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Lopes dos Santos and João Viana Parente Lopes. From our fruitful discussions,
several publications resulted that influenced this dissertation. Chapters 4 and 5 of
this thesis, in particular, are heavily based on the following publications:

• “Nonlinear optical responses of crystalline systems: Results from a velocity
gauge analysis”, D. J. Passos, G. B. Ventura, J. M. B. Lopes dos Santos, J.
Viana Parente Lopes, N. M. R. Peres, Physical Review B (2018)

• “Nonlinear optical conductivity of a two-band crystal I.”, D. J. Passos, G.
B. Ventura, J. M. B. Lopes dos Santos, J. Viana Parente Lopes, Journal of
Physics: Condensed Matter (2021)

respectively.
Other publications that I co-authored and relate to the subject of, but do not

feature prominently in, this thesis are:

• “Gauge covariances and nonlinear optical responses”, G. B. Ventura, D. J.
Passos, J. M. B. Lopes dos Santos, J. Viana Parente Lopes, N. M. R. Peres,
Physical Review B (2017)

• “A study of the nonlinear optical response of the plain graphene and gapped
graphene monolayers beyond the Dirac approximation”, G. B. Ventura, D. J.
Passos, J. Viana Parente Lopes, J. M. B. Lopes dos Santos, Journal of Physics:
Condensed Matter (2020)

• “Second order divergence in the third order DC response of a cold semicon-
ductor”, G. B. Ventura, D. J. Passos, J. Viana Parente Lopes, J. M. B. Lopes
dos Santos, arXiv:2004.01919 (2020)

• Comment on “Jerk current: a novel bulk photovoltaic effect”, G. B. Ventura,
D. J. Passos, J. Viana Parente Lopes, J. M. B. Lopes dos Santos, Physical
Review Letters (2021)

Unrelated to the topic of the thesis and involving previous collaborations, but
published during the course of the PhD, are the following works:

• “On the ferroelectric and magnetoelectric mechanisms in low Fe3+ doped
TbMnO3”, Rui Vilarinho, Eugénia Queirós, D. J. Passos et al., Journal of
Magnetism and Magnetic Materials (2017)

• “Suppression of the cooperative Jahn-Teller distortion and its effect on the
Raman octahedra-rotation modes of TbMn1−xFexO3”, Rui Vilarinho, D. J.
Passos, E. Queirós et al., Physical Review B (2018)

2



Acknowledgements

First of all, I would like to give my most sincere thanks to my supervisor, João Lopes
dos Santos, for the opportunity to pursue a PhD on theoretical condensed matter
physics. If I stayed in Porto for my doctoral studies, it was due to his acceptance to
guide my research efforts. Even before, he had served as a source of inspiration and
knowledge, for its excellent lecturing, introducing me to the subject of condensed
matter physics itself, and for the example he represented, as a researcher and as a
professor. During the course of developing my research, I benefited immensely from
our discussions and debates and from his remarkable physical insight. But most of
all, I have to thank him for the freedom I was given to pursue my own ideas, even
when they steered us away from the planned path, and for his patience.

As far as supervision is concerned, I must extend my thanks to João Viana
Parente Lopes, who often acted as a de facto co-supervisor, and with which I shared
many conversations, on a variety of topics not limited to research, and from which
I learned a lot. I must also acknowledge him for his invaluable help when either
code wasn’t running properly or some other technical issue had me stuck, as well as
for teaching me simple, but extremely useful, things like ssh connections and other
“computator stuff” of which I was (and largely still am) fairly ignorant. Importantly,
I must recognize him for his readiness and availability to intervene whenever an
urgent problem or inopportune crisis emerged, for which I am most thankful.

Completing my group of collaborators of the past years is Gonçalo Ventura,
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Abstract

In this thesis, the theory of the electronic nonlinear optical conductivity of crystals
is explored under the independent electron and electron dipole approximations, with
relaxation considered at a phenomenological level.

The problem is treated in a semiclassical fashion: a quantum system of electrons
moving in the periodic potential of the crystal is coupled to a classical optical field.
The nonlinear conductivity is derived by means of a perturbative expansion of the
density matrix in powers of the optical field. Two equivalent formulations of the
perturbation theory are commonly used: the so-called velocity gauge and length
gauge methods. These methods are analyzed in detail here and new insights are
provided.

In the velocity gauge, a minimal coupling Hamiltonian is adopted and the optical
field couples only states with the same Bloch vector in the first Brillouin zone. The
treatment presented in this work differs from the one in the literature, as it is
developed in more general grounds: it retains its validity for finite band models
and circumvents the difficulties that have been traditionally associated with this
method. This formulation is well suited for numerical calculations, where it permits
nonlinear conductivities to be computed for any frequency, beyond the usual low
energy descriptions, without added difficulty.

The standard length gauge method, in its current form, dates back to the early
nineties. We revisit this approach and show that a clearer and more insightful use
of it can be made by having the nonlinear conductivity broken up into fundamental,
easily calculable, pieces, based on the possible resonances between optical frequencies
and band energies. Analogously to how a Fermi golden rule calculation gives the
linear optical response, the nonlinear conductivity can be obtained by evaluation of
a small number of integrals.

Regardless of the method used to derive it, the final expression for the nonlinear
conductivity is constrained by symmetry. Beyond the usual tensor relations derived
from specific crystal symmetries, general statements can be made on the basis of
overall permutation symmetry and time-reversal symmetry. Overall permutation
symmetry is defined here for complex frequencies over the entire Argand plane,
making it applicable even for lossy media. The signatures and consequences of
these two important symmetries are identified.

As a demonstration of the principles described here, the linear, second and third
order conductivity of monolayer graphene are studied, with the possibility of a sub-
strate induced gap.
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Chapter 1

Introduction

This thesis is entirely devoted to the study of the nonlinear optical properties of
solids, as encoded in a specific set of response functions: the nonlinear optical con-
ductivities. These are the central objects in perturbative treatments of nonlinear
optics and are responsible for a broad range of phenomena, from harmonic genera-
tion to the intensity dependent refractive index.

Schemes for computing these quantities were devised in the early sixties based
on standard perturbation theory. At the time, the focus was on the nonlinear
optical properties of dielectric inorganic solids and dilute media such as atomic gases.
For crystals, the complications brought by the existence of energy bands and the
extended character of the Bloch functions delayed progress until the nineties, when
clear and applicable formulas for the nonlinear conductivity were finally obtained.

Nonetheless, a survey of the literature will show such calculations to be involved
and opaque. It is my goal here to clarify the structure of these response functions
in the case of crystals and present methods by which they can be straightforwardly
computed. After the historic overview that will soon follow and a presentation of
the standard perturbation theory in Chapter 2, two new methods are described in
succeeding chapters.

The first method, presented in Chapter 4, is entirely new and resolves a decades
long problem concerning equivalent gauge choices. It is, in a sense, a reformulation
of the minimal coupling approach that extends its generality and frees it from any
unphysical infrared divergences.

The second method is given in Chapter 5 and is more of a close look at the
widely adopted perturbation theory of Aversa and Sipe that attempts to bring a
greater clarity to this theory by inspection of the existing resonances in the nonlinear
conductivity. It is shown that besides insight, considerable simplification of the
calculations can be achieved by the reasoning introduced here.

These methods provide complementary and improved ways to compute the non-
linear conductivity of crystals, both numerically and analytically. They are demon-
strated by calculations of the nonlinear optical response of a series of two-band
models. These models are first presented in Chapter 3.

Further understanding of the structure of the nonlinear conductivity follows from
symmetry constraints. The usual symmetries are reviewed and focus is placed on
(a generalized version of) overall permutation symmetry. The implications of these
symmetries, or their absence, are addressed in Chapter 6 of this work.

Chapter 7 summarizes the findings and discusses topics for future research.
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1. INTRODUCTION

The subject of nonlinearities in condensed media is a complex one and some sim-
plifying assumptions must be made. The discussion presented here will be confined
to the electronic contribution to the nonlinear conductivity of crystals, typically
dominant at optical frequencies. Relaxation of the generated currents is introduced
via a phenomenological parameter (Section 2.5).

Additionally, two fundamental approximations are assumed throughout this the-
sis: the independent electron and the electric dipole approximations. The latter
consists of neglecting the spatial dispersion of the nonlinear conductivity and is
reasonable for most cases of interest, since the wavelength of light is usually much
greater than the unit cell size. Conversely, the neglect of electron-electron inter-
actions can be considered a drastic oversimplification. Still, attending to the com-
plexity of the nonlinear response of solids, it seems recommendable to first attain a
proper understanding of the response at the single electron level. Also, comparisons
with experiment suggest that, at least for gapless systems, qualitative agreement
can be found.

There is a certain elegance and simplicity in the structure of the nonlinear con-
ductivity that is easily lost beneath the formal weight of second and third order
perturbation theory and it is the purpose of this text to bring them forth.

1.1 Constitutive relation

The central equations of electrodynamics were discovered in the nineteen century,
first written down by Maxwell [1], and later rephrased by Heaviside [2] using his
vector calculus.

∇ · E = ρ/ε0 (1.1)

∇ ·B = 0 (1.2)

∇× E = −∂tB (1.3)

∇×B = µ0ε0 ∂tE + µ0 ∂tJ (1.4)

Here, the fields E and B will be regarded as classical.

Considering the significant impact the field theory of electromagnetism had in
physics, and society in general, one could be inclined to think that the study of light,
an electromagnetic phenomenon, ought to have been exhausted by now. Yet, optics,
the branch of physics that explores the behavior and uses of light is ever evolving,
with new discoveries and inventions put forth every year. Part of this incessant
exploration is no doubt due to the richness of the underlying field theory and the
technological implications that stem from a greater control over the properties of
light. But equally significant is the diversity of scenarios that nature presents us
by means of a wide variety of materials through which light can propagate or be
absorbed.

When a light wave moves through any material, it affects the motion of the
charged particles therein, be they free carriers or bound charges. This charge mo-
tion builds up to a macroscopic current density J which acts as a source of new
electromagnetic waves. If the relation between the current density and the optical

8



1. INTRODUCTION

fields, termed the constitutive relation1, is specified, then Eqs. 1.1-1.4 can be solved
for the optical field E(t), allowing for a complete description of the evolution of any
light pulse in the medium.

The constitutive relation J(E) can be rather complicated even for simple systems.
In attempting to formulate a description of some generality, it is natural to first
consider the limit of weak optical fields, sufficiently weak to merit a power series
expansion,

J(t) = J(1)(t) + J(2)(t) + · · ·+ J(n)(t) + . . . (1.5)

The first term in this expansion is a linear combination of the optical fields,
evaluated at any given time.

Jβ (1)(t) =

∫ +∞

−∞
σβα(t, t′)Eα(t′) dt′ (1.6)

with an implicit summation over repeated tensor indices α. The coefficients are our
response functions. This expression is however too general; some symmetries are
always present that constrain this linear relation. From causality, it follows that
σβα(t, t′) = 0 for t′ > t, and time translation symmetry2 implies [3]

Jβ (1)(t) =

∫ +∞

−∞
σβα(t− t′)Eα(t′) dt′ (1.7)

This is the usual definition of the optical conductivity. Similarly, we can take
higher powers of E into account,

Jβ (n)(t) =

∫ +∞

−∞
· · ·
∫ +∞

−∞
σβα1...αn(t− t1, . . . , t− tn)Eα1(t1) . . . Eαn(tn) dt1 . . . dtn

(1.8)
This equation defines the nonlinear conductivity of order n. Specifying the form

of the nonlinear conductivities for a medium equates to deriving its constitutive
relation.

Eq. 1.8 is written in the time-domain. Often, the light pulse is well defined in
frequency (e.g. CW lasers) and it is then more useful to express the constitutive
relation in the frequency domain,

Jβ (n)(t) =

∫ +∞

−∞
...

∫ +∞

−∞

dω1

2π
...
dωn
2π

σβα1...αn(ω1, ..., ωn)Eα1(ω1)...Eαn(ωn) e−i(ω1+...+ωn)t

(1.9)

with

Eαi(ωi) ≡
∫ +∞

−∞
Eαi(t) eiωit dt (1.10)

1Actually, it is more common to have the constitutive relation defined as the functional rela-
tionship between the electric polarization and the optical fields. The response function is then
the susceptibility instead of the conductivity - the connection between the two is explored in Ap-
pendix B. However, there are several reasons for why it is preferable to consider the electric current
instead of the polarization, especially in the presence of free carriers.

2Here it is meant that the entire system is to be translated, the field and the medium; the
optical experiment could be carried out at any time of the day, without it affecting the results.
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1. INTRODUCTION

and

σβα1...αn(ω1, . . . , ωn) ≡
∫ +∞

−∞
· · ·
∫ +∞

−∞
σβα1...αn(t1, . . . , tn) eiω1t1 . . . eiωntn dt1 . . . dtn

(1.11)
For the Fourier transforms in Eq. 1.11 to converge, the time-domain conductivity

must vanish for ti → +∞. In other words, the current is required to decay when the
optical field is removed in order for the frequency domain description to be sensible.
We will return to this point later (see Section 2.5). The convergence for negative
times is ensured by causality.

In most circumstances, the first term in Eq. 1.5 will suffice. This is the regime
of linear optics, that we observe in our everyday experience. In it, a monochromatic
light wave incident on a transparent material will propagate at a medium-dependent
speed, whilst maintaining its frequency of oscillation. Stating it in the languages
of particles, if a light beam comprised of red photons is sent into the material, the
photons that shoot out on the other side will still be red photons. A monochromatic
beam may refract, diffract, experience birefringence and other linear effects, but
retains its frequency (color). If a secondary monochromatic beam is used, the first
beam is unaffected by its presence. Optical waves do not interact with each other,
nor do they significantly alter the optical properties of the medium they propagate
in.

These commonplaces no longer hold when the constitutive relation becomes non-
linear. The properties of the medium are then dependent on the intensity of illumi-
nation and optical waves experience medium-mediated interactions.

The reason a linear relation can often be assumed at optical frequencies is that
the optical fields are usually much weaker than the microscopic atomic fields that
bind the electrons. If coherent intense light is used however, as that provided by
lasers, then the higher order terms can no longer be neglected.

In these situations, the lowest order non-zero nonlinear term in Eq. 1.5 is often
sufficient to describe the light-matter interaction. This means that most considera-
tion is given to the second or third order conductivity. If the medium lacks inversion
symmetry, then the main focus lies on the second order conductivity, while in cen-
trosymmetric media all even orders in Eq. 1.5 vanish and the third order conductivity
is of greater interest.

KTP

1.06 μm

532 nm

(a)

ω

ω 2ω

(b)

Figure 1.1: Second harmonic generation: (a) A light beam at a wavelength
2πc/ω = 1.06µm (infrared) incident on a KTP crystal is converted into radia-
tion at 2πc/(2ω) = 532 nm (green light); (b) Energy-level diagram of the medium
illustrating the absorption of two infrared photons and emission of a green photon.
This process is commonly used in green laser pointers [4], where green laser light is
generated from infrared lasers.
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1. INTRODUCTION

Various nonlinear phenomena become possible due to the second and third order
conductivities. If we consider two light waves at frequencies ω1 and ω2 (for conve-
nience, let us suppose ω1 > 2ω2), it can be gleaned from Eq. 1.9 that at second order
current oscillations will be induced at ω1 + ω2 (sum frequency generation - SFG),
ω1−ω2 (difference frequency generation - DFG), 2ω1 and 2ω2 (second harmonic gen-
eration - SHG). In the third order, more possibilities arise: 2ω1 +ω2 (SFG); ω1 +2ω2

(SFG); 2ω1 − ω2 (DFG); ω1 − 2ω2 (DFG); 3ω1 and 3ω2 (third harmonic generation
- THG), among others. Crucially, the current is a source term in Maxwell’s equa-
tions and these oscillating currents will generate optical waves at these new optical
frequencies. It is then possible to have mixing of light waves to generate new waves
of distinct frequencies. The case of second harmonic generation is illustrated in
Fig. 1.1.

Many special cases exist, such as those involving DC fields (take for instance
ω2=0 in the examples above), DC currents (the so-called shift [5], injection [5] and
jerk [6–8] currents) and the effects a light wave has on itself due to the changes it
causes in the medium it propagates (optical Kerr effect, intensity-dependent refrac-
tive index, self-phase modulation). These effects will not be discussed in this thesis
in any detail, as the emphasis lies in providing a framework that works for any set
of optical frequencies. Some of the main second and third order nonlinear effects
can be seen in Table 1.1, together with the nonlinear conductivities that describe
them. More appropriate and extensive discussions can be found in several standard
textbooks on the subject [3, 9, 10]. A useful resource letter written by Garmire [11]
compiles introductory references to the many specific topics encompassed by non-
linear optics.

Nonlinear conductivity Nonlinear optical effects

σ(ω, ω) Second harmonic generation

σ(ω, 0) Linear electro-optic (Pockels) effect

σ(ω,−ω) Photogalvanic effect; shift and injection currents

σ(ω, 0, 0) Quadratic electro-optic (DC Kerr) effect

σ(ω, ω, ω) Third harmonic generation

σ(ω, ω, 0) Field-induced second harmonic generation

σ(ω,−ω, ω)
Optical Kerr effect; intensity dependent refractive index;
self-phase modulation; self-focusing

σ(ω,−Ω,Ω)
Optical Kerr effect; intensity dependent refractive index;
cross-phase modulation

σ(ω, ω,−2ω) Two-color current injection

σ(ω,−ω, 0) Jerk, injection and shift currents

Table 1.1: Different frequency components of the nonlinear conductivity describe
distinct nonlinear optical effects. Specific references on most of these effects can be
found in [11].

11



1. INTRODUCTION

1.2 A historical overview

In 1961, Franken, Hill, Peters and Weinreich reported the first observation of optical
second harmonic generation [12]. At the Harrison Randall Laboratory of Physics in
Michigan, they had a beam of coherent red light, emitted by a ruby laser, traverse a
piece of crystalline quartz and form a saturated dark spot in a spectographic plate
standing on the other side. A smaller spot formed about thirty-five centimeters
to its left. That tiny spot was caused by the arrival of a few ultraviolet photons
generated in the quartz crystal and marked the birth of a new subfield of optics:
nonlinear optics.

Their discovery would not have been possible without Maiman’s invention of
the laser the previous year [13, 14]. It was the emergence of this new source of
intense coherent radiation (with field strengths up to the order of 107 V/m) that
was to propel a series of fundamental discoveries over the incoming decade on new
nonlinear optical phenomena [15], of which Franken’s et al observation of harmonic
generation was the first3. Conversely, nonlinear optics diversified available laser
technology and expanded its potential applications [4].

In the same month the work on second harmonic generation was presented,
another group reported the first observation of two-photon absorption [16]. This
was quickly followed by some theoretical order of magnitude estimations on the
two-photon absorption cross-section [17] (the possibility of multiphoton absorption
was first conceived and analyzed by Goeppert-Mayer in her PhD thesis, way back in
1931). Two-photon absorption is directly related to the real part of the third order
conductivity [3].

Optical mixing of a more general character, including sum-frequency genera-
tion [18] (observed by setting two ruby lasers at different temperatures), optical
rectification [19] and DC-field induced second harmonic generation [20], among oth-
ers, was explored during the early sixties. It was realized very early that much higher
conversion efficiencies in harmonic generation were possible if one ensured the in-
volved waves were phase-matched. Phase-matching of optical waves was achieved
by proper use of birefringent crystals [21, 22] (e.g. KDP). All these nonlinear ef-
fects were encompassed in the theoretical framework set by Armstrong et al in
1962 [23]. This work included a derivation of the nonlinear response functions based
on perturbation theory as well as an extensive discussion on the set of coupled wave
equations that resulted when the nonlinear constitutive relation was inserted in
Maxwell’s equations. The solutions of these wave equations describe optical mixing
and propagation effects in nonlinear media [3, 10].

The importance of symmetry was not left unnoticed in these early investigations.
At the time, a pertinent question was if the measured optical nonlinearities were due
to ionic or electronic motions (or both?). This was answered with a suggestion by
Kleinman [24] to take a closer look to the symmetry properties of the susceptibility
(or conductivity) tensors. Considerations of the crystal’s point symmetry had in fact
been used to discard the possibility of artifact in Franken’s et al experiment [12]. It
was known that the symmetry of the second order susceptibility (conductivity) was

3From the effects in Table 1.1, some of those involving DC fields form an exception as they do
not necessarily require intense laser light. The DC Kerr and Pockels effects were observed in the
second half of the nineteen century, much before the birth of the laser and are often presented as
precursors to the development of nonlinear optics [15].
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1. INTRODUCTION

identical to that of piezoelectric tensors, which had already undergone proper classi-
fication for the various crystal symmetry groups [24, 25]. Kleinman pointed out that
the measurements that had been made of harmonic generation used optical frequen-
cies well below those of electronic transitions and well above ionic ones, therefore
the dispersion of the nonlinear tensors should be negligible if the nonlinearities were
due to electronic contributions and not so otherwise. The dispersionless tensors
have a greater symmetry and hence a smaller number of independent components,
which could be tested experimentally. It was soon confirmed that the electronic
contributions were in fact dominant [26].

Kleinman symmetry is a special case of overall permutation symmetry [3, 10].
This more general symmetry was demonstrated in [23] for lossless systems. An
extension of the validity of overall permutation symmetry was proved in [27] by
extending the domain region of the nonlinear conductivity to the complex plane
(see Section 2.5). The most interesting aspect of this symmetry is that it connects
different frequency components of the nonlinear conductivity, thereby providing a
link between distinct nonlinear effects. An example that was verified early on is
the connection between optical rectification and the linear electro-optic effect in
the “clamped lattice” regime [19]. Another consequence of this symmetry are the
Manley-Rowe relations [27–29] that relate the emitted and absorbed powers at dif-
ferent optical frequencies in lossless nonlinear media. Overall permutation symmetry
is discussed extensively in Chapter 6.

Nonlinear conductivities successfully provide us with a unified understanding
of nonlinear optics in the perturbative regime, but the actual calculation of the
nonlinear conductivity for a specific medium is challenging [3]. The cumbersome
expressions that follow directly from perturbation theory often come accompanied
with some subtle difficulties and require (sometimes considerable) analytical work
to be put in a form that can be of use. Most importantly, a requirement to accu-
rately evaluate such expressions is a detailed knowledge of the perturbation matrix
elements and the electronic energies of the system [30].

The ability to compute the second and third order conductivities is of great value
in determining the materials of interest for applications and in the design of optical
devices involving nonlinear processes [3, 31]. It can also be useful in retrieving
information about the materials themselves [4, 31]. The nonlinear optical properties
of crystals are known to be more sensitive to the details of the wavefunctions and
eigenergies than their linear counterparts, making the accuracy of such calculations
a more stringent test on the validity of band structure theories [30, 32].

During the seventies, the focus was on atomic and molecular gases. For suffi-
ciently simple molecules, ab initio calculations of the dipole matrix elements were
possible and found good agreement with experiment [3, 33, 34]. This was the case
for harmonic generation in alkali-metal vapours [34], with their simple hydrogen-like
spectra, and for molecular hydrogen [33], where calculations of the third order sus-
ceptibility matched the measured values of Raman gain and of the spontaneous Ra-
man cross-section. For more complex systems, semiempirical methods were adopted
with measured values of transition energies and oscillator strengths incorporated into
the calculation [3]. A pioneering effort in this front were the works on p-nitroaniline 4

4Organic compounds like p-nitroaniline with highly charge-correlated π electron states attracted
great interest at the time due to their unusually high optical nonlinearities. This makes it perhaps
less surprising that graphene was later shown to have a strong nonlinear optical response.
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1. INTRODUCTION

that used well established molecular orbital calculations to obtain quantitative pre-
dictions for the second order susceptibility5 [35–38]. These ultimately reproduced
the experimental data rather well [38].

Comprehensive studies of the nonlinear optical response of crystals came much
later. The first measurements showing the dispersion of the second order conduc-
tivity were presented in [39]. Some correlation was found between critical points of
the band structure and pronounced features in the nonlinear optical response. The-
oretically, the first proper full band structure calculation was performed by Fong
and Shen [40] on zincblende semiconductors using an empirical pseudopotential
approach to predict the behavior of the nonlinear conductivity over an extended
frequency range6. It is worth emphasizing that one of their conclusions was that
the k-dependence of the dipole matrix elements could not be ignored7. A decade
later, their work was expanded on by a research group from University of Toronto
that presented their own full band structure calculations on the nonlinear optical
response of semiconductors [5, 30, 32, 41–44], using empirical tight binding mod-
els and, later, density functional theory. Their works included comparisons between
different methods of obtaining the perturbation matrix elements [30], a study on the
anisotropy in the third order response of silicon [41] and, in 1990, the first calcula-
tions of the third order conductivities of semiconductors over an extended frequency
range [32]. That it took decades from the development of the general framework for
solids [25] to its application to specific systems is a testament to the complexity of
the task.

Most of the works discussed so far used a minimal coupling Hamiltonian,

Ĥ = Ĥ0(r̂, p̂ + eA(t)) (1.12)

where H0 is the unperturbed Hamiltonian of the crystal and A(t) is the vector
potential: E(t) = −∂tA. A non-obvious consequence of the choice of gauge em-
ployed in Eq. 1.12 is that apparent unphysical infrared divergences permeate the
perturbative results. This can be seen by noting that A(ω) = −iE(ω)/ω, giving
a factor of ω−n in the n-th order nonlinear conductivity (see Section 2.4) that, if
not cancelled, leads to an infinite DC response. This happens even for insulators
with no free charge carriers present, a clearly unphysical situation. The cancella-
tions do occur, of course, and the divergences are only apparent, as can be shown
by careful manipulations. Aspnes [45] provided one of the first demonstrations of
this for crystals of zincblende symmetry. The difficulty is there for the nonlinear
optical response of atomic systems too [46], but is aggravated in the case of solids by
the complexity of the expressions [47]. It sets the perturbation theory on a delicate
ground, where approximations easily result in nonsensical answers and it ultimately
led this approach to fall in disfavor. This serves also as a warning to the reader:
some care should be taken when revisiting this older literature, since these prob-
lems were not yet fully understood and would not be appropriately addressed until

5Actually, the calculations concerned the second order hyperpolarisability. But for our purposes
here, it does not matter whether we are talking about hyperpolarisabilities, susceptibilities or
conductivities; it all amounts to the same, since they are easily converted into each other (when
ignoring local field effects).

6Previous attempts used phenomenological models around the critical points and/or focused
only on the optical response at zero frequency.

7For the sake of simplicity, theorists are sometimes tempted to take them as constants.
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the nineties [47–49], when alternative formulations were proposed and the previous
failures were recognized in hindsight as being the result of sum rule violations.

The natural solution was then to adopt a different gauge. Sipe and Ghahra-
mani [47], basing themselves on a previous work [50], did just that and developed
an approach that was inherently free from infrared divergences and provided the
first generally applicable expressions for the nonlinear conductivity. Alternative
approaches were derived from density functional theory, including the works of
Levine [51], which introduces a position dependent field and takes the limit to an
uniform field at the end of the calculation, and Dal Corso et al [52, 53], that opted
to perform the calculations in real space with Wannier functions.

However, the most successful and popular method in current use is the one
introduced by Aversa and Sipe [49], based on a dipole interaction term:

Ĥ = Ĥ0(r̂, p̂)− e r̂ · E(t) (1.13)

It corresponds to a different, but equivalent, gauge choice than Eq. 1.12. The
associated perturbation theory has no spurious divergences, no difficulties emerge
from band truncation and it allows for a clean separation of intraband and inter-
band contributions. The representation of the position operator in the Bloch basis
is nontrivial [54] (see Section 2.3), but this was proven not to be an obstacle in com-
puting the nonlinear conductivity [48, 49]. With the use of this Hamiltonian and
the removal of artificial divergences, actual physical divergences could be identified
in the relaxation-free limit that were related to new interesting physical effects, such
as the shift and injection currents [5, 49, 55].

As mentioned before, the discussion presented here is confined to systems of
non-interacting electrons and spatially uniform electric fields (at the atomic scale).
Exciton effects, quadrupole moments and electron-electron interactions are certainly
important, but reside outside the scope of this thesis. If this historical review offers
any perspective, it should be that enough difficulties are present already at the single
electron level to merit a detailed discussion.

The use of Eq. 1.12 is often referred to as the velocity gauge and Eq. 1.13 as
the length gauge. The apparent discrepancies in the derived results despite gauge
invariance was a decades-long puzzle that only recently got properly resolved [56].
We shall return to this question (Section 2.4), when listing the advantages and
disadvantages for each gauge; most of the current text is dedicated to clarifying
aspects of these two perturbation methods and presenting additional refinements.
We start by revisiting the standard perturbation theory calculation of the nonlinear
response.

15



Chapter 2

Perturbation theory

In order to perform the expansion of the current in the optical fields (Eq. 1.5), we
must recur to quantum mechanical perturbation theory. The general case is first
reviewed with relevant notation established for future use. The specific nonlinear
response functions of interest are then identified and the role of gauge fixing dis-
cussed.

2.1 Density matrix formalism

An ensemble of quantum systems can be described by a density operator ρ evolving
in time according to the von Neumann equation:

i ~ ∂tρ̂ =
[
Ĥ, ρ̂

]
(2.1)

The statistical average of any observable can be obtained by tracing its product
with the density operator, O = 〈Ô〉 = Tr(Ô ρ̂), and therefore all the dynamics of
the ensemble is contained in Eq. 2.1. Consider the Hamiltonian

Ĥ(t) = Ĥ0 + V̂(t) (2.2)

where the first term on the right hand side is assumed to be well understood and
have known eigenstates |ψa〉 with energies εa, and the second term couples a set of
observables Ôα to external classical fields Eα,

V̂(t) = ÔαEα(t) (2.3)

This term is assumed to be small and a perturbative treatment will ensue.
In the absence of the perturbation, the system is assumed to be in thermal equi-

librium and the density matrix is time-independent and diagonal in the eigenbasis
of Ĥ0. The perturbation is switched on at t = −∞. To describe the time evolution
of the ensemble, we must solve Eq. 2.1 with ρ̂(−∞) = ρ̂0.

In the interaction picture, the von Neumann equation takes the form

i ~ ∂tρ̂I(t) =
[
V̂I(t), ρ̂I(t)

]
(2.4)

with

ρ̂I(t) ≡ Û †0(t) ρ̂ Û0(t) V̂I(t) ≡ Û †0(t)V̂(t)U0(t) = ÔαI (t)Eα(t) (2.5)
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2. PERTURBATION THEORY

where Û0(t) ≡ e−
i Ĥ0
~ t is the time evolution operator associated to the unperturbed

Hamiltonian.
The solution to Eq. 2.4 can be written as

ρ̂I(t) = ρ̂0 −
i

~

∫ t

−∞
[V̂I(t′), ρ̂I(t′)] dt′ = ρ̂0 −

i

~

∫ t

−∞
[ÔαI (t′), ρ̂I(t

′)]Eα(t′) dt′ (2.6)

Transforming back to the Schrödinger picture,

ρ̂(t) = ρ̂0 −
i

~

∫ t

−∞
Û0(t)[ÔαI (t′), ρ̂I(t

′)] Û †0(t)Eα(t′) dt′

= ρ̂0 −
i

~

∫ t

−∞
Û †0(−t)[ÔαI (t′), ρ̂I(t

′)] Û0(−t)Eα(t′) dt′

= ρ̂0 −
i

~

∫ t

−∞
[ÔαI (t′ − t), ρ̂I(t′ − t)]Eα(t′) dt′ (2.7)

From here the usual perturbative approach is followed. In zeroth order in
the perturbation, the density operator is described by the equilibrium distribution
ρ̂(0)(t) = ρ̂0.

In first order,

ρ̂(1)(t) = − i
~

∫ t

−∞
dt′ [ÔαI (t′ − t), ρ̂0]Eα(t′) (2.8)

In second order,

ρ̂(2)(t) =

(
− i
~

)2 ∫ t

−∞
dt2

∫ t2

−∞
dt1 [Ôα2

I (t2 − t), [Ôα1
I (t1 − t), ρ̂0]]Eα1(t1)Eα2(t2)

(2.9)
Generalizing to order n,

ρ̂(n)(t) =

(
− i
~

)n ∫ t

−∞
dtn ...

∫ t2

−∞
dt1[ÔαnI (tn − t), ...[Ôα1

I (t1 − t), ρ̂0]...]Eα1(t1)...Eαn(tn)

(2.10)

This is the general structure of the perturbative solutions to Eq. 2.1.
A consequence of the perturbative solutions having the form of nested commu-

tators is that their trace must always be zero. Indeed, it follows from Eq. 2.7 that
Tr ρ̂ = Tr ρ̂0 and Tr ρ̂(n) = 0 for n > 0.

These solutions were formulated in the time domain. For the case of an harmonic
perturbation or, more generally, in the case that the classical fields have a spectrum
localized around some central frequency, it is useful to express the density operator
and the perturbation theory in the frequency domain,

ρ̂(ω) ≡
∫ +∞

−∞
dt ρ̂(t) eiω t (2.11)

The perturbative solutions could be expressed in the frequency domain by Fourier
transformation of Eqs. 2.8-2.10, but an easier derivation results by returning to the
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2. PERTURBATION THEORY

equation of motion (Eq. 2.1) and using the representation provided by the eigenstates
of H0:

i ~ ∂tρab = [H0, ρ]ab + [V , ρ]ab = ρab ∆εab + [V , ρ]ab (2.12)

with ∆εab ≡ εa − εb. Applying a Fourier transform,

(~ω −∆εab) ρab(ω) =

∫ +∞

−∞
[V(t), ρ(t)]abe

iωt dt (2.13)

giving the recursion relation

ρ
(n)
ab (ω) =

1

~ω −∆εab

∫ +∞

−∞
[Oα, ρ(n−1)(t)]abE

α(t) eiωt dt

=

∫ +∞

−∞

∫ +∞

−∞

dω′

2π

dω′′

2π

[Oα, ρ(n−1)(ω′)]ab
~ω −∆εab

Eα(ω′′) (2π) δ(ω − ω′ − ω′′) (2.14)

Once again, we note that the perturbation is small and that ρ(0)(ω) = ρ0 (2π) δ(ω).
In linear order,

ρ
(1)
ab (ω) =

∫ +∞

−∞

dω1

2π

[Oα, ρ0]ab
~ω1 −∆εab

Eα(ω1) (2π) δ(ω − ω1) =
[Oα, ρ0]ab
~ω −∆εab

Eα(ω) (2.15)

In second order,

ρ
(2)
ab (ω) =

∫ +∞

−∞

∫ +∞

−∞

dω1

2π

dω2

2π

[Oα2 , ρ(1)(ω1)]ab
~ω −∆εab

Eα2(ω2) (2π) δ(ω − ω1 − ω2)

=

∫ +∞

−∞

dω2

2π

∫ +∞

−∞

dω1

2π

1

~ω1 + ~ω2 −∆εab

[
Oα2 ,

1

~ω1 −∆ε
◦ [Oα1 , ρ0]

]
ab

× Eα1(ω1)Eα2(ω2) (2π) δ(ω − ω1 − ω2) (2.16)

where ◦ stands for the Hadamard product: (A ◦B)ab = AabBab.
The notation just used is probably unfamiliar to the reader. Since it is often

employed in this text, it is here exemplified by making the commutator structure at
second order explicit,

[
Oα2 ,

1

~ω1 −∆ε
◦ [Oα1 , ρ0]

]
ab

=
∑
c

Oα2
ac

[Oα1 , ρ0]cb
~ω1 −∆εcb

−
∑
c

[Oα1 , ρ0]ac
~ω1 −∆εac

Oα2
cb (2.17)

where, at this point, the inner commutator could also be expanded. This notation
is the one used in [56, 57] and is useful in abbreviating expressions.

In general,

ρ
(n)
ab (ω) =

∫ +∞

−∞

dωn
2π

...

∫ +∞

−∞

dω1

2π

1

~ω1 + ...+ ~ωn −∆ε
◦
[
Oαn , ... 1

~ω1 −∆ε
◦ [Oα1 , ρ0]...

]
ab

× Eα1(ω1) . . . Eαn(ωn) (2π) δ(ω − ω1 · · · − ωn) (2.18)

Often, when performing this type of computations, the commutators are ex-
panded in all their glorious detail, with final expressions containing many terms
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and patterns that hard to recognize if not for diagrammatic techniques, when they
exist. While the commutators will inevitably be expanded to perform specific com-
putations in any given system, there is great value in maintaining this condensed
notation until such is required. General properties are often more easily found and
proven by manipulation of these expressions. Much of this thesis work builds on
a proper appreciation of the structure of nested commutators in Eq. 2.18 and its
generalization.

It is also worth noting that while Eqs. 2.8-2.10 are written in operator form,
Eqs. 2.15-2.18 involve matrices in the representation set by the eigenstates of H0.
Nothing was assumed about the spectrum of H0, which may therefore involve either
discrete energy levels or a continuum (bands) or both.

2.2 Response functions

A particular application of perturbation theory is the calculation of response func-
tions (let us call them, say, σ), that describe how some observables of interest

Jβ ≡ 〈Ĵβ〉 = Tr
(
Ĵβ ρ̂

)
are affected by the presence of the external fields Eα(t). In

nonlinear optics, J would be the electric current and E the electric field, but for
now the setting remains completely general.

A notation is introduced at this point that shall prove useful in abbreviating
calculations,

ρ̂(n)(t) ≡
∫ +∞

−∞
dtn· · ·

∫ +∞

−∞
dt1 ρ̂

α1...αn(t− t1, . . . , t− tn)Eα1(t1) . . . Eαn(tn) (2.19)

for n ≥ 1.
Comparing with Eq. 2.10, we see that

ρ̂α1...αn(t1, ..., tn) =

(
− i
~

)n
[ÔαnI (−tn), ...[Ôα1

I (−t1), ρ̂0]...] Θ(t1 − t2)...Θ(tn−1 − tn)Θ(tn)

(2.20)

Likewise, we can define in the frequency domain,

ρ̂(n)(ω) ≡
∫ +∞

−∞

dωn
2π

...

∫ +∞

−∞

dω1

2π
ρ̂α1...αn(ω1, ..., ωn)Eα1(ω1)...Eαn(ωn) (2π) δ(ω−ω1...−ωn)

(2.21)

which, by comparison with Eq. 2.18, gives

ρα1...αn
ab (ω1, . . . , ωn) =

1

~ω1 + · · ·+ ~ωn −∆ε
◦
[
Oαn , . . . 1

~ω1 −∆ε
◦ [Oα1 , ρ0] . . .

]
ab

(2.22)

It is now straightforward to express a general response function using the previous
definitions. If we consider the relation between a set of observables Jβ and the
external fields, then for sufficiently weak fields a power series expansion may be
appropriate,
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〈Ĵβ〉(E) = 〈Ĵβ〉(0) + 〈Ĵβ〉(1) + 〈Ĵβ〉(2) + . . . (2.23)

where

〈Ĵβ〉(n)(t) ≡
∫ +∞

−∞
dtn· · ·

∫ +∞

−∞
dt1 σ

βα1...αn(t− t1, . . . , t− tn)Eα1(t1) . . . Eαn(tn)

(2.24)

It can also be expressed in the frequency domain,

〈Ĵβ〉(n)(ω) ≡
∫ +∞

−∞

dωn
2π
· · ·
∫ +∞

−∞

dω1

2π
σβα1...αn(ω1, . . . , ωn)

× Eα1(ω1) . . . Eαn(ωn) (2π) δ(ω − ω1 · · · − ωn)
(2.25)

The relation J(E) is, in the regime where perturbation theory is valid, captured
by the time-domain or frequency domain response functions defined in Eqs. 2.24
and 2.25, respectively. Relating this to previous definitions, it is clear that any such
response function will always be obtained from Eqs. 2.20 and 2.22 by tracing over
the observable of interest,

σβα1...αn(t1, . . . , tn) = Tr(Ĵβ ρ̂α1...αn(t1, . . . , tn)) (2.26)

σβα1...αn(ω1, . . . , ωn) = Tr(Ĵβ ρ̂α1...αn(ω1, . . . , ωn)) (2.27)

If written explicitly,

σβα1...αn(t1, ..., tn) =(
− i
~

)n
Tr
(
Ĵβ [ÔαnI (−tn), ...[Ôα1

I (−t1), ρ̂0]...]
)

Θ(t1 − t2)...Θ(tn−1 − tn)Θ(tn) (2.28)

σβα1...αn(ω1, ..., ωn) =
∑
a,b

Jβba
~ω1 + ...+ ~ωn −∆εab

[
Oαn , ... 1

~ω1 −∆ε
◦ [Oα1 , ρ0] ...

]
ab

(2.29)

The quantities defined in Eqs. 2.19 and 2.21 are themselves response functions
of sort, describing the relation between the density operator (an observable) and the
classical fields. But the expressions in Eqs 2.28 and 2.29 are, of course, the ones of
greater interest for us here. As highlighted in the previous section, the frequency
components of the nonlinear conductivity are particularly useful in nonlinear op-
tics and Eq. 2.29 is the main reason we undertook this review of density matrix
perturbation theory.

As a side note, it is useful to know that, when calculating response functions,
the structure of the perturbative solutions in Eqs. 2.28 and 2.29 can be rearranged
in the following way:
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σβα1...αn(t1, . . . , tn) =(
i

~

)n
Tr
(
ρ̂0

[
Ôα1
I (−t1), . . .

[
ÔαnI (−tn), Ĵβ

]
...
])

Θ(t1 − t2)...Θ(tn−1 − tn)Θ(tn)

(2.30)

σβα1...αn(ω1, . . . , ωn) =

(−1)n
∑
a

(ρ0)aa

[
Oα1 ,

1

~ω1 + ∆ε
◦ . . .

[
Oαn , 1

~ω1 + · · ·+ ~ωn + ∆ε
◦ Jβ

]
...

]
aa

(2.31)

Eqs. 2.30 and 2.31 are completely equivalent to Eqs. 2.28 and 2.29. To go from
one formulation to another is a matter of changing indices and moving commutators
around with the cyclic property of the trace: Tr(A[B,C]) = Tr(C[A,B]). The
perturbation is no longer being commuted with the thermal equilibrium distribution
ρ0, but instead acts on the observable Jβ, which can be advantageous. Another
advantage of this way of writing the perturbation theory is the decomposition of the
response functions into a sum of contributions over each state, since ρ0 is diagonal
in the basis of eigenstates of H0. This type of expression is common in perturbative
treatments of the nonlinear optics of atomic systems [3].

A fairly important point is left to be discussed, as the application of the previous
formulas to derive the nonlinear conductivity of a quantum system is not as direct as
it may seem. Inspection of Eq. 2.29 suggests that the frequency ω1 plays a somewhat
different role than ω2, for example, since it is placed in more denominators, but this is
not the case. It follows from Eq. 2.25 that only the symmetrical part of the nonlinear
conductivity survives the integration and is therefore physical. By symmetrical part
it is meant the part that respects intrinsic permutation symmetry :

σβ...αi...αj ...(..., ωi, ..., ωj, ...) = σβ...αj ...αi...(..., ωj, ..., ωi, ...) (2.32)

for any i, j ∈ {1, ..., n}.
Any function that does not respect intrinsic permutation symmetry could be

added to the nonlinear conductivity without affecting the resulting current. When
wishing to infer physical information from the nonlinear conductivity, it is therefore
an absolutely necessary step to symmetrize the expression in Eq. 2.29 to ensure
that the conductivity obeys intrinsic permutation symmetry. In second order, for
instance,

σβα1α2

S (ω1, ω2) = σβα2α1

S (ω2, ω1) (2.33)

must be guaranteed by extracting the symmetrical part of the conductivities derived
from Eq. 2.29 with n = 2,

σβα1α2

S (ω1, ω2) =
1

2

(
σβα1α2(ω1, ω2) + σβα2α1(ω2, ω1)

)
(2.34)

2.3 The covariant derivative

Returning to our problem of finding the nonlinear optical response of crystalline
solids, we apply the formalism just developed to the dynamics of an electron moving
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in the periodic potential of a crystal:

Ĥ0 =
p̂2

2m
+ V (r̂) (2.35)

where p̂ = ||p̂|| and V (r̂) has the periodicity of a given Bravais lattice {Rn}.
Bloch’s theorem states that the eigenfunctions of an Hamiltonian Ĥ0 with dis-

crete translation symmetry have the form

ψka(r) = eik·r uka(r) (2.36)

where uka(r) is periodic in the Bravais lattice uka(r+Rn) = uka(r), k is the Bloch
vector and a the band index [58]. The Bloch vector k is a good quantum number
that, in the thermodynamic limit, takes any value in the First Brillouin Zone (FBZ).
In this limit, sums over k become integrals over the FBZ. For instance, the closure
relation ∑

k

∑
a

|ψka〉 〈ψka| = 1̂→
∫

ddk

(2π)d

∑
a

|ψka〉 〈ψka| = 1̂ (2.37)

where d is the dimensionality of the system (and its FBZ).
In the eigenvalue equation,

Ĥ0 |ψka〉 = εka |ψka〉 (2.38)

the energies εka are defined continuously over the FBZ, forming multiple energy
bands, labeled by the band index a.

With these definitions, the Bloch basis is normalized according to

〈ψka|ψk′b〉 = (2π)d δab δ(k− k′) (2.39)

Operators that are invariant under the lattice translations are diagonal in k and
their matrix elements are denoted as follows

〈ψka| Ô |ψk′b〉 = Okab (2π)d δ(k− k′) (2.40)

As an example, the equilibrium distribution for a system of independent electrons
is the Fermi-Dirac distribution

ρ̂0 = f(Ĥ0) ≡ 1

1 + e(Ĥ0−µ)/kBT
(2.41)

with µ as the chemical potential, and it is clearly diagonal in the eigenbasis of H0,

〈ψka| ρ̂0 |ψk′b〉 = (ρ0)kab (2π)d δ(k− k′) = fka δab (2π)d δ(k− k′) (2.42)

where

fka ≡ f(εka) =
1

1 + e(εka−µ)/kBT
(2.43)

The carrier concentration ne is determined by the chemical potential, with the
density matrix normalized so that Tr(ρ̂0) = ne.

The full Hamiltonian Ĥ includes not only the crystalline potential but also a
term V̂(t) that couples the quantum electron motion to the classical optical field.
The specific form of this coupling will depend on our choice of gauge. For the length
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2. PERTURBATION THEORY

gauge Hamiltonian in Eq. 1.13, the coupling has the form we have been considering
(Eq. 2.3), where Eα is the electric field and the observable Ôα corresponds to the
electric dipole moment:

V̂(t) = e r̂αEα(t) (2.44)

To use perturbation theory and find the nonlinear conductivities of this sys-
tem, it is necessary to write the perturbation in the eigenbasis of the unperturbed
Hamiltonian H0. That is, it is required to write the position operator in the Bloch
basis [54],

〈ψk′a| r̂α |ψkb〉 =

∫
d3rψ∗k′a(r) rα ψkb(r)

=

∫
d3r e−ik

′·r u∗k′a(r) rα eik·r ukb(r) =

∫
d3r e−ik

′·r u∗k′a(r)

(
−i ∂

∂kα
eik·r

)
ukb(r)

= −i ∂

∂kα

∫
d3r e−ik

′·r u∗k′a(r) eik·r ukb(r) + i

∫
d3r e−ik

′·r u∗k′a(r) eik·r
∂ukb(r)

∂kα

= −i ∂

∂kα
〈ψk′a|ψkb〉+ i

∑
Rn

ei (k−k
′)·Rn

∫
u. c.

d3ru∗k′a(r)
∂ukb(r)

∂kα
(2.45)

where we used the periodicity of the uka(r) functions to separate the integral over
all real space into an integral over the unit cell and a sum over the Bravais lattice
sites. The lattice sum evaluates to a Dirac delta,∑

Rn

eik·Rn =
(2π)d

vc
δ(k) (2.46)

where vc is the volume of the unit cell. Substituting in Eq. 2.45,

= −i δab (2π)d ∂αδ(k− k′) + (2π)d δ(k− k′)

 i

vc

∫
u. c.

d3ru∗ka(r) ∂αukb(r)

 (2.47)

Henceforth, the derivative notation is abbreviated: ∂α ≡ ∂/∂kα.
The first term in Eq. 2.47 makes it clear that the position operator is not diagonal

in k, linking states with neighbouring Bloch vectors. The quantity in parenthesis
is closely related to the geometrical phase [59] and is a well-known object in the
exploration of geometry in electronic structure theory [60]: the non-abelian Berry
connection

Aαkab = i 〈uka|∂αukb〉 ≡
i

vc

∫
u. c.

d3ru∗ka(r) ∂αukb(r) (2.48)

Replacing it in Eq. 2.47,

= −i δab (2π)d ∂αδ(k− k′) + (2π)d δ(k− k′)Aαkab
= (2π)d δ(k− k′) i (δab ∂

α − iAαkab)
= (2π)d δ(k− k′) iDα

kab (2.49)
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where we used integration by parts to write the position operator’s matrix elements
in terms of the covariant derivative:

Dα
kab ≡ δab ∂

α − iAαkab (2.50)

It’s standard in quantum mechanics to take the momentum operator as the
derivative in real space. And vice-versa, the position operator in the eigenbasis of
momentum is a derivative in reciprocal space. If instead of plane waves, Bloch waves
are considered, the position operator becomes a covariant derivative. In operator
form, we summarize the previous derivation with the statement r̂α = i D̂α.

If some of the steps in the previous derivation look dubious, this is due to the
position operator not being strictly defined in the Bloch basis. The equalities are
to be understood as identities between distributions and can be made rigorous with
the use of test functions.

