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Abstract
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Primordial Magnetic Field Generation in theories of gravity with non-minimal

coupling between curvature and matter

by Maria Margarida LIMA

The existence of a magnetic field in the universe is unmistakable. They are observed

at almost all scales of the universe, from stars to galaxy clusters.

The origin of these fields remains enigmatic. Some scientists believe that the magnetic

field seed may have emerged in a primordial phase of the universe, namely during infla-

tion.

In this work, the scale factor is analyzed along the different evolutionary phases of the

universe, with emphasis on the inflationary period, according to a theory of non-minimal

coupling between curvature and matter.

The behavior of the magnetic field is then studied in this theory, which leaves open the

possibility of the existence of an amplification factor for the magnetic field after inflation.
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Resumo
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Produção de Campo Magnético Primordial em teorias da gravidade com acoplamento

não mı́nimo entre curvatura e matéria

por Maria Margarida LIMA

A existência de campo magnético no universo é inequı́voca. São observados a quase

todas as escalas do universo, desde estrelas aos aglomerados de galáxias.

A origem desses campos permanece enigmática. Alguns cientistas acreditam que a

semente de campo magnético terá surgido numa fase primordial do universo, nomeada-

mente durante a inflação.

Neste trabalho é analisado o fator de escala ao longo das diferentes fases evolutivas do

universo, com ênfase no perı́odo inflacionário, no âmbito de uma teoria de acoplamento

não mı́nimo entre a curvatura e a matéria.

Foi depois estudado o comportamento do campo magnético segundo esta teoria, que

deixa em aberto a possibilidade da existência de um fator de amplificação do campo

magnético após a inflação.
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Chapter 1

Introduction

Magnetic fields play an important role in the dynamics of the astrophysical objects. For

instance, the galactic magnetic field affects the dynamics of the compact stars and, conse-

quently, the star formation process [1]. Although these fields are well understood, their

cosmological origin represents an interesting open problem.

Our galaxy, like many others, has a coherent magnetic field of B ∼ 10−6G. Many astro-

physicists believe that a plausible explanation for these observed galactic magnetic fields

is the dynamo effect [2–4]. According to this effect, the differential rotation of galaxies

exponentially enhances the magnetic field. This mechanism is only a means to amplify it,

so a seed magnetic field needs to be created. Considering that the dynamo effect operated

during the entire life of the universe (∼ 10 Gyears ), then it is possible to amplify a seed

field by a e30 factor [5]. Thus, this process allows to obtain the magnetic field strength

observed today in the universe, with a seed field of approximately B ∼ 3× 10−19G [5].

Other lines of thought admit that the magnetic field in galaxies emerge due the com-

pression of a primordial magnetic field during the collapse of the protogalactic cloud. In

this case a stronger seed magnetic field is needed, at least B ∼ 10−9 [5].

A third possibility concerns the creation of seed magnetic fields during inflation, un-

der certain conditions. The inflationary scenario [6] has become the current cosmological

paradigm for the early universe. The existence of a primordial period with accelerated ex-

pansion solves the initial problems in standard Big Bang cosmology, such as the horizon

and flatness problems. In fact, the ability of this model is broader. Through the quantum

1
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fluctuations produced in De Sitter space, inflation ensures that the electromagnetic field is

excited, increasing the magnetic flux. Furthermore, using a mechanism similar to supera-

diabatic amplification, long wavelength (λ & H−1, where H is Hubble constant) modes

are increased during the inflation and reheating.

Since during the inflationary period, the total energy density of the spacetime is con-

stant, the magnetic field decreases with a−2(t), where a(t) is the scale factor of the Friedmann-

Robertson-Walker metric. But in order to create seed magnetic fields during inflation, the

conformal symmetry of eletromagnetism must be broken [5] [7][8][9].

In this work we will investigate whether a theory of gravity with non-minimal cou-

pling between curvature and matter, combined with inflationary models, can generate

sizeable seed magnetic fields.

This thesis is divided in four chapters. In Chapter 2 we will indicate some impor-

tant cosmological facts. In Chapter 3, we discuss the theories of non-minimal coupling

between curvature and matter, studying the consequences of a cubic coupling in the dif-

ferent evolutionary phases of the universe, with an emphasis on inflation. In chapter 4,

the influence of cubic non-minimal coupling is debated, deducing the modified Maxwell’s

equations and studying the behavior of the magnetic field during the evolutionary phases

of the universe. In the last chapter some conclusions are presented.



Chapter 2

Main cosmological facts

The current evolution paradigm of the universe is based on the Friedmann-Robertson-

Walker cosmological model, also called the Hot Big Bang model.

In this chapter we will present the fundamental features of this theory, based on the

Robertson-Walker metric, the Friedmann equation and the evolutionary phases in this

model.

During this thesis we will consider that the speed of light and the permeability of free

space take the value 1, c = µ0 = 1.

2.1 The metric

The metric that describes an homogeneous and isotropic space-time is the Robertson-

Walker metric, which can be written as

ds2 = gµνdxµdxν = −dt2 + a2(t)

(
dr2

1− kr2 + r2(dθ2 + sin2(θ)dϕ2)

)
, (2.1)

where a(t) is the cosmic scale factor, k = +1,−1, 0 if the universe is closed, open or flat,

respectively, t ∈ R+
0 , r ∈ R+

0 , θ ∈ [0, π] and ϕ ∈ [0, 2π].

In this work, we will consider a spatially flat universe (k = 0) and the Robertson-

Walker metric in cartesian coordinates and in conformal time. That is,

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

(2.2)

3
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and

ds2 = a2(τ)
(
− dτ2 + dx2 + dy2 + dz2

)
, (2.3)

where dt = adτ.

So the metric tensor gµν can be written in the following matrix representation”

[gµν] =


−1 0 0 0

0 a2(t) 0 0

0 0 a2(t) 0

0 0 0 a2(t)


(2.4)

or, in the same way,

[gµν] = a2(τ)


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(2.5)

In the cartesian metric, the non-zero Levi-Civita connection coeficients are

Γ0
ii = ȧa, Γi

0i =
ȧ
a

, (2.6)

where i ∈ {1, 2, 3} and 0, 1, 2 and 3 represent the t, x, y and z coordinates, respectively,

and the dot denotes differentiation with respect to t.

The non-vanishing components of the Ricci tensor are

R00 = −3
( ä

a

)
; (2.7)

Rii = äa + 2ȧ2. (2.8)

So the curvature scalar, for the cartesian metric, takes the form

R = gµνRµν = 6

(
ä
a
+ 2
( ȧ

a

)2
)

, (2.9)

where Einstein’s summation convention is used.

In the conformal time metric, the curvature scalar is given by

R = 6

(
a′′

a3 + 2
( a′

a2

)2
)

, (2.10)
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where the prime denotes differentiation with respect to τ.

