
Isolated
environments for
threat detection and
mitigation
Simão Francisco Oliveira da Silva
Mestrado em Segurança Informática
Departamento de Ciências de Computadores
2021

Orientador
Luís Filipe Coelho Antunes
Professor Catedrático
Faculdade de Ciências da Universidade do Porto

Coorientador
Patrícia Raquel Vieira Sousa
Doutora
Faculdade de Ciências da Universidade do Porto

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /

UNIVERSIDADE DO PORTO

MASTERS THESIS

Isolated environments for threat detection
and mitigation

Author:

Simão SILVA

Supervisor:

Luı́s ANTUNES

Co-supervisor:

Patrı́cia SOUSA

A thesis submitted in fulfilment of the requirements

for the degree of MSc. Information Security

at the

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

September 30, 2021

mailto:up201603194@fc.up.pt
mailto:lfa@fc.up.pt
mailto:patricia.sousa@fc.up.pt

Acknowledgements

I would like to express my gratitude and appreciation to Professor Luı́s Antunes and

Professor Patrı́cia Sousa for their support, guidance and the opportunity to develop this

thesis.

I also would like to give a special thanks to Professor João Resende for his patience and

dedication. Alongside Patrı́cia Sousa, they were tireless in supporting this work, sharing

their suggestions and advice and for providing encouragement during the most difficult

times, essential to complete this thesis. To them, my sincere and deepest gratitude.

To my colleagues at C3P, Inês and André, I am grateful for their support and warm

welcome that made possible our great working environment. Thank you for being there

when I need it.

To my family, there are no words that can express the thanks for the incredible support

during this journey, especially during the bad times. Without you, I could never have

gotten where I am today.

UNIVERSIDADE DO PORTO

Abstract

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

MSc. Information Security

Isolated environments for threat detection and mitigation

by Simão SILVA

A honeypot is configured to detect, bypass or otherwise neutralise attempts at the unau-

thorised use of information systems. Honeypots are often used in a controlled environ-

ment with a specific network not listed on the web to identify potential threats and are

designed to work away from the critical infrastructure environment. The increasing adop-

tion and use of Internet of Things (IoT) devices make the task of configuring honeypots

complex due to the highly dynamic environments. Some authors have proposed the no-

tion of honeypots remotely using the same infrastructure, with the network requests from

IoT devices being redirected to a remote cloud server, although it does not require a sep-

arate infrastructure to detect attacks and connections. However, with external servers,

response delays make these systems discoverable and indicate to the attacker that they

may be in the presence of a honeypot.

In this work, we focus on deploying honeypots virtually on IoT devices. With this

technology, we can use endpoints to dispatch specific honeypots on recent known vulner-

abilities in IoT devices to find and notify attacks within the network, as much of this infor-

mation is verified and freely available by government entities. Unlike other approaches,

the idea is not to have a fixed honeypot, but a set of devices that can be used at any time

as a honeypot (adapted to the latest threat) to analyse the network for a potential problem

and then report to the Threat Sharing Platform (TSP).

mailto:up201603194@fc.up.pt

UNIVERSIDADE DO PORTO

Resumo

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

Mestrado em Segurança Informática

Ambientes isolados para deteção e mitigação de ameaças

por Simão SILVA

Um honeypot é configurado para detetar, prevenir ou eliminar tentativas de acesso

não autorizadas a sistemas de informação. Honeypots são geralmente usados num ambi-

ente controlado e com uma rede especı́fica segregada, para que seja possı́vel identificar

possı́veis ameaças. Desta forma, este ambiente é criado de forma separada do ambiente

crucial da infraestrutura. O aumento da adopção e uso de dispositivos da Internet das

Coisas (IdC) tornam a tarefa de configuração de honeypots complexa devido aos ambien-

tes altamente dinâmicos. Na literatura, temos vários exemplos de trabalhos que propõem

a noção de honeypots remotos usando a mesma infraestrutura, com os pedidos dos disposi-

tivos de IdC a serem reencaminhados para um servidor remoto na cloud, embora não seja

requerida uma infraestrutura à parte para detetar ataques e conexões. No entanto, com

servidores externos, os atrasos nas respostas tornam estes sistemas detectáveis e indicam

ao atacante que pode estar na presença de um honeypot.

Neste trabalho, focámo-nos na implementação de honeypots virtuais em dispositivos

que pertencem à tecnologia da IdC. Com este sistema, podemos usar dispositivos (nós)

periféricos para lançar honeypots especı́ficos de vulnerabilidades recentes e conhecidas em

dispositivos de IdC para procurar e notificar ataques dentro da rede, usando informações

de vulnerabilidades amplamente escrutinadas e disponibilizadas gratuitamente por enti-

dades governamentais. Ao contrário de outras abordagens, a intenção não é disponibi-

lizar um honeypot fixo num determinado dispositivo, mas antes ter um conjunto de dis-

positivos que possam ser usados em qualquer momento como um honeypot (adaptado à

ameaça mais recente) com o intuito de analisar a rede de potenciais problemas e reportá-

los à Plataforma de Partilha de Inteligência.

mailto:up201603194@fc.up.pt

Contents

Acknowledgements i

Abstract ii

Resumo iii

Contents iv

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Motivation . 3
1.2 Proposed solution . 5
1.3 Contributions . 5
1.4 Outline . 6

2 Background 7
2.1 Honeypots . 7
2.2 Threat intelligence . 8
2.3 Cyberattacks in IoT . 9
2.4 Research Study on CVE and IDS . 10

2.4.1 CVE . 10
2.4.2 IDS . 11

3 Related work 13
3.1 Host-based Intrusion Detection Systems . 13

3.1.1 AIDE . 13
3.1.2 Fail2ban . 14
3.1.3 OSSEC . 14
3.1.4 Sagan . 14
3.1.5 Samhain . 14
3.1.6 Tripwire . 15

3.2 Threat Sharing Platforms . 15
3.2.1 IBM X-Force Exchange . 16
3.2.2 Anomali ThreatStream . 16

iv

CONTENTS v

3.2.3 ThreatConnect . 16
3.2.4 CrowdStrike Falcon X . 16
3.2.5 ThreatQ . 17
3.2.6 Malware Information Sharing Platform 17

3.3 IoT Honeypots . 18

4 Study on Host-based Intrusion Detection Systems 21
4.1 Experimental setup and methodology . 21
4.2 Results . 22

5 System design 26
5.1 Architecture . 26
5.2 Components . 28

5.2.1 Threat Sharing Platform . 28
5.2.1.1 Indicators of Compromise 28
5.2.1.2 Common Vulnerabilities and Exposures 28

5.2.2 Host Intrusion Detection System . 28
5.2.3 STDM Central Coordinator . 29
5.2.4 Watchdog . 29
5.2.5 Honeypot . 29

6 Implementation 31
6.1 Threat Sharing Platform . 31
6.2 STDM . 32
6.3 Host Intrusion Detection System . 33
6.4 Isolated environments . 34

6.4.1 Virtualisation . 34
6.4.2 Honeypot . 35

6.5 Watchdog . 36

7 Evaluation 37
7.1 Environment description . 37
7.2 Methodology . 38
7.3 Results . 39

8 Security Analysis 41
8.1 Attacker compromises the Sandbox system 41
8.2 Unknown Zero-Day detected . 41
8.3 Physical access to the machine . 42
8.4 Denial-of-Service scenario . 42

9 Conclusion 43
9.1 Limitations . 43
9.2 Future Work . 44
9.3 Conclusions . 45

Acronyms 46

CONTENTS vi

Bibliography 49

List of Figures

5.1 System architecture . 27

6.1 Example of a MISP event . 32
6.2 Overview of the STDM workflow . 33

7.1 Latency (ms) per number of requests . 39

vii

List of Tables

3.1 Summary of the HIDS features . 15
3.2 State of the art’s features summary . 20

4.1 Experimental trials on HIDS . 23

7.1 Latency results for the three setups . 39

viii

Chapter 1

Introduction

Internet usage is growing day by day, and our dependence on it is increasing. In an in-

creasingly digital world, the way we shop or interact with objects is somewhat obsolete

and is changing the environment around us. The speed of change is very high and will

not slow down. New technologies - from smart homes to smart cities - are now indis-

pensable for our daily lives, even if we are not aware of their presence. The smartphone

introduction is a perfect example. Older generations, that are generally more reluctant

to change, are using smartphones to connect with their family and friends, get the latest

news or even remote medical appointments, moving away from phone lines and news-

papers, and avoiding unnecessary travel.

The ubiquity of the Internet enabled the emergence of IoT, one of the most versa-

tile technologies in existence today. Because it is scalable and adaptable, IoT has revolu-

tionised industries and introduced new concepts such as Industry 4.0 [1, 2] and the Indus-

trial Internet of Things [3], bringing new horizons to efficiencies in all types of manufac-

turing through data acquisition and analysis. The last few years have shown an increase

in the development and use of devices and solutions based on IoT. Its proliferation has

brought the IoT paradigm to a prominent role in our everyday lives, with devices gaining

new features and changing the way we connect and interact. An example are intelligent

audio systems such as Google Home and Amazon Echo. These devices are becoming our

personal assistants, allowing us to listen to music, control video or photo playback, set

alarms or receive news or traffic updates via voice commands. Its popularity has also

increased its support for other features, including control of other network-connected de-

vices - also known as home automation - which can include a variety of IoT sensors.

1

1. INTRODUCTION 2

New technologies and their progression are changing the environment around us and,

consequently, the society. With users spending more time staring at a screen than sleeping

[4], it is important to alert users to the adversities they may face when using them. As

the software is not unbreakable and new daily vulnerabilities are identified and made

public, their devices and data can be compromised. In keeping with the digital age, where

everything and everyone is connected, these vulnerabilities are additions to the intruder

arsenal that, following previous examples, can be used to their advantage and possibly

have serious consequences.

The growing number of cyber attacks and their extensive damage has changed the

mindset of organisations, with more resources being applied to cyber security. According

to statistics from AV-TEST, an institute in Germany, as of January 2021 [5] there were over

a billion malicious executable scripts known to the security community. Digital transfor-

mation has also meant an increase in cybercrime, often associated with significant finan-

cial losses for individuals and organisations.

The past few years have seen a paradigm shift for attackers from pranks or entertain-

ment to financial or military/political gain, explained by the increasing use of phishing

and ransomware attacks. The latter has been a major concern and the one that attracted

the most attention during the Covid-19 pandemic. The idea of the attack usually consists

of threats to publish or block access to data or computer system, usually by encrypting

it, until the victim pays the attacker a fee [6] and can have life-threatening consequences.

Although there is no official death directly caused by theses attacks, the same cannot

be said regarding normal functioning of services with many news reporting disturbance

in the normal day-to-day operations. An example occurred during one of the spikes of

Covid-19 in the United States [7] to Universal Health Services, a healthcare provider. The

attack was able to lock computers and phones, and a message was displayed on computer

screens reporting known ransomware, prompting Information Technology (IT) staff to in-

struct employees to turn off all computers and phones and switch to an offline process to

avoid more damage. Still, it is unclear whether the patient data made it into the aggres-

sors’ hands. Another concern during the pandemic was state-sponsored attacks to steal

knowledge, namely vaccine research. In the 2021 Global Threat Report recently released

by CrowdStrike [8], the findings show that state-sponsored adversaries have engaged to

steal valuable data related to vaccine research and government responses to Covid-19.

1. INTRODUCTION 3

In a more detailed analysis, it is exposed the big game hunting phenomenon, where at-

tackers targeted high-value persons of interest for extortion and blackmail. Along with

techniques such as phishing, the reports also show that attackers were able to infect com-

panies’ infrastructure and profit from it as, due to the urgent nature of some products,

paying the fee is often cheaper than paying the critical fee for loss of income.

As new daily vulnerabilities are identified and made public, attackers are constantly

finding new ways to compromise devices and systems that, as mentioned, are additions

to the attacker’s arsenal, with previous examples showing that can generate serious con-

sequences if we do not prepare for it. However, the increase in the number of cyber

attacks and their extensive damage has changed the mindset of organisations, with more

resources being applied to cyber security and the creation of specific teams and usage of

dedicated tools to deal with this problem. The acronyms of the new teams became part

of the vocabulary with defined objectives and methods, which, however, may overlap in

some parts. An important one with a broader scope is Security Operations Centre (SOC),

responsible for the prevention, incident response, compliance and risk management and

is composed of analysts who need to know the constituent (e.g. business objectives, asset

prioritisation, IT infrastructure and inter-dependencies), how it can be attacked and how

it can be defended.