It should be noted that the difficulty is defining the position operator in the
Bloch basis was not entirely unexpected. Under periodic boundary conditions, in
a finite crystal, the position operator is notably undefined in the space generated
by the Bloch states. The position operator is also not invariant under lattice trans-
lations, which means that the perturbation to our Hamiltonian, in a length gauge
formulation, breaks the translation symmetry of the lattice.

However, all this turns out to be no real obstacle in developing the perturba-
tion theory, since the perturbation, and the position operator, appear only inside
commutators and these are well-defined [49, 57], even when the perturbation itself
isn’t:

[D̂α, Ô] = ∂̂α Ô − Ô ∂̂α − i [Âα, Ô]

= (∂̂αÔ)− i [Âα, Ô] (2.51)

whose matrix elements are well-defined and diagonal in k,

[Dα,O]kab = (∂αOkab)− i
∑
c

(AαkacOkcb −AαkcbOkac) (2.52)

An useful example is the covariant differentiation of the equilibrium distribution,

[Dα, ρ0]kab = ∂αfka δab − iAαkab ∆fkba (2.53)

with ∆fkba ≡ fkb − fka.
Another instance of a commutator with the position operator comes from eval-

uating the matrix elements of the current operator,

Ĵβ = −e v̂β =
i e

~
[r̂β, Ĥ] =

i e

~
[r̂β, Ĥ0] = − e

~
[D̂β, Ĥ0] (2.54)

which in the Bloch basis becomes,

Jβkab = − e
~

[Dβ, H0]kab = − e
~

(
∂βεka δab + iAβkab ∆εkab

)
(2.55)

with ∆εkab ≡ εka − εkb.
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The emergence of the covariant derivative is deeply related to the existence of
another gauge symmetry, beyond that of the classical electromagnetic field. Any
physical prediction of the theory should remain invariant under the transformation

|ψka〉 → ei φka |ψka〉 (2.56)

However, the k-derivative transforms as1

〈ψka| i ∂̂α |ψkb〉 → ei(φkb−φka) 〈ψka| i ∂̂α |ψkb〉+ δab (∂αφka) 〈ψka|ψka〉 (2.57)

This is compensated by the transformation properties of the Berry connection,

Aαkab → e−iφka Aαkab eiφkb − δab (∂αφka) (2.58)

implying that the covariant derivative will transform as

Dα
kab → ei(φkb−φka) Dα

kab (2.59)

leaving only the phase factors. These cancel whenever traces are evaluated (Eq. 2.29).
In this way, gauge invariance of physical predictions under these phase transfor-

mations is ensured.

2.4 A tale of two gauges

2.4.1 Length gauge

Once the length gauge perturbation (Eq. 2.44) is written in the Bloch basis, the pre-
vious formulas (Eq. 2.29) for nonlinear response functions can be used, immediately
giving the linear and nonlinear conductivities upon substitution of the observable
Oα by the dipole operator e rα = i eDα. The resulting formula for the optical con-
ductivity is equivalent to Kubo’s formula [61], when expressed in frequency space,

σβα(ω) = Tr
(
Ĵβ ρ̂α(ω)

)
= e

∫
ddk

(2π)d

∑
a,b

Jβkba [rα, ρ0]kab
~ω −∆εkab

= i e

∫
ddk

(2π)d

∑
a,b

Jβkba [Dα, ρ0]kab
~ω −∆εkab

(2.60)

Replacing the current for the commutator in Eq. 2.54,

σβα(ω) = −i e
2

~

∫
ddk

(2π)d

∑
a,b

[
Dβ, H0

]
kba

~ω −∆εkab
[Dα, ρ0]kab (2.61)

1Remember that the “matrix elements” of the derivative actually represent the operation of
differentiating everything to its right:

〈ψka| i ∂̂α |ψ〉 =

∫
ddk′

(2π)d
〈ψka| i ∂̂α |ψk′b〉 〈ψk′b|ψ〉 = i(∂α 〈ψka|ψ〉)→ (i(∂α 〈ψka|ψ〉) + (∂αφka) 〈ψka|ψ〉) e−i φka
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This is a fairly compact expression for the optical conductivity. As far as rec-
ognizing patterns and building general proofs, this type of expression can be quite
useful. But if one desires to compute the nonlinear optical response of a specific ma-
terial, the commutators must be expanded (Eqs. 2.53 and 2.55) and the dependence
on the band energies and Berry connections exposed in detail. Since it is instructive
to inspect the formula for the conductivity when written explicitly (and this is easy
to do in linear order):

σβα(ω) = − i e2

~2 ω

∫
ddk

(2π)d

∑
a

∂βεka ∂
αfka +

i e2

~

∫
ddk

(2π)d

∑
a,b

AβkbaAαkab∆εkab
~ω −∆εkab

∆fkba

(2.62)

The first and second terms in Eq. 2.62 correspond to intraband and interband
transitions, respectively. In a system with completely filled/empty bands (insulator),
no intraband transitions are possible and only the second term survives. On the
other hand, the linear response of a metallic or semiconductor system with free
carriers is dominated by the first term at low frequencies (~ω much smaller than
the gap). In the length gauge, it is always possible to discern the electron motion
in terms of a succession of intra- and interband transitions [49], but it becomes
increasingly less transparent in the final expressions as higher orders of perturbation
theory are considered.

The second order conductivity is obtained from Eq. 2.29 for n = 2,

σβα1α2(ω1, ω2) =
e3

~

∫
ddk

(2π)d

∑
a,b

[
Dβ, H0

]
kba

~ω1 + ~ω2 −∆εkab

[
Dα2 ,

1

~ω1 −∆ε
◦ [Dα1 , ρ0]

]
kab

(2.63)

A detailed treatment of this expression can be found in Appendix F. Right now,
it is enough to note some differences with the linear case that already indicate a
significant increase in complexity. The first, unavoidable complication is that we
are dealing with a higher rank tensor, with more elements to consider. Second,
in addition to a purely intraband contribution (where only the derivative part of
the position operator is applied) and a purely interband contribution (where only
the Berry connection part of the position operator is used), there are mixed terms
related to processes where both intra and interband transitions occur. For instance,
an electron might first transition from a valence to a conduction band and then have
an intraband transition to a neighbouring k-point. This leads to the appearance of
derivatives of Berry connections2 and other complications. Third, when moving
past linear order, the derivatives will act on the energy denominators as well: notice
how ∂α2 will act on (~ω1−∆ε)−1 in Eq. 2.63. This will enable higher order poles to
emerge, further complicating matters. None of these problems are beyond our ability
to manage, but they are what makes a computation of the nonlinear conductivity
nontrivial.

Finally, we consider the third order conductivity,

2More precisely, generalized derivatives of Berry connections [49] (see Chapter 5).
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σβα1α2α3(ω1, ω2, ω3) =

i e4

~

∫
ddk

(2π)d

∑
a,b

[
Dβ , H0

]
kba

~ω1 + ~ω2 + ~ω3 −∆εkab

[
Dα3 ,

1

~ω1 + ~ω2 −∆ε
◦
[
Dα2 ,

1

~ω1 −∆ε
◦ [Dα1 , ρ0]

]]
kab

(2.64)

And the pattern is clear for anyone wishing to pursue higher orders of perturba-
tion theory.

In principle, it seems this would already conclude one of the central topics of
this work: how to efficiently compute the nonlinear optical conductivity of crystals?
Eqs. 2.63 and 2.64 do provide appropriate formulae for such endeavour, but the
condensed notation hides a lot of complexity.

If V (r̂) stood for an atomic potential, similar expressions to Eqs. 2.63 and 2.64
would describe the nonlinear optical response for atomic systems. There would be
no integration over the FBZ and the position operator would not be a covariant
derivative (rab are then well-defined matrix elements), but all else would remain
unchanged. In such case, one could fully expand the commutators and, with a
proper knowledge of the energy levels and dipole matrix elements, obtained from ab
initio calculations or spectroscopic measurements, the dispersion of the nonlinear
conductivity could be accurately predicted3. Even the complexity of a general n-th
order conductivity would not seem too bad, with diagrammatic methods that can
identify the various terms and the possibility of using symmetry to generate them
from a single term4.

Unfortunately, the situation is very different for crystals precisely because of the
presence of a covariant derivative and the need to perform an integration. Atomic
and free electron systems are special cases in a sense, obtained upon taking the
appropriate limits. If the derivative part of the position operator is ignored, leaving
only the non-abelian Berry connection A, then at each k in the FBZ the response is
identical to that of an atomic system. If only the k-derivative part of the position
operator is retained, a purely intraband contribution will be all that is left and the
nonlinear response will be akin to that of a free electron gas. The presence of the
crystalline potential is then reflected only in the dispersion relation εka. This type
of nonlinear response results purely from intraband motion and could be directly
derived via a Boltzmann equation approach.

In crystals, where the perturbation is the full covariant derivative, the dynamics
is more interesting and more complex. Whenever one desires to go a step higher in
perturbation theory, the entirety of the expression for the density matrix at previous
order must be differentiated, and also commuted with A, implying a very steep
increase in the number of terms to evaluate and the complexity of the objects that
are to be evaluated. In Chapter 5, we will deal with this complexity and attempt
to cast the nonlinear conductivity in as simple a form as possible by breaking it
into smaller pieces, according with existing resonances in the FBZ. For the moment,
the inherent difficulties of the length gauge should provide sufficient justification to
consider other possibilities.

3Assuming the independent electron and electric dipole approximations are reasonable.
4See pages 70-74 (Section 4.3) of [3].
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2.4.2 Velocity gauge

Equivalent but distinct descriptions of the dynamics of a quantum system can be
reached by performing unitary transformations on the states and operators: |ψ〉 →
Û |ψ〉 and Ô → Û Ô Û †. The unitary transformation may be time-dependent, in
which case the Hamiltonian transforms as follows (see Appendix A)

Ĥ → Û(t)Ĥ Û †(t) + i ~ (∂tÛ(t)) Û †(t) (2.65)

A particular time-dependent unitary transformation Û(t) = e−i e r̂
αAα(t)/~, with

−∂tA(t) = E(t), applied to Eq. 1.13 leads to the familiar minimal coupling Hamil-
tonian (Eq. 1.12),

Ĥ =
(p̂ + eA(t))2

2m
+ V̂ (r̂) =

p̂2

2m
+ V̂ (r̂) +

e p̂αAα(t)

m
+
e2A(t)2

2m
(2.66)

where we identify the perturbation

V̂(t) =
e

m
p̂αAα(t) +

e2A(t)2

2m
(2.67)

The last piece in Eq. 2.67 is neglected as it merely introduces a time-dependent
phase shift in the wave functions and has no impact on the dynamics of the density
matrix or the other observables of the theory5. This form of the perturbation is
alluded to in the literature as the “velocity gauge”, presumably because the coupling
in Eq. 2.67 is close6 to e vα(t)Aα(t). The passage from the length to the velocity
gauge is described in greater detail in Appendix A.

Once again, the coupling has the form in Eq. 2.3 with Ôα = e p̂α/m and Aα as
the classical field. This seems to be a much simpler perturbation than the length
gauge version, with well defined matrix elements in the Bloch basis. Indeed, the
momentum operator could be expressed using the following commutator

p̂α = −im
~

[r̂α, Ĥ0] (2.68)

which is diagonal in k. The commutator may be expanded,

pαkab = −im
~

[rα, H0]kab

=
m

~
[Dα, H0]kab

=
m

~
(∂αεka δab + iAαkab ∆εkab) (2.69)

thereby reducing the ingredients necessary to an evaluation of the nonlinear conduc-
tivity down to a knowledge of the energies and the non-abelian Berry connection,
same as in the length gauge.

At this point, it seems the substitution of Ôα by e p̂α/m in Eq. 2.29 would return
expressions for the nonlinear conductivity. However, the velocity gauge formulation
deviates from the perturbative treatment of Section 2.2 in a few ways. A minor point

5An easy way to discern this is to note that in any equation of motion the Hamiltonian always
appears inside a commutator. The term in question, being a number, commutes with any operator.

6The difference is just an number, since v(t) = (p+ eA(t))/m. See Eq. 2.70
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is that it is written in terms of the vector potential A(t) and not the electric field as
intended, but this is no obstacle, since in the frequency domain A(ω) = −iE(ω)/ω.
As such, it should be enough to include the factor (−i)n/ω1 . . . ωn in the n-the order
nonlinear conductivity to account for the conversion of the potential vector into an
electric field. A more fundamental difference of the velocity gauge approach lies in
the current (or velocity) operator that has now a direct dependence on the optical
field:

Ĵβ(t) = −e v̂β =
i e

~
[r̂β, Ĥ] =

i e

~
[r̂β, Ĥ0]− e2

m
Aβ(t) (2.70)

Chapter 4 will expand on this point, but here this can be taken into account with
only a slight change in the linear response function formula. The ensemble average
of the current is

Jβ(t) = Tr
(
Ĵβ ρ̂

)
=
i e

~
Tr
(

[r̂β, Ĥ0] ρ̂
)
− e2

m
Tr(ρ̂)Aβ(t)

=
i e

~
Tr
(

[r̂β, Ĥ0] ρ̂
)
− e2

m
Tr(ρ̂0)Aβ(t)

=
i e

~
Tr
(

[r̂β, Ĥ0] ρ̂
)
− ne e

2

m
Aβ(t) (2.71)

The last term in Eq. 2.71 is linear in the potential vector and therefore contributes
to perturbation theory only in first order. As a result, there is an additional term
in the linear conductivity,

σβα(ω) =
e2

m ~ω

∫
ddk

(2π)d

∑
a,b

[
rβ, H0

]
kba

~ω −∆εkab
[pα, ρ0]kab +

i ne e
2

mω
δβα (2.72)

where δ is the Kronecker delta.
This is the velocity gauge version of Eq. 2.61. A curious aspect of this way of

writing it is that the Drude conductivity promptly follows when interband transitions
are ignored. Pulling from the results of the next subsection, we introduce relaxation
in the previous formula by making the substitution ω → ω+i/τ with τ = γ−1 > 0. If
we additionally set the off-diagonal momentum matrix elements to zero (decoupling
the electronic bands),

σβα(ω) =
i ne e

2

m (ω + i/τ)
δβα =

ne e
2 τ

m (1− i ω τ)
δβα =

σβα(0)

1− i ω τ
δβα (2.73)

a known result from Drude’s theory of metals.
The derivation of the second order conductivity is already parallel to the length

gauge formulation,

σβα1α2(ω1, ω2) =

− i e3

~m2 ω1 ω2

∫
ddk

(2π)d

∑
a,b

[
rβ, H0

]
kba

~ω1 + ~ω2 −∆εkab

[
pα2 ,

1

~ω1 −∆ε
◦ [pα1 , ρ0]

]
kab

(2.74)
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and the same is true for third order,

σβα1α2α3(ω1, ω2, ω3) = − e4

~m3 ω1 ω2 ω3

∫
ddk

(2π)d

∑
a,b

[
rβ, H0

]
kba

~ω1 + ~ω2 + ~ω3 −∆εkab

×
[
pα3 ,

1

~ω1 + ~ω2 −∆ε
◦
[
pα2 ,

1

~ω1 −∆ε
◦ [pα1 , ρ0]

]]
kab

(2.75)

There are no derivatives in Eqs. 2.72, 2.74 and 2.75, except for those required in
assessing the momentum matrix elements (Eq. 2.69). The nonlinear conductivity is
a sum over independent contributions, one for each k-point in the FBZ. Hence, the
nonlinear optical response, when expressed in the velocity gauge, is identical to that
of a collection of atoms, each labeled by a Bloch vector. This is no surprise, since
the minimal coupling Hamiltonian preserves the translation symmetry of the lattice
and the Bloch vector k remains a good quantum number even after the coupling
with the optical field is introduced.

2.4.3 Length vs velocity gauge

What effectively happens when moving from a length to a velocity gauge descrip-
tion is that the unitary transformation U(t) decouples the system in k. Because the
transformation is unitary, the two descriptions are nonetheless entirely equivalent.
This can be further confirmed by manipulating the nonlinear conductivity expres-
sions from one formulation to another, showing that they are, in fact, the same
expressions, just written rather differently (e. g. with some cycling of commutators,
relabelling of indices and, most importantly, the use of a few sum rules [57], Eq. 2.75
can be shown to be one and the same as Eq. 2.64).

Unfortunately, the fundamental principle of gauge invariance was not enough to
prevent published results using length and velocity gauge methods to differ sub-
stantially. This was a source of confusion and debate for a while, but eventually it
became clear that the difficulty resided in the approximations that are inevitably
made in any calculation of the optical properties of matter.

The Hilbert space of the Hamiltonian in Eq. 2.35 is infinite dimensional. A
computation of the optical response then requires an infinite number of states, for
atomic and condensed matter systems alike. This is hardly practical. In practice,
one always limits the analysis to a subspace of the space of states that is assumed
to properly describe the physics. In the case of crystals, the valence and conduction
bands nearest to the Fermi level are expected to be sufficient for any computation
of physical properties. But the validity of such approximations is seldom ensured.

The equivalence of the length and velocity gauge is broken by band truncation.
Perhaps the simplest way to expose this is through the violation of sum rules: for
our crystal Hamiltonian in Eq. 2.35, the following commutator identity is trivially
verified

[r̂β, [r̂α, Ĥ0]] = −~2

m
δβα (2.76)

but such identities require a sum over an infinite number of bands. If some interme-
diate states are removed, the identity no longer holds. Since Eq. 2.76 is employed in
the manipulations that bring the expressions from the length to the velocity gauge
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form, one can begin to envision how their equivalence is lost when truncating the
Hilbert space. This is the argument given originally in [48, 49].

When is band truncation appropriate? This is difficult to answer due to the
integration over the FBZ, but we can attempt an estimation [57]. Transitions to
higher energy bands can be removed if their contribution to the summation in the
nonlinear conductivity is negligible. If we imagine starting with a given unperturbed
Hamiltonian H0 and deforming it by increasing the energy separation ∆ between
our subspace of interest and its complement (while maintaining the eigenstates un-
changed), then intuitively we expect that at some point the contributions from
outside our subspace will be too far off in energy to be relevant. This should indeed
be true if the perturbation is much smaller than ∆. For the length gauge, a rough
estimation is that this would be the case for eAαEα(ω)/∆ � 1. The condition is
more restrictive and harder to justify in the velocity gauge: (e pαEα(ω)/mω)/∆ '
eAα∆Eα(ω)/ω∆ = eAαEα(ω)/ω � 1, which always fails for sufficiently small
frequencies ω. We conclude then, that if both of the previous conditions are sat-
isfied (e. g. by having very small momentum matrix elements), band truncation
is appropriate for both gauges and their results should remain approximately the
same.

There is, however, no guarantee that this will be the case and in the velocity
gauge the approximation breaks down in the DC limit, when all bands are required
for accurate computation. Indeed, the velocity gauge is known to give wrong an-
swers. Due to the ω−1 factors, the nonlinear conductivity appears to diverge in
the limit ω → 0, even for the case of insulators, where no carriers are present and
the response must physically be zero. It is zero in the length gauge and, by gauge
invariance, so must be in the velocity gauge, with some cancellations making it that
the conductivity only appears to diverge. But once a finite number of bands is con-
sidered and the equivalence between gauges is broken, the velocity gauge approach
is the one that suffers the most, as the delicate cancellations that exist in the DC
limit fail and the results are nonsense. Unphysical infrared divergences plague the
velocity gauge, rendering it inoperable for most realistic calculations.

In truth, one rarely starts with a many band calculation that is later truncated
to an appropriate subspace. More often, an effective Hamiltonian is defined in that
subspace as the starting point and the velocity gauge expressions are then utterly
inappropriate. The reasons for why the minimal coupling Hamiltonian is so much
more sensitive to approximations are discussed further in Chapter 4.

At this point, it should be clear that despite being equivalent, each choice of
gauge has its advantages and disadvantages, as it usual with gauge fixing. To close
this discussion off, it is helpful to summarize them for both the length and velocity
gauge perspectives, as well as consider when each would be preferable.

The length gauge is, currently, the standard for computations of the nonlin-
ear conductivity. The perturbation breaks the translation symmetry of the lattice,
causing transitions between neighbouring k-points in the FBZ through a covariant
derivative. The presence of covariant differentiation is responsible for more compli-
cated expressions for the nonlinear conductivities, with a complexity that increases
dramatically with the order of the perturbation. Still, the formalism is solid and the
results well behaved, with no unphysical infrared divergences. Because of versatility
of these expressions, that work well for finite band models, this approach is to be
favored when pursuing analytical answers using effective Hamiltonians.
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Contrarily, the velocity gauge preserves translation symmetry and no derivatives
are involved, other than those required for the momentum matrix elements. The
energy denominators involve simple poles only and the contributions from each point
in the FBZ are independent. For this reason, it is the approach to use in numerical
computations using tight-binding and other band structure models that provide
bands defined over the entirety of the FBZ. As it stands, spurious divergences plague
the velocity gauge formulation, but these problems are resolved in Chapter 4.

Before ending our discussion of the perturbation theory behind a typical calcu-
lation of the nonlinear optical conductivity, there is, alas, yet one more issue to cope
with. A careful look at the denominators in previous equations raises the question:
what happens when ω = ∆ε ? In other words, what happens under resonance con-
ditions? This is particularly relevant in solids, where, once the optical frequency is
above the gap, the resonance condition will be always met for some points in the
FBZ. The truth is that most of the expressions presented so far are not strictly
physical, nor do they make much mathematical sense, since they always diverge for
resonant frequencies. This can be resolved by extending the frequencies into the
Argand plane.

2.5 Complex frequencies

A careful inspection of the formulas derived in previous sections raises some subtle
issues. For any frequency ω for which a resonance exists, the denominators in
Eq. 2.29 are zero and the conductivity is strictly undefined. This difficulty traces
back to Eq. 1.11 where the existence of a frequency domain nonlinear conductivity
relies on the convergence of the Fourier transform. When ignoring any kind of
relaxation mechanism, the response to an impulse given at an instant of time can
last forever: σ(t = +∞) 6= 0 and the Fourier transform diverges. This problem can
be circumvented by extending the definition in Eq. 1.11 to complex frequencies in
the upper half-plane [3],

σβα1...αn(ω̄1, . . . , ω̄n)

=

∫ +∞

−∞
· · ·
∫ +∞

−∞
σβα1...αn(t1, . . . , tn) eiω̄1t1 . . . eiω̄ntn dt1 . . . dtn

=

∫ +∞

−∞
· · ·
∫ +∞

−∞

(
σβα1...αn(t1, . . . , tn) e−γt1 . . . e−γtn

)
eiω1t1 . . . eiωntn dt1 . . . dtn

(2.77)

with ω = Re(ω̄) and γ = Im(ω̄).
The extension to complex frequencies can be interpreted in two ways. One is

to consider the response function in Eq. 2.77 to be associated not to monochro-
matic waves, but to fields that are adiabatically switched on from the infinite past
E(ω) e−iωt eγt.

A different perspective is to look at complex frequencies as a simple phenomeno-
logical method to introduce relaxation into the system. As stated in Eq. 2.77, the
nonlinear conductivity in the frequency domain σ′(ω1, . . . , ωn) ≡ σ(ω̄1, . . . , ω̄n) is ob-
tained from a Fourier transform of a time domain response function that has the form
σ′(t1, . . . , tn) = σ(t1, . . . , tn) e−γt1 . . . e−γtn and satisfies the condition σ′(ti =∞) = 0.

32



2. PERTURBATION THEORY

This approach to relaxation is most certainly too simplistic to properly account for
all the possible relaxation mechanisms that are observed in experiments, but it pro-
vides a direct and easy way to obtain sensible answers and it has advantages relative
to the traditional approach of adding an phenomenological term to the equation of
motion (Eq. 2.1) [56, 62]. For simplicity, we here take the imaginary part of the fre-
quencies to be a constant γ, but more generally we could have γ = γ(ω). It would
only be required that the function γ(ω) be even, in order for the reality condition7

to be maintained.
When the relaxation-free limit is considered, where the imaginary parts of the

frequencies are taken to zero from above, the integrand in Eq. 2.29 can always be
defined as a distribution by making use of the Sokhotski-Plemelj theorem,

∫
ddk

(2π)d
gk

~ω̄ −∆εk

γ→0+−−−→ −
∫

ddk

(2π)d
gk

~ω −∆εk
− π i

∫
ddk

(2π)d
gk δ(~ω −∆εk) (2.78)

For an atomic system, the distribution will be defined relative to an integral over
the frequencies (Eq. 1.9) and relies on the condition that the spectral width of E(ω)
be much greater than γ. For a crystal, the distribution is already accommodated by
the presence of an integration over the FBZ and no restrictions must be applied to
the optical fields considered. By taking the limit γ → 0+ in the expression8

σβα1...αn(ω̄1, . . . , ω̄n) =

en
∫

ddk

(2π)d

∑
a,b

Jβkba
~ω̄1 + · · ·+ ~ω̄n −∆εkab

[
rαn , . . .

1

~ω̄1 −∆εk
◦ [rα1 , ρ0] . . .

]
kab

(2.79)

the nonlinear conductivity can be defined as a regular function for real frequencies
and vanishing relaxation. It is implicitly assumed in this reasoning that no more
than a single denominator diverges at a given k. Otherwise, a singular nonlinear
conductivity in the relaxation-free limit becomes a possibility9.

In Eq. 2.79, the nonlinear conductivity can be further extended into the lower
half-plane by analytic continuation [27]. In this way, Eq. 2.79 provides a valid
expression over the entire complex frequency plane, even in regions where Eq. 2.77
no longer applies and the response function is, therefore, no longer physical.

7The time-domain conductivity must be real. See Eqs. 6.4 and 6.5.
8Same reasoning applies to the velocity gauge expressions.
9This does happen for certain frequency combinations and these are real physical divergences

of the nonlinear conductivity (e. g. current injection).
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Chapter 3

Two-band models in two
dimensions

In the course of this thesis, there will be much discussion on the properties of the
nonlinear conductivity and the techniques presented to compute it. To validate
these, examples of physical systems with simple yet interesting nonlinear optical
properties are required.

In this chapter, a popular condensed matter system is described that will serve
this purpose: monolayer graphene. It is the first and most studied two-dimensional
crystal (d = 2 in both real and reciprocal space). The lower dimensionality re-
duces the number of tensor components to be evaluated and alleviates the effort
in the numerical integration over the FBZ. Hexagonal boron nitride crystals are
also considered by adding a mass term to the graphene Hamiltonian, opening a gap
and breaking the inversion symmetry of the graphene lattice. In introducing these
systems, general modelling strategies are delineated, together with the process of
retrieving the relevant information from them.

As far as the nonlinear optical properties are concerned, within the current for-
malism (Chapter 2), the specification of the band structure εka and the non-abelian
Berry connection Akab is all that matters and equates to defining the electronic sys-
tem under study. In principle, these could be provided by any of the standard band
structure theories1. In this text, we steer wide from sophisticated density functional
theory calculations, which could perhaps provide more accurate results, but that are
not necessary for our intent of studying response functions of systems of independent
electrons. For us, intuitive, straightforward tight binding models will do the job.

3.1 The connection with tight binding

In a tight binding description [58], the Hilbert space is defined through a Wannier
basis {ϕλ(r−Rn)}, with λ as the label that identifies the orbital inside the unit cell
and Rn as a vector from the Bravais lattice. There is at least one state per atom in
the crystal (an infinite number in the thermodynamic limit) and the wavefunction
ϕλ(r −Rn) is assumed to be well-localized around the position Rn + δλ, where δλ

1It is perhaps worth mentioning that not only the band structure, but also some information
on the stationary states must be provided by the model, so that the Berry connection may be
calculated.
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3. TWO-BAND MODELS IN TWO DIMENSIONS

represents the position of the λ orbital relative to the unit cell center. This basis is
orthogonal by construction,∫

d3rϕ∗λ(r−Rm)ϕλ′(r−Rn) = δλλ′ δRn,Rm (3.1)

The tight binding Hamiltonian is derived by specifying the coupling between
closely spaced Wannier orbitals in the crystal, as well as any relevant on-site energies.
Often, nearest neighbour or next-to-nearest neighbour hoppings are sufficient to
capture the physics.

Ĥ0 =
∑
λ,λ′

∑
Rn

∑
Rm

|ϕλ(r−Rn)〉 tλλ′(Rn,Rm) 〈ϕλ′(r−Rm)| (3.2)

where tλλ′ are the tight binding parameters and due to the translation symmetry of
the lattice,

tλλ′(Rn,Rm) = tλλ′(Rn −Rm) (3.3)

A second basis, which we shall name the sublattice Bloch basis, can be con-
structed by Fourier transform,

Ψkλ(r) =
√
vc
∑
Rn

eik·(Rn+δλ)ϕλ(r−Rn) (3.4)

with k in the FBZ. It is also orthogonal,

∫
d3r Ψ∗k′λ′(r) Ψkλ(r)

= vc
∑

Rn,Rm

eik·(Rn+δλ)e−ik
′·(Rm+δλ′ )

∫
d3rϕ∗λ′(r−Rm)ϕλ(r−Rn)

= vc
∑

Rn,Rm

eik·(Rn+δλ) e−ik
′·(Rm+δλ′ ) δλλ′ δRn,Rm

= vc
∑
Rn

ei(k−k
′)·Rn δλλ′ e

i(k−k′)·δλ

= δλλ′ (2π)d δ(k− k′) (3.5)

Rewriting the Hamiltonian in the sublattice Bloch basis will show k to be a good
quantum number,

Ĥ0 =

∫
ddk

(2π)d

∑
λ,λ′

|Ψkλ〉 (H0)kλλ′ 〈Ψkλ′| (3.6)

with

(H0)kλλ′ =
∑
Rn

tλλ′(Rn) e−ik·Rn e−ik·(δλ−δλ′ ) (3.7)

The basis functions in Eq. 3.4 are indeed Bloch functions, with the form of
Eq. 2.36, but are not, usually, the eigenstates of the tight binding Hamiltonian. The
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3. TWO-BAND MODELS IN TWO DIMENSIONS

Hamiltonian can, however, be diagonalized and the stationary states represented in
the sublattice Bloch basis,

ψka(r) =
∑
λ

ckaλ Ψkλ(r) (3.8)

The energy eigenstates must also form an orthogonal basis,

∫
d3r ψ∗k′a(r)ψkb(r) =

∑
λλ′

c∗k′aλ′ckbλ

∫
d3r Ψ∗k′λ′(r)Ψkλ(r)

= (2π)d δ(k− k′)
∑
λ

c∗kaλckbλ

= (2π)d δ(k− k′) δab (3.9)

Orthogonality of ψka(r) translates into the following condition on the coefficients
of Eq. 3.8,

∑
λ

c∗kaλckbλ = δab (3.10)

which just means that the representation of the energy eigenstates ψka(r) in the
sublattice Bloch basis is given by orthogonal vectors.

Having all the proper definitions and normalization issues settled, we can pro-
ceed to our quantities of interest. The eigenvalues associated to ψka give the band
structure,

∑
λ′

(H0)kλλ′ ckaλ′ = εka ckaλ (3.11)

and from the energy eigenstates, we calculate the non-abelian Berry connection,

Aαkab = i 〈uka|∂αukb〉 =
i

vc

∫
uc

d3ru∗ka(r) (∂αukb(r))

=
i

vc

∫
uc

d3r eik·r ψ∗ka(r)
(
∂α
(
e−ik·r ψkb(r)

))
=

i

vc

∑
λ,λ′

∫
uc

d3r eik·rc∗kaλ Ψ∗kλ(r)
(
∂α
(
e−ik·rckbλ′ Ψkλ′(r)

))
= i
∑
λ,λ′

∑
Rn,Rm

∫
uc

d3r eik·(r−Rn−δλ)c∗kaλ ϕ
∗
λ(r−Rn)

×
(
∂α
(
e−ik·(r−Rm−δλ′ )ckbλ′ ϕλ′(r−Rm)

))
(3.12)

The derivative will act on two factors: the coefficient ckbλ′ and the phase factor.
The first term,
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i
∑
λ,λ′

c∗kaλ(∂
αckbλ′)

∑
Rn,Rm

∫
uc

d3rϕ∗λ(r−Rn)ϕλ(r−Rm)eik·(Rm−Rn)eik·(δλ′−δλ)

=i
∑
λ,λ′

c∗kaλ(∂
αckbλ′)

∑
Rn,R

′
m

∫
uc

d3rϕ∗λ(r−Rn)ϕλ′(r−R′m −Rn)eik·R
′
m eik·(δλ′−δλ)

=i
∑
λ,λ′

c∗kaλ(∂
αckbλ′)

∑
R′m

eik·R
′
m eik·(δλ′−δλ)

∫
d3rϕ∗λ(r)ϕλ′(r−R′m)

=i
∑
λ,λ′

c∗kaλ(∂
αckbλ′)

∑
R′m

eik·R
′
m δλλ′ δR′m,0

=i
∑
λ,λ′

c∗kaλ(∂
αckbλ′) δλλ′

=i
∑
λ

c∗kaλ(∂
αckbλ) (3.13)

The second term,

∑
λ,λ′

c∗kaλckbλ′
∑

Rn,Rm

∫
uc

d3rϕ∗λ(r−Rn) (rα −Rα
n − δαλ′)ϕλ′(r−Rm) eik·(Rm−Rn)eik·(δλ′−δλ)

=
∑
λ,λ′

c∗kaλckbλ′
∑

Rn,R
′
m

∫
uc

d3rϕ∗λ(r−Rn)
(
rα −Rα

n −R
′α
m − δαλ′

)
ϕλ′(r−R′m −Rn) eik·R

′
m eik·(δλ′−δλ)

=
∑
λ,λ′

c∗kaλckbλ′
∑
R′m

eik·R
′
m eik·(δλ′−δλ)

∫
d3rϕ∗λ(r)

(
rα −R′αm − δαλ′

)
ϕλ′(r−R′m)

=
∑
λ,λ′

c∗kaλckbλ′
∑
R′m

eik·R
′
m eik·(δλ′−δλ) Sαλλ′(R

′
m)

=
∑
λ,λ′

c∗kaλckbλ′ S
α
kλλ′ (3.14)

where the last two steps were mere definitions:

Sλλ′(Rn) ≡
∫
d3rϕ∗λ(r) (r−Rn − δλ′)ϕλ′(r−Rn) (3.15)

Skλλ′ ≡
∑
Rn

Sλλ′(Rn) eik·Rn eik·(δλ′−δλ) (3.16)

Assembling the two terms, we have the general form of the Berry connection,

Aαkab = i
∑
λ

c∗kaλ(∂
αckbλ) +

∑
λ,λ′

c∗kaλ ckbλ′ S
α
kλλ′ (3.17)

This is a more general expression than the one typically employed in the litera-
ture. We can take the limit were the Wannier states are not only orthogonal, but
so localized that no overlap exists between them. In that case2,

2Note that this approximation becomes harder to justify for models with more than one orbital
per atom. For such systems, there is surely overlap between orbitals and the approximation equates
to assuming that, for whatever reason, the following integral is negligible:

∫
d3rϕ∗λ(r) rϕλ′(r) ≈ 0,

with λ 6= λ′.
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3. TWO-BAND MODELS IN TWO DIMENSIONS

Sλλ′(Rn) = δλλ′ δRn,0 Sλλ′(0) (3.18)

where

Sλλ(0) =

(∫
d3r |ϕλ(r)|2 r

)
− δλ = 0 (3.19)

since δλ stands for the average position of the orbital λ in the unit cell. In the limit
of no overlap, the Berry connection simplifies to

Aαkab = i
∑
λ

c∗kaλ (∂αckbλ) (3.20)

This is the formula we shall use to compute A from tight binding models.
It is worth pointing out that the notion of a Berry connection implies the exis-

tence of an Hamiltonian defined over a space of parameters, over which A could be
integrated to give the Berry phase [59]. In band structure theories, the parameter
is the Bloch vector k and the parameter space is the First Brillouin Zone. The
parametric Hamiltonian Ĥ0(k) is defined3 through the matrix elements in Eq. 3.7.
Its eigenvalues provide the band structure and the eigenstates, through Eq. 3.20,
permit us to compute the non-abelian Berry connection.

Ĥ0(k) can have any dimension, depending on the number of orbitals per unit
cell. For simplicity, we will focus on systems with a single orbital per atom and two
atoms per unit cell. That is to say, on two-band models.

3.2 Berryology of the two-band model

Any two-band model can be written as a combination of Pauli matrices,

Ĥ0(k) = d0(k) + σ̂ · d(k) (3.21)

with σ̂ = (σ̂x, σ̂y, σ̂z), for some functions d(k) = (dx(k), dy(k), dz(k)).
This Hamiltonian could be derived from tight binding as described before or

from a low energy effective theory, valid only in a restricted region of the FBZ, or
by any other means by which a two-band description of the electron dynamics could
be constructed. In this subsection, we derive the band structure and the Berry
connection for the generic two-band model in Eq 3.21.

The study of the two-band model is of special importance. The two-band model is
the condensed matter analogue of the two-level atom, providing as simple a model as
possible, making analytical calculations feasible and allowing the concepts to emerge
clearly, while still being complex enough to merit attention and to have a wide range
of applicability, describing any situation where incident photon frequencies connect
a single pair of bands around the Fermi surface. A still simpler model is the single
band model, which is appropriate to describe metallic systems at low frequencies,
but permits only intraband transitions and is a bit too simple for our goals here.
The two-band model contains combinations of intra- and interband transitions that
make the dynamics of the electron under optical excitation nontrivial and introduces
most of the key concepts relevant for more complicated multiband systems.

3See Section 4.5 for further details.
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A particular Hamiltonian can be specified through the d0 and d functions. The
first term d0(k) in Eq. 3.21 merely shifts the energies (in a k-dependent fashion).
Likewise, the modulus of d(k) determines the band structure, but has no impact
on the nature of the eigenstates4. The stationary states, and therefore the Berry
connection, are a function only of the direction of d(k). All geometrical properties
of the system fall on this versor field d̂(k), that can be seen as a map between the
FBZ and the 2-sphere S2,

d0(k) 1 +

(
dz(k) dx(k)− i dy(k)

dx(k) + i dy(k) −dz(k)

)
(3.22)

where

d = (dx, dy, dz) = d (cos θ sinφ, sin θ sinφ, cosφ) (3.23)

with the k dependence henceforth left implicit.
The band structure is given by

εkc = d0 + |d| εkv = d0 − |d| (3.24)

with the subscripts c and v standing for conduction and valence bands, respectively,
while the eigenstates take the form

ckcλ →
(

cos (φ/2)
sin (φ/2)eiθ

)
ckvλ →

(
sin (φ/2)

− cos (φ/2)eiθ

)
(3.25)

Notice that, for this particular choice of gauge, the states in the conduction
band are uniquely defined everywhere5 on the 2-sphere with the exception of the
south pole (φ = π), while in the valence band the states are only multivalued at the
north pole (φ = 0). The same will be true for the abelian Berry connection of the
respective bands (the diagonal matrix elements of Akab).

The non-abelian Berry connection is computed from the states in Eqs. 3.25 with
Eq. 3.20,

Akab =

(
−∇θ sin2 (φ/2) 1

2
∇θ sinφ+ i

2
∇φ

1
2
∇θ sinφ− i

2
∇φ −∇θ cos2 (φ/2)

)
ab

(3.26)

The previous results can be rephrased without reference to the spherical coordi-
nates, by writing everything explicitly in terms of the d field. Inverting Eq. 3.23, it
is straightforward to write the angles and their derivatives as a function of d,

θ = arctan

(
dy
dx

)
φ = arccos

(
dz
d

)
(3.27)

∇θ =
dx∇dy − dy∇dx

d2
x + d2

y

∇φ =
dz∇d− d∇dz
d
√
d2
x + d2

y

(3.28)

sinφ =

√
d2
x + d2

y

d
cos (φ/2) =

√
d+ dz

2d
sin (φ/2) =

√
d− dz

2d
(3.29)

4Aside from the possibility of degeneracy when |d| = 0.
5The statement “the states are uniquely defined” refers to, of course, the kets representing the

physical states and the phase factors they carry.
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Replacing back in Eqs. 3.25 and 3.26, we rewrite the eigenstates

ckcλ →
1√
2d

(√
d+ dz
dx+i dy√
d+dz

)
ckvλ →

1√
2d

(√
d− dz
−dx+i dy√

d−dz

)
(3.30)

and the Berry connection

Akab =

 −dx∇dy−dy ∇dx
d2x+d2y

(
d−dz

2d

) (dx∇dy−dy ∇dx)+i (dz ∇d−d∇dz)

2 d
√
d2x+d2y

(dx∇dy−dy ∇dx)−i (dz ∇d−d∇dz)

2 d
√
d2x+d2y

−dx∇dy−dy ∇dx
d2x+d2y

(
d+dz

2d

)

ab

(3.31)

entirely in terms of the functions dx, dy and dz.

As mentioned before, it is not possible to define the states uniquely over the 2-
sphere. Hence, there may be regions of the FBZ where the Berry connection is left
undefined for a given choice of gauge. This is because, as addressed in Section 2.3,
the Berry connection is not invariant under a U(1) gauge transformation on the
Bloch states.

Despite this, physical quantities like the nonlinear conductivity cannot depend
on the particular choice of phase in the Bloch functions and must be built of gauge
invariant objects. Notably, the Berry curvature is known to be invariant under such
gauge transformations. It is defined by

Fαβa ≡ ∂αAβkaa − ∂
βAαkaa (3.32)

It can be obtained from the abelian Berry connection Akaa in Eq. 3.26. An
often simpler approach, however, follows from rewriting the curvature in terms of
the off-diagonal matrix elements of A,

Fαβa = ∂αAβkaa − ∂
βAαkaa = i

[
Aα,Aβ

]
kaa

= i
∑
b

(
AαkabA

β
kba −A

β
kabA

α
kba

)
(3.33)

where the commutation property of position operators (covariant derivatives), dis-
cussed in Appendix C, was used. Eq. 3.33 is closely related to the well-known
rewriting of the Berry curvature in terms of derivatives of the Hamiltonian and en-
ergy differences [59]. The off-diagonal matrix elements also have the advantage that
under a gauge transformation they only pick up a phase,

Akab → Akab e
i(φka−φkb) (3.34)

In three dimensions, the curvature tensor can be mapped into a vector field Ω,

Ωα
a ≡

1

2
εαβγFβγa =

i

2

∑
b

εαβγ
(
AβkabA

γ
kba −A

γ
kabA

β
kba

)
= i
∑
b

(Akab×Akba)
α

(3.35)
which is more easily visualized.

From Eqs. 3.26 and 3.33,
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Fαβc = i

((
∂αθ

2
sinφ+ i

∂αφ

2

)(
∂βθ

2
sinφ− i ∂

βφ

2

)
− (α↔ β)

)
=

1

2

(
∂αθ ∂βφ− ∂βθ ∂αφ

)
sinφ (3.36)

Similarly for the valence band,

Fαβv = −1

2

(
∂αθ ∂βφ− ∂βθ ∂αφ

)
sinφ (3.37)

For the curvature vector field, it follows from Eqs. 3.26 and 3.35

Ωc =
1

2
(∇θ×∇φ) sinφ (3.38)

This is the general form of the Berry curvature field for a two band model,
written in spherical coordinates. Just as it was the case for the Berry connection,
the curvature tensor can be expressed directly in terms of d̂(k),

Fαβc = −Fαβv = − 1

2 d3
d ·
(
∂αd× ∂βd

)
(3.39)

Finally, replacing Eqs. 3.28 and 3.29 in Eq. 3.38,

Ωc = − 1

2d3
((∇dx×∇dy) dz + (∇dy ×∇dz) dx + (∇dz ×∇dx) dy) (3.40)

Comparing with Eq. 3.38, we note that the right hand side of Eqs. 3.39 and 3.40
must still depend only on the direction of the d field6, even if in practice it might
be easier to use to non-normalized vectors in the calculations.

In studies of topology, the curvature is the central object of interest. In nonlinear
optical response, many other gauge invariant objects exist that must be considered.
A particularly simple example is the product AkcvAkvc, with more complicated
quantities emerging with increasing order in perturbation theory. This will become
clear in Chapter 5, when the nonlinear optical response of the general two-band
model is detailed up to third order.

For the remainder of this chapter, the formulas in Eqs. 3.24, 3.25 and 3.26 are
applied to specific examples.

3.3 Monolayer graphene

Two dimensional crystals are today on the frontier of condensed matter physics
research [63]. The breakthrough that launched this field came in 2004, when the
Manchester group isolated and studied mono- and few-layer graphene [64]. The
astonishing electronic quality demonstrated by these materials immediately caught
the attention of the community.

6It can also be proved by noticing that the right hand side of Eq. 3.39 has the form of a
determinant.
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Graphene is a two dimensional allotrope of carbon. It consist of carbon atoms
displayed in a honeycomb pattern and, in a sense, forms the basis for all other
allotropes of carbon [65]. Electrons moving in the honeycomb lattice behave as
massless Dirac fermions, moving as if they were in the ultrarelativistic limit, but
with a two orders of magnitude lower effective speed of light [65]. This unusual
dispersion law of electrons in graphene is at the heart of most graphene physics and
of the variety of amazing new properties it presents. Among these are the ballistic
electronic transport [64], a new form of quantum hall effect and the possibility to
observe it at room temperature [66], record high thermal conductivity [67], . . .

Phenomena from high-energy physics are seen in table-top experiments in graphene
and quantum phenomena typical of low temperature behaviour are observed in
graphene at room temperature [65]. Beyond basic physics, graphene is an extreme
case of surface science (its all surface!) and its chemistry is of considerable inter-
est [68]. The carrier concentration in graphene can be controlled by applying an
external voltage, adding tunability to the unique advantages of this system. Ap-
plications of the various properties of graphene are a subject of intensive research
and of considerable interest from industry, leading to rapid progress in production
methods of graphene sheets [69].

The optical properties of graphene have also attracted great interest. In the
absence of doping and near the Dirac point, the linear conductivity is frequency
independent, which causes some interesting features such as a transparency in the
visible defined by universal constants [70] and a finite conductivity in the limit of
no charge carriers [71]. The literature on the nonlinear optical response of graphene
is extensive and only some of the more relevant works are mentioned in this thesis.
Mikhailov [72] proposed theoretically that the linear dispersion in graphene should
lead to considerable optical nonlinearities. The first measurement of the nonlinear
response was made by Hendry et al [73]. Aside from the early Boltzmann equation
calculations [72, 74, 75], analytical and numerical computations of the third order
conductivity of graphene have been performed [76, 77], using a choice of gauge that
stands somewhere between the described length and velocity gauges7. Disagreements
are found with experimental results, but these differ several order of magnitude
between themselves8 [76]. This is perhaps partly due to the strong dispersion of the
response and a lack of knowledge of the Fermi level (carrier concentration) in most
of these experimental studies. A notable exception is the work of Jiang et al [78],
where the sample was properly characterized and the nonlinear optical response
measured for a wide range of doping levels, finding good agreement with theoretical
predictions [76–78].

In this section, the electronic properties of graphene will be discussed at a basic
level, with the intent of obtaining the band structure εka and the Berry connection
Akab required for calculations of the nonlinear conductivity.

7This hybrid gauge choice is obtained by performing an unitary transformation U(t) =

exp(−i e r̂αdiag Aα(t)/~) = exp(e (∂̂α−i Âαdiag)Aα(t)/~) on the length gauge Hamiltonian (Eq. 1.13)
that involves the abelian Berry connection Adiag (it excludes the off-diagonal matrix elements of
the position operator).

8See supplementary material of [78].
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Figure 3.1: In the left, the honeycomb lattice of graphene. Identified in the figure
are the primitive vectors of the Bravais lattice and the two sites, A and B, linked
by the vectors δi; in the right, the First Brillouin Zone (FBZ) of graphene with the
primitive vectors of the reciprocal lattice. The vertices of the FBZ are the Dirac
points and all vertices can be obtained from only two by translations of the reciprocal
lattice.

3.3.1 Honeycomb lattice

Although the carbon atoms are arranged in a honeycomb pattern in graphene, the
Bravais lattice, which describes the translation symmetry of the crystal, is a trian-
gular lattice. This can be seen by noting that there are two different kinds of sites
in a honeycomb lattice, A and B sites, as depicted in Fig. 3.1. A translation from
A to B is not a symmetry, since it does not leave the lattice invariant. The Bravais
lattice has then two atoms per unit cell and is generated by the set of translations
n a1 +m a2 for any integers n and m and the primitive vectors

a1 =

(
1

2
,

√
3

2

)
a a2 =

(
−1

2
,

√
3

2

)
a (3.41)

where a =
√

3a0 is the lattice parameter and a0 is the nearest neighbour distance
(in graphene: a0 = 1.42 Å).

The reciprocal lattice can be shown to be also a triangular lattice, with primitive
vectors

b1 =
4π√
3a

(√
3

2
,
1

2

)
b2 =

4π√
3a

(
−
√

3

2
,
1

2

)
(3.42)

The First Brillouin Zone (FBZ) will be an hexagon (Fig. 3.1), with vertices at

K = −K
′
=

b1 − b2

3
=

4π

3a
(1, 0) (3.43)

The other vertices of the hexagon can be obtained from K and K
′

with a trans-
lation by a reciprocal lattice element, and therefore correspond to the same Bloch
states. These two states are referred to as Dirac points, for reasons to be made clear
(Section 3.3.3).
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The set of vectors linking an A-site atom to its neighbours, depicted in Fig. 3.1,
is

δ1 =

(√
3

2
,−1

2

)
a0 δ2 =

(
−
√

3

2
,−1

2

)
a0 δ3 = (0, 1) a0 (3.44)

3.3.2 Tight binding model

A simple nearest neighbour tight binding model describes the basic properties of
electrons in graphene. To construct the one-particle Hilbert space, one state (per
spin) is assigned to each carbon atom. The basis states can then be written as

|ϕA(r−Rn)〉 = |ϕ(r−Rn)〉 |ϕB(r−Rn)〉 = |ϕ(r−Rn − δ3)〉 (3.45)

where we centered the origin of the unit cell in the A site, so that δA = 0 and δB =
δ3. These are the δλ vectors introduced in Section 3.1, with the sublattice/orbital
index taking on two possible values: λ = A,B.