2.2 The Friedmann equations

The action functional for General Relativity over the spacetime takes the form

S =
∫

M

√
−g

(
1

16πG
R + L

)
d4x, (2.11)

where G is the Newton’s gravitation constant, g is the determinant of the metric, L is the

Lagrangian density of the matter fields and M is the manifold.

So, varying the previous action with respect to the metric we obtain the Einstein’s

equations:

Gµν = 8πGTµν, (2.12)

where Gµν = Rµν− 1
2 gµνR is the Einstein’s tensor and Tµν is the energy-momentum tensor

that can be defined by

Tµν = − 2√−g
δ(L√−g)

δgµν
. (2.13)

We can see that the energy-momentum tensor is conserved. This means that

∇νTµν = 0. (2.14)

A perfect fluid has the energy-momentum tensor given by

Tµν = (p + ρ)uµuν + pgµν, (2.15)

where p and ρ are pressure and density of the matter, respectively, and uµ is the fluid’s

4-velocity orthogonal to the surfaces of constant curvature.

The relation (2.14) with the index µ = 0 gives us that

ρ̇ + 3
ȧ
a
(ρ + p) = 0. (2.16)

The 00 Einstein’s equation for the previous energy-momentum tensor and the metric

(2.2), yields Friedmann’s equation: (
ȧ
a

)2

=
8πG

3
ρ. (2.17)
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Using the 11 component of Einstein’s equations and Friedmann’s equation leads to

the Raychaudhuri equation:
ä
a
= −4πG

3
(ρ + 3p). (2.18)

2.3 The evolutionary phase

The Lagrangian density of the inflaton, φ, takes the form

Lφ = −1
2

∂µφ∂µφ−V(φ), (2.19)

where V(φ) is the potential of the inflaton.

Varying the action (2.11) with the previous Lagrangian, it is possible to deduce the

inflaton equation, given by

φ̈ + 3Hφ̇ +
dV(φ)

dφ
= 0, (2.20)

where

H =
ȧ
a

. (2.21)

Thus, the inflaton’s evolution depends on the features of its potential and the evolu-

tion of the universe.

Now let’s see the evolution of the energy density in the universe.

If we consider that

p = wρ, (2.22)

where w is a state parameter, and using equation (2.16), it is possible to write the temporal

evolution equation of the density as:

ρ̇

ρ
= −3

ȧ
a
(1 + w). (2.23)

Solving this equation, we get

ρ = ρ0

(
a0

a

)3(1+w)

, (2.24)

where a0 = a(t0) is the value of the scale factor at present and ρ0 is the value of the density

at the present.
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Then we are able to replace this relation in Friedmann’s equation (2.17) to obtain the

evolution of the scale factor. If w = −1, it is easy to see that the solution is an exponential.

On the other hand, if w 6= −1, the solution is

a(t) =

(
t
t0

) 2
3(1+w)

. (2.25)

The state parameter, w, defines the fluid equation of state. In cosmology, the most rel-

evant fluids are dust or non-relativistic matter, radiation and the cosmological constant.

Dust describes a fluid of non-relativistic particles, where pressure is negligible and w = 0.

Radiation describes a relativistic fluid of ”hot” particles and is represented by w = 1/3.

Finally, the cosmological constant corresponds to a fluid with negative pressure, w = −1,

in order to counteract the gravitational attracting effect of the matter.

Taking this into account, we can divide the evolution of the energy density into three

distinct eras:

• De Sitter era, where the cosmological constant is dominant and the scale factor

evolves as:

a(t) = a0eH0(t−t0), (2.26)

where H0 = H(t0) and a(t0) = a0 with the index 0 representing the present.

• Radiation era, where radiation dominates all other fluids and the scale factor evolves

as:

a(t) = a0

(
t
t0

)1/2

. (2.27)

• Matter era, where dust dominates all other fluids and the scale factor evolves as:

a(t) = a0

(
t
t0

)2/3

. (2.28)

2.4 Open questions

General Relativity was proposed by Albert Einstein in 1915 and came to revolutionize

modern physics. Several observations have come to demonstrate its validity. However,

there is also evidence that this theory is incomplete.
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For the limit of small scales, that is high energies, there is no complete consistency

between quantum theories and General Relativity. Despite the efforts made, a way to

unify both theories has not yet been conceived.

On the other hand, at the limit of large scales, that is small energies, problems such as

dark energy and dark matter arise. Observational data reveal the need to include in the

model the presence of these enigmatic components, which have not yet been observed.

It has been estimated that, assuming its existence, 68.3% of the universe is constituted by

dark energy and 26.8% by dark matter [10]. So only 4.9% of the matter in the universe is

observed matter.

In 1930, some authors revealed a difference between the velocity dispersion of galaxies

in clusters and the predicted velocity dispersion based on visible matter [11].

In 1970, two studies were published that revealed the presence of dark matter around

spiral galaxies showing a flatness of the rotation curves [12] [13]. In Figure 2.1 it is possible

to observe the rotation curve of the galaxy NGC 3198 [14].

FIGURE 2.1: Rotation curve of the galaxy NGC 3198. Fit of exponential disk with maxi-
mum mass and halo to observed rotation curve (dots with error bars) [14].

In addition to several observations about the effect of dark matter, the discovery that

the universe is in an accelerated expansion phase led to the conjecture of a significant am-

mount of dark energy. In 1998, two studies concluded this accelerated expansion through

the observation of Type Ia Supernovaes [15] [16]. The simplest mechanism for including

the dark energy effect was to insert the cosmological constant into Einstein’s equations.
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However, the existence and origin of dark energy and dark matter remains an enigma,

as it is presented in the context of General Relativity.

Alternatively, it is speculated that some alternative theories to General Relativity may

not need to include dark matter and dark energy to explain the rotation curve of galaxies

[17].





Chapter 3

The non-minimal coupling model

The General Relativity theory has a great mathematical beauty. Nonetheless, there is also

evidence to show that the theory is not complete. For this reason many alternative theo-

ries have been suggested. Some physicists suggest higher dimensional theories, such as

String Theory. Others opt to add a new field content, as Quintessence.

Another possibility is to consider higher-order theories. An example of this is the f (R)

theory. This theory consists in providing more versatility than General Relativity, replac-

ing the Ricci scalar by an arbitrary function f (R) in the Hibert-Einstein action (2.11).

Based on this idea, some physicists considered the so-called non-minimal coupling

theory, that we will explain during this chapter.

3.1 The non-minimal matter-curvature coupling theories

General Relativity rests on a principle of minimal coupling between curvature and matter.

This implies a covariant conservation of the energy-momentum tensor, as seen in (2.14).

However, it is possible to generalize this theory by dropping this conservation condition.

This provides an extra force that can mimic the dark matter effect on galaxies [18]. The-

oretically, this can be achieved by an extension of f (R) theories, using a non-minimal

coupling between curvature and matter.