One of the most prominent methods used in security is a Intrusion Detection System

(IDS) which are built to monitor systems and detect anomalies. This definition is often

supported by analysis based on patterns or knowledge, leading to more sophisticated

machine learning algorithms in search of better performance.

1.1 Motivation

Cybersecurity remains a major concern as its risks are a persistent threat to users and

organisations. According to a survey published in December 2020 by Trend Micro [9], a

cybersecurity company, nearly a quarter of respondents replied that they had suffered at

least seven attacks and 83% responded that they expect an attack to be successful in the

next year are “somewhat” to “very” likely.

Investment in cybersecurity is still questioned even in the current scenario, under-

estimate by decision-makers. Indifferent to this recurring discussion, cyberattacks are

becoming smarter and more capable by the day, leaving security teams behind, left to

analyse artefacts from the past to try to determine the future [10]. To bridge this gap and

1. INTRODUCTION 4

as today’s threats are known to be evasive, resilient, and complex [11], a new approach to se-

curity defences is needed with threat intelligence a key factor. Today’s challenges call for

collecting and sharing threat information to prevent attacks or at least perform disaster

recovery promptly.

An approach to understanding and gathering intelligence about how our infrastruc-

ture might be compromised is changing the way we can defend ourselves. Given that

an attacker only needs to find a single vulnerability and exploit it to gain unauthorised

access, we need to learn their tactics and techniques. One way to accomplish that is using

decoys, such as honeypot systems. These systems are a monitored network decoy that

mimics the main system to lure adversaries into thinking they are exploiting a legitimate

target and distract them from more valuable machines on a network, discovering new

attacks and exploiting trends.

The use of honeypots has been an important tool to face the increase in cyber attacks.

These systems are deployed with deliberately built-in security vulnerabilities and weak

security measures such as weak login passwords or known vulnerable versions of in-

stalled services. Also, open ports can be left open to lure attackers to the honeypot system

instead of a real system. These characteristics make honeypots the perfect bait and very

attractive to attackers.

Honeypots are versatile and are not addressed exclusively to a specific problem like

other common solutions (firewalls and antivirus). Given its functioning, it becomes an

important information tool to spot existing threats and possibly new ones, which makes

them an important asset especially relevant for SOC teams since they possess a major

database of attacks’ artefacts and, consequently, a major source of threat intelligence. By

working together with threat intelligence platforms, honeypots systems are becoming a

mandatory component for cybersecurity defence.

Although there is a large variety of honeypots aimed for different purposes, these

systems have some constraints. Given the diversity of devices, there are still limitations

in using these systems outside of x86 architectures, leaving out capable devices such as

Raspberry Pi, which align computational power with low energy consumption. Another

issue is regarding its use. With the proliferation of the cloud, we are witnessing the phe-

nomenon of services migration to external servers, which, in the case of honeypots, the

trend is to use remote machines as baits, in which traffic is redirected from the local net-

work to the cloud network. However, resorting to this method allows the attacker to

1. INTRODUCTION 5

easily detect that it is in a honeypot by measuring the latency times of Internet Control

Message Protocol (ICMP) ECHO requests, thus making the honeypot ineffective.

1.2 Proposed solution

In this thesis, we explore the concept of honeypot lifecycle control and its application in

heterogeneous environments. Given the growth in the number of devices connected and

their computational power, honeypot systems can be mobile, not being restricted to the

same device. This flexibility allows these systems to be resilient to reconnaissance tech-

niques as the same instance can run on different devices with different specifications, thus

rendering the reconnaissance information unusable that the attacker may have previously

retrieved from their initial interaction. Thus, it is possible to confuse the attacker when

trying to exploit a system.

Most solutions address the external point of view of the network. In this thesis, we

are interested in protecting the internal infrastructure as well. As an example, IoT sensors

are often placed in separate Virtual Local Area Networks due to the risk they lead to the

remaining network (servers or critical machines). The main goal is to have a system that

runs on top of an IoT infrastructure, but uses virtual honeypots inside of the devices to ex-

tract information regarding possible vulnerabilities in local services or possible intruders

in the network.

1.3 Contributions

With our solution we pretend to reach the following goals:

• Goal 1 - Provide an autonomous threat detection flow 1 able to analyse the diversity

of devices in the network and detect and mitigate, if possible, its vulnerabilities;

• Goal 2 - Creation of automatic honeypot instance deployment when a vulnerability

is present in a device in the network, capable of running in a variety of devices

including in low-power, performance-constraint devices;

1The threat detection flow is the set of tasks that will automatically gather the information of vulnerabil-
ities and put it in the threat sharing platform that, in turn, will be used by the central coordinator to verify if
a device in the network has a software affected by said vulnerability.

1. INTRODUCTION 6

• Goal 3 - Provide a mechanism that can discretely monitor honeypots instances to

collect intelligence of tactics and techniques of intruders.

1.4 Outline

This thesis is structured in nine chapters describing our solution. The present chapter

discusses the IoT concept and its devices, the emerging threats they are facing and how

we intent to tackle this issue. Chapter 2 introduces the relevant concepts and technolo-

gies used in our solution that are explored in chapter 3, where we reunite some of the

researches and examples of the current available solutions. Chapter 4 describes a study to

evaluate the effectiveness of Host-based Intrusion Detection System (HIDS) when known

flaws are being exploited. Chapter 5 presets an overview of our system with chapter 6

describing the technical aspects of implementation, concluding with an evaluation of its

feasibility in chapter 7. Chapter 8 presets a security analysis of our proposal. Lastly, in

chapter 9, we present the limitations our system and some ideas for future work as well

as some final remarks.

Chapter 2

Background

The diversity of services and devices that accompany us and that we need requires us to

consider the choice of tools and technologies to adopt for our security perimeter, as we

will trust them with our devices and our information, not forgetting other aspects such as

performance, reliability and maturity.

Our proposal aims to unite several technologies to create a robust system, providing

benefits to users. With that in mind, this section revises the current state of technologies

and tools such as honeypots, threat intelligence sharing platforms and IDS and respective

concepts contextualisation, an overview of the cyberattacks affecting IoT devices, and,

finally, a research study on Common Vulnerabilities and Exposures (CVE) and intrusion

detection systems.

This background information will be important to understand our decisions in the

design process.

2.1 Honeypots

Honeypots can be categorised based on their uses and purposes, depending on the differ-

ent services they provide and the level of interaction they allow.

A low interaction honeypot will give the attacker limited access with some emulated

services and protocols, that is, the attackers’ interaction with the system is limited, and for

a short period, just enough for deceiving attackers with little knowledge [12]. With this

type of honeypot, the information about the attack and the attacker is small and serves

the purpose of protecting the infrastructure, which makes them widely used in infrastruc-

tures where the interested party is protecting their system from the outside world.

7

2. BACKGROUND 8

In the opposite direction, high-interaction honeypots provide the most realistic infras-

tructure, making it much less likely that the attacker will discover that is being shunted

or observed. They can gain full control of the system or even tamper with it. The goal is

to get as much information about the attackers and learn their tactics and techniques [12].

2.2 Threat intelligence

As more and more attacks occur, it increases the likelihood that some organisation or

group has seen such an attack before. Therefore, knowledge exists in some form, some-

where. However, it needs to be collected, validated and turned into actionable infor-

mation. The goal of threat intelligence is to provide the ability to recognise and act on

Indicators of Compromise (IoC) promptly, i.e., identify pieces of forensic data that signs

that a system has been compromised by an attack or that it has been infected with a partic-

ular malicious software and apply prevent and mitigation measures [13]. Some examples

of IoC include unusual Domain Name System (DNS) lookups, suspicious files and pro-

cesses, an unusual large number of accesses to one file, data transfer over rarely used

ports, file hash of a known piece of malware, unauthorised modification of configuration

files or device settings and a large number of unsuccessful login attempts [14].

As cyber criminals become more sophisticated, IoC have become more difficult to de-

tect. Common IoC - such as filenames, file hashes, IP addresses and registry keys - are

constantly changing, thus increasing the difficulty of an already very complex and diffi-

cult task [15].

The underlying process of identifying an IoC is a crucial task. When an organisation

is being targeted, the attacker will leave traces of their activity in the system and log files.

The threat hunting team will gather this digital forensic data from these files and systems

to determine if a security threat or data breach has occurred or if it is still ongoing. Given

the amount of data, the team will make use of advanced solutions, such as artificial intel-

ligence, machine learning and other forms of intelligent automation to detect anomalous

activities and improve response time [16]. The need to exchange intelligence data be-

tween users and communities is critical to help protect against evolving threats. It helps

to adapt more quickly and to encourage collaboration and sharing of best practices. The

introduction of the concept of threat intelligence sharing platform in 2013 by Dandurand

and Serrano [17] led to a variety of solutions available today. Threat Intelligence has be-

come the security buzzword in the information security community and led to increasing

2. BACKGROUND 9

interest in the current environment of the Threat Intelligence industry, current research,

and potential future use cases. In 2015, a study conducted by the SANS Institute [18] anal-

ysed a small selection of open source threat intelligence platforms and concluded that the

market was still developing. A more recent comprehensive study, conducted in 2020 [19],

revealed that there is still room to mature. After analysing 22 platforms, some of the au-

thors key findings were the need for a clear definition of threat intelligence sharing and

that current threat intelligence sharing is comparable to data warehousing and does not

provide real intelligence.

2.3 Cyberattacks in IoT

The diversity of IoT devices has grown, being present at our home, at work, or on the

street. Given its popularity, the manufacturers have increased their catalogue and provide

countless appliances for customers. Given today’s reality, this represents some setbacks

given that security is not always a concern and may turn users’ devices and networks

vulnerable to attacks, with many users unaware of the implications of having a device

exposed to the Internet. Then, attackers take advantage by exposing those devices’ weak-

nesses and exploiting or triggered them, thus becoming the device and, consequently, the

user vulnerable.

Cyberattacks intend to compromise a computer system, a network, a device or an

infrastructure by intercept, steal, alter or destroy data or information systems, thus jeop-

ardising the confidentially, integrity and availability principles. Exploiting has become

increasingly easier and accessible with tools available for all users, whether beginners or

experienced. Also, the advances in technology allowed the appearance of multiple types

of attacks. Depending on the attacker’s intentions, it is possible to distinguish two types

of attacks: active and passive.

Active attacks represent an action that intentionally disrupts the system by altering

itself or affect its operation. It involves masquerading (impersonation of user or system),

message replay, message modification and system overload. Common examples of at-

tacks are brute force attacks, Cross-site scripting (XSS), Denial-of-Service (DoS), phishing,

Man-in-the-Middle (MitM), Remote Code Execution (RCE), ransomware and Structured

Query Language (SQL) injection [20].

On the other hand, attackers do not modify messages in passive attacks. This way,

there are no changes to the systems or network data. Passive attacks are associated with

2. BACKGROUND 10

the reconnaissance phase, where the attacker is only monitoring and scanning the system

for vulnerabilities. In other words, the attacker eavesdrops (listening communications

without consent) or performs other non-invasive actions such as port scanning, wiretap-

ping or idle scanning (send spoofed packets to find out what services are available). In

summary, active attacks compromise the integrity and availability of a system, while pas-

sive attacks endanger the confidentiality principle.

2.4 Research Study on CVE and IDS

Given the knowledge of vulnerabilities provided by the CVE catalogue, it is important to

evaluate how current defence solutions, namely IDS, react when those vulnerabilities are

being exploited.