There is, of course, more than one occupied orbital in a carbon atom. A more
involved treatment shows that the four valence orbitals (per spin) combine to give
three hybridized sp2 orbitals in the graphene plane and one out-of-the-plane π or-
bital. The sp2 orbitals form covalent bonds that are responsible for the strength and
stability of graphene [65, 79]. The π states are responsible for the electronic trans-
port in graphene [65, 79]. From the point of view of band theory, the sp2 orbitals
form deep valence bands, which are completely filled and don’t contribute to elec-
tronic transport. We can then just consider the π states, which can be transformed
into orthogonal Wannier states, as the ones in Eq. 3.45.

To keep it simple, only nearest neighbour interactions will be considered. Each
Wannier state couples to the three neighbouring ones, giving rise to the following
Hamiltonian,

Ĥ0 = t
∑
Rn

|ϕA(r−Rn)〉 (〈ϕB(r−Rn)|+ 〈ϕB(r−Rn − a1)|+ 〈ϕB(r−Rn − a2)|) + h.c.

(3.46)

where t is the tight binding parameter.
A Fourier transform will diagonalize this Hamiltonian. Following Section 3.1,

the sublattice Bloch functions are introduced

ΨkA(r) =
√
vc
∑
Rn

eik·RnϕA(r−Rn) ΨkB(r) =
√
vc
∑
Rn

eik·(Rn+δ3)ϕB(r−Rn)

(3.47)
and the Hamiltonian is rewritten in this basis. According to Eqs. 3.6 and 3.7,

Ĥ0 = t

∫
ddk

(2π)d
Φ(k) |ΨkA〉 〈ΨkB|+ h.c. (3.48)

with

44



3. TWO-BAND MODELS IN TWO DIMENSIONS

ϵv

ϵc

-0.10 -0.05 0.00 0.05 0.10

-0.2

-0.1

0.0

0.1

0.2

q (Å-1)

ϵ
/

t

Figure 3.2: Band structure of monolayer graphene (π bands only). Zoomed in at
the vertices of the FBZ, are the Dirac cones. In the left, the entire band structure
over the FBZ (adapted from [65]). In the right, the linear dispersion near the Dirac
point.

Φ(k) = |Φ(k)|e−iθ = eik·δ3
(
1 + e−ik·a1 + e−ik·a2

)
= eik·δ1 + eik·δ2 + eik·δ3 (3.49)

We are then left with a two-dimensional problem,

H0 = t

(
0 Φ(k)

Φ∗(k) 0

)
(3.50)

This is our two-band model. Notice that the two states per k resulted from the
existence of two atoms per unit cell. Comparing with Eq. 3.22, we have for graphene
d0 = dz = 0 and

dx = t Re{Φ(k)} = +t cos (k · δ1) + t cos (k · δ2) + t cos (k · δ3) (3.51)

dy = −t Im{Φ(k)} = −t sin (k · δ1)− t sin (k · δ2)− t sin (k · δ3) (3.52)

In spherical coordinates (Eq. 3.23),

φ =
π

2
θ = arctan

(
dy
dx

)
(3.53)

Due to the absence of a mass term [80] (d3 = 0), the angle φ is locked at π/2
and the versor field d̂ lies in the xy-plane.

The eigenstates of Eq. 3.50 are

1√
2

(
1

+eiθ

)
1√
2

(
1
−eiθ

)
(3.54)

with eigenvalues

εkc = +t|Φ(k)| εkv = −t|Φ(k)| (3.55)

The stationary states are a combination of Bloch states associated to A and B
sites (with the same Bloch vector k), where the electron has an equal probability of
being found in the sublattice A or B.

The non-abelian Berry connection of monolayer graphene is derived from the
eigenstates (Eq. 3.26),
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Aαkcc = Aαkvv = −1

2
∂αθ Aαkcv = Aαkvc =

1

2
∂αθ (3.56)

The dispersion relation is represented in Fig. 3.2. In undoped graphene, there is
an electron per atom, which, taking into account the spin degeneracy, leads to the
lower band being completely filled at zero temperature. The Fermi level is then at
zero energy:

Φ(k) = 0 (3.57)

The solutions for this last equation are k = K or k = K
′
. These are the Dirac

points. We will see why.

3.3.3 The Dirac Hamiltonian

The Dirac points constitute the Fermi surface of neutral graphene. If we examine the
dispersion relation around these points, we find a rather unusual conical dispersion
law, depicted in Fig. 3.2. Since the energy scales linearly with momentum, we can
already infer that the excitations will be massless.

To analyze these excitations more quantitatively, let us expand Φ(k) around the
Dirac point K,

Φ(K + q) ' Φ(K) + q · (∇Φ(k))k=K

= iq · (eiK·δ1 δ1 + eiK·δ2 δ2 + eiK·δ3 δ3)

= iq · (ei
2π
3 δ1 + e−i

2π
3 δ2 + δ3)

= iaq ·
(
i sin

(
2π

3

)
,

1√
3

(
− cos

(
2π

3

)
+ 1

))
= −
√

3a

2
(qx − iqy) (3.58)

and build a low energy effective Hamiltonian

H0(q) = −
√

3at

2

(
0 qx − i qy

qx + i qy 0

)
(3.59)

which can be succinctly expressed as a function of the momentum (relative to the
Dirac point) p = ~q,

H0 = vF (σx px + σy py) (3.60)

where vF = −3a0t/2~ is the Fermi velocity. Introducing the parameters for graphene
(t ≈ −3 eV ), we find vF ≈ 106 ms−1.

Equation 3.60 is the Dirac equation for massless fermions. Since deviations from
this behaviour are at energy scales of order 1 eV, we can say that electrons in
graphene indeed act as massless Dirac fermions [66], when dealing with low energy
excitations.

However, there is one relevant distinction from the analogous high-energy physics:
σ is not the electron spin. It is an analogous variable, called pseudospin, where
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σz = +1 for an electron in the sublattice A and σz = −1 for an electron in sublat-
tice B. For the energy eigenstates, < σz >= 1/2.

In this low energy effective theory, we have d(q) = ~vF q. The dispersion relation
is linear and gapless,

εqc = −εqv = ~vF |q| (3.61)

The eigenstates still have the form in Eq. 3.54, but now the angle θ obeys

θ = arctan(qy/qx) (3.62)

which implies that the pseudospin and momentum are locked in the same or opposite
directions, for conduction and valence states, respectively.

The non-abelian Berry connection is now

Aqcv = Aqvc = −Aqcc = −Aqvv (3.63)

Aqcv =
1

2
∇θ =

1

2 q2
(−qy, qx) =

1

2 q
(− sin θ, cos θ) (3.64)

Finally, the Berry curvature (Eq. 3.33) is zero everywhere, except for q = 0.
This is actually a consequence of graphene having both inversion and time-reversal
symmetry (Section 6.6). At the Dirac points, the system is degenerate and the
curvature is undefined.

We can get similar results for the other Dirac point (valley) K
′

= −K, simply
by reflecting about the ky axis:

H0 = vF (−σx px + σy py) (3.65)

3.4 Gapped graphene or hBN

An important aspect of the previous two-band model to have in mind is that it
respects inversion symmetry and therefore all even orders of the nonlinear conduc-
tivity will be automatically zero. The honeycomb lattice is not a Bravais lattice,
but will be invariant under spatial inversion about the midpoint between an A and
an B-site (of the same unit cell), as long as the atoms that occupy these sites are
equivalent.

To enable a future study of the second order conductivity, an additional term
is added to the previous graphene Hamiltonian that breaks the inversion symmetry
of the crystal lattice and opens a gap in the density of states. Theoretically, this
is done simply by considering the A and B atoms to have distinct on-site energies.
Experimentally, gapped graphene can be achieved by means of a substrate induced-
gap [81]. In such cases, the gap is usually small (∆ ≈ 0.1 eV ).

Inversion symmetry can also be broken by placing two different atoms in the
A and B sublattices. This is the case of hexagonal boron nitride, a wide gap two-
dimensional insulator. Hexagonal boron nitride has attracted much attention as an
excellent substrate for monolayer graphene, enhancing the electron mobilities by an
order of magnitude [82], as well as for its role in more complex devices where it is
combined with graphene in the so-called van der Walls heterostructures [63].
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Figure 3.3: In the left, the crystal structure of hexagonal boron nitride. Boron
atoms (blue) occupy the A-sites and nitrogen atoms (yellow) take the B-sites. In
the right, the dispersion near the Dirac point for a gap ∆ = 0.1 t.

3.4.1 Tight binding model

The tight binding model is similar to that of graphene, with identical hoppings, but
different energies for A- and B-site orbitals (see Fig. 3.3),

Ĥ0 =t
∑
Rn

|ϕA(r−Rn)〉 (〈ϕB(r−Rn)|+ 〈ϕB(r−Rn − a1)|+ 〈ϕB(r−Rn − a2)|) + h.c.

+
∆

2

∑
Rn

|ϕA(r−Rn)〉 〈ϕA(r−Rn)| − ∆

2

∑
Rn

|ϕB(r−Rn)〉 〈ϕB(r−Rn)| (3.66)

Following the same procedure as before, the Hamiltonian is represented in the
sublattice Bloch basis,

H0 =

(
∆/2 tΦ(k)
tΦ∗(k) −∆/2

)
(3.67)

We still have dx = t Re{Φ(k)} and dy = −t Im{Φ(k)}, but the added mass term
dz = ∆/2 implies that d is no longer confined to a plane,

φ = arccos

(
∆√

4 t2 |Φ(k)|2 + ∆2

)
θ = arctan

(
dy
dx

)
(3.68)

There are also no longer any crossing points in the band structure,

εkc = +
√
t2 |Φ(k)|2 + (∆/2)2 εkv = −

√
t2 |Φ(k)|2 + (∆/2)2 (3.69)

At the Dirac points, εK = εK′ = ±∆/2. The mass term lifted the degeneracy
and introduced a gap of size ∆. This is represented in Fig. 3.3.

The energy eigenstates,(
cos (φ/2)

sin (φ/2)eiθ

) (
sin (φ/2)

− cos (φ/2)eiθ

)
(3.70)
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and the Berry connection can be found with the use of previously presented formulas
(Eqs. 3.25 and 3.26).

If the Fermi surface lies in the gap or near the top (bottom) of the valence
(conduction) band and for excitations of not too high an energy, the optical response
will, at least in part, be determined by the electronic properties near the Dirac
points. Once again, a low energy effective theory can be formulated around these
points.

3.4.2 Low energy effective Hamiltonian

The expansion k ≈ K + q is exactly the same as before and results in the following
Hamiltonian,

H0(q) =

(
∆/2 ~vF (qx − i qy)

~vF (qx + i qy) −∆/2

)
(3.71)

which can be more concisely stated

H0 = vF (σx px + σy py) +
∆

2
σz (3.72)

with p = ~q. Similar results can be derived for the other valley at K′.
For this effective Hamiltonian, d(q) = (~vF qx, ~vF qy,∆/2). The eigenvalues

give the band structure,

εqc = +
√

(~q)2 v2
F + (∆/2)2 εqv = −

√
(~q)2 v2

F + (∆/2)2 (3.73)

This is the dispersion relation for massive relativistic particles, with the Fermi
velocity vF again replacing the speed of light and a mass m = ∆/(2v2

F ).
The stationary states and the Berry connection will depend only on the direction

of the d field. The notation can therefore be abbreviated by factoring ~vF , d(q) =
~vF (qx, qy,∆/2~vF ), and defining ∆′ ≡ ∆/~ vF .

The energy eigenstates are the same as in Eq. 3.70, but now the angles obey

φ = arccos

(
∆′√

4 q2 + ∆′2

)
θ = arctan

(
qy
qx

)
(3.74)

The pseudospin is off the xy plane for ∆ 6= 0 and hence misaligned with the
direction of the in-plane momentum.

From Eqs. 3.74, the abelian Berry connection is derived (Eq. 3.26),

Axqcc =

(
1− ∆′√

4 q2 + ∆′2

)
sin θ

2 q
Ayqcc = −

(
1− ∆′√

4 q2 + ∆′2

)
cos θ

2 q
(3.75)

Axqvv =

(
1 +

∆′√
4 q2 + ∆′2

)
sin θ

2 q
Ayqvv = −

(
1 +

∆′√
4 q2 + ∆′2

)
cos θ

2 q
(3.76)

The non-abelian Berry connection contains additional off-diagonal matrix ele-
ments that, since the matrix is Hermitian A∗qvc = Aqcv, are specified completely
by
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Axqcv = − sin θ

2
√
q2 + (∆′/2)2

+
i∆′ cos θ

4 (q2 + (∆′/2)2)
(3.77)

Ayqcv = +
cos θ

2
√
q2 + (∆′/2)2

+
i∆′ sin θ

4 (q2 + (∆′/2)2)
(3.78)

Since the mass term breaks inversion symmetry, the Berry curvature no longer
vanishes. In vector form, it points out of the plane

Ωz
c = Fxyc = − ∆′

4 (q2 + (∆′/2)2)3/2
(3.79)

With the degeneracy removed, the curvature is now also defined at the origin,
q = 0, where it reaches its maximum value.

The Berry curvature is relevant to linear response theory due to the appearance
of a term in the optical conductivity, the so-called anomalous Hall conductivity,
involving the flow of curvature over the entire FBZ (Chern number). This will
be discussed later, in Chapter 5. Sadly, when integrated over the entire FBZ, the
curvature flow returns zero for hexagonal boron nitride and gapped graphene. This is
because, while broken inversion symmetry allows a non-zero curvature, the curvature
is odd in k as a consequence of time-reversal symmetry (Section 6.6).
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Chapter 4

Minimal coupling method

In this chapter, the difficulties inherent to perturbative calculations in the velocity
gauge are addressed. Following closely the treatment in [56], it is shown how cal-
culations of nonlinear conductivities in the independent particle approximation can
be done to any order and for any finite band model. The advantages of adopting
a minimal coupling Hamiltonian are described. As an illustration, the nonlinear
optical conductivity of monolayer graphene is calculated numerically.

4.1 Minimal coupling in a finite band model

As it currently stands, the minimal coupling, or velocity gauge, Hamiltonian is of
little use in calculations of the nonlinear conductivity. For any realistic calculation,
a finite number of bands is employed and the expressions derived from perturbation
theory (Eqs. 2.72, 2.74 and 2.75) give unphysical answers, divergent in the DC limit.

This is somewhat puzzling, considering that the theory is equivalent, by means
of an unitary transformation (Appendix A), to the length gauge formulation, which
has no issues in providing sensible answers for finite band models derived from tight
binding or density functional theory. It was argued in Section 2.4.3 that gauge
invariance will inevitably be broken by a band truncation that violates sum rules.
Still, this does not properly answer why such approximations are more easily dealt
with in the length gauge framework. More precisely, should it not be possible
to simply define a model with a finite number of bands, assume that whatever
other bands exist would be of such character that they would not contribute1, and
obtain proper physical predictions? If the velocity gauge of Section 2.4.2 is used,
unreasonable infrared divergences make it clear that the answer is no.

In actuality, there is a very fundamental difference between the two gauges, that
was not properly appreciated until recently [56], and it concerns the form of the
perturbation.

In the length gauge, the perturbation has always the form V̂(t) = e r̂ ·E(t). It
does not matter if Ĥ0 represents the crystalline potential as in Eq. 2.35 or if it is
defined in the context of a tight binding model with a finite number of bands, the
length gauge perturbation, and therefore the structure of the perturbation theory,
is unaffected. As long as the eigenstates of Ĥ0 are Bloch states and the eigenvalues

1By being too far off in energy and/or having very small matrix elements for the non-abelian
Berry connection or whatever characteristic is required for band truncation to be a reasonable
approximation in the respective perturbative treatment.
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provide the band structure, the length gauge treatment in Section 2.4.1 remains
valid.

To make it completely general, the unperturbed Hamiltonian can be defined by

Ĥ0 =

∫
ddk

(2π)d

∑
a

|ψka〉 εka 〈ψka| (4.1)

which can have any number of bands. It encompasses both the possibility of a
Schrödinger Hamiltonian (Eq. 2.35) with an infinite Hilbert subspace at each k, and
that of an arbitrary finite band model, derived, for instance, from a tight binding
description (Eqs. 3.6 and 3.7). Once this Hamiltonian is specified, the formulas in
Eqs. 2.61, 2.63 and 2.64 provide the linear and nonlinear conductivities.

In sharp contrast, the minimal coupling Hamiltonian is defined as

Ĥ(r̂, p̂) = Ĥ0(r̂, p̂ + eA(t)) (4.2)

and relies on the expansion of Ĥ0 on the potential vector to define the perturbation.
It was presumed before that the unperturbed Hamiltonian was

Ĥ0 =
p̂2

2m
+ V (r̂) (4.3)

and the perturbation was derived from there (Eq. 2.67), with the consequent per-
turbation theory of Section 2.4.2 built on this assumption. If a different Ĥ0 were
chosen, the perturbation theory would have resulted different. It is therefore not
that surprising that contradictions are found and sum rules broken upon replace-
ment of Ĥ0 by a finite band model. In other words, the essential difficulty is that,
in a minimal coupling formulation, the perturbation depends explicitly on Ĥ0, unlike
the length gauge.

Having identified the origin of the problem, the path to its resolution becomes
clear. The perturbation theory of Section 2.4.2 can be reformulated by dropping
any assumptions on the form of the unperturbed Hamiltonian, other than it has
the periodicity of some Bravais lattice, so that Bloch’s theorem applies and there
is a well defined First Brillouin Zone (FBZ). In this case, it can be written as in
Eq. 4.1 and contain any number of bands. From this starting point, a perturbative
analysis will be developed that generalizes the previous velocity gauge treatment
and is applicable to finite band models.

The first challenge is to find a way to implement minimal coupling for the Hamil-
tonian in Eq. 4.1. The usual procedure dictates that the substitution p̂→ p̂+eA(t)
be made, but in this case Ĥ0 is not defined in terms of the position and momentum
operators, but instead is expressed in terms of the band structure and respective
Bloch states.

An alternative is suggested by a rewriting of Eq. 4.2, inspired by the unitary
transformation that relates the length and velocity gauges,

Ĥ(r̂, p̂) = Ĥ0(r̂, p̂ + eA(t)) = Û(t) Ĥ0(r̂, p̂) Û †(t) (4.4)

with Û(t) = e−i e r̂·A(t)/~.
Minimal coupling can be described as performing a unitary transformation Û(t).

This presents a natural way to generalize the approach by defining the unitary
transformation in the (possibly) finite subspace of Ĥ0 in Eq. 4.1. This is certainly
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possible, since the position operator is defined in any space generated by Bloch
states as the covariant derivative (Section 2.3).

Ĥ = e−i e r̂·A(t)/~ Ĥ0 e
i e r̂·A(t)/~ = ee D̂·A(t)/~ Ĥ0 e

−e D̂·A(t)/~ (4.5)

This is the minimal coupling Hamiltonian that will be used in this chapter and
for which we will retrace the steps made in Chapter 2 and derive a new, more general,
perturbation theory.

For that, it is first necessary to isolate the perturbation in Eq. 4.5. This is done
with use of the Baker-Hausdorff lemma [83]: For any two operators, Â and B̂, the

product eÂ B̂ e−Â can be expressed as a series of commutators:

eÂ B̂ e−Â = B̂ + [Â, B̂] +
1

2
[Â, [Â, B̂]] + · · · =

+∞∑
n=0

1

n!
[Â, [...[Â, B̂]]...] (4.6)

where, in the sum, B̂ is commuted with Â an n number of times. The proof is
straightforward and demands only the Taylor expansion of the exponential functions
and appropriate grouping of the resulting terms.

Replacing Â by e D̂ ·A(t)/~ and B̂ by Ĥ0,

Ĥ = ee D̂·A(t)/~ Ĥ0 e
−e D̂·A(t)/~

=
+∞∑
n=0

en

n! ~n
[D̂αn , [...[D̂α1 , Ĥ0]]...]Aα1(t) . . . Aαn(t)

= Ĥ0 + V̂(t) (4.7)

where we have identified the perturbation. It is represented in the eigenbasis of Ĥ0

as

Vkab(t) =
+∞∑
n=1

en

n!
hα1...αn
kab Aα1(t) . . . Aαn(t) (4.8)

with

hα1...αn
kab ≡ ~−n [Dαn , [. . . , [Dα1 , H0]] ...]kab (4.9)

The commutators hα1...αn are the coefficients in the expansion of the Hamiltonian
on the optical fields. In linear order, the coefficient is the unperturbed velocity, as
presented in Eq. 2.55,

hαkab = ~−1 [Dα, H0]kab =
1

~
(∂αεka) δab +

i

~
Aαkab ∆εkab (4.10)

while for n = 2,
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hα1α2
kab = ~−2 [Dα2 , [Dα1 , H0]]kab = ~−1 [Dα2 , hα1 ]kab

=
1

~
(∂α2hα1

kab)−
i

~
∑
c

(Aα2
kach

α1
kcb − h

α1
kacA

α2
kcb)

=
1

~2
(∂α2∂α1εka) δab +

i

~2
(∂α2Aα1

kab) ∆εkab +
i

~2
Aα1

kab (∂α2∆εkab)

+
i

~2
Aα2

kab (∂α1∆εkab) +
1

~2

∑
c

(Aα2
kacA

α1
kcb ∆εkcb −Aα1

kacA
α2
kcb ∆εkac) (4.11)

and so on.
Notice that the h coefficients and therefore the Hamiltonian are completely spec-

ified by the band structure εka and the non-abelian Berry connection Akab.
For the special case of the Ĥ0 in Eq. 4.3, discussed in Chapter 2, hα1α2 is a

constant, independent of k, irrelevant for the dynamics of the system.

hα1α2
kab = −~−2 [rα2 , [rα1 , H0]]kab = − i

~m
[rα2 , pα1 ]kab =

1

m
δab δ

α1α2 (4.12)

Consequently, all other coefficients obtained by additional differentiation, return
zero.

hα1...αn
kab = 0 (n > 2) (4.13)

The treatment of Section 2.4.2 is therefore a special case of the one presented
here, that can be reobtained by setting the second order coefficient to a constant,
the inverse mass, and all higher order coefficients to zero.

The perturbation in Eq. 4.8 is notably beyond the scope of the perturbative
treatment in Chapter 2, which was based around a linear coupling with the classi-
cal field. It is then necessary to revisit and generalize the perturbation theory of
Sections 2.1 and 2.2.

4.2 Revisiting perturbation theory

The Hamiltonian is not the only quantity to be expressed as a powers series in this
formulation. The velocity is defined in terms of a commutator with the Hamiltonian
and therefore

vβkab = ṙβkab = − i
~

[rβ, H]kab =
1

~
[Dβ, H]kab

=
+∞∑
n=0

en

n! ~n+1
[Dβ, [Dαn , ..., [Dα1 , H0]]]kabA

α1(t)...Aαn(t)

=
+∞∑
n=0

en

n!
hα1...αnβ
kab Aα1(t)...Aαn(t) (4.14)

A similar situation was encountered before, in the velocity gauge treatment of
Section 2.4.2. There, the coupling to the optical field was actually quadratic, instead
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of linear, resulting in an additional term in the velocity (Eq. 2.70), which in turn
resulted in an extra term for the linear conductivity (Eq. 2.72). Along the same
lines, the couplings in the Hamiltonian discussed here involve higher powers of the
optical fields and lead to additional terms in the velocity and more complicated
expressions for the linear and nonlinear conductivities.

The velocity operator is, in this case, a function of the potential vector and
explicitly time-dependent. The dynamics of the averaged current depends on the
time evolution of both the velocity and the density operators,

Jβ(t) = Tr
(
Ĵβ(t) ρ̂(t)

)
= −e Tr

(
v̂β(t) ρ̂(t)

)
= −e

∫
ddk

(2π)d

∑
a,b

vβkba(t) ρkab(t)

(4.15)
The expansion of the current on the optical fields must then be done in the

density matrix and the velocity matrix elements simultaneously.
In the absence of an external field, the current is

Jβ(0) = −e
∫

ddk

(2π)d

∑
a,b

v
β(0)
kba ρ

(0)
kab (4.16)

The first order response is

Jβ(1)(t) = −e
∫

ddk

(2π)d

∑
a,b

(
v
β(1)
kba (t) ρ

(0)
kab + v

β(0)
kba ρ

(1)
kab(t)

)
(4.17)

Similarly for the second order response,

Jβ(2)(t) = −e
∫

ddk

(2π)d

∑
a,b

(
v
β(2)
kba (t) ρ

(0)
kab + v

β(1)
kba (t) ρ

(1)
kab(t) + v

β(0)
kba ρ

(2)
kab(t)

)
(4.18)

and, in general,

Jβ(n)(t) = −e
∫

ddk

(2π)d

∑
a,b

n∑
p=0

v
β(p)
kba (t) ρ

(n−p)
kab (t) (4.19)

The notation adopted here is the same as before. Particularly useful are the
quantities ρα1...αn defined in Eqs. 2.20 and 2.22. In this formulation, the potential
vector takes the role of the classical field the electron system couples to and the
aforementioned definitions become

ρ̂(n)(t) ≡
∫ +∞

−∞
dtn· · ·

∫ +∞

−∞
dt1 ρ̂

α1...αn(t− t1, . . . , t− tn)Aα1(t1) . . . Aαn(tn) (4.20)

which, in the frequency domain, translates to

ρ̂(n)(t) ≡
∫ +∞

−∞

dωn
2π

...

∫ +∞

−∞

dω1

2π
ρ̂α1...αn(ω1, ..., ωn)Aα1(ω1)...Aαn(ωn) e−i(ω1+...+ωn)t

=

∫ +∞

−∞

dωn
2π

...

∫ +∞

−∞

dω1

2π

(−i)n

ω1...ωn
ρ̂α1...αn(ω1, ..., ωn)Eα1(ω1)...Eαn(ωn) e−i(ω1+...+ωn)t

(4.21)
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The previous expansion of the velocity (Eq. 4.14) can also be expressed in fre-
quency space,

v
β(n)
kab (t) =

en

n!

∫ +∞

−∞

dωn
2 π

...

∫ +∞

−∞

dω1

2π

(−i)n

ω1...ωn
hα1...αnβ
kab Eα1(ω1)...Eαn(ωn) e−i(ω1+...+ωn)t

(4.22)
Introducing Eqs. 4.21 and 4.22 in 4.19, we obtain formulas for the conductivities

that are a generalization of 2.29. As in Section 2.5, their domain is then extended
by considering complex frequencies. The linear conductivity is2

σβα(ω̄) =
i e

ω̄

∫
ddk

(2π)d

∑
a,b

(
hβkba ρ

α
kab(ω̄) + e hαβkba (ρ0)kab

)
(4.23)

The second order conductivity,

σβα1α2(ω̄1, ω̄2) =
e

ω̄1 ω̄2

∫
ddk

(2π)d

∑
a,b

(
hβkba ρ

α1α2
kab (ω̄1, ω̄2) + e hα1β

kba ρ
α2
kab(ω̄2) +

e2

2
hα1α2β
kba (ρ0)kab

)
(4.24)

The third order conductivity,

σβα1α2α3(ω̄1, ω̄2, ω̄3) = − i e

ω̄1 ω̄2 ω̄3

∫
ddk

(2π)d

∑
a,b

(
hβkba ρ

α1α2α3
kab (ω̄1, ω̄2, ω̄3)

+e hα1β
kba ρ

α2α3
kab (ω̄2, ω̄3) +

e2

2
hα1α2β
kba ρα3

kab(ω̄3) +
e3

3!
hα1α2α3β
kba (ρ0)kab

)
(4.25)

Finally, the n-th order nonlinear conductivity can be written as

σβα1...αn(ω̄1, . . . , ω̄n) = −e
n∑
p=0

(−i)n

ω̄1 . . . ω̄n

∫
ddk

(2π)d

∑
a,b

ep

p!
h
α1...αpβ
kba ρ

αp+1...αn
kab (ω̄p+1, . . . , ω̄n)

(4.26)

The ω̄−1
i factors are, as in the previous velocity gauge treatment, due to the con-

version of the potential vector into the electric field components A(ω) = −i E(ω)/ω.
The functions ρα1...αn still have to be evaluated. For this, the density matrix

equation of motion must be solved,

i ∂tρkab = [H, ρ]kab = [H0, ρ]kab +
+∞∑
n=1

en

n!
[hα1...αn , ρ(t)]kab A

α1(t) . . . Aαn(t) (4.27)

A Fourier transform is applied to give

(~ω −∆εkab) ρkab(ω) =
+∞∑
n=1

en

n!

∫ +∞

−∞
[hα1...αn , ρ(t)]kab A

α1(t) . . . Aαn(t) eiωt dt

(4.28)

2This equation is a more general version of Eq. 2.72.
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The resulting recursion relation is a bit more complicated than before (Eq. 2.14).
At zero-th order, the equilibrium distribution is still the Fermi-Dirac distribution
ρ̂(0) = ρ̂0.

In linear order,

ραkab(ω̄) =
e

~ω̄ −∆εkab
[hα, ρ0]kab (4.29)

In second order,

ρα1α2
kab (ω̄1, ω̄2) =

1

~ω̄1 + ~ω̄2 −∆εkab

(
e [hα1 , ρα2(ω̄2)]kab +

e2

2
[hα1α2 , ρ0]kab

)
(4.30)

The pattern is already becoming clear. As an additional example, the third order
density matrix is provided by

ρα1α2α3
kab (ω̄1, ω̄2, ω̄3) =

1

~ω̄1 + ~ω̄2 + ~ω̄3 −∆εkab
×(

e [hα1 , ρα2α3(ω̄2, ω̄3)]kab +
e2

2
[hα1α2 , ρα3(ω̄3)]kab +

e3

3!
[hα1α2α3 , ρ0]kab

)
(4.31)

Finally, to general order n, the perturbative solution to the density matrix equa-
tion of motion is recursively expressed as

ρα1...αn
kab (ω̄1, ..., ω̄n) =

1

~ω̄1 + ...+ ~ω̄n −∆εkab

n∑
m=1

em

m!
[hα1...αm , ραm+1...αn(ω̄m+1, ..., ω̄n)]kab

(4.32)

This recursion relation can be unfolded into lengthy expressions and its structure
analyzed in more detail. However, we shall see that the real value of these expressions
lies in their numerical evaluation (Section 4.4), for which a recursion relation is
sufficient. Once the density matrix is computed via Eq. 4.32 it can inserted in
Eq. 4.26 to give the nonlinear conductivity.

The nonlinear optical conductivity will still have to undergo the usual sym-
metrization procedure to ensure intrinsic permutation symmetry. Albeit trivial,
this last step is a bit cumbersome to write down and will be left implicit. The new
expressions for the conductivity presented here are entirely equivalent to the ones
derived in Section 2.4.1 using the length gauge. Although far more complicated,
they have their advantages, which will be discussed later.

4.3 Gauge invariance and sum rules

When, back in Chapter 2, two perturbation theories were developed to find the
nonlinear conductivity, each employing a particular choice of gauge, but in prin-
ciple completely equivalent, it was mentioned that their equivalence relied on sum
rules. The length gauge expressions for the nonlinear conductivity (Eqs. 2.61, 2.63
and 2.64) are the same as the ones derived via the velocity gauge (Eqs. 2.72, 2.74
and 2.75), only if the following commutation relation holds
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[r̂β, [r̂α, Ĥ0]] = −~2

m
δβα (4.33)

which is true for the Hamiltonian in Eq. 4.3, but not necessarily for the one in
Eq. 4.1.

The content of the previous sections generalizes the velocity gauge beyond such
constraints. This condition is no longer necessary to demonstrate the equivalence
of the recently derived expressions for the nonlinear conductivity (Eqs. 4.23, 4.24
and 4.25) and the length gauge ones (Eqs. 2.61, 2.63 and 2.64).

However, as it turns out, there are still some requirements for keeping the for-
mulations equivalent or, more precisely, for maintaining the validity of the minimal
coupling formulation: the Hamiltonian in Eq. 4.1 must be defined over all the First
Brillouin Zone and the integration in Eq. 4.26 must run through its entirety. Low
energy effective Hamiltonians that portray the electronic properties in a confined
region of the FBZ are sometimes used (e.g. Eqs 3.60 and 3.72 for graphene) and
often provide an accurate and simpler means for computing the optical response.
For the minimal coupling approach presented in this chapter, however, these low
energy descriptions do not suffice.

To understand why this is the case, we inspect the unitary transformation linking
the length and velocity (minimal coupling) descriptions. The subscripts L and V
are used to refer to the length and velocity gauges, respectively. The operators in
the two descriptions are related by (Appendix A)

ÔV = Û(t) ÔL Û †(t) (4.34)

with

Û(t) = e−i e r̂·A(t)/~ (4.35)

For a system with a (possibly) finite number of bands,

Û(t) = e−i e r̂·A(t)/~ = ee D̂·A(t)/~ (4.36)

Our quantities of interest are the ensemble average of the electric current and
the linear and nonlinear conductivities. It seems, at first, straightforward to prove
their equivalence,

JβL = Tr
(
ĴβL ρ̂L

)
= Tr

((
Û(t) ĴβL Û

†(t)
)(
Û(t) ρ̂L Û †(t)

))
= Tr

(
ĴβV ρ̂V

)
= JβV

(4.37)
where it was made use of the cyclic property of the trace and the unitarity of the
transformation.

This proof seems rather trivial, but since the position operator is the covariant
derivative, the unitary transformation involves differentiation and the cyclic property
of the trace is not quite sufficient to make the passage, being necessary also to
perform an integration by parts, throwing away the integral of a gradient.

The cleanest way do demonstrate this is to write the transformation as a power
series, in a manner entirely analogous to the minimal coupling Hamiltonian in
Eq. 4.7,
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JβV = Tr
(
Û(t) ĴβL ρ̂L Û

†(t)
)

=
+∞∑
n=0

en

n! ~n
Aα1(t) . . . Aαn(t) Tr

(
[D̂αn , [...[D̂α1 , ĴβL ρ̂L]]...]

)
= JβL +

+∞∑
n=1

en

n! ~n
Aα1(t) . . . Aαn(t) Tr

(
[D̂αn , [...[D̂α1 , ĴβL ρ̂L]]...]

)
(4.38)

With this, we have arrived at what could be called a set of sum rules for the
equivalence of the minimal coupling approach presented in this chapter and the
length gauge method introduced in Section 2.4.1 (and further discussed in the next
chapter):

+∞∑
n=1

en

n! ~n
Aα1(t) . . . Aαn(t) Tr

(
[D̂αn , [...[D̂α1 , ĴβL ρ̂L]]...]

)
= 0 (4.39)

These sum rules were first derived by Ventura et al. in [57].
The trace of a commutator is normally trivially zero, but since the covariant

derivative is present, there is a contribution for each term in the sum that is pro-
portional to

Tr
(

[∂̂αn , [...[D̂α1 , ĴβL ρ̂L]...]]
)

=
∑
a

∫
ddk

(2π)d

(
∂αn [Dαn−1 , [...[Dα1 , JβL ρL]...]]kaa

)
= 0

(4.40)
This condition is satisfied due to the periodicity of the FBZ. But this implies

all the FBZ must be used, otherwise the integration may not return zero and the
length gauge and minimal coupling expressions will likely differ.

This argument feels somewhat abstract and is best understood by working the
expressions in Eqs. 4.23, 4.24 and 4.25 into the format in Eqs. 2.61, 2.63 and 2.64,
respectively, directly verifying the need for the sum rules in Eq. 4.40. Unfortunately,
this type of manipulations are rather cumbersome. For this reason, they will be
presented here only at first order. It should prove sufficient to make the previous
argumentation concrete.

The goal is then to start with the expression for the linear conductivity obtained
by a minimal coupling treatment (combining Eqs. 4.23 and 4.29),

σβα(ω̄) =
i e

ω̄

∫
ddk

(2π)d

∑
a,b

(
hβkba ρ

α
kab(ω̄) + e hαβkba (ρ0)kab

)
=
i e2

ω̄

∫
ddk

(2π)d

∑
a,b

(
hβkba [hα, ρ0]kab
~ω̄ −∆εkab

+ hαβkba(ρ0)kab

)
(4.41)

and arrive at the formula derived from the length gauge (rewriting Eq. 2.61 with
the current notation),

σβα(ω̄) = −i e2

∫
ddk

(2π)d

∑
a,b

hβkba [Dα, ρ0]kab
~ω̄ −∆εkab

(4.42)
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To begin, the Jacobi identity is used in a commutator from Eq. 4.41 to move the
covariant derivative to the density matrix,

~ [hα, ρ0]kab = [[Dα, H0] , ρ0]kab
= [[Dα, ρ0] , H0]kab + [Dα, [H0, ρ0]]kab
= [[Dα, ρ0] , H0]kab (4.43)

where in the last step we took into account that the commutator of two diagonal
matrices is zero [H0, ρ0] = 0.

This leads to

[hα, ρ0]kab = −~−1 [Dα, ρ0]kab ∆εkab (4.44)

With this, the first term in parenthesis of Eq. 4.41 becomes

hβkba [hα, ρ0]kab
~ω̄ −∆εkab

=− hβkba ~−1 [Dα, ρ0]kab ∆εkab
~ω̄ −∆εkab

=hβkba ~
−1 [Dα, ρ0]kab −

ω̄ hβkba [Dα, ρ0]kab
~ω̄ −∆εkab

(4.45)

The second term in Eq. 4.45, when replaced in Eq. 4.41, will give the length
gauge result in Eq. 4.42. The remaining contributions must therefore be zero and
form our sum rule,

i e2

ω̄

∫
ddk

(2π)d

∑
a,b

(
hβkba ~

−1 [Dα, ρ0]kab + hαβkba(ρ0)kab

)
= 0 (4.46)

This can be further simplified through

hαβkba = ~−2
[
Dβ, [Dα, H0]

]
kba

= ~−2
[
Dα,

[
Dβ, H0

]]
kba

= ~−1
[
Dα, hβ

]
kba

(4.47)

where the commutation of covariant derivatives was used
[
Dβ, Dα

]
= 0 (see Ap-

pendix C). Replacing in Eq. 4.46,

i e2

ω̄

∫
ddk

(2π)d

∑
a,b

(
hβkba ~

−1 [Dα, ρ0]kab + ~−1
[
Dα, hβ

]
kba

(ρ0)kab

)
= 0 (4.48)

leading to

i e2

~ω̄

∫
ddk

(2π)d

∑
a

[
Dα, hβρ0

]
kaa

= 0 (4.49)

The commutator with Dα can be broken into two pieces, one involving the Berry
connection, which is trivially zero (the trace of a proper commutator is always zero)
and another involving a conventional derivative,

i e2

~ω̄

∫
ddk

(2π)d

∑
a,b

(
∂αhβkba(ρ0)kab

)
= 0 (4.50)
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which can be recognized as a particular case of the sum rules identified in Eq. 4.40.
This condition is always true, since the functions h and ρ0 are periodic in recip-

rocal space. The sum rule (and therefore the equivalence between the results in the
two gauges) is therefore trivially satisfied as long as the integral is performed over
the full FBZ.

Analogous derivations can be made for higher orders in perturbation theory.
In the next chapter, it will be shown that in the length gauge the real part

of the nonlinear conductivity is determined by specific regions of the FBZ, where
resonance conditions are met. For this reason, it is not surprising that low energy
effective theories can often be used in the length gauge to derive the optical response.
In contrast, the minimal coupling formulation will not work with such models due
to the previous argument: for the minimal coupling to provide the same, accurate,
results as the length gauge, the sum rules in Eq. 4.40 must be met. Only by accident
would such conditions be satisfied in a low energy effective model.

4.4 An efficient algorithm and its limitations

Let us assume then that we possess a model that is defined over a FBZ. The mini-
mal coupling method is a new tool for computing the nonlinear conductivities, but
how does it compare to the standard, and widely adopted, length gauge method?
As usual, there are advantages and disadvantages associated with any particular
choice of gauge. By considering the (exactly equivalent) forms of the nonlinear con-
ductivities derived in the two gauges, the strengths and weaknesses of each can be
analyzed.

A first look at Eq. 4.26 will immediately bring out the usual concerns with
infrared divergences in the velocity gauge, due to all the inverse frequency factors.
We emphasize again, however, that this expression is equivalent to the one obtained
from the length gauge and therefore these divergences are only apparent. As it
was exemplified in the previous section, the minimal coupling expressions can be
manipulated and, using a series of sum rules, put in a form that is clearly divergence
free in the DC limit. This approach was the one originally pursued [47] for the early
velocity gauge calculations, but this use of sum rules became rather pointless after
the length gauge formulation had been developed [49]. If the sum rules are employed
in the velocity gauge to remove apparent divergences, one will simply arrive at an
expression obtained more straightforwardly in the length gauge. With the current
formulation of the velocity gauge, presented in this chapter, there is also no longer
a risk of violating sum rules upon band truncation: Eq. 4.26 can be used without
any worries of spurious infrared divergences.

Having clarified this point, it can still be noted that the minimal coupling version
is considerably more elaborate; less useful not only for inspection, but in an actual
analytical calculation. As an example, the expression of the conductivity responsible
for second harmonic generation, with all components along the x axis, in the length
gauge is,

σxxx(ω̄, ω̄) = e3

∫
ddk

(2π)d

∑
a,b

hxkba
2~ω̄ −∆εkab

[
Dx,

1

~ω̄ −∆ε
◦ [Dx, ρ0]

]
kab

(4.51)

while in the minimal coupling formulation,
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σxxx(ω̄, ω̄) =
e

ω̄2

∫
ddk

(2π)d

∑
a,b

(
hxkba ρ

xx
kab(ω̄, ω̄) + e hxxkba ρ

x
kab(ω̄) +

e2

2
hxxxkba (ρ0)kab

)
(4.52)

where we still have to write the density matrix components,

ρxkab(ω̄) =
e [hx, ρ0]kab
~ω̄ −∆εkab

ρxxkab(ω̄, ω̄) =
1

2~ω̄ −∆εkab

(
e [hx, ρx(ω̄)]kab +

e2

2
[hxx, ρ0]kab

)
(4.53)

This example demonstrates that there is little advantage in doing the analytical
calculations in the velocity gauge, although inspection of the previous equations
shows an interesting point: there are only simple poles in the velocity gauge (~ω −
∆ε)−1, while in the length gauge, by differentiation, higher order poles emerge. Still,
for analytical calculations, I would advocate the cleaner and easier length gauge
approach [49].

The strength of the minimal coupling method lies in the different arrangement
of the commutators. The covariant derivatives are no longer applied to the density
matrix in its recursion relation3. Instead, they operate only on the unperturbed
Hamiltonian H0 in the determination of the functions hkab (Eq. 4.9), which are
independent of frequency, temperature and chemical potential.

These hkab functions are the essential objects in this formulation and the only
that must be known analytically. The covariant derivative needs only to be applied
to the unperturbed Hamiltonian, whereas in the length gauge it needs to be applied
to the Fermi-Dirac distribution and the frequency poles, a more complex endeavor.
Therein lies a significant advantage of the minimal coupling method.

A careful look at the algorithm delineated in Section 4.2, shows that for the
nonlinear conductivity of order n, there are n + 1 such functions to compute by
successively applying a covariant derivative: hα1...αm

kab with m = 1, ..., n + 1. In the
previous example of second harmonic generation, these would be hxkab, h

xx
kab and hxxxkab .

Further reducing this algorithm to its fundamental ingredients, we recognize once
again that these calculations demand only a knowledge of two objects, which fully
define the system under consideration: the dispersion relation εka and the Berry
connection Akab.

Once these hα1...αn
kab functions are analytically determined, the integrand in Eq. 4.26

(or Eq. 4.52, in our example) can be numerically evaluated at each k, independently
and quite easily. In fact, the procedure involves evaluating the analytic hα1...αn

kab func-
tions and the Fermi-Dirac distribution at the k point and then computing simple
commutators and traces of numeric matrices. There are no numerical derivatives at
all. This is in contrast with the length gauge, where either the full expression of
the response function is analytically calculated or numerical derivatives have to be
applied in each step of the density matrix recursion relation. Either way, via the
product rule and higher order poles, the number of complicated terms to evaluate
grows very fast with n in the length gauge approach.

3In this aspect, the approach here has similarities with the one employed in [76].
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For this reason, the form of the nonlinear conductivity in Eq. 4.26, derived
from the minimal coupling Hamiltonian, should provide a more efficient numerical
approach. The author has implemented numerically the expressions in both gauges
and done calculations on the nonlinear conductivity of monolayer graphene and
observed that the computation times were indeed considerably smaller when Eq. 4.26
was used.

Additionally, the frequency, temperature and chemical potential parameters can
be changed at will (hα1...αn is unchanged), without significant cost increase. This
enables us to probe the response beyond what is usually possible to capture with
low energy effective theories in the length gauge [84]. Also, considering perturbation
theory beyond third order seems feasible, and straightforward, since it involves no
substantial increase in the complexity of the calculation. This is hardly possible in
a length gauge treatment.

The generalization of the velocity gauge discussed in this chapter was introduced
in 2018 [56] and has since seen further developments by other researchers. Parker et
al. [85] placed it in a diagrammatic form, discussed the low frequency limit where
it meets the Boltzmann equation methods and used it to compute the nonlinear
optical response of Weyl semimetals. S. João et al [86, 87] worked with a different
diagrammatic formulation and developed the theory in an arbitrary basis. Numerical
efficiency was achieved via the kernel polynomial method, making it possible to do
the computations with very large numbers of atoms. By performing the calculations
in real space, it became possible to introduce and study the effects of disorder,
vacancies and lattice distortions.

4.5 Evaluating commutators for tight binding mod-

els

In this section, we tackle a subtle issue, albeit one that will prove of practical
importance. As it was laid out in previous sections, numerical evaluation of the
nonlinear conductivity via the minimal coupling method requires prior computation
of the h commutators. Once these are known, we are left with numerical operations
that can be done through a concise Mathematica code (or in some other appropriate
programming language favored by the reader).

hα1...αn is the result of successive covariant differentiation of the unperturbed
Hamiltonian Ĥ0. This can be made the direct way: once the band structure and the
non-abelian Berry connection are known, just expand the commutators in detail (as
in Eqs. 4.10 and 4.11) and evaluate the derivatives of these quantities. There exists,
however, a simpler way to compute these commutators for the tight-binding models
used in this thesis. To understand this, it is necessary to discuss in a bit more depth
the covariant derivative and reinterpret some formulas.

Traditionally, the parametric Hamiltonian is defined not as in Section 3.1, but
by the following transformation,

Ĥ0(k) = e−ik·r̂ Ĥ0 e
ik·r̂ (4.54)

For the Hamiltonian in Eq. 4.3 and using p̂ = −i~∇,
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Ĥ0(k) = e−ik·r̂
(
−~2∇2

2m
+ V (r̂)

)
eik·r̂

=
~2

2m

(
∇
i

+ k

)2

+ V (r̂) (4.55)

Ĥ0(k) represents a family of operators parametrized by the Bloch vector. The
eigenvalues provide the band structure

Ĥ0(k) |uka〉 = εka |uka〉 (4.56)

and, by Bloch’s theorem, the eigenstates are the periodic parts of the Bloch func-
tions, from which the Berry connection is calculated,

Aαkab ≡ i 〈uka|∂αukb〉 (4.57)

This is the textbook presentation. It can be generalized by considering the
unperturbed Hamiltonian to have the form of Eq. 4.1, where an arbitrary number
of bands is considered. Then,

Ĥ0(k) ≡
∑
a

|uka〉 εka 〈uka| (4.58)

By the same reasoning, we can define for any operator diagonal in k,

Ô(k) ≡
∑
a,b

|uka〉Okab 〈ukb| (4.59)

This definition permit us to gather further insight on the covariant derivative. If
the parametric derivative is taken in the previous equation and the matrix elements
evaluated,

〈uka| ∂αÔ(k) |ukb〉 =
(
∂α 〈uka| Ô(k) |ukb〉

)
− 〈∂αuka| Ô(k) |ukb〉 − 〈uka| Ô(k) |∂αukb〉

= (∂αOkab) +
∑
c

(
−〈∂αuka|ukc〉 〈ukc| Ô(k) |ukb〉 − 〈uka| Ô(k) |ukc〉 〈ukc|∂αukb〉

)
= (∂αOkab) +

∑
c

(
+ 〈uka|∂αukc〉 〈ukc| Ô(k) |ukb〉 − 〈uka| Ô(k) |ukc〉 〈ukc|∂αukb〉

)
= (∂αOkab)− i

∑
c

(AαkacOkcb −OkacAαkcb) = [Dα,O]kab (4.60)

We conclude that the operation of commuting with a covariant derivative can be
interpreted as,

[Dα,O]kab = 〈uka| ∂αÔ(k) |ukb〉 (4.61)

This is valid for any basis. If we define (Eq. 3.8),

ψka(r) =
∑
λ

ckaλ Ψkλ(r) (4.62)
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and
Ψkλ(r) = eik·r ukλ(r) (4.63)

where ukλ is the periodic part of the Bloch function, then

[Dα,O]kλλ′ = ∂αOkλλ′ − i [Aα,O]kλλ′ = 〈ukλ| ∂αÔ(k) |ukλ′〉 (4.64)

with

Aαkλλ′ ≡ i 〈ukλ|∂αukλ′〉 (4.65)

The quantity in Eq. 4.65 is, strictly speaking, not a Berry connection, since the
ukλ do not correspond to the eigenstates of the Hamiltonian (Eq. 4.58).