11
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The action functional for these non-minimal coupling models is [18]

S =
∫ √

−g

(
1

16πG
f1(R) + f2(R)L

)
d4x, (3.1)

where f1(R) and f2(R) are sufficiently smooth arbitrary functions of the curvature scalar

R.

Varying the action with respect to the metric, we obtain the field equations [see Ap-

pendix A]:(
F1(R) + 16πGF2(R)L

)
Gµν = 8πG f2(R)Tµν (3.2)

+∆µν

(
F1(R) + 16πGF2(R)L

)
+

1
2

gµν

(
f1(R)−

(
F1(R) + 16πGF2(R)L

)
R

)
.

where F1(R) = d f1(R)
dR , F2(R) = d f2(R)

dR , ∆µν = ∇µ∇ν− gµν� and� = ∇µ∇µ. General Rela-

tivity is recovered for f1(R) = R and f2(R) = 1, and (3.2) reduces to Einstein’s equations

(2.12).

The trace of the equations (3.2) is given by(
F1(R) + 16πGF2(R)L

)
R− 2 f1(R) = 8πG f2(R)T − 3�

(
F1(R) + 16πGF2(R)L

)
, (3.3)

where T = gµνTµν.

Applying the contracted covariant derivative in equations (3.2) and using the con-

tracted Bianchi identities, we obtain the relation

∇µTµν =
F2(R)
f2(R)

(Lgµν − Tµν)∇µR. (3.4)

It is then possible to see that in general the energy-momentum tensor is not covari-

antly conserved. It is easily observed that, considering the General Relativity limit where

f2(R) = 1, the previous equation becomes (2.14).

In this model, although the energy-momentum tensor remains the same with respect

to General Relativity, we obtain different gravitational equations, depending on the cho-

sen Lagrangian density. From equation (3.4), results an extra force appears in the geodesic

equations of a perfect fluid [18], as can be seen in the following equation:

f µ =
1

ρ + p

(
F2(R)
f2(R)

(L− p)∇νR +∇ν p

)
hµν, (3.5)
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where hµν = gµν − uµuν is the projection operator.

3.2 Inflation in non-minimal coupling theories

The first model of an expanding universe was derived from Einstein’s equations by Alexan-

der Friedmann, in 1922, and by George Lemaı̂tre, in 1927. In 1929, Edwin Hubble discov-

ered that nearby galaxies were moving away at a rate known as the Hubble constant. It

was observed that the further away the galaxies were, the faster they moved away, which

suggested that the universe is expanding. It naturally led to the inference that, in the past,

the universe would have been smaller, denser and hotter. This gave rise to the Big Bang

model, implying the existence of an extremely hot and dense space that has continued to

expand to this day.

The Big Bang model was successful in predicting the abundance of light elements (Big

Bang Nucleosynthesis) and the existence of an universal background radiation. In fact, the

Arno Penzias and Robert Wilson discovery, in 1964, of Cosmic Microwaves Background

Radiation, showed that there is an uniform temperature, about 2.7K, that permeates the

entire universe. This, together with other observations, such as the homogeneity and

isotropy at large scales, led to the possible conclusion is that, in the past, all regions of

space were in causal contact.

Later, other issues arose, such as the possible existence of magnetic monopoles, the

flatness and the horizon problems. The solution came with the inflationary scenario [6]

[19] [20], which implies that the universe had undergone an accelerated expansion at the

beginning. It also provided a mechanism for the origin of large-scale observable struc-

tures, due to the quantum fluctuations of the inflaton field, φ.

Most of inflationary models are based on General Relativity, as seen in Chapter 2.

However, this does not answer several questions, one of them being the origin of the pri-

mordial magnetic field, a problem which will be considered in the context of the theory

of non-minimal coupling between curvature and matter [21].
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Let’s consider, as before, a homogeneous and isotropic universe, described by the

Robertson-Walker metric (2.2).

The field equation of the inflaton in the context of non-minimal coupling theory is

given by [see Appendix B] [21]:

φ̈ + 3Hφ̇ +
dV(φ)

dφ
= −F2(R)

f2(R)
Ṙφ̇. (3.6)

Comparing the previous equation with equation (2.20) we can see that, the non-minimal

coupling between curvature and matter induces a friction term in the inflaton equation of

the inflaton field.

Using the relation (2.13) with the previous Lagrangian we are able to define the energy-

momentum tensor:

Tµν =
−2√−g

δ(
√−gLφ)

δgµν
(3.7)

= ∂µφ∂νφ− gµν

(1
2

∂αφ∂αφ + V(φ)
)

, (3.8)

from which we get

T00 =
1
2

φ̇2 +
1
2
(∇φ)2

a2 + V(φ) (3.9)

Tij = ∂i∂jφ− a2γij

(
− 1

2
φ̇2 +

1
2
(∇φ)2

a2 + V(φ)
)

(3.10)

where (∇φ)2 = δij∂iφ∂jφ.

Comparing with the perfect fluid energy-momentum tensor (2.15), we can write the

density, ρφ, and pressure, pφ, as:

ρφ =
1
2

φ̇2 +
1
2
(∇φ)2

a2 + V(φ), (3.11)

pφ =
1
2

φ̇2 − 1
6
(∇φ)2

a2 −V(φ). (3.12)

During inflation, the potential energy dominates leading to an accelerated expansion.

So, if there is a region of the universe where the field is homogeneous and rolls down its

potencial slowly, we get an accelerated expansion that dilutes any energy gradient.

This inflationary period will last as long as the kinetic energy is negligible, that is,

during the phase where the potential is flat. When the potential becomes steeper and
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the field moves faster, inflation will end. After that, the inflaton potential energy will be

transferred into the radiation and ordinary matter.

Therefore, as the universe expands, spatial variations will become less important. So

it is physically reasonable to neglect spatial partial derivatives as they become negligible.

Thus, we can simplify the expressions for density and pressure as

ρφ =
1
2

φ̇2 + V(φ), (3.13)

pφ =
1
2

φ̇2 −V(φ) = Lφ. (3.14)

If we consider the time component of the non-conservation equation of the energy-

momentum tensor (3.4), it is possible to find the relation:

ρ̇ + 3H(ρ + p) = −F2(R)
f2(R)

(ρ + p)Ṙ. (3.15)

Similarly to the General Relativity case, we can write the equation of the temporal

evolution of matter density, considering p = wρ, as

ρ̇

ρ
= −(1 + w)

(
3

ȧ
a
+

F2(R)Ṙ
f2(R)

)
. (3.16)

If w = −1, the previous equation reduces to

ρ = ρ0. (3.17)

We note that, in the De Sitter era, the matter density does not change even for the non-

minimal coupling.

