBZ and the 2-sphere S?,

d, (k) d(k) —idy(k)
do(k) 1 + ( L0 i) ) (3.22)
where
d = (d;,d,,d,) = d(cosfsin¢,sinfsin ¢, cos @) (3.23)

with the k dependence henceforth left implicit.
The band structure is given by

€ke — d() + |d| €Exky — do - |d| (324)

with the subscripts ¢ and v standing for conduction and valence bands, respectively,
while the eigenstates take the form

o (TOR) e (2R o

Notice that, for this particular choice of gauge, the states in the conduction
band are uniquely defined everywhere® on the 2-sphere with the exception of the
south pole (¢ = 7), while in the valence band the states are only multivalued at the
north pole (¢ = 0). The same will be true for the abelian Berry connection of the
respective bands (the diagonal matrix elements of Aygy).

The non-abelian Berry connection is computed from the states in Eqgs. 3.25 with
Eq. 3.20,

[ —=VOsin®(¢/2) LiVOsing+ iV
Ao = (%Vé’ sing — V¢ 2—V0 cos? (¢2/2) )ab (3.26)

The previous results can be rephrased without reference to the spherical coordi-
nates, by writing everything explicitly in terms of the d field. Inverting Eq. 3.23, it
is straightforward to write the angles and their derivatives as a function of d,

0 = arctan (Z—i) ¢ = arccos <%> (3.27)

d,Vd, —d,Vd d,Vd—dVd
vo— LVl Ay Vi g, : 3.28
dz + d: ¢ d\/dz+d2 (3.28)

Vi +dj fd+d. [d—d.
sin ¢ = T+ cos (¢/2) = —Q{—d sin (¢/2) = 5 (3.29)

4Aside from the possibility of degeneracy when |d| = 0.
5The statement “the states are uniquely defined” refers to, of course, the kets representing the
physical states and the phase factors they carry.
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Replacing back in Eqgs. 3.25 and 3.26, we rewrite the eigenstates

. Vd+d, L] Vd—d, (3.30
ke —— | datidy kv — dutidy .
V2d \ Viva. vV2d \ Ve

and the Berry connection

_ dy Vdy—dy Vdy (d,dz ) (de Vdy—dy Vdy)+i (dz Vd—d Vd.)
2 2
Ay = R A (3.31)
kab = | (dy Vdy—dy Vdy)—i(d. Vd—d Vd) _ dy Vdy—dy Vdy (d+dz ) :
2d/d2+d2 d2+d3 2d -

entirely in terms of the functions d,, d, and d,.

As mentioned before, it is not possible to define the states uniquely over the 2-
sphere. Hence, there may be regions of the FBZ where the Berry connection is left
undefined for a given choice of gauge. This is because, as addressed in Section 2.3,
the Berry connection is not invariant under a U(1) gauge transformation on the
Bloch states.

Despite this, physical quantities like the nonlinear conductivity cannot depend
on the particular choice of phase in the Bloch functions and must be built of gauge
invariant objects. Notably, the Berry curvature is known to be invariant under such
gauge transformations. It is defined by

Fob =00 Al 90 A2 (3.32)

kaa kaa

It can be obtained from the abelian Berry connection Ay,, in Eq. 3.26. An
often simpler approach, however, follows from rewriting the curvature in terms of
the off-diagonal matrix elements of \A,

kaa kaa kaa

Fol = 0 ALy = O M = 1 [AN AT =03 (AR — AL AT (3:33)
b

where the commutation property of position operators (covariant derivatives), dis-
cussed in Appendix C, was used. Eq. 3.33 is closely related to the well-known
rewriting of the Berry curvature in terms of derivatives of the Hamiltonian and en-
ergy differences [59]. The off-diagonal matrix elements also have the advantage that
under a gauge transformation they only pick up a phase,

Axab = Aygp € Oxe ™) (3.34)

In three dimensions, the curvature tensor can be mapped into a vector field €2,

1 1 . o
Qg = 5604’87‘7.57 = 5 Z EOCB’Y (Aﬁab ,lea - ,liabAﬁba> =1 Z (Akab X Akba)
b b

(3.35)
which is more easily visualized.

From Egs. 3.26 and 3.33,
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2 2 2
= % (00 0°¢ — 9°0 9°¢) sin ¢ (3.36)

ffﬁ—i<(?sm¢+i%> (ﬁsingb—iﬁ) —(Oz<—>ﬁ)>

Similarly for the valence band,

Fo = 2 (070 00— 0% 9°0) sin (3.37)

For the curvature vector field, it follows from Eqs. 3.26 and 3.35

Q. = % (VO X V) sin ¢ (3.38)

This is the general form of the Berry curvature field for a two band model,
written in spherical coordinates. Just as it was the case for the Berry connection,
the curvature tensor can be expressed directly in terms of d(k),

1
Fob = _Fob = —5% d- (0*d x 0°d) (3.39)

Finally, replacing Eqgs. 3.28 and 3.29 in Eq. 3.38,

Q.= _2%[3 (Vd, x Vd,) d, + (Vd, x Vd,) d, + (Vd, x Vd,) d,) (3.40)

Comparing with Eq. 3.38, we note that the right hand side of Eqgs. 3.39 and 3.40
must still depend only on the direction of the d field®, even if in practice it might
be easier to use to non-normalized vectors in the calculations.

In studies of topology, the curvature is the central object of interest. In nonlinear
optical response, many other gauge invariant objects exist that must be considered.
A particularly simple example is the product Ay., Axye, With more complicated
quantities emerging with increasing order in perturbation theory. This will become
clear in Chapter 5, when the nonlinear optical response of the general two-band
model is detailed up to third order.

For the remainder of this chapter, the formulas in Eqgs. 3.24, 3.25 and 3.26 are
applied to specific examples.

3.3 Monolayer graphene

Two dimensional crystals are today on the frontier of condensed matter physics
research [03]. The breakthrough that launched this field came in 2004, when the
Manchester group isolated and studied mono- and few-layer graphene [64]. The
astonishing electronic quality demonstrated by these materials immediately caught
the attention of the community.

Tt can also be proved by noticing that the right hand side of Eq. 3.39 has the form of a
determinant.
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Graphene is a two dimensional allotrope of carbon. It consist of carbon atoms
displayed in a honeycomb pattern and, in a sense, forms the basis for all other
allotropes of carbon [65]. Electrons moving in the honeycomb lattice behave as
massless Dirac fermions, moving as if they were in the ultrarelativistic limit, but
with a two orders of magnitude lower effective speed of light [65]. This unusual
dispersion law of electrons in graphene is at the heart of most graphene physics and
of the variety of amazing new properties it presents. Among these are the ballistic
electronic transport [(4], a new form of quantum hall effect and the possibility to
observe it at room temperature [66], record high thermal conductivity [67], ...

Phenomena from high-energy physics are seen in table-top experiments in graphene
and quantum phenomena typical of low temperature behaviour are observed in
graphene at room temperature [065]. Beyond basic physics, graphene is an extreme
case of surface science (its all surface!) and its chemistry is of considerable inter-
est [068]. The carrier concentration in graphene can be controlled by applying an
external voltage, adding tunability to the unique advantages of this system. Ap-
plications of the various properties of graphene are a subject of intensive research
and of considerable interest from industry, leading to rapid progress in production
methods of graphene sheets [69].

The optical properties of graphene have also attracted great interest. In the
absence of doping and near the Dirac point, the linear conductivity is frequency
independent, which causes some interesting features such as a transparency in the
visible defined by universal constants [70] and a finite conductivity in the limit of
no charge carriers [71]. The literature on the nonlinear optical response of graphene
is extensive and only some of the more relevant works are mentioned in this thesis.
Mikhailov [72] proposed theoretically that the linear dispersion in graphene should
lead to considerable optical nonlinearities. The first measurement of the nonlinear
response was made by Hendry et al [73]. Aside from the early Boltzmann equation
calculations [72, 74, 75], analytical and numerical computations of the third order
conductivity of graphene have been performed [76, 77], using a choice of gauge that
stands somewhere between the described length and velocity gauges’. Disagreements
are found with experimental results, but these differ several order of magnitude
between themselves® [76]. This is perhaps partly due to the strong dispersion of the
response and a lack of knowledge of the Fermi level (carrier concentration) in most
of these experimental studies. A notable exception is the work of Jiang et al [78],
where the sample was properly characterized and the nonlinear optical response
measured for a wide range of doping levels, finding good agreement with theoretical
predictions [76-78].

In this section, the electronic properties of graphene will be discussed at a basic
level, with the intent of obtaining the band structure €y, and the Berry connection
Ay required for calculations of the nonlinear conductivity.

"This hybrid gauge choice is obtained by performing an unitary transformation U(t) =
exp(—ierg,, A%(t)/h) = exp(e (0% —i Ag;,,) A%(t)/h) on the length gauge Hamiltonian (Eq. 1.13)
that involves the abelian Berry connection Agiqg (it excludes the off-diagonal matrix elements of
the position operator).

8See supplementary material of [73].
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>k

Figure 3.1: In the left, the honeycomb lattice of graphene. Identified in the figure
are the primitive vectors of the Bravais lattice and the two sites, A and B, linked
by the vectors §;; in the right, the First Brillouin Zone (FBZ) of graphene with the
primitive vectors of the reciprocal lattice. The vertices of the FBZ are the Dirac
points and all vertices can be obtained from only two by translations of the reciprocal
lattice.

3.3.1 Honeycomb lattice

Although the carbon atoms are arranged in a honeycomb pattern in graphene, the
Bravais lattice, which describes the translation symmetry of the crystal, is a trian-
gular lattice. This can be seen by noting that there are two different kinds of sites
in a honeycomb lattice, A and B sites, as depicted in Fig. 3.1. A translation from
A to B is not a symmetry, since it does not leave the lattice invariant. The Bravais
lattice has then two atoms per unit cell and is generated by the set of translations
na; +mas for any integers n and m and the primitive vectors

1 V3 1 V3
a; = <§, 7) a as = (—5, 7) a (3.41)

where a = v/3ay is the lattice parameter and ag is the nearest neighbour distance
(in graphene: ag = 1.42 A).
The reciprocal lattice can be shown to be also a triangular lattice, with primitive

vectors
4 1 4 1
b= A (V31 by— AT (_V31 (3.42)
V3a\ 272 V3a 272

The First Brillouin Zone (FBZ) will be an hexagon (Fig. 3.1), with vertices at

b1 - b2 47
=— (1,0 3.43

—2 = 2 (1,0) (3.3
The other vertices of the hexagon can be obtained from K and K’ with a trans-

lation by a reciprocal lattice element, and therefore correspond to the same Bloch
states. These two states are referred to as Dirac points, for reasons to be made clear

(Section 3.3.3).

K=-K =
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The set of vectors linking an A-site atom to its neighbours, depicted in Fig. 3.1,
is

V3 1 V3 1
51 = (7, —5) ap 52 = (-7, —5) ag 53 = (O, 1) ao (344)

3.3.2 Tight binding model

A simple nearest neighbour tight binding model describes the basic properties of
electrons in graphene. To construct the one-particle Hilbert space, one state (per
spin) is assigned to each carbon atom. The basis states can then be written as

[pa(r = Rp)) = [o(r —Ry))  |ep(r —Rn)) = [o(r — R, — d3)) (3.45)

where we centered the origin of the unit cell in the A site, so that d4 = 0 and dg =
d3. These are the &, vectors introduced in Section 3.1, with the sublattice/orbital
index taking on two possible values: A = A, B.