Now, consider the case where the parametric Hamiltonian in Eq. 4.58 is derived
from a tight binding model. Moreover, let us take Ψkλ to be the sublattice Bloch
basis introduced in Eq. 3.4. In this case,

Ĥ0(k) =
∑
λ,λ′

|ukλ〉 (H0)kλλ′ 〈ukλ′| (4.66)

with the matrix elements (H0)kλλ′ from Eq. 3.7.
The formula for the non-abelian Berry connection (Eq. 3.17) derived in Sec-

tion 3.1 can be reinterpreted in light of the analysis of this section,

Aαkab = i
∑
λ

c∗kaλ(∂
αckbλ) +

∑
λ,λ′

c∗kaλ ckbλ′ S
α
kλλ′

= i
∑
λ

c∗kaλ(∂
αckbλ) +

∑
λ

c∗kaλ ckbλA
α
kλλ′ (4.67)

Tracing back the derivation of the second term in Eq. 3.17, it can be recognized
that it is just the computation of the object in Eq. 4.65, A = S. The previously
inspected limit of no overlap in the tight binding model can now be expressed as

Aαkλλ′ = 0 (4.68)

or

Aαkab = i
∑
λ

c∗kaλ(∂
αckbλ) (4.69)

Put succinctly, the computation of the non-abelian Berry connection is made
by performing a change of basis from the stationary to the sublattice basis. Since
the “Berry connection” Aα defined in the sublattice Bloch basis vanishes, the actual
Berry connection Aα can be obtained by working only with the coefficients ckaλ that
perform the change of basis. These coefficients are the eigenstates of the Hamiltonian
representation in the sublattice Bloch basis (H0)kλλ′ .

What is the significance of all this in finding the h commutators? In the absence
of orbital overlap,

[Dα, H0]kλλ′ = ∂α(H0)kλλ′ − i [Aα, H0]kλλ′ = ∂α(H0)kλλ′ (4.70)

For use in perturbation theory, the commutators must be expressed in the eigen-
basis of Ĥ0. A change of basis leads to,
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[Dα, H0]kab =
∑
λ,λ′

c∗kaλ [Dα, H0]kλλ′ ckbλ′ =
∑
λ,λ′

c∗kaλ (∂α(H0)kλλ′) ckbλ′ (4.71)

Similarly,

[Dα2 , [Dα1 , H0]]kab =
∑
λ,λ′

c∗kaλ (∂α2∂α1(H0)kλλ′) ckbλ′ (4.72)

and

[Dαn , ... [Dα1 , H0] ...]kab =
∑
λ,λ′

c∗kaλ (∂αn ...∂α1(H0)kλλ′) ckbλ′ (4.73)

We arrive then at the somewhat surprising conclusion that, for tight binding
models with sufficiently localized orbitals, the process of evaluating the hα1...αn com-
mutators equates to differentiating the Hamiltonian in the sublattice Bloch basis and
performing a mere change of basis. In particular, no knowledge of the non-abelian
Berry connection is needed!

This interlude has then served its purpose, presenting a much simplified method
to evaluate the h commutators, necessary ingredients in the minimal coupling method.
There is not even need to express them analytically anymore: once the Hamiltonian
H0 is specified and differentiated, it can be evaluated at any given k-point in the
FBZ. The states and eigenvalues of the Hamiltonian are computed at that point
by numerical diagonalization, the latter giving energies, the former the coefficients
in Eq. 4.62. These are inserted in Eq. 4.73 to obtain the h commutators at the
respective point in the FBZ.

A common concern is that, in the numerical diagonalization of the Hamiltonian,
the phases of the eigenstates will not be defined continuously over the FBZ, but this
is of no relevance here. The linear and the nonlinear conductivity, resulting from
the evaluation of a trace, are invariant under the U(1) gauge transformation of the
Bloch functions4.

The algorithm will be exemplified in the next section with a study of the nonlinear
optical response of monolayer graphene.

4.6 Harmonic generation in monolayer graphene

(numerical)

4.6.1 Setting up

In the final section of this chapter, the minimal coupling method is tested numer-
ically, by computing the linear, second and third order conductivity of monolayer
graphene. For conciseness, the analysis is restricted to the case of harmonic gener-
ation, where ω1 = ω2 = ω3 = ω.

The basic physics of graphene and the nearest neighbour tight binding model that
describes it were already introduced in Sections 3.3 and 3.4. From this description,
the following Hamiltonian was constructed (Eq. 3.67),

4See discussion at the end of Section 2.3.
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(H0)kλλ′ =

(
∆/2 tΦ(k)
tΦ∗(k) −∆/2

)
kλλ′

(4.74)

where the gap ∆ was introduced by assigning different energies to the A- and B-site
orbitals. The off-diagonal matrix elements are defined by (Eq. 3.49),

Φ(k) = cos

(
kx a

2
− ky a

2
√

3

)
+ cos

(
−kx a

2
− ky a

2
√

3

)
+ cos

(
ky a√

3

)
+ i sin

(
kx a

2
− ky a

2
√

3

)
+ i sin

(
−kx a

2
− ky a

2
√

3

)
+ i sin

(
ky a√

3

)
(4.75)

Notice that this model is defined over the entire hexagonal FBZ of the honeycomb
lattice (Fig. 3.1), a requirement for the minimal coupling method. This is unlike
the low energy Hamiltonians in Eqs. 3.59 and 3.71, for which this method is not
applicable.

The resulting band structure (Eqs. 3.69) is

εk = ±

√√√√(3 + 2 cos (kxa) + 4 cos

(
kxa

2

)
cos

(√
3kya

2

))
t2 +

(
∆

2

)2

(4.76)

Since this is a tight binding model, we might, under the aforementioned approx-
imations (Section 4.5), dispense with the derivation of the Berry connection, and
evaluate the hα1...αn commutators by direct differentiation of the Hamiltonian.

Even though the prerequisites for the use of the minimal coupling algorithm are
already satisfied and there is no need for knowing the hα1...αn commutators analyt-
ically (indeed, the analytic form will not be used in the subsequent computations),
it seems instructive to derive them at least once.

For this purpose, we momentarily consider the gapless case (∆ = 0) and the
response to an optical field aligned along the x axis. Using Eq. 4.73, with the
Hamiltonian in Eq. 4.74 and the eigenstates in Eqs. 3.54,

hxkab =
a sin

(
kxa
2

)
Cab

~
√

3 + 2 cos (kxa) + 4 cos
(
kxa
2

)
cos
(√

3kya

2

) (4.77)

hxxkab =
a2 cos

(
kxa
2

)
Cab

2~2

√
3 + 2 cos (kxa) + 4 cos

(
kxa
2

)
cos
(√

3kya

2

) (4.78)

hxxxkab = − a2

4~2
hxkab hxxxxkab = − a2

4~2
hxxkab (4.79)

where C is a matrix in the band indices,

Cab ≡ t

2 cos
(
kxa
2

)
+ cos

(√
3kya

2

)
−i sin

(√
3kya

2

)
i sin

(√
3kya

2

)
−2 cos

(
kxa
2

)
+ cos

(√
3kya

2

)
ab

(4.80)
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There is a cyclic character to the h commutators in this model. After the co-
variant derivative is applied more than twice, they repeat, aside from a numerical
factor. This is due to the cosine and sine functions in Eq. 4.75.

It worth reminding that the commutators could have equally well been obtained
by prior evaluation of the Berry connection (applying Eq. 4.69 to Eq. ??) and
expanding the commutators (Eqs. 4.10 and 4.11 and higher order analogues). This
is a far more extensive procedure. Nonetheless, if we were to extend our analysis
beyond tight binding models, it would be a necessary one.

The evaluation of the commutators in Eqs. 4.77-4.79 concludes all the setup
necessary for a calculation of the nonlinear conductivity with the minimal coupling
method, up to third order. However, attention should always be given to crystal
symmetry, that may reduce the number of independent components and spare us
unnecessary work.

A case in point, the symmetry of the honeycomb lattice [88] dictates that

σxx(ω̄) = σyy(ω̄) σxy(ω̄) = σyx(ω̄) = 0 (4.81)

This is for the linear conductivity. The second order conductivity obeys

σxxy(ω̄1, ω̄2) = σxyx(ω̄1, ω̄2) = σyxx(ω̄1, ω̄2) = −σyyy(ω̄1, ω̄2) (4.82)

σyxx(ω̄1, ω̄2) = σyxy(ω̄1, ω̄2) = σxyy(ω̄1, ω̄2) = σxxx(ω̄1, ω̄2) = 0 (4.83)

If the gap is closed by taking ∆ = 0, then inversion symmetry is restored and
the second order conductivity vanishes identically. Other than that, the tensor
symmetries are the same, from linear to third order, for graphene with and without
a band gap5.

And in third order,

σxxyy(ω̄1, ω̄2, ω̄3) =σyyxx(ω̄1, ω̄2, ω̄3) (4.84)

σxyxy(ω̄1, ω̄2, ω̄3) =σyxyx(ω̄1, ω̄2, ω̄3) (4.85)

σxyyx(ω̄1, ω̄2, ω̄3) =σyxxy(ω̄1, ω̄2, ω̄3) (4.86)

σxxxx(ω̄1, ω̄2, ω̄3) =σyyyy(ω̄1, ω̄2, ω̄3) (4.87)

while the other, omitted, tensor components are all zero. There is one final identity,
reducing the third order conductivity to three independent tensor elements:

σxxxx(ω̄1, ω̄2, ω̄3) = σxxyy(ω̄1, ω̄2, ω̄3) + σxyxy(ω̄1, ω̄2, ω̄3) + σxyyx(ω̄1, ω̄2, ω̄3) (4.88)

In the special case of harmonic generation, intrinsic permutation symmetry im-
plies

σxxyy(ω̄, ω̄, ω̄) = σxyxy(ω̄, ω̄, ω̄) = σxyyx(ω̄, ω̄, ω̄) = σxxxx(ω̄, ω̄, ω̄)/3 (4.89)

5The point group symmetry of graphene is D6h, while that of gapped graphene or hexagonal
boron nitride is D3d. For the purposes of harmonic generation at linear and third order, the
respective response functions are isotropic in both cases.
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Figure 4.1: Optical conductivity of gapped graphene with ∆ = 0.1 t and γ = 5 ×
10−4 t, at T = 0 K. The Fermi level resides in the band gap. The real part (a) has
a step at ω = ∆, while the imaginary part (b) “diverges” to negative values at the
same frequency. Since the system is an insulator, there is no Drude peak at zero
frequency and both real and imaginary parts vanish for ω → 0+.

With this, there is a single independent tensor component at each order. We
need only to compute the components σxx, σyyy and σxxxx for the linear, second and
third order optical response. These follow by feeding the band structure and the h
commutators presented here into the algorithm, described in Section 4.4 and imple-
mented in Mathematica code. The next sections display these linear and nonlinear
conductivities.

4.6.2 Linear conductivity

In this and the next subsections, the optical response of both gapped and gapless
graphene is presented and discussed. The linear response is, naturally, the simplest
and the first to be examined here. All the results are obtained at T = 0 K. Also,
the existence of spin is accounted for by simply doubling the response, since it has
no direct impact on the band structure or other electronic properties6.

The optical conductivity of gapped graphene is depicted in Fig. 4.1. A modest
value for the band gap was chosen: ∆ = 0.1 t ' 0.3 eV, same as in Fig. 3.3. The
Fermi level is placed in the gap.

It is worth noticing, considering the history with velocity gauge calculations
(Section 2.4.3), that the DC conductivity of the gapped system is zero, as expected
from an insulator. In Fig. 4.1, as in subsequent figures representing the nonlinear
response of gapped graphene (Figs. 4.5 and 4.7), there are no unphysical infrared
divergences, attesting to the validity of the minimal coupling method proposed in
this chapter. This confirms that, despite appearances, Eq. 4.26 is well-behaved in
the limit ω → 0+.

In fact, the real part of the optical conductivity in Fig. 4.1a vanishes completely
as soon as the optical frequency ω falls below the band gap. As will be proved in the
next chapters, this a general characteristic for any time-reversal symmetric system
without a Fermi surface. When the optical frequency matches the band gap, there

6Aside from affecting the counting of states, namely when relating the Fermi level to the carrier
concentration.
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Figure 4.2: Optical conductivity of graphene (∆ = 0) with γ = 5 × 10−4 t, at
T = 0 K. In black, the curves represent the case with no carriers, µ = 0, and in red,
the doped system with µ = 0.05 t, setting an effective gap at 2 |µ| = 0.1 t. For the
undoped system, the real part (a) is defined by universal constants σ0 = π e2/2h
and it has no imaginary part (b). The response of the doped system is similar to
Fig. 4.1; it differs in the existence of a Drude peak at zero frequency.

is a sudden, abrupt jump in the real part of the optical conductivity. Afterwards,
the conductivity slowly decreases for higher frequencies, towards a constant value.

The step observed in the real part is matched by a sharp negative peak in the
imaginary part, at the same frequency. This is, again, a common characteristic.
It will be shown later, in Section 6.1, that there is a correspondence between the
features in the real and imaginary parts, guaranteed by causality. The imaginary
part of the response decays quickly in magnitude for higher frequencies and it is
worth noting, again, that when ω → 0+, it tends to zero.

When depicting the dispersion of the optical response of a crystal, the features
will invariably be more pronounced at zero temperature and in the relaxation-free
limit. This applies to both the linear and nonlinear conductivities. It is generally
true that decreasing the parameter γ (Section 2.5) results in a cleaner, more physi-
cally transparent dispersion curve for the conductivity. The smaller the relaxation
parameter, the better defined the features will be: the steeper the jumps in the real
part and the sharper the peaks in the imaginary part. In particular, the peak in
Fig. 4.1b falls deeper and deeper for smaller values of γ and ultimately diverges in
the relaxation-free limit.

In this section, the relaxation is set at γ = 0.0005 t ' 1.5 meV, which places
it at 0.5 % of the next energy scale of the problem, the band gap. This leaves us
comfortably in a regime where relaxation is (mostly) negligible.

The optical conductivity of graphene for ∆ = 0 is depicted in Fig. 4.2. When
the Fermi level is set at zero energy, µ = 0, crossing the Dirac points, the optical
conductivity is purely real and constant over the entire frequency range represented
in Fig. 4.2: σxx(ω) = σ0 = e2/4 ~ = π e2/2h ' 60µS. This relates to a famous
property of graphene, discovered early on [70]: a transparency (transmittance) in
the visible defined by universal constants, Tr = 1− παf with αf = e2/4πε0~c as the
fine structure constant.

Another curious aspect of the linear conductivity of undoped graphene is that
it remains constant for ω → 0+. In other words, undoped graphene has a nonzero
DC conductivity, even though there are no charge carriers! This formed the subject
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Figure 4.3: Optical conductivity of graphene (∆ = 0) with µ = 0 and γ = 5×10−4 t,
at T = 0 K. The optical response has a pronounced feature at ~ω = 2 εvH = 2 t. The
situation is inverted relative to the dispersion near the Dirac point (Fig. 4.2): the
real part (a) displays a sharp peak, while the imaginary part (b) contains a sudden
jump.

of much debate and the customary explanation for the observation of a metallic
regime for very low carrier concentrations involves taking into account the existence
of electron-hole puddles [89] and considering a more complex system than the clean,
homogeneous crystal that concern us here. It is interesting though, that this as-
tonishing property is quickly derived by perturbation theory. Unfortunately, the
reasonableness of this perturbative result for ω = 0 is highly questionable (see the
discussion in Section 4.6.4).

The red curves in Fig. 4.2 depict the linear optical response of doped graphene.
For µ 6= 0, the Fermi level sets an effective gap at 2|µ|. Comparing with the gapped
system in Fig. 4.1, we recognize the step in the real part once the photon frequency
exceeds the effective gap and the corresponding drop in the imaginary part. This
behavior is now due to Pauli blocking: at zero temperature, for energies below the
Fermi level, both be valence and the conduction states are occupied and no vertical
transitions are possible (see Fig. 4.4a).

A distinct feature of doped graphene that separates it from the gapped sys-
tem is the Drude peak at low frequencies. This contribution to the conductivity is
determined by intraband transitions near the Fermi surface (more on this in Chap-
ter 5). As it is to be expected from a metallic system with an concentration of free
charge carriers, the conductivity tends to infinity7 in the DC limit: this is a physical
divergence.

So far, the results that have been presented are well-known in the literature,
easily obtained by Kubo’s formula. An advantage of the minimal coupling method
adopted here is that we can effortlessly consider higher optical frequencies, probing
regions of the FBZ beyond the Dirac cones. The dispersion of the optical conduc-
tivity of undoped graphene in an wider frequency range is represented in Fig. 4.3.

Interestingly, there is an additional, very prominent feature in the conductivity,
larger in magnitude then the step and peak of Fig. 4.2 and localized around ~ω = 2 t.
What is special about this specific frequency?

Besides combinations of optical frequencies that match the gap, unblocking in-

7For a finite relaxation parameter, it does not actually diverge, but is proportional to γ−1.
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(a) (b)

Figure 4.4: In the left, (a) a cross section of a Dirac cone, with arrows indicating
electronic interband transitions caused by the incidence of a photon with that energy.
For optical frequencies below the Fermi level, both the valence and conduction states
are occupied and, by Pauli’s exclusion principle, interband transitions are blocked.
In the right, (b) van Hove singularities are marked in red in the FBZ of graphene. All
other points where the energy gradient vanishes can be obtained by translation with
a reciprocal lattice vector. Γ stands for the center of the FBZ, where the conduction
band energy is maximum, K and K′ are the Dirac points and the remaining van
Hove singularities are responsible for the feature observed in Fig. 4.3.

terband transitions, another set of frequencies which have a considerable impact in
the optical response are those for which the joint density of states diverges: the van
Hove singularities [58].

To find these frequencies, one must first identify the points in the FBZ for which
∂β∆εkcv = 0. Because graphene has electron hole symmetry, this simplifies to
∂β∆εkcv = 2

(
∂βεkc

)
= 0. This energy will be denoted by εvH,

|∇kεvH| = 0 (4.90)

Inserting the dispersion relation (Eq. 4.76) in Eq. 4.90 leads into the following
system of equations,

−2 sin(kx a)− 2 sin

(
kx a

2

)
cos

(√
3 ky a

2

)
= 0 (4.91)

−2
√

3 cos

(
kx a

2

)
sin

(√
3 ky a

2

)
= 0 (4.92)

which has several solutions:

kx = 0 ∧ ky = 0 =⇒ εvH =

√
(9 t)2 +

(
∆

2

)2

(4.93)

the chosen origin of the FBZ, corresponding to the conduction band energy maxi-
mum in Fig. 3.2,

kx = ±4 π

3 a
∧ ky = 0 =⇒ εvH =

∆

2
(4.94)
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Figure 4.5: Second order optical conductivity of gapped graphene with ∆ = 0.1 t
and γ = 5 × 10−4 t, at T = 0 K. The Fermi level resides in the band gap. The
response displays sudden jumps at ~ω = ∆/2 and ~ω = ∆ in the real part (a) with
accompanying changes in the imaginary part (b). Since the system is an insulator,
there is no Drude peak at zero frequency and both real and imaginary parts vanish
for ω → 0+.

the notable Dirac points at K and K′, vertices of the hexagonal FBZ, for which the
energy is minimum, and

kx = 0 ∧ ky = ± 2π√
3 a

=⇒ εvH =

√
t2 +

(
∆

2

)2

(4.95)

the middle points along the edges of the hexagonal FBZ, representing local max-
imums of the conduction band energy. By symmetry, it is possible to infer other
states, with the same energy, that solve Eqs. 4.91 and 4.92. The complete set of
Bloch states with van Hove singularities is depicted in Fig. 4.4b.

The last case (Eq. 4.95) is the one visible in Fig. 4.3, where the feature appears
for ~ω = 2 εvH(∆ = 0) = 2 t. Curiously, the step now appears in the imaginary part
and the divergence in the real part, reversing the roles.

The analysis that occupies us here stays within the confines of the independent
electron approximation and has its limitations in describing the observed optical and
electronic properties of crystals. The high frequency van Hove singularity exemplifies
this perfectly. It is known that, when accounting for the existence of excitons, whose
treatment lies outside the scope of this thesis, the position of the van Hove singularity
shifts considerably in the energy spectrum [90].

4.6.3 Second order conductivity

The presence of inversion symmetry in monolayer graphene dictates that all even
orders of the optical response be identically zero. The absence of a second order
response in particular was confirmed numerically with the minimal coupling method.

Inversion symmetry is broken by making the A- and B-site atoms nonequivalent,
as in gapped graphene (Section 3.4). Gapped graphene has a nonzero second order
conductivity, presented in Figs. 4.5 and 4.6.

In Fig. 4.5, the second order conductivity is governed by the electronic properties
near the Dirac point. The real part displays a step when 2 ~ω = ∆ and another,
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Figure 4.6: Second order optical conductivity of gapped graphene with ∆ = 0.1 t
and γ = 5×10−4 t, at T = 0 K, for optical frequencies that probe regions of the FBZ
beyond the Dirac point approximation. The nonlinear optical response has features
at ~ω = 2 εvH/2 ' t and ~ω = 2 εvH ' 2 t.

in the opposite direction, when ~ω = ∆, while the imaginary part has a negative
logarithmic divergence at 2 ~ω = ∆ and a positive one at ~ω = ∆. Below the
frequency whose double matches the gap, the real part of the conductivity again
vanishes identically.

The ability of the minimal coupling algorithm to provide the optical response
in an wide frequency range extends to the nonlinear response. As an example,
the second order conductivity is depicted in Fig. 4.6 for higher frequencies. The
behavior is similar to Fig. 4.3, but there are now two features, at 2 ~ω = 2 εvH and
at ~ω = 2 εvH, when the optical frequency or its double hit the van Hove singularity.
This time, the features observed in the high frequency range are much smaller in
magnitude than their low energy counterparts. A more detailed analysis on the
nonlinear optical response of graphene beyond the Dirac point approximation can
be found in [84].

The results of this subsection already demonstrate the applicability of the min-
imal coupling method to studies in nonlinear optics. As a curiosity, know that if
the “conventional” velocity gauge treatment, described in Section 2.4.2, was (incor-
rectly) applied to this two-band model, the entire second order response would have
returned zero. Furthermore, the first study of the third order optical conductivity
of monolayer graphene over an extended frequency range [84] was done with, and
made possible by, the minimal coupling method introduced here.

4.6.4 Third order conductivity

The third order conductivity of gapped graphene is in Fig. 4.7. At this point, a
pattern starts to become noticeable. The real part of the conductivity contains
discrete steps at the frequencies 3 ~ω = ∆, 2 ~ω = ∆ and ~ω = ∆, with alternating
signs. Accompanying the steps in the real part, are the divergences in the imaginary
part, which not only appear at the same frequencies, but always run in the opposite
sense of the step-like increase/decrease, as in previous orders. Interestingly, the
feature at ~ω = ∆ = 0.1 t, represented in the inset, is much smaller than the rest.
Below ~ω = ∆/3, the real part vanishes, while the imaginary decays to zero in the
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Figure 4.7: Third order optical conductivity of gapped graphene with ∆ = 0.1 t
and γ = 5 × 10−4 t, at T = 0 K. The Fermi level resides in the band gap. The
response displays sudden jumps at ~ω = ∆/3, ~ω = ∆/2 and ~ω = ∆ in the real
part (a) with accompanying changes in the imaginary part (b). The inset zooms
in at ~ω = ∆ to display the one-photon features, small in magnitude. Since the
system is an insulator, there is no Drude peak at zero frequency and both real and
imaginary parts vanish for ω → 0+.

DC limit.

Closing the gap, all features vanish and the modulus of the conductivity decreases
monotonically for increasing frequency, as seen in Fig. 4.8. When ω → 0+, the
nonlinear conductivity diverges, even though the concentration of carriers is zero,
which raises the concern: if the third order DC conductivity of graphene is seemingly
infinite, can we truly trust the perturbative results in this regime?

For undoped graphene, we cannot. The validity of perturbation theory relies on
the interband matrix elements of the perturbation being smaller than |~ω−∆|, but in
the absence of a band gap and when the optical frequency itself approaches zero, the
plausibility of a perturbative treatment is lost and any results are to be mistrusted.
If in linear order, the surprising answer σxx(0) = σ0 could perhaps be accepted,
σxxxx(0) = ∞ proves conclusively that the derived formulas are mathematically
unsound in the DC limit. To put it simply, the series expansion of the current for
a DC field does not converge. This point is easily missed in linear transport theory
and is here made transparent by a nonlinear optics study.

These worries are removed by setting an effective gap, with µ 6= 0. The third
order optical response of doped graphene is traced in red in Fig. 4.8. Similarly to
the gapped case, a sequence of steps and divergences are found when the optical
frequency, its double or its triple match the effective gap. The strongest of these
features is at ~ω = 2|µ|/3. Just as in the gapped case, the feature observed when
the optical frequency matches the gap is, comparably, fairly weak.

The dispersion represented in Fig. 4.8 is in perfect agreement with the litera-
ture [56, 76], although there is a technical point to consider. When comparing the
results of this thesis to works by other authors, it should be noted that the phe-
nomenology adopted here, introduced in Section 2.5, is not the most common. This
leads to a discrepancy between different phenomenological approaches only in a re-
gion of the order γ around the resonant frequencies (2|µ|/3~, |µ|/~ and 2|µ|/~, in
this case). This becomes irrelevant in the relaxation-free limit, but, for any finite γ,
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Figure 4.8: Third order optical conductivity of graphene (∆ = 0) with γ = 5×10−4 t,
at T = 0 K. In black, the curves represent the case with no carriers, µ = 0, and
in red, the doped system with µ = 0.05 t, setting an effective gap at 2|µ| = 0.1 t.
The response displays sudden jumps at ~ω = 2|µ|/3, ~ω = 2|µ|/2 and ~ω = 2|µ| in
the real part (a) with accompanying changes in the imaginary part (b). The inset
zooms in around ~ω = 2|µ| to display the one-photon features, small in magnitude.
For the doped system, the expected Drude peak is observed at lower frequencies.

the behavior is noticeably distinct in this narrow window, with our use of complex
frequencies providing, arguably, more physically looking curves. This question is
discussed in more detail in [56].

Lastly, there is the Drude peak in Fig. 4.8. As in the linear response, when
there is a Fermi surface and negligible relaxation, a physical divergence is to be
expected in the DC limit, where charge carriers flow in the direction of the electric
field without impediment8, ever increasing, never reaching a steady-state.

Outside the DC conductivity, but well below the effective gap, there is a range
of frequencies where the real part of the optical response, linear and nonlinear,
is entirely determined by Fermi surface properties (Chapter 5). In this region of
the spectrum, Boltzmann equation treatments provide an intuitive, direct means to
derive the optical response of the system. The first derivations of the third order
conductivity of graphene followed this route [72, 74], with results that are reproduced
by our more general calculations.

Aside from the consistency between theoretical calculations, often based on dif-
ferent techniques, what is desirable is to find agreement between theoretical predic-
tions and experimental observation. In this front, the study of the nonlinear optical
response of two-dimensional materials is still in its infancy and most measurements
on graphene, in particular, are in significant disagreement with each other. On top
of this, it shouldn’t be expected that our naive independent electron picture fully
captures the nonlinear physics involved in these experiments. On the other hand,
the careful work of [78] has demonstrated that the most important aspects of the
nonlinear response of graphene are, in fact, properly described by the dispersion
behavior presented here, for sufficiently weak optical fields.

Among the possible reasons for the apparent (orders of magnitude) discrepancy
between theory and experiments (prior to the agreement found in the work of Jiang
et al [78]), the use of an effective Hamiltonian, the Dirac Hamiltonian, in all the

8In this idealized situation of infinitesimally small relaxation.
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theoretical computations made by then was pointed out as a possible source of
error [76, 77]. Since the minimal coupling method takes into account, and in fact
requires, the entire band structure of graphene, this is now known to not be the case.
The results derived in this chapter with the minimal coupling method, running
the integration over every piece of the hexagonal First Brillouin Zone, reproduce
previous calculations that adopted low energy effective descriptions around the Dirac
points [76]. These calculations, even though they do not possess the versatility of
the minimal coupling algorithm, are simpler and often provide analytical answers,
providing insight on numerical results, as shall be demonstrated in the next chapter.
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Chapter 5

Resonance-based analysis

In this chapter, our attention turns to the length gauge method. The structure of the
electronic nonlinear optical conductivity will be elucidated by means of a detailed
study of the two-band model. The nonlinear conductivity is decomposed as a sum
of contributions related with different regions of the First Brillouin Zone, defined
by single or multiphoton resonances. All contributions are written in terms of the
same integrals, which contain all information specific to the particular model under
study. In this way, ready-to-use formulas are provided that reduce the often tedious
calculations of the second and third order optical conductivity to the evaluation of
a small set of similar integrals. The treatment presented in this chapter is a direct
generalization of the work in [91].

5.1 Motivation

While the minimal coupling method proves itself excellent for numerically assessing
the dispersion of the nonlinear conductivity, especially in the context of tight binding
models, it lacks the ability to handle low energy effective Hamiltonians. This is
relevant, since these are usually the ones for which analytical answers can be found.
By this, it is meant that low energy effective theories are typically simpler and one
is able to integrate over reciprocal space and arrive at explicit analytical expressions
for the linear and nonlinear conductivity.

For this task, the length gauge method is to be favoured. Still, the complex-
ity is considerable and it can be a daunting task to try and derive a third order
conductivity. Here, this complexity is brought down and calculations are made as
straightforward as using Fermi’s golden rule, though multiple times in sequence.

Another, perhaps just as important, goal of this chapter is to gather insight on
the mathematical structure of the nonlinear conductivity. In the numerical results
for monolayer graphene displayed in Section 4.6, features were found when resonance
conditions were met at the gap, but no appropriate explanation was given for such.
Additionally, there are other questions that we do not yet have the tools to answer:
What possible features can be displayed by the dispersion of a nonlinear conductiv-
ity? Why are steps found in the real part and divergences in the imaginary part?
These questions, among others, will be answered over the course of this chapter, by
revisiting and inspecting in detail the length gauge perturbation theory of Aversa
and Sipe [49].

In the length gauge, both intraband and interband transitions must be taken

78



5. RESONANCE-BASED ANALYSIS

into account and are transparently expressed in the structure of the perturbation
theory, presented in Section 2.4.1, which contains as particular cases the dynamics
of atomic systems and the free carriers single-band motion, but is more general,
and complex, than either [49]. As we have discussed (Sections 2.3 and 2.4), the
complexity stems from expressing the perturbation in terms of a position operator,
which takes the form of a covariant derivative in the Bloch representation [49, 54, 57].
The successive application of derivatives as we move to higher orders in perturbation
theory leads to unwieldy expressions for the nonlinear conductivity and lengthy
calculations even for the very simplest models, the only ones for which analytical
calculations are even attempted. Despite this, the results sometimes show surprising
simplicity and structure. As an example, we shall see (Section 5.5) that the third
order conductivity of the system of massless Dirac fermions found in monolayer
graphene has the form1 [76],

σxxxx(ω, ω, ω) =
C0

(~ω)4

(
−17G

(
~ω
2|µ|

)
+ 64G

(
2~ω
2|µ|

)
− 45G

(
3~ω
2|µ|

))
(5.1)

with

G(x) ≡ Θ(|x| − 1) +
i

π
log

∣∣∣∣1− x1 + x

∣∣∣∣ (5.2)

where C0 is a constant: C0 = ~ v2
F e

4/192.
In physics, when elaborate and extensive calculations are required to derive sim-

ple and elegant results, it is sometimes a sign that a simpler and more insightful
way to express the theory exists. This is the perspective we take here. Eq. 5.1
has the third order conductivity broken up into pieces that are relevant in different
regions of the spectrum, depending on whether the energies of one, two or three
photons are closer to matching the “effective gap” given by 2|µ|. This suggests that
a resonance-based decomposition of the conductivity might be possible in general,
leading to a more direct derivation of analytical results and easier interpretation of
the underlying physics.

In exploring this possibility, we confine ourselves to the study of the two-band
crystal, the solid-state analogue of the two-level atom. In similar spirit to the the-
oretical investigations of the nonlinear optics of two-level atoms during the seven-
ties [3, 92], we expect a study of the two-band crystal to provide a firm foundation
for later investigations of more general systems, to allow the central concepts to
emerge more simply and to have a wide range of applicability, encompassing any
situation where the incident photon frequencies connect a single pair of conduction
(c) and valence (v) bands.

In Section 5.2, the central results from this study are presented. A decomposition
of the nonlinear conductivity is made based on the possible resonances and ready-
to-use formulas are provided that, for any two-band model, reduce the calculation
of the linear, second and third order conductivity to the evaluation of one2, two and
six integrals over the FBZ, respectively. For systems that possess a Fermi surface
(e.g. metals), there are two additional integrals to compute at each order. The
integrals can sometimes be evaluated analytically in the relaxation-free limit, as

1In the relaxation-free limit γ → 0+.
2Two if the system is not topologically trivial.
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described in Section 5.3. A brief discussion on how to obtain finite temperature
results from a zero temperature calculation is included in Section 5.4, closing the
exposition of the formalism. The ideas and tools developed in this chapter are
illustrated with calculations for the system of massive and massless Dirac fermions
present in monolayer graphene with and without a gap, respectively, in Section 5.5.

5.2 Photon resonances and the Fermi surface

In Section 2.4.1, it was shown that,

σβα1...αn(ω̄1, . . . , ω̄n) =

i en+1

~

∫
ddk

(2π)d

∑
a,b

[
Dβ, H0

]
kba

~ω̄1 + · · ·+ ~ω̄n −∆εkab

[
Dαn , . . .

1

~ω̄1 −∆ε
◦ [Dα1 , ρ0] . . .

]
kab

(5.3)

From this concise expression, a more explicit form of the nonlinear conductivity
can be derived by expanding out all the commutators and performing all the re-
quired differentiation (that follows from Eq. 2.52), resulting in a lengthy and rather
cumbersome formula. This is the usual starting point in the literature, when com-
puting the nonlinear optical response functions of semiconductors and other mate-
rials. Numerical integration is necessary, except for some cases where a low-energy
description exists with very simple dispersion relation and eigenstates. For these
systems, analytical calculations are sometimes possible, but still often rather long
and complicated [75]. Here, we attempt to bring some simplicity and clarity to the
structure of the nonlinear conductivity, by separating out terms whose resonances
are located in different regions of the FBZ.

Since we are restricting ourselves to the analysis of a two-band system, there is a
single (nonzero) energy difference in the denominators of Eq. 5.3, ∆εkab = ±∆εkcv,
allowing for a partial fraction decomposition into terms with a single denominator to
be integrated, (~ω̄1+· · ·+~ω̄i±∆εkcv)

−1 with i ∈ {1, . . . , n}. These terms we denote
by σβα1...αn

i (ω̄1, . . . , ω̄i, . . . , ω̄n) as they are associated with resonances involving an
i number of photons3. We shall see later how the real part4 of these contributions
is entirely described by the properties of the crystal in the vicinity of regions of the
FBZ where the resonance condition ~ω1 + · · ·+ ~ωi−∆εkcv = 0 is met. Some terms
will involve poles of higher orders, but these can reduced back to simple poles with an
integration by parts or, equivalently, by making use of the identities in Appendix G.
Finally, there will be terms where the application of the position operator resulted in
derivatives of the Fermi-Dirac distribution. These terms will be treated separately
and are denoted by σβα1...αn

F (ω̄1, . . . , ω̄n). An explicit application of the procedure
outlined here can be found in Appendix F, where the second order conductivity is
treated in detail. The resonance-based decomposition, stated generally, gives

3In due rigor, we work with a classical electromagnetic field and there are no photons present.
It should, however, be clear that when a proper quantum treatment is made ~ωi is the energy of
an incident photon, thereby justifying the used nomenclature.

4In a time-reversal symmetric system.
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σβα1...αn(ω̄1, . . . , ω̄n) = σβα1...αn

F (ω̄1, . . . , ω̄n) + σβα1...αn

1 (ω̄1, . . . , ω̄n) + · · ·+ σβα1...αn
n (ω̄1, . . . , ω̄n)

(5.4)

The various pieces of Eq. 5.4 will be made explicit in the following sections,
but it is useful to first inspect their structure in general terms. The one-photon
contribution can always be written as

σα1 (ω̄1, · · · , ω̄n) =
∑
j

∑
p

Cp
1j(ω̄1, · · · , ω̄n) Π

p(α)
j (ω̄1) (5.5)

where all tensor indices where condensed into one α ≡ βα1 . . . αn and p stands for
permutation. The sum in p implies p(α) runs over all permutations of α, with a
specific coefficient for each permutation applied. The coefficients Cp

1j(ω̄1, · · · , ω̄n)
are specified in the following sections for the linear, second order and third order
conductivities (n = 1, 2 and 3, respectively), where it is observed that most of
these coefficients are zero, making only a small number of permutations necessary
in practice. The coefficients are independent of the details of the system under
consideration (they depend solely on the optical frequencies). All dependence on
material properties in the sum of Eq. 5.5 is in the integrals Πα

j that take the general
form,

Πα
j (ω̄) =

∫
ddk

(2π)d

∑
a,b

gαj (A, ε)kab
~ω̄ −∆εkab

∆fkba (5.6)

with gαj as a set of functions, labeled by j = 1, 2, . . . , that depend on the energies
and their derivatives and on the non-abelian Berry connection A and its derivatives.

Similarly, for the two-photon contributions,

σα2 (ω̄1, · · · , ω̄n) =
∑
j

∑
p

Cp
2j(ω̄1, · · · , ω̄n) Π

p(α)
j (ω̄1 + ω̄2) (5.7)

and the generalization is obvious at this point,

σαi (ω̄1, · · · , ω̄n) =
∑
j

∑
p

Cp
ij(ω̄1, · · · , ω̄n) Π

p(α)
j (ω̄1 + · · ·+ ω̄i) (5.8)

Since all contributions involve a combination of the same integrals with a chang-
ing argument, the calculation of the nonlinear conductivity is reduced to the eval-
uation of the integrals in Eq. 5.6. The complexity and number of integrals to be
evaluated increases with the order n of the nonlinear conductivity, but they always
retain the general form of Eq. 5.6 for some g function. For finite γ, numerical inte-
gration will invariably be required. In Section 5.3, we analyze the limit of vanishing
relaxation, where analytical results are accessible.

It is worth noting at this point that the conductivity in Eq. 5.4 is not sym-
metrized. It follows from the definition in Eq. 1.9 that only the portion of the
nonlinear conductivity that respects intrinsic permutation symmetry is physical [3]
(see the discussion at the end of Section 2.2). When permutations of Eq. 5.4 are
properly accounted for, there will not only be an one-photon contribution associ-
ated to the resonance ~ω1 = ∆εkcv, but also ~ω2 = ∆εkcv and so on. Likewise for
contributions associated with higher numbers of photons. Having this in mind, the
formulas presented for the nonlinear conductivity in this chapter will nonetheless be
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left, for the most part, unsymmmetrized. Symmetrizing the conductivity is a trivial,
if cumbersome, procedure and adds little to the discussion here.

The terms described so far give a complete description for any two-band model
that is used to describe an insulator or a cold semiconductor. But for systems with
free charge carriers prior to optical excitation, there is an additional contribution5,

σαF (ω̄1, · · · , ω̄n) =
∑

X=A,B,...

∑
p

Cp
X(ω̄1, · · · , ω̄n)F

p(α)
X (5.9)

where the integrals have a different structure than before,

F βα1···αn
X =

∫
ddk

(2π)d

∑
a

gα1...αn
X (A, ε)kaa ∂βfka (5.10)

It is evident from the presence of derivatives of Fermi functions in Eq. 5.10
that these integrals are determined by the properties of the Fermi surface. More
surprising is the absence of any frequency dependence. All dispersion in σF comes
from the C coefficients, which are the same for every two-band system. This leads
us to an important result: the dispersion of the contributions from the Fermi surface
is given by an universal family of functions of frequency (Eq. 5.9), obtained through
linear combinations of the CX ’s. The particular linear combination observed is set by
the integrals FX . Being dictated by Fermi surface properties, they are particularly
dependent on carrier concentration and can therefore be tuned by doping.

In the following sections, Eqs. 5.5-5.10 are made explicit for the linear, second
and third order conductivities. Ready-to-use formulas are presented that reduce the
calculation of the nonlinear conductivities to the evaluation of a minimal number of
integrals over the FBZ (Eqs. 5.19-5.21, 5.26-5.29, 5.35-5.42).

5.2.1 Linear order

The derivation

The linear conductivity is simple enough that the suggested resonance-based decom-
position can be treated in detail and its derivation included here. The analogous
treatment for the second order conductivity takes greater effort and is relegated to
Appendix F. The derivation of the third order conductivity decomposition is entirely
omitted, as it is too extensive, and only the final expressions are presented.

Expanding the commutators (Eqs. 2.53 and 2.55) in the linear conductivity, as
they appear in the length gauge version (Eq. 2.61),

σβα1(ω̄1) = −i e
2

~

∫
ddk

(2π)d

∑
a,b

[
Dβ, H0

]
kba

~ω̄1 −∆εkab
[Dα1 , ρ0]kab

=− i e2

~2 ω̄1

∫
ddk

(2π)d

∑
a

(
∂βεka

)
(∂α1fka) +

i e2

~

∫
ddk

(2π)d

∑
a,b

AβkbaA
α1
kab∆εkab

~ω̄1 −∆εkab
∆fkba

(5.11)

5The validity of Eq. 5.9 has been checked by the author only up to third order.
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=− i e2

~2 ω̄1

∫
ddk

(2π)d

∑
a

(
∂βεka

)
(∂α1fka) + i e2 ω̄1

∫
ddk

(2π)d

∑
a,b

AβkbaA
α1
kab

~ω̄1 −∆εkab
∆fkba

− i e2

~

∫
ddk

(2π)d

∑
a,b

AβkbaA
α1
kab ∆fkba (5.12)

where the last term can be rewritten with the use of Eq. C.6 from Appendix C,

−i e
2

~

∫
ddk

(2π)d

∑
a,b

AβkbaA
α1
kab ∆fkba =− i e2

~

∫
ddk

(2π)d

∑
a,b

[Aβ,Aα1 ]kaa fka

=− e2

~

∫
ddk

(2π)d

∑
a

Fβα1
a fka (5.13)

Replacing back6 in Eq. 5.12,

σβα1(ω̄1) =− i e2

~2 ω̄1

∫
ddk

(2π)d

∑
a

(
∂βεka

)
(∂α1fka)−

e2

~

∫
ddk

(2π)d

∑
a

Fβα1
a fka

+ i e2 ω̄1

∫
ddk

(2π)d

∑
a,b

AβkbaA
α1
kab

~ω̄1 −∆εkab
∆fkba (5.14)

The first term in Eq. 5.14 contains the derivative of a Fermi function and can
be recognized as a Fermi surface integral of the type in Eq. 5.10. The second term
fits the mold of Eq. 5.6, identifiable by the one-photon resonance at ~ω1 = ∆ε.
Strangely, the last term falls in neither category. It is somewhat unfortunate, but
we have already encountered a deviation from the pattern laid out at the beginning
of this section.

The last term in Eq. 5.14 is a global term, that cannot be fully captured by
the properties of any given subregion of the FBZ. This type of term exists only
at linear order and forms the single exception to the general scheme proposed in
Eq. 5.4. It is known as the anomalous Hall conductivity [93] and is responsible for
the intrinsic quantum Hall effect: it provides a non-vanishing current in the absence
of a magnetic field and a Fermi surface.

In two-dimensional crystals, if the Fermi level lies in the gap and T = 0 K,
the sum in Eq. 5.13 runs over the occupied bands only and returns a topological
invariant: the sum of the Berry curvature flow associated to the occupied bands.
This quantity is quantized, since∫

d2k

(2π)2

∑
v

Fxyv =
N

2π
(5.15)

where the band index v considers only the occupied valence bands and N is the
Chern number, an integer.

If the Fermi level crosses a band, there is an additional non-integer part that
can, by performing an integration by parts, be identified as a Fermi surface prop-
erty. For this reason, and frankly for notational convenience, the term in Eq. 5.13

6Had the starting point been Eq. D.6 instead of Eq. 2.61, the same result would have been
produced, without the use of Eq. C.6.
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will be classified under the label “Fermi surface integral”, which is appropriate for
topologically trivial systems (N = 0).

For the most part, the anomalous contribution will not be crucial to the ideas
of this chapter. It vanishes in the presence of time-reversal symmetry (Section 6.6)
and does not affect the nonlinear optical properties of the crystal, our main interest.

The decomposition

In linear order, the resonance-based decomposition of Eq. 5.4 falls into the familiar
intra- and interband separation

σβα1(ω̄1) = σβα1

F (ω̄1) + σβα1

1 (ω̄1) (5.16)

with

σβα1

F (ω̄1) =
i e2

~

(
− 1

~ω̄1

F βα1

A + i F βα1

B

)
(5.17)

σβα1

1 (ω̄1) =
i e2

~
~ω̄1 Πβα1

1 (ω̄1) (5.18)

The integrals required to obtain the linear response are well-known and particu-
larly simple. There is one integral associated with an interband resonance and two
related to the Fermi surface (including the anomalous contribution from before),

F βα1

A ≡
∫

ddk

(2π)d

∑
a

(∂α1εka) (∂βfka) (5.19)

F βα1

B ≡
∫

ddk

(2π)d

∑
a

Fβα1
a fka (5.20)

Πβα1

1 (ω̄1) ≡
∫

ddk

(2π)d

∑
a,b

AβkbaA
α1
kab

~ω̄1 −∆εkab
∆fkba (5.21)

5.2.2 Second order

In second order, Eq. 5.4 gives

σβα1α2(ω̄1, ω̄2) = σβα1α2

F (ω̄1, ω̄2) + σβα1α2

1 (ω̄1, ω̄2) + σβα1α2

2 (ω̄1, ω̄2) (5.22)

Each contribution will be inspected separately. Their derivation is presented
in detail in Appendix F. In what follows, the C coefficients in Eq. 5.8 and the g
functions in Eqs. 5.6 and 5.10 for n = 2 will be made explicit.

Starting with the Fermi surface contribution,

σβα1α2

F (ω̄1, ω̄2) =
i e3

~

(
i

2 ~ω̄1 ~ω̄2

F βα1α2

A +
1

~ω̄1

Fα1α2β
B

)
(5.23)

The one-photon contribution,
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~
i e3

σβα1α2
1 (ω̄1, ω̄2) =

1

~ω̄1 + ~ω̄2
Πα2α1β

1 (ω̄1) +
~ω̄1 + ~ω̄2

(~ω̄2)2
Πβα1α2

1 (ω̄1) +
~ω̄1

~ω̄2
Πα1βα2

2 (−ω̄1)

(5.24)

Finally, the two-photon contribution,

~
i e3

σβα1α2
2 (ω̄1, ω̄2) = −~ω̄1 + ~ω̄2

(~ω̄2)2
Πβα1α2

1 (ω̄1 + ω̄2) +
~ω̄1 + ~ω̄2

~ω̄2
Πβα1α2

2 (ω̄1 + ω̄2) (5.25)

In second order, there are two integrals from interband resonances and two from
the Fermi surface,

F βα1α2

A ≡
∫

ddk

(2π)d

∑
a

(∂α1∂α2εka) (∂βfka) (5.26)

F βα1α2

B ≡
∫

ddk

(2π)d

∑
a

Fα1α2
a (∂βfka) (5.27)

iΠβα1α2

1 (ω̄) ≡
∫

ddk

(2π)d

∑
a,b

AβkbaA
α1
kab (∂α2∆εkab)

~ω̄ −∆εkab
∆fkba (5.28)

iΠβα1α2

2 (ω̄) ≡
∫

ddk

(2π)d

∑
a,b

AβkbaA
α1
kab;α2

~ω̄ −∆εkab
∆fkba (5.29)

where we made use of the generalized derivative notation introduced by Aversa and
Sipe [49]: Okab;α ≡ (δab ∂

α − i(Aαkaa −Aαkbb))Okab.
We chose, in Eq. 5.20, to label the anomalous contribution to the linear con-

ductivity as FB, and place it under the class of Fermi surface contributions. After
inspection of Eqs. 5.26 and 5.27, it is evident why. They form a natural extension
of their linear counterparts in Eqs. 5.19 and 5.20, with one more derivative applied
to the Fermi function in FB or to the band dispersion in FA. This will continue to
be the case for higher orders in perturbation theory.

FA is the purely intraband contribution. That is, FA is to be identified as the
contribution that would be present even in a system where all interband transitions
are neglected. In a one-band model, it is the only term that survives.

While the purely intraband contributions can be derived to any order without
the need for a perturbation theory as complex as the one discussed here, the in-
clusion of interband transitions brings new Fermi surface integrals, involving the
Berry curvature and its derivatives. For time-reversal symmetric systems, FA van-
ishes (Section 6.6) and it is possible to isolate FB. In this case, the Fermi surface
contribution at second order, σβα1α2

F , is a probe of the Berry curvature around the
Fermi surface.