On other hand, if w 6= −1 we obtain

ρ = ρ0

(
a0

a

)3(1+w)(
f2(R0)

f2(R)

)1+w

, (3.18)

where R0 is the curvature value at the present.

In the case where we have non-relativistic matter, w = 0, we obtain that

ρ = ρ0
f2(R0)

f2(R)

(
a0

a

)3

. (3.19)



16
PRIMORDIAL MAGNETIC FIELD GENERATION IN THEORIES OF GRAVITY WITH

NON-MINIMAL COUPLING BETWEEN CURVATURE AND MATTER

In the case of radiation, this expression is also found in [22], by replacing w = 1
3 . We

get

ρ = ρ0

(
a0

a

)4(
f2(R0)

f2(R)

) 4
3

. (3.20)

Friedmann’s equation is fundamental to the description of the expansion of the uni-

verse. Thus it would be important to deduce the generalization of this equation for the

non-minimal coupling theory.

The time-time component equation of (3.2) [see Appendix C] corresponds to the mod-

ified Friedmann equation that takes the form:

H2 =
1

6
(

F1(R) + 16πGF2(R)Lφ

)(16πGρφ f2(R)− 6H
∂
(

F1(R) + 16πGF2(R)Lφ

)
∂t

− f1(R) +
(

F1(R) + 16πGF2(R)Lφ

)
R

)
. (3.21)

In the same way, we can write the modified Raychaudhuri equation, using the ii com-

ponent of (3.2) [see Appendix C]. It takes the form:

(
F1(R) + 16πGF2(R)Lφ

)( ä
a
+ H2

)
= −8πGpφ f2(R)−

∂2
(

F1(R) + 16πGF2(R)Lφ

)
∂t2

−3H
∂
(

F1(R) + 16πGF2(R)Lφ

)
∂t

− 1
2

(
f1(R)−

(
F1(R) + 16πGF2(R)Lφ

)
R

)
. (3.22)

It is easy to see that replacing f1(R) = R and f2(R) = 1 in the previous equations

leads to equations (2.17) and (2.18).

For inflation to occur, the inflaton field must mimic a cosmological constant. In that

case, the kinetic energy is negligible when compared to the potential energy and pφ '

−ρφ. Then, using relations (3.13) and (3.14), the following conditions, known as slow-roll

conditions, are required:

1. The kinetic energy of the inflaton is much smaller than the potential energy. So,

1
2

φ̇� V(φ); (3.23)
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2. The acceleration of the field is small so that the inflaton velocity does not increase

fast. So,

φ̈� 3Hφ̇. (3.24)

The slow-roll conditions give us the guarantee that the inflaton’s motion is sufficiently

damped to allow for the accelerated expansion of the universe.

Taking into account that the slow-roll conditions give us Lφ = pφ = −ρφ, the 00 and

ii compoments of equation (3.2) can be written as

f2(R)ρφ = 3FH2 + 3HḞ +
1
2

(
8πG f1(R)− RF

)
(3.25)

and

f2(R)pφ = −3FH2 − 3HḞ− 1
2

(
8πG f1(R)− RF

)
− 2FḢ − F̈ (3.26)

where F =
(

8πGF1(R)− 2F2(R)ρφ

)
.

From these relations and from the slow-roll approximation, it follows that the tempo-

ral derivatives of the curvature scalar R and the matter density ρ vanish.

Similarly to [21], let’s consider that

f1(R) = R. (3.27)

In this way we are isolating the effects of the non-minimal coupling between matter

and curvature in onder to understand its impact.

Thus, it is possible to simplify the modified Friedmann’s equation (3.21) in the slow-

roll regime to get the expression:

H2 =

(
8πG f2(R)

1 + 16πGρφF2(R)

)
ρφ

3
. (3.28)

Observing the above equation, it is easy to verify that the modified Friedmann equa-

tion depends on the energy density of the inflaton and on the non-minimal coupling func-

tion considered.
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Likewise, we can simplify the modified Raychaudhuri equation (3.22), obtaining

2
ä
a
=

8πGρφ f2(R)
1 + 8πGρφF2(R)

(
1− 1

3

(
1 + 32πGρφF2(R)
1 + 16πGρφF2(R)

))
= 2H2. (3.29)

It is simple to see that the limit of General Relativity, where f2(R) = 1, is verified in

previous equations and that there is consistency in all considered approximations.

This model proves to be versatile, being possible to consider very general non-minimal

couplings between curvature and matter.

3.3 Cubic model

In the physics literature, the non-minimal coupling is written as a linear combination of

the powers of the curvaturar scalar, that is

f2(R) =
+∞

∑
n=−∞

an

(
R
R0

)n

=
+∞

∑
n=−∞

ΥnRn, (3.30)

where an and R0 are constants that change with the evolutionary phase of the universe

considered and Υn will be seen as a coupling constant that depends on the characteristics

of the phase considered.

In this work we are going to consider a coupling function, that is relevant for the early

universe high curvature regime, namely:

f2(R) = 1 + ξR3, (3.31)

where ξ ≥ 0 parameterizes the deviation from General Relativity. Due to the character-

istics of the inflationary period, this coupling constant will necessarily be small. With

this representation we want to propose a new point of view on the theory of cubic non-

minimal coupling proven to be relevant in [21].

Given that

R = 6
( ä

a
+
( ȧ

a

)2)
= 6

( ä
a
+ H2

)
, (3.32)

considering the slow-roll regime and using equation (3.29), we get

R ' 12H2. (3.33)
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Replacing the previous result and the non-minimal coupling function (3.31) in the

modified Friedmann equation (3.28) we obtain:

H2 =
1

12

(
36ξ2(8πGρ)3 +

√
6ξ3(8πGρ)3

(
216ξ(8πGρ)3 + 1

)) 2
3

− 8πG6
1
3 ξρ

8πG6
2
3 ξρ

(
36ξ2(8πGρ)3 +

√
6ξ3(8πGρ)3

(
216ξ(8πGρ)3 + 1

)) 1
3

. (3.34)

The modified Friedmann equation written in this new way allows to obtain a Taylor ex-

pansion around ξ = 0 thus accessing the strength of the deviation from the usual Fried-

mann’s equation:

H2 = 8πG
ρ

3
− 32(8πG)4 ρ4

3
ξ +O(ξ2), (3.35)

where it is easy to see the General Relativity limite (ξ = 0).

We are now able to solve the modified Friedmann equation for the different phases of

the universe. We will use the equations (3.17), (3.19) and (3.20) in the modified Friedmann

equation.

In the De Sitter phase, it is possible to exactly solve (3.34), since the density is constant.