2.4.1 CVE

Among the variety of sources of vulnerability information are the CVE program provided

by MITRE, an American not-for-profit organisation. It consists of a list of records of pub-

licly known cybersecurity vulnerabilities and contains their identifiers which are later

used by databases that provide enhanced information for each record. The National Vul-

nerability Database (NVD) from National Institute of Standards and Technology (NIST),

a non-regulatory government agency that develops technology, metrics and standards,

is one of the most known and popular databases given that is highly maintained and is

free to use by everyone. As it is important to know the software vulnerable, each CVE

record in the database includes a list of vulnerable software and corresponding versions,

in which the description of a product follows the specifications of the Common Platform

Enumeration (CPE) standard [21]. As an example of its importance and coverage, the

well-known security flaw Heartbleed that affected OpenSSL has the identifier CVE-2014-

0160 [22] and the SMB vulnerability that allowed the WannaCry ransomware spread [23]

has the identifier CVE-2017-0144 [24].

The CPE standard is a structured naming scheme for information technology systems,

software and packages. It is based on the generic syntax for Uniform Resource Identi-

fier (URI) and its specification includes the naming syntax, conventions for constructing

CPE names from product information, a matching algorithm and an Extensible Markup

Language (XML) schema for binding descriptive and tests information to a name [25]. It

2. BACKGROUND 11

was a response to the need for specific languages, such as CVE, OVAL [26] and XCCDF

[27], to refer to IT products and platforms in a standardised way suitable for machine

interpretation and processing [28].

2.4.2 IDS

Given today’s demand for robust security solutions, one of the most prominent methods

is IDS. These systems are built to monitor a network for malicious activity or policy vio-

lations and are responsible for preventing breaches of security incidents, monitoring and

reacting to any unauthorised access that causes damage to the information stored, the

information system, or the network [29].

Depending on how the examination is done, IDS can be classified in two categories:

• Network-based Intrusion Detection System (NIDS): a system that analyses incom-

ing network traffic. It checks for attacks or irregular behaviour by inspecting the

contents and header information of all the packets moving across the network;

• Host-based Intrusion Detection System (HIDS): a system that monitors important

operating system files and processes.

Also, IDS evaluates network traffic in real-time against a signature policy, definition of

acceptable/normal behaviour, or some other set of heuristics. In general, these are divided

into two methods: signature-based and anomaly-based.

• Signature-based: detects possible threats by looking for specific signatures such as

bit patterns, keywords, known malicious instruction sequences, or known threats.

When a new threat is identified, a signature is generated and added to the list

used by the IDS for future scans. This allows achieving a high threat detection rate

with no false positives because the alerts are generated based upon the detection of

known malicious content. However, this method is blind when face with a zero-day

vulnerability.

The main advantage of this approach is the ease to develop defences against these

attacks if we know the behaviour of the attack. As an example, if an attack goal

is to exploit a particular buffer overflow, the IDS can use pattern matching to look

for particular strings. On the other hand, this approach has the constant necessity

of keeping updated the signatures’ database and could generate a high rate of false

2. BACKGROUND 12

negatives, given that a slight change in how the attack is carried out can lead to a

failure in its identification;

• Anomaly-based: also known as behaviour-based, these IDS resort to artificial intelli-

gence, namely machine learning, to build a model that defines the normal behaviour.

All future interactions are, then, compared against that model in search for potential

anomalies, each one treated as a potential threat.

Although this method allows detecting previously unknown attacks, it can suffer

from a high rate of false positives, i.e., previously unknown but legitimate activity

can accidentally be classified as a malicious one. Also, it makes difficult the defini-

tion of custom rules since defining a rule requires predicting all behaviours. Even

if possible, attacks like path traversal [30] can still go unnoticed given that most of

them are going to fall on the normal usage pattern.

Chapter 3

Related work

As stated, our system comprises the use of tools and technologies with different levels

of maturity in the cybersecurity world. In the following sections, we review some of

the state-of-the-art host-based intrusion detection systems, threat sharing platforms, and

honeypots systems for IoT devices with an overview of their features.

3.1 Host-based Intrusion Detection Systems

Host-based Intrusion Detection System (HIDS) [31] is a type of IDS that focus on analysing

specific activities on the hosts by monitoring files modifications or memory usage, among

others. Its monitoring capability relies heavily on audit trails and system logs by which

it is determined if the system has been compromised. This approach runs on individual

hosts monitoring from the device and detecting improper use of the available resources.

We present some of the most popular systems available on the market: AIDE, Fail2ban,

OSSEC, Sagan, Samhain and Tripwire [32–34].

3.1.1 AIDE

The Advanced Intrusion Detection Environment (AIDE) [35] is a file and directory in-

tegrity checker. It works by creating a database from the current system state, and once

initialised, it is used as a baseline for file integrity checking. Some of the file properties

that can be checked against include inode, permissions, modification time, and file con-

tents.

13

3. RELATED WORK 14

It has several digest algorithms and allows to define policies of which attributes of

which files should be checked. It only does file integrity checks and does not check for

rootkits or parse log files for suspicious activity like similar systems [36].

3.1.2 Fail2ban

Fail2ban [37] is a framework developed in Python design to scan log files to detect and

ban IP addresses conducting too many failed login attempts by dynamically adding a

firewall rule. It acts as an agent regularly monitoring services’ logs in search of attempts

of intrusion.

Although it usually associated as a type of Intrusion Prevention System (IPS), we also

included in this section given that some literature also considers it a HIDS [38, 39].

3.1.3 OSSEC

Open Source Security (OSSEC) [40] is a scalable, multi-platform open-source HIDS that

performs log analysis, integrity checking, rootkit detection, time-based alerting and ac-

tive response. It has four operation modes - server, agent (or client), local and hybrid -

that allows to be configured to send alarm messages upon a rule’s instruction, to apply a

security measure or to automatically answer to the threat or warning as convenient.

3.1.4 Sagan

Sagan [41] is a real-time log analysis and correlation engine written in C that uses multi-

threaded architecture to deliver high-performance log and event analysis. It was designed

and meant to analyse logs across many different platforms in many different locations. It

also provides structures and rules similar to Snort-based tools enabling compatibility and

log correlation events with multiple systems.

3.1.5 Samhain

Samhain [42] is a multi-platform, open-source host-based HIDS developed by Samhain

Labs. It provides file integrity checking, log file monitoring and analysis, port monitoring,

and detection of rogue SUID executables - a binary with set user ID permission that, when

poorly written, can quickly and easily escalate a user’s privileges) and hidden processes.

It can be deployed in a centralised way or distributed way, where each node acts as an

individual implementation.

3. RELATED WORK 15

3.1.6 Tripwire

Tripwire [43] is a security tool for monitoring and alerting file changes on the system. It

continuously tracks critical system files and reports unauthorised changes to files and di-

rectories, including permissions, internal file changes, and timestamp details. All scanned

files information is stored in a database, which is later used to compare the machine’s cur-

rent state and the stored values and, if there were differences, alert the user.

HIDS Features

AIDE
File signature comparisons
File and directory integrity
File attributes database

Fail2ban
Log file monitoring
Active response
Prevention system

OSSEC
Log file processing
Monitoring firewall and traffic log
Policies for alerts

Sagan
Lightweight
Log file monitoring
Shares Snort syntax (NIDS)

Samhain
File integrity checking
Port monitoring
Stealth monitoring

Tripwire
Unauthorised file changes
Cryptographic hashes
Permissions, internal file changes

TABLE 3.1: Summary of the HIDS features

3.2 Threat Sharing Platforms

In a common strategy to protect against sophisticated cyberattacks faced daily, organi-

sations have increased their willingness to exchange information and knowledge about

incidents, vulnerabilities, and threats so that they can collectively be more robust in the

future. The need to facilitate the trade of information drives software providers to plat-

forms developed under the term Threat Intelligence Sharing Platforms introduced in 2013

by Dandurand and Serrano [17].

Following community trends, some of the key capabilities of these platforms include

consolidating threat intelligence feeds from multiple sources, automated identification

and containment of new attacks, security analysis, and integration with other security

3. RELATED WORK 16

tools like Security Information and Event Management (SIEM), next-generation firewalls,

and endpoint threat detection and response solutions [44]. Keeping these characteristics

in mind, we present some of the best solutions available in the field based on [19] and

[45].

3.2.1 IBM X-Force Exchange

IBM X-Force Exchange is a cloud-based threat intelligence sharing platform that can be

used to rapidly research the latest global security threats and aggregate actionable intel-

ligence - human and machine-generated - in order to help security analysts speed up a

time to incident response [46].

3.2.2 Anomali ThreatStream

Anomali ThreatStream is an operational threat intelligence stream that, with the help of

artificial intelligence, automates the threat intelligence collection and management lifecy-

cle to speed detection and increase analyst productivity. Intelligence data is collected and

curated from hundreds of threat sources - premium and open-source - to deliver a single

high-fidelity set of threat intelligence [47].

A differentiating factor is its highly accurate machine-learning algorithm that assigns

scores to IoC, allowing security teams to prioritise mitigation tasks. It also allows its

integration with popular SIEMs and orchestration platforms in order to strengthen threat

identification and remediation workflows.

3.2.3 ThreatConnect

ThreatConnect is a platform that enables automated data collection from multiple sources

and presents it to users in context. Security teams can then analyse the information man-

ually or with automation assistance to look for evidence of cybersecurity dangers. The

platform shows associations in the data, helping specialists identify meaningful connec-

tions [48]. It also uses an intelligence-driven orchestration feature called Playbooks that

can be used to trigger a task on a given event [49].

3.2.4 CrowdStrike Falcon X

Available in three types - Falcon X, Falcon X Premium and Falcon X, it is a threat intelli-

gence platform that comes with automated malware investigation features, thus reducing

3. RELATED WORK 17

the time required to identify threats and determine the associated severity. Users can also

benefit from intelligence reports that give daily alerts and offer strategic insights. By com-

bining with other family products, it provides a user-friendly endpoint integration that

does not require new installations or deployments. Also, top premium users are provided

a cybersecurity expert researching specific threats and giving a customised report of the

findings [50].

3.2.5 ThreatQ

Developed by ThreatQuotient, this platform is specifically aimed at optimising cybersecu-

rity operations focused on threats, and very specially designed to alleviate the difficulties

that SOC and Computer Security Incident Response Team (CSIRT) teams face in making

decisions based on information provided by cybersecurity systems and external sources.

It focus on automate ingestion, correlation, normalisation, contextualisation and prioriti-

sation of artefacts to decide its importance and relevance, thus increasing the efficiency

and effectiveness of the operation and reducing costs [51].

3.2.6 Malware Information Sharing Platform

Malware Information Sharing Platform (MISP) is an open source software solution mainly

developed by the Belgian Defense Computer Emergency Response Team (CERT) and the

NATO Computer Incident Response Capability with the goal of gathering information

about malware and attacks, storing data in a standardised format and distributing cy-

bersecurity IoC and malware analysis to trusted parties [52]. By taking advantage of its

collaborative feature, users can enhance the knowledge of existing malware and threats

and implement counter-measures. It allows to automatically exchange and synchronise

the data with other previously defined parties and trust-groups, thus maintaining an up-

to-date knowledge.

It it a component of the Hive project [53], a project design for cyber threat intelligence

and incident response for SOC teams, that also includes the tools TheHive, a Security

Incident Response Platform, and Cortex, an analysis engine.

3. RELATED WORK 18

3.3 IoT Honeypots

In IoT-based networks, new devices entering the network are automatically configured

due to their open nature, which leaves these networks subject to many attacks, as de-

scribed in [54].

Depending on their purpose, honeypots are often designed for specific scenarios. An

example is Honeyd [55] - a simulated honeypot environment intended to simulate the

virtual network topology to filter network packets based on user preferences. Honeyd

supports TCP, UDP and ICMP protocols, simulating the TCP/IP stack that allows re-

sponding to requests from the virtual honeypots according to the services configured for

each virtual honeypot. When sending the response packet, the personality engine makes

it match the network behaviour of the configured operating system personality [56]. As

it can emulate real operating systems, Honeyd can appear to the attacker as a router, web

server, or DNS server, allowing the honeypot to blend into existing networks. With this

behaviour, Honeyd can spoof responses about active fingerprint measurements, such as

those used by the NMAP tool.