Another curious result that follows from Eq. 5.27 is that we can expect the Fermi
surface contribution to be absent when the current is measured in the direction of
the optical fields: σβα1α2

F = 0 when β = α1 = α2. As a consequence, no Drude peaks
should be found in the diagonal tensor elements of the second order conductivity, for
time-reversal symmetric systems. This is true even in the presence of free carriers,
found in metals or doped semiconductors.
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Finally, we note that the contributions that probe the FBZ beyond the Fermi
surface, the one- and two-photon contributions, are determined by the integrals
in Eqs. 5.28 and 5.29 which are known in the literature of the nonlinear optics of
solids for their relation to the injection and shift currents in semiconductors [5],
respectively.

5.2.3 Third order

A considerable jump in complexity occurs when we move to third order. Once again,
we start with Eq. 5.4,

σβα1α2α3(ω̄1, ω̄2, ω̄3) =σβα1α2α3

F (ω̄1, ω̄2, ω̄3) + σβα1α2α3

1 (ω̄1, ω̄2, ω̄3)

+ σβα1α2α3

2 (ω̄1, ω̄2, ω̄3) + σβα1α2α3

3 (ω̄1, ω̄2, ω̄3) (5.30)

and write out all contributions explicitly.

The Fermi surface contribution,

σβα1α2α3

F (ω̄1, ω̄2, ω̄3) =
i e4

~

(
1

6 ~ω̄1 ~ω̄2 ~ω̄3

F βα1α2α3

A +
i

~ω̄1 (~ω̄1 + ~ω̄2)
Fα2βα1α3

B

)
(5.31)

The one-photon contribution,

~
i e4

σβα1α2α3
1 (ω̄1, ω̄2, ω̄3) =

~ω̄23

2 ~ω̄2 ~ω̄3 ~ω̄123
Πα1α2α3β

1 (−ω̄1) +
~ω̄13

~ω̄2 (~ω̄3)2
Πα1α2βα3

1 (−ω̄1)− 1

~ω̄12 ~ω̄3
Πα2α1α3β

2 (ω̄1)

− ~ω̄123

2 ~ω̄2 ~ω̄3 ~ω̄23
Πβα1α2α3

2 (ω̄1)− 1

(~ω̄3)2 ~ω̄123
Πα2α1α3β

3 (ω̄1)− ~ω̄123

2 (~ω̄2)2 (~ω̄3)2
Πβα1α2α3

3 (ω̄1)

− ~ω̄1

2 ~ω̄2 ~ω̄3
Πα1α2α3β

4 (−ω̄1) +
2 ~ω̄1 ~ω̄123

~ω̄2 ~ω̄13 ~ω̄23
Πα3βα1α2

5 (ω̄1)− (~ω̄1)2 ~ω̄123

~ω̄2 ~ω̄3 ~ω̄12 ~ω̄13
Πα2α3α1β

5 (ω̄1)

(5.32)

with the abbreviations ω̄ij ≡ ω̄i + ω̄j and ω̄123 ≡ ω̄1 + ω̄2 + ω̄3.

The two-photon contribution,

~
i e4

σβα1α2α3
2 (ω̄1, ω̄2, ω̄3) =

− ~ω̄12

(~ω̄2)2 ~ω̄3
Πα1α3βα2

1 (−ω̄12)− ~ω̄12

2 ~ω̄1 ~ω̄2 ~ω̄123
Πα3α1α2β

1 (ω̄12)− ~ω̄12 ~ω̄123

2 ~ω̄1 ~ω̄2 (~ω̄3)2
Πβα1α2α3

1 (ω̄12)

+
1

(~ω̄1)2 ~ω̄123
Πα3α2α1β

3 (ω̄12) +
~ω̄123

(~ω̄2)2 (~ω̄3)2
Πβα1α2α3

3 (ω̄12)− (~ω̄12)2

2 ~ω̄1 ~ω̄2 ~ω̄3
Πα3βα1α2

6 (ω̄12)

(5.33)

Finally, the three-photon contribution,
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~
i e4

σβα1α2α3
3 (ω̄1, ω̄2, ω̄3) =

+
~ω̄12 ~ω̄123

2 ~ω̄1 ~ω̄2 (~ω̄3)2
Πβα1α2α3

1 (ω̄123) +
~ω̄123

2 ~ω̄2 ~ω̄3 ~ω̄23
Πβα1α2α3

2 (ω̄123)

− ~ω̄123

2 (~ω̄2)2 (~ω̄3)2
Πβα1α2α3

3 (ω̄123)− ~ω̄123

~ω̄3 ~ω̄23
Πβα1α2α3

4 (ω̄123)− ~ω̄123

~ω̄13 ~ω̄23
Πα3βα1α2

5 (ω̄123)

(5.34)

In third order, there are six integrals from interband resonances and two from
the Fermi surface,

F βα1α2α3

A ≡
∫

ddk

(2π)d

∑
a

(∂α1∂α2∂α3εka) (∂βfka) (5.35)

F βα1α2α3

B ≡
∫

ddk

(2π)d

∑
a

(∂α3Fα1α2
a ) (∂βfka) (5.36)

Πβα1α2α3

1 (ω̄) ≡
∫

ddk

(2π)d

∑
a,b

AβkbaA
α1
kab;α2

(∂α3∆εkab)

~ω̄ −∆εkab
∆fkba (5.37)

Πβα1α2α3

2 (ω̄) ≡
∫

ddk

(2π)d

∑
a,b

AβkbaA
α1
kab (∂α2∂α3∆εkab)

~ω̄ −∆εkab
∆fkba (5.38)

Πβα1α2α3

3 (ω̄) ≡
∫

ddk

(2π)d

∑
a,b

AβkbaA
α1
kab (∂α2∆εkab) (∂α3∆εkab)

~ω̄ −∆εkab
∆fkba (5.39)

Πβα1α2α3

4 (ω̄) ≡
∫

ddk

(2π)d

∑
a,b

AβkbaA
α1
kab;α2α3

~ω̄ −∆εkab
∆fkba (5.40)

Πβα1α2α3

5 (ω̄) ≡
∫

ddk

(2π)d

∑
a,b

AβkbaA
α1
kbaA

α2
kabA

α3
kab

~ω̄ −∆εkab
∆fkba (5.41)

Πβα1α2α3

6 (ω̄) ≡
∫

ddk

(2π)d

∑
a,b

Aβkba;α1
Aα2

kab;α3

~ω̄ −∆εkab
∆fkba (5.42)

There are, in the expressions of this section, two special cases worth addressing.
These concern two types of systems that have been well studied in the past: metals
and atomic/molecular gases.

First, the case of a metallic system at low frequencies. Consider that the Fermi
level crosses a single band of our electronic system. In the limit of low frequencies,
it is assumed that the Fermi surface contributions dominate and the other bands
can be neglected. This produces the same conductivities that could be derived via
a Boltzmann equation approach, but naturally includes the contributions involving
the Berry curvature (such as the intrinsic Hall conductivity in linear order).

The well-known, much easier, perturbative results for atomic/molecular systems
can be retrieved from the previous expressions for the linear and nonlinear conduc-
tivities by simply removing any dependence on the Bloch vector k (and discarding
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the integration as well). The Fermi surface contributions automatically disappear
and the non-abelian Berry connection, independent of k, takes then the role of the
dipole matrix elements (aside from a multiplicative constant). Most integrals van-
ish in this case. For instance, at third order, only Π4, Π5 and Π6 survive. Notice
that generalized derivatives do not return automatically zero, unless the diagonal
elements of the position operator (Akaa) are themselves zero or identical for both
bands. If the position operator matrix elements have no diagonal matrix elements, a
common approximation [3], then the Π5 integrals are all that remains and describe
the expected third order optical response of a gaseous system.

In crystals, all the listed integrals must be evaluated. The complexity is atten-
uated only by whatever symmetries the specific crystalline structure may possess.
Crystal symmetry reduces the number of independent elements in the conductivity
tensor, as was seen in Section 4.6.1 for graphene. Since this type of symmetry relates
to the tensor indices and must be valid for any set of optical frequencies, it must
also be obeyed by each Πα

j individually. For graphene, for instance, all the integrals
in Eqs. 5.35-5.42 will necessarily have the same symmetry properties presented in
Eqs. 4.84-4.88 for the third order conductivity. This is of great practical relevance,
as it limits the required number of integrals to compute to obtain the complete
nonlinear conductivity.

There are other symmetries that are of a more general character and these will
be addressed in Chapter 6. It is worth mentioning at this point, though, that gauge
invariance is transparently expressed in the integrands of the Πα

j integrals. Recall
the discussion at the end of Section 2.3: the nonlinear conductivity must be invariant
under a change of phases of the Bloch functions ψka → eiφka ψka. It is as a direct
consequence of this symmetry that all products of off-diagonal matrix elements of
A appear in conjugate pairs (one Akcv and one Akvc) and generalized instead of
regular derivatives of A appear in Eqs. 5.35-5.42.

The type of resonance-based analysis presented in this section could be continued
for successively higher order nonlinear conductivities. Unlike the minimal coupling
method, the generalization is not immediate and requires finding new expressions at
each order, with increasingly more elaborate derivations. The number of integrals
continuously increases with n as more derivatives or generalized derivatives are ap-
plied in perturbation theory and more ways exist to arrange them in the numerators
of the Πβα1...αn

j integrals.

5.3 Relaxation-free limit

In Section 2.5, complex frequencies were introduced as a means to allow the physical
system to relax. In this section, the limit of vanishing relaxation and real frequen-
cies is considered. It is in this limit that the optical response is more physically
transparent and analytical results more accessible.

However, there are some subtleties in implementing this. For certain regions of
frequency space, the nonlinear conductivity will diverge in the relaxation-free limit.
Specifically, the nonlinear conductivity may diverge in the relaxation-free limit when
a subset of the optical frequencies adds to zero. This includes the case of DC fields
(ωi = 0) or DC currents (ω1 + · · ·+ ωn = 0).

Fundamentally, this is due to the existence of regions of the FBZ where more
than one of the resonance conditions is obeyed simultaneously (two or more de-
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nominators in the symmetrized version of Eq. 5.3 are resonant at those k-points).
Geometrically, this can be visualized by representing in the FBZ the set of points
where the conditions ω1−∆εkcv = 0 or ω1 + · · ·+ωi−∆εkcv = 0 (i = 2, ..., n) or any
of their permutations are verified and checking for overlapping regions (for example,
in Fig. 5.1b for there to be the possibility of a divergence two of the contours would
have to cross or altogether overlap).

When using the equations of Section 5.2, this difficulty is realized in the relaxation-
free limit of Eq. 5.8,

lim
γ→0+

σαi (ω̄1, · · · , ω̄n) = lim
γ→0+

∑
j, p

Cp
ij(ω̄1, · · · , ω̄n) Π

p(α)
j (ω̄1 + · · ·+ ω̄i)

=
∑
j, p

Cp
ij(ω1, · · · , ωn) lim

γ→0+
Π
p(α)
j (ω̄1 + · · ·+ ω̄i) (5.43)

The validity of this passage hangs on the convergence of the C coefficients in the
relaxation-free limit, which in turn relies on there existing no cancelling subset of
frequencies in {ω1, . . . , ωn}.

Henceforth, we will assume this to be the case. We emphasize that the validity
of the equations in Section 5.2 always holds, even in these regions of frequency
space. But the analysis of the relaxation-free limit in these situations, which include
several nonlinear optical effects of interest (photovoltaic effects, DC field-induced
second order response, electro-optic effects,...), albeit possible, requires greater care
and lies outside the scope of this thesis. Indeed, the study of the divergences of the
nonlinear optical conductivity is a topic of current research interest [6, 8, 94].

From Eq. 5.43, the evaluation of the relaxation-free limit of the nonlinear con-
ductivity has been reduced to evaluating the relaxation-free limit of the integrals
Πα
j . This is a direct application of Eq. 2.78,

lim
γ→0+

Πα
j (ω̄) = π

(
Hα
j (ω)− i Iαj (ω)

)
(5.44)

where

Iαj (ω) ≡
∫

ddk

(2π)d

∑
a,b

gαj (A, ε)kab ∆fkba δ (~ω −∆εkab) (5.45)

Hα
j (ω) ≡ 1

π
−
∫

ddk

(2π)d

∑
a,b

gαj (A, ε)kab
~ω −∆εkab

∆fkba (5.46)

Occasionally, the Πα
j integrals occur with a minus sign in the argument (see

Eqs. 5.24 and Eqs. 5.32-5.33). In this case, the pole in the Argand plane is ap-
proached from below, instead of above. Extending Eq. 5.44 to include this case

lim
γ→0+

Πα
j (±ω̄) = π

(
Hα
j (±ω)∓ i Iαj (±ω)

)
(5.47)

As an example, let us consider the linear conductivity. Neglecting the Fermi
surface contribution (Eq. 5.18),

σβα1(ω1) ≡ lim
γ→0+

σβα1(ω̄1) = π i e2 ω1

(
Hβα1

1 (ω1)− i Iβα1

1 (ω1)
)

(5.48)
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where

Iβα1

1 (ω1) =

∫
ddk

(2π)d

∑
a,b

AβkbaA
α1
kab ∆fkba δ (~ω1 −∆εkab) (5.49)

Hβα1

1 (ω1) =
1

π
−
∫

ddk

(2π)d

∑
a,b

AβkbaA
α1
kab

~ω1 −∆εkab
∆fkba (5.50)

The integral H1 can be computed through Eq. 5.50 or from applying a Hilbert
transform to I1. This is true in general, as it is easily proven from Eqs. 5.45 and 5.46
that

Hα
j (ω) = − 1

π
−
∫ +∞

−∞

Iαj (ω′)

ω′ − ω
dω′ (5.51)

The entire linear response of an insulator or a cold semiconductor is obtained, for
negligible relaxation, from a calculation of the function in Eq. 5.49 and its Hilbert
transform. This is by no means new information in linear optics: the integral in
Eq. 5.49 is nothing more than Fermi’s golden rule and the Hilbert transform from I1

to H1 equates to the usual derivation of refraction from absorption by the Kramers-
Krönig relations. Here, however, this method has been generalized to any order.

In Section 6.6, it is shown that the integrals I(ω) and H(ω) are always real
for systems that possess time-reversal symmetry. In this case, the real part of the
nonlinear conductivity is given by the I integrals and the imaginary part by the
H integrals7. This can be seen by noting that the coefficients C that multiply the
integrals in Eq. 5.43 are purely imaginary in the relaxation-free limit.

The association of the real part of the nonlinear conductivity with the I integrals
is to be expected if one recalls that the real part is usually the one responsible for
optical absorption. If all relevant optical frequencies lie below the band gap, there
must be no absorption and therefore the real part of the nonlinear conductivity of a
cold semiconductor is required to vanish in this frequency range. This is guaranteed
to be the case with the integrals in Eq. 5.45.

We conclude from the analysis of this section that, if we wish to evaluate the
real part of a nonlinear conductivity, we have only to evaluate simple integrals with
the form of Eq. 5.45 for the appropriate g functions, listed in Eqs. 5.19-5.21, 5.26-
5.29, 5.35-5.42. These contributions are well localized in the FBZ and run over
regions that satisfy the resonance conditions.

The imaginary part of a nonlinear conductivity follows directly by performing
Hilbert transforms of the integrals computed for the real part. We note that we
are not performing a Hilbert transform of the entire nonlinear conductivity as it is
traditionally done in the nonlinear Kramers-Krönig relations [95]. We are not even
applying a Hilbert transform to the different contributions in Eq. 5.4 to move from
their real to imaginary parts8. The passage from the real to the imaginary part of
the nonlinear optical conductivity is more subtle and is made directly through the
integrals in Eq. 5.44. In this way, the imaginary part, which unlike the real part

7Once again, excluding the regions of frequency space where subsets of frequencies add to zero.
8This would not work as the real and imaginary parts of each individual contribution are not

simply related by a Hilbert transform.
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is not described by any restricted region of the FBZ, is made more accessible than
what would perhaps be expected.

Finally, we point out that for Fermi surface contributions there is no need for the
relaxation-free limit, since the FX integrals are frequency independent. To attempt
an analytical calculation it is necessary only to set the temperature to zero, in which
case

F βα1···αn
X = −

∫
ddk

(2π)d

∑
a

gα1...αn
X (A, ε)kaa

(
∂βεka

)
δ(µ− εka) (5.52)

This integral has a similar structure to the integrals in Eq. 5.45, with the chemical
potential taking the role of a frequency.

For the previous integrals (Eq. 5.45), it is equally helpful to consider the system to
be at zero temperature to make calculations tractable. However, once the nonlinear
conductivity is calculated for T = 0, it is possible to obtain the answers at finite
temperature with a few tricks [77].

5.4 Finite temperature

In Section 4.6, the numerical computations, employing the minimal coupling method,
were all performed for T = 0, even though the algorithm accommodated the pos-
sibility of computing room or even high temperature conductivities. The reason
was that, at low temperatures, the features in the nonlinear conductivity are more
pronounced and its structure more transparent. This is demonstrated by the results
in this section, where the effect of temperature on the conductivity is discussed.

In the length gauge also, more often than not, analytical calculations are made
for zero temperature, where they are considerably simpler. It is, however, possible
to quickly arrive at finite temperature results from zero temperature calculations of
the nonlinear conductivity by making use of a relation first introduced in [77].

The key idea is to recognize that the entire chemical potential dependence of the
Πα
i (ω̄) and Fα

X integrals stems from the Fermi-Dirac distribution. Starting with the
former type of integrals, we make all arguments of the distribution explicit,

f(ε, µ, T ) ≡ 1

e(ε−µ)/kBT + 1
(5.53)

At zero temperature,

f(ε, µ, 0) = Θ(µ− ε) (5.54)

The finite temperature and zero temperature distributions are related by

f(ε, µ, T ) =

∫ +∞

−∞
f(µ′, µ, T ) δ(µ′− ε)dµ′ =

∫ +∞

−∞
f(µ′, µ, T ) ∂µ′f(ε, µ′, 0) dµ′ (5.55)

Since no other objects in Πα
i (ω̄) depend on the chemical potential, Eq. 5.55

translates directly to

σβα1...αn
i (ω̄1, . . . , ω̄n;µ, T ) =

∫ +∞

−∞
f(µ′, µ, T ) ∂µ′σ

βα1...αn
i (ω̄1, . . . , ω̄n;µ′, 0) dµ′

(5.56)
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where we made the chemical potential and temperature dependencies explicit.
By a similar argument, σF is proven to also obey Eq. 5.56. Joining all contri-

butions, we arrive at a general relation between the zero and finite temperature
nonlinear conductivity,

σβα1...αn(ω̄1, . . . , ω̄n;µ, T ) =

∫ +∞

−∞
f(µ′, µ, T ) ∂µ′σ

βα1...αn(ω̄1, . . . , ω̄n;µ′, 0) dµ′

=
1

T

∫ +∞

−∞
(1− f(µ′, µ, T ))f(µ′, µ, T )σβα1...αn(ω̄1, . . . , ω̄n;µ′, 0) dµ′ (5.57)

where the last equality involves partial integration and assumes σ(µ→ −∞) = 0.
The effect of having a finite temperature is to probe the nonlinear conductivity

at different values of the chemical potential. Eq. 5.57 is a kind of weighted average,
given by a distribution that is centered and peaked at the Fermi level and has a
width of the order kBT .

We conclude by making some observations on systems with electron-hole sym-
metry, for which the chemical potential dependence of σαi can be specially simple.

Focusing on the one-photon contributions, the integrand of Iαj (ω1), at T = 0 and
assuming electron-hole symmetry, is proportional to,

∆fkvc = Θ(µ− εkv)−Θ(µ− εkc) = Θ(∆εkcv − 2|µ|)→ Θ(~ω1 − 2|µ|) (5.58)

where the last step uses the Dirac delta in Eq. 5.45. The final Heaviside step function
is independent of k and can be pulled out of the Iαj (ω1) integrals: we have there-
fore an universal functional dependence on the chemical potential, with frequency
dependent coefficients set by the material, the inverse situation to what happens
in σF . For gapped systems, we could more generally write Θ(~ω1 −max(2|µ|,∆)),
where max(2|µ|,∆) is the “effective gap”.

Similarly, for the i-photon contribution,

∆fkvc → Θ(~ω1 + · · ·+ ~ωi −max(2|µ|,∆)) (5.59)

If the system also respects time-reversal symmetry (Section 6.6), then these terms
determine the real part. The real part of the nonlinear conductivity of a time-reversal
and electron-hole symmetric system is always given in terms of step functions in the
chemical potential, aside from the Fermi surface contributions that are present in
doped systems at low frequencies. This is exemplified by the expression in Eq. 5.1.

These abrupt changes in the conductivity are due to Pauli blocking (Fig. 4.4a).
Depending on the dispersion of the factors multiplying the Heaviside step functions,
the steps can be found to vary significantly in magnitude and even be absent or
infinite.

On the other hand, the imaginary part is obtained by applying a Hilbert trans-
form to Iαj and different systems will have different functional dependencies on the
chemical potential. No universal behaviour can be predicted, in this context, for the
imaginary part.

The corresponding finite temperature result follows from Eqs. 5.58 and 5.56,
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∫ +∞

−∞
f(µ′, µ, T ) ∂µ′Θ(~ω1 − 2|µ′|) dµ′ = f(−~ω1/2, µ, T )− f(~ω1/2, µ, T ) (5.60)

or, more generally,

∫ +∞

−∞
f(µ′, µ, T ) ∂µ′Θ(~ω1 + · · ·+ ~ωi −max(2|µ′|,∆)) dµ′

= Θ(~ω1 + · · ·+ ~ωi −∆)

∫ +∞

−∞
f(µ′, µ, T ) ∂µ′Θ(~ω1 + · · ·+ ~ωi − 2|µ′|) dµ′

=

(
f

(
−~ω1 + · · ·+ ~ωi

2
, µ, T

)
− f

(
~ω1 + · · ·+ ~ωi

2
, µ, T

))
Θ(~ω1 + · · ·+ ~ωi −∆)

(5.61)

Introducing a finite temperature smooths the step functions observed when vary-
ing the chemical potential. Similar effects manifest in the Hilbert transforms Hα

j ,
where the peaks tend to broaden and diminish in magnitude.

An Heaviside step function holds out in Eq. 5.61, even at finite temperature: if
the Fermi level lies in the band gap, jump discontinuities are still observed due to
the gap in the density of states.

5.5 Harmonic generation in monolayer graphene

(analytical)

The resonance-based analysis proposed in this chapter, built on the length gauge
perturbation theory of Aversa and Sipe [49] and examined in the context of a generic
two-band model, aimed at simultaneously clarifying the underlying formal structure
of the nonlinear conductivity and streamlining derivations of the conductivities for
specific systems. This is best demonstrated by working through an example in detail.

For this purpose, the nonlinear optical response of monolayer graphene, com-
puted numerically in Section 4.6 with the minimal coupling method, is revisited and
recalculated with our new tools. This time, analytical expressions will be derived
and a low energy effective Hamiltonian, the Dirac Hamiltonian (with or without
a mass term), will be adopted, instead of the complete tight binding Hamiltonian
demanded by the minimal coupling method.

As always, knowledge of the band structure εka and the non-abelian Berry con-
nection Aβkab is required. These were presented in Sections 3.3 and 3.4, more specif-
ically in Eqs. 3.73-3.78, where the possibility of a band gap is included. These
fundamental objects often appear differentiated in the integrands of the Πα

j inte-
grals. Evaluation of the derivatives is a straightforward, if sometimes tedious task
(at least by the point one is dealing with second order generalized derivatives of A).

Having garnered the necessary ingredients, the Πα
j integrals are to be evaluated.

Our attention focuses on the relaxation-free limit, at T = 0K, where analytical
expressions are more accessible. In this limit, the Πα

j integrals are separated into
the Iαj integrals and their Hilbert transforms Hα

j (Eqs. 5.45-5.47).
The Iαj integrals, whose integrands contain Dirac deltas, are evaluated by per-

forming the integration along the regions of the FBZ where the respective resonance
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Figure 5.1: (a) Cross section of the Dirac cone with the dark lines showing the linear
energy-momentum relation in Eq. 3.61. The arrows stand for incident photons, all
of which are assumed to have the same energy (the color scheme serves only to
differentiate the different contributions), but probe different regions of the FBZ
depending on the number of photons involved. (b) Contours in the FBZ where the
resonance conditions that define the different contributions in Eq. 5.4 are met. For
the two-dimensional crystal of monolayer graphene, they consist of circles centered
at the Dirac point. The red circle is the Fermi surface.

condition is met. For two-dimensional crystals, these usually form closed contours in
the FBZ and for the particularly simple, isotropic, band structure of graphene, they
consist of circles centered at the Dirac points, as depicted in Fig. 5.1b. In Fig. 5.1,
the linear dispersion of graphene was considered, but the contours remain a series
of concentric circles for the parabolic dispersion of gapped graphene (Fig. 3.3), with
the single difference that 2 |µ| has to exceed the band gap for there to be a Fermi
surface.

Following the evaluation of the Iαj integrals, their Hilbert transforms Hα
j are

obtained (Eq. H.40). More often than not, these cannot be expressed in terms of el-
ementary functions and one has to be content with a numerical computation of these
quantities. A greater concern, though, is that, for an effective model, the Hilbert
transforms do not necessarily converge. Unlike the Iαj integrals, which are described
by restricted regions of the FBZ, the Hα

j in Eq. 5.46 may require consideration of
the electronic properties of the system over the entire FBZ. If the complete band
structure is taken into account (e.g. by using the full tight binding model Hamil-
tonian), the Hilbert transform in Eq. H.40 runs over the limited bandwidth of the
system and converges9. It may happen that the integrand decays sufficiently fast
for higher energies that it can be approximated by a low energy effective model, but
there are no guaranties this will be the case10.

This is not as in the case of the minimal coupling method, where the difficulties
with handling low energy Hamiltonians reflect an deficiency of the method, but is an
intrinsic physical limitation on the use of these models. It is perhaps not sufficiently
appreciated that continuum Hamiltonians are generally insufficient to retrieve the
imaginary part of a conductivity.

Fortunately, for graphene, the Hilbert transforms do converge, provide an ap-
propriate description for optical frequencies near the Dirac point and can even be
expressed analytically.

9Almost always. Exceptional situations do exist, where this is not the case. See the discussion
on undoped gapless graphene at the end of Section 5.5.1, for example.

10For an example of a model where the Hilbert transforms do not converge, see Section 5 of [91].
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A last point of order. When adopting the Dirac Hamiltonian in graphene, it
is important take into account the existence of two Dirac cones (per spin). The
integrations on Iαj cover the neighbourhoods of both Dirac points, K and K′, and
both the Hamiltonian in Eq. 3.60 and in Eq. 3.65 (or their gapped analogues) are
relevant. Instead of doubling the computational effort, the easy way to include both
Dirac cones in the calculation is to notice the time-reversal symmetry that relates
them (Section 6.6). Graphene possesses time-reversal symmetry and the integrands
in Πα

j can be rewritten in an way that combines the contributions from k and −k (see
Section 6.6). For a reproduction of the formulae in Section 5.2 with the additional
assumption of the time-reversal symmetry, see [91].

The integral evaluation is left to an appendix (Appendix H), where all the Iαj
and Hα

j integrals are displayed for monolayer graphene, from linear to third order.
Here, the attention will be focused on the inspection of the final expressions for the
nonlinear conductivity and its resonance-based decomposition (Eq. 5.4), starting
with the gapless system, for which the formulas will be simpler.

5.5.1 ∆ = 0

The linear conductivity of graphene is computed by direct application of the formulas
of Section 5.2.1 to the dispersion relation in Eq. 3.61 and the Berry connection in
Eqs. 3.63 and 3.64. The evaluation of the necessary integrals (F xx

A , Ixx1 (ω) and
Hxx

1 (ω)) is done in Eqs. H.13, H.5 and H.6, on which the band gap was set to zero
(∆ = 0).

The optical conductivity separates into a Fermi surface contribution and an one-
photon contribution:

σxx(ω) = σxxF (ω) + σxx1 (ω) (5.62)

with

σxxF (ω) =
4 i σ0

π

|µ|
~ω

(5.63)

σxx1 (ω) = σ0

(
Θ (~|ω| − 2|µ|) +

i

π
ln

∣∣∣∣~ω − 2|µ|
~ω + 2|µ|

∣∣∣∣) (5.64)

The Fermi surface contribution is proportional to the chemical potential (and
therefore grows with the square root of the carrier concentration σF ∝

√
ne) and

falls off with the inverse power of the optical frequency. The dispersion of the real
part of the one-photon contribution is governed by an Heaviside theta function: it is
zero for optical frequencies below the effective gap 2|µ| (Pauli blocking) and suddenly
jumps, at ω = 2|µ|, to a constant value, once interband transitions are allowed. For
the imaginary part, the one-photon contribution has a logarithm, that diverges at
the effective gap. For |ω| � 2|µ|, the imaginary part becomes negligible and the
universal conductivity of undoped graphene is recovered: σxx(ω) = σ0 = e2/4~ [70].

In Fig. 5.2, the optical conductivity in Eqs. 5.62-5.64, obtained via the length
gauge method, is superposed on the linear response computed numerically using the
minimal coupling method, previously represented in Fig. 4.2. Excellent agreement
is found between numerical and analytical results. The methodologies that are used
to arrive at the optical conductivity of graphene in Chapters 4 and 5 are markedly
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(a) (b)

Figure 5.2: Real (a) and imaginary (b) parts of the linear optical conductivity of
monolayer graphene as a function of the optical frequency, normalized to the tight
binding parameter t, near the Dirac point. The blue dots were numerically computed
at those specific frequencies with the minimal coupling method, using a tight binding
model and following the algorithm delineated in Chapter 4. The same points when
joined produced Fig. 4.2. The red curves do not represent a fit, but the result of an
independent analytical calculation with the length gauge method, in the relaxation-
free limit, by evaluating the integrals in Section 5.2.1. In the real part, the Fermi
surface contribution was evaluated for γ = 5× 10−4 t.

different, despite their equivalence, and having them reproduce the same results is
certainly reassuring.

In all honesty, a minor change had to be made to Eq. 5.63 before plotting, or
there would be a noticeably difference between the two results. Notice that in the
length gauge method used here, the results were considered in the relaxation-free
limit, in order to derive analytical expressions. For the minimal coupling method of
Chapter 4, the calculations were made with a very small, but finite, value for the
relaxation parameter γ.

This is a significant distinction between the two calculations. The slight discrep-
ancies that are observable between the two results, such as the jump in the real part
between zero and σ0 not being instantaneous in the minimal coupling method, can
be attributed to this finite value for γ (as in Section 4.6, γ = 0.5% of the effective
gap in the minimal coupling computation).

This distinction is most obvious when attending to the real part of the Fermi
surface contribution. In Eq. 5.63, σF is purely imaginary. This result came from
the assumption that ω 6= 0 and the neglect of a Dirac delta that, in the relaxation-
free limit, hides at zero frequency: 1/ω̄ → 1/ω − π i δ(ω). Whenever a finite γ is
considered, as in the minimal coupling method, the Drude peak will have an width
of comparable magnitude, ∼ γ, and will be visible in the dispersion curves. For
γ = 0, as in the analytical calculations, it will not.

It turns out that this difficulty is easily surpassed. Even though performing ana-
lytical calculations for finite γ is not usually possible, as it would involve evaluating
the Πα

j integrals directly, instead of Iαj and its Hilbert transform, it can done for
Fermi surface contributions without issue. Since the Fα

X do not depend on the optical
frequency, the analytical calculation of σF never required taking the relaxation-free
limit. For this reason, it is enough to add i γ to the optical frequency in Eq. 5.63.
Indeed, before representing the length gauge results in Fig. 5.2, the real part of
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Figure 5.3: Resonance-based decomposition of the real (a) and imaginary (b) parts
of the linear optical conductivity of monolayer graphene as a function of the optical
frequency, normalized to the tight binding parameter t, near the Dirac point. The
Fermi-surface contribution is represented in red and the one-photon contribution in
orange, in line with the color coding of Fig. 5.1. In the real part, the Fermi surface
contribution is made visible by considering a finite γ.

Eq. 5.63 was replaced by

Re{σxxF (ω̄)} =
4σ0

π
|µ| γ

(~ω)2 + γ2
(5.65)

giving the excellent agreement found in Fig. 5.2a at low frequencies.

The imaginary part of σF is left unchanged, since, as long as γ � ω, the changes
induced by a finite γ are negligible.

The resonance-based decomposition of the optical conductivity is illustrated in
Fig. 5.3, where it is possible to recognize that the Fermi surface contribution domi-
nates the low frequency behavior. For optical frequencies below 2|µ|, the real part
of the one-photon contribution is identically zero, while the imaginary part tends to
zero in the DC limit, leaving only the Fermi surface contribution present. The one-
photon contribution is characterized by a step-like increase in the real part, when
the optical frequency matches the effective gap, and a negative divergence in the
imaginary part that we now recognize as logarithmic.

In fact, the case of graphene showcases a general characteristic of the optical
response that stems from the Hilbert transforms relating Iαj and Hα

j : discontinuities
in the real part (as those introduced by Heaviside theta functions) translate into
logarithmic divergences in the imaginary part and vice-versa (see Eq. H.40).

Next, the same analysis is applied to the nonlinear optical response. Monolayer
graphene is centrosymmetric, so it has no second order response. The third order
optical response is obtained from the formulae in Section 5.2.3, with the necessary
integral evaluation performed in Eqs. H.15-H.39 from Appendix H.

In a resonance-based analysis, the third order optical conductivity is decomposed
into Fermi surface, one-, two- and three-photon contributions,

σxxxx(ω, ω, ω) = σxxxxF (ω, ω, ω) + σxxxx1 (ω, ω, ω) + σxxxx2 (ω, ω, ω) + σxxxx3 (ω, ω, ω)
(5.66)

with
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(a) (b)

Figure 5.4: Real (a) and imaginary (b) parts of the third order optical conductivity
of monolayer graphene as a function of the optical frequency, normalized to the
tight binding parameter t, near the Dirac point. The blue dots were numerically
computed at those specific frequencies with the minimal coupling method, using a
tight binding model and following the algorithm delineated in Chapter 4. The same
points when joined produced Fig. 4.8. The red curves do not represent a fit, but
the result of an independent analytical calculation with the length gauge method,
in the relaxation-free limit, by evaluating the integrals in Section 5.2.3. In the real
part, the Fermi surface contribution was evaluated for γ = 5× 10−4 t. In the inset,
it is possible to discern the smaller one-photon feature.

σxxxxF (ω, ω, ω) = +
24 i C0

π|µ|(~ω)3
(5.67)

σxxxx1 (ω, ω, ω) = − 17C0

(~ω)4

(
Θ (~|ω| − 2|µ|) +

i

π
ln

∣∣∣∣~ω − 2|µ|
~ω + 2|µ|

∣∣∣∣)+
71 i C0

π|µ|(~ω)3
(5.68)

σxxxx2 (ω, ω, ω) = +
64C0

(~ω)4

(
Θ (2~|ω| − 2|µ|) +

i

π
ln

∣∣∣∣2~ω − 2|µ|
2~ω + 2|µ|

∣∣∣∣)− 32 i C0

π|µ|(~ω)3

(5.69)

σxxxx3 (ω, ω, ω) = − 45C0

(~ω)4

(
Θ (3~|ω| − 2|µ|) +

i

π
ln

∣∣∣∣3~ω − 2|µ|
3~ω + 2|µ|

∣∣∣∣)− 63 i C0

π|µ|(~ω)3

(5.70)

Similarly to linear order, the real part of the third order conductivity is marked
by jump discontinuities and the imaginary part by the associated logarithmic diver-
gences, whenever either one-, two- or three-photon frequencies match the effective
gap. The real parts of the one-, two- and three-photon contributions are zero when
the respective optical frequencies lie below the gap, but this time the imaginary
parts do not tend to zero in the DC limit (in fact, they diverge!).

Unlike linear order, the magnitude of the steps and logarithms falls off with
ω−4, with the exception of an additional set of terms that decay less rapidly with
frequency (∼ ω−3) and have a curious inverse dependence on the chemical potential.
The Fermi surface contribution consists of a term of this type.

Again, the analytical results are compared with those obtained numerically in the
previous chapter (Fig. 4.8). The real and imaginary parts are displayed in Fig. 5.4,
where the minimal coupling and length gauge methods produce identical curves.
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Figure 5.5: Resonance-based decomposition of the real (a) and imaginary (b) parts
of the third order optical conductivity of monolayer graphene as a function of the
optical frequency, normalized to the tight binding parameter t, near the Dirac point,
in the relaxation-free limit (γ = 0). The color coding is the same as in Fig. 5.1.

Once more, to obtain the perfect fit seen in the real part at low frequencies, the
formula for the Fermi surface contribution had to be extended for finite γ, simply
replacing ω → ω̄. At higher frequencies, it is possible to discern minor differences
between the numerical and analytical evaluations near the sharper features of the
real part in Fig. 5.4a. This is to be expected, and these differences become all the
less relevant, the smaller the value adopted for γ in the numerical computations. As
γ → 0, the line traced by the blue dots (minimal coupling method) grows closer to
the idealized red line (length gauge method).

The resonance-based decomposition of the third order conductivity is analyzed
in Fig. 5.5. The expected steps are observed in the real part of the one-, two- and
three photon contributions. It was suggested in [76, 78] that the small magnitude
of the one-photon feature in Fig. 5.4 is due to the cancellation between different
contributions of alternating signs (the coefficients of the Heaviside theta functions
produce −17+64−45 = 2). Although this serves as a partial explanation, the truth
is that the one-photon contribution in Fig. 5.5 is already small, prior to taking the
other contributions into account. The minuteness of the one-photon feature in the
third order contribution11 is mostly because of fast decrease of the response with
the optical frequency Re{σxxxx} ∼ ω−4.

The imaginary parts display the expected logarithmic divergences, partners of the
steps in the real part, and have a somewhat unexpected divergence in the DC limit.
This is not too surprising, since this is the doped system and there is a concentration
of free charge carriers that dominate the response at low frequencies, but one could
intuitively assign this part of the response to the Fermi surface contribution. As it
turns out, in the imaginary part, Fermi surface contributions seem to be insufficient
to provide a complete description of the nonlinear optical response at low frequencies.
This puts into question the validity of Boltzmann equation methods in describing
the imaginary part of the optical response, even in the regime where the optical
frequencies lie significantly below the effective gap.

An advantage of decomposing the nonlinear conductivity in this manner is that

11For third harmonic generation. The situation is inverted in the case of difference frequency
generation [78].
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it identifies the components of the theory that are relevant in any given region of the
spectrum. If the parameters of an experiment on third harmonic generation dictate
that a narrow window containing the two-photon feature is relevant, the theory
may approximated for this region by taking only the two-photon contribution into
account. This would be simpler to compute, since the two-photon contribution
contains only Πα

j integrals with j = 1, 3 or 5 (Eq. 5.33).
A curious special case is that of undoped graphene. A hasty look through the

expressions for the third order conductivity might lead one to think that it diverges
when the chemical potential is set to zero. But when summing all the contributions
(Eqs. 5.67-5.70) to the third order conductivity the different factors of µ−1 cancel
(Eq. 5.1).

Nonetheless, there have been some concerns with this divergence in the literature.
In the work of Cheng et al. [77] a divergence of such nature was found. But, as
pointed out by the authors, it appears only when introducing two distinct damping
parameters, one for intraband and one for interband resonances. This suggests that
such a divergence is an artifact of the phenomenological description of relaxation
that was adopted in their work. In the method used here, there is a single parameter
γ describing relaxation, but this parameter might be made different at low and high
frequencies (as pointed out in Section 2.5, any even function γ = γ(ω) will do) and
still no divergences for µ = 0 are found.

Similarly, for the Boltzmann equation approach adopted in the pioneering works
of [72, 74], the third order conductivity was found to diverge when µ → 0. The
reason is transparent in our framework: the Boltzmann equation approach takes
only the contribution from the Fermi surface into account (purely intraband transi-
tions) and this one can be seen from Eq. 5.67 to indeed diverge for a zero chemical
potential. Boltzmann equation methods are usually considered appropriate to de-
scribe the low frequency dispersion of the nonlinear conductivity as long as there is
a gap, either an actual band gap or an effective one set by Pauli blocking, below
which all contributions other than the ones defined by the Fermi surface become
negligible. For undoped graphene, however, this is never the case and the remaining
contributions in Eqs. 5.68-5.70 must always be considered.

Unfortunately, a real difficulty can still be found for undoped systems with zero
gap in the DC limit. Even though the µ = 0 third order conductivity of graphene
is well defined for any finite frequency, it shows a frequency dependence ω−4 (see
Eq. 2 of [76]) diverging when ω → 0+. As seen before, in Section 4.6, this result
holds even for a tight binding model defined over the entire FBZ and is presumably
due to a breakdown in perturbation theory.

5.5.2 ∆ 6= 0

Consider now that a mass term is inserted in the Dirac Hamiltonian (Eq. 3.72),
generating a band gap (∆ 6= 0). Once more, the optical response is derived, analyt-
ically, with the formulae of Section 5.2. The evaluation of the integrals is done in
Appendix H.

The end result is that the linear optical conductivity gives

σxx(ω) = σxxF (ω) + σxx1 (ω) (5.71)

with
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Figure 5.6: Real (a) and imaginary (b) parts of the linear optical conductivity of
gapped graphene, with ∆ = 0.1 t, as a function of the optical frequency, normalized
to the tight binding parameter t, near the Dirac point. The response was obtained
analytically (Eqs. 5.71-5.73) in the relaxation-free limit (γ = 0). The black and red
curves refer to clean (µ = 0) and doped (µ = 0.075 t) systems, corresponding to
effective gaps of 0.1 t and 0.15 t, respectively.

σxxF (ω) =
4 i σ0

π

|µ|
~ω

(
1−

(
∆

2|µ|

)2
)

Θ (2|µ| −∆)) (5.72)

σxx1 (ω) =σ0

(
1 +

(
∆

~ω

)2
) (

Θ (~|ω| −max(∆, 2|µ|)) +
i

π
ln

∣∣∣∣~ω −max(∆, 2|µ|)
~ω + max(∆, 2|µ|)

∣∣∣∣)
+

2 i σ0

π

∆2

~ω max(∆, 2|µ|)
(5.73)

As before, the real part of the one-photon contribution is proportional to an
Heaviside theta function and the imaginary part contains a logarithm. However,
the step and the logarithmic divergence appear now at the effective gap,

∆eff ≡ max(∆, 2|µ|) (5.74)

The magnitude of these features is dependent on a series of terms in even powers
of ∆/ω. For the Fermi surface contribution, the chemical potential is the relevant
energy scale and the magnitude of this contribution is determined by a series of
terms in even powers of ∆/µ. Naturally, when we set ∆ = 0, only the zeroth order
terms remain and the Fermi surface and one-photon contributions reproduce the
previous results in Eqs. 5.63 and 5.64, respectively.

In addition to this, there is a curious term in the one-photon contribution that
is proportional to the adimensional ratio ∆2/ω∆eff . It vanishes in the absence of a
band gap, it varies inversely with frequency and for a doped system, 2|µ| > ∆, also
goes with the inverse of µ. If the Fermi level falls below the band gap, ∆eff = ∆ and
the term is independent of the chemical potential (there are no worries of divergences
with µ−1 in gapped graphene).

The conductivity in Eqs. 5.71-5.73 is depicted in Fig. 5.6, for two scenarios:
2|µ| < ∆, which implies ∆eff = ∆, and 2|µ| > ∆, for which ∆eff = 2|µ|.

In the undoped system, the real part has a step at the band gap and the imaginary
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5. RESONANCE-BASED ANALYSIS

part a logarithmic divergence, as had already been seen in Fig. 4.1. The real part
vanishes below the band gap and the imaginary part tends to zero in the DC limit.

If the Fermi level is raised above the band gap, a Drude peak appears at low
frequencies. Since no comparisons are being made with results from the minimal
coupling method, all contributions, including σF , are evaluated in the relaxation-free
limit. As a consequence, the Drude peak is not visible in the real part (Fig. 5.6a),
consisting of a Dirac delta of infinitesimal width. It is, however, clearly visible in
the imaginary part. The other, predictable, change is that features shift from the
band gap to the effective gap at 2|µ|. All the chemical potential dependence of
the real part of the conductivity is in the Heaviside step function, which means
that increasing the doping level will affect the dispersion of the real part only by
nullifying the optical response below the Fermi level. This is a general point that
has been emphasized in Section 5.4 and is manifest in Fig. 5.6a.

Ideally, the discussion would now advance to the second order optical conduc-
tivity of gapped graphene. Since inversion symmetry is broken with the introduc-
tion of different on-site energies, the second order optical response is nonzero, as
demonstrated in Section 4.6.3. Unfortunately, this second order response cannot
be captured by the Dirac Hamiltonian used here. If the equations and integrals of
Section 5.2.2 are evaluated, even with a mass term in the Hamiltonian, the second
order conductivity returns zero. It is necessary to use a more accurate effective
model, by carrying the low energy expansion (Eq. 3.58) to the next order, to be able
to properly capture the second order conductivity. For more on this topic, consult
the work in [84].

Knowing this, we proceed straight to the third order optical conductivity of
gapped graphene:

σxxxx(ω, ω, ω) = σxxxxF (ω, ω, ω) + σxxxx1 (ω, ω, ω) + σxxxx2 (ω, ω, ω) + σxxxx3 (ω, ω, ω)
(5.75)

with
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Figure 5.7: Real (a) and imaginary (b) parts of the third order optical conductivity of
gapped graphene, with ∆ = 0.1 t, as a function of the optical frequency, normalized
to the tight binding parameter t, near the Dirac point. The response was obtained
analytically (Eqs. 5.75-5.79) in the relaxation-free limit (γ = 0). The black and red
curves refer to clean (µ = 0) and doped (µ = 0.075 t) systems, corresponding to
effective gaps of 0.1 t and 0.15 t, respectively.
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σxxxxF (ω, ω, ω) =
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These expressions are longer, but they form a generalization of Eqs. 5.67-5.70
that is analogous to that observed in linear order. The band gap is again replaced
by the effective gap in the steps and logarithmic divergences that characterize the
real and imaginary parts, respectively. Again, the magnitude of the contributions is
defined by a series of terms in even powers of ∆/ω, or ∆/|µ| in the case of the Fermi
surface contribution. More of those added terms that vary with products of powers
of the optical frequency and the effective gap influence the imaginary part of the
nonlinear optical response. These terms are themselves multiplied by an sequence
of even powers of ∆/ω. It is a more complicated set of formulas, but it is quickly
recognized that when ∆→ 0, the third order conductivity of the previous subsection
is recovered.

The entire third order conductivity is represented in Fig. 5.7, again for both the
doped and undoped systems. In both cases, the steps and divergences alternate
signs and diminish in magnitude for higher frequencies. Interestingly, the undoped
system has no jump discontinuity in the real part at 2~ω = ∆. Instead, it has what
could be termed a “suppressed step” (Fig. 5.7a). This is an excellent opportunity
to attest to the usefulness of the resonance-based decomposition, since the absence
of a jump discontinuity can be understood, and predicted, by noticing in Eq. 5.78
that Re{σxxxx2 } = 0 when ω = ∆/2~.
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5. RESONANCE-BASED ANALYSIS

Setting the Fermi level above the band gap leads to a shift in the one-, two-
and three-photon features and the emergence of a Drude peak at low frequencies,
as expected. Even though all the dependence of the real part on the chemical
potential still lies in the blocking of interband transitions, it is no longer true that
the effect of raising the Fermi level can be immediately read by cutting out part of
the dispersion curve, since the optical response is now built out of a combination of
the three Heaviside step functions.
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Chapter 6

The role of symmetry

After presenting the definition of the nonlinear conductivity and its importance in
nonlinear optics, the question that dominated our discussion was: how to efficiently
compute it for a crystal, if given some fundamental electronic properties (ε and A)?
Chapter 4 resolved this question by describing a numerical procedure of wide appli-
cability and Chapter 5 made analytical calculations on effective models as simple as
they can be.

We now shift focus to a different question: what kind of functions could serve
as the nonlinear conductivity of a crystal? In other words, what constraints does
the conductivity obey? In the previous section, much progress was made on this
front by presenting its detailed structure. The nonlinear conductivity was shown to
always be built from contributions relating to the Fermi surface, the one-photon res-
onance, two-photon resonance and so on. Universal characteristics of the nonlinear
conductivity were identified based on the general form of these contributions.

For the remainder of this thesis, we take this analysis further by taking into
account the role of symmetry. In particular, there are certain symmetries that are
always obeyed by the nonlinear conductivity, no matter the medium.

The first symmetries to be considered are those that apply to all nonlinear re-
sponse functions, not just the optical conductivity (Section 6.1). After these are
briefly reviewed, most of the discussion is devoted to overall permutation symme-
try, typically associated to lossless systems (Section 6.2), but here generalized by
extending the analysis into the complex plane (Section 6.3), as in [27].

Overall permutation symmetry is an well-known symmetry in nonlinear optics,
but new insight is gained when it is applied to the results of the previous chapter.
With use of the resonance-based decomposition of the nonlinear conductivity, overall
permutation symmetry permits a clear identification of the dissipative part of the
response function (Section 6.4) and the derivation of new, unexpected, connections
between optical resonances involving different numbers of photons (Section 6.5). For
instance, the two-photon and one-photon contributions are shown to be inextricably
linked at second order.