There is, of course, more than one occupied orbital in a carbon atom. A more
involved treatment shows that the four valence orbitals (per spin) combine to give
three hybridized sp? orbitals in the graphene plane and one out-of-the-plane 7 or-
bital. The sp? orbitals form covalent bonds that are responsible for the strength and
stability of graphene [65, 79]. The 7 states are responsible for the electronic trans-
port in graphene [65, 79]. From the point of view of band theory, the sp? orbitals
form deep valence bands, which are completely filled and don’t contribute to elec-
tronic transport. We can then just consider the 7 states, which can be transformed
into orthogonal Wannier states, as the ones in Eq. 3.45.

To keep it simple, only nearest neighbour interactions will be considered. Each
Wannier state couples to the three neighbouring ones, giving rise to the following
Hamiltonian,

Hy=1t)_|pa(r —Rn)) ({pn(r —Ro)| + (pp(r — Ry — a1)| + (pp(r — Ry — a2)|) + hec.
Rn

(3.46)
where ¢ is the tight binding parameter.
A Fourier transform will diagonalize this Hamiltonian. Following Section 3.1,
the sublattice Bloch functions are introduced

Wia(r) = Vi Y ¥t —R,) Wp(r) = o ) MR (xR,
Rn Rn

(3.47)
and the Hamiltonian is rewritten in this basis. According to Egs. 3.6 and 3.7,

with
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Figure 3.2: Band structure of monolayer graphene (7w bands only). Zoomed in at
the vertices of the FBZ, are the Dirac cones. In the left, the entire band structure
over the FBZ (adapted from [65]). In the right, the linear dispersion near the Dirac
point.

(k) = |B(k)|e " = ™% (1 4 e ™ 4 emihm) = k0t pikd2 4 (ks (3 49)

We are then left with a two-dimensional problem,

Hy =t ( (I)*(zk) q)gk)) (3.50)

This is our two-band model. Notice that the two states per k resulted from the
existence of two atoms per unit cell. Comparing with Eq. 3.22, we have for graphene
do = d, = 0 and

d, =t Re{®(k)} = +t cos (k- d1) +t cos(k-d2) +t cos (k- d3) (3.51)
dy = —t Im{®(k)} = —t sin(k-d;) —tsin(k-d2) —t sin (k- d3) (3.52)

In spherical coordinates (Eq. 3.23),

o= g 0 = arctan <%> (3.53)

Due to the absence of a mass term [50] (d3 = 0), the angle ¢ is locked at /2
and the versor field d lies in the zy-plane.
The eigenstates of Eq. 3.50 are

GA) () e

with eigenvalues

€ke = —|—t|<b(k)| €y = —t|<b(k)| (355)

The stationary states are a combination of Bloch states associated to A and B
sites (with the same Bloch vector k), where the electron has an equal probability of
being found in the sublattice A or B.

The non-abelian Berry connection of monolayer graphene is derived from the
eigenstates (Eq. 3.26),
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o ey 1 o o ey 1 teY
kee — Ykov _5 00 kev — Ykve — 5 00 (356)

The dispersion relation is represented in Fig. 3.2. In undoped graphene, there is
an electron per atom, which, taking into account the spin degeneracy, leads to the
lower band being completely filled at zero temperature. The Fermi level is then at
ZEero energy:

®(k) =0 (3.57)

The solutions for this last equation are k = K or k = K'. These are the Dirac
points. We will see why.

3.3.3 The Dirac Hamiltonian

The Dirac points constitute the Fermi surface of neutral graphene. If we examine the
dispersion relation around these points, we find a rather unusual conical dispersion
law, depicted in Fig. 3.2. Since the energy scales linearly with momentum, we can
already infer that the excitations will be massless.

To analyze these excitations more quantitatively, let us expand ®(k) around the
Dirac point K,

(K +q)~PK)+q- (VO(k)k=x
_ Zq 6iK~51 51 + 6iK~52 62 + eiK'Sg 63)

(
=iq- (T 8+ e F 85+ 83)

o () (3 )

Vaa

= (@ —1q) (3.58)

and build a low energy effective Hamiltonian

Ho(q) = _Viat < 0 _()iqy> (3.59)

2 Gz +1qy

which can be succinctly expressed as a function of the momentum (relative to the
Dirac point) p = hq,

Hy =vp (Ux Pz + Oy py) (360)

where vp = —3agt/2h is the Fermi velocity. Introducing the parameters for graphene
(t ~ —3¢eV), we find vp ~ 105 m s~

Equation 3.60 is the Dirac equation for massless fermions. Since deviations from
this behaviour are at energy scales of order 1 eV, we can say that electrons in
graphene indeed act as massless Dirac fermions [66], when dealing with low energy
excitations.

However, there is one relevant distinction from the analogous high-energy physics:
o is not the electron spin. It is an analogous variable, called pseudospin, where
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o, = +1 for an electron in the sublattice A and o, = —1 for an electron in sublat-
tice B. For the energy eigenstates, < o, >=1/2.

In this low energy effective theory, we have d(q) = hvr q. The dispersion relation
is linear and gapless,

€qe = —€qu = hup |q| (3.61)
The eigenstates still have the form in Eq. 3.54, but now the angle 6 obeys

6§ = arctan(q,/q.) (3.62)

which implies that the pseudospin and momentum are locked in the same or opposite
directions, for conduction and valence states, respectively.
The non-abelian Berry connection is now

chv - Aqvc = _chc - _Aqvv (363)

1 1 1 .
Ager = B} Vo = Q—QQ(—an%) = 2_q(_ sin 6, cos 0)) (3.64)

Finally, the Berry curvature (Eq. 3.33) is zero everywhere, except for q = 0.
This is actually a consequence of graphene having both inversion and time-reversal
symmetry (Section 6.6). At the Dirac points, the system is degenerate and the
curvature is undefined.

We can get similar results for the other Dirac point (valley) K = —K, simply
by reflecting about the k, axis:

Hy=vp (=0, ps +0ypy) (3.65)

3.4 Gapped graphene or hBN

An important aspect of the previous two-band model to have in mind is that it
respects inversion symmetry and therefore all even orders of the nonlinear conduc-
tivity will be automatically zero. The honeycomb lattice is not a Bravais lattice,
but will be invariant under spatial inversion about the midpoint between an A and
an B-site (of the same unit cell), as long as the atoms that occupy these sites are
equivalent.

To enable a future study of the second order conductivity, an additional term
is added to the previous graphene Hamiltonian that breaks the inversion symmetry
of the crystal lattice and opens a gap in the density of states. Theoretically, this
is done simply by considering the A and B atoms to have distinct on-site energies.
Experimentally, gapped graphene can be achieved by means of a substrate induced-
gap [81]. In such cases, the gap is usually small (A ~ 0.1 V).

Inversion symmetry can also be broken by placing two different atoms in the
A and B sublattices. This is the case of hexagonal boron nitride, a wide gap two-
dimensional insulator. Hexagonal boron nitride has attracted much attention as an
excellent substrate for monolayer graphene, enhancing the electron mobilities by an
order of magnitude [$2], as well as for its role in more complex devices where it is
combined with graphene in the so-called van der Walls heterostructures [63].
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Figure 3.3: In the left, the crystal structure of hexagonal boron nitride. Boron
atoms (blue) occupy the A-sites and nitrogen atoms (yellow) take the B-sites. In
the right, the dispersion near the Dirac point for a gap A = 0.1t¢.

3.4.1 Tight binding model

The tight binding model is similar to that of graphene, with identical hoppings, but
different energies for A- and B-site orbitals (see Fig. 3.3),

Hy —tz lpa(r — Rn)) (pa(r — Ry)| + (pa(r — Rp —a1)| + (pp(r — Ry, — a2)]) + hc.
+5 Z lpa(r Z lps(r ) (pp(r —Ry)|  (3.66)

Following the same procedure as before, the Hamiltonian is represented in the
sublattice Bloch basis,

A2 1K)

We still have d, =t Re{®(k)} and d, = —t Im{®(k)}, but the added mass term
d. = A/2 implies that d is no longer confined to a plane,

¢ = arcco a 0 = arctan (@) (3.68)
VA2 |9(k)2 + A2 g

There are also no longer any crossing points in the band structure,

eke =+ [P(K) [ + (A/2)2 = -V + (42?2  (3.69)

At the Dirac points, ex = exr = £A/2. The mass term lifted the degeneracy
and introduced a gap of size A. This is represented in Fig. 3.3.
The energy eigenstates,

(Slcr? ?;72/)26)0 (_ i’ifi %iee) (3.70)
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and the Berry connection can be found with the use of previously presented formulas
(Egs. 3.25 and 3.26).

If the Fermi surface lies in the gap or near the top (bottom) of the valence
(conduction) band and for excitations of not too high an energy, the optical response
will, at least in part, be determined by the electronic properties near the Dirac
points. Once again, a low energy effective theory can be formulated around these
points.

3.4.2 Low energy effective Hamiltonian

The expansion k ~ K + q is exactly the same as before and results in the following
Hamiltonian,

A/2 hop(g: —iq ))
H = . Y 3.71
o(a) (hvp(qm +1iqy) —A/2 (3.71)
which can be more concisely stated
A
Hy =vp (proc + Oy py) + 5 P (372)

with p = Aq. Similar results can be derived for the other valley at K'.
For this effective Hamiltonian, d(q) = (hvp ¢, ivp gy, A/2). The eigenvalues
give the band structure,

ac =+ (nq)? v} + (A/2)2 o=y (h2 ok + (A2 (3.73)

This is the dispersion relation for massive relativistic particles, with the Fermi
velocity vp again replacing the speed of light and a mass m = A/(2v%).

The stationary states and the Berry connection will depend only on the direction
of the d field. The notation can therefore be abbreviated by factoring hvp, d(q) =
hwp(gs, gy, AJ/2hvp), and defining A" = A/hvp.

The energy eigenstates are the same as in Eq. 3.70, but now the angles obey

A/
¢ = arccos | ——— 0 = arctan (q—y) (3.74)
\/ 4 q2 + A2 qx

The pseudospin is off the zy plane for A # 0 and hence misaligned with the
direction of the in-plane momentum.
From Egs. 3.74, the abelian Berry connection is derived (Eq. 3.26),

A sin 6 A’ cos @
Ar = A =—[1- 3.75
4 ( \/4q2+A’2> 2q 4 ( \/4q2+A’2> 2q 879)

A/ sin 6 A’ cos 6
A =1+ AV =—1+ 3.76
4 < \/4q2+A’2> 2q 4 ( \/4q2—|—A’2) 2q (3.76)
The non-abelian Berry connection contains additional off-diagonal matrix ele-

ments that, since the matrix is Hermitian Ag,. = Aqe, are specified completely

by
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sin 6 1 A\ cos b
AP = n 3.77
w = T E T aTa A+ (A2 (377)
cos 6 i A'sin
.Aycv =+ + 3.78
o =T A+ (A2 (3.78)

Since the mass term breaks inversion symmetry, the Berry curvature no longer
vanishes. In vector form, it points out of the plane
A/
2 opry _
QO =F"= 1+ (N2 (3.79)

With the degeneracy removed, the curvature is now also defined at the origin,
q = 0, where it reaches its maximum value.