The increasing need for honeypots has led to the concept of Honeypot-as-a-Service

(HaaS), where, instead of being configured locally, they are made available to users by

cloud providers, thus eliminating the need to worry about hardware, software, and man-

power to create and maintain the honeypot. This frees the user to focus more on managing

traffic and defining decoy services. A simple scenario of this concept is demonstrated in

[57], which proposes the use of public cloud provider honeypots that are made available

to end-users as a service in order to filter incoming traffic where traffic is only accepted

on a local network if the request meets a set of restrictions defined for a particular service;

otherwise, it is forwarded to the honeypot. Although it reduces costs, it still requires labor

to apply and maintain the configurations. An evaluation of this solution [58] shows that it

still requires manpower to apply and maintain the settings, and the traffic flow is in order.

An introduction to the idea of honeypots that adapts to the needs and changes of or-

ganisations is not new. In [59] this idea is explored using Honeyd’s low-interaction hon-

eypots - which make use of unassigned IP addresses to launch instances - as a front-end to

high-interaction honeypots where attackers can engage in real systems. With traffic being

diverted in the background from one honeypot to another, this makes Honeyd honeypots

more reliable for intruders. However, this requires setting up physical machines dedi-

cated exclusively to the honeypot network, and as we would need to mimic more rogue

3. RELATED WORK 19

systems, more IP addresses need to be available as well.

A comprehensive solution for honeypot systems focused on IoT environments is the

YAKSHA project [60], where it is provided a platform that allows an organisation to per-

form continuous monitoring and penetration testing of its infrastructure without the need

to maintain such infrastructure nor having dedicated personnel. It allows a way to create

customised honeypots according to specific needs, enabling compatibility to any service

installed. The honeypots are monitored by tools that gather logs and other pieces of in-

formation to extract the attacker’s steps and patterns which, in turn, are catalogued and

made available to users by reports or a dashboard. Although it is mentioned a mechanism

for applying patches and IDS configurations on vulnerabilities detect, it is not clear how

this process is achieved.

Given the current cybersecurity landscape and the constant need to stay up to date on

news topics and intruder tactics and techniques, it is necessary to create a system capable

of taking a range view of the system and being up to date with the intruder’s threats,

tactics, and techniques. From this perspective, we chose some keys factors that today’s

solutions must answer:

• Support honeypot deployment: given the increasing number of attacks and tools,

we need to be aware of the tactics and techniques employed without having to com-

promise real systems;

• CVE scanning: IDS systems are, mostly, not up to date on current threats that can

compromise our systems, thus giving a false sense of security. CVE databases are

known to be a reliable source of threats and can be used to enhance the IDS knowl-

edge of threats;

• TSP connection: the use of these platforms has increased its popularity, with com-

munities being able to share, in real-time, IoC of attacks. The connection with these

platforms allows to keep stronger security perimeter with devices being capable of

sharing artefacts with each and prevent attacks;

• Running in internal nodes: honeypots must be able to be deployed and accessible

from devices inside the network without jeopardising the device and the network;

3. RELATED WORK 20

• Honeypot undetected: honeypots’ instances must be as close as possible to a local

device, providing a fully-functional operating system and user interactivity;

• Honeypot interoperability: the decoy systems must be fully compatible to a system

shifting, i.e., be capable to run on local devices as well as cloud instances, if neces-

sary;

• Architecture interoperability: instances must be deployed in any capable device,

namely Raspberry Pi, regardless of its processor’s architecture.

Table 3.2 shows the comparison of current state-of-the-art against our proposed solu-

tion.

[55] [57] [58] [60] STDM
Honeypot Deployment X X X X X
CVE Scanning X
TSP connection (IoC) X
Run on Internal Network X X X
Undetected from Intruders X
Run in Real Nodes of Network X
Compatible with ARM X

TABLE 3.2: State of the art’s features summary

Chapter 4

Study on Host-based Intrusion

Detection Systems

The growth and diversity of devices and the consequent lack of investment in security

mechanisms create environments susceptible to attacks, given the exposure of these de-

vices to the Internet and, consequently, to attackers. From this exposure, vulnerabilities

- software errors and security holes - are discovered, thus allowing attackers to take ad-

vantage of the device to enter the network. A significant part of these vulnerabilities is

defined under a CVE record, which is catalogued as a list and maintained by the National

Cybersecurity Federally Funded Research and Development Center, operated by MITRE

[61].

In this section, we evaluate the response of HIDS to publicly disclosed computer se-

curity flaws that have a CVE ID number assigned. We initially describe how we experi-

mented, followed by the methodology applied, concluding with the results obtained.

4.1 Experimental setup and methodology

Given the importance an IDS system has in the security perimeter, a relevant aspect to

consider is the reliability of these systems, particularly when faced with a variety of at-

tack vectors. To address this concern, we conducted a study where we selected a set of

services with a version not older than three years with a CVE ID associated and a set

of popular and actively maintained IDS compatible with x86 and Advanced RISC Ma-

chine (ARM) architectures: AIDE, Fail2ban, OSSEC, Sagan, Samhain and Tripwire. We

21

4. STUDY ON HOST-BASED INTRUSION DETECTION SYSTEMS 22

test the behaviour of each HIDS against every CVE to verify if our exploit was detected

or blocked.

The test architecture was configured considering the availability and accessibility of

hardware on the market, and an operating system actively maintained and available for

different processor architectures. Therefore, the tests were conducted on a client-server

basis with the services being installed on a Raspberry Pi 4 model B with 4 GB of RAM

and a desktop with processor Intel Core I7 4770 with 16 GB of RAM, with both devices

running Ubuntu 20.04 LTS of 64 bits and connected via Ethernet cable to the router TP-

Link TL-WR841N.

4.2 Results

Table 4.1 shows the results of our tests, where each row specifies the CVE exploited

against the selected HIDS, where each row specifies the CVE flaw exploited. When a se-

curity solution is not designed to detect a particular vulnerability and the required mech-

anisms are missing, the event is considered impractical.

At first glance, the results show a negative performance by Sagan since this IDS was

unable to detect any of the exploits. In a more detailed analysis, we highlight the results

obtained with SQL injection attacks, which is a very popular technique, and most of the

IDS were able to detect it. The exceptions were Sagan, which did not detect any attack,

and Samhain, which was unable to detect the exploiting of the vulnerability in OrderBy

clause in version 1.45 of SoPlanning (CVE-2020-9268). Given that attackers make use of

known tools when exploiting these vulnerabilities, such as sqlmap, our tests show that

signature variant IDS were able to detect those attacks by monitoring the directories and

files that sqlmap uploads to exploit the vulnerability. On the other hand, the anomaly-

based variant - namely OSSEC and Fail2ban - were able to detect the abnormal number

of requests made by sqlmap and block their following requests.

Regarding the RCE technique, when exposed, the general result was a successful de-

tection. Although it did not detect with their installed baseline, OSSEC and Fail2ban were

able to block the requests after we added our handmaid rules which, given the variety of

existing software, is difficult for an IDS to keep up with every piece of software. In the

anomaly-based variant, the exception was, once again, Sagan that was unable to detect

any behaviour anomalies. Given how this technique is used, signature-based IDS have

4. STUDY ON HOST-BASED INTRUSION DETECTION SYSTEMS 23

Attack
vector

CVE ID

HIDS

Anomaly-based Signature-based

Sagan Fail2ban OSSEC Tripwire Samhain AIDE

Access Control
Bypass

CVE-2019-13188

Buffer overflow CVE-2018-1000030

DoS

CVE-2020-9283
CVE-2020-6060
CVE-2019-17498
CVE-2019-16279
CVE-2019-13115
CVE-2018-7182
CVE-2018-8712

MitM
CVE-2019-6110 /
CVE-2019-6111

Password Hash
Disclosure

CVE-2019-13349

Path traversal CVE-2018-12015

Privilege
escalation

CVE-2019-14287
CVE-2019-9891
CVE-2019-9320
CVE-2018-10933
CVE-2019-5736

RCE

CVE-2020-7246
CVE-2019-16278
CVE-2019-15642
CVE-2019-15107
CVE-2019-12840
CVE-2019-11043
CVE-2019-9624
CVE-2019-7731

SQL
Injection

CVE-2020-9340
CVE-2020-9268

Unauthorised file
Read

CVE-2020-1938

User enumeration
(brute-force)

CVE-2018-15473

XSS CVE-2019-13189
XXE CVE-2019-15641

Detected Undetected Impractical

TABLE 4.1: Experimental trials on HIDS

4. STUDY ON HOST-BASED INTRUSION DETECTION SYSTEMS 24

difficulty in detecting these attacks, and its detection success resides in the attacker cre-

ating and/or modifying some file or directory within the IDS monitoring scope. Thus,

OSSEC was the only one able to detect it on both approaches.

When looking at DoS attacks that cause serious harm and jeopardise the availability

principle, only anomaly-based approaches were considered, given the specificity of this

technique. In general, the HIDS were unsuccessful in detecting the exploitation. The ex-

ception was the case of CVE-2019-16279, where we caught the abnormality of requests

using a handmaid rule, blocking the attacker. However, even with the blocking of mali-

cious requests, our tests showed a mixed behaviour in the availability of the service: in

some cases, the service remained available after blocking the requests, and in others, the

service remained unavailable.

Looking into the remaining results, Knowage version 6.1.1 has associated CVE-2019-

13188 and CVE-2019-13349, which were not detected. However, because the vulnerability

is essentially the application’s failure to verify user permissions, blocking access to these

requests could disrupt the application and compromise its availability. The path traversal

and MitM attacks also proved to be extremely difficult to detect, being possible to spot on

the modification reports provided by the HIDS as our tests showed.

Another service under analysis was the Secure Shell (SSH), a service widely used to

manage systems and applications remotely. Given the popularity and importance, us-

ing the baseline provided by OSSEC and Fail2ban, these IDS were able to block the user

enumeration attack as exposed in CVE-2018-15473, being the only anomaly-based vulner-

ability that did not require any handmaid rule.

Lastly, we look into XSS and XML External Entities (XXE) attacks. The XSS vulnera-

bilities are typically found in web applications and consist of enabling attackers to inject

client-side scripts into web pages viewed by other users. In case of CVE-2019-13189, the

XSS was on the vulnerable parameters start url and user id on the ChangePwdServlet page.

When exploited, this vulnerability was detected only by OSSEC and Fail2ban, again by

using a custom rule. The same did not occur with CVE-2019-15641, that is a vulnerability

on the XML::Parser service [62], the handler of XML messages. Because it is used without

preventing the use of entities, a successfully logged attacker can exploit a XXE in order

to retrieve a local file or discover internal networks with root rights. When tested, the

anomaly-based IDSes were unable to detect the exploitation of this vulnerability.

4. STUDY ON HOST-BASED INTRUSION DETECTION SYSTEMS 25

The list of CVE flaws tested with a detailed description and reproduction scripts can

be found in a GitHub directory 1.

1https://github.com/simao-silva/iot-cves

https://github.com/simao-silva/iot-cves

Chapter 5

System design

In this chapter, we will describe the technical implementation of our solution.

As mentioned in section 1.3, our solution aims to achieve the following goals:

• Goal 1 - Provide an autonomous threat detection flow able to analyse the diversity

of devices in the network and detect and mitigate, if possible, its vulnerabilities;

• Goal 2 - Creation of automatic honeypot instance deployment when a vulnerability

is present in a device in the network, capable of running in a variety of devices

including in low-power, performance-constraint devices;

• Goal 3 - Provide a mechanism that can discretely monitor honeypots instances to

collect intelligence of tactics and techniques of intruders.

5.1 Architecture

The gather of threat knowledge is one of the most important and necessary tasks in to-

day’s cybersecurity. The increase of attacks led to changes in collecting knowledge of

(potential) threats and how to take advantage of that knowledge.

Figure 5.1 shows the overview of the architecture of our system. The TSP component

will update their database with the CVE entries (1). The Sandboxing for Threat Detection

and Mitigation (STDM) Central Coordinator will act as a go-between managing the devices

scanning history and honeypots. From time to time, the devices will send their list of

software installed to the STDM Central Coordinator that, in turn, requests from the TSP the

information about CVEs (2). For each CVE entry, the coordinator parses the CPE list and

searches for a match in the list received from the devices (3-4). When a match is found,

26

5. SYSTEM DESIGN 27

the STDM Central Coordinator will select a random device and launch a honeypot with the

same operating system and software version of the match (5). Inside the honeypot, an

admin user can verify if the match is not a false positive and provide that information to

the STDM Central Coordinator (6). From the honeypot logs (7), an administrator user can

observe the malicious requests and can create, if possible, rules to be applied to the HIDS

of all devices (8).