A brief account of time-reversal symmetry closes the chapter (Section 6.6). Once
again, when the symmetry is seen from the perspective of the resonance-based anal-
ysis of Chapter 5, its mathematical consequences are made abundantly clear. Sig-
natures of broken time-reversal symmetry are identified in the nonlinear optical re-
sponse, namely a nonvanishing real part for the nonlinear conductivity when optical
frequencies lie below the band gap.
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6. THE ROLE OF SYMMETRY

6.1 A summary of symmetry

Besides providing insight and helping reduce the space of possibilities on what the
dispersion of a nonlinear response function could look like, symmetries are of prac-
tical use as well. This is exemplified by two symmetries that were used in previous
sections to simplify calculations.

The first was intrinsic permutation symmetry (Eq. 2.32), introduced at the end
of Section 2.2, as a direct consequence of the definition of the nonlinear response
function. Only the portion of the nonlinear response function that respects intrinsic
permutation symmetry is physical, since any remaining contribution vanishes when
performing the integration in Eq. 1.9 to produce the observable J .

This is irrelevant in linear order. In second order, it tell us that expressions like
those for the second order conductivity σβα1α2(ω1, ω2) in Eqs. 2.63 and 4.24 must be
symmetrized in the arguments ({α1, ω1}, {α2, ω2}),

σβα1α2

S (ω̄1, ω̄2) ≡ 1

2

(
σβα1α2(ω̄1, ω̄2) + σβα2α1(ω̄2, ω̄1)

)
(6.1)

in order to ensure that

σβα1α2

S (ω̄1, ω̄2) = σβα2α1

S (ω̄2, ω̄1) (6.2)

Similarly in third order,

σβα1α2α3

S (ω̄1, ω̄2, ω̄3) =σβα1α3α2

S (ω̄1, ω̄3, ω̄2) = σβα2α1α3

S (ω̄2, ω̄1, ω̄3)

= σβα2α3α1

S (ω̄2, ω̄3, ω̄1) =σβα3α1α2

S (ω̄3, ω̄1, ω̄2) = σβα3α2α1

S (ω̄3, ω̄2, ω̄1) (6.3)

where the physical part of the third order conductivity, σS, is derived from Eq. 2.64
or Eq. 4.25 by symmetrization with respect to ({α1, ω1}, {α2, ω2}, {α3, ω3}).

The other symmetry that has been of use in past sections is the symmetry of the
crystal. Any crystal lattice, even if it is not a Bravais lattice, will be invariant under
a group of symmetries composed of some subset of discrete translations, rotations,
reflections, spatial inversion and their combinations. The study of crystal symme-
tries is made in the context of group theory and categorization of all possible spatial
groups and the tensor relations they impose can be found in standard textbooks on
the subject [88].

Due to crystal symmetry, not all tensor components of linear and nonlinear
response functions will be independent. Like intrinsic permutation symmetry, crystal
symmetry defines general relations valid for any response functions, but these also
depend on the character of the vector field, that is, on how the classical fields
themselves transform under spatial transformations1.

In previous calculations of the nonlinear optical response of monolayer graphene,
crystal symmetry was used, in Sections 4.6 and 5.5, to reduce the number of tensor
components to evaluate. In the resonance-based analysis of the previous chapter,
it was discussed (Section 5.2.3) that these tensor symmetries apply not only to the
full nonlinear conductivity, but to each Πα

j that must be evaluated, reducing the

1For example, in the case of the nonlinear conductivity, E(t) is a polar vector, changing sign
when performing spatial inversion.
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number of “Fermi golden rule”-type computations and Hilbert transforms that are
necessary.

Another condition that is applicable to any response function defined by Eq. 2.24
is the reality condition. Since both J and E are real quantities, so must be our
response function, (

σβα1...αn(t1, . . . , tn)
)∗

= σβα1...αn(t1, . . . , tn) (6.4)

which, in the frequency domain, translates to(
σβα1...αn(ω̄1, . . . , ω̄n)

)∗
= σβα1...αn(−ω̄∗1, . . . ,−ω̄∗n) (6.5)

Finally, a more subtle, but still completely general, symmetry is the one brought
by causality. At the simplest level, causality implies that the induced current J(t)
must depend only on the values of the optical field E(t′) at prior times (t′ < t). It is
straightforward to prove that this statement is equivalent to the following condition
on the response function,

σβα(t) = σβα(t) Θ(t) (6.6)

at linear order, and more generally

σβα1...αn(t1, . . . , tn) = σβα1...αn(t1, . . . , tn) Θ(t1) . . .Θ(tn) (6.7)

for a nonlinear response function.
A more restrictive condition could be put on the response functions by pulling on

the postulates of special relativity [95], but this is not relevant for our discussions2.
The challenge is now to derive the restrictions imposed by causality on the

frequency domain response functions. The most direct approach to arrive at the
Kramers-Krönig relations comes from knowing that the Fourier transform of a Heav-
iside step function is ∫ +∞

−∞
Θ(t) eiωt dt = π δ(ω) +

i

ω
(6.8)

Applying a Fourier transform to Eq. 6.6,

σβα(ω) =σβα(ω) ∗
(
π δ(ω) +

i

ω

)
=
σβα(ω)

2
+ i−
∫ +∞

−∞

dω′

2π

σβα(ω′)

ω − ω′
(6.9)

where ∗ stands for a convolution3. It results that,

σβα(ω) =
1

π i
−
∫ +∞

−∞

σβα(ω′)

ω′ − ω
dω′ (6.10)

2Since we are ignoring spatial dispersion, it does not matter how long it would take for light to
travel from a place where the optical field varied to where a change in current would be induced.

3As defined in the frequency domain: f(ω) ∗ g(ω) =
∫ +∞
−∞ f(ω′) g(ω − ω′) dω′/2π.

107



6. THE ROLE OF SYMMETRY

Putting it simply, causality implies that the response functions in the frequency
domain must be invariant under the application of a Hilbert transform, aside from
the multiplicative factor i.

Due to this i factor, Eq. 6.10 provides a link between the real and imaginary
parts,

Re{σβα(ω)} = +
1

π
−
∫ +∞

−∞

Im{σβα(ω′)}
ω′ − ω

dω′ (6.11)

Im{σβα(ω)} =− 1

π
−
∫ +∞

−∞

Re{σβα(ω′)}
ω′ − ω

dω′ (6.12)

so that one could be derived from another.
These are the linear Kramers-Krönig relations. The previous reasoning can be

applied to any argument of a nonlinear response function, yielding

σβα1...αi...αn(ω1, ..., ωi, ..., ωn) =
1

π i
−
∫ +∞

−∞

σβα1...αi...αn(ω1, ..., ω
′
i, ..., ωn)

ω′i − ωi
dω′i (6.13)

the nonlinear Kramers-Krönig relations.
Other versions of the nonlinear Kramers-Kröning relations exist, the most general

of which was proposed and proved in [95],

σβα1...αn(ω1 + p1 ω, ..., ωn + pn ω) =
1

π i
−
∫ +∞

−∞

σβα1...αn(ω1 + p1 ω
′, ..., ωn + pn ω

′)

ω′ − ω
dω′

(6.14)
with pi ≥ 0 for all i, provided that at least one pi 6= 0.

The most common use of these relations in optics is to derive refraction from
absorption. This is true for linear and nonlinear optics. Absorption is both sim-
pler to measure and to compute, and changes in the refractive index are usually
more easily derived from the measurement of absorption coefficients than by direct
measurements. By the end of this chapter, it should be clear why the part of the
nonlinear conductivity related to absorption (Section 6.4) is more accessible in an
analytical calculation.

For many systems (Section 6.6), the real part of the conductivity is related to
absorption and the imaginary part to refraction [3]. The passage from absorption
to refraction is then made by equations like Eqs. 6.11 and 6.12. But the application
of an Hilbert transform to the entire real part of a nonlinear conductivity is no
easy task; just consider the complexity of the third order conductivity. It must be
performed numerically, unless the system happens to be specially simple.

In the previous chapter, a better way to apply the Hilbert transforms was delin-
eated, one that is amenable to analytical calculations (though, more often than not,
the transform must still be performed numerically). This was possible by isolating
the Πj integrals and taking the relaxation-free limit, ending up with the integrals Ij
and Hj, connected by an Hilbert transform. It is worth noting that, from the stand-
point of getting an analytical expression for the imaginary part, this is a substantial
advancement.

There are two more symmetries that will be addressed in this text: overall permu-
tation symmetry and time-reversal symmetry. With these, we leave the perspective
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of the general nonlinear response function defined in Section 2.2 and narrow our
focus to the specificity of the nonlinear conductivity.

6.2 Lossless media

There is a symmetry that is characteristic of a lossless medium, here defined as one
where the energy transferred to the medium from a light pulse propagating through
it is zero: ∫ +∞

−∞
Jβ(t)Eβ(t) dt = 0 (6.15)

In the case of a linear medium,

∫ +∞

−∞
Jβ(t)Eβ(t) dt =

∫ +∞

−∞

dω

2π
Jβ(ω)Eβ(−ω)

=

∫ +∞

−∞

dω

2π

1

2

(
Jβ(ω)Eβ(−ω) + Jβ(−ω)Eβ(ω)

)
=

∫ +∞

−∞

dω

2π

1

2

(
Jβ(ω) (Eβ(ω))∗ + (Jβ(ω))∗Eβ(ω)

)
=

∫ +∞

−∞

dω

2π
Re{Jβ(ω) (Eβ(ω))∗}

=

∫ +∞

−∞

dω

2π
Re{σβα(ω)Eα(ω) (Eβ(ω))∗}

=

∫ +∞

−∞

dω

2π

1

2

(
σβα(ω) + (σαβ(ω))∗

)
Eα(ω) (Eβ(ω))∗

= 0 (6.16)

where vanishing relaxation was assumed: σβα(ω) ≡ limγ→0+ σ
βα(ω̄).

For it to be a property of the medium, Eq. 6.16 must be true for any E(ω).
Hence,

σβα(ω) + (σαβ(ω))∗ = 0 (6.17)

which states that the conductivity tensor must be anti-hermitian. This is a symme-
try of the optical conductivity, a direct consequence of energy conservation and the
requirement of no optical losses.

It will prove insightful to rewrite this relation in terms of the susceptibility,
χ(ω) = −i ω σ(ω),

χβα(ω) = (χαβ(ω))∗ (6.18)

which must be hermitian.
A similar reasoning can be applied to a lossless nonlinear medium. Starting with

the second order contribution to the current,∫ +∞

−∞
Jβ(2)(t)Eβ(t) dt =

∫ +∞

−∞

dω

2π
Jβ(2)(ω)Eβ(−ω) = 0 (6.19)
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where we can replace J (2) by the second term in the expansion of Eq. 1.5,

=

∫ +∞

−∞

dω1

2π

∫ +∞

−∞

dω2

2π
σβα1α2(ω1, ω2)Eα1(ω1)Eα2(ω2)Eβ(−ω12)

=

∫ +∞

−∞

dω1

2π

∫ +∞

−∞

dω2

2π
Eα1(ω1)Eα2(ω2)Eβ(−ω12)

× 1

3

(
σβα1α2(ω1, ω2) + σα1βα2(−ω12, ω2) + σα2α1β(ω1,−ω12)

)
(6.20)

with the abbreviation ω12 ≡ ω1+ω2 and the last step involving changes of variables4.
Replacing the conductivities in the integrand by susceptibilities,

=− i
∫ +∞

−∞

dω1

2π

∫ +∞

−∞

dω2

2π
Eα1(ω1)Eα2(ω2)Eβ(−ω12)

× 1

3

(
ω12 χ

βα1α2(ω1, ω2)− ω1 χ
α1βα2(−ω12, ω2)− ω2 χ

α2α1β(ω1,−ω12)
)

= 0 (6.21)

Since Eq. 6.21 must be true for any E(ω1) and E(ω2),

(ω1 + ω2)χβα1α2

S (ω1, ω2)− ω1 χ
α1βα2

S (−ω1 − ω2, ω2)− ω2 χ
α2α1β
S (ω1,−ω1 − ω2) = 0

(6.22)
which must also be respected for any frequencies ω1 and ω2, implying

χβα1α2

S (ω1, ω2) = χα1βα2

S (−ω1 − ω2, ω2) = χα2α1β
S (ω1,−ω1 − ω2) (6.23)

This is the condition of overall permutation symmetry. The subscript S serves
as a reminder that only the part that respects intrinsic permutation symmetry has
physical meaning and must therefore obey Eq. 6.23.

Before transposing this result to the language of conductivities, it is worth not-
ing that overall permutation symmetry is a generalization of intrinsic permutation
symmetry. To evidence this, an often employed notation for the susceptibility, and
the conductivity, includes an additional argument to the function that is minus the
sum of the other frequency arguments.

χβα1α2(ω1, ω2)→ χβα1α2(−ω12;ω1, ω2) (6.24)

This notation is more natural than it may seem, since Eβ(ω12) is the emitted
optical field as a result of energy absorption from the incident fields Eα1(ω1) and
Eα2(ω2). Making use of this notation in Eq. 6.23,

χβα1α2

S (−ω12;ω1, ω2) = χα1βα2

S (ω1;−ω12, ω2) = χα2α1β
S (ω2;ω1,−ω12) (6.25)

Overall permutation symmetry states that the susceptibility must be invariant
under the permutation of not only the index pairs {α1, ω1} and {α2, ω2}, as dictated
by intrinsic permutation symmetry, but also with {β,−ω12}.

4For instance, the last term in Eq. 6.20 is the result of exchanging the dummy indices β and
α2, together with changing the integration variable ω2 → −ω1 − ω2.
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The linear order result (Eq. 6.18) can be revisited in light of this new perspective,

χβα(−ω;ω) = χαβ(ω;−ω) (6.26)

and the condition of hermiticity recognized as a combination of overall permutation
symmetry, which consists of the free exchange of the index pairs {β,−ω} and {α, ω},
and the reality condition.

Despite being useful for the purpose of transparently expressing permutation
symmetries, the χβα1α2(−ω12;ω1, ω2) notation introduces an redundant input to the
response function and it was opted in this thesis to adopted the more succinct
χβα1α2(ω1, ω2) notation.

Eq. 6.23 can be stated in terms of conductivities,

σβα1α2

S (ω1, ω2)

ω1 + ω2

= −σ
α1βα2

S (−ω1 − ω2, ω2)

ω1

= −σ
α2α1β
S (ω1,−ω1 − ω2)

ω2

(6.27)

Eq. 6.27 might seem like a strange identity for the optical conductivity to obey,
but a direct physical interpretation can be made of overall permutation symmetry
if we look a bit past our semiclassical treatment. In a nonlinear medium with
incident light waves Eα1(ω1) and Eα2(ω2), the energy absorbed, per unit volume,
per unit time, at a frequency ω = ω1 + ω2 is given by σβα1α2(ω1 + ω2)(Eβ(ω1 +
ω2))∗Eα1(ω1)Eα2(ω2). The energy of a single photon at the same frequency is ~ω.
The ratio of these two energies is the density of photons absorbed at ω and is what
appears in the overall permutation symmetry condition. Eq. 6.27 can therefore be
interpreted as stating that the number of photons emitted at ω1 + ω2 is the same
as the number of photons absorbed at ω1 (or at ω2), as it is to be expected from
a simple energy level diagram (Fig. 1.1b). Closely related to this interpretation
are the Manley-Rowe relations, that provide a more rigorous statement of energy
conservation in a lossless medium and can be derived from overall permutation
symmetry [27].

In solids, the condition for the medium to be lossless is that the incoming pho-
tons must not have sufficient energy to excite electrons from the valence bands to
the conduction bands. Overall permutation symmetry, as it is commonly stated
(Eqs. 6.17 and 6.27), is then observed only if the photon frequencies lie below the
band gap ∆: |ω| < ∆ in linear order and |ω1| < ∆ ∧ |ω2| < ∆ ∧ |ω1| + |ω2| < ∆ in
second order. Additionally, no free charge carriers must be present: the Fermi level
is set somewhere in the gap5.

As a side note, the Kleinman symmetry alluded to in Section 1.2 is a special case
of overall permutation symmetry, where the considered optical frequencies lie so far
below the band gap that the dispersion is negligible. Then,

χβα1α2

S (ω1, ω2) ' χα1βα2

S (ω1, ω2) ' χα1α2β
S (ω1, ω2) (6.28)

significantly reducing the number of independent tensor components. This condition
must always be true for insulators in the DC limit ω1, ω2 → 0.

It is possible to extend overall permutation symmetry to metals and doped semi-
conductors, which possess a Fermi surface, with minor adjustments. Instead of the
band gap, it matters to consider the effective gap set by the chemical potential.

5In the language of the previous chapter, σF = 0.
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Also, resonances at zero frequency must be avoided: DC conductivities are not ex-
pected to respect the symmetry, adding the conditions ω 6= 0, at linear order, and
ω1 6= 0 6= ω2 ∧ ω1 + ω2 6= 0, at second order. Kleinman symmetry can be considered
valid in the DC limit, as long as the optical frequencies remain sufficiently larger
that the relaxation parameter γ.

Overall permutation symmetry can also be derived for third order, where it takes
the form6

σβα1α2α3

S (ω1, ω2, ω3)

ω123

=− σα1βα2α3

S (−ω123, ω2, ω3)

ω1

= −σ
α2α1βα3

S (ω1,−ω123, ω3)

ω2

=− σα3α1α2β
S (ω1, ω2,−ω123)

ω3

(6.29)

for frequencies which, both individually and summed, are smaller than the gap7.
The generalization to higher orders is obvious.

Notice that, both in second and third orders, only the first equality in our state-
ments of overall permutation symmetry (Eqs. 6.27 and 6.29) is strictly necessary,
the rest following from intrinsic permutation symmetry.

The most remarkable aspect of overall permutation symmetry is that it connects
different frequency components of the nonlinear conductivity. As such, it provides
non-trivial connections between distinct nonlinear optical effects (Section 1.1). So
far, the validity of these relations is limited to the regime of sufficient low frequencies,
in order to ensure there are no optical losses. It is also reliant on the absence of
relaxation. In what follows, overall permutation symmetry will be generalized and
these assumptions dropped.

6.3 Overall permutation symmetry

In the previous section, overall permutation symmetry was seen as a result of having
zero optical losses in the system. It is, however, possible to rephrase the symmetry
in a way that extends its generality.

The extension of overall permutation symmetry to lossy media has conceptual
subtleties that we shall soon discuss, but is trivial to state: by analytical continuation
of Eqs. 6.17, 6.27 and 6.29 into the Argand plane (Fig. 6.1), they become valid for
any medium. Simply replacing ω → ω̄,

σβα(ω̄) =− σαβ(−ω̄) (6.30)

σβα1α2

S (ω̄1, ω̄2)

ω̄12

=− σα1βα2

S (−ω̄12, ω̄2)

ω̄1

(6.31)

σβα1α2α3

S (ω̄1, ω̄2, ω̄3)

ω̄123

=− σα1βα2α3

S (−ω̄123, ω̄2, ω̄3)

ω̄1

(6.32)

provides a generalized form of overall permutation symmetry, that works for any
region in frequency space where the conductivity function is naturally defined, no

6Recall the definition: ω123 ≡ ω1 + ω2 + ω3.
7∀ i, j, k ∈ {1, 2, 3}, |ωi| < ∆ ∧ |ωj |+ |ωk| < ∆ ∧ |ω1|+ |ω2|+ |ω3| < ∆.
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(a) (b)

Figure 6.1: The figures above depict the domain of the optical conductivity, with
ω = Re{ω̄} and γ = Im{ω̄}. The resonances are outlined in red for the two cases:
(a) an atomic system, where resonances occur when the optical frequency matches
discrete energy levels; (b) a crystal, where resonances are available at any photon
frequency that exceeds the gap ∆eff . In a realistic band structure, other gaps may
open up at higher frequencies. The resonance at the origin corresponds to the Drude
peak, caused by the intraband motion of free charge carriers, and disappears in the
absence of a Fermi surface. In both (a) and (b), there are no optical losses for any
real frequency that is not marked in red.

matter if the optical frequencies lie below or above the gap, if electron transitions
cause any optical losses or not.

Overall permutation symmetry was first expressed and analyzed in this form by
Butcher and McLean [27]. Hereafter, when mentioning overall permutation symme-
try, it will be in reference to the most general form of this symmetry, as stated in
Eqs. 6.30-6.32.

To understand the fundamental difference on how this symmetry applies to loss-
less and lossy media, it is helpful to inspect the domain of the conductivity function.
The easiest case to visualize is, of course, the complex plane C in linear order, de-
picted in Fig. 6.1. In red, the regions where resonances occur are outlined. These
are the regions where the expressions for the optical conductivity are strictly unde-
fined8. For crystals, resonances occur all along the real line, as soon as the photon
frequency exceeds the band gap: |ω| > ∆. If the system has free carriers, the effec-
tive gap takes the role of the band gap and an additional resonance appears at the
origin, due to intraband motion.

The segment of the real line where the optical conductivity is defined is the re-
gion of the Argand plane assigned to lossless media. In the previous section, it was
demonstrated by an energy conservation argument that overall permutation symme-
try was obeyed by the conductivity precisely in this region. Analytical continuation
suggests the validity of the relations in Section 6.2 extends to the rest of the complex
plane, with the exception of the cut along the real line (and potentially the origin).

It had already been established that complex frequencies were a requirement

8This applies to any expression derived in this thesis, be it by length or velocity gauge, at any
level of generality (Chapters 2, 4 and 5).
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when adopting optical frequencies above the gap (Section 2.5). It is then only natural
to consider this extension of overall permutation symmetry. It had, however, also
been pointed out that the upper and lower halves of the complex plane do not have
quite the same meaning. The conductivity that has a physical interpretation, as the
frequency domain response function derived from Eq. 2.77, inhabits the upper half
of the complex plane. For this reason, it was mentioned that it was actually possible
to define the optical conductivity for real frequencies above the gap, by considering
the limit from above,

σβα(ω) ≡ lim
γ→0+

σβα(ω̄) (6.33)

The difficulty, patent in Eqs. 6.30-6.32, lies in the fact that overall permutation
symmetry connects the two halves of the complex plane, the “physical” and the
“unphysical” conductivity. Only when their values agree on approaching the real
line is overall permutation symmetry valid for real frequencies. In general, this is
not true.

lim
γ→0+

σβα(ω̄) 6= lim
γ→0−

σβα(ω̄) for |ω| > ∆ (6.34)

This will be made explicit in the next section. Here, it is enough to know that
the two limits match only below the gap, precisely for the case of a lossless system.
Once the photon frequency exceeds the gap, causing real electronic transitions in the
system, the conductivity in the limit of vanishing relaxation, defined by Eq. 6.33,
no longer respects the relations of Section 6.2,

σβα(ω) 6= −σαβ(−ω) for |ω| > ∆ (6.35)

A similar reasoning applies to the nonlinear conductivity (Section 6.4).
The validity of the statements of overall permutation symmetry (Eqs. 6.30-6.32),

from linear to third order, can be verified by direct substitution, using the expres-
sions obtained from the length gauge perturbation theory for the nonlinear conduc-
tivity9, as presented in Section 5.2.

As an example, this is shown explicitly for the linear conductivity:

−σαβ(−ω̄) =− i e2

~

(
1

~ω̄
Fαβ
A + i Fαβ

B − ~ω̄Παβ
1 (−ω̄)

)
=
i e2

~

(
− 1

~ω̄
Fαβ
A − i F

αβ
B + ~ω̄Παβ

1 (−ω̄)

)
=
i e2

~

(
− 1

~ω̄
F βα
A + i F βα

B + ~ω̄Πβα
1 (ω̄)

)
=σβα(ω̄) (6.36)

where integral identities were used (Eqs. G.17 and G.18), including the statement
Πβα

1 (−ω̄) = Παβ
1 (ω̄), easily proved from the definition of the integral (Eq. 5.21).

9Checking that the conductivities in Section 5.2 respect overall permutation symmetry is not as
straightforward as it may seem, due to identities that result from the commutativity of covariant
derivatives (see Appendix C; the relation between integrals in Eq. C.9 is particularly trouble-
some). On the other hand, overall permutation symmetry is trivially checked in the expressions in
Appendix E, where the commutativity of covariant derivatives was abandoned.
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Likewise, the overall permutation symmetry of the second and third order con-
ductivities can be attested, with the use of Eqs. 5.22-5.42 and the respective inte-
gral identities (Eqs. G.20-G.31 in Appendix G). It requires writing more extensive
equations to check overall permutation symmetry at second and third orders, if for
nothing else, because σS must used, with prior symmetrization to ensure intrinsic
permutation symmetry.

Even though such direct proof uses the equations from Section 5.2, derived for
the two-band crystal, the nature of these relations and their connection to the fun-
damental principle of energy conservation (Section 6.2) invites the conjecture that
they must be valid for any number of bands and even beyond third order perturba-
tion theory. A general proof is given in [27] using the velocity gauge (in its older
form, as discussed in Section 2.4.2), that also indicates that this symmetry is not
constrained to the examples here demonstrated. Overall permutation symmetry can
be expected to hold true for any nonlinear conductivity.

This is a rather interesting statement, considering that, even after careful in-
spection of Eq. 2.64 (or Eq. 4.25), it could hardly be guessed that this expression,
after proper symmetrization, would respect Eq. 6.32. From this perspective, these
relations constitute a very non-obvious property of the nonlinear conductivity.

Also, the overall permutation symmetry obeyed by the nonlinear susceptibility is
simpler, perhaps more natural, than the one presented by the nonlinear conductivity.
Why is this the case? In fact, it is a slight misuse of language to state, as is done in
this thesis, that the conductivity respects overall permutation symmetry, since this
designation is more properly applied to Eqs. 6.18 and 6.23, of which the relations
for the conductivity are a consequence.

If we return to the perspective of Sections 2.1 and 2.2, that developed the pertur-
bative treatment for a general response function, relating an observable of interest
J to a classical field that coupled to another system observable O, we recognize that
there is something very special in the case of the susceptibility. For the suscepti-
bility, the observable of interest is the polarization −e r̂ induced by the coupling of
the optical field to the dipole operator Ô = e r̂. In other words, when developing
the perturbation theory for the susceptibility10, in the terminology of Section 2.2,
we have J = −O: aside from an irrelevant minus sign, the observable of interest is
the one that couples to the classical field.

It follows that whenever this condition is met and the interest of a physicist falls
upon an observable that couples to a classical field, weakly enough for a perturbative
approach to be applicable, the response functions that determine this observable will
respect overall permutation symmetry. The same conclusion could be derived by
energy considerations, akin to Section 6.2. It is then a wider symmetry, well-known
within the confines of nonlinear optics, but that survives in other contexts.

In the case of nonlinear optics, Eqs. 6.30-6.32 establish relationships between
distinct nonlinear optical effects. The most interesting cases are listed in Table 6.1.
The connected effects may require experimental apparatus operating in distant re-

10Set aside the fact that this is not quite so simple to do for nonlinear optics in solids, due to the
position operator taking the form of a covariant derivative. While in the perturbative treatment of
the electric current, the position operator appears always inside commutators, in the perturbative
expansion of the polarization this is not the case and, in actuality, it is not even possible to a adopt
a single-particle picture: second quantization notation is required to write the polarization operator
in the Bloch basis [5]. See Appendix B for more on the connection between the susceptibility and
the conductivity.
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σ(ω, ω) σ(−2ω, ω)

Second harmonic generation Difference frequency generation

σ(ω, 0) σ(ω,−ω)

Pockels effect Shift and injection currents

σ(ω, ω, ω) σ(−3ω, ω, ω)

Third harmonic generation Difference frequency generation

σ(ω, ω, 0) σ(ω, ω,−2ω)

DC field induced Two color current injection

second harmonic generation

σ(ω, 0, 0) σ(ω,−ω, 0)

Quadratic electro-optic effect Jerk, injection and shift currents

σ(ω,−ω,Ω) σ(Ω,−Ω, ω)

Optical Kerr effect: light wave at ω Optical Kerr effect: light wave at Ω

modulates refractive index at Ω modulates refractive index at ω

Table 6.1: Overall permutation symmetry provides surprising links between nonlin-
ear optical effects. The conductivities on the right can be derived from the ones
presented on the left by permutation symmetry and vice versa. Tensor indices were
omitted.

gions of the electromagnetic spectrum, since they concern different components of
the electric current, and are often of interest to different research communities. The
way they are intimately related by this symmetry demonstrates the advantage of
having an unified treatment, provided by the nonlinear conductivity.

6.4 The dissipative part

The most relevant situation, physically, is when the phenomenological parameter γ
is negligible. This is when the features in the dispersion of the nonlinear conduc-
tivity are more pronounced and when analytical derivations become possible (see
Section 5.3). It is also when the “phenomenological” part becomes less important.

In the previous section, the relaxation-free limit of the relations set by overall
permutation symmetry was addressed in somewhat vague terms and it was argued
that these relations would be violated in this limit, above the effective gap, due to a
mismatch in the limits that approach real frequencies from above and below in the
complex plane. This question is examined in greater detail here, by pulling on the
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results of Chapter 5.
For simplicity, we consider a gapped two-band system and assume that the Fermi

level resides in the gap (σF = 0). In which case (Eqs. 5.16 and 5.18),

σβα(ω̄) = i e2 ω̄Πβα
1 (ω̄) (6.37)

In the limit of vanishing relaxation, using Eq. 5.44,

σβα(ω) ≡ lim
γ→0+

σβα(ω̄) = π i e2 ω
(
Hβα

1 (ω)− i Iβα1 (ω)
)

= σβαH (ω) + σβαI (ω) (6.38)

where the notation σI and σH is introduced, representing the portions of the con-
ductivity given by the Ij integrals and their Hilbert transforms Hj, respectively.

Overall permutation symmetry relates Eq. 6.37 to another frequency component,
σ(−ω̄), for which the limit gives a different result,

lim
γ→0+

σβα(−ω̄) = π i e2 ω
(
Hβα

1 (−ω) + i Iβα1 (−ω)
)

= σβαH (−ω)− σβαI (−ω) (6.39)

This can be understood by returning to Fig. 6.1 and recognizing that, due to the
sign of the imaginary part being reversed σ(−ω̄) = σ(−ω− iγ), the real frequencies
are approached from below in the complex plane, instead of above. As a result,
when the Sokhotski–Plemelj theorem is employed in expanding the denominator in
Eq. 5.6, a sign flip will appear in the I1 term, as already described in Eq. 5.47.

In order to avoid confusion, it is important to remember that the physical con-
ductivity σ(ω) is defined by taking the limit from above and that

σβα(−ω) 6= lim
γ→0+

σβα(−ω̄) (6.40)

With Eqs. 6.38 and 6.39, we arrive at the limit γ → 0+ of Eq. 6.30,

σβαH (ω) = −σαβH (−ω) (6.41)

σβαI (ω) = σαβI (−ω) (6.42)

For light frequencies below the gap |ω| < ∆, the integral I1 is trivially zero and
we have σI = 0. This reduces to the already examined case of a lossless medium,
since σ = σH is anti-hermitian (Eq. 6.17).

However, if we have photons of a higher energy, |ω| > ∆, then resonances will take
place, the I integrals are no longer negligible and the σI portion of the conductivity
will break the anti-hermiticity:

− σαβ(−ω) = −σαβH (−ω)− σαβI (−ω) 6= σβαH (ω) + σβαI (ω) = σβα(ω) (6.43)

Since, for real frequencies, overall permutation symmetry is synonymous with
lossless propagation of light (Section 6.2), identifying the part of the conductivity
that does not satisfy Eq. 6.17 corresponds to isolating the part that is responsible
for optical absorption: σI .
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For the purposes of studying linear absorption, the computation of the I1 inte-
gral is sufficient. This is a standard technique: I1 corresponds to the traditional
Fermi golden rule, which provides the transition rate and the absorption coefficient.
Its Hilbert transform gives the refractive index, via the Kramers-Krönig relations
(Section 6.1).

The same principles apply to the second order conductivity,

σβα1α2(ω1, ω2) ≡ lim
γ→0+

σβα1α2(ω̄1, ω̄2) (6.44)

The relation in Eq. 6.27, derived from conservation of energy in a lossless nonlin-
ear medium, does not hold for optical frequencies above the gap. Insight on this is
gained by inspection of the relaxation free-limit of Eq. 6.31. The relation concerns
the symmetrized second order conductivity,

σβα1α2

S (ω̄1, ω̄2) =
1

2
(σβα1α2(ω̄1, ω̄2) + σβα2α1(ω̄2, ω̄1))

=
1

2
(σβα1α2

1 (ω̄1, ω̄2) + σβα2α1

1 (ω̄2, ω̄1) + σβα1α2

2 (ω̄1, ω̄2) + σβα2α1

2 (ω̄2, ω̄1)) (6.45)

Eq. 5.47 is used to evaluate the relaxation-free limit of the one-photon contribu-
tion (Eq. 5.24),

σβα1α2

1 (ω1, ω2) = lim
γ→0+

σβα1α2

1 (ω̄1, ω̄2) = σβα1α2

1H (ω1, ω2) + σβα1α2

1I (ω1, ω2) (6.46)

where

~
π i e3

σβα1α2

1H (ω1, ω2) =
1

~ω1 + ~ω2
Hα2α1β

1 (ω1) +
~ω1 + ~ω2

(~ω2)2
Hβα1α2

1 (ω1) +
~ω1

~ω2
Hα1βα2

2 (−ω1)

(6.47)

~
π e3

σβα1α2

1I (ω1, ω2) =
1

~ω1 + ~ω2
Iα2α1β

1 (ω1) +
~ω1 + ~ω2

(~ω2)2
Iβα1α2

1 (ω1)− ~ω1

~ω2
Iα1βα2

2 (−ω1)

(6.48)

and the two-photon contribution (Eq. 5.25),

σβα1α2

2 (ω1, ω2) = lim
γ→0+

σβα1α2

2 (ω̄1, ω̄2) = σβα1α2

2H (ω1, ω2) + σβα1α2

2I (ω1, ω2) (6.49)

where

~
π i e3

σβα1α2

2H (ω1, ω2) =− ~ω1 + ~ω2

(~ω2)2
Hβα1α2

1 (ω1 + ω2) +
~ω1 + ~ω2

~ω2

Hβα1α2

2 (ω1 + ω2)

(6.50)

~
π e3

σβα1α2

2I (ω1, ω2) =− ~ω1 + ~ω2

(~ω2)2
Iβα1α2

1 (ω1 + ω2) +
~ω1 + ~ω2

~ω2

Iβα1α2

2 (ω1 + ω2)

(6.51)
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In the relaxation-free limit, by which it is always meant γ → 0+, the nonlinear
conductivity may diverge for specific frequency components (this does happen for
most of the effects in Table 6.1), but it was assumed in the reasoning above that
this is not the case. As discussed in Section 5.3, the direct application of Eq. 5.47
to evaluate the relaxation-free limit, without concern for how the coefficients C
multiplying the Πj integrals behave in this limit, presupposes that we exclude certain
regions of frequency space from our analysis. In this case, we must assume that
ω1 6= 0 6= ω2 and ω1 + ω2 6= 0. These situations are of physical interest, but, as
mentioned before, the topic of the singularities of the nonlinear conductivity resides
outside the scope of this thesis.

Having assessed the limits for the one-photon and two-photon contributions, we
can now consider the entire second order conductivity,

σβα1α2

S (ω1, ω2) ≡ lim
γ→0+

σβα1α2

S (ω̄1, ω̄2) = σβα1α2

H (ω1, ω2) + σβα1α2

I (ω1, ω2) (6.52)

where we summed up all contributions involving the H and I integrals into

σβα1α2

H (ω1, ω2) =
1

2
(σβα1α2

1H (ω1, ω2) + σβα2α1

1H (ω2, ω1) + σβα1α2

2H (ω1, ω2) + σβα2α1

2H (ω2, ω1))

(6.53)

σβα1α2

I (ω1, ω2) =
1

2
(σβα1α2

1I (ω1, ω2) + σβα2α1

1I (ω2, ω1) + σβα1α2

2I (ω1, ω2) + σβα2α1

2I (ω2, ω1))

(6.54)

respectively.
Overall permutation symmetry (Eq. 6.31) connects this to another frequency

component, σα1βα2

S (−ω̄12, ω̄2), whose resonance-based decomposition gives

σα1βα2

S (−ω̄12, ω̄2) =
1

2
(σα1βα2(−ω̄12, ω̄2) + σα1α2β(ω̄2,−ω̄12))

=
1

2
(σα1βα2

1 (−ω̄12, ω̄2) + σα1α2β
1 (ω̄2,−ω̄12) + σα1βα2

2 (−ω̄12, ω̄2) + σα1α2β
2 (ω̄2,−ω̄12))

(6.55)

Similarly to before, we first obtain the relaxation free limit of the one-photon
contribution,

lim
γ→0+

σα1α2β
1 (ω̄2,−ω̄12) = σα1α2β

1H (ω2,−ω12) + σα1α2β
1I (ω2,−ω12) (6.56)

The issue is in the other one-photon contribution, related to the photon frequency
−ω̄12. The complex frequency argument in the Πj integrals will have a minus sign,
therefore

lim
γ→0+

σα1βα2

1 (−ω̄12, ω̄2) = σα1βα2

1H (−ω12, ω2)− σα1βα2

1I (−ω12, ω2) (6.57)

As it happened in linear order, there a sign flip in the contribution involving
the Ij integrals. The same will occur for the remaining two-photon contributions,
associated with the frequency −ω̄1 = −ω̄12 + ω̄2,
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lim
γ→0+

σα1βα2

2 (−ω̄12, ω̄2) =σα1βα2

2H (−ω12, ω2)− σα1βα2

2I (−ω12, ω2) (6.58)

lim
γ→0+

σα1α2β
2 (ω̄2,−ω̄12) =σα1α2β

2H (ω2,−ω12)− σα1α2β
2I (ω2,−ω12) (6.59)

Combining the previous limits,

lim
γ→0+

σα1βα2

S (−ω̄12, ω̄2)

= lim
γ→0+

1

2
(σα1βα2

1 (−ω̄12, ω̄2) + σα1α2β
1 (ω̄2,−ω̄12) + σα1βα2

2 (−ω̄12, ω̄2) + σα1α2β
2 (ω̄2,−ω̄12))

= +
1

2
(σα1βα2

1H (−ω12, ω2) + σα1α2β
1H (ω2,−ω12) + σα1βα2

2H (−ω12, ω2) + σα1α2β
2H (ω2,−ω12))

+
1

2
(−σα1βα2

1I (−ω12, ω2) + σα1α2β
1I (ω2,−ω12)− σα1βα2

2I (−ω12, ω2)− σα1α2β
2I (ω2,−ω12))

(6.60)

from which we conclude,

σα1βα2

S (−ω12, ω2) 6= lim
γ→0+

σα1βα2

S (−ω̄12, ω̄2) (6.61)

This is the second order analogue of Eq. 6.40. Again we find that, because
overall permutation symmetry involves frequency components that approach the
real frequencies from below in the complex plane, and the physical conductivity is
defined from above, the relaxation-free limit of Eq. 6.31 is evaluated differently in
the left and on the right hand sides, producing a mismatch in the signs of the portion
of the conductivity that involves the Ij integrals.

Joining Eqs. 6.52 and 6.60, the relaxation-free limit of the overall permutation
symmetry condition at second order is finally obtained,

σβα1α2

H (ω1, ω2) = −
(
ω1 + ω2

ω1

)
σα1βα2

H (−ω1 − ω2, ω2) (6.62)

and

σβα1α2

I (ω1, ω2) =−
(
ω12

ω1

)(
−σα1βα2

1I (−ω12, ω2) + σα1α2β
1I (ω2,−ω12)

− σα1βα2

2I (−ω12, ω2)− σα1α2β
2I (ω2,−ω12)

)
6=−

(
ω12

ω1

)
σα1βα2

I (−ω1 − ω2, ω2) (6.63)

The conclusions are identical to linear order. Below the band gap, the Ij integrals
are trivially zero and only the Hilbert transforms survive. In this case, the second
order conductivity σβα1α2

S (ω1, ω2) = σβα1α2

H (ω1, ω2) obeys the relation in Eq. 6.27,
that codifies the absence of any optical losses in the nonlinear medium.

Once any optical frequency exceeds the gap, the Ij integrals cannot be ignored
and Eq. 6.27 is no longer valid,
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σβα1α2

S (ω1, ω2) 6= −
(
ω12

ω2

)
σα1βα2

S (−ω12, ω2) (6.64)

This includes the possibilities of one-photon, ω1 > ∆ ∨ ω2 > ∆, or two-photon
resonances, ω1 + ω2 > ∆. Losses are introduced into the system by the σβα1α2

I ,
identified as the dissipative part of the second order conductivity. In a generalization
of the Fermi golden rule methodology, evaluation of the integrals Iβα1α2

1 and Iβα1α2

2

are all that is required to quantify the nonlinear absorption of the crystal.
We note that, curiously, σI does obey a very similar relation to overall permu-

tation symmetry in linear order, with only a sign change (Eq. 6.42). But this seems
to not be true for higher orders (see Eq. 6.63). Is it perhaps possible to derive some
general symmetry that is respected by the dissipative part of the conductivity? To
the author’s knowledge, it is not. What is possible, though, is to construct an
identity that is obeyed at second order, for diagonal matrix elements,

σβββI (ω1, ω2) =

(
ω1 + ω2

ω1

)
σβββI (−ω1 − ω2, ω2)−

(
ω2

ω1

)
σβββI (ω2,−ω2) (6.65)

This relation was first derived by Ventura and forms the second order analogue
of Eq. 6.42. For more insight, and the actual derivation, see [96].

To conclude, we consider the changes caused by a Fermi level set above the gap.
As usual, the effective gap replaces the band gap in previous statements, regarding
resonances and optical loss. Other than that, the Fermi surface contributions σF
satisfy Eqs. 6.17 and 6.27 for any nonzero frequency, implying they can just be added
to the Hilbert transforms in Eqs. 6.41 and 6.62. Eqs. 6.17 and 6.27 are respected
when all optical frequencies lie below the effective gap and all other conclusions are
identical. There is the appearance of zero frequency resonances, but recall that these
were excluded from our analysis anyway.

For brevity, this section covered the study of overall permutation symmetry in
the relaxation-free limit up to second order, but the analysis is naturally extended
to third order and Eqs. 6.29 and 6.32. The central ideas remain unchanged and can
be applied to higher orders still. From the discussion above, it should be clear that
the part of the conductivity containing the integrals Ij will be to blame for optical
absorption, at any order in perturbation theory.

6.5 On a connection between photon resonances

The usefulness of the resonance-based analysis (Chapter 5) is not limited to the
relaxation-free limit. To finish off this discussion on overall permutation symmetry,
the resonance-based decomposition is performed on the overall permutation symme-
try condition, from linear to third order, giving rise to a new set of identities. These
provide unexpected connections among the various pieces that form the nonlinear
conductivity.

As an warm up, we consider the linear case, for which the conclusions are not
very surprising. The statement of overall permutation symmetry for the linear
conductivity (Eq. 6.30) is combined with the decomposition in Eq. 5.16,

σβαF (ω̄) + σβα1 (ω̄) = −σαβF (−ω̄)− σαβ1 (−ω̄) (6.66)
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The key step is to recognize that for Eq. 6.66 to be true for any crystal, the pole
structure on the two sides must be matched. On each side, there is a term that is
dictated by Fermi surface properties and another whose real part is fully determined
by the electronic properties near the region of the FBZ where ~ω = ∆εkcv. Since
these two regions of the FBZ are independent, and overall permutation symmetry
must be satisfied for any band structure εka and Berry connection Aαkab, Eq. 6.66
has to be verified piece-wise, with each contribution satisfying the anti-hermiticity
condition separately,

σβα1 (ω̄) =− σαβ1 (−ω̄) (6.67)

σβαF (ω̄) =− σαβF (−ω̄) (6.68)

Similarly, the Fermi surface contribution will be isolated in every order of per-
turbation theory. It is the only contribution that is related to the Fermi surface and
not to a single or multi-photon resonance. In a sense, it could be said they involve
zero-frequency resonances, but these are not of the type that is relevant here. The
end result is that the Fermi surface contributions always obey overall permutation
symmetry by themselves,

σβα1α2

FS (ω̄1, ω̄2) =−
(
ω̄1 + ω̄2

ω̄1

)
σα1βα2

FS (−ω̄1 − ω̄2, ω̄2) (6.69)

σβα1α2α3

FS (ω̄1, ω̄2, ω̄3) =−
(
ω̄1 + ω̄2 + ω̄3

ω̄1

)
σα1βα2α3

FS (−ω̄1 − ω̄2 − ω̄3, ω̄2, ω̄3) (6.70)

where the ‘S’ subscript serves as a reminder that intrinsic permutation symmetry
must be ensured.

The same cannot be said for the other contributions, when looking past linear
order. In second order, introducing the resonance-based decomposition of Eq. 5.22
in Eq. 6.31,

1

2

(
σβα1α2

1 (ω̄1, ω̄2) + σβα2α1

1 (ω̄2, ω̄1)
)

+ σβα1α2

2S (ω̄1, ω̄2)

= −
(
ω̄12

2 ω̄1

)(
σα1βα2

1 (−ω̄12, ω̄2) + σα1α2β
1 (ω̄2,−ω̄12) + 2 σα1βα2

2S (−ω̄12, ω̄2)
)

(6.71)

with

σβα1α2

2S (ω̄1, ω̄2) ≡ 1

2

(
σβα1α2

2 (ω̄1, ω̄2) + σβα2α1

2 (ω̄2, ω̄1)
)

(6.72)

The Fermi surface contributions were cancelled out from Eq. 6.71. Henceforth,
they will be left out of the discussion, since their symmetry properties are already
identified in Eqs. 6.69 and 6.70.

Recall that σ1(ω̄1, ω̄2) is ascribed to the one-photon resonance ~ω1 = ∆εkcv and
σ2(ω̄1, ω̄2) to the two-photon resonance ~ω1+~ω2 = ∆εkcv (assuming that ω1,ω2 > 0).
On the other hand, σ1(−ω̄12, ω̄2) involves a resonance with a single photon of energy
~ω12, again giving ~ω1 + ~ω2 = ∆εkcv, while σ2(−ω̄12, ω̄2) involves a two-photon
resonance −~ω12 + ~ω2 = −~ω1 = ∆εvc. The only way for Eq. 6.71 to hold is
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for the contributions associated to specific regions of the FBZ (defined by a given
resonance condition) to cancel separately. Recognizing this, Eq. 6.71 unfolds into
a series of identities, that concern the resonances at ~ω1 = ∆εcv, ~ω2 = ∆εcv and
~ω1 + ~ω2 = ∆εcv,

σβα1α2

1 (ω̄1, ω̄2) = −2

(
ω̄1 + ω̄2

ω̄1

)
σα1βα2

2S (−ω̄1 − ω̄2, ω̄2) (6.73)

σβα2α1

1 (ω̄2, ω̄1) = −
(
ω̄1 + ω̄2

ω̄1

)
σα1α2β

1 (ω̄2,−ω̄1 − ω̄2) (6.74)

σβα1α2

2S (ω̄1, ω̄2) = −
(
ω̄1 + ω̄2

2 ω̄1

)
σα1βα2

1 (−ω̄1 − ω̄2, ω̄2) (6.75)

respectively.
Eq. 6.74 is interesting in how it constrains the space of functions that could serve

as the one-photon contribution in a nonlinear conductivity. It is a symmetry of this
type of contribution, at second order.

But the really interesting result is presented in the other equations. Eq. 6.73 and
Eq. 6.75 are equivalent, as can be seen by a simple variable transformation, and tell
us that the one- and two-photon contributions to the second order conductivity are
intimately related. In fact, σ1 can be obtained from σ2 and vice-versa!

The implication is that, once the behavior of the second order conductivity at the
two-photon resonance is known, the rest can be reconstructed on the basis of overall
permutation symmetry. It follows that only one of the two pieces in the resonance-
based decomposition of the second order conductivity needs to be computed.

From the practical standpoint, based on the author’s experience, Eqs. 6.73-6.75
serve mainly as a helpful consistency check in the elaborate computations necessary
to obtain a crystal’s nonlinear conductivity.

A deep connection between different resonances can be found in the third order
nonlinear conductivity as well. The symmetrized form of the third order conductiv-
ity, written in detail, is

σβα1α2α3

S (ω̄1, ω̄2, ω̄3)

≡+
1

6

(
σβα1α2α3

1 (ω̄1, ω̄2, ω̄3) + σβα1α3α2
1 (ω̄1, ω̄3, ω̄2) + σβα2α3α1

1 (ω̄2, ω̄3, ω̄1)

+ σβα2α1α3
1 (ω̄2, ω̄1, ω̄3) + σβα3α1α2

1 (ω̄3, ω̄1, ω̄2) + σβα3α2α1
1 (ω̄3, ω̄2, ω̄1)

)
+

1

6

(
σβα1α2α3

2 (ω̄1, ω̄2, ω̄3) + σβα1α3α2
2 (ω̄1, ω̄3, ω̄2) + σβα2α3α1

2 (ω̄2, ω̄3, ω̄1)

+ σβα2α1α3
2 (ω̄2, ω̄1, ω̄3) + σβα3α1α2

2 (ω̄3, ω̄1, ω̄2) + σβα3α2α1
2 (ω̄3, ω̄2, ω̄1)

)
+

1

6

(
σβα1α2α3

3 (ω̄1, ω̄2, ω̄3) + σβα1α3α2
3 (ω̄1, ω̄3, ω̄2) + σβα2α3α1

3 (ω̄2, ω̄3, ω̄1)

+ σβα2α1α3
3 (ω̄2, ω̄1, ω̄3) + σβα3α1α2

3 (ω̄3, ω̄1, ω̄2) + σβα3α2α1
3 (ω̄3, ω̄2, ω̄1)

)
= +

1

3

(
σβα1α2α3

1S (ω̄1, ω̄2, ω̄3) + σβα2α3α1

1S (ω̄2, ω̄3, ω̄1) + σβα3α1α2

1S (ω̄3, ω̄1, ω̄2)
)

+
1

3

(
σβα1α2α3

2S (ω̄1, ω̄2, ω̄3) + σβα2α3α1

2S (ω̄2, ω̄3, ω̄1) + σβα3α1α2

2S (ω̄3, ω̄1, ω̄2)
)

+ σβα1α2α3

3S (ω̄1, ω̄2, ω̄3) (6.76)
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where σ1S(ω̄1, ω̄2, ω̄3) is symmetrized with respect to the last two index pairs, {α2, ω̄2}
and {α3, ω̄3}, σ2S(ω̄1, ω̄2, ω̄3) is symmetrized with respect to the first two index pairs
and σ3S(ω̄1, ω̄2, ω̄3) is symmetrized with respect to all index pairs.