The Berry curvature is relevant to linear response theory due to the appearance
of a term in the optical conductivity, the so-called anomalous Hall conductivity,
involving the flow of curvature over the entire FBZ (Chern number). This will
be discussed later, in Chapter 5. Sadly, when integrated over the entire FBZ, the
curvature flow returns zero for hexagonal boron nitride and gapped graphene. This is
because, while broken inversion symmetry allows a non-zero curvature, the curvature
is odd in k as a consequence of time-reversal symmetry (Section 6.6).
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Chapter 4

Minimal coupling method

In this chapter, the difficulties inherent to perturbative calculations in the velocity
gauge are addressed. Following closely the treatment in [56], it is shown how cal-
culations of nonlinear conductivities in the independent particle approximation can
be done to any order and for any finite band model. The advantages of adopting
a minimal coupling Hamiltonian are described. As an illustration, the nonlinear
optical conductivity of monolayer graphene is calculated numerically.

4.1 Minimal coupling in a finite band model

As it currently stands, the minimal coupling, or velocity gauge, Hamiltonian is of
little use in calculations of the nonlinear conductivity. For any realistic calculation,
a finite number of bands is employed and the expressions derived from perturbation
theory (Egs. 2.72, 2.74 and 2.75) give unphysical answers, divergent in the DC limit.

This is somewhat puzzling, considering that the theory is equivalent, by means
of an unitary transformation (Appendix A), to the length gauge formulation, which
has no issues in providing sensible answers for finite band models derived from tight
binding or density functional theory. It was argued in Section 2.4.3 that gauge
invariance will inevitably be broken by a band truncation that violates sum rules.
Still, this does not properly answer why such approximations are more easily dealt
with in the length gauge framework. More precisely, should it not be possible
to simply define a model with a finite number of bands, assume that whatever
other bands exist would be of such character that they would not contribute!, and
obtain proper physical predictions? If the velocity gauge of Section 2.4.2 is used,
unreasonable infrared divergences make it clear that the answer is no.

In actuality, there is a very fundamental difference between the two gauges, that
was not properly appreciated until recently [50], and it concerns the form of the
perturbation.

In the length gauge, the perturbation has always the form V(t) = ei - E(t). It
does not matter if H, represents the crystalline potential as in Eq. 2.35 or if it is
defined in the context of a tight binding model with a finite number of bands, the
length gauge perturbation, and therefore the structure of the perturbation theory,
is unaffected. As long as the eigenstates of H, are Bloch states and the eigenvalues

!By being too far off in energy and/or having very small matrix elements for the non-abelian
Berry connection or whatever characteristic is required for band truncation to be a reasonable
approximation in the respective perturbative treatment.
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provide the band structure, the length gauge treatment in Section 2.4.1 remains
valid.
To make it completely general, the unperturbed Hamiltonian can be defined by

ﬁ():/%;|¢ka> €ka <77bka| (41)

which can have any number of bands. It encompasses both the possibility of a
Schrédinger Hamiltonian (Eq. 2.35) with an infinite Hilbert subspace at each k, and
that of an arbitrary finite band model, derived, for instance, from a tight binding
description (Egs. 3.6 and 3.7). Once this Hamiltonian is specified, the formulas in
Egs. 2.61, 2.63 and 2.64 provide the linear and nonlinear conductivities.

In sharp contrast, the minimal coupling Hamiltonian is defined as

H(#,p) = Ho(F,p + e A(1)) (4.2)

and relies on the expansion of H, on the potential vector to define the perturbation.
It was presumed before that the unperturbed Hamiltonian was
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and the perturbation was derived from there (Eq. 2.67), with the consequent per-
turbation theory of Section 2.4.2 built on this assumption. If a different H, were
chosen, the perturbation theory would have resulted different. It is therefore not
that surprising that contradictions are found and sum rules broken upon replace-
ment of Hy by a finite band model. In other words, the essential difficulty is that,
in a minimal coupling formulation, the perturbation depends explicitly on f]o, unlike
the length gauge.

Having identified the origin of the problem, the path to its resolution becomes
clear. The perturbation theory of Section 2.4.2 can be reformulated by dropping
any assumptions on the form of the unperturbed Hamiltonian, other than it has
the periodicity of some Bravais lattice, so that Bloch’s theorem applies and there
is a well defined First Brillouin Zone (FBZ). In this case, it can be written as in
Eq. 4.1 and contain any number of bands. From this starting point, a perturbative
analysis will be developed that generalizes the previous velocity gauge treatment
and is applicable to finite band models.

The first challenge is to find a way to implement minimal coupling for the Hamil-
tonian in Eq. 4.1. The usual procedure dictates that the substitution p — p+e A(t)
be made, but in this case Hy is not defined in terms of the position and momentum
operators, but instead is expressed in terms of the band structure and respective
Bloch states.

An alternative is suggested by a rewriting of Eq. 4.2, inspired by the unitary
transformation that relates the length and velocity gauges,

A(5.D) = Ho(, b+ ¢ A1) = U(t) Holi, p) U (1) (4.4)
with U (t) = e ietAD/M,

Minimal coupling can be described as performing a unitary transformation Z(t).
This presents a natural way to generalize the approach by defining the unitary
transformation in the (possibly) finite subspace of Hy in Eq. 4.1. This is certainly
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possible, since the position operator is defined in any space generated by Bloch
states as the covariant derivative (Section 2.3).

A

I — g—ietAW®)/h FIO pletAM)/h _ 6@]5~A(t)/ﬁ ]:]0 e—ef)A(t)/h (4.5)

This is the minimal coupling Hamiltonian that will be used in this chapter and
for which we will retrace the steps made in Chapter 2 and derive a new, more general,
perturbation theory.

For that, it is first necessary to isolate the perturbation in Eq. 4.5. This is done
with use of the Baker-Hausdorff lemma [33]: For any two operators, A and B, the
product eA Be A can be expressed as a series of commutators:

where, in the sum, B is commuted with A an n number of times. The proof is
straightforward and demands only the Taylor expansion of the exponential functions
and appropriate grouping of the resulting terms.

Replacing A by eD - A(t)/h and B by H,,

= ee]f)-A(t)/h lﬁfo efe]AD-A(t)/h

-y nf;ﬂ (Do [ (D, HJJ. ] A (8) . .. A ()
= Hy+ V(1) (4.7)

where we have identified the perturbation. It is represented in the eigenbasis of H,
as

+oco 4
€ a...0p a1 an
Vian(t) = D — gl A (£) ... A (t) (4.8)
n=1 ’
with
hﬁéb.-an = h_n [Dan7 [ L] [Dalv HOH "']kab (49)

The commutators h* " are the coefficients in the expansion of the Hamiltonian
on the optical fields. In linear order, the coefficient is the unperturbed velocity, as
presented in Eq. 2.55,

1 ?
h‘ﬁab = hil [Da, Ho]kab = 7—1 (8°‘eka) 5ab + 7_7, ‘Aﬁab A€kab (410)
while for n = 2,
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higay? =% (D, [D™, Hollygy, = h™" (D, 5™
1 2 1. 01 a1 «a o
h (9 hkab hz kachkcb hkzlzc kzb)
1
h2
1
+ Akab (aalAEkab) 2 Z( kae Akep Deker — Ajae Aict Aeiee) (4.11)

(3a23a1€ka) Sab + o (8Q2Akab) Aexap to Akab (07 Aekan)

and so on.

Notice that the h coefficients and therefore the Hamiltonian are completely spec-
ified by the band structure €., and the non-abelian Berry connection Ajygp.

For the special case of the Hy in Eq. 4.3, discussed in Chapter 2, h*®? is a
constant, independent of k, irrelevant for the dynamics of the system.

ajo -2 « a 4 a « 1 alo
Tnga” = =07 [ [0 Holley = =5 1%, 0™ iy = — G 07 (4.12)
Consequently, all other coefficients obtained by additional differentiation, return

Zero.

heLen — () (n > 2) (4.13)

The treatment of Section 2.4.2 is therefore a special case of the one presented
here, that can be reobtained by setting the second order coefficient to a constant,
the inverse mass, and all higher order coefficients to zero.

The perturbation in Eq. 4.8 is notably beyond the scope of the perturbative
treatment in Chapter 2, which was based around a linear coupling with the classi-
cal field. It is then necessary to revisit and generalize the perturbation theory of
Sections 2.1 and 2.2.

4.2 Revisiting perturbation theory
The Hamiltonian is not the only quantity to be expressed as a powers series in this

formulation. The velocity is defined in terms of a commutator with the Hamiltonian
and therefore

1
h

—meﬂ D (DO, Hol i A% (1)... A (1)

. 7
Uﬁab :Tlﬁmb = -z [7“’87 Hlxay = [DB» Hab

h

—Z—mﬂUW%M@ (4.14)

A similar situation was encountered before, in the velocity gauge treatment of
Section 2.4.2. There, the coupling to the optical field was actually quadratic, instead
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of linear, resulting in an additional term in the velocity (Eq. 2.70), which in turn
resulted in an extra term for the linear conductivity (Eq. 2.72). Along the same
lines, the couplings in the Hamiltonian discussed here involve higher powers of the
optical fields and lead to additional terms in the velocity and more complicated
expressions for the linear and nonlinear conductivities.

The velocity operator is, in this case, a function of the potential vector and
explicitly time-dependent. The dynamics of the averaged current depends on the
time evolution of both the velocity and the density operators,

70) =T (10 50)) = = T (170 o) = ¢ [ 555

Viepa (1) Prcas(t)
a,b
(4.15)
The expansion of the current on the optical fields must then be done in the
density matrix and the velocity matrix elements simultaneously.
In the absence of an external field, the current is

d’k
JPO = — / )d kba gb (4.16)

The first order response is

dk
PO = e [ 553 (W + ol AB) @)
a,b

Similarly for the second order response,

dk
I (1) = —e / Gyt 2 (1 0 i+ ) (1) s () + o) () (419
a,b

and, in general,

JEM () = /

The notation adopted here is the same as before. Particularly useful are the
quantities p®t** defined in Eqgs. 2.20 and 2.22. In this formulation, the potential
vector takes the role of the classical field the electron system couples to and the
aforementioned definitions become

Z kba PkZb 7 (t) (4.19)

a,b p=0

+00 +o0
(1) = / dt. .. / dty Pt — bt — £) A (1) .. A (1) (4.20)

[e.9]

which, in the frequency domain, translates to

400 +o0 ;
FRIOE / don / B sormn (g ) A (). A (1) e+ H )

oo 2T oo 2T

+o0 d +o0 d _A\n )
:/ “"/ don (A" sy ) B () o B (1) € Hoon)

oo 2T oo 2T wi..wn

(4.21)
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The previous expansion of the velocity (Eq. 4.14) can also be expressed in fre-
quency space,

n +o0o +o0
B(n) € dwr, dw <_Z) ar...anfB o a —i(w1 .. twn )t
t) = — .. — =2 h e LB (wy, 1 n
Vsapy () ol / o / 27wy, ab (wr)- (wn) e
(4.22)

Introducing Egs. 4.21 and 4.22 in 4.19, we obtain formulas for the conductivities
that are a generalization of 2.29. As in Section 2.5, their domain is then extended
by considering complex frequencies. The linear conductivity is?