FIGURE 5.1: System architecture

5. SYSTEM DESIGN 28

5.2 Components

In this section we describe the highlighted components of our architecture.

5.2.1 Threat Sharing Platform

This component is responsible to store information regarding IoC and CVE for our setup.

From time to time, the platform will retrieve IoC from public, trustworthy feeds and act

as a local mirror database of NIST’s NVD database of CVE entries.

5.2.1.1 Indicators of Compromise

Even in cases of breaches, we can still learn with the shreds of evidence left by the in-

truder, known as IoC [13]. These IoC indicate the existence of security breaches in some

devices or systems. Among the examples, it is possible to explore the accesses to ma-

licious or phishing sites, e-mail issues used in spear-phishing campaigns, among many

others. IoC are collected after suspicious activity and, on a regular basis, data is verified

to detect vulnerabilities. In addition, the use of these indicators allows the creation of in-

telligent tools, which identify and isolated suspicious files, for example. We use these IoC

to capture malicious activities on the network at its initial stage, preventing them from

becoming bigger problems and compromise the security of the organisation’s users.

5.2.1.2 Common Vulnerabilities and Exposures

Also, in our approach, we intend to enrich our knowledge through known vulnerabilities,

namely CVEs [63]. CVE is a public service that catalogues vulnerabilities and related

information about publicly known security flaws. When someone mentions a CVE, it is

usually by referring to the ID number assigned to a security vulnerability. As they are

public, we can recreate the environments that mimic that CVE and use it to gather IoC

that can be later used to enhance our HIDS, as shown in steps 5, 7 and 8 of Figure 5.1.

For that, those environments are launched as honeypots and are exposed to the Internet

as decoy services.

5.2.2 Host Intrusion Detection System

To improve security in our devices, we deployed two HIDS systems - one that offers

both anomaly and signature variants and the other that offers IPS capabilities - on each

5. SYSTEM DESIGN 29

device given that these systems are designed to enhance the protection against internal

and external threats. Also, they can monitor network traffic to and from the machine,

watch running processes, and inspect the system’s logs in search for patterns that match

known cyber attacks. Although they can be seen as limited, given their low visibility

(limited to the host), decreasing the decision-making context, their deep visibility into the

host’s internals allows us to analyse activities with a high level of detail. Thus, unlike

NIDS [64], they can directly access and monitor data files and system processes targeted

by attacks.

5.2.3 STDM Central Coordinator

This component is the gateway between the threat-sharing platform and the devices in the

network. It is responsible for checking if a device in our network has vulnerable software,

keep records of those threats, and launch the honeypots containing those threats.

5.2.4 Watchdog

The Watchdog is an agent installed on the host’s system to able users to access any file from

the honeypot without having to directly interact with it or learn the backend command

syntax to access it. From the Watchdog, a user can monitor the logs from the vulnerable

service that is up and running on the honeypot instance. With that information, it can

analyse logs and parse malicious queries that can be manually added later to the IoC

database in the TSP. This enables the platform to be aware of inside attacks viewed or

received by the honeypots allowing prioritisation of the threats in a global overview.

The Watchdog can be adapted to any sort of installation of service in the virtual ma-

chine.

5.2.5 Honeypot

The Honeypot instances are virtual machines with service(s) exposed to the Internet. The

installation of those services is done directly on the file system or by using containers

(to avoid external changes that can interfere with the service availability and expected

behaviour). The instances are prepared to run in x86-64 and ARM architectures, thus

enabling (virtually) the launching of an instance on any device on the network. Also,

this mobility enables that a given instance running a given service can be easily shifted

between devices.

5. SYSTEM DESIGN 30

The nature of these instances requires isolation techniques so that the attacker can not

gain access to the host system and damage it. The common strategy used in the cyberse-

curity world is sandboxing, which is a security mechanism that tricks an application or

program into thinking it is running on a regular computer [65]. This allows us to provide

services to intruders in a tightly controlled environment without allowing the services

and the intruders’ actions to harm the host device.

Chapter 6

Implementation

Following the presentation of our architecture and its components in Section 5, this chap-

ter describes the technical details of the implementation of our system, the decisions

made, and problems that emerged during said implementation.

6.1 Threat Sharing Platform

For our architecture, we opt to use MISP as our threat (intelligence) sharing platform. It is

an open-source software solution for collecting, storing, distributing, and sharing cyber-

security indicators, threats about cybersecurity incidents analysis, and malware analysis

[52].

Interactions with MISP can be done by its Representational State Transfer (REST) inter-

face. Using PyMISP, a Python library developed to access MISP platforms via their REST

Application Programming Interface (API) [66], we can manage the platform and add new

functionalities. In our case, we use it to keep our database of IoC and CVEs updated.

Regarding CVEs, we keep our database updated by a custom module-like script we

developed, henceforth referred to as CVE module. That module will use NIST’s REST

service to periodically request new or recent modified entries from the CVE database

since the last request. The service will answer with an empty response - meaning that

we are up to date - or a list of entries with their respective details in JavaScript Object

Notation (JSON) format.

For each element in that list, we must verify the contents of the input field. If the field

is empty, the CVE is under analysis, and the information about this vulnerability is still

preliminary. If not, we proceed to make a subsequent request to retrieve the CPE software

31

6. IMPLEMENTATION 32

list affected by the vulnerability. Using the information from both requests, namely ID,

description, reference links, and CPE list, we use the CVE module to create a MISP event

with all these attributes and store it on the platform, making it available to the other

components of our system. Figure 6.1 shows the result of an event created using the CVE

module.

FIGURE 6.1: Example of a MISP event

6.2 STDM

This component is the bridge between the network devices and the TSP. Figure 6.2 shows

the an overview of the component’ workflow.

The component is composed of a server with a database storing the values of the

device’s last authentication timestamp (for debug) and several vulnerabilities found (for

statistical purposes). All communications between devices and our server use SSL/TLS

to provide confidentially and integrity. The devices will authenticate themselves into the

component using a certificate-based authentication where, for each device, it is issued a

certificate signed by our own Certificate Authority (CA), with the certificate being later

installed on each device manually. This method allowed us easier management of the

devices, given that only devices with a valid certificate installed can access our system.

Then, they will periodically send to the server the names and versions of the software

installed on the host (1). In turn, the server will request the TSP platform for the list of

CVEs and respective CPEs (2-3) and verify if there is a match against the information

received from the device (4). If a match is found (5), it increments the positive matches

6. IMPLEMENTATION 33

statistics and launches a honeypot instance with the same operating system and informs

the admin the vulnerable software version so it can later install it on the honeypot. The

honeypot instance starts on a random device that has the necessary resources to run the

instance, and it is available in the network at the time of the launch.

The software matching is not linear and requires a pre-processing step. Given that the

names in NVD’s database are in CPE syntax and differ from the syntax used by operating

systems, we attempt to translate the CPE syntax closer to the names on the operating

systems. However, in some situations, we notice a high rate of false positives, which we

attribute to the versioning naming format. In these cases, a warning is displayed to an

admin user that has to manually check if it is a match.

FIGURE 6.2: Overview of the STDM workflow

6.3 Host Intrusion Detection System

For our solution, we opt to use a combined solution of HIDS by leveraging the Fail2ban’s

IPS characteristics. As HIDS are passive in its essence, meaning they identify but do not

prevent suspicious activity, we chose to add an IPS system as they are active in preventing

those suspicious activities. Thus, to take advantage of all of their features, we used OSSEC

(HIDS) combined with Fail2ban (HIDS/IPS).

OSSEC is a comprehensive free and open-source HIDS solution that performs log anal-

ysis, file integrity checking, policy monitoring, rootkit detection, and active response us-

ing both signature and anomaly detection methods. It can connect to MISP, our threat

sharing platform, to keep up with IoC and improve its detection motor. Also, it comes

with out-of-the-box support to a comprehensive set of services, thus decreasing the need

6. IMPLEMENTATION 34

to add custom services profiles. It was installed in each device using its local installation

method with devices performing all operations on the device level.

With Fail2ban, we have a tool that helps to stop, prevent or slow down attacks in

(near) real-time. It offers a simple interaction and user-customisation. Users can define

their filters (malicious patterns) and then reference them when adding the service profile

to the jail [67], a concept that Fail2ban uses to apply rules to any given application or log

file. In jail, the user configures various settings such as the service port, the log file path

to apply filters, and the ban time, among others, that are needed so that the filters know

what to do when capturing an abusive IP address.

6.4 Isolated environments

Honeypot security creates a vulnerability in the host’s that is deliberately highlighted for

attackers to use. Also, there is a need to deploy these systems in secure environments so

that activities in the honeypot systems do not affect the host. With that goal in mind, in

this section we describe the technologies and methods applied to achieve that goal.

6.4.1 Virtualisation

Virtualisation was chosen technology for our honeypots because the environments are

not shared between host and guest’s systems. For security reasons, unlike containers, the

kernel and libraries are not shared between host and guest to prevent an attacker from

accessing the host machine. From the functionality point of view, it allows the creation

of several isolated environments from single hardware, thus allowing better usage of re-

sources. While containers are highly supported for our architectures (x86 and ARM), the

isolation provided by virtual machines was the key factor to consider.

Virtualisation technology has many solutions for x86 architectures, but the same does

not apply to devices with ARM architectures. However, continuous improvements in

boards, such as the Raspberry Pi, have made it feasible to use Kernel-based Virtual Ma-

chine (KVM), a Linux kernel module that allows the Linux kernel to act as a hypervi-

sor, which has become more accessible for users with Linux distributions with the pre-

compiled Linux KVM kernel module.

The chosen virtual machine provider was Multipass [68], a lightweight virtual ma-

chine manager. Maintained by Canonical, it offers a simpler and easier command-line

6. IMPLEMENTATION 35

interface with booting from a virtual machine that only requires a single command line.

Its choice was due to the support of different architectures and operating systems, allow-

ing it to scale its use to any system.

For the management of virtualisation, we had to do some changes in Multipass set-

tings. By default, it uses the QEMU hypervisor [69] that, although it runs perfectly on

x86-based processors, presented some incompatibility issues when running on ARM pro-

cessors making Multipass was unable to run. After reading documentation and commu-

nity forums, we change the hypervisor to LXD [70], a REST API that connects to libxlc,

the Linux Containers (LXC) library - a solution for virtualising software at the operating

system level within the Linux kernel [71]. Initially developed for containers only, LXD

supports the launching of virtual machines since version 3.19 and offers an experience

on syntax and performance very similar to containers. With the usage of this hypervisor,

it created the opportunity to monitor the virtual machines from the host’s filesystem, as

discussed in section 6.5. Since on the operating system level the interaction is done using

lxc command, we will refer to them as LXC/LXD.

Other virtualisation hypervisor solutions were considered and tested. Popular solu-

tions like VirtualBox, VMware Workstation, and VMware Player were soon discarded

since they require an x86-64 host so incompatible with our flexible honeypot solution. Al-

though not ideal for our architecture, we also tested hypervisors that run directly on the

host’s physical hardware (also known as type-1 hypervisors), namely VMware ESXi and

Xen Project, that were discarded given its need for external devices to store the virtual

machines and performance issues.

6.4.2 Honeypot

The honeypot system is a Multipass virtual machine that is deployed by the STDM Central

Coordinator component. Currently, only Ubuntu cloud images can be deployed automati-

cally. However, the usage of custom images is also supported.

The system’s image is very similar to a non-graphical version of Ubuntu Server with

no visible distinguishability that can hint the intruder that it is a decoy. Once up and run-

ning, an admin user sets up the vulnerable service, including the additional required soft-

ware and the necessary port-forwarding with IPtables. The services are installed prefer-

ably from the source code of the corresponding vulnerable version and, when possible,

6. IMPLEMENTATION 36

deployed on containers to take advantage of its portability so that installation is environ-

ment independent and the service easily deployed (it can start in just a few seconds) with

minimal overhead.