The overall permutation symmetry of Eq. 6.32, after performing the resonance-
based decomposition in Eq. 6.76, and by the same arguments as before, unfolds into
a series of fundamental identities,

σβα1α2α3

1S (ω̄1, ω̄2, ω̄3) = −3

(
ω̄1 + ω̄2 + ω̄3

ω̄1

)
σα1βα2α3

3S (−ω̄1 − ω̄2 − ω̄3, ω̄2, ω̄3) (6.77)

σβα2α1α3

1S (ω̄2, ω̄1, ω̄3) = −
(
ω̄1 + ω̄2 + ω̄3

ω̄1

)
σα1α2βα3

1S (ω̄2,−ω̄1 − ω̄2 − ω̄3, ω̄3) (6.78)

σβα1α2α3

2S (ω̄1, ω̄2, ω̄3) = −
(
ω̄1 + ω̄2 + ω̄3

ω̄1

)
σα1βα3α2

2S (−ω̄1 − ω̄2 − ω̄3, ω̄3, ω̄2) (6.79)

together with other equivalent equations.
These relations are the expression of overall permutation symmetry for the sepa-

rate contributions to the third order conductivity (as identified in Eq. 5.30). We find
that Eqs. 6.78 and 6.79 place constraints on the shape of one-photon and two-photon
contributions, σ1S and σ2S, respectively. This time, the link between resonances oc-
curs between one-photon and three-photon terms, as seen in Eq. 6.77: σ3S can be
derived from σ1S and vice-versa.

In the second order conductivity, the one- and two-photon contributions are
intimately related and in the third order conductivity the same is true for the one-
and three-photon contributions. Going further, in the n-th order conductivity, the
one- and n-photon contributions are expected to be related in the same way. In
general terms, which contributions must be linked by overall permutation symmetry
can be seen by inspection of the possible resonances involving the available optical
frequencies. For instance, at fourth order one- and four-photon contributions are
interconnected (ω1234 = ω1 +ω2 +ω3 +ω4), as well as the two- and the three-photon
contributions (−ω1 − ω2 = −ω1234 + ω3 + ω4). This matching of optical resonances
can be carried out to arbitrary order in perturbation theory.

6.6 Time-reversal symmetry

As repeated throughout this thesis, evaluation of the nonlinear conductivity of a
crystal demands only a knowledge of the FBZ, the band structure and the non-
abelian Berry connection for its derivation. These objects define the electronic
system, as far as the nonlinear optical properties are concerned. It matters then, to
express the consequences of time-reversal symmetry not in terms of the properties
of Bloch functions, which can be found in any standard textbook on the application
of group theory to solids [88], but instead on the conditions it poses on εka and Aαkab,

ε−ka = εka (6.80)

Aα−kab = (Aαkab)∗ = Aαkba (6.81)

These relations form the statement of time-reversal symmetry that will be used
here. The condition on the non-abelian Berry connection needs to be satisfied only
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for a specific choice of gauge and it implies that the diagonal matrix elements, the
abelian Berry connection Akaa, must be even in k. This, in turn, means

Fβα−ka = −Fβαka (6.82)

The Berry curvature is gauge invariant, so this property must always be verified
for any time-reversal symmetric system.

These equations are to be contrasted with inversion symmetry, which determines
that

ε−ka = εka (6.83)

Aα−kab =−Aαkab (6.84)

where, again, the condition on the non-abelian Berry connection is valid for some
choice of phase factors on the Bloch functions. Independent of these, the Berry
curvature is even in k as a result,

Fβα−ka = Fβαka (6.85)

Notice that if both inversion and time-reversal symmetry are present, as is the
case with monolayer graphene, then the Berry curvature must be zero. The same
cannot be said for the abelian Berry connection, because Eqs. 6.81 and 6.84 may be
satisfied for different phases (choices of gauge) in the Bloch function. Inversion and
time-reversal symmetry reflect similarly on the band structure (Eqs. 6.80 and 6.83).

As an example, consider the dispersion relation derived from the nearest neigh-
bour tight binding model of monolayer graphene (Section 3.3.2),

εkc = +t|Φ(k)| εkv = −t|Φ(k)| (6.86)

with

Φ(k) = |Φ(k)|e−iθ = eik·δ1 + eik·δ2 + eik·δ3 (6.87)

The energies are even in k, as expected from inversion or time-reversal symmetry.
The non-abelian Berry connection is

Aαkcc = Aαkvv = −1

2
∂αθ Aαkcv = Aαkvc =

1

2
∂αθ (6.88)

It can be read from Eq. 6.87 that θ is an odd function of k. Hence, the non-
abelian Berry connection in Eqs. 6.88 respects the time-reversal symmetry condition
in Eq. 6.81. The inversion symmetry property is, however, not manifest in Eqs. 6.88
and requires a different choice of phases for the eigenbasis in Eqs 3.54.

This analysis involved the tight binding model. Care should be taken when
trying to verify these symmetries in continuum Hamiltonians, such as the Dirac
Hamiltonian in Eq. 3.60 or in Eq. 3.65, since the change in sign of the Bloch vector
refers to the center of the FBZ. In the case of graphene, this means that in order to
check Eq. 6.81 or Eq. 6.84 with low energy descriptions, it is required, in evaluating
the left hand side of these equations, to not just consider a shift −q relative to the
Dirac point, but also exchanging valleys.
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The impact of time-reversal symmetry on the nonlinear optical response can be
understood with the use of the resonance-based analysis of Chapter 5. The most
direct manifestation of time-reversal symmetry is in the Fermi surface contributions,
where several of the FX integrals vanish if the system is time-reversal symmetric.
Due to the parity of the band structure (Eq. 6.80) and the Berry curvature (Eq. 6.82):

F βα1

B = 0 (6.89)

F βα1α2

A = 0 (6.90)

F βα1α2α3

B = 0 (6.91)

These results cover the optical response from linear to third order, but, upon
inspection of the integrands, the pattern is clear. Depending on whether an odd or
even order nonlinear conductivity is considered, the Fermi surface contribution is
solely dictated by the FA or FB integrals, respectively11.

The implications for the Hj and Ij integrals are less trivial to demonstrate, but
for the most part translate into the following: for time-reversal symmetric systems,
these integrals are real. This can be made evident by manipulation of the integrands,
using Eqs. 6.80 and 6.81 to combine the values at k and −k. Take I1 in linear order
as an instructive example,

Iβα1

1 (ω1) =

∫
ddk

(2π)d

∑
a,b

AβkbaA
α1
kab ∆fkba δ (~ω1 −∆εkab)

=
1

2

∫
ddk

(2π)d

∑
a,b

AβkbaA
α1
kab ∆fkba δ (~ω1 −∆εkab)

+
1

2

∫
ddk

(2π)d

∑
a,b

Aβ−kbaA
α1
−kab ∆f−kba δ (~ω1 −∆ε−kab)

=
1

2

∫
ddk

(2π)d

∑
a,b

(
AβkbaA

α1
kab +Aβ−kbaA

α1
−kab

)
∆fkba δ (~ω1 −∆εkab)

=
1

2

∫
ddk

(2π)d

∑
a,b

(
AβkbaA

α1
kab + (Aβkba)

∗ (Aα1
kab)

∗
)

∆fkba δ (~ω1 −∆εkab)

=

∫
ddk

(2π)d

∑
a,b

Re{AβkbaA
α1
kab}∆fkba δ (~ω1 −∆εkab) (6.92)

The exact same procedure works for the H1 in Eq. 5.50. In general, it is found
that the real part of products of Berry connections, or generalized derivatives of
Berry connections, appears in the integrands at odd orders in perturbation theory,
when subjected to these manipulations, while the imaginary part is relevant at even
orders in perturbation theory. For instance, the Hj integrals at second order (that
follow from Eqs. 5.28 and 5.29) can be rewritten as

11On the basis that there is not some other FC integral that appears at higher orders; the
derivations have not been carried out by the author beyond third order.
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Hβα1α2

1 (ω̄) =
1

π
−
∫

ddk

(2π)d

∑
a,b

Im{AβkbaA
α1
kab} (∂α2∆εkab)

~ω̄ −∆εkab
∆fkba (6.93)

Hβα1α2

2 (ω̄) =
1

π
−
∫

ddk

(2π)d

∑
a,b

Im{AβkbaA
α1
kab;α2

}
~ω̄ −∆εkab

∆fkba (6.94)

Either way, the integrals themselves are always real in the presence of time-
reversal symmetry. A version of the formulae of Section 5.2 that incorporates time-
reversal symmetry can be found in [91], where the previous manipulations were done
on every integral.

There is an entire new set of tensor identities that results from these manipula-
tions. Just observe that the H1 in Eq. 6.93 obeys

Hβα1α2

1 (ω) = −Hα1βα2

1 (ω) (6.95)

and vanishes when considering diagonal tensor elements. All the integral identities
resulting from time-reversal symmetry, ranging from linear to third order, are listed
in Appendix G.

As briefly discussed in Section 5.3, if the Ij and Hj integrals are real, then

Re{σβα1...αn} =σβα1...αn
I (6.96)

i Im{σβα1...αn} =σβα1...αn
H (6.97)

The correspondence between σI and the real part of the nonlinear conductivity,
and likewise between σH and the imaginary part, has significant consequences.

The portion of the conductivity that is properly described by the electronic prop-
erties near specific regions of the FBZ, where resonances occur, is σI , not necessarily
the real part. The portion of the conductivity that is calculable via a series of “Fermi
golden rule”-type computations is σI , not necessarily the real part. The portion of
the conductivity that is responsible for optical absorption, as seen in our previous
discussion on overall permutation symmetry (Section 6.4), is σI , not necessarily the
real part.

If time-reversal symmetry is present, we can expect the real part of the nonlinear
optical conductivity to be comprised of a series of Heaviside step functions and to
vanish when all optical frequencies of relevance fall below the band gap. The real
part is in this case responsible for optical absorption and, for an insulator, there can
be no optical losses in that region of the spectrum. We equally expect divergences
and a more complicated behavior from the imaginary part. The imaginary part is,
generally, nonzero below the band gap and it is from it that the (nonlinear) refractive
index is calculated.

But if time-reversal symmetry is broken, the Hilbert transformsHj will appear in
both the real and imaginary parts of the conductivity. As will the Ij integrals. Steps
appear in the imaginary part and the real part of the nonlinear optical conductivity
is no longer zero when all optical frequencies lie below the band gap. The crystal
is still transparent for those optical frequencies, of course, and no optical losses are
to be expected. It is important to note that the condition of no optical losses does
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not imply that the real part of the conductivity must be zero below the band gap.
For example, the transverse linear conductivity can be purely imaginary, while still
respecting the anti-hermiticity condition (Eq. 6.17) and having no energy transferred
into the medium. In fact, the existence of a real part of the nonlinear conductivity
in the transparency region of the spectrum could be seen as a signature of broken
time-reversal symmetry.
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Chapter 7

Conclusions

Throughout this thesis, our attention centered around the nonlinear optical conduc-
tivities of crystalline solids. The mathematical structure of these response functions
was examined in detail, clarified through reworkings of known and discovered for-
mulas, and theoretical edifices were raised to facilitate their computation.

The discussion opened, in Chapter 1, with the hypothesis that optical fields
propagating through a medium were sufficiently weak for its constitutive relation to
be properly captured by a series expansion. The coefficients in this series expansion
are the linear and nonlinear optical conductivities of the medium (Eqs. 1.8 and 1.9).
An historical overview of perturbative nonlinear optics then helped set the work of
this thesis in context. The majority of the succeeding discussion was directed to an-
swering an important practical question: how to derive the nonlinear conductivities
of a crystal, supposing we are sufficiently knowledgeable of its electronic properties?

The required knowledge was shown to be the non-abelian Berry connection and
the band structure of the material (Chapter 3). This information is retrieved from
the eigenvalues and eigenstates of the Hamiltonian Ĥ0 describing the electron motion
in the lattice potential, prior to optical excitation. The Hamiltonian in Eq. 2.35
seems to be a natural starting point, but is potentially misleading. For any actual
calculation, effective models with a finite number of bands will be employed and
to avoid the pitfalls that pervade perturbative calculations in nonlinear optics, it is
best to consider a more general Hamiltonian:

Ĥ0 =

∫
ddk

(2π)d

∑
a

|ψka〉 εka 〈ψka| (7.1)

Depending on the number of included bands, this Hamiltonian could be the
one in Eq. 2.35 or could have been derived from a tight binding description or any
other standard theory on the electronic structure of solids. For the specific case
of tight binding, more complete expressions for the position matrix elements were
given (Eq. 3.17) than those that are typically used in the literature. Ignoring any
orbital overlap recovers the known formula for the Berry connection (Eq. 3.20). The
case where the sum in Eq. 7.1 contains only two bands received special attention
for the mathematical simplicity and physical insight it provides (see Section 3.2 and
Chapter 5).

Once the basic ingredients are gathered, a semiclassical treatment based on the
density matrix can be used to find the nonlinear conductivity. A perturbation theory
developed on the assumption of a linear coupling,
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Ĥ = Ĥ0 + ÔαEα(t) (7.2)

gives formulas for any response function relating an observable Ĵα to the classical
field Eα(t) (Eqs. 2.28-2.31).

In nonlinear optics, the light-matter coupling is commonly introduced in one
of two ways, shown to be equivalent by an unitary transformation. In the length
gauge, the observable Ô is the dipole operator that couples to the electric field,
while in the velocity gauge it is the velocity (more accurately, e pα/m) that couples
to the potential vector. Despite their equivalence, these two choices of gauge have
in the past led researchers to contradicting results. The source of these difficulties
was pinpointed already in the nineties [48, 49]: band truncation, as well as the use
of low energy Hamiltonians, leads to the violation of sum rules connecting the two
formulations. Still, the question remained on why the velocity gauge specifically was
plagued with artificial infrared divergences.

Here, gauge invariance was analyzed in further detail and the essential conceptual
difficulty, that does not seem to have been properly recognized before, was attributed
to the nature of the minimal coupling Hamiltonian, for which the perturbation is
functionally dependent on Ĥ0. Evidence for this is the reformulation of the minimal
coupling (velocity gauge) method achieved here (Chapter 4) and the derivation of
a new set of sum rules (Eq. 4.50) that connect it to the length gauge method and
remain valid for finite band models. With this, the decades-long issue of practical
differences between the two choices of gauge is definitively solved.

Curiously, the exploration of these two methods led us to the study of two
variations, or generalizations, of the density matrix perturbation theory reviewed
in Chapter 2 (based on the Hamiltonian in Eq. 7.2).

In the minimal coupling method (Chapter 4), it is necessary to consider couplings
beyond linear order,

Ĥ = Ĥ0 +
+∞∑
n=1

en

n!
ĥα1...αn Aα1(t) . . . Aαn(t) (7.3)

The defining advantage of the minimal coupling Hamiltonian is that it preserves
translation symmetry. As a result, no derivatives in reciprocal space are found,
except those contained in the definition of the ĥα1...αn operators (Eq. 4.9), making
it ideal for the numerical evaluation of the nonlinear conductivity. Numerical inte-
gration must be performed over the entire FBZ, in order to satisfy sum rules. For
tight binding models, it was shown that the computation of hα1...αn

kab is usually simple

and no knowledge of the Berry connection is required. For any model, ĥ involves
the covariant differentiation of Ĥ0 alone and is independent of chemical potential,
temperature and the optical frequencies involved, which can all be changed with-
out significant increase in computational cost. This makes the minimal coupling
algorithm introduced in this thesis a versatile tool for the numerical computation of
nonlinear conductivities.

The minimal coupling method has been demonstrated by a calculation of the
third order conductivity of monolayer graphene (Section 4.6) in the context of a
nearest neighbour tight binding model [56, 84]. At low frequencies, it reproduces
previous results in the literature [76], but these were extended to higher optical
frequencies [84], beyond the Dirac point approximation, with no added difficulty.
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A diagrammatic implementation of our theory has been proposed and used by oth-
ers [62, 85, 97], namely to describe third harmonic generation in Weyl semimet-
als [85].

In the length gauge method (Chapter 5), the coupling in the Hamiltonian is
linear, but the quantum operator that couples to the optical field is a covariant
derivative,

Ĥ = Ĥ0 + i e D̂αEα(t) (7.4)

The advantage of this method is that it handles approximations much better.
Band truncation is not an issue and low energy descriptions can be adopted. Its
disadvantage is its complexity, which, due to the repeated covariant differentiation
of the density matrix, grows very fast with the order of perturbation theory.

To manage this, a resonance-based decomposition of the nonlinear conductiv-
ity was proposed, whereby the lengthy expressions derived from the length gauge
method were written as a sum of contributions relating to the Fermi surface, one-
photon resonances, two-photon resonances, . . . In turn, these contributions were
written in terms of a minimal set of integrals over the FBZ. For any reader who
has consulted the literature on the nonlinear optical response of solids, the value
of these results should be clear. Traditionally extensive and tedious derivations of
the third order conductivity were reduced to the mechanical evaluation of a small
number of integrals. Furthermore, when considering the relaxation-free limit, these
integrals constitute a generalization of the Fermi’s golden rule methodology to non-
linear order.

The resonance-based analysis has the additional benefit of granting a better
understanding of the physics underlying the dispersion of the nonlinear conductivity;
universal characteristics are made transparent and specific results for a given system,
such as a divergence in the real part or the absence of a jump discontinuity can be
derived with ease.

The length gauge method was introduced by Aversa and Sipe [49] and has al-
ready received ample validation, being currently the standard method for obtaining
the nonlinear conductivity. The proposed methodology involving the Πα

j integrals
was demonstrated with the derivation of the analytical form of the third order con-
ductivity of graphene, as described by the Dirac Hamiltonian. The inclusion of a
mass term in the Hamiltonian (gapped graphene) was also addressed (Appendix H).
A comparison with numerical results from the minimal coupling method showed
perfect agreement, which confirms the validity of the low energy description for the
considered range of optical frequencies.

Finally, the symmetry properties of the nonlinear optical response were analyzed
(Chapter 6). Starting with a brief review of the reality condition, the nonlinear
Kramer-Krönig relations and crystal spatial symmetries, the bulk of the following
discussion concerned overall permutation symmetry. Intrinsic permutation symme-
try (Eq. 2.32) stems directly from the definition of a nonlinear response function and
is responsible for the mandatory symmetrization that follows any derivation of the
nonlinear conductivity. Overall permutation symmetry is an extension of intrinsic
permutation symmetry, where all tensor indices can now be permuted with appro-
priate rearrangements of the related optical frequencies. It is a symmetry property
of lossless systems, but, by analytical continuation, its validity was extended for any
crystal [27].
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By superposing the resonance-based decomposition on the statement of overall
permutation symmetry, new identities were uncovered. Overall permutation sym-
metry permitted a clear identification of the dissipative part of the optical response
and established unexpected connections between resonant processes involving differ-
ent numbers of photons. For instance, one-photon and three-photon processes were
shown to be interdependent at third order (Eq. 6.77).

The nonlinear optics of crystalline solids lacking time-reversal symmetry is a topic
that currently attracts great interest from the research community. In this thesis,
the consequences of time-reversal symmetry on the mathematical structure of the
nonlinear conductivity were made transparent: some of the Fermi surface integrals
vanish identically (namely, the anomalous Hall conductivity) and the other integrals
(Iαj and Hα

j ) are guaranteed to be real. It was proven that the real part and the
dissipative part of the optical response are the same in the presence of time-reversal
symmetry. It follows that observation of a real part in the transparency region of
the spectrum can be interpreted as a signature of broken time-reversal symmetry.

After these various explorations, what we end up with are two powerful and
complementary tools for the analysis and derivation of the nonlinear conductivity:
the minimal coupling method presents unprecedented flexibility for numerical full
band structure computations, while the length gauge method is capable of retrieving
analytical expressions from low energy Hamiltonians, by performing a sequence of
“Fermi golden rule calculations” and Hilbert transforms.

These tools can now be applied to investigate other systems beyond monolayer
graphene and to further improve and test our knowledge on the optical properties of
matter. Future research should turn to other two-dimensional crystals and the more
complex (and interesting) Van der Waals heterostructures. But there is no need
to constrain ourselves to 2D systems; the reader may implement these methods to
explore his material of choice. After all, two-dimensional materials were used as an
example due to their simplicity, but the methods themselves were independent of
the dimensionality d of the crystal. A subject of particular interest for the author
would be study of the nonlinear optics of bilayer graphene (with AB stacking). It
was the first material discovered with a tunable band gap [98], by application of an
external voltage, and it should be interesting to see the role this feature plays in
harmonic generation and other nonlinear phenomena.

Graphene itself merits further study. An accurate account of its band structure
requires beyond nearest neighbour hoppings [65], that break the electron-hole sym-
metry of the system. This may prove too complicated for the derivation of analytical
formulas, but is easily accommodated by the minimal coupling algorithm described
in this thesis.

The impact of time-reversal symmetry in the nonlinear response, discussed at
the end of Chapter 6, is to be tested by studying models where this symmetry is
absent (e. g. the Haldane model). Tight binding models where orbital overlap is
included also deserve careful study.

In general, the flexibility of the minimal coupling method should be taken ad-
vantage of. There is no need to limit calculations to optical frequencies near the
Fermi level; the full dispersion curve of the conductivity can be computed. More-
over, the recursive nature of the minimal coupling algorithm means higher orders of
perturbation theory, and hence higher harmonics, are promptly accessible. Future
research efforts shall use this to help cement the usefulness of the approach.
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Further formal development of these methods will also be pursued, however.
The resonance-based analysis was constructed on the basis of a two-band crystal

and will take further work to extend it to an arbitrary number of bands. The possi-
bility of double-resonances is anticipated to be a possible obstacle in this endeavour.

The Fermi surface contributions have an elegant and universal form in Eqs. 5.9
and 5.10, with frequency independent integrals, but this was not actually proven,
merely verified in practice up to third order. The author of this thesis would venture
the guess that this is valid at any order, but the manner by which these expressions
emerge is non-obvious, their derivation demanding the perfect cancellation of mul-
tiple integrals (such as the ones in Eqs. G.2 and G.6 ; see for instance the derivation
in Appendix F). An example of a precise but unanswered question is on the char-
acter of the Fermi surface integrals at fourth and higher orders: certainly the types
observed so far will be present (FA and FB), but will there be other Fermi surface
integrals? Further thought should be given to these matters, in particular when try-
ing to understand how the formalism in this thesis relates to alternative approaches
in the literature, namely Boltzmann equation methods. It should be possible to
attain a better comprehension of the validity of the latter by inspection of the Fermi
surface contributions in Chapter 5 and their higher order versions.

Another aspect where the insight brought by the resonance-based decomposition
may prove fruitful is in the current search for links between topology and nonlinear
optical properties [99]. It is fairly clear, by inspection of the integrands in Πα

j and
Fα
X , that geometrical quantities appear naturally in the nonlinear conductivity. But

if quantum geometry appears determinant, it is unclear what role topology would
play in characterizing the perturbative nonlinear optical properties of crystals. These
discussions normally start from the anomalous, topological, contribution found in
linear order (Eq. 5.13), a global term that involved the curvature flow over the FBZ.
Yet, no higher order analogues were found in the second and third order conduc-
tivities (and are unlikely to exist at any order). This puts into question whether
topological arguments are relevant for nonlinear effects, when operating within the
single particle picture. An interesting example would be the Weyl semimetals, where
claims have been made that the unusually large nonlinear optical constants observed
have something to do with topology [100, 101]. The work in this thesis should help
verify if this is the case.

Finally, there is a major topic that was intentionally left out of this thesis: the
singularities of the nonlinear conductivity. In the absence of relaxation, the nonlinear
conductivity diverges for extended regions of frequency space. These divergences are
physical and are related to, for instance, current injection [5]. This is an effect of
practical interest as it allows coherent control of electric currents by light [55]. The
expressions in Chapter 5 are the ideal starting point to investigate this singular
behavior. Any physical divergence can be explored by means of a Laurent series
in γ, where both the integrals Πα

j (ω̄) and the combinations of complex frequencies
that multiply them must be expanded. Alternatively, the expansion can be made for
γ = 0 with respect to a real frequency1. An array of interesting optical phenomena is
captured by frequency components of the conductivity that diverge in the relaxation-
free limit and these will be researched under this perspective: electro-optic effects,
the optical Kerr effect, two-color current injection, . . . Along this line of research, a
correction to the recently proposed jerk current [6, 94, 102] has already been made

1For example, σ(ω + δ,−ω) can be expanded in δ and is expected to diverge for δ → 0+.
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with use of these methods [7, 8].
We conclude by returning to the approximations made at the very beginning: the

electric dipole and independent electron approximations. There is interest (e. g. in
plasmonics) in a more general version of the nonlinear conductivity that takes into
account spatial dispersion and nonuniform optical fields (at the unit cell level).
Unfortunately, the assumption of a spatially independent electric field underlies the
Hamiltonians in Eqs. 7.3 and 7.4 and it is still unclear, at the moment, how to
extend the analysis of this thesis in this particular direction.

If the electric dipole approximation is reasonable in most commonly encountered
scenarios, the same cannot be said for the neglect of electron-electron interactions.
Recent publications suggest that the single particle picture may not properly capture
the nonlinear optical response of monolayer graphene [103], even though it has found
reasonable agreement with experiment [78]. For gapped systems, the influence of
excitons on the optical response cannot be disregarded [104]. It is essential to include
a proper description of relaxation mechanisms beyond a phenomenological one and
to understand the role electron-electron interactions play in nonlinear optics.

Considering the complexity of the nonlinear optical response of crystalline solids,
the framework set up in this thesis to treat independent electrons is likely to remain
relevant. It is the first step in describing the quantum electron dynamics when
coupled to a classical optical field and forms a basis for future theories to build on
and compare to. It is the author’s hope that this work will prove useful to researchers
in the field attempting a better understanding of the light-matter interactions in
solids.
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Appendix A

On time-dependent unitary
transformations

As alluded to in Section 1.2, there are two commonly adopted choices of gauge when
performing calculations in nonlinear optics. The velocity gauge, which provides the
following Hamiltonian

Ĥ = Ĥ0(r̂, p̂ + eA(t)) (A.1)

and the length gauge, which gives

Ĥ = Ĥ0(r̂, p̂)− e r̂ · E(t) (A.2)

For each description, the physical states are represented by a set of kets and
the observables by Hermitian operators, here labeled by the subscripts V and L
to distinguish between the velocity and length gauge choices, respectively. The
two methods, their advantages and inherent difficulties are discussed at length in
Chapters 2 and 4. Their equivalence can be seen by performing a time-dependent
unitary transformation.

The equivalence will be demonstrated here in the context a single particle pic-
ture, since this is the language used in this thesis. An assembly of identical electrons,
being a fermionic system, normally requires the use of second quantization notation
for a rigorous proof, but, as with everything else discussed in this text, it can be
shown that the neglect of electron-electron interactions (independent electron ap-
proximation) makes the system entirely equivalent to a collection of single particle
quantum systems, with the Fermi-Dirac distribution as the equilibrium distribution.

A quantum system consisting of a single particle has its dynamics, prior to the
introduction of an coupling with a classical field (Eqs. A.1 and A.2), governed by
an Hamiltonian Ĥ0(r̂, p̂).

The Hilbert space of the system is generated by some basis {|ψL〉}. Acting on
the states are operators ÔL, whose measurements return, on average, 〈ψL| ÔL |ψL〉.
These are the predictions quantum mechanics is able to make and they are invariant
under an simultaneous unitary transformation of the states and operators,

〈ψL| ÔL |ψL〉 =
(
〈ψL| Û †(t)

)(
Û(t) ÔL Û †(t)

)(
Û(t) |ψL〉

)
= 〈ψV | ÔV |ψV 〉 (A.3)
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where the unitarity of the transformation Û †(t) Û(t) = Û(t) Û †(t) = 1̂ was used in
the first passage, followed by the introduction of the definitions

|ψV 〉 ≡ Û(t) |ψL〉 (A.4)

ÔV ≡ Û(t) ÔL Û †(t) (A.5)

This demonstrates the equivalence of the descriptions of the quantum system
that use the states and operators {|ψL〉 , ÔL} and those that use {|ψV 〉 , ÔV }.

If instead of pure states, mixed states of the quantum system are of interest, then
the density operator provides the most convenient route to computing the ensemble
average,

< ÔL >= Tr
(
ÔL ρ̂L

)
(A.6)

The trace can be evaluated over any basis, {|ψL〉} or {|ψV 〉} or any other. Equiv-
alent descriptions are still obtainable by unitary transformations, since

Tr
(
ÔL ρ̂L

)
= Tr

((
Û †(t) Û(t)

)
ÔL
(
Û †(t) Û(t)

)
ρ̂L

(
Û †(t) Û(t)

))
= Tr

(
Û(t) ÔL Û †(t) Û(t) ρ̂L Û †(t)

(
Û(t) Û †(t)

))
= Tr

((
Û(t) ÔL Û †(t)

)(
Û(t) ρ̂L Û †(t)

))
= Tr

(
ÔV ρ̂V

)
(A.7)

where both the unitarity of the transformation and the cyclic property of the trace
were used.

Consider the case of an unitary transformation with the form,

Û(t) = e−i eA(t)·r̂/~ (A.8)

with A(t) as a classical vector field.
In this case, the momentum operator transforms as,

p̂L → p̂V = Û(t) p̂L Û †(t) = p̂L + eA(t) (A.9)

and, more generally,

ÔL(r̂, p̂)→ ÔV (r̂, p̂) = Û(t) ÔL(r̂, p̂) Û †(t) = ÔL(r̂, p̂ + eA(t)) (A.10)

Knowing how to translate operators and states at any given time between the two
descriptions, we are left with the question: what is the Hamiltonian that describes
the dynamics of the transformed space of states? A first guess could be

ĤL(r̂, p̂)→ ĤV (r̂, p̂)
?
= Û(t) ĤL(r̂, p̂) Û †(t) = ĤL(r̂, p̂ + eA(t)) (A.11)

but this is incorrect. The situation is more complicated because the unitary trans-
formation is time-dependent: the states evolve in time not only due to the action of
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the original time evolution operator Û(t) = e−i ĤL t/~, but also due to the mapping
itself.

The true definition of the Hamiltonian is in the time-dependent Schödinger equa-
tion1, as the generator of the time evolution of physical states

ĤV (r̂, p̂) |ψV (t)〉 ≡ i ~ (∂t |ψV (t)〉) (A.12)

From here, the general form of an Hamiltonian subjected to a time-dependent
unitary transformation can be derived,

i ~ (∂t |ψV (t)〉) = i ~
(
∂t Û(t) |ψL(t)〉

)
= i ~ (∂tÛ(t)) |ψL(t)〉+ i ~ Û(t) (∂t |ψL(t)〉)
= i ~ (∂tÛ(t)) |ψL(t)〉+ Û(t) ĤL |ψL(t)〉
= i ~ (∂tÛ(t)) Û †(t) |ψV (t)〉+ Û(t) ĤL Û †(t) |ψV (t)〉 (A.13)

We conclude,

ĤV = Û(t) ĤL Û †(t) + i ~ (∂tÛ(t)) Û †(t) (A.14)

If we take Eq. A.2,

ĤL = Ĥ0 + e r̂ · E(t) (A.15)

and apply the unitary transformation in Eq. A.8, we arrive at

ĤV (r̂, p̂) = Û(t) ĤL(r̂, p̂) Û †(t) + i ~ (∂tÛ(t)) Û †(t)
= ĤL(r̂, p̂ + eA(t)) + e r̂ · (∂tA(t))

= Ĥ0(r̂, p̂ + eA(t)) + e r̂ · E(t) + e r̂ · (∂tA(t)) (A.16)

This is the end result for an arbitrary A(t). If we judiciously pick A(t) to be such
that −∂tA(t) = E(t) (in other words, if we interpret A(t) as the vector potential),
then

ĤV (r̂, p̂) = Ĥ0(r̂, p̂ + eA(t)) (A.17)

showing that the two standard ways of introducing an external electric field in the
Hamiltonian are indeed equivalent and related by a simple time-dependent unitary
transformation.

The results derived here did not depend on the nature of the quantum system
that was coupled with the classical field: the reasoning is valid for any Ĥ0. In this
thesis, the quantum system of interest is an electron moving within the periodic
potential of a crystal, as represented by either the standard Schrödinger Hamilto-
nian in Eq. 2.35, or by a finite band model, as in Eq. 4.1. The previous proof on
the equivalence of the length and velocity gauge descriptions holds in both cases,
although in the latter the position operator is to be understood as the covariant
derivative in Eq. 2.50.

1As in the rest of this text, the Schrödinger picture of time evolution is adopted.
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On the relation between
susceptibility and conductivity

This appendix addresses the relationship between two sets of response functions,
electric susceptibilities and conductivities, that are of common use in nonlinear
optics studies. Each of them provides a complete description of the optical properties
of the system, so knowledge of one permits the derivation of the other.

Early developments in nonlinear optics regarded atomic/molecular gases and
dielectrics, for which the notion of a macroscopic polarization built out of an average
of individual electric dipole moments is intuitive. This led to the susceptibility being
the response function traditionally adopted in nonlinear optics, at least in earlier
literature.

On the other hand, for many solids, such as doped semiconductors and met-
als, where DC currents may flow freely, this picture of a density of electric dipole
moments is not appropriate. Typically, an effective polarization (and hence a sus-
ceptibility) is defined, by considering the quantity whose time derivative gives the
electric current [9]. But then, one could argue, a direct treatment of the current feels
more natural. Additionally, the electric current is more a fundamental quantity in
field theory, due to its connection with symmetry via Noether’s theorem. Whenever
a constant DC current is injected, the susceptibility diverges, while the conductivity
stays finite. For all these reasons, it is the author’s conviction that the conductivity
provides a more physical and transparent approach to understanding optical proper-
ties. In this thesis, where the focus is on the nonlinear optical properties of crystals,
conductivities have been almost exclusively used.

Occasionally, the susceptibility has been invoked. For instance, in the discussion
on overall permutation symmetry (Section 6.2), where it added useful insight. Also,
the conversion between conductivity and susceptibility is often necessary when com-
paring results with the literature. It is therefore worthwhile to clarify the connection
between these two objects.

The linear conductivity is defined by

Jβ(t) =

∫ +∞

−∞
σβα(t− t′)Eα(t′) dt′ (B.1)

where J is the electric current.

The linear susceptibility is defined by
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P β(t) = ε0

∫ +∞

−∞
χβα(t− t′)Eα(t′) dt′ (B.2)

where P is the electric polarization and ε0 is the vacuum permittivity.
It is known that

Jβ(t) =
dP β

dt
(B.3)

Replacing Eqs. B.1-B.2 in Eq. B.3,

∫ +∞

−∞
σβα(t− t′)Eα(t′) dt′ = ε0

d

dt

∫ +∞

−∞
χβα(t− t′)Eα(t′) dt′

= ε0

∫ +∞

−∞

(
d

dt
χβα(t− t′)

)
Eα(t′) dt′ (B.4)

This is true for any electric field E(t), which implies that

σβα(t) = ε0
dχβα

dt
(B.5)

Thus, the conductivity is simply the time derivative of the electric susceptibil-
ity. After a Fourier transform is applied, this translates into the following relation
between frequency components,

σβα(ω̄) = −i ω̄ ε0 χβα(ω̄) (B.6)

Similarly for nonlinear orders, where the nonlinear response functions are defined
by

Jβ (n)(t) =

∫ +∞

−∞
· · ·
∫ +∞

−∞
σβα1...αn(t− t1, . . . , t− tn)Eα1(t1) . . . Eαn(tn) dt1 . . . dtn

=

∫ +∞

−∞
...

∫ +∞

−∞

dω1

2π
...
dωn
2π

σβα1...αn(ω̄1, ..., ω̄n)Eα1(ω1)...Eαn(ωn) e−i(ω̄1+...+ω̄n)t

(B.7)

and

P β (n)(t) = ε0

∫ +∞

−∞
· · ·
∫ +∞

−∞
χβα1...αn(t− t1, . . . , t− tn)Eα1(t1) . . . Eαn(tn) dt1 . . . dtn

= ε0

∫ +∞

−∞
...

∫ +∞

−∞

dω1

2π
...
dωn
2π

χβα1...αn(ω̄1, ..., ω̄n)Eα1(ω1)...Eαn(ωn) e−i(ω̄1+...+ω̄n)t

(B.8)

The relations between nonlinear susceptibilities and conductivities can be read
from Eqs. B.3, B.7 and B.8,

σβα1...αn(t) = ε0
dχβα1...αn

dt
(B.9)
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and

σβα1...αn(ω̄1, ..., ω̄n) = −i (ω̄1 + ...+ ω̄n) ε0 χ
βα1...αn(ω̄1, ..., ω̄n) (B.10)

It should be possible to verify these relations with the expressions provided by
perturbation theory in Section 2.2. To keep the setting as general as possible, and
hence avoid extraneous details, we consider that the Hamiltonian governing the sys-
tem is Ĥ(t) = Ĥ0 + V̂(t), where Ĥ0 is well-understood and the second term is a
perturbation of the form V̂(t) = OαEα(t). These were the basic assumptions from
which the perturbative treatment of Sections 2.1-2.2 was developed. The formulas
for linear and nonlinear response functions were given in Eqs. 2.28-2.29. Alterna-
tively, they can evaluated with Eqs. 2.30 and 2.31.

Taking Eq. 2.30 for n = 1, we obtain the standard Kubo’s formula for the linear
conductivity,

σβα(t) =

(
i

~

)
Tr
(
ρ̂0

[
ÔαI (−t), Ĵβ

])
Θ(t) (B.11)

where ρ̂0 is the equilibrium distribution and ÔI(t) is the result of evolving the
operator Ô in the interaction picture.

Similarly, for the susceptibility,

ε0 χ
βα(t) =

(
i

~

)
Tr
(
ρ̂0

[
ÔαI (−t), P̂ β

])
Θ(t) (B.12)

The time-dependence can, somewhat artificially, be transferred to the polariza-
tion by evolving every operator for an interval of time t in the interaction picture
(this corresponds to performing the unitary transformation Û0(t) = e−iĤ0t/~),

ε0 χ
βα(t) =

(
− i
~

)
Tr
(
ρ̂0

[
P̂ β
I (t), Ôα

])
Θ(t) (B.13)

In attempting to demonstrate Eq. B.5, the following manipulations could be
attempted on Eq. B.11

σβα(t) =

(
i

~

)
Tr
(
ρ̂0

[
ÔαI (−t), Ĵβ

])
Θ(t)

=

(
− i
~

)
Tr
(
ρ̂0

[
ĴβI (t), Ôα

])
Θ(t)

=

(
− i
~

)
Tr

(
ρ̂0

[
dP̂ β

I

dt
, Ôα

])
Θ(t)

=
d

dt

((
− i
~

)
Tr
(
ρ̂0

[
P̂ β
I (t), Ôα

]))
Θ(t) (B.14)

but there are several difficulties with this result. It is, in fact, in contradiction with
Eq. B.5.

To recognize this, note that the susceptibility (Eq. B.12) has the form,

χβα(t) = Xβα(t) Θ(t) (B.15)
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where Xβα(t) is a well-behaved function that can be made differentiable at t = 0.
A direct differentiation of this expression should give the conductivity,

σβα(t) = ε0
dχβα

dt
= ε0

dXβα

dt
Θ(t) + ε0X

βα(0) δ(t) (B.16)

but the second term in Eq. B.16 is absent from Eq. B.14.
Indeed, it is unclear how could such a Dirac delta function even appear from an

application of Kubo’s formula. One might feel that maybe the previous derivation,
which involves the derivative of a step function and distributions, is to be questioned,
but a more careful and rigorous analysis shows that Eq. B.16 holds:

Jβ(t) = ε0
d

dt

∫ +∞

−∞
χβα(t− t′)Eα(t′) dt′

= ε0
d

dt

∫ t

−∞
Xβα(t− t′)Eα(t′) dt′

= ε0

∫ t

−∞

(
d

dt
Xβα(t− t′)

)
Eα(t′) dt′ + ε0X

βα(0)Eα(t)

= ε0

∫ +∞

−∞

(
dXβα

dt
Θ(t− t′) +Xβα(0) δ(t− t′)

)
Eα(t′) dt′ (B.17)

As a consequence, we recover

σβα(t) = ε0
dχβα

dt
= ε0

dXβα

dt
Θ(t) + ε0X

βα(0) δ(t) (B.18)

Having the relation between the susceptibility and the conductivity on firm foot-
ing, we are left to question our derivation of the linear conductivity (Eq. B.14).

In fact, our misstep relates to a fundamental question: what operator do we
define as the electric current, whose time evolution we are interested in following?
Perhaps, the operator as it was defined previous to applying the perturbation?

Ĵβ =

(
− i
~

)[
P̂ β, Ĥ0

]
(B.19)

This definition was the one used to derive Eq. B.14. But, as soon as the per-
turbation is turned on, this current is no longer related to the electric polariza-
tion by a time derivative. If we maintain that the electric current is defined as
−e v̂β = ∂P̂ β/∂t (or equivalently that the velocity is always defined as the time
derivative of the position), then, upon applying the perturbation, the current oper-
ator becomes explicitly time-dependent and is given by,

Ĵβ(t) =

(
− i
~

)[
P̂ β, Ĥ(t)

]
=

(
− i
~

)[
P̂ β, Ĥ0

]
+

(
− i
~

)[
P̂ β, Ôα

]
Eα(t) (B.20)

This is the correct expression for the current, the one that preserves the relation
between Ĵ and P̂ . It reduces to Eq. B.19 only when P̂ and Ô commute.

This statement is somewhat obvious, but it implies that when performing per-
turbation theory one cannot blindly use Kubo’s formula for the current. A proper
development of perturbation theory involves an expansion in the current matrix
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elements as well as in the density matrix, in a way directly analogous to what is
observed in a minimal coupling approach [56].

The ensemble average of Eq. B.20 gives

Jβ(t) = Tr
(
Ĵβ(t) ρ̂(t)

)
=

(
− i
~

)
Tr
([
P̂ β, Ĥ0

]
ρ̂(t)

)
+

(
− i
~

)
Tr
([
P̂ β, Ôα

]
ρ̂(t)

)
Eα(t)

(B.21)

In linear order,

Jβ(1)(t) =

(
− i
~

)2 ∫ t

−∞
Tr
([
P̂ β, Ĥ0

] [
ÔαI (t′ − t), ρ̂0

])
Eα(t′) dt′

+

(
− i
~

)
Tr
([
P̂ β, Ôα

]
ρ̂0

)
Eα(t) (B.22)

corresponding to a conductivity

σβα(t) =

(
− i
~

)2

Tr
(
ρ̂0

[[
P̂ β, Ĥ0

]
, ÔαI (−t)

])
Θ(t) +

(
− i
~

)
Tr
(
ρ̂0

[
P̂ β, Ôα

])
δ(t)

=

(
− i
~

)2

Tr
(
ρ̂0

[[
P̂ β
I (t), Ĥ0

]
, Ôα

])
Θ(t) +

(
− i
~

)
Tr
(
ρ̂0

[
P̂ β
I (0), Ôα

])
δ(t)

=

(
− i
~

)
Tr

(
ρ̂0

[
dP̂ β

I (t)

dt
, Ôα

])
Θ(t) +

(
− i
~

)
Tr
(
ρ̂0

[
P̂ β
I (0), Ôα

])
δ(t)

=
d

dt

((
− i
~

)
Tr
(
ρ̂0

[
P̂ β
I (t), Ôα

]))
Θ(t) +

(
− i
~

)
Tr
(
ρ̂0

[
P̂ β
I (0), Ôα

])
δ(t)

= ε0
dXβα

dt
Θ(t) + ε0X

βα(0) δ(t) = ε0
dχβα

dt
(B.23)

that is indeed the time derivative of the susceptibility.
It is now clear that, once the proper definitions of the current (Eq. B.20) and re-

spective conductivity (Eq. B.23) are adopted, the relationship between conductivity
and susceptibility is as straightforward as expected.

The equivalent relation in the frequency domain, Eq. B.6, can also be demon-
strated explicitly1:

−i ω̄ χβα(ω̄) = −i ω̄
∑
a,b

P β
ba

[Oα, ρ0]ab
~ω̄ −∆εab

= − i
~
∑
a,b

~ω̄ P β
ba

~ω̄ + ∆εba
[Oα, ρ0]ab

= − i
~
∑
a,b

(
1− ∆εba

~ω̄ + ∆εba

)
P β
ba [Oα, ρ0]ab (B.24)

1If Ĥ0 is the Hamiltonian for an electron moving in a crystalline potential (Eq. 2.35), then there
is a continuum of energies and the sum over states includes an integration over the FBZ.
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= − i
~
∑
a,b

P β
ba ∆εab

~ω̄ + ∆εba
[Oα, ρ0]ab −

i

~
∑
a,b

P β
ba [Oα, ρ0]ab

=
∑
a,b

J
β(0)
ba

[Oα, ρ0]ab
~ω̄ −∆εab

+

(
− i
~

)
Tr
(
P̂ β
[
Ôα, ρ̂0

])
= Tr

(
Ĵβ(0) ρ̂α(ω̄)

)
+

(
− i
~

)
Tr
([
P̂ β, Ôα

]
ρ̂0

)
= σβα(ω̄) (B.25)

The previous arguments can be recreated for nonlinear orders to demonstrate
Eqs. B.9 and B.10: the formulas are lengthier, but the fundamental concepts and
algebraic manipulations are essentially the same.

The identification of an extra term in the definition of the electric current is
a direct consequence of the definition of the velocity of a particle whose dynamics
are governed by the Hamiltonian Ĥ(t) = Ĥ0 + ÔαEα(t). This extra term vanishes
if P̂ and Ô commute, which is expected to be case when Ôα = e r̂α = −P̂α. In
Appendix D, it is argued that this may not be true, however, for finite band models.

In finite band models of crystals, the position operator is a covariant derivative,
which poses some problems in attempting to compute the electric susceptibility,
linear or nonlinear, via standard perturbation theory. As discussed in Section 2.3,
the position operator does not have well defined matrix elements in the Bloch basis,
but can be accommodated by being placed inside commutators whose matrix ele-
ments are well defined. This works fine when performing the perturbation theory
for the electric current and deriving conductivities, but fails on treating the electric
polarization, since in its ensemble average,

P β = Tr
(
P̂ β ρ̂(t)

)
= −e Tr

(
r̂β ρ̂(t)

) ?
= −i e Tr

(
D̂β ρ̂(t)

)
(B.26)

the position operator does not occur inside a commutator. This is the primary reason
why a direct calculation of the electric susceptibility in crystals is not possible in
the context of a single particle picture.

To conclude, it is emphasized that our observables of interest, P̂ and Ĵ , could be
replaced by any two operators related by a time derivative and the structure of the
reasoning presented in this appendix would, for the most part, remain unaltered.
The apparent contradiction between Eqs. B.12, B.14 and B.5 serves as a cautionary
tale when developing a perturbation theory for observables that are inherently de-
fined as time derivatives of other physical quantities. In particular, Kubo’s formula
cannot, in these situations, be directly applied to compute the respective linear and
nonlinear response functions.
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Appendix C

Commutative covariant derivatives

Throughout a significant portion of this work, it was implicitly assumed that position
operators commute. This may seem a trivial statement, derived from the basics
of quantum mechanics, but commutation relations tend to be broken upon band
truncation and when a finite band model is used to describe a system, defined
perhaps by the specification of a set of Bloch states ψka and bands εka (Eq. 4.1),
there is no reason to assume that the following will be true,[

r̂α, r̂β
]

= −
[
D̂α, D̂β

]
= 0 (C.1)

Still, this particular commutation relation can be shown to hold on very general
grounds,

[
D̂α, D̂β

]
kab

= − i ∂αAβkab + i ∂βAαkab −
[
Aα,Aβ

]
kab

= ∂α
(〈
uka

∣∣∣∂βukb〉)− ∂β (〈uka|∂αukb〉)

+
∑
c

(
〈uka|∂αukc〉

〈
ukc

∣∣∣∂βukb〉− 〈uka∣∣∣∂βukc〉 〈ukc|∂αukb〉)
=
〈
∂αuka

∣∣∣∂βukb〉− 〈∂βuka∣∣∣∂αukb〉
−
∑
c

(
〈∂αuka|ukc〉

〈
ukc

∣∣∣∂βukb〉− 〈∂βuka∣∣∣ukc〉 〈ukc|∂αukb〉)
= 0 (C.2)

with the last step making use of the closure relation,∑
c

|ukc〉 〈ukc| = 1̂ (C.3)

Eq. C.3 is the essential assumption in the construction of the finite-band model
that ensures the validity of Eq. C.1. With the commutation of position operators
on firm grounds, some of its consequences can be discussed.