—00 —00

@)= [ o kdz(hﬁbapkab< J+ehi (o) (423)

w ) (2

The second order conductivity,

e dk -
o1 (@), wg) = —— / (2m)d (hﬁba Preas? (@1, @2) + e Bl piz, (@2) + = hﬁégﬁ (Po)kab>
a,b

w1 W
(4.24)
The third order conductivity,
~ d
50110120‘3(wl wg,&)g) _(Dl ;2 3 / (;Trl){d e (hEba &111?2 3((,;)1,002,&}3)
o3
Feh A @) + SR 00+ S ) (429

Finally, the n-th order nonlinear conductivity can be written as

n Y d p
/B n Ty — ( Z) d k € a1...«x ﬁ Ap41-..0n _
GO (@, ., Wn) = —e pzo @1...@n ) (2m)F S P! hicba " Picab (@p+15 -+ Wn)

(4.26)

The @; ! factors are, as in the previous velocity gauge treatment, due to the con-
version of the potential vector into the electric field components A(w) = —i F(w)/w.

The functions p®—®" still have to be evaluated. For this, the density matrix
equation of motion must be solved,

+oo
. € Qaq...0p aq Qn
i Ovpxap = [H, plkab = [Ho, plkar + Z o [h  P()]iqy A™H(E) . A(E) (4.27)

A Fourier transform is applied to give

+oo e +o0

(hw — Aékap) prap(w) = ]

n=1

(R p(8)] ey AT (E) .. A (2) €™ dt

—0o0

(4.28)

2This equation is a more general version of Eq. 2.72.
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The resulting recursion relation is a bit more complicated than before (Eq. 2.14).
At zero-th order, the equilibrium distribution is still the Fermi-Dirac distribution
A(O) — ~
P Po-

In linear order,

« ~ € «
pkab(w) = T _ [h 7p0]kab (429)
ho Aek b

In second order,

1 e?

pﬁtlz(gQ (@1,@2) = h@l + ha)g . AEk b (6 [hCVl’ pa2 (@2)}kab + ? [h’ala2’ pO]kab) (430)

The pattern is already becoming clear. As an additional example, the third order
density matrix is provided by

1
reap B (@1, 02, 03) = X
Preat” (@1, 002, &3) hioy + hivg + hios — Aéxap

2 3
(& (&
(6 [, p2%% (W, @3) iy + — A1, P (@3) ey + 57 [hala2a37po}kab>

2 3!
(4.31)

Finally, to general order n, the perturbative solution to the density matrix equa-
tion of motion is recursively expressed as

1 n em
1.0 [~ — § : Q1...0m A Om41---Op —
P W1y eeny W = — — h P W41y -0y W
kab ( T n) hwy + ... + hiop, — Aégap | m! [ ’ ( T n)]k“b

(4.32)

This recursion relation can be unfolded into lengthy expressions and its structure
analyzed in more detail. However, we shall see that the real value of these expressions
lies in their numerical evaluation (Section 4.4), for which a recursion relation is
sufficient. Once the density matrix is computed via Eq. 4.32 it can inserted in
Eq. 4.26 to give the nonlinear conductivity.

The nonlinear optical conductivity will still have to undergo the usual sym-
metrization procedure to ensure intrinsic permutation symmetry. Albeit trivial,
this last step is a bit cumbersome to write down and will be left implicit. The new
expressions for the conductivity presented here are entirely equivalent to the ones
derived in Section 2.4.1 using the length gauge. Although far more complicated,
they have their advantages, which will be discussed later.

4.3 (Gauge invariance and sum rules

When, back in Chapter 2, two perturbation theories were developed to find the
nonlinear conductivity, each employing a particular choice of gauge, but in prin-
ciple completely equivalent, it was mentioned that their equivalence relied on sum
rules. The length gauge expressions for the nonlinear conductivity (Egs. 2.61, 2.63
and 2.64) are the same as the ones derived via the velocity gauge (Eqgs. 2.72, 2.74
and 2.75), only if the following commutation relation holds
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2B [ 7] — n? Ba

(77, [P, Hol] = Eé (4.33)
which is true for the Hamiltonian in Eq. 4.3, but not necessarily for the one in
Eq. 4.1.

The content of the previous sections generalizes the velocity gauge beyond such
constraints. This condition is no longer necessary to demonstrate the equivalence
of the recently derived expressions for the nonlinear conductivity (Eqgs. 4.23, 4.24
and 4.25) and the length gauge ones (Egs. 2.61, 2.63 and 2.64).

However, as it turns out, there are still some requirements for keeping the for-
mulations equivalent or, more precisely, for maintaining the validity of the minimal
coupling formulation: the Hamiltonian in Eq. 4.1 must be defined over all the First
Brillouin Zone and the integration in Eq. 4.26 must run through its entirety. Low
energy effective Hamiltonians that portray the electronic properties in a confined
region of the FBZ are sometimes used (e.g. Egs 3.60 and 3.72 for graphene) and
often provide an accurate and simpler means for computing the optical response.
For the minimal coupling approach presented in this chapter, however, these low
energy descriptions do not suffice.

To understand why this is the case, we inspect the unitary transformation linking
the length and velocity (minimal coupling) descriptions. The subscripts L and V'
are used to refer to the length and velocity gauges, respectively. The operators in
the two descriptions are related by (Appendix A)

A ~

Oy =U) O U (1) (4.34)
with

U(t) = e erAb/M (4.35)

For a system with a (possibly) finite number of bands,

Z;{(t) _ pieRA(M)/h _ eeb.A(t)/h (4.36)

Our quantities of interest are the ensemble average of the electric current and
the linear and nonlinear conductivities. It seems, at first, straightforward to prove
their equivalence,

= (J o) =T (U @) ([ pdi @) =T (K ov) =
(4.37)
where it was made use of the cyclic property of the trace and the unitarity of the
transformation.

This proof seems rather trivial, but since the position operator is the covariant
derivative, the unitary transformation involves differentiation and the cyclic property
of the trace is not quite sufficient to make the passage, being necessary also to
perform an integration by parts, throwing away the integral of a gradient.

The cleanest way do demonstrate this is to write the transformation as a power

series, in a manner entirely analogous to the minimal coupling Hamiltonian in
Eq. 4.7,
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JE =Ty (a(t) 2 pr zfﬁ(t))

- 2 S AT (1) A (1) T (D [ [D™ ] )] ))

_Jﬂ+z

With this, we have arrived at what could be called a set of sum rules for the
equivalence of the minimal coupling approach presented in this chapter and the
length gauge method introduced in Section 2.4.1 (and further discussed in the next
chapter):

_ A% (f) .. A (1) T ([[7%, ..[Der, J? ﬁL]]...]> (4.38)

+o00 n

N Aty A () Tr (D [ (D T pul]) =0 (4.39)
n'h

These sum rules were first derived by Ventura et al. in [57].

The trace of a commutator is normally trivially zero, but since the covariant
derivative is present, there is a contribution for each term in the sum that is pro-
portional to

Tr ([éan, L.[Do, JP ,aL]...]]) -y / (;lj:;d (aan[pam, .[Do, TP pL]...]]kaa> ~0

(4.40)

This condition is satisfied due to the periodicity of the FBZ. But this implies
all the FBZ must be used, otherwise the integration may not return zero and the
length gauge and minimal coupling expressions will likely differ.

This argument feels somewhat abstract and is best understood by working the
expressions in Eqs. 4.23, 4.24 and 4.25 into the format in Eqs. 2.61, 2.63 and 2.64,
respectively, directly verifying the need for the sum rules in Eq. 4.40. Unfortunately,
this type of manipulations are rather cumbersome. For this reason, they will be
presented here only at first order. It should prove sufficient to make the previous
argumentation concrete.

The goal is then to start with the expression for the linear conductivity obtained
by a minimal coupling treatment (combining Eqs. 4.23 and 4.29),

0" (@) = /

ie? [ d'k B 0% PO s
(Belhn i mps) 2

) Z (hﬁba Prear(@) + € hkba (Po)kab)

o ) enis

and arrive at the formula derived from the length gauge (rewriting Eq. 2.61 with
the current notation),

d’k o]
Ba (o) — _j o2 Pt [0 P0 )it
o (@) / } E hw— s (4.42)
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To begin, the Jacobi identity is used in a commutator from Eq. 4.41 to move the
covariant derivative to the density matrix,

AR, poliay, = (D%, Hol s polieap
[[Dav pO] ) Ho]kab + [Dav [H()? po]]kab
(LD, pol , Holieas (4.43)

where in the last step we took into account that the commutator of two diagonal
matrices is zero [Ho, po] = 0.
This leads to

[haﬂ po]kab =—h [Da7 po]kab Aékab (444)
With this, the first term in parenthesis of Eq. 4.41 becomes

hiba (A%, polyar _ hﬁba A1 D, polyy Deab

ho — Aekab hio — AEkab

W h‘iba [Doz) po]kab
hw — Aéxap

= hﬁba h=t D, Polkar — (4.45)

The second term in Eq. 4.45, when replaced in Eq. 4.41, will give the length
gauge result in Eq. 4.42. The remaining contributions must therefore be zero and
form our sum rule,

ie? [ d%k L .
= | ai (a7 1D, ol + BP0 ) = 0 (4.46)
a,b

w

This can be further simplified through

higy, = 02 [D?,[D*, Hy]],,, = b2 [D*, [D? Hol],,, = h~" [D*,h°],,.  (4.47)
where the commutation of covariant derivatives was used [Dﬁ , Da] = 0 (see Ap-

pendix C). Replacing in Eq. 4.46,

o ) (@2n)d

2'62 ddk B -1 « -1 a 1.8
(P D7 1D° s + 07 [D° 0, (p0)a) =0 (4.48)
a,b

leading to

it [ d'k
ho | (2n)d

[D*, hPpo],. =0 (4.49)

kaa

The commutator with D can be broken into two pieces, one involving the Berry
connection, which is trivially zero (the trace of a proper commutator is always zero)
and another involving a conventional derivative,

ie? d%k
ho ) (2m)d —

(aahﬁba(po)kab) =0 (4.50)
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which can be recognized as a particular case of the sum rules identified in Eq. 4.40.

This condition is always true, since the functions h and py are periodic in recip-
rocal space. The sum rule (and therefore the equivalence between the results in the
two gauges) is therefore trivially satisfied as long as the integral is performed over
the full FBZ.

Analogous derivations can be made for higher orders in perturbation theory.

In the next chapter, it will be shown that in the length gauge the real part
of the nonlinear conductivity is determined by specific regions of the FBZ, where
resonance conditions are met. For this reason, it is not surprising that low energy
effective theories can often be used in the length gauge to derive the optical response.
In contrast, the minimal coupling formulation will not work with such models due
to the previous argument: for the minimal coupling to provide the same, accurate,
results as the length gauge, the sum rules in Eq. 4.40 must be met. Only by accident
would such conditions be satisfied in a low energy effective model.

4.4 An efficient algorithm and its limitations

Let us assume then that we possess a model that is defined over a FBZ. The mini-
mal coupling method is a new tool for computing the nonlinear conductivities, but
how does it compare to the standard, and widely adopted, length gauge method?
As usual, there are advantages and disadvantages associated with any particular
choice of gauge. By considering the (exactly equivalent) forms of the nonlinear con-
ductivities derived in the two gauges, the strengths and weaknesses of each can be
analyzed.