So, from (3.17), the scale factor takes the form:

a(t) = a0e f (ξ)(t−t0), (3.36)

where we consider the positive solution and f (ξ) is given by:

f (ξ) =

√√√√√√√√√√√
1
12

(
36ξ2(8πGρ0)3 +

√
6ξ3(8πGρ0)3

(
216ξ(8πGρ0)3 + 1

)) 2
3

− 8πG6
1
3 ξρ0

8πG6
2
3 ξρ0

(
36ξ2(8πGρ0)3 +

√
6ξ3(8πGρ0)3

(
216ξ(8πGρ0)3 + 1

)) 1
3

.

(3.37)

If we expand the previous equation in Taylor series, around ξ = 0, it is possible to see that

f (ξ) = H0 − 1296H7
0 ξ +O(ξ2). (3.38)

Then f (0) = H0, where H0 is the same in equation (2.26).
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Graphically, it is possible to verify that f (ξ) is always less than H0, see Figure 3.1. It is

also possible to verify that the derivative of f (ξ) in order to ξ takes a negative value for

any ξ > 0.

FIGURE 3.1: Comparison between H0 and f (ξ). In this representation it is considered
that 8πGρ0 = 1.

It is possible to see in the following Figure 3.2 the graphical representation of the scale

factor for different values of ξ.

FIGURE 3.2: Behavior of the scale factor in the De Sitter phase, in the case of non-minimal
cubic coupling for values of ξ between 0 and 0.500. In this representation it is considered
that 8πGρ0 = 1.

The blue curve represents the General Relativity solution. We can see that the scale

factor is affected by the non-minimal coupling constant, ξ.
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Note that t→ −∞ points in the direction of the beginning of the universe, so the scale

factor goes to zero, for all ξ. When t → t0, we are nearby the present time, so the scale

factor takes the present value for all ξ.

We can see in Figure 3.2 that as we increase the coupling constant ξ, the scale factor is

flattening. So we expect that the end time of inflation will vary with the coupling constant

considered. In particular we expect that inflation act longer as ξ increases.

Slow-roll inflation, where the energy of the inflation potential field dominates, pro-

vides an exponentially accelerated expanding universe. This phase extends between 50

and 60 e-folds, until the potential steepens and slow-roll conditions are invalid.

After that, the kinetic energy of the inflaton becomes of the same order of magnitude

as the potential energy, or maybe more. Then the field rapidly evolves to the minimum

of the potential where, due to scalar field fluctuations around the minimum, allows the

universe to warm up. This phase is called reheating [23][24] and will be relevant later on.

Therefore, we will consider that inflation acts for approximately 60 e-folds. So it is

necessary that the scale factor increase at least e60.

We will denote by ai and a f the scale factor at the start and end of inflation, respec-

tively.

So, we have
a f

ai
= e f (ξ)∆t ' e60, (3.39)

where ∆t = t f − ti is the temporal duration of inflation.

It is easily observed that ∆t(ξ) ' 60
f (ξ) . Considering the approach to General Relativity

∆tGR ' 60
H0

.

Using the result observed in Figure 3.1, it is possible to conclude that

∆t(ξ) ≥ ∆tGR . (3.40)

So it is easily demonstrated that inflation acts longer in the case of the non-minimal

coupling theory, as we were expecting. Since f (ξ) decreases with ξ, then stronger cou-

pling constant implies longer inflation time.

It is easy to conclude that a larger coupling constant ξ implies greater changes in the

inflation dynamics compared to General Relativity.
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What we want to understand in the following chapter is whether these changes will

have consequences in the behavior of the magnetic field.

Just to understand how this cubic non-minimal coupling model affects the remaining

phases, due to the complexity of the differential equation, we obtain numerical solutions

for the phases dominated by dust and by radiation.

In the radiation era the behavior is represented in Figure 3.3 and in the dust era the

behavior is represented in Figure 3.4.

FIGURE 3.3: Behavior of the scale factor in the radiation phase, in the case of non-minimal
cubic coupling for values of ξ between 0 and 0.500. In this representation it is considered
that 8πGρ0 = 1.
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FIGURE 3.4: Behavior of the scale factor in the dust phase, in the case of non-minimal
cubic coupling for values of ξ between 0 and 0.500. In this representation it is considered
that 8πGρ0 = 1.

In the previous figures it is possible to verify that the non-minimal coupling between

curvature and matter does not significantly affect the remaining phases of the evolution

of the universe, namely the radiation and dust phases.





Chapter 4

Primordial Magnetic field

In the 1940s the galactic magnetic field was theoretically proposed [25] [26] and detected

[27][28]. Since then, the galactic and extragalactic magnetic fields have been studied ex-

tensively. However, questions about its origin remain unresolved, making it one of the

most fascinating challenges of modern astrophysics.

Magnetic fields are detected on a wide variety of astrophysical scales. Observations of

nearby galaxies reveal magnetic fields with an intensity of 10-30 µG [29].

One of the most discussed models explaining magnetic fields is the dynamo mecha-

nism. With this effect, the fields are continuously generated through the combined action

of differential rotation and turbulence. However, this mechanism requires a seed mag-

netic field to start with.

One possibility is to assume a primordial origin of the magnetic field, before the first

galaxies were formed. In this chapter we will analyze primordial magnetic fields origi-

nated by electromagnetic fluctuations during the inflation period.

This idea has been first considered by Turner and Widrow in the context of General

Relativity [5] and we will now analyze the behavior of a primordial magnetic field gen-

erated by inflation in the context of the non-minimal coupled matter-curvature described

in the previous chapter.

25
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This chapter is divided in two sections. In the first section we will deduce Maxwell’s

equations in the context of the non-minimal coupling theory. In the second we will dis-

cuss the consequences of this non-minimal coupling on the behavior of the magnetic field

during different evolutionary phases of the universe, with special emphasis on the infla-

tionary period.

4.1 Maxwell equations in the non-minimal coupling model

In this section, we deduce the modified Maxwell equations in context of the non-minimal

coupling theory. For simplicity, we will use the metric (2.3), written in conformal time.

Let’s consider the Electromagnetic Lagrangian density

L = −1
4

FµνFµν, (4.1)

where Fµν is the Faraday tensor.

It is possible to write

Fµν = a2


0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0


, (4.2)

where Ei and Bi are the electric and magnetic fields, respectively, with i = x, y, z.

Using the relation (2.13), it is possible to find the energy-momentum tensor

Tµν = −2
δL

δgµν
− 2√−g

Lδ
√−g
δgµν

(4.3)

= FµαFα
ν −

1
4

gµνFαβFαβ (4.4)
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So, we can explicitly write the Faraday tensor as

Tµν = a2(τ)



1
2 (|E|2 + |B|2) −(E× B)x −(E× B)y −(E× B)z

−(E× B)x
1
2 (|E|2 + |B|2)− E2

x − B2
x −ExEy − BxBy −ExEz − BxBz

−(E× B)y −ExEy − BxBy
1
2 (|E|2 + |B|2)− E2

y − B2
y −EyEz − ByBz

−(E× B)z −ExEz − BxBz −EyEz − ByBz
1
2 (|E|2 + |B|2)− E2

z − B2
z


,

(4.5)

where E and B are the electric and magnetic field vectors, respectively.