6.5 Watchdog

We have two ways to get access to the honeypot: by using the Multipass interface or the

LXC/LXD interface. Although both options allow us to access the honeypot and monitor

the services’ logs, they came with setbacks that can reveal to the attacker that he/she is in a

decoy system. Using the Multipass interface, since it uses the SSH service as a backend, an

attacker can monitor the SSH log file and discover a user with Sudo privileges monitoring

the log files, which can be an admin user and thus jeopardise the decoy system. Instead, if

the LXC/LXD interface is used, the attacker can be suspicious of the system if it discovers

that the lxd-agent is running (given this is necessary for the host-honeypot communica-

tion) or if a process monitoring some log file own by the root is running. The resolution

of these issues were two: the first one is mounting the /proc directory with hidepid=2 flag,

thus deny users access to processes besides theirs; the seconds one is by unmounting and

mounting the system image file (.img) used to support the virtual machine on the host’s

file system. This second option comes with the inconvenience of needing to repeat the

unmount / mount routine due to a limitation on the image file that supports the virtual

machine file system. When mounted, we notice that later changes made within the virtual

machine’s file system are not reflected in the mount point and vice versa. However, if we

repeat the unmount/mount routine on the image file, we can see the changes we made

earlier. This limitation forces us to redo the unmount/mount routine whenever we need

to get new data from the log files and makes any real-time log monitoring completely

impossible.

Given the options above, we opt to use the LXC/LXD interface. Even though the flag

usage can indicate the presence of a decoy system, it can also be seen as a default security

measure employed by an admin. Also, considering the usability trade-off between the

two resolutions, the usage of the LXC/LXD interface provides a better user interaction.

To avoid the need of admin users to learn and remember the syntax of the command

to access the instance, we developed a script that abstracts the backend command and

that also accepts user input so that user can execute commands as if it were inside the

instance.

Chapter 7

Evaluation

In this section, we aim to evaluate the performance of our system. Our evaluation is cen-

tred on the measurement of delay between the time attack is detected (i.e., the malicious

request is detected) on the honeypot and the time the central coordinator receives that

information.

The goal of our evaluation is to demonstrate the feasibility of the solution.

For the performance evaluation, the main challenge was to measure and compare with

a standard service in the literature. An example of a type of this service is Apache2 [72],

which is used in research articles to detect and demonstrate performance overhead asso-

ciated with new implementations. André Brandão et al. [73] is an example of the usage of

Apache2 with Intel Software Guard Extensions (SGX) to encrypt the HTTPS private key

inside an enclave. As it is one of the most used web servers, we use a vulnerability of this

service to demonstrate our prototype. For this, we exploit the flaw CVE-2019-10092 in the

vulnerable Apache HTTPd 2.4.38 server.

7.1 Environment description

For our scenario, we used a Raspberry Pi 4 Model B with 4GB of RAM with a Broadcom

BCM2711 1.5 GHz Quad-Core 64-bits processor connected through Ethernet cable to our

router Thomson TG784n. Also, we acquire a virtual machine from Microsoft Azure, a

known cloud provider, with 2 GB of RAM and an Intel Xeon E5-2673 v3 2.40 GHz proces-

sor truncated at 2 cores. Both used Ubuntu 20.04 LTS as the operating system.

37

7. EVALUATION 38

7.2 Methodology

We designed our testing scenarios to consider different honeypot installations. We tested

our system in the following scenarios:

• Setup 1 (HaaS with physical machines): cloud virtual machine exclusively dedicated

to be a honeypot ;

• Setup 2 (HaaS with virtual machines and using LXD): using Multipass instances

as honeypots on the cloud virtual machine to evaluate the impact of virtualisation

overhead;

• Setup 3 (STDM): our solution running in a local network with a Raspberry Pi run-

ning Multipass instances as honeypots.

The tests were performed to explore the differences against the HaaS concept and

usage of cloud machines to compare the delay times between on-premise and off-premise

solutions (State-of-the-Art). Given the usage of virtualisation, we also tested its impact on

the overall results. Scenarios from setup 1 and setup 2 allow us to test and compare the

State-of-the-Art solutions with our solution (setup 3).

Regarding deployment, we launch the vulnerable Apache Server from a container

available on a Docker Registry to simplify the installation process in all setups. For setups

1 and 2, to allow queries from cloud machines to reach the central coordinator, we had to

configure IPTables rules and delete the default Azure forwarding rules that were causing

the requests to be dropped. For setups 2 and 3, we deployed Multipass’ virtual machine,

installed the Docker software, and configured the necessary redirects from the host to the

virtual machine, so that we could reach the server from the outside.

The attack scenario was performed on a client-server basis where the attacker per-

forms a XSS attack in mod proxy error page. In a server setup with proxy module enabled,

but misconfigured in such a way that shows a proxy error page, an attacker can take

advantage of the vulnerability present when the path in the Uniform Resource Locator

(URL) is being parsed and create a custom anchor tag. By leveraging URL encoding of

the backslash (”\”) character (”%5c”), the attacker can make the anchor tag point to any

site and launch further attacks from there.

We measure the delay times between the moment the malicious request is detected

and the moment the information is recognised by the STDM Central Coordinator. For this,

7. EVALUATION 39

a specific tool was designed, located precisely in the STDM Central Coordinator, which pro-

vides the network latency generated (in milliseconds) by our solution. The exploitation

was performed using a bash script containing a cURL request to the server’s IP address.

7.3 Results

In this section, we aim to show the results and comparison with state-of-the-art.

Table 7.1 presents the results for each of the three scenarios network throughput. For

gathering the network information, we used iPerf [74], which is software used to test the

network bandwidth. We collected two-time samples to measure the setup performance

only in terms of network bandwidth. The results presented in the table are the mean

and standard deviation for the three setups and both measurements (TCP bandwidth and

UDP jitter).

Setup 1 Setup 2 Setup 3
TCP bandwidth
(Mbits/sec ± sd)

1,22 ± 0,89 1,17 ± 1,06 30,29 ± 2,91

UDP jitter
(ms ± sd)

4,02 ± 1,12 4,32 ± 2,88 0 ± 0

TABLE 7.1: Latency results for the three setups

Figure 7.1 represents the delay associated with each of the implementation scenarios.

The latency of the process between the detection of the malicious request in the honeypot

instance and the moment when the STDM Central Coordinator receives this information.

To do this, we collect three samples for each number of requests.

FIGURE 7.1: Latency (ms) per number of requests

7. EVALUATION 40

The results of Setup 1 (HaaS with physical machines) show a delay in the order of the

390ms with minimal oscillations. Then, Setup 2 (HaaS with virtual machines and using

LXD) presents small delay increments compared to Setup 1. This shows that using virtual

machines has a residual overhead on performance and is, therefore, a good choice when

looking for multiple deployments and host isolation. On the other hand, the results of

Setup 3 (STDM - our implementation) show the main advantage of having Honeypots on

the network endpoints because the delay associated with this task is reduced to close 0

with on-premises honeypots. Similar behaviour could be achieved with Honeypots run-

ning on a separate Local Area Network (LAN), but these solutions raise concerns about

the actual usability of the honeypot network (as shown in related works).

Chapter 8

Security Analysis

In this section, we provide a security/threat analysis of the proposed system. We identify

potential threats of the implementation and define how an attacker may attempt to exploit

the system and the limitations we introduce to block that threat.

8.1 Attacker compromises the Sandbox system

When an attacker exploits the target CVE, it could find a vulnerability in STDM that al-

lows the execution of unexpected commands in the Sandbox. These flaws can leave the

network vulnerable as the attacker may try to gain root access or other privileges that

allow access to other machines.

To mitigate these types of threats, we set up the information extraction process from

the Sandbox always in reading mode and directly from the file system, providing an extra

layer of security. Thus, there are no writes or manipulations of information inside the

Sandbox, but always from the host machine.

Also, the Watchdog component has rules for the detection of misbehaving communi-

cations (locally or remote).

8.2 Unknown Zero-Day detected

Zero days can occur within the local network because if an attack is detected, a report is

generated with an alert containing the network traffic/log files manipulated to be anal-

ysed by a SOC team.

41

8. SECURITY ANALYSIS 42

8.3 Physical access to the machine

If an attacker can compromise the local machine where the honeypot is running, the at-

tacker can modify the STDM code to read and try to write information to impersonate it,

and the associated communication to the STDM central coordinator.

In this new scenario, the attacker will attempt to upload misleading information to

the central server, but the information will not match the information provided by other

STDM instances running on other devices, making the attack detectable.

8.4 Denial-of-Service scenario

The DoS attack limits the machine or network resource unavailable to its real users, tem-

porarily disrupting the services of a network component connected to the Internet.

In this scenario, our implementation may suffer from a DoS to the service being tested

by the STDM, but STDM will immediately detect it by the Watchdog component to stop

the running virtual machine and report the behaviour to the local machine. If the local

machine experiences a general DoS to the host, it can cause temporary failure in the ability

to communicate with the central node. There are two main solutions: HIDS can detect this

DoS and block the attempt; or if it is a Distributed Denial-of-Service (DDoS), it may not

handle the request, so it stores all the information until the attack stops.

Chapter 9

Conclusion

The IoT concept is growing at an incredible rate with more and more devices available

every day, thus making security an urgent need and challenge.

Traditionally, maintaining network security has involved acting vigilantly by using

network-based defence techniques such as firewalls, intrusion detection systems, and en-

cryption, but the current situation calls for more proactive techniques to detect, deflect

and neutralise attempts to illegally use information systems. In this scenario, the use of

honeypots is a proactive and promising approach to combat threats to network security.

In this work, we studied and created a solution to autonomously detect and prevent

threats based on public information of known threats shared by government entities and

the community and connecting it to specialised software that parses and analyses that in-

formation so that users can have a perspective of what needs to be improved. In addition,

using known and effective ways to gather intelligence and attacker tactics and techniques,

we can leverage this knowledge and improve our defence mechanisms to strengthen our

security perimeter and make our systems more resistant to future attacks.

9.1 Limitations

Multipass proved to be an effective tool for launching virtual machines on devices with

few resources, expanding its capabilities and opening horizons for new usage scenarios.

However, it requires a minimum of 10GB of free space to launch an instance, which can

be a setback for many of these devices. Also, due to the way Multipass handles changes

within its instances, there is no current mechanism that allows complete monitoring of an

instance without limitations or privileged internal access.

43

9. CONCLUSION 44

The proliferation of single-board computers - namely Raspberry Pis - alongside its

lower power consumption and lower price when looking to comparable alternatives has

increased its presence and usage at home, on industries, or in concepts like smart cities.

However, as we notice in our tests, these devices faced some performance issues, espe-

cially when dealing with virtualisation technologies. Upon the initialisation of Multipass’

instances, these devices take some extra time to complete that process which can be, in

some scenarios, a discouraging factor.

Given the solutions available on the market, we noticed the difficulty in creating an

automatic mechanism to add custom rules in HIDS. In our research, we noticed the use

of different formats and syntaxes, which makes a standardisation process impossible and

makes interoperability difficult.

With Multipass being developed by Canonical, currently, only Ubuntu-based images

are provided out-of-the-box, thus limiting the access to other operating systems.

9.2 Future Work

As future work and applications, we have some paths that we want to follow. We want to

enhance the system with human-in-the-loop mechanisms because, in addition to the su-

pervision performed automatically by the system, a user must be able to add their domain

knowledge that could identify points of failure and new rules for improving the detection

of abnormal patterns, also reducing false alarm rates and adversarial attacks. As misclas-

sification can have serious consequences, human-in-the-loop should be used to confirm

all patterns and decisions. In this sense, human-in-the-loop in IPS and IDS systems can

validate the abnormal events and generate rules to feed the first defence layer. On our

current implementation, with Fail2ban an administrator can add rules, but we want to

make more steps on it for the overall system, giving the possibility to launch honeypots

with new rules.