A first look at Eq. 4.26 will immediately bring out the usual concerns with
infrared divergences in the velocity gauge, due to all the inverse frequency factors.
We emphasize again, however, that this expression is equivalent to the one obtained
from the length gauge and therefore these divergences are only apparent. As it
was exemplified in the previous section, the minimal coupling expressions can be
manipulated and, using a series of sum rules, put in a form that is clearly divergence
free in the DC limit. This approach was the one originally pursued [17] for the early
velocity gauge calculations, but this use of sum rules became rather pointless after
the length gauge formulation had been developed [19]. If the sum rules are employed
in the velocity gauge to remove apparent divergences, one will simply arrive at an
expression obtained more straightforwardly in the length gauge. With the current
formulation of the velocity gauge, presented in this chapter, there is also no longer
a risk of violating sum rules upon band truncation: Eq. 4.26 can be used without
any worries of spurious infrared divergences.

Having clarified this point, it can still be noted that the minimal coupling version
is considerably more elaborate; less useful not only for inspection, but in an actual
analytical calculation. As an example, the expression of the conductivity responsible
for second harmonic generation, with all components along the x axis, in the length
gauge is,

kab

d%%k hy 1
TrT(~ o~ _ 3 kba DZ _ D% 4.51
o) =e /(27r)d Zab 21 — Ny [ yrmy vl (45)

while in the minimal coupling formulation,
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XX (— 6 ddk — 62 Trx
o (W, w) = d Z kba Piab (@0, @) + € hig, picap (@) + o Mkba (P0)kab

(4.52)
where we still have to write the density matrix components,

e v €l poliab
Preap(@) = o — New o Aers
XTr i 1 €T X [ — 62 T
Preap(W, @) = o — Aer (6 %5 p%(@)icap + 5 [P ,po]kab) (4.53)

This example demonstrates that there is little advantage in doing the analytical
calculations in the velocity gauge, although inspection of the previous equations
shows an interesting point: there are only simple poles in the velocity gauge (hw —
Ae)~1 while in the length gauge, by differentiation, higher order poles emerge. Still,
for analytical calculations, I would advocate the cleaner and easier length gauge
approach [19].

The strength of the minimal coupling method lies in the different arrangement
of the commutators. The covariant derivatives are no longer applied to the density
matrix in its recursion relation®. Instead, they operate only on the unperturbed
Hamiltonian Hy in the determination of the functions hy. (Eq. 4.9), which are
independent of frequency, temperature and chemical potential.

These hyq, functions are the essential objects in this formulation and the only
that must be known analytically. The covariant derivative needs only to be applied
to the unperturbed Hamiltonian, whereas in the length gauge it needs to be applied
to the Fermi-Dirac distribution and the frequency poles, a more complex endeavor.
Therein lies a significant advantage of the minimal coupling method.

A careful look at the algorithm delineated in Section 4.2, shows that for the
nonlinear conductivity of order n, there are n + 1 such functions to compute by
successively applying a covariant derivative: hyly; ™ with m = 1,...,n+ 1. In the
previous example of second harmonic generation, these would be hi ,, hiis, and hi.
Further reducing this algorithm to its fundamental ingredients, we recognize once
again that these calculations demand only a knowledge of two objects, which fully
define the system under consideration: the dispersion relation €y, and the Berry
connection Aygp.

Once these hyli“" functions are analytically determined, the integrand in Eq. 4.26
(or Eq. 4.52, in our example) can be numerically evaluated at each k, independently
and quite easily. In fact, the procedure involves evaluating the analytic by ;" func-
tions and the Fermi-Dirac distribution at the k point and then computing simple
commutators and traces of numeric matrices. There are no numerical derivatives at
all. This is in contrast with the length gauge, where either the full expression of
the response function is analytically calculated or numerical derivatives have to be
applied in each step of the density matrix recursion relation. Either way, via the
product rule and higher order poles, the number of complicated terms to evaluate
grows very fast with n in the length gauge approach.

3In this aspect, the approach here has similarities with the one employed in [76].
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For this reason, the form of the nonlinear conductivity in Eq. 4.26, derived
from the minimal coupling Hamiltonian, should provide a more efficient numerical
approach. The author has implemented numerically the expressions in both gauges
and done calculations on the nonlinear conductivity of monolayer graphene and
observed that the computation times were indeed considerably smaller when Eq. 4.26
was used.

Additionally, the frequency, temperature and chemical potential parameters can
be changed at will (h* " is unchanged), without significant cost increase. This
enables us to probe the response beyond what is usually possible to capture with
low energy effective theories in the length gauge [31]. Also, considering perturbation
theory beyond third order seems feasible, and straightforward, since it involves no
substantial increase in the complexity of the calculation. This is hardly possible in
a length gauge treatment.

The generalization of the velocity gauge discussed in this chapter was introduced
in 2018 [56] and has since seen further developments by other researchers. Parker et
al. [85] placed it in a diagrammatic form, discussed the low frequency limit where
it meets the Boltzmann equation methods and used it to compute the nonlinear
optical response of Weyl semimetals. S. Joao et al [30, 87] worked with a different
diagrammatic formulation and developed the theory in an arbitrary basis. Numerical
efficiency was achieved via the kernel polynomial method, making it possible to do
the computations with very large numbers of atoms. By performing the calculations
in real space, it became possible to introduce and study the effects of disorder,
vacancies and lattice distortions.

4.5 Evaluating commutators for tight binding mod-
els

In this section, we tackle a subtle issue, albeit one that will prove of practical
importance. As it was laid out in previous sections, numerical evaluation of the
nonlinear conductivity via the minimal coupling method requires prior computation
of the h commutators. Once these are known, we are left with numerical operations
that can be done through a concise Mathematica code (or in some other appropriate
programming language favored by the reader).

he1-%n s the result of successive covariant differentiation of the unperturbed
Hamiltonian Hy. This can be made the direct way: once the band structure and the
non-abelian Berry connection are known, just expand the commutators in detail (as
in Egs. 4.10 and 4.11) and evaluate the derivatives of these quantities. There exists,
however, a simpler way to compute these commutators for the tight-binding models
used in this thesis. To understand this, it is necessary to discuss in a bit more depth
the covariant derivative and reinterpret some formulas.

Traditionally, the parametric Hamiltonian is defined not as in Section 3.1, but
by the following transformation,

A

Hy(k) = eIkt F etk T (4.54)
For the Hamiltonian in Eq. 4.3 and using p = —th 'V,
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2 72
Hy(k) =e kT (—h v + V(f‘)) ekt

2m

_ (; + k>2 LV (E) (4.55)

2m

I:IO(k) represents a family of operators parametrized by the Bloch vector. The
eigenvalues provide the band structure

Hy(K) ) = €xa |tina) (4.56)

and, by Bloch’s theorem, the eigenstates are the periodic parts of the Bloch func-
tions, from which the Berry connection is calculated,

Alapr = 1 (Uxa| 0% urep) (4.57)

This is the textbook presentation. It can be generalized by considering the
unperturbed Hamiltonian to have the form of Eq. 4.1, where an arbitrary number
of bands is considered. Then,

k) = Jtka) €xa (Ukal (4.58)

By the same reasoning, we can define for any operator diagonal in k,

@(k) = Z |[Uka) Oxab (U] (4.59)

a,b

This definition permit us to gather further insight on the covariant derivative. If
the parametric derivative is taken in the previous equation and the matrix elements
evaluated,

(ua| 0°O(K) |urgy) = <3a (uka| O(K) |Ukb>> — (0" uia| O(K) [useh) — (ura| O(K) |0 taer)
(0 Oxcar) +Z( 0 ukaluke) (tseel O(K) ) — {tncal O(K) Jtse) (o))
= (0"Ouc) + Y, (+ (eal 1) (el O (k) Juss) = (el Ok i) (ure| )

= (aaokab) - ZZ (Aﬁac Oxeb — Okac Aﬁcb) = [Daa O]kab (460)

We conclude that the operation of commuting with a covariant derivative can be
interpreted as,

[D%, Ol = (ural 9*O(K) i) (4.61)

This is valid for any basis. If we define (Eq. 3.8),

Via(T Z kax Vi (T (4.62)
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and .
\I/k)\<r) = ezk-r uk,\(r) (463)

where uy, is the periodic part of the Bloch function, then

[D*, Ol = 0°Oraw — i [A%, Oliw = (| 0°O(k) [wer) (4.64)
with

Aﬁ)\/\’ =1 (uk,\|8auk,\/> (465)

The quantity in Eq. 4.65 is, strictly speaking, not a Berry connection, since the
Uk do not correspond to the eigenstates of the Hamiltonian (Eq. 4.58).

Now, consider the case where the parametric Hamiltonian in Eq. 4.58 is derived
from a tight binding model. Moreover, let us take Wy, to be the sublattice Bloch
basis introduced in Eq. 3.4. In this case,

Hy(k) = Z [wex) (Ho)on (e | (4.66)
AN
with the matrix elements (Hp)xxn from Eq. 3.7.
The formula for the non-abelian Berry connection (Eq. 3.17) derived in Sec-
tion 3.1 can be reinterpreted in light of the analysis of this section,

o . * e >k [e7
kab = * E Cra (0% Cibn) + § Cleax CkbX Skrn

AN

X
=1 Char(0%Cun) + Y Cax Cir Ay (4.67)
A A

Tracing back the derivation of the second term in Eq. 3.17, it can be recognized
that it is just the computation of the object in Eq. 4.65, A = S. The previously
inspected limit of no overlap in the tight binding model can now be expressed as

A =0 (4.68)

or

kab = 1 Z Chear (0% Cipn) (4.69)
X

Put succinctly, the computation of the non-abelian Berry connection is made
by performing a change of basis from the stationary to the sublattice basis. Since
the “Berry connection” A“ defined in the sublattice Bloch basis vanishes, the actual
Berry connection A* can be obtained by working only with the coefficients ¢y, that
perform the change of basis. These coefficients are the eigenstates of the Hamiltonian
representation in the sublattice Bloch basis (Hg)ia -

What is the significance of all this in finding the h commutators? In the absence
of orbital overlap,

(D%, Holyn = 0% (Ho o — @ [A%, Holiaw = 0% (Ho)wow (4.70)

For use in perturbation theory, the commutators must be expressed in the eigen-
basis of Hy. A change of basis leads to,
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(D, Holiw, = > Ciar [D% Holiorw Glaw = Y Clan (0% (HoJiaw) iy (4.71)

AN AN
Similarly,
[Da27 [Dala HOHkab = Z Cikm,\ (amaal(Ho)kw) Crb) (4‘72)
AN
and
(D" (D™ Hol iy = D Chean (070" (Ho )i ) Cian (4.73)
AN

We arrive then at the somewhat surprising conclusion that, for tight binding
models with sufficiently localized orbitals, the process of evaluating the A%'** com-
mutators equates to differentiating the Hamiltonian in the sublattice Bloch basis and
performing a mere change of basis. In particular, no knowledge of the non-abelian
Berry connection is needed!

This interlude has then served its purpose, presenting a much simplified method
to evaluate the h commutators, necessary ingredients in the minimal coupling method.
There is not even need to express them analytically anymore: once the Hamiltonian
H, is specified and differentiated, it can be evaluated at any given k-point in the
FBZ. The states and eigenvalues of the Hamiltonian are computed at that point
by numerical diagonalization, the latter giving energies, the former the coefficients
in Eq. 4.62. These are inserted in Eq. 4.73 to obtain the h commutators at the
respective point in the FBZ.

A common concern is that, in the numerical diagonalization of the Hamiltonian,
the phases of the eigenstates will not be defined continuously over the FBZ, but this
is of no relevance here. The linear and the nonlinear conductivity, resulting from
the evaluation of a trace, are invariant under the U(1) gauge transformation of the
Bloch functions®*.