In order to obtain the Maxwell equations, we can use the action (3.1) with the La-

grangian density (4.1) and vary with respect to the 4-potencial, Aµ = (Φ, A), where Φ is

the electric potential and A is the magnetic potential:

δS =
∫ √

−g f2(R)δLd4x = −1
4

∫ √
−g f2(R)δ(FµνFµν)d4x. (4.6)

We know that FµνδFµν = δFµνFµν, so we can write that

δS = −1
2

∫ √
−g f2(R)FµνδFµνd4x (4.7)

= −1
2

∫ √
−g f2(R)Fµν

(
∇µ(δAν)−∇ν(δAµ)

)
d4x. (4.8)

Rearranging the indices in the previous equation and recalling that the Faraday tensor

is antisymmetric, it is possible to rewrite δS as:

δS = −
∫ √

−g f2(R)Fµν∇µ(δAν)dx4. (4.9)

Applying an integration by parts, the properties of tensor derivatives and simplifying,

we obtain:

δS =
∫
∇µ(

√
−g f2(R)Fµν)δAνd4x. (4.10)

and thus half of Maxwell’s equations:

∇µ

(√
−g f2(R)Fµν

)
= 0. (4.11)

Writing equations (4.11) explicitly, we get the following four equations:

∂

∂x
Ex +

∂

∂y
Ey +

∂

∂z
Ez = 0; (4.12)

1
a2 f2(R)

∂

∂τ

(
a2 f2(R)Ex

)
+

∂

∂z
By +

∂

∂y
Bz = 0; (4.13)
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1
a2 f2(R)

∂

∂τ

(
a2 f2(R)Ey

)
+

∂

∂x
Bz +

∂

∂z
Bx = 0; (4.14)

1
a2 f2(R)

∂

∂τ

(
a2 f2(R)Ez

)
+

∂

∂y
Bx +

∂

∂x
By = 0. (4.15)

The homogeneous Maxwell equations are obtained by the variation of the action with

a Lagrangian density L = − 1
2 FµνF∗µν, where F∗µν = 1

2 Fαβεαβµν and εαβµν is the Levi-Civita

tensor. Thus

∇α

(√
−g f2(R)Fµνεαβµν

)
= 0. (4.16)

As before, we can write equations (4.16) explicitly, obtaining the following four equa-

tions:
∂

∂x
Bx +

∂

∂y
By +

∂

∂z
Bz = 0; (4.17)

1
a2 f2(R)

∂

∂τ

(
a2 f2(R)Bx

)
+

∂

∂y
Ez +

∂

∂z
Ey = 0; (4.18)

1
a2 f2(R)

∂

∂τ

(
a2 f2(R)By

)
+

∂

∂z
Ex +

∂

∂x
Ez = 0; (4.19)

1
a2 f2(R)

∂

∂τ

(
a2 f2(R)Bz

)
+

∂

∂x
Ey +

∂

∂y
Ex = 0. (4.20)

So we can gather the four Maxwell equations as

∇ · B = 0; (4.21)

∇ · E = 0; (4.22)

1
a2 f2(R)

∂

∂τ

(
a2 f2(R)B

)
+∇× E = 0; (4.23)

1
a2 f2(R)

∂

∂τ

(
a2 f2(R)E

)
−∇× B = 0. (4.24)

It is easy to verify that for f2(R) = 1, in the minimal coupling regime, we recover the

usual Maxwell equations.

Applying the curl to equation (4.24) to get:

1
a2 f2(R)

∂

∂τ

(
a2 f2(R)∇× E

)
−∇(∇ · B) +∇2B = 0. (4.25)
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Using equation (4.21) in previous equation we obtain

1
a2 f2(R)

∂

∂τ

(
a2 f2(R)∇× E

)
+∇2B = 0. (4.26)

Through substitution of equation (4.23) in the previous equation, we get

1
a2 f2(R)

∂2

∂τ2

(
a2 f2(R)B

)
−∇2B = 0. (4.27)

In order to solve equation (4.27) we expand it in terms of the Fourier components of

B.

Defining

Fk(τ) = a2 f2(R)
∫

e−k.xBd3x (4.28)

and replacing in the equation (4.27), we obtain

d2

dτ2 Fk(τ) + k2Fk(τ) = 0, (4.29)

where Fk is a measure of the magnetic flux associated with the comoving scale λ ∼ k−1.

The solution to the previous ordinary differential equation for each mode k is

Fk(τ) = c1eikτ + c2e−ikτ, (4.30)

where c1 and c2 are constants.

So we can write the magnetic field as

B =
1

a2 f2(R)

∫
Fk(τ)eikxdk. (4.31)

Since the integral is bounded, it is possible to state that

B ∝
1

a2 f2(R)
, (4.32)

where B is the intensity of magnetic field.

If we consider the minimal coupling limit, f2(R) = 1, we see that magnetic field is

diluted as the scale factor increases. This leads to a problem in General Relativity, as

during the inflationary period the scale factor increases exponentially and the magnetic

field is dramatically diluted.
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4.2 Magnetic field during inflation

In this section we will discuss the results obtained for the magnetic field during inflation,

with this new point of view of the non-minimal coupling theory. We want to compare

our results with the results obtained for General Relativity. We will also study the conse-

quences of our model after reheating.

What we want to understand is, to what extent will a non-minimal coupling modify

the dynamical evolution of B during inflation. As we have an additional dependence on

the inverse of f2(R), one might hope that the magnetic field seeds will not be completly

diluted after inflation.

The dilution factor of the magnetic field during inflation is

B f

Bi
'
(

ai

a f

)2
f2(Ri)

f2(R f )
, (4.33)

and due to (3.39) we have
B f

Bi
' 10−53 f2(Ri)

f2(R f )
. (4.34)

Let’s consider the cubic non-minimal coupling function for reheating

f2RH (R) = ςR3, (4.35)

where ς is a coupling constant that depends on the characteristics of the reheating [22].

It is known that in this phase HRH ' π√
90

√
8πGT2

RH
, where TRH is the reheating tem-

perature.

So, by (3.33), it is possible to write

RRH '
2π2

15
8πGT4

RH
. (4.36)

Therefore, we can write

BRH

Bi
' 10−53

(
Hi

HRH

)6

, (4.37)

where Hi is the expansion rate at inflation and Hi ' 1
3

√
8πG∆2, where we assume typi-

cally that ∆ ' 10−3Mpl , with Mpl the Planck mass.
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So, it is possible to write

BRH

Bi
' 10−53

(
∆

TRH

)12

. (4.38)

If we assume that the reheating temperature is between the values 10−9Mpl . TRH .