If an attacker gains access to the system, they may attack the system (as explained

in the security analysis section), but one solution to blocking this type of attack is to use

multiple software vendors to perform this process. In combination with Byzantine Fault

Tolerance (BFT), it will allow the mitigation and detection of another vector of attacks to

the host machine, allowing to identify wrong answers from the system. BFT replication

can be used as a solution to handle Byzantine faults of both accidental and malicious na-

ture, reaching consensus (agreement on the same value) even when some of the nodes

9. CONCLUSION 45

in the network fail to respond or respond with incorrect information (as an example, an

attacker to the physical machine with misleading information). The goal of a BFT mech-

anism is to safeguard against system failures by employing collective decision-making

(both – correct and faulty nodes), which aims to reduce to influence of the faulty nodes.

Given the popularity of containers, thanks to their lightweight and portability propri-

eties, we intent to add a local registry container, with containers of vulnerable software

versions found in our devices or other flawed software that we want to collect artefacts.

This opens the possibility of increasing the deployment process of a honeypot instance

since it can be done exclusively by automation.

9.3 Conclusions

We offer a new security approach to deploying dynamic local honeypots capable of run-

ning on devices not previously used for this purpose. As far as we know, this is the first

proposal for a dynamic honeypot that can be installed on any network device in order

to test network devices. Thus, it takes the opportunity to confuse the attacker, as he/she

never knows if it is a network device or a honeypot placed for this purpose. IoT envi-

ronments benefit from this solution as sensors are often the most vulnerable devices on a

network.

It combines IDS and IPS systems to detect and automate the honeypot initialisation

process according to what is happening in the network (environment). This process can

be used as the first line of defence for active intrusion detection and prevention (or, in

the worst case, logs so admins can do manual prevention), as it also allows for gaining

insights into new attacks. The implemented system focuses on the early discovery of

viruses on the network and malicious network activities.

Contrary to previous work, the idea is not to have a fixed honeypot but to have a

set of devices that can be used at any time as a honeypot (adapted to the most recent

threat) to test the network for these possible threats and then report to the MISP. Also, we

developed a honeypot solution that can run on multiple devices of different architectures

without having to allocate specific hardware.

We have experimentally demonstrated that it is possible and feasible to deploy decoy

systems in on-premises infrastructure, even on power-constrained devices. Regarding

latency and comparing to standard HaaS, we achieved a reduction from 360ms to closer

to 0ms.

Acronyms

AIDE Advanced Intrusion Detection Environment 13, 15, 21

API Application Programming Interface 31, 35

ARM Advanced RISC Machine 21, 29, 34, 35

BFT Byzantine Fault Tolerance 44, 45

CA Certificate Authority 32

CERT Computer Emergency Response Team 17

CPE Common Platform Enumeration 10, 26, 31–33

CSIRT Computer Security Incident Response Team 17

CVE Common Vulnerabilities and Exposures 7, 10, 19, 21, 22, 25, 26, 28, 31, 32, 41

DDoS Distributed Denial-of-Service 42

DNS Domain Name System 8, 18

DoS Denial-of-Service 9, 23, 24, 42

HaaS Honeypot-as-a-Service 18, 38, 40, 45

HIDS Host-based Intrusion Detection System viii, 6, 11, 13, 14, 21–24, 27, 28, 33, 42, 44

HTTPS Hyper Text Transfer Protocol Secure 37

ICMP Internet Control Message Protocol 5, 18

IDS Intrusion Detection System 3, 7, 10–13, 19, 21, 22, 24, 44, 45

46

Acronyms 47

IoC Indicators of Compromise 8, 16, 17, 19, 28, 29, 31, 33

IoT Internet of Things ii, 1, 5–7, 9, 13, 18, 19, 43, 45

IP Internet Protocol 8, 18, 19, 39

IPS Intrusion Prevention System 14, 28, 33, 44, 45

IT Information Technology 2, 3, 11

JSON JavaScript Object Notation 31

KVM Kernel-based Virtual Machine 34

LAN Local Area Network 40

LXC Linux Containers 35, 36

MISP Malware Information Sharing Platform 17, 31–33, 45

MitM Man-in-the-Middle 9, 23, 24

NIDS Network-based Intrusion Detection System 11, 29

NIST National Institute of Standards and Technology 10, 28, 31

NVD National Vulnerability Database 10, 28, 33

OSSEC Open Source Security 13–15, 21–24, 33

RCE Remote Code Execution 9, 22, 23

REST Representational State Transfer 31, 35

SGX Intel Software Guard Extensions 37

SIEM Security Information and Event Management 16

SOC Security Operations Centre 3, 4, 17, 41

SQL Structured Query Language 9, 22, 23

SSH Secure Shell 24, 36

Acronyms 48

STDM Sandboxing for Threat Detection and Mitigation 26

TCP Transmission Control Protocol 18, 39

TSP Threat Sharing Platform ii, 19, 20, 26, 29, 32

UDP User Datagram Protocol 18, 39

URI Uniform Resource Identifier 10

URL Uniform Resource Locator 38

VLAN Virtual Local Area Network 5

XML Extensible Markup Language 10, 24

XSS Cross-site scripting 9, 23, 24, 38

XXE XML External Entities 23, 24

Bibliography

[1] E. Manavalan and K. Jayakrishna, “A review of Internet of Things (IoT) embedded

sustainable supply chain for industry 4.0 requirements,” Computers & Industrial En-

gineering, vol. 127, pp. 925–953, 2019. [Cited on page 1.]

[2] C. Zhang and Y. Chen, “A review of research relevant to the emerging industry

trends: Industry 4.0, IoT, blockchain, and business analytics,” Journal of Industrial

Integration and Management, vol. 5, no. 01, pp. 165–180, 2020. [Cited on page 1.]

[3] J. Cheng, W. Chen, F. Tao, and C.-L. Lin, “Industrial IoT in 5G environment towards

smart manufacturing,” Journal of Industrial Information Integration, vol. 10, pp. 10–19,

2018. [Cited on page 1.]

[4] I. I. Editors, “US adults added 1 hour of digital time in 2020,” https://www.

emarketer.com/content/us-adults-added-1-hour-of-digital-time-2020, 01 2021, (Ac-

cessed on 19/08/2021). [Cited on page 2.]

[5] “Malware Statistics & Trends Report,” https://www.av-test.org/en/statistics/

malware/, (Accessed on 26/01/2021). [Cited on page 2.]

[6] R. Richardson and M. M. North, “Ransomware: Evolution, mitigation and preven-

tion,” International Management Review, vol. 13, no. 1, p. 10, 2017. [Cited on page 2.]

[7] O. Filipec and D. Plasil, “The cybersecurity of healthcare: The Case of the Benegov

Hospital Hit by Ryuk Ransomware and Lessons Learned,” Obrana a Strategie-Defence

& Strategy, pp. 27–51, 2021. [Cited on page 2.]

[8] D. Miller, “Industrial Cybersecurity Concerns Heat Up in The Era of COVID-19,”

https://www.automationworld.com/cybersecurity/article/21354953/crowdstrike-

releases-2021-cybersecurity-global-threat-report, (Accessed on 21/09/2021). [Cited

on page 2.]

49

https://www.emarketer.com/content/us-adults-added-1-hour-of-digital-time-2020
https://www.emarketer.com/content/us-adults-added-1-hour-of-digital-time-2020
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://www.automationworld.com/cybersecurity/article/21354953/crowdstrike-releases-2021-cybersecurity-global-threat-report
https://www.automationworld.com/cybersecurity/article/21354953/crowdstrike-releases-2021-cybersecurity-global-threat-report

BIBLIOGRAPHY 50

[9] N. Strother, “Cybersecurity Threats Remain A Concern For Global Corporations,”

https://www.forbes.com/sites/guidehouse/2021/01/08/cybersecurity-threats-

remain-a-concern-for-global-corporations/, 01 2021, (Accessed on 28/08/2021).

[Cited on page 3.]

[10] M. Bromiley, “Threat intelligence: What it is, and how to use it effectively,” SANS

Institute InfoSec Reading Room, vol. 15, p. 172, 2016. [Cited on page 3.]

[11] W. Tounsi and H. Rais, “A survey on technical threat intelligence in the age of so-

phisticated cyber attacks,” Computers & security, vol. 72, pp. 212–233, 2018. [Cited on

page 4.]

[12] “Low, Medium and High Interaction Honeypot Security,” https://www.

guardicore.com/blog/high-interaction-honeypot-versus-low-interaction-

honeypot-comparison/, (Accessed on 04/05/2021). [Cited on pages 7 and 8.]

[13] O. Catakoglu, M. Balduzzi, and D. Balzarotti, “Automatic extraction of indicators of

compromise for web applications,” in Proceedings of the 25th international conference

on world wide web, 2016, pp. 333–343. [Cited on pages 8 and 28.]

[14] “What is an indicator of compromise (IoC)? — Kaspersky IT Encyclopedia,” https:

//encyclopedia.kaspersky.com/glossary/indicator-of-compromise-ioc/, (Accessed

on 08/08/2021). [Cited on page 8.]

[15] “What are Indicators of Compromise (IOCs),” https://securityscorecard.com/blog/

what-are-indicators-of-a-compromise, (Accessed on 08/08/2021). [Cited on page 8.]

[16] “Indicators of Compromise (IOC) Security Explained,” https://www.crowdstrike.

com/cybersecurity-101/indicators-of-compromise/, (Accessed on 27/06/2021).

[Cited on page 8.]

[17] L. Dandurand and O. S. Serrano, “Towards improved cyber security information

sharing,” in 2013 5th International Conference on Cyber Conflict (CYCON 2013). IEEE,

2013, pp. 1–16. [Cited on pages 8 and 15.]

[18] “Automated Defense - Using Threat Intelligence to Augment,” https://www.sans.

org/white-papers/35692/, (Accessed on 27/06/2021). [Cited on page 9.]

https://www.forbes.com/sites/guidehouse/2021/01/08/cybersecurity-threats-remain-a-concern-for-global-corporations/
https://www.forbes.com/sites/guidehouse/2021/01/08/cybersecurity-threats-remain-a-concern-for-global-corporations/
https://www.guardicore.com/blog/high-interaction-honeypot-versus-low-interaction-honeypot-comparison/
https://www.guardicore.com/blog/high-interaction-honeypot-versus-low-interaction-honeypot-comparison/
https://www.guardicore.com/blog/high-interaction-honeypot-versus-low-interaction-honeypot-comparison/
https://encyclopedia.kaspersky.com/glossary/indicator-of-compromise-ioc/
https://encyclopedia.kaspersky.com/glossary/indicator-of-compromise-ioc/
https://securityscorecard.com/blog/what-are-indicators-of-a-compromise
https://securityscorecard.com/blog/what-are-indicators-of-a-compromise
https://www.crowdstrike.com/cybersecurity-101/indicators-of-compromise/
https://www.crowdstrike.com/cybersecurity-101/indicators-of-compromise/
https://www.sans.org/white-papers/35692/
https://www.sans.org/white-papers/35692/

BIBLIOGRAPHY 51

[19] C. Sauerwein, C. Sillaber, A. Mussmann, and R. Breu, “Threat intelligence sharing

platforms: An exploratory study of software vendors and research perspectives,”

2017. [Cited on pages 9 and 16.]

[20] “What is a Cyber Attack?” https://www.upguard.com/blog/cyber-attack, (Ac-

cessed on 22/09/2021). [Cited on page 9.]

[21] C. NIST, “Official Common Platform Enumeration (CPE) Dictionary,” 2021. [Cited

on page 10.]

[22] “NVD - CVE-2014-0160,” https://nvd.nist.gov/vuln/detail/CVE-2014-0160, (Ac-

cessed on 22/09/2021). [Cited on page 10.]

[23] “WannaCry Ransomware: A Detailed Analysis of the Attack,” https://techspective.

net/2017/09/26/wannacry-ransomware-detailed-analysis-attack/, (Accessed on

30/06/2021). [Cited on page 10.]

[24] “NVD - CVE-2017-0144,” https://nvd.nist.gov/vuln/detail/CVE-2017-0144, (Ac-

cessed on 22/09/2021). [Cited on page 10.]

[25] L. A. B. Sanguino and R. Uetz, “Software vulnerability analysis using CPE and CVE,”

arXiv preprint arXiv:1705.05347, 2017. [Cited on page 10.]

[26] “OVAL - Open Vulnerability and Assessment Language,” https://oval.mitre.org/,

(Accessed on 16/06/2021). [Cited on page 11.]