The algorithm will be exemplified in the next section with a study of the nonlinear
optical response of monolayer graphene.

4.6 Harmonic generation in monolayer graphene
(numerical)

4.6.1 Setting up

In the final section of this chapter, the minimal coupling method is tested numer-
ically, by computing the linear, second and third order conductivity of monolayer
graphene. For conciseness, the analysis is restricted to the case of harmonic gener-
ation, where wy = wy = w3 = w.

The basic physics of graphene and the nearest neighbour tight binding model that
describes it were already introduced in Sections 3.3 and 3.4. From this description,
the following Hamiltonian was constructed (Eq. 3.67),

4See discussion at the end of Section 2.3.
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AJ2  tP(k)
(Ho)w = (t o* (k) —A/Q) ™ (4.74)

where the gap A was introduced by assigning different energies to the A- and B-site
orbitals. The off-diagonal matrix elements are defined by (Eq. 3.49),

B kra kya ke a M @
@(k)—cos( 5 —2\/§>+cos(— 5 —2\/§>+cos<\/§)
o kra kya o kra kya o kya
+zsm< 5 2\/§>+zsm< 5 2\/§>+zsm<\/§) (4.75)
Notice that this model is defined over the entire hexagonal FBZ of the honeycomb
lattice (Fig. 3.1), a requirement for the minimal coupling method. This is unlike
the low energy Hamiltonians in Eqs. 3.59 and 3.71, for which this method is not

applicable.
The resulting band structure (Egs. 3.69) is

=+ (3 + 2cos (kya) + 4 cos (k;‘) cos <ﬁ§ya>> £2 4+ (%)2 (4.76)

Since this is a tight binding model, we might, under the aforementioned approx-
imations (Section 4.5), dispense with the derivation of the Berry connection, and
evaluate the h%'*» commutators by direct differentiation of the Hamiltonian.

Even though the prerequisites for the use of the minimal coupling algorithm are
already satisfied and there is no need for knowing the h*®* commutators analyt-
ically (indeed, the analytic form will not be used in the subsequent computations),
it seems instructive to derive them at least once.

For this purpose, we momentarily consider the gapless case (A = 0) and the
response to an optical field aligned along the x axis. Using Eq. 4.73, with the
Hamiltonian in Eq. 4.74 and the eigenstates in Eqs. 3.54,

a sin (@) Cuw

W= : (L77)
h\/S + 2 cos (kya) + 4 cos (£2) cos (%)
a? cos (kz2) O,
hgs, = (%) Cu (4.78)
2h2\/3 + 2 cos (kya) + 4 cos (%2) cos (‘/gécy“)
Piat, = _thab Piay” = _thab (4'79)
where C' is a matrix in the band indices,

c 2 cos (k““T“) + cos (@) —isin <@> (4:50)
ab = t 4.80

isin (@) —2cos (%2) + cos (@) "
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There is a cyclic character to the h commutators in this model. After the co-
variant derivative is applied more than twice, they repeat, aside from a numerical
factor. This is due to the cosine and sine functions in Eq. 4.75.

It worth reminding that the commutators could have equally well been obtained
by prior evaluation of the Berry connection (applying Eq. 4.69 to Eq. ??) and
expanding the commutators (Eqgs. 4.10 and 4.11 and higher order analogues). This
is a far more extensive procedure. Nonetheless, if we were to extend our analysis
beyond tight binding models, it would be a necessary one.

The evaluation of the commutators in Eqs. 4.77-4.79 concludes all the setup
necessary for a calculation of the nonlinear conductivity with the minimal coupling
method, up to third order. However, attention should always be given to crystal
symmetry, that may reduce the number of independent components and spare us
unnecessary work.

A case in point, the symmetry of the honeycomb lattice [38] dictates that

o™ (w) = 0" (w) o™ (W) =0""(w) =0 (4.81)

This is for the linear conductivity. The second order conductivity obeys

amy((Dl, (I}Q) = O'mym(a)h@g) = aym(djl, (Dg) == —O'yyy((Dl, @2) (482)

Umx(d)l,&)g) =0 (483)

O.y:r:):(a}l,w2) = aymy(@l,&)g) = O'xyy((zll,wg)

If the gap is closed by taking A = 0, then inversion symmetry is restored and
the second order conductivity vanishes identically. Other than that, the tensor
symmetries are the same, from linear to third order, for graphene with and without
a band gap®.

And in third order,

oYY (w1, e, w3) = oYV (@, e, W3) (4.84)
oV (w1, we, W) = aV VT (1, We, W3) (4.85)
o (W, wa, w3) = oV (@1, wg, W) (4.86)
o P TEE (@, wa, w3) = oYYV (W1, o, W3) (4.87)

while the other, omitted, tensor components are all zero. There is one final identity,
reducing the third order conductivity to three independent tensor elements:

TrrT (

o w1, wa, w3) = o (w1, we, w3) + oY (w1, wa, w3) + oYY (w1, wa, W3) (4.88)

In the special case of harmonic generation, intrinsic permutation symmetry im-
plies

o (0, 0, w0) = o™ (0, 0, 0) = o™ (0, 0, 0) = 0" (0, 0,w)/3 (4.89)

5The point group symmetry of graphene is Dgj,, while that of gapped graphene or hexagonal
boron nitride is Dsgq. For the purposes of harmonic generation at linear and third order, the
respective response functions are isotropic in both cases.
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Figure 4.1: Optical conductivity of gapped graphene with A = 0.1t and v = 5 X
107*¢, at T = 0K. The Fermi level resides in the band gap. The real part (a) has
a step at w = A, while the imaginary part (b) “diverges” to negative values at the
same frequency. Since the system is an insulator, there is no Drude peak at zero
frequency and both real and imaginary parts vanish for w — 07.

With this, there is a single independent tensor component at each order. We
need only to compute the components o**, g¥¥¥ and o**** for the linear, second and
third order optical response. These follow by feeding the band structure and the h
commutators presented here into the algorithm, described in Section 4.4 and imple-
mented in Mathematica code. The next sections display these linear and nonlinear
conductivities.

4.6.2 Linear conductivity

In this and the next subsections, the optical response of both gapped and gapless
graphene is presented and discussed. The linear response is, naturally, the simplest
and the first to be examined here. All the results are obtained at T' = 0 K. Also,
the existence of spin is accounted for by simply doubling the response, since it has
no direct impact on the band structure or other electronic properties®.

The optical conductivity of gapped graphene is depicted in Fig. 4.1. A modest
value for the band gap was chosen: A = 0.1¢ ~ 0.3 eV, same as in Fig. 3.3. The
Fermi level is placed in the gap.

It is worth noticing, considering the history with velocity gauge calculations
(Section 2.4.3), that the DC conductivity of the gapped system is zero, as expected
from an insulator. In Fig. 4.1, as in subsequent figures representing the nonlinear
response of gapped graphene (Figs. 4.5 and 4.7), there are no unphysical infrared
divergences, attesting to the validity of the minimal coupling method proposed in
this chapter. This confirms that, despite appearances, Eq. 4.26 is well-behaved in
the limit w — 0%.

In fact, the real part of the optical conductivity in Fig. 4.1a vanishes completely
as soon as the optical frequency w falls below the band gap. As will be proved in the
next chapters, this a general characteristic for any time-reversal symmetric system
without a Fermi surface. When the optical frequency matches the band gap, there

6 Aside from affecting the counting of states, namely when relating the Fermi level to the carrier
concentration.
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Figure 4.2: Optical conductivity of graphene (A = 0) with v = 5 x 107¢, at
T = 0 K. In black, the curves represent the case with no carriers, y = 0, and in red,
the doped system with p = 0.05¢, setting an effective gap at 2 |u| = 0.1¢. For the
undoped system, the real part (a) is defined by universal constants oy = we?/2h
and it has no imaginary part (b). The response of the doped system is similar to
Fig. 4.1; it differs in the existence of a Drude peak at zero frequency.

is a sudden, abrupt jump in the real part of the optical conductivity. Afterwards,
the conductivity slowly decreases for higher frequencies, towards a constant value.

The step observed in the real part is matched by a sharp negative peak in the
imaginary part, at the same frequency. This is, again, a common characteristic.
It will be shown later, in Section 6.1, that there is a correspondence between the
features in the real and imaginary parts, guaranteed by causality. The imaginary
part of the response decays quickly in magnitude for higher frequencies and it is
worth noting, again, that when w — 0%, it tends to zero.

When depicting the dispersion of the optical response of a crystal, the features
will invariably be more pronounced at zero temperature and in the relaxation-free
limit. This applies to both the linear and nonlinear conductivities. It is generally
true that decreasing the parameter v (Section 2.5) results in a cleaner, more physi-
cally transparent dispersion curve for the conductivity. The smaller the relaxation
parameter, the better defined the features will be: the steeper the jumps in the real
part and the sharper the peaks in the imaginary part. In particular, the peak in
Fig. 4.1b falls deeper and deeper for smaller values of v and ultimately diverges in
the relaxation-free limit.

In this section, the relaxation is set at v = 0.0005¢ ~ 1.5meV, which places
it at 0.5 % of the next energy scale of the problem, the band gap. This leaves us
comfortably in a regime where relaxation is (mostly) negligible.

The optical conductivity of graphene for A = 0 is depicted in Fig. 4.2. When
the Fermi level is set at zero energy, ;o = 0, crossing the Dirac points, the optical
conductivity is purely real and constant over the entire frequency range represented
in Fig. 4.2: 0" (w) = 09 = €*/4h = mwe*/2h ~ 60uS. This relates to a famous
property of graphene, discovered early on [70]: a transparency (transmittance) in
the visible defined by universal constants, 7, = 1 — may with oy = e? /dmeghe as the
fine structure constant.

Another curious aspect of the linear conductivity of undoped graphene is that
it remains constant for w — 07. In other words, undoped graphene has a nonzero
DC conductivity, even though there are no charge carriers! This formed the subject
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Figure 4.3: Optical conductivity of graphene (A = 0) with 4 = 0 and v =5x107%¢,
at T'= 0 K. The optical response has a pronounced feature at hw = 2 e,y = 2¢. The
situation is inverted relative to the dispersion near the Dirac point (Fig. 4.2): the
real part (a) displays a sharp peak, while the imaginary part (b) contains a sudden
jump.

of much debate and the customary explanation for the observation of a metallic
regime for very low carrier concentrations involves taking into account the existence
of electron-hole puddles [39] and considering a more complex system than the clean,
homogeneous crystal that concern us here. It is interesting though, that this as-
tonishing property is quickly derived by perturbation theory. Unfortunately, the
reasonableness of this perturbative result for w = 0 is highly questionable (see the
discussion in Section 4.6.4).

The red curves in Fig. 4.2 depict the linear optical response of doped graphene.
For p # 0, the Fermi level sets an effective gap at 2|u|. Comparing with the gapped
system in Fig. 4.1, we recognize the step in the real part once the photon frequency
exceeds the effective gap and the corresponding drop in the imaginary part. This
behavior is now due to Pauli blocking: at zero temperature, for energies below the
Fermi level, both be valence and the conduction states are occupied and no vertical
transitions are possible (see Fig. 4.4a).

A distinct feature of doped graphene that separates it from the gapped sys-
tem is the Drude peak at low frequencies. This contribution to the conductivity is
determined by intraband transitions near the Fermi surface (more on this in Chap-
ter 5). As it is to be expected from a metallic system with an concentration of free
charge carriers, the conductivity tends to infinity” in the DC limit: this is a physical
divergence.