10−4Mpl , we can estimate that

10−41 .
BRH

Bi
. 109. (4.39)

Although a more detailed study of the quantum fluctuations remains to be done, we

can observe a possible amplification of the primordial magnetic field in the context of the

non-minimal coupling theory.





Chapter 5

Conclusion

The origin of the cosmic magnetic field remains an open question. The dynamo effect

can justify the field strength observed today, however in all these mechanisms there is the

need an of initial seed magnetic field, with a mimimum intensity of B ∼ 10−19G [5].

One class of models attributes the generation of initial magnetic fields to a primordial

origin, in the beginning of the universe during inflation. It is then assumed that the mag-

netic fields result from the amplification of perturbations in the primordial magnetic field.

However, according to General Relativity, due to the exponential behavior of the

scale factor during inflation, the magnetic field strength dilutes during this period, since

B ∝ a−2. This provides a magnetic field dilution factor of 10−58 during the inflationary

period.

In order to study the possibility of minimizing this dilution effect, it was analized in

this work the influence of the theory of non-minimal cubic coupling between curvature

and matter in the magnetic field behavior. This alternative theory to General Relativity

has shown its versatility in previous studies [21][17].

Chapter 2 reviews some cosmological facts. We introduce the characteristics of the

metric considered, briefly deduce the Friedmann equations and present the scale factor in

the different phases of the universe’s evolution. Open issues were also discussed.
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In Chapter 3 the theory of non-minimal coupling between curvature and matter is in-

troduced. Here it is found the field equations and the modified Friedmann equation.

It was obtained the general expression for the density of matter, considering the dif-

ferent types of matter in the universe: ρ = ρ0

(
a0
a

)3(1+w)( f2(R0)
f2(R)

)1+w
, with w 6= −1. In the

case of the cosmological constant, the density of matter remains constant, not depending

on the non-minimal coupling function.

Also in this chapter, it has been specified the cubic non-minimal coupling. This cou-

pling was presented as a deviation from General Relativity, in order to understand the

influence of this coupling in the scale factor and the evolution of the universe. A graphi-

cal analysis of the behavior of the scale factor during the different evolutionary phases of

the universe was presented.

In the last chapter the Maxwell’s equations were deduced in the context of non-minimal

coupling theory. Thus, it was possible to conclude that the behavior of the magnetic field

is different for this theory, namely B ∝ 1
a2 f2(R) .

It was then shown that the ratio between the magnetic field in reheating (BRH) and the

magnetic field at the beginning of inflation (Bi) is given by BRH
Bi
' 10−53

(
Hi

HRH

)6
.

In order to obtain some orders of magnitude, it was considered that the initial mag-

netic field is due to thermal quantum fluctuations at an inflation scale ∆ ∼ 10−3MPl , and

the reheating temperature in the range 10−9Mpl . TRH . 10−4Mpl . So we conclude that

the ratio of magnetic field intensity can take values of 10−41 . BRH
Bi
. 109.

This study supports the idea that non-minimal coupling theories might have an im-

pact on the problem of primordial magnetic fields. A more detailed study of the magnetic

field fluctuations in the context of this theory will be presented in a future study.



Appendix A

The field equations in non-minimal

matter-curvature coupling theories

It is possible to deduce field equations through the function variation of the action (3.1).

So, we can write that

δS =
∫

δ(
√
−g)

(
1

16πG
f1(R)+ f2(R)L

)
+
√
−g

(
1

16πG
δ( f1(R))+ δ( f2(R))L+ f2(R)δL

)
d4x.

(A.1)

Using relation (2.13) and δ(
√−g) = − 1

2
√−ggµνδgµν, we obtain:

δS =
∫ √

−g

[
− 1

2
gµνδgµν

(
1

16πG
f1(R) + f2(R)L

)
(A.2)

+

(( 1
16πG

F1(R) + F2(R)L
)

δR +
f2(R)

2

(
Lgµν − Tµν

)
δgµν

)]
d4x.

Additionally, R = gµνRµν, so δR = δgµνRµν + gµνδRµν. If we replace this relation in

the previous equation, we can separate it in two integrals:

δS =
∫ √

−g

[
− 1

2
gµν

(
1

16πG
f1(R) + f2(R)L

)
+

f2(R)
2

(
Lgµν − Tµν

)
(A.3)

+Rµν

(
1

16πG
F1(R) + F2(R)L

)]
δgµνd4x +

∫ √
−g

[(
1

16πG
F1(R) + F2(R)L

)]
gµνδRµνd4x.
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Using the Palatini’s lemma, δRµν = ∇λ(δΓλ
µν)−∇ν(δΓλ

λµ), ∇λgµν = 0 and ∇λ
√−g =

0, we can simplify the second integral L:

L =
∫ √

−g

[(
1

16πG
F1(R) + F2(R)L

)]
gµνδRµνd4x (A.4)

=
∫ ( 1

16πG
F1(R) + F2(R)L

)
∇λ(

√
−ggµνδΓλ

µν)d
4x (A.5)

−
∫ ( 1

16πG
F1(R) + F2(R)L

)
∇ν(

√
−ggµνδΓλ

λµ)d
4x.

Thus, using the properties of the tensor density and the divergence we get:

L = −
∫
∇λ

(
1

16πG
F1(R) + F2(R)L

)√
−ggµνδΓλ

µνd4x (A.6)

+
∫
∇ν

(
1

16πG
F1(R) + F2(R)L

)√
−ggµνδΓλ

λµd4x.

Using the Christofel symbols variation δΓλ
µν = 1

2 gλσ
(
∇µ(δgσν)+∇ν(δgµσ)−∇σ(δgµν)

)
and a similar simplification then:

L =
∫ √

−g

[
−∇ν∇µ

(
1

16πG
F1(R) + F2(R)L

)
+∇λ∇λ

(
1

16πG
F1(R) (A.7)

+F2(R)L
)

gµν

]
δgµνd4x = −

∫ √
−g∆µν

(
1

16πG
F1(R) + F2(R)L

)
δgµνd4x.

Hence (A.3) can be written as:

δS =
∫ √

−g

[
− 1

2
gµν

(
1

16πG
f1(R) + f2(R)L

)
+

f2(R)
2

(
Lgµν − Tµν

)
(A.8)

+Rµν

(
1

16πG
F1(R) + F2(R)L

)
− ∆µν

(
1

16πG
F1(R) + F2(R)L

)]
δgµνd4x,

from which follow the field equations(
F1(R)+ 16πGF2(R)L

)
Rµν−

1
2

gµν f1(R) = 8πG f2(R)Tµν +∆µν

(
F1(R)+ 16πGF2(R)L

)
,

(A.9)

where ∆µν = ∇µ∇ν − gµν� and � = ∇µ∇µ.
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Or in terms of the Einstein tensor:(
F1(R) + 16πGF2(R)L

)
Gµν = 8πG f2(R)Tµν + ∆µν

(
F1(R) + 16πGF2(R)L

)
(A.10)

+ 1
2 gµν

(
f1(R)−

(
F1(R) + 16πGF2(R)L

)
R

)
.