A curious and sometimes useful way to rewrite the statement of Eq. C.1 is[
D̂α, Âβ

]
kab

= ∂βAαkab (C.4)

From Eq. C.1, various other identities can be derived. Expanding the commuta-
tor,
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∂αAβkab − ∂
βAαkab = i

[
Aα,Aβ

]
kab

(C.5)

In the particular case that a = b, this identity relates the abelian Berry curvature
to the off-diagonal matrix elements of the Berry connection,

Fαβa ≡ ∂αAβkaa − ∂
βAαkaa = i

[
Aα,Aβ

]
kaa

= i
∑
c 6=a

(
AαkacA

β
kca −A

β
kacA

α
kca

)
(C.6)

For a two-band model, Eq. C.5 with a 6= b relates “generalized derivatives” of
Berry connections,

Aβkab;α = Aαkab;β (C.7)

A more sophisticated identity on second order “generalized derivatives” can also
be derived,

Aβkab;α1α2
−Aβkab;α2α1

= 2
(
Aα1

kbaA
β
kabA

α2
kab −A

α2
kbaA

β
kabA

α1
kab

)
(C.8)

Eq. C.8 translates into a relation between the Π4 and Π5 integrals at third order,
which are no longer independent,

Πβα1α2α3

4 (ω̄)− Πβα1α3α2

4 (ω̄) = 2
(

Πβα2α1α3

5 (ω̄)− Πβα3α1α2

5 (ω̄)
)

(C.9)
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Appendix D

Noncommutative covariant
derivatives

In Appendix C, a set of important identities were derived on the basis that position
operators commute. This assumption was behind many derivations in the main text
of this thesis and, in particular, the construction of the expressions in Section 5.2.
Here, the opposing scenario of noncommutative position operators (covariant deriva-
tives) is studied. [

r̂α, r̂β
]
6= 0 (D.1)

The intent to abandon what seems to be an obvious fact may seem surprising,
but notice that band truncation invalidates most commutator relations, by removal
of intermediate states, like those in the implicit sum of Eq. D.1. Once more, the
difficulty lies in considering a limited number of bands for our system. There is no
doubt that position operators commute in their common definition in the Hilbert
space of the Hamiltonian in Eq. 2.35 (this is sometimes regarded as a postulate of
quantum mechanics), but for a finite band model the position operator is defined as
a covariant derivative and

[rα, rβ]kab = −[Dα, Dβ]kab = i
(
∂αAβkab − ∂

βAαkab
)

+ [Aα,Aβ]kab (D.2)

there is no guarantee this commutator vanishes.
However, for every model that was analyzed in this thesis, the commutator in-

deed vanished. It is zero for any tight binding model in the limit of no overlap
considered in Section 3.1. In fact, it vanishes whenever a finite matrix of functions
of k is postulated as the parametric Hamiltonian, from which the non-abelian Berry
connection is to be derived. The common trait in these models is that the clo-
sure relation

∑
a |uka〉 〈uka| = 1 is satisfied, from which it can be proved that the

commutator must be zero (Appendix C).
The starting point is not always a parametric Hamiltonian though. For instance,

band structure and Bloch functions may be obtained numerically by density func-
tional theory. Also, it is always possible that from an original Hilbert space of many
bands, two or three are selected as interesting and by band truncation a finite band
Hamiltonian (Eq. 4.1) is defined. Orbital overlap may be included in a tight binding
model. In any of these cases, there is no means to ensure the commutator in Eq. D.2

147



D. NONCOMMUTATIVE COVARIANT DERIVATIVES

vanishes, that is, to ensure covariant derivatives commute in this truncated band
space.

Even if these considerations are discarded as irrelevant, there is a second reason
to consider the possibility [Dα, Dβ] 6= 0. The statement that the commutator in
Eq. D.2 is zero induces a series of identities, listed in Appendix C, that obscure
more important symmetries present in the nonlinear conductivity. The most signif-
icant example is overall permutation symmetry, which becomes hard to recognize if
the resonance-based analysis is performed on top of the perturbative treatment of
Section 2.4.1, instead of the version that will be presented here. There are many
identities, even linking different integrals (Eq. C.9), that the equations turn out to
obey overall permutation symmetry, as they must (see Chapter 6), but in a rather
less obvious way (meaning it can be a non-trivial task to prove the symmetry is
present).

For these reasons, we recognize the possibility of noncommutative covariant
derivatives and extend the previous, standard, length gauge perturbation theory
in Section 2.4.1, accordingly. Skimming across this section, it seems there ought to
make no difference. But there is one point where commutative covariant derivatives
were indeed assumed: in the definition of the velocity,

v̂β = ˙̂rβ = − i
~

[r̂β, Ĥ] = − i
~

[r̂β, Ĥ0]− i e

~
[r̂β, r̂α]Eα(t) (D.3)

On account of the noncommutativity in Eq. D.1, there is an extra term in the
velocity. The situation is similar to that found in the velocity gauge treatment of
Section 2.4.2, namely Eq. 2.70, whose analogue is

Jβ(t) =
i e

~
Tr
(

[r̂β, Ĥ0] ρ̂(t)
)

+
i e2

~
Tr
(
[r̂β, r̂α] ρ̂(t)

)
Eα(t) (D.4)

This is the form of the electric current when position operators are not assumed
to commute. Expanded in the optical fields, it gives, in linear order,

Jβ(1)(t) =
i e

~
Tr
(

[r̂β, Ĥ0] ρ̂(1)(t)
)

+
i e2

~
Tr
(
[r̂β, r̂α] ρ̂0

)
Eα(t) (D.5)

which translates into a conductivity

σβα(ω̄) =
i e

~
Tr
(

[r̂β, Ĥ0] ρ̂α(ω̄)
)

+
i e2

~
Tr
(
[r̂β, r̂α] ρ̂0

)
= −i e

2

~

∫
ddk

(2π)d

∑
a,b

[
Dβ, H0

]
kba

~ω −∆εkab
[Dα, ρ0]kab −

i e2

~

∫
ddk

(2π)d

∑
a

[Dβ, Dα]kaa fka

(D.6)

and, in general,

Jβ(n)(t) =
i e

~
Tr
(

[r̂β, Ĥ0] ρ̂(n)(t)
)

+
i e2

~
Tr
(
[r̂β, r̂α] ρ̂(n−1)(t)

)
Eα(t) (D.7)

which implies,
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σβα1...αn(ω̄1, ..., ω̄n)

=
i e

~
Tr
(

[r̂β, Ĥ0] ρ̂α1...αn(ω̄1, ..., ω̄n)
)

+
i e2

~
Tr
(

[r̂β, r̂αn ] ρ̂α1...αn−1(ω̄1, ..., ω̄n−1)
)

(D.8)

with the density matrix components given by

ρα1...αn
kab (ω̄1, . . . , ω̄n) =

(i e)n

~ω̄1 + · · ·+ ~ω̄n −∆ε
◦
[
Dαn , . . .

1

~ω̄1 −∆ε
◦ [Dα1 , ρ0] . . .

]
kab

(D.9)

same as before.
In summary, the perturbation theory of the density matrix itself remained un-

changed, the only alteration being in the definition of the current operator. Due
to the noncommutative covariant derivatives, there is an extra term in the non-
linear conductivity, with a complexity comparable to the previous order nonlinear
conductivity.

This is in line with the discussion from Appendix B: Eq. D.4 is a special case of
Eq. B.21. The nonlinear conductivity that follows from Eq. D.8 may be more com-
plicated than its counterpart in Section 5.2, but is equally amenable to a resonance-
based decomposition, presented in Appendix E.
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Appendix E

Resonance-based analysis without
commuting position operators

In this appendix, the results of Section 5.2 are revised and set at a slightly more
general level, by dropping the assumption of commutative covariant derivatives (Ap-
pendices C and D). This has the advantage of making certain properties, such as
overall permutation symmetry (Chapter 6) easier to check.

E.1 Linear order

The optical conductivity has the following resonance-based decomposition,

σβα1(ω̄1) = σβα1

F (ω̄1) + σβα1

1 (ω̄1) (E.1)

with

σβα1

F (ω̄1) =
i e2

~

(
− 1

~ω̄1

F βα1

A + i F βα1

B

)
(E.2)

σβα1

1 (ω̄1) =
i e2

~
~ω̄1 Πβα1

1 (ω̄1) (E.3)

At linear order, there are no differences when compared with Section 5.2.1.

E.2 Second order

The second order optical conductivity has the following resonance-based decompo-
sition,

σβα1α2(ω̄1, ω̄2) = σβα1α2

F (ω̄1, ω̄2) + σβα1α2

1 (ω̄1, ω̄2) + σβα1α2

2 (ω̄1, ω̄2) (E.4)

into the Fermi surface contribution,

σβα1α2

F (ω̄1, ω̄2) =
i e3

~

(
i

2 ~ω̄1 ~ω̄2

F βα1α2

A − 1

~ω̄2

Fα1α2β
B

)
(E.5)
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the one-photon contribution,

~
i e3

σβα1α2
1 (ω̄1, ω̄2) =

1

~ω̄1 + ~ω̄2
Πα2α1β

1 (ω̄1) +
~ω̄1 + ~ω̄2

(~ω̄2)2
Πβα1α2

1 (ω̄1) +
~ω̄1

~ω̄2
Πα1βα2

2 (−ω̄1)

+ Πα1βα2
2 (−ω̄1)−Πα1α2β

2 (−ω̄1) (E.6)

and the two-photon contribution,

~
i e3

σβα1α2
2 (ω̄1, ω̄2) = −~ω̄1 + ~ω̄2

(~ω̄2)2
Πβα1α2

1 (ω̄1 + ω̄2) +
~ω̄1 + ~ω̄2

~ω̄2
Πβα1α2

2 (ω̄1 + ω̄2) (E.7)

E.3 Third order

The third order optical conductivity has the following resonance-based decomposi-
tion,

σβα1α2α3(ω̄1, ω̄2, ω̄3) =σβα1α2α3

F (ω̄1, ω̄2, ω̄3) + σβα1α2α3

1 (ω̄1, ω̄2, ω̄3)

+ σβα1α2α3

2 (ω̄1, ω̄2, ω̄3) + σβα1α2α3

3 (ω̄1, ω̄2, ω̄3) (E.8)

Once again, all the contributions will be written in detail.

The Fermi surface contribution,

σβα1α2α3

F (ω̄1, ω̄2, ω̄3) =
i e4

~

(
1

6 ~ω̄1 ~ω̄2 ~ω̄3

F βα1α2α3

A +
i

~ω̄1 (~ω̄1 + ~ω̄2)
Fα2βα1α3

B

)
(E.9)

The one-photon contribution,

~
i e4

σβα1α2α3
1 (ω̄1, ω̄2, ω̄3) =

+
1

~ω̄3 ~ω̄123
Πα1α2α3β

1 (−ω̄1) +
~ω̄123

~ω̄2 (~ω̄3)2
Πα1βα2α3

1 (−ω̄1)− 1

(~ω̄3)2
Πα1α2βα3

1 (−ω̄1)

− 1

~ω̄12 ~ω̄3
Πα2α1α3β

2 (ω̄1)− ~ω̄123

2 ~ω̄2 ~ω̄3 ~ω̄23
Πβα1α2α3

2 (ω̄1)− 1

(~ω̄3)2 ~ω̄123
Πα2α1α3β

3 (ω̄1)

− ~ω̄123

2 (~ω̄2)2 (~ω̄3)2
Πβα1α2α3

3 (ω̄1) +
~ω̄1(~ω̄2 − ~ω̄3)

~ω̄2 ~ω̄3 ~ω̄23
Πβα1α2α3

4 (ω̄1)− 1

~ω̄3
Πα1βα2α3

4 (−ω̄1)

− ~ω̄1

~ω̄2 ~ω̄23
Πα1βα2α3

4 (−ω̄1) +
1

~ω̄3
Πα1α2βα3

4 (−ω̄1)− 1

~ω̄12
Πα2α1βα3

4 (ω̄1)

+
1

~ω̄12
Πα2α1α3β

4 (ω̄1) +
2 ~ω̄123

~ω̄13 ~ω̄23
Πα3βα1α2

5 (ω̄1)− ~ω̄123

~ω̄12 ~ω̄13
Πα2α3α1β

5 (ω̄1) (E.10)

with the abbreviations ω̄ij ≡ ω̄i + ω̄j and ω̄123 ≡ ω̄1 + ω̄2 + ω̄3.

The two-photon contribution,
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~
i e4

σβα1α2α3
2 (ω̄1, ω̄2, ω̄3) =

+
1

(~ω̄2)2
Πα1α3βα2

1 (−ω̄12)− ~ω̄123

(~ω̄2)2 ~ω̄3
Πα1βα3α2

1 (−ω̄12)− 1

~ω̄2 ~ω̄123
Πα3α1α2β

1 (ω̄12)

− ~ω̄123

~ω̄2 (~ω̄3)2
Πβα1α2α3

1 (ω̄12) +
1

(~ω̄1)2 ~ω̄123
Πα3α2α1β

3 (ω̄12) +
~ω̄123

(~ω̄2)2 (~ω̄3)2
Πβα1α2α3

3 (ω̄12)

+
1

~ω̄2
Πα3βα1α2

6 (ω̄12)− ~ω̄123

~ω̄2 ~ω̄3
Πβα3α1α2

6 (ω̄12) (E.11)

The three-photon contribution,

~
i e4

σβα1α2α3
3 (ω̄1, ω̄2, ω̄3) =

+
~ω̄123

~ω̄2(~ω̄3)2
Πβα1α2α3

1 (ω̄123) +
~ω̄123

2 ~ω̄2 ~ω̄3 ~ω̄23
Πβα1α2α3

2 (ω̄123)

− ~ω̄123

2 (~ω̄2)2 (~ω̄3)2
Πβα1α2α3

3 (ω̄123)− ~ω̄123

~ω̄3 ~ω̄23
Πβα1α2α3

4 (ω̄123)− ~ω̄123

~ω̄13 ~ω̄23
Πα3βα1α2

5 (ω̄123)

(E.12)
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Appendix F

Resonance-based decomposition of
the second order conductivity

As an illustration of the scheme by which the expressions in Sections 5.2.1-5.2.3
were derived, the case of the second order conductivity is treated here in detail. The
aim is to arrive at the results of Section 5.2.2, starting from the general expression
for a nonlinear conductivity. The derivation of the third order conductivity, albeit
considerably lengthier, follows along the same lines.

We start with Eq. 5.3, taken for the case n = 2,

σβα1α2(ω̄1, ω̄2) =
e3

~

∫
ddk

(2π)d

∑
a,b

[
Dβ, H0

]
kba

~ω̄1 + ~ω̄2 −∆εkab

[
Dα2 ,

1

~ω̄1 −∆ε
◦ [Dα1 , ρ0]

]
kab

(F.1)
and separate the diagonal and off-diagonal current matrix elements,

σβα1α2(ω̄1, ω̄2) =
e3

~

∫
ddk

(2π)d

∑
a

(∂βεka)

~ω̄1 + ~ω̄2

[
Dα2 ,

1

~ω̄1 −∆ε
◦ [Dα1 , ρ0]

]
kaa

− i e3

~

∫
ddk

(2π)d

∑
a6=b

Aβkba ∆εkab
~ω̄1 + ~ω̄2 −∆εkab

[
Dα2 ,

1

~ω̄1 −∆ε
◦ [Dα1 , ρ0]

]
kab

(F.2)

Eq. F.2 is expressed in a condensed notation. To expand it into more explicit
formulae, Eq. 2.52 is applied iteratively, starting with

[Dα, ρ0]kab = δab (∂αfka)− iAαkab ∆fkba (F.3)

where δab is the Kronecker delta and fka = f(εka) is the Fermi function.
In the intermediate steps, the definition of the Hadamard product is used. For

instance, (
1

~ω̄1 −∆ε
◦ [Dα1 , ρ0]

)
kaa

=
[Dα1 , ρ0]kaa

~ω̄1

=
(∂α1)fka
~ω̄1

(F.4)

(
1

~ω̄1 −∆ε
◦ [Dα1 , ρ0]

)
kab

=
[Dα1 , ρ0]kab
~ω̄1 −∆εkab

= − iA
α1
kab ∆fkba

~ω̄1 −∆εkab
(F.5)
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F. DECOMPOSITION OF THE SECOND ORDER CONDUCTIVITY

with a 6= b in the last equation.

Expanding the first commutator in Eq. F.2,

[
Dα2 ,

1

~ω̄1 −∆ε
◦ [Dα1 , ρ0]

]
kaa

=

∂α2∂α1fka
~ ω̄1

+
∑
b

(
Aα2

kabA
α1
kba ∆fkba

~ω̄1 + ∆εkab
+
Aα2

kbaA
α1
kab ∆fkba

~ω̄1 −∆εkab

)
(F.6)

while the second commutator gives, for a 6= b,

[
Dα2 ,

1

~ω̄1 −∆ε
◦ [Dα1 , ρ0]

]
kab

= − i

~ω̄1

Aα2
kab (∂α1 ∆fkba)

−
iAα1

kab;α2
∆fkba

~ω̄1 −∆εkab
− iAα1

kab (∂α2∆fkba)

~ω̄1 −∆εkab
− iAα1

kab (∂α2∆εkab) ∆fkba
(~ω̄1 −∆εkab)2

(F.7)

Replacing Eqs. F.6 and F.7 in Eq. F.2,

σβα1α2(ω̄1, ω̄2) =
e3

~
1

~ω̄1 (~ω̄1 + ~ω̄2)

∫
ddk

(2π)d

∑
a

(
∂βεka

)
(∂α1∂α2fka)

+
e3

~
1

~ω̄1 + ~ω̄2

∫
ddk

(2π)d

∑
a,b

Aα2
kbaA

α1
kab(∂

β∆εkab)∆fkba
~ω̄1 −∆εkab

− e3

~
1

~ω̄1

∫
ddk

(2π)d

∑
a,b

AβkbaA
α2
kab∆εkab(∂

α1∆fkba)

~ω̄1 + ~ω̄2 −∆εkab

− e3

~

∫
ddk

(2π)d

∑
a,b

AβkbaA
α1
kab∆εkab(∂

α2∆fkba)

(~ω̄1 −∆εkab)(~ω̄1 + ~ω̄2 −∆εkab)

− e3

~

∫
ddk

(2π)d

∑
a,b

AβkbaA
α1
kab;α2

∆fkba

(~ω̄1 −∆εkab)(~ω̄1 + ~ω̄2 −∆εkab)

− e3

~

∫
ddk

(2π)d

∑
a,b

AβkbaA
α1
kab (∂α2∆εab) ∆εkab ∆fkba

(~ω̄1 −∆εkab)2(~ω̄1 + ~ω̄2 −∆εkab)
(F.8)

The next step is a partial fraction decomposition,
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F. DECOMPOSITION OF THE SECOND ORDER CONDUCTIVITY

σβα1α2(ω̄1, ω̄2) =

+
e3

~
1

~ω̄1 (~ω̄1 + ~ω̄2)

∫
ddk

(2π)d

∑
a

(
∂βεka

)
(∂α1∂α2fka)

+
e3

~
1

~ω̄1 + ~ω̄2

∫
ddk

(2π)d

∑
a,b

Aα2
kbaA

α1
kab (∂β∆εkab) ∆fkba
~ω̄1 −∆εkab

− e3

~
1

~ω̄1

∫
ddk

(2π)d

∑
a,b

AβkbaA
α2
kab (∂α1∆fkba)

(
~ω̄1 + ~ω̄2

~ω̄1 + ~ω̄2 −∆εkab
− 1

)
− e3

~

∫
ddk

(2π)d

∑
a,b

AβkbaA
α1
kab (∂α2 ∆fkba)

×
(
~ω̄1

~ω̄2

1

~ω̄1 −∆εkab
− ~ω̄1 + ~ω̄2

~ω̄2

1

~ω̄1 + ~ω̄2 −∆εkab

)
− e3

~

∫
ddk

(2π)d

∑
a,b

AβkbaA
α1
kab;α2

∆fkba

×
(
~ω̄1

~ω̄2

1

~ω̄1 −∆εkab
− ~ω̄1 + ~ω̄2

~ω̄2

1

~ω̄1 + ~ω̄2 −∆εkab

)
− e3

~

∫
ddk

(2π)d

∑
a,b

AβkbaA
α1
kab (∂α2∆εab) ∆fkba

×
(
~ω̄1

~ω̄2

1

(~ω̄1 −∆εkab)2
− ~ω̄1 + ~ω̄2

(~ω̄2)2

1

~ω̄1 −∆εkab
+

~ω̄1 + ~ω̄2

(~ω̄2)2

1

~ω̄1 + ~ω̄2 −∆εkab

)
(F.9)

The second term in the third integral (fourth line) of Eq. F.9 can be singled out
and identified as a Fermi surface integral,

e3

~
1

~ω̄1

∫
ddk

(2π)d

∑
a,b

AβkbaA
α2
kab (∂α1∆fkba)

=
e3

~
1

~ω̄1

∫
ddk

(2π)d

∑
a,b

(
AβkabA

α2
kba −A

β
kbaA

α2
kab

)
(∂α1fka)

=
e3

~
1

~ω̄1

∫
ddk

(2π)d

∑
a

[
Aβ,Aα2

]
kaa

(∂α1fka)

=− i e3

~
1

~ω̄1

∫
ddk

(2π)d

∑
a

Fβα2
a (∂α1fka)

=− i e3

~
1

~ω̄1

Fα1βα2

B

= +
i e3

~
1

~ω̄1

Fα1α2β
B (F.10)

with the use of Eq. C.6.
Identifying the remaining integrals with the definitions in Eqs. 5.26-5.29 and G.2,
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F. DECOMPOSITION OF THE SECOND ORDER CONDUCTIVITY

~
i e3

σβα1α2(ω̄1, ω̄2) =

+
i

~ω̄1 (~ω̄1 + ~ω̄2)
F βα1α2

A +
1

~ω̄1

Fα1α2β
B − ~ω̄1

~ω̄2

Πβα1α2

B (ω̄1)

− ~ω̄1 + ~ω̄2

~ω̄2

Πβα1α2

B (ω̄1 + ω̄2) +
~ω̄1 + ~ω̄2

~ω̄1

Πβα2α1

B (ω̄1 + ω̄2) +
1

~ω̄1 + ~ω̄2

Πα2α1β
1 (ω̄1)

+
~ω̄1 + ~ω̄2

(~ω̄2)2
Πβα1α2

1 (ω̄1) +
~ω̄1

~ω̄2

(
d

dω̄1

Πβα1α2

1 (ω̄1)

)
− ~ω̄1

~̄ω2

Πβα1α2

2 (ω̄1)

− ~ω̄1 + ~ω̄2

(~ω̄2)2
Πβα1α2

1 (ω̄1 + ω̄2) +
~ω̄1 + ~ω̄2

~ω̄2

Πβα1α2

2 (ω̄1 + ω̄2) (F.11)

The first term is symmetrical in all tensor indices and can be rewritten as

i

~ω̄1 (~ω̄1 + ~ω̄2)
F βα1α2

A → 1

2

(
i

~ω̄1 (~ω̄1 + ~ω̄2)
+

i

~ω̄2 (~ω̄1 + ~ω̄2)

)
F βα1α2

A

=
i

2 ~ω̄1 ~ω̄2

F βα1α2

A (F.12)

by use of intrinsic permutation symmetry. The same symmetry is responsible for
cancelling the terms in ΠB(ω̄1 + ω̄2) in Eq. F.11.

Applying Eq. G.1 to replace the derivative in Eq. F.11, we obtain

~
i e3

σβα1α2(ω̄1, ω̄2) =

+
i

2 ~ω̄1 ~ω̄2

F βα1α2

A +
1

~ω̄1

Fα1α2β
B

+
1

~ω̄1 + ~ω̄2

Πα2α1β
1 (ω̄1) +

~ω̄1 + ~ω̄2

(~ω̄2)2
Πβα1α2

1 (ω̄1) +
~ω̄1

~ω̄2

Πα1βα2

2 (−ω̄1)

− ~ω̄1 + ~ω̄2

(~ω̄2)2
Πβα1α2

1 (ω̄1 + ω̄2) +
~ω̄1 + ~ω̄2

~ω̄2

Πβα1α2

2 (ω̄1 + ω̄2) (F.13)

in agreement with Eqs. 5.22-5.29.

156



Appendix G

Integral identities

In the derivation of the expressions in Sections 5.2.1-5.2.3, integral identities were
used that follow directly from the definitions in Eqs. 5.19-5.21, 5.26-5.29, 5.35-5.42.
This is exemplified by the decomposition of the second order conductivity in Ap-
pendix F. Additional identities emerge under specific assumptions such as commuta-
tive covariant derivatives (Appendix C) or time-reversal symmetry (Section 6.6). All
these integral identities are helpful in manipulating expressions and are summarized
here.

The first set of identities concerns derivatives of Πα
j integrals. In second order,

d

dω̄
Πβα1α2

1 (ω̄) = Πβα1α2

2 (ω̄) + Πα1βα2

2 (−ω̄) + Πβα1α2

B (ω̄) (G.1)

with

iΠβα1α2

B (ω̄) ≡
∫

ddk

(2π)d

∑
a,b

AβkbaA
α1
kab (∂α2∆fkba)

~ω̄ −∆εkab
(G.2)

which vanishes in the absence of a Fermi surface.
In third order,

d

dω̄
Πβα1α2α3

1 (ω̄) = Πβα1α2α3

4 (ω̄) + Πβα3α1α2

6 (ω̄) + Πβα1α2α3

B (ω̄) (G.3)

d

dω̄
Πβα1α2α3

3 (ω̄) = Πβα1α3α2

1 (ω̄)− Πα1βα3α2

1 (−ω̄) + Πβα1α2α3

2 (ω̄) + Πβα1α2α3

C (ω̄)

= Πβα1α2α3

1 (ω̄)− Πα1βα2α3

1 (−ω̄) + Πβα1α3α2

2 (ω̄) + Πβα1α3α2

C (ω̄)
(G.4)

with

Πβα1α2α3

B (ω̄) ≡
∫

ddk

(2π)d

∑
a,b

AβkbaA
α1
kab;α2

(∂α3∆fkba)

~ω̄ −∆εkab
(G.5)

Πβα1α2α3

C (ω̄) ≡
∫

ddk

(2π)d

∑
a,b

AβkbaA
α1
kab (∂α2∆εkab) (∂α3∆fkba)

~ω̄ −∆εkab
(G.6)

which vanish in the absence of a Fermi surface.
Additionally, it follows from Eq. G.4,
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Πβα1α2α3

1 (ω̄)−Πβα1α3α2

1 (ω̄)−Πα1βα2α3

1 (−ω̄)+Πα1βα3α2

1 (−ω̄) = Πβα1α2α3

C (ω̄)−Πβα1α3α2

C (ω̄)
(G.7)

The second set of identities, unlike the first, is reliant on time-reversal symmetry
and consists on simply stating the parity of the integrals in Eqs. 5.21, 5.28-5.29, 5.37-
5.42,

Πβα1

1 (−ω̄) = Πβα1

1 (ω̄) (G.8)

Πβα1α2

1 (−ω̄) = Πβα1α2

1 (ω̄) (G.9)

Πβα1α2

2 (−ω̄) = −Πβα1α2

2 (ω̄) (G.10)

Πβα1α2α3

1 (−ω̄) = −Πβα1α2α3

1 (ω̄) (G.11)

Πβα1α2α3

2 (−ω̄) = −Πβα1α2α3

2 (ω̄) (G.12)

Πβα1α2α3

3 (−ω̄) = Πβα1α2α3

3 (ω̄) (G.13)

Πβα1α2α3

4 (−ω̄) = Πβα1α2α3

4 (ω̄) (G.14)

Πβα1α2α3

5 (−ω̄) = Πβα1α2α3

5 (ω̄) (G.15)

Πβα1α2α3

6 (−ω̄) = Πβα1α2α3

6 (ω̄) (G.16)

Finally, there is a third set of identities, relating different tensor elements of an
integral,

F βα1

A = Fα1β
A (G.17)

F βα1

B = −Fα1β
B (G.18)

Πβα1

1 (ω̄) = Πα1β
1 (ω̄) (G.19)

F βα1α2

A = Fα1βα2

A = Fα1α2β
A (G.20)

F βα1α2

B = −F βα2α1

B (G.21)

Πβα1α2

1 (ω̄) = −Πα1βα2

1 (ω̄) (G.22)

Πβα1α2

2 (ω̄) = Πβα2α1

2 (ω̄) (G.23)

F βα1α2α3

A = Fα1βα2α3

A = Fα1α2βα3

A = Fα1α2α3β
A (G.24)

F βα1α2α3

B = Fα3α1α2β
B = −F βα2α1α3

B = −Fα3α2α1β
B (G.25)

Πβα1α2α3

1 (ω̄) = Πβα2α1α3

1 (ω̄) (G.26)

Πβα1α2α3

2 (ω̄) = Πβα1α3α2

2 (ω̄) = Πα1βα2α3

2 (ω̄) (G.27)

Πβα1α2α3

3 (ω̄) = Πβα1α3α2

3 (ω̄) = Πα1βα2α3

3 (ω̄) (G.28)

Πβα1α2α3

4 (ω̄) = Πβα2α1α3

4 (ω̄) (G.29)

Πβα1α2α3

5 (ω̄) = Πα1βα2α3

5 (ω̄) = Πβα1α3α2

5 (ω̄) = Πα2α3βα1

5 (ω̄) (G.30)

Πβα1α2α3

6 (ω̄) = Πα1βα2α3

6 (ω̄) = Πβα1α3α2

6 (ω̄) = Πα2α3βα1

6 (ω̄) (G.31)

These can be seen by inspection of the integrands. Eqs. G.23, G.26, G.29
and G.31 are valid only when commutativity of covariant derivatives is assumed
(Appendix C), since they are a direct consequence of Eq. C.7. Eqs. G.19 and G.22,
as well as the last equalities in Eqs. G.27, G.28, G.30, G.31, are reliant on time-
reversal symmetry.
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Appendix H

Integral evaluation for monolayer
graphene

The evaluation of the integrals in Eqs. 5.19-5.21, 5.26-5.29 and 5.35-5.42 for mono-
layer graphene near the Dirac point is relatively straightforward. Eqs 3.73 for the
band energies and Eqs. 3.75-3.78 for the matrix elements of the non-Abelian Berry
connection are substituted and their derivatives (or generalized derivatives) are com-
puted.

Here, the possibility of a band gap (∆ 6= 0) is considered, with the effective gap
defined as usual: ∆eff ≡ max(2|µ|,∆). Taking the relaxation-free limit and setting
T = 0, the integration in Iαj can be done easily, by converting the integral over the
FBZ to polar coordinates and using the Dirac delta function in Eq. 5.45.

For example, in linear order,

Ixx1 (ω) = 4

∫
d2q

(2π)2

∑
a,b

AxqbaAxqab ∆fqba δ (~ω −∆εqab)

= 4

∫
d2q

(2π)2
AxqcvAxqvc ∆fqvc (δ (~ω −∆εqcv)− δ (~ω + ∆εqcv))

= 4

∫
d2q

(2π)2
|Axqcv|2 sign(ω) δ (|~ω| −∆εqcv) Θ (∆εqcv −∆eff ) (H.1)

The factor of 4 in the beginning takes into account the valley and spin degenera-
cies in the system. The Heaviside step function at the end comes from considering
the difference in Fermi functions ∆fqvc at T = 0, as well as the absence of states
below the band gap. The two Dirac deltas were joined, by noting that the first
Dirac delta is only nonzero for positive frequencies and the second for negative ones.
The validity of the manipulation can be checked by examining the cases ω > 0 and
ω < 0, separately.

Replacing the non-Abelian Berry connection by the matrix element in Eq. 3.77
and inserting the dispersion relation in Eq. 3.73,

Ixx1 (ω) = 4

∫ 2π

0

dθ

2π

∫ +∞

0

dq

2π
q

sin2 θ sign(ω)

4 (q2 + (∆/2~vF )2)
δ
(
|~ω| −

√
(2vF~ q)2 + ∆2

)
Θ (|~ω| −∆eff )

+ 4

∫ 2π

0

dθ

2π

∫ +∞

0

dq

2π
q

(∆/2~vF )2 cos2 θ sign(ω)

4 (q2 + (∆/2~vF )2)2 δ
(
|~ω| −

√
(2vF~ q)2 + ∆2

)
Θ (|~ω| −∆eff )

(H.2)
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where advantage was taken of the isotropy of the dispersion relation, by writing the
integration in polar coordinates q = (qx, qy) = q (cos θ, sin θ).

With the variable change q′ ≡ (2~vF ) q,

Ixx1 (ω) =

+ 4

∫ 2π

0

dθ

2π
sin2 θ

∫ +∞

0

dq′

2π

q′

4 (q′2 + ∆2)
sign(ω) δ

(
|~ω| −

√
q′2 + ∆2

)
Θ (|~ω| −∆eff )

+ 4

∫ 2π

0

dθ

2π
cos2 θ

∫ +∞

0

dq′

2π

q′∆2

4 (q′2 + ∆2)2 sign(ω) δ
(
|~ω| −

√
q′2 + ∆2

)
Θ (|~ω| −∆eff )

(H.3)

At this point, the identity δ(g(x)) = δ(x− a)/|g′(a)| for g(a) = 0, where a is the
only zero of the function g(x), is used to simplify the Dirac delta function,

Ixx1 (ω) = 4

(
1

2

)∫ +∞

0

dq′

2π

q′

4 (q′2 + ∆2)
sign(ω)

δ
(
q′ −

√
(~ω)2 −∆2

)
√

(~ω)2 −∆2/|~ω|
Θ (|~ω| −∆eff )

+ 4

(
1

2

)∫ +∞

0

dq′

2π

q′∆2

4 (q′2 + ∆2)2 sign(ω)
δ
(
q′ −

√
(~ω)2 −∆2

)
√

(~ω)2 −∆2/|~ω|
Θ (|~ω| −∆eff )

(H.4)

Now, the integration with the Dirac delta leads to direct substitutions. The
Ixx1 (ω) integral is then provided by the following analytical expression,

Ixx1 (ω) =
1

π

(
~ω

4(~ω)2
+

~ω∆2

4 (~ω)4

)
Θ (|~ω| −∆eff ) =

1

4π~ω

(
1 +

(
∆

~ω

)2
)

Θ(~|ω| −∆eff )

(H.5)

whose Hilbert transform gives

Hxx
1 (ω) =

1

4π2~ω

(
1 +

(
∆

~ω

)2
)

ln

∣∣∣∣~ω −∆eff

~ω + ∆eff

∣∣∣∣+
∆2

2π2 (~ω)2 ∆eff

(H.6)

From the crystal symmetry, it is known that

Iyy1 (ω) = Ixx1 (ω) (H.7)

Hyy
1 (ω) =Hxx

1 (ω) (H.8)

Ixy1 (ω) = Iyx1 (ω) = 0 (H.9)

Hxy
1 (ω) =Hyx

1 (ω) = 0 (H.10)

as can be confirmed by performing the integrations for the other tensor elements.

There are also the Fα
X integrals, required to describe the Fermi surface contribu-

tion,
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F xx
A = + 4

∫
d2q

(2π)2

∑
a

(∂xεqa) (∂xfqa)

=− 4

∫
d2q

(2π)2

∑
a

(∂xεqa)
2 δ(µ− εqa)

=− 4

∫
d2q

(2π)2
(∂xεqc)

2 δ(|µ| − εqc) (H.11)

where the Fermi function derivative was assessed for T = 0 and, in the last step,
the electron-hole symmetry εqv = −εqc was used.

Replacing with Eq. 3.73,

F xx
A = −4

∫ 2π

0

dθ

(2π)

∫ +∞

0

dq

(2π)
q

(
1

2

(2~vF )2 q cos θ√
(2~vF q)2 + ∆2

)2

δ(|µ| −
√

(2~vF q)2 + ∆2/2)

= −4

∫ 2π

0

dθ

(2π)
cos2 θ

∫ +∞

0

dq′

(2π)
q′

(
1

2

q′√
q′2 + ∆2

)2

δ(|µ| −
√
q′2 + ∆2/2)

(H.12)

The Dirac delta is once more simplified by finding the zero of its argument.
Notice that, in this case, a solution exists only if twice the modulus of the chemical
potential exceeds the band gap (in other words, if the Fermi level crosses either the
valence or the conduction band), leading to the appearance of an Heaviside step
function,

F xx
A =− 4

(
1

2

)∫ +∞

0

dq′

(2π)
q′

(
1

2

q′√
q′2 + ∆2

)2
δ(q′ −

√
(2µ)2 −∆2)√

(2µ)2 −∆2/4|µ|
Θ(2|µ| −∆)

=− 2
1

2π

√
(2µ)2 −∆2

(√
(2µ)2 −∆2

4|µ|

)2
4|µ|√

(2µ)2 −∆2
Θ(2|µ| −∆)

=− (2µ)2 −∆2

4π |µ|
Θ(2|µ| −∆)

=− |µ|
π

(
1−

(
∆

2µ

)2
)

Θ(2|µ| −∆) (H.13)

The other tensor elements are again related by the symmetry transformations of
the crystal group,

F yy
A = F xx

A F xy
A = F yx

A = 0 (H.14)

Due to time-reversal symmetry, F βα1

B = 0, as can be checked by direct evaluation.

The case of the third order conductivity is entirely analogous, but there are, of
course, more tensor components and more integrals to assess now,
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Ixxyy1 (ω) = Ixyxy1 (ω) = −
~2v2

F

2π(~ω)2

(
1−

(
∆

~ω

)4
)

Θ(~|ω| −∆eff ) (H.15)

Ixyyx1 (ω) =
~2v2

F

2π(~ω)2

(
1− 2

(
∆

~ω

)2

+

(
∆

~ω

)4
)

Θ(~|ω| −∆eff ) (H.16)

Ixxyy2 (ω) = Ixyxy2 (ω) = Ixyyx2 (ω) =
~2v2

F

4π(~ω)2

(
1 + 6

(
∆

~ω

)2

+

(
∆

~ω

)4
)

Θ(~|ω| −∆eff )

(H.17)

Ixxyy3 (ω) =
~2v2

F

4π~ω

(
3− 2

(
∆

~ω

)2

−
(

∆

~ω

)4
)

Θ(~|ω| −∆eff ) (H.18)

Ixyxy3 (ω) = Ixyyx3 (ω) = −
~2v2

F

4π~ω

(
1− 2

(
∆

~ω

)2

+

(
∆

~ω

)4
)

Θ(~|ω| −∆eff ) (H.19)

Ixxyy4 (ω) = Ixyxy4 (ω) = −
2 ~2v2

F

π(~ω)3

(
∆

~ω

)4

Θ(~|ω| −∆eff ) (H.20)

Ixyyx4 (ω) =
2 ~2v2

F

π(~ω)3

((
∆

ω

)2

−
(

∆

~ω

)4
)

Θ(~|ω| −∆eff ) (H.21)

Ixxyy5 (ω) =
~2v2

F

16π(~ω)3

(
1− 10

(
∆

~ω

)2

+

(
∆

~ω

)4
)

Θ(~|ω| −∆eff ) (H.22)

Ixyxy5 (ω) = Ixyyx5 (ω) =
~2v2

F

16π(~ω)3

(
1 + 6

(
∆

~ω

)2

+

(
∆

~ω

)4
)

Θ(~|ω| −∆eff ) (H.23)

Ixxyy6 (ω) = −
~2v2

F

π(~ω)3

(
1− 2

(
∆

~ω

)2

+

(
∆

~ω

)4
)

Θ(~|ω| −∆eff ) (H.24)

Ixyxy6 (ω) = Ixyyx6 (ω) =
~2v2

F

π(~ω)3

(
1−

(
∆

~ω

)4
)

Θ(~|ω| −∆eff ) (H.25)

Ixxxxj (ω) = Ixxyyj (ω) + Ixyxyj (ω) + Ixyyxj (ω) (H.26)

and the respective Hilbert transforms,

Hxxyy1 (ω) = Hxyxy1 (ω) = −
~2v2

F

2π2(~ω)2

(
1−

(
∆

~ω

)4
)

ln

∣∣∣∣~ω −∆eff

~ω + ∆eff

∣∣∣∣
−

~2v2
F

π2 ~ω∆eff

(
1−

(
∆

~ω

)4
)

+
~2v2

F ∆4

3π2 (~ω)3 ∆3
eff

+
~2v2

F ∆4

5π2 ~ω∆5
eff

(H.27)

Hxyyx1 (ω) =
~2v2

F

2π2(~ω)2

(
1−

(
∆

~ω

)2
)2

ln

∣∣∣∣~ω −∆eff

~ω + ∆eff

∣∣∣∣
+

~2v2
F

π2 ~ω∆eff

(
1−

(
∆

~ω

)2
)2

−
~2v2

F ∆2

3π2 ~ω∆3
eff

(
2−

(
∆

~ω

)2
)

+
~2v2

F ∆4

5π2 ~ω∆5
eff

(H.28)
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Hxxyy2 (ω) =
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F

4π2(~ω)2
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1 + 6

(
∆

~ω

)2

+

(
∆

~ω

)4
)

ln
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~ω + ∆eff

∣∣∣∣+
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F ∆4

10π2 ~ω∆5
eff

+
~2v2

F

2π2 ~ω∆eff

(
1 + 6

(
∆

~ω

)2

+

(
∆

~ω

)4
)

+
~2v2

F ∆2

6π2 ~ω∆3
eff

(
6 +

(
∆

~ω

)2
)

(H.29)

Hxyxy2 (ω) = Hxyyx2 (ω) =
~2v2

F

4π2(~ω)2

(
1−

(
∆

~ω

)2
)2

ln

∣∣∣∣~ω −∆eff

~ω + ∆eff

∣∣∣∣
+

~2v2
F

2π2 ~ω∆eff

(
1−

(
∆
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)2
)2
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eff

(
2−

(
∆
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)2
)

+
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F ∆4

10π2 ~ω∆5
eff

(H.30)

Hxxyy3 (ω) =
~2v2

F

4π2~ω

(
3− 2

(
∆

~ω

)2

−
(

∆

~ω

)4
)

ln

∣∣∣∣~ω −∆eff

~ω + ∆eff

∣∣∣∣
−

~2v2
F ∆2

2π2 (~ω)2 ∆eff

(
2 +

(
∆

~ω

)2
)
−

~2v2
F ∆4

6π2 (~ω)2 ∆3
eff

(H.31)

Hxyxy3 (ω) = Hxyyx3 (ω) = −
~2v2

F

4π2~ω

(
1−

(
∆

~ω

)2
)2

ln

∣∣∣∣~ω −∆eff

~ω + ∆eff

∣∣∣∣
+

~2v2
F ∆2

2π2 (~ω)2 ∆eff

(
2−

(
∆

~ω

)2
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~2v2
F ∆4

6π2 (~ω)2 ∆3
eff

(H.32)

Hxxyy4 (ω) = Hxyxy4 (ω) = −
2 ~2v2

F

π2 (~ω)3

(
∆

~ω

)4

ln

∣∣∣∣~ω −∆eff

~ω + ∆eff

∣∣∣∣
−

4 ~2v2
F ∆4

π2 (~ω)6 ∆eff
−

20 ~2v2
F ∆4

15π2 (~ω)4 ∆3
eff

−
12 ~2v2

F ∆4

15π2 (~ω)2 ∆5
eff

(H.33)

Hxyyx4 (ω) =
2 ~2v2

F

π2 (~ω)3

((
∆

~ω

)2

−
(

∆

~ω

)4
)

ln

∣∣∣∣~ω −∆eff

~ω + ∆eff

∣∣∣∣− 12 ~2v2
F ∆4

15π2 (~ω)2 ∆5
eff

+
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∆
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−
(

∆
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)4
)

+
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F ∆2

15π2 (~ω)2 ∆3
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(
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(
∆
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)

(H.34)

Hxxyy5 (ω) =
~2v2

F

16π2(~ω)3

(
1− 10

(
∆

~ω

)2

+

(
∆

~ω

)4
)
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eff
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+

(
∆
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)4
)
−

~2v2
F ∆2

24π2 (~ω)2 ∆3
eff

(
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(
∆
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)
(H.35)

Hxyxy5 (ω) = Hxyyx5 (ω) =
~2v2

F

16π2(~ω)3

(
1 + 6

(
∆

~ω

)2

+

(
∆

~ω

)4
)

ln

∣∣∣∣~ω −∆eff

~ω + ∆eff

∣∣∣∣
+

~2v2
F

8π2 (~ω)2 ∆eff

(
1 + 6

(
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+

(
∆
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)4
)

+
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24π2 (~ω)2 ∆3
eff

(
6 +

(
∆

~ω

)2
)

+
~2v2

F ∆4

40π2 (~ω)2 ∆5
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(H.36)

Hxxyy6 (ω) = −
~2v2

F

π2(~ω)3

(
1−

(
∆
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)2
)2

ln

∣∣∣∣~ω −∆eff

~ω + ∆eff

∣∣∣∣
−

2 ~2v2
F
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(
1−

(
∆
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)2
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+
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(
2−

(
∆
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)2
)
−

2 ~2v2
F ∆4
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(H.37)
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Hxyxy6 (ω) = Hxyyx6 (ω) =
~2v2

F

π2(~ω)3

(
1−

(
∆

~ω

)4
)

ln

∣∣∣∣~ω −∆eff

~ω + ∆eff

∣∣∣∣
+

2 ~2v2
F

π2 (~ω)2 ∆eff

(
1−

(
∆

~ω

)4
)
−

10 ~2v2
F ∆4

15π2 (~ω)4 ∆3
eff

−
2 ~2v2

F ∆4

5π2 (~ω)2 ∆5
eff

(H.38)

Hxxxxj (ω) = Hxxyyj (ω) +Hxyxyj (ω) +Hxyyxj (ω) (H.39)

In addition to the listed integrals, an identical set is obtained exchanging the
indices x and y. All other tensor elements of the integrals Iβα1α2α3

j and Hβα1α2α3

j

that have not been explicitly mentioned are identically zero, as a consequence of the
spatial symmetries of the crystal.

For the passage from the I to the H integrals, it is useful to hold in mind the
following result on Hilbert transforms1, valid for n > 1,

− 1

π
−
∫ +∞

−∞

Θ(|~ω′| −∆eff )

(~ω′)n(ω′ − ω)
dω′ =

1

π(~ω)n
ln

∣∣∣∣~ω −∆eff

~ω + ∆eff

∣∣∣∣+ 2

π

n/2∑
k=1

1

(2k − 1) ∆2k−1
eff (~ω)n+1−2k

(H.40)
Finally, the integrals in the Fermi surface contribution,

F xxxx
A /3 = F xxyy

A = F xyxy
A = F xyyx

A =
~2v2

F

4π|µ|

(
1 + 2

(
∆

2µ

)2

− 3

(
∆

2µ

)4
)

Θ(2|µ| −∆)

(H.41)

As expected, the exact same result is obtained for F yyyy
A /3 = F yyxx

A = F yxyx
A =

F yxxy
A , with all other tensor elements being identically zero. As in linear order (and

every odd order, in fact), the F βα1α2α3

B integrals vanish, due to presence of time-
reversal symmetry.

The formulas become simpler when we close the gap ∆ = 0. This case can
be quickly derived from the above expressions and is in agreement with previously
published results. Integral evaluation for monolayer graphene with no band gap is
listed in Appendix D of [91].

Replacement of the integrals computed here in Eqs. 5.31-5.34 of Section 5.2.3
reproduces the expression for the third order conductivity derived by Cheng et
al. [76] for ∆ = 0.

1In fact, the Hilbert transform is undefined, diverging for ±∞. An appropriate result, as
in Eq. H.40, can, however, be recovered by introducing a limited bandwidth with an additional
Heaviside step function Θ(~|ω| − εmax), where the maximum energy is sufficiently removed from
the considered frequencies and the effective gap: εmax � ω ∧ εmax � ∆eff .
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(µ = 0) and doped (µ = 0.075 t) systems, corresponding to effective
gaps of 0.1 t and 0.15 t, respectively. . . . . . . . . . . . . . . . . . . . 101

5.7 Real (a) and imaginary (b) parts of the third order optical conduc-
tivity of gapped graphene, with ∆ = 0.1 t, as a function of the optical
frequency, normalized to the tight binding parameter t, near the Dirac
point. The response was obtained analytically (Eqs. 5.75-5.79) in the
relaxation-free limit (γ = 0). The black and red curves refer to clean
(µ = 0) and doped (µ = 0.075 t) systems, corresponding to effective
gaps of 0.1 t and 0.15 t, respectively. . . . . . . . . . . . . . . . . . . . 102

6.1 The figures above depict the domain of the optical conductivity, with
ω = Re{ω̄} and γ = Im{ω̄}. The resonances are outlined in red for
the two cases: (a) an atomic system, where resonances occur when
the optical frequency matches discrete energy levels; (b) a crystal,
where resonances are available at any photon frequency that exceeds
the gap ∆eff . In a realistic band structure, other gaps may open up
at higher frequencies. The resonance at the origin corresponds to the
Drude peak, caused by the intraband motion of free charge carriers,
and disappears in the absence of a Fermi surface. In both (a) and (b),
there are no optical losses for any real frequency that is not marked
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