So far, the results that have been presented are well-known in the literature,
easily obtained by Kubo’s formula. An advantage of the minimal coupling method
adopted here is that we can effortlessly consider higher optical frequencies, probing
regions of the FBZ beyond the Dirac cones. The dispersion of the optical conduc-
tivity of undoped graphene in an wider frequency range is represented in Fig. 4.3.

Interestingly, there is an additional, very prominent feature in the conductivity,
larger in magnitude then the step and peak of Fig. 4.2 and localized around Aw = 21t.
What is special about this specific frequency?

Besides combinations of optical frequencies that match the gap, unblocking in-

"For a finite relaxation parameter, it does not actually diverge, but is proportional to y~1.
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Figure 4.4: In the left, (a) a cross section of a Dirac cone, with arrows indicating
electronic interband transitions caused by the incidence of a photon with that energy.
For optical frequencies below the Fermi level, both the valence and conduction states
are occupied and, by Pauli’s exclusion principle, interband transitions are blocked.
In the right, (b) van Hove singularities are marked in red in the FBZ of graphene. All
other points where the energy gradient vanishes can be obtained by translation with
a reciprocal lattice vector. I' stands for the center of the FBZ, where the conduction
band energy is maximum, K and K’ are the Dirac points and the remaining van
Hove singularities are responsible for the feature observed in Fig. 4.3.

terband transitions, another set of frequencies which have a considerable impact in
the optical response are those for which the joint density of states diverges: the van
Hove singularities [58].

To find these frequencies, one must first identify the points in the FBZ for which
0°Aeyey, = 0. Because graphene has electron hole symmetry, this simplifies to
0% Aegey = 2 (0°ex) = 0. This energy will be denoted by €,

|Vievn| =0 (4.90)

Inserting the dispersion relation (Eq. 4.76) in Eq. 4.90 leads into the following
system of equations,

—2 sin(k, a) — 2 sin (k”) cos (ﬁkya> =0 (4.91)

2 2
—2V/3 cos (kga) sin (ﬁfya> —0 (4.92)

which has several solutions:

A 2
o0k =0 = =007+ (3) 199

the chosen origin of the FBZ, corresponding to the conduction band energy maxi-
mum in Fig. 3.2,

4 A
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Figure 4.5: Second order optical conductivity of gapped graphene with A = 0.1¢
and v = 5 x 107%¢, at T = 0K. The Fermi level resides in the band gap. The
response displays sudden jumps at fuv = A/2 and hw = A in the real part (a) with
accompanying changes in the imaginary part (b). Since the system is an insulator,
there is no Drude peak at zero frequency and both real and imaginary parts vanish
for w — 0%.

the notable Dirac points at K and K', vertices of the hexagonal FBZ, for which the
energy is minimum, and

27 A\?
k. =0A ky = :EE — €yH — 2 + <§> (495)

the middle points along the edges of the hexagonal FBZ, representing local max-
imums of the conduction band energy. By symmetry, it is possible to infer other
states, with the same energy, that solve Eqs. 4.91 and 4.92. The complete set of
Bloch states with van Hove singularities is depicted in Fig. 4.4b.

The last case (Eq. 4.95) is the one visible in Fig. 4.3, where the feature appears
for hw = 2 e,5(A = 0) = 2¢. Curiously, the step now appears in the imaginary part
and the divergence in the real part, reversing the roles.

The analysis that occupies us here stays within the confines of the independent
electron approximation and has its limitations in describing the observed optical and
electronic properties of crystals. The high frequency van Hove singularity exemplifies
this perfectly. It is known that, when accounting for the existence of excitons, whose
treatment lies outside the scope of this thesis, the position of the van Hove singularity
shifts considerably in the energy spectrum [90].

4.6.3 Second order conductivity

The presence of inversion symmetry in monolayer graphene dictates that all even
orders of the optical response be identically zero. The absence of a second order
response in particular was confirmed numerically with the minimal coupling method.

Inversion symmetry is broken by making the A- and B-site atoms nonequivalent,
as in gapped graphene (Section 3.4). Gapped graphene has a nonzero second order
conductivity, presented in Figs. 4.5 and 4.6.

In Fig. 4.5, the second order conductivity is governed by the electronic properties
near the Dirac point. The real part displays a step when 2w = A and another,
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Figure 4.6: Second order optical conductivity of gapped graphene with A = 0.1¢
and v = 5x107%¢, at T = 0K, for optical frequencies that probe regions of the FBZ
beyond the Dirac point approximation. The nonlinear optical response has features
at hw = 2€e,/2 ~t and hw = 2 €,y ~ 21.

in the opposite direction, when hw = A, while the imaginary part has a negative
logarithmic divergence at 2w = A and a positive one at iw = A. Below the
frequency whose double matches the gap, the real part of the conductivity again
vanishes identically.

The ability of the minimal coupling algorithm to provide the optical response
in an wide frequency range extends to the nonlinear response. As an example,
the second order conductivity is depicted in Fig. 4.6 for higher frequencies. The
behavior is similar to Fig. 4.3, but there are now two features, at 2 iw = 2 e,z and
at hw = 2 e,y, when the optical frequency or its double hit the van Hove singularity.
This time, the features observed in the high frequency range are much smaller in
magnitude than their low energy counterparts. A more detailed analysis on the
nonlinear optical response of graphene beyond the Dirac point approximation can
be found in [34].

The results of this subsection already demonstrate the applicability of the min-
imal coupling method to studies in nonlinear optics. As a curiosity, know that if
the “conventional” velocity gauge treatment, described in Section 2.4.2, was (incor-
rectly) applied to this two-band model, the entire second order response would have
returned zero. Furthermore, the first study of the third order optical conductivity
of monolayer graphene over an extended frequency range [31] was done with, and
made possible by, the minimal coupling method introduced here.

4.6.4 Third order conductivity

The third order conductivity of gapped graphene is in Fig. 4.7. At this point, a
pattern starts to become noticeable. The real part of the conductivity contains
discrete steps at the frequencies 3hw = A, 2w = A and hw = A, with alternating
signs. Accompanying the steps in the real part, are the divergences in the imaginary
part, which not only appear at the same frequencies, but always run in the opposite
sense of the step-like increase/decrease, as in previous orders. Interestingly, the
feature at hw = A = 0.1t¢, represented in the inset, is much smaller than the rest.
Below Aw = A/3, the real part vanishes, while the imaginary decays to zero in the
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Figure 4.7: Third order optical conductivity of gapped graphene with A = 0.1¢
and v = 5 x 1074¢, at T = 0K. The Fermi level resides in the band gap. The
response displays sudden jumps at hw = A/3, hw = A/2 and fw = A in the real
part (a) with accompanying changes in the imaginary part (b). The inset zooms
in at Aw = A to display the one-photon features, small in magnitude. Since the
system is an insulator, there is no Drude peak at zero frequency and both real and
imaginary parts vanish for w — 0.

DC limit.

Closing the gap, all features vanish and the modulus of the conductivity decreases
monotonically for increasing frequency, as seen in Fig. 4.8. When w — 0%, the
nonlinear conductivity diverges, even though the concentration of carriers is zero,
which raises the concern: if the third order DC conductivity of graphene is seemingly
infinite, can we truly trust the perturbative results in this regime?

For undoped graphene, we cannot. The validity of perturbation theory relies on
the interband matrix elements of the perturbation being smaller than |fiw—A|, but in
the absence of a band gap and when the optical frequency itself approaches zero, the
plausibility of a perturbative treatment is lost and any results are to be mistrusted.
If in linear order, the surprising answer ¢**(0) = o9 could perhaps be accepted,
o™ (0) = oo proves conclusively that the derived formulas are mathematically
unsound in the DC limit. To put it simply, the series expansion of the current for
a DC field does not converge. This point is easily missed in linear transport theory
and is here made transparent by a nonlinear optics study.

These worries are removed by setting an effective gap, with u # 0. The third
order optical response of doped graphene is traced in red in Fig. 4.8. Similarly to
the gapped case, a sequence of steps and divergences are found when the optical
frequency, its double or its triple match the effective gap. The strongest of these
features is at fuv = 2|pu|/3. Just as in the gapped case, the feature observed when
the optical frequency matches the gap is, comparably, fairly weak.

The dispersion represented in Fig. 4.8 is in perfect agreement with the litera-
ture [0, 70], although there is a technical point to consider. When comparing the
results of this thesis to works by other authors, it should be noted that the phe-
nomenology adopted here, introduced in Section 2.5, is not the most common. This
leads to a discrepancy between different phenomenological approaches only in a re-
gion of the order v around the resonant frequencies (2|u|/3h, |p|/h and 2|u|/h, in
this case). This becomes irrelevant in the relaxation-free limit, but, for any finite ~,
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Figure 4.8: Third order optical conductivity of graphene (A = 0) with v = 5x 1074 ¢,
at T'= 0K. In black, the curves represent the case with no carriers, p = 0, and
in red, the doped system with p = 0.05¢, setting an effective gap at 2|u| = 0.1¢.
The response displays sudden jumps at fuv = 2|pu|/3, hw = 2|p|/2 and hw = 2|p| in
the real part (a) with accompanying changes in the imaginary part (b). The inset
zooms in around fiw = 2|u| to display the one-photon features, small in magnitude.
For the doped system, the expected Drude peak is observed at lower frequencies.

the behavior is noticeably distinct in this narrow window, with our use of complex
frequencies providing, arguably, more physically looking curves. This question is
discussed in more detail in [56].

Lastly, there is the Drude peak in Fig. 4.8. As in the linear response, when
there is a Fermi surface and negligible relaxation, a physical divergence is to be
expected in the DC limit, where charge carriers flow in the direction of the electric
field without impediment®, ever increasing, never reaching a steady-state.

Outside the DC conductivity, but well below the effective gap, there is a range
of frequencies where the real part of the optical response, linear and nonlinear,
is entirely determined by Fermi surface properties (Chapter 5). In this region of
the spectrum, Boltzmann equation treatments provide an intuitive, direct means to
derive the optical response of the system. The first derivations of the third order
conductivity of graphene followed this route [72, 74], with results that are reproduced
by our more general calculations.

Aside from the consistency between theoretical calculations, often based on dif-
ferent techniques, what is desirable is to find agreement between theoretical predic-
tions and experimental observation. In this front, the study of the nonlinear optical
response of two-dimensional materials is still in its infancy and most measurements
on graphene, in particular, are in significant disagreement with each other. On top
of this, it shouldn’t be expected that our naive independent electron picture fully
captures the nonlinear physics involved in these experiments. On the other hand,
the careful work of [78] has demonstrated that the most important aspects of the
nonlinear response of graphene are, in fact, properly described by the dispersion
behavior presented here, for sufficiently weak optical fields.