[27] “Security Content Automation Protocol,” https://csrc.nist.gov/projects/security-

content-automation-protocol/specifications/xccdf, (Accessed on 16/06/2021).

[Cited on page 11.]

[28] “About CPE,” https://cpe.mitre.org/about/, (Accessed on 16/06/2021). [Cited on

page 11.]

[29] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection system: A

comprehensive review,” Journal of Network and Computer Applications, vol. 36, no. 1,

pp. 16–24, 2013. [Cited on page 11.]

[30] E. E. Han and T. N. Phyu, “Classification of SQL injection, XSS and Path Traversal

for Web Application Attack Detection.” Fourteenth International Conference On

Computer Applications (ICCA 2016), 2016. [Cited on page 12.]

https://www.upguard.com/blog/cyber-attack
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://techspective.net/2017/09/26/wannacry-ransomware-detailed-analysis-attack/
https://techspective.net/2017/09/26/wannacry-ransomware-detailed-analysis-attack/
https://nvd.nist.gov/vuln/detail/CVE-2017-0144
https://oval.mitre.org/
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/xccdf
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/xccdf
https://cpe.mitre.org/about/

BIBLIOGRAPHY 52

[31] T. Wilhelm and J. Andress, “Chapter 8 - Use of Timing to Enter an Area,” in

Ninja Hacking, T. Wilhelm and J. Andress, Eds. Boston: Syngress, 2011, pp.

119–134. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

B9781597495882000081 [Cited on page 13.]

[32] C. Lai, A. R. Chavez, C. B. Jones, N. Jacobs, S. Hossain-McKenzie, J. B. Johnson, and

A. Summers, “Review of intrusion detection methods and tools for distributed en-

ergy resources.” Sandia National Lab.(SNL-NM), Albuquerque, NM (United States),

Tech. Rep., 2021. [Cited on page 13.]

[33] “Top 5 open-source HIDS systems,” https://logz.io/blog/open-source-hids/, (Ac-

cessed on 28/05/2021).

[34] “8 Best HIDS Tools,” https://www.dnsstuff.com/host-based-intrusion-detection-

systems, (Accessed on 28/05/2021). [Cited on page 13.]

[35] C. L. Smith, “AIDE - Advanced Intrusion Detection Environment,” Pacific Northwest

National Lab.(PNNL), Richland, WA (United States), Tech. Rep., 2013. [Cited on

page 13.]

[36] “AIDE - ArchWiki,” https://wiki.archlinux.org/title/AIDE, (Accessed on

30/04/2021). [Cited on page 14.]

[37] G. fail2ban, “fail2ban: Daemon to ban hosts that cause multiple authentication er-

rors,” https://github.com/fail2ban/fail2ban, (Accessed on 30/04/2021). [Cited on

page 14.]

[38] D. Teixeira, L. Assunção, T. Pereira, S. Malta, and P. Pinto, “Ossec ids extension to

improve log analysis and override false positive or negative detections,” Journal of

Sensor and Actuator Networks, vol. 8, no. 3, p. 46, 2019. [Cited on page 14.]

[39] “Fail2ban Setup,” https://www.cyberpunk.rs/fail2ban-setup-intrusion-

prevention-framework, (Accessed on 30/04/2021). [Cited on page 14.]

[40] R. Bray, D. Cid, and A. Hay, OSSEC host-based intrusion detection guide. Syngress,

2008. [Cited on page 14.]

[41] “Open Source - Quadrant Information Security,” https://quadrantsec.com/sagan

log analysis engine/, (Accessed on 30/04/2021). [Cited on page 14.]

https://www.sciencedirect.com/science/article/pii/B9781597495882000081
https://www.sciencedirect.com/science/article/pii/B9781597495882000081
https://logz.io/blog/open-source-hids/
https://www.dnsstuff.com/host-based-intrusion-detection-systems
https://www.dnsstuff.com/host-based-intrusion-detection-systems
https://wiki.archlinux.org/title/AIDE
https://github.com/fail2ban/fail2ban
https://www.cyberpunk.rs/fail2ban-setup-intrusion-prevention-framework
https://www.cyberpunk.rs/fail2ban-setup-intrusion-prevention-framework
https://quadrantsec.com/sagan_log_analysis_engine/
https://quadrantsec.com/sagan_log_analysis_engine/

BIBLIOGRAPHY 53

[42] R. Wichmann, “The Samhain HIDS,” fact sheet, 2011. [Cited on page 14.]

[43] G. H. Kim and E. H. Spafford, “The design and implementation of tripwire: A file

system integrity checker,” in Proceedings of the 2nd ACM Conference on Computer and

Communications Security, 1994, pp. 18–29. [Cited on page 15.]

[44] “What Is Endpoint Detection and Response?” https://www.mcafee.com/

enterprise/en-us/security-awareness/endpoint/what-is-endpoint-detection-

and-response.html, (Accessed on 03/05/2021). [Cited on page 16.]

[45] “Top Threat Intelligence Platforms [2021],” https://www.esecurityplanet.com/

products/threat-intelligence-platforms/, (Accessed on 26/06/2021). [Cited on

page 16.]

[46] “IBM X-Force Exchange: FAQ,” https://exchange.xforce.ibmcloud.com/faq, (Ac-

cessed on 03/05/2021). [Cited on page 16.]

[47] “ThreatStream - Threat Intelligence Platform,” https://www.anomali.com/

products/threatstream, (Accessed on 03/05/2021). [Cited on page 16.]

[48] “ThreatConnect - What is Threat Intelligence,” https://threatconnect.com/

solution/threat-intelligence/, (Accessed on 03/05/2021). [Cited on page 16.]

[49] A. W. Mir and R. K. Ramachandran, “Implementation of Security Orchestration, Au-

tomation and Response (SOAR) in Smart Grid-Based SCADA Systems,” in Sixth In-

ternational Conference on Intelligent Computing and Applications. Springer, 2021, pp.

157–169. [Cited on page 16.]

[50] “Falcon X - Cyber Threat Intelligence & Automation,” https://www.crowdstrike.

com/endpoint-security-products/falcon-x-threat-intelligence/, (Accessed on

03/05/2021). [Cited on page 17.]

[51] E. Fernández, “ThreatQ, plataforma de inteligencia sobre amenazas abierta para acel-

erar las operaciones de ciberseguridad,” Revista SIC: ciberseguridad, seguridad de la

información y privacidad, vol. 30, no. 144, pp. 166–166, 2021. [Cited on page 17.]

[52] C. Wagner, A. Dulaunoy, G. Wagener, and A. Iklody, “Misp: The design and imple-

mentation of a collaborative threat intelligence sharing platform,” in Proceedings of

the 2016 ACM on Workshop on Information Sharing and Collaborative Security, 2016, pp.

49–56. [Cited on pages 17 and 31.]

https://www.mcafee.com/enterprise/en-us/security-awareness/endpoint/what-is-endpoint-detection-and-response.html
https://www.mcafee.com/enterprise/en-us/security-awareness/endpoint/what-is-endpoint-detection-and-response.html
https://www.mcafee.com/enterprise/en-us/security-awareness/endpoint/what-is-endpoint-detection-and-response.html
https://www.esecurityplanet.com/products/threat-intelligence-platforms/
https://www.esecurityplanet.com/products/threat-intelligence-platforms/
https://exchange.xforce.ibmcloud.com/faq
https://www.anomali.com/products/threatstream
https://www.anomali.com/products/threatstream
https://threatconnect.com/solution/threat-intelligence/
https://threatconnect.com/solution/threat-intelligence/
https://www.crowdstrike.com/endpoint-security-products/falcon-x-threat-intelligence/
https://www.crowdstrike.com/endpoint-security-products/falcon-x-threat-intelligence/

BIBLIOGRAPHY 54

[53] “TheHive Project,” http://thehive-project.org/, (Accessed on 26/07/2021). [Cited

on page 17.]

[54] Q. D. La, T. Q. Quek, J. Lee, S. Jin, and H. Zhu, “Deceptive attack and defense game in

honeypot-enabled networks for the internet of things,” IEEE Internet of Things Journal,

vol. 3, no. 6, pp. 1025–1035, 2016. [Cited on page 18.]

[55] N. Provos, “Honeyd - A virtual honeypot daemon,” in 10th DFN-CERT Workshop,

Hamburg, Germany, vol. 2, 2003, p. 4. [Cited on pages 18 and 20.]

[56] N. Provos et al., “A Virtual Honeypot Framework,” in USENIX Security Symposium,

vol. 173, 01 2004, pp. 1–14. [Cited on page 18.]

[57] N. F. Khan and M. M. Mohan, “Honey pot as a service in cloud,” International Jour-

nal of Pure and Applied Mathematics, vol. 118, no. 20, pp. 2883–2888, 2018. [Cited on

pages 18 and 20.]

[58] J. Jafarian and A. Niakanlahiji, “Delivering Honeypots as a Service,” 01 2020. [Cited

on pages 18 and 20.]

[59] H. Artail, H. Safa, M. Sraj, I. Kuwatly, and Z. Al-Masri, “A hybrid honeypot

framework for improving intrusion detection systems in protecting organizational

networks, journal = Computers & Security,” vol. 25, no. 4, pp. 274–288,

2006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0167404806000587 [Cited on page 18.]

[60] A. Kostopoulos, I. P. Chochliouros, C. Patsakis, M. Anastasiadis, and A. Guarino,

“Protocol Deployment for Employing Honeypot-as-a-Service,” in IFIP International

Conference on Artificial Intelligence Applications and Innovations. Springer, 2020, pp.

105–115. [Cited on pages 19 and 20.]

[61] “CVE - Frequently Asked Questions,” https://cve.mitre.org/about/faqs.html#who

owns cve, (Accessed on 16/06/2021). [Cited on page 21.]

[62] “XML::Parser - A perl module for parsing XML documents,” https://metacpan.org/

pod/XML::Parser, (Accessed on 20/09/2021). [Cited on page 24.]

[63] M. Guo and J. A. Wang, “An ontology-based approach to model common vulnera-

bilities and exposures in information security,” in ASEE Southest Section Conference,

2009. [Cited on page 28.]

http://thehive-project.org/
https://www.sciencedirect.com/science/article/pii/S0167404806000587
https://www.sciencedirect.com/science/article/pii/S0167404806000587
https://cve.mitre.org/about/faqs.html##who_owns_cve
https://cve.mitre.org/about/faqs.html##who_owns_cve
https://metacpan.org/pod/XML::Parser
https://metacpan.org/pod/XML::Parser

BIBLIOGRAPHY 55

[64] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach for network

intrusion detection system,” Eai Endorsed Transactions on Security and Safety, vol. 3,

no. 9, p. e2, 2016. [Cited on page 29.]

[65] “Virtualization-Based Sandboxes are Vulnerable to Advanced Malware,”

https://www.lastline.com/blog/virtualization-based-sandboxes/, (Accessed

on 28/05/2021). [Cited on page 30.]

[66] G. PyMISP, “PyMISP - Python Library to access MISP,” PyMISP (accessed on 20

February 2021). [Online]. Available: https://github.com/MISP/PyMISP [Cited on

page 31.]

[67] “Fail2ban Manual 0.8,” https://www.fail2ban.org/wiki/index.php/MANUAL 0

8#Jails, (Accessed on 30/04/2021). [Cited on page 34.]

[68] Canonical, “Multipass orchestrates virtual Ubuntu instances,” available at: https://

github.com/canonical/multipass (Accessed 20 July 2021), 2015. [Cited on page 34.]

[69] F. Bellard, “QEMU, a fast and portable dynamic translator.” in USENIX annual tech-

nical conference, FREENIX Track, vol. 41. Califor-nia, USA, 2005, p. 46. [Cited on

page 35.]

[70] “LXD - Introduction,” https://linuxcontainers.org/lxd/introduction/, (Accessed on

26/07/2021). [Cited on page 35.]

[71] S. Senthil Kumaran, Practical LXC and LXD: linux containers for virtualization and or-

chestration. Springer, 2017. [Cited on page 35.]

[72] Y. Hu, A. Nanda, and Q. Yang, “Measurement, analysis and performance improve-

ment of the Apache web server,” in 1999 IEEE International Performance, Computing

and Communications Conference