Note that when f1(R) = R and f2(R) = 1, we recover Einstein’s equations:

Gµν = 8πGTµν. (A.11)





Appendix B

The field equation of the inflaton

field in non-minimal

matter-curvature coupling theories

We consider the action associated to the Lagrangian density of the inflaton field, taking

into account the non-minimal matter-curvature coupling model as

Sφ =
∫

M

√
−g

(
1

16πG
f1(R) + f2(R)Lφ

)
d4x, (B.1)

where Lφ is given by equation (2.19).

We obtain here the field equation for the inflaton. We can write that

δSφ =
∫ √

−g f2(R)δ(Lφ)d4x. (B.2)

Since δ(Lφ) = −∂µφgµν∂ν(δφ)− dV(φ)
dφ δφ, then we get that

δSφ = −
∫ √

−g f2(R)∂µφgµν∂ν(δφ)d4x−
∫ √

−g f2(R)
dV(φ)

dφ
δφd4x. (B.3)

Integrating by parts the first integral it is possible to write

δSφ =
∫ √

−g

(
1√−g

∂ν

(√
−g f2(R)∂µφgµν

)
− f2(R)

dV(φ)

dφ

)
δφd4x, (B.4)

and from the condition δSφ = 0:

1√−g
∂ν

(√
−g f2(R)∂µφgµν

)
− f2(R)

dV(φ)

dφ
= 0. (B.5)

39



40
PRIMORDIAL MAGNETIC FIELD GENERATION IN THEORIES OF GRAVITY WITH

NON-MINIMAL COUPLING BETWEEN CURVATURE AND MATTER

In the Robertson-Walker metric
√−g = a3 and we obtain:

f2(R)φ̈ + 3H f2(R)φ̇− f2(R)
a2 ∇

2φ + f2(R)
dV(φ)

φ
= −F2(R)Ṙφ̇, (B.6)

where ∇2 = γij∂i∂j and i and j are spatial coordinates.

Finally, invoking homogeneity and isotropy, we obtain the wanted equation:

φ̈ + 3Hφ̇ +
dV(φ)

dφ
= −F2(R)

f2(R)
Ṙφ̇. (B.7)



Appendix C

The modified Friedmann equations

The time-time component of equation (3.2) is(
F1(R) + 16πGF2(R)Lφ

)
G00 = 8πG f2(R)ρφ + ∆00

(
F1(R) + 16πGF2(R)Lφ

)
(C.1)

−1
2

(
f1(R)−

(
F1(R) + 16πGF2(R)Lφ

)
R

)
,

where G00 = 3H2.

It is possible to see that

gµν�
(

F1(R) + 16πGF2(R)Lφ

)
= gµν∇α∇α

(
F1(R) + 16πGF2(R)Lφ

)
= gµνgβα

(
∂α∂β

(
F1(R) + 16πGF2(R)Lφ

)
− Γγ

αβ∂γ

(
F1(R) + 16πGF2(R)Lφ

))
. (C.2)

So we can simplify (C.1) as:

∆00

(
F1(R) + 16πGF2(R)Lφ

)
=

∂2
(

F1(R) + 16πGF2(R)Lφ

)
∂t2 − g00�

(
F1(R) + 16πGF2(R)Lφ

)
= −3H

∂
(

F1(R) + 16πGF2(R)Lφ

)
∂t

. (C.3)

Replacing the previous relation in equation (C.1) we obtain the modified Friedamnn

equation (3.21).

The ii component of (3.2) is given by:(
F1(R) + 16πGF2(R)Lφ

)
G11 = 8πG f2(R)T11 + ∆11

(
F1(R) + 16πGF2(R)Lφ

)
+

1
2

a2

(
f1(R)−

(
F1(R) + 16πGF2(R),Lφ

)
R

)
, (C.4)
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where G11 = −äa− ȧ2. Using the relation (C.2), it is possible to see that

∆11

(
F1(R) + 16πGF2(R)Lφ

)
= −g11�

(
F1(R) + 16πGF2(R)Lφ

)
= a2

∂2
(

F1(R) + 16πGF2(R)Lφ

)
∂t2 + 3ȧa

∂
(

F1(R) + 16πGF2(R)Lφ

)
∂t

. (C.5)

Replacing the previous equation in equation (C.4) leads to equation (3.22).
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[22] O. Bertolami, P. Frazão, and J. Páramos, “Reheating via a generalized non-minimal

coupling of curvature to matter,” Phys. Rev. D, vol. 83, p. 044010, 2011. [Cited on

pages 16 and 30.]



BIBLIOGRAPHY 45

[23] J. H. Traschen and R. H. Brandenberger, “Particle production during out-of-

equilibrium phase transitions,” Phys. Rev. D, vol. 42, p. 2491, 1990. [Cited on page 21.]

[24] L. Kofman, A. Linde, and A. A. Starobinsky, “Reheating after inflation,” Phys. Rev.

Lett., vol. 73, p. 3195, 1994. [Cited on page 21.]

[25] H. Alfvén, “On the existence of electromagnetic-hydrodynamic waves,” Arkiv f. Mat.,

Astron. o. Fys., vol. 29, pp. 1–7, 1943. [Cited on page 25.]

[26] E. Fermi, “On the origin of the cosmic radiation,” Phys. Rev., vol. 75, p. 1169, 1949.

[Cited on page 25.]

[27] W. A. Hiltner, “Polarization of light from distant stars by interstellar medium,” Sci-

ence, vol. 109, p. 165, 1949. [Cited on page 25.]

[28] J. S. Hall, “Observations of the polarized light from stars,” Science, vol. 109, p. 166,

1949. [Cited on page 25.]

[29] R. Beck, “Galatic and extragalactic magnetic fields,” AIP Conference Proceedings,

vol. 83, p. 1085, 2008. [Cited on page 25.]


	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	1 Introduction
	2 Main cosmological facts
	2.1 The metric
	2.2 The Friedmann equations
	2.3 The evolutionary phase
	2.4 Open questions

	3 The non-minimal coupling model
	3.1 The non-minimal matter-curvature coupling theories
	3.2 Inflation in non-minimal coupling theories
	3.3 Cubic model

	4 Primordial Magnetic field
	4.1 Maxwell equations in the non-minimal coupling model
	4.2 Magnetic field during inflation

	5 Conclusion
	A The field equations in non-minimal matter-curvature coupling theories
	B The field equation of the inflaton field in non-minimal matter-curvature coupling theories
	C The modified Friedmann equations
	Bibliography