Among the possible reasons for the apparent (orders of magnitude) discrepancy
between theory and experiments (prior to the agreement found in the work of Jiang
et al [78]), the use of an effective Hamiltonian, the Dirac Hamiltonian, in all the

81n this idealized situation of infinitesimally small relaxation.
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4. MINIMAL COUPLING METHOD

theoretical computations made by then was pointed out as a possible source of
error [76, 77]. Since the minimal coupling method takes into account, and in fact
requires, the entire band structure of graphene, this is now known to not be the case.
The results derived in this chapter with the minimal coupling method, running
the integration over every piece of the hexagonal First Brillouin Zone, reproduce
previous calculations that adopted low energy effective descriptions around the Dirac
points [76]. These calculations, even though they do not possess the versatility of
the minimal coupling algorithm, are simpler and often provide analytical answers,
providing insight on numerical results, as shall be demonstrated in the next chapter.
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Chapter 5

Resonance-based analysis

In this chapter, our attention turns to the length gauge method. The structure of the
electronic nonlinear optical conductivity will be elucidated by means of a detailed
study of the two-band model. The nonlinear conductivity is decomposed as a sum
of contributions related with different regions of the First Brillouin Zone, defined
by single or multiphoton resonances. All contributions are written in terms of the
same integrals, which contain all information specific to the particular model under
study. In this way, ready-to-use formulas are provided that reduce the often tedious
calculations of the second and third order optical conductivity to the evaluation of
a small set of similar integrals. The treatment presented in this chapter is a direct
generalization of the work in [91].

5.1 Motivation

While the minimal coupling method proves itself excellent for numerically assessing
the dispersion of the nonlinear conductivity, especially in the context of tight binding
models, it lacks the ability to handle low energy effective Hamiltonians. This is
relevant, since these are usually the ones for which analytical answers can be found.
By this, it is meant that low energy effective theories are typically simpler and one
is able to integrate over reciprocal space and arrive at explicit analytical expressions
for the linear and nonlinear conductivity.

For this task, the length gauge method is to be favoured. Still, the complex-
ity is considerable and it can be a daunting task to try and derive a third order
conductivity. Here, this complexity is brought down and calculations are made as
straightforward as using Fermi’s golden rule, though multiple times in sequence.

Another, perhaps just as important, goal of this chapter is to gather insight on
the mathematical structure of the nonlinear conductivity. In the numerical results
for monolayer graphene displayed in Section 4.6, features were found when resonance
conditions were met at the gap, but no appropriate explanation was given for such.
Additionally, there are other questions that we do not yet have the tools to answer:
What possible features can be displayed by the dispersion of a nonlinear conductiv-
ity? Why are steps found in the real part and divergences in the imaginary part?
These questions, among others, will be answered over the course of this chapter, by
revisiting and inspecting in detail the length gauge perturbation theory of Aversa
and Sipe [19].

In the length gauge, both intraband and interband transitions must be taken
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5. RESONANCE-BASED ANALYSIS

into account and are transparently expressed in the structure of the perturbation
theory, presented in Section 2.4.1, which contains as particular cases the dynamics
of atomic systems and the free carriers single-band motion, but is more general,
and complex, than either [19]. As we have discussed (Sections 2.3 and 2.4), the
complexity stems from expressing the perturbation in terms of a position operator,
which takes the form of a covariant derivative in the Bloch representation [19, 54, 57].
The successive application of derivatives as we move to higher orders in perturbation
theory leads to unwieldy expressions for the nonlinear conductivity and lengthy
calculations even for the very simplest models, the only ones for which analytical
calculations are even attempted. Despite this, the results sometimes show surprising
simplicity and structure. As an example, we shall see (Section 5.5) that the third
order conductivity of the system of massless Dirac fermions found in monolayer
graphene has the form! [76],

o O (rr0(12) o1 (22) w0 () oy

with

l1—2z
1+z

Glz) = O(z| — 1) + %log ‘ (5.2)

where Cj is a constant: Cy = hv#e!/192.

In physics, when elaborate and extensive calculations are required to derive sim-
ple and elegant results, it is sometimes a sign that a simpler and more insightful
way to express the theory exists. This is the perspective we take here. Eq. 5.1
has the third order conductivity broken up into pieces that are relevant in different
regions of the spectrum, depending on whether the energies of one, two or three
photons are closer to matching the “effective gap” given by 2|u|. This suggests that
a resonance-based decomposition of the conductivity might be possible in general,
leading to a more direct derivation of analytical results and easier interpretation of
the underlying physics.

In exploring this possibility, we confine ourselves to the study of the two-band
crystal, the solid-state analogue of the two-level atom. In similar spirit to the the-
oretical investigations of the nonlinear optics of two-level atoms during the seven-
ties [3, 92], we expect a study of the two-band crystal to provide a firm foundation
for later investigations of more general systems, to allow the central concepts to
emerge more simply and to have a wide range of applicability, encompassing any
situation where the incident photon frequencies connect a single pair of conduction
(¢) and valence (v) bands.

In Section 5.2, the central results from this study are presented. A decomposition
of the nonlinear conductivity is made based on the possible resonances and ready-
to-use formulas are provided that, for any two-band model, reduce the calculation
of the linear, second and third order conductivity to the evaluation of one?, two and
six integrals over the FBZ, respectively. For systems that possess a Fermi surface
(e.g. metals), there are two additional integrals to compute at each order. The
integrals can sometimes be evaluated analytically in the relaxation-free limit, as

'In the relaxation-free limit v — 0%.
2Two if the system is not topologically trivial.
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5. RESONANCE-BASED ANALYSIS

described in Section 5.3. A brief discussion on how to obtain finite temperature
results from a zero temperature calculation is included in Section 5.4, closing the
exposition of the formalism. The ideas and tools developed in this chapter are
illustrated with calculations for the system of massive and massless Dirac fermions
present in monolayer graphene with and without a gap, respectively, in Section 5.5.

5.2 Photon resonances and the Fermi surface

In Section 2.4.1, it was shown that,

Oﬁal an ((Dla 7(Dn> -
: ontl Ak Dﬂ,H 1
e / Z _ [ (i]kba Da”,...i—O[Dal,po}...
h (27)d — hioy + -+ - + hio, — Aexap hio, — Ae b

(5.3)

From this concise expression, a more explicit form of the nonlinear conductivity
can be derived by expanding out all the commutators and performing all the re-
quired differentiation (that follows from Eq. 2.52), resulting in a lengthy and rather
cumbersome formula. This is the usual starting point in the literature, when com-
puting the nonlinear optical response functions of semiconductors and other mate-
rials. Numerical integration is necessary, except for some cases where a low-energy
description exists with very simple dispersion relation and eigenstates. For these
systems, analytical calculations are sometimes possible, but still often rather long
and complicated [75]. Here, we attempt to bring some simplicity and clarity to the
structure of the nonlinear conductivity, by separating out terms whose resonances
are located in different regions of the FBZ.

Since we are restricting ourselves to the analysis of a two-band system, there is a
single (nonzero) energy difference in the denominators of Eq. 5.3, Aegay = A €ke,
allowing for a partial fraction decomposition into terms with a single denominator to
be integrated, (hw;+- - -+ hw;+ Aekey) ! with i € {1,...,n}. These terms we denote
by Jfal'“a” (1, .., @4, ..., @) as they are associated with resonances involving an
i number of photons®. We shall see later how the real part? of these contributions
is entirely described by the properties of the crystal in the vicinity of regions of the
FBZ where the resonance condition Aw; + - - - + hw; — Aexe, = 0 is met. Some terms
will involve poles of higher orders, but these can reduced back to simple poles with an
integration by parts or, equivalently, by making use of the identities in Appendix G.
Finally, there will be terms where the application of the position operator resulted in
derivatives of the Fermi-Dirac distribution. These terms will be treated separately
and are denoted by a@al"'a" (W1,...,wn). An explicit application of the procedure
outlined here can be found in Appendix F, where the second order conductivity is
treated in detail. The resonance-based decomposition, stated generally, gives

3In due rigor, we work with a classical electromagnetic field and there are no photons present.
It should, however, be clear that when a proper quantum treatment is made hw; is the energy of
an incident photon, thereby justifying the used nomenclature.

4In a time-reversal symmetric system.
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P (L B) = OB G, B) + OFTEN @1, @) e OB (@, )

(5.4)

The various pieces of Eq. 5.4 will be made explicit in the following sections,

but it is useful to first inspect their structure in general terms. The one-photon
contribution can always be written as

o (@1, @) = Y Y Cl(@r, @) T (@) (5.5)
J P

where all tensor indices where condensed into one o = fa; ..., and p stands for
permutation. The sum in p implies p(a)) runs over all permutations of «, with a
specific coefficient for each permutation applied. The coefficients C7; (1, -- - ,@n)
are specified in the following sections for the linear, second order and third order
conductivities (n = 1, 2 and 3, respectively), where it is observed that most of
these coefficients are zero, making only a small number of permutations necessary
in practice. The coefficients are independent of the details of the system under
consideration (they depend solely on the optical frequencies). All dependence on
material properties in the sum of Eq. 5.5 is in the integrals I} that take the general
form,

5 (w) = / (d kg A O A fiba (5.6)

27T)d ob h@ — Aekab

with g§ as a set of functions, labeled by j = 1,2,..., that depend on the energies
and their derivatives and on the non-abelian Berry connection A and its derivatives.
Similarly, for the two-photon contributions,

o5 (@1, @) = Y Y CR (@, @) T (@) + @) (5.7)
i p
and the generalization is obvious at this point,

o (@1, @) = Y Y Ch(@r, e @) T (@ + -+ @) (5.8)
i P

Since all contributions involve a combination of the same integrals with a chang-
ing argument, the calculation of the nonlinear conductivity is reduced to the eval-
uation of the integrals in Eq. 5.6. The complexity and number of integrals to be
evaluated increases with the order n of the nonlinear conductivity, but they always
retain the general form of Eq. 5.6 for some g function. For finite v, numerical inte-
gration will invariably be required. In Section 5.3, we analyze the limit of vanishing
relaxation, where analytical results are accessible.

It is worth noting at this point that the conductivity in Eq. 5.4 is not sym-
metrized. It follows from the definition in Eq. 1.9 that only the portion of the
nonlinear conductivity that respects intrinsic permutation symmetry is physical [3]
(see the discussion at the end of Section 2.2). When permutations of Eq. 5.4 are
properly accounted for, there will not only be an one-photon contribution associ-
ated to the resonance hw; = A€k, but also hws = A€y, and so on. Likewise for
contributions associated with higher numbers of photons. Having this in mind, the
formulas presented for the nonlinear conductivity in this chapter will nonetheless be
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5. RESONANCE-BASED ANALYSIS

left, for the most part, unsymmmetrized. Symmetrizing the conductivity is a trivial,
if cumbersome, procedure and adds little to the discussion here.

The terms described so far give a complete description for any two-band model
that is used to describe an insulator or a cold semiconductor. But for systems with
free charge carriers prior to optical excitation, there is an additional contribution?,

CE@1, @) = Y > Ch(@n, @) FRY (5.9)

X=AB,... p

where the integrals have a different structure than before,

pperen _ [ AK e (A 0" 5.10
X _/W - Ix (A, )kaa 0" fxa (5.10)

It is evident from the presence of derivatives of Fermi functions in Eq. 5.10
that these integrals are determined by the properties of the Fermi surface. More
surprising is the absence of any frequency dependence. All dispersion in o comes
from the C coefficients, which are the same for every two-band system. This leads
us to an important result: the dispersion of the contributions from the Fermi surface
is given by an universal family of functions of frequency (Eq. 5.9), obtained through
linear combinations of the C'x’s. The particular linear combination observed is set by
the integrals F'x. Being dictated by Fermi surface properties, they are particularly
dependent on carrier concentration and can therefore be tuned by doping.

In the following sections, Eqs. 5.5-5.10 are made explicit for the linear, second
and third order conductivities. Ready-to-use formulas are presented that reduce the
calculation of the nonlinear conductivities to the evaluation of a minimal number of
integrals over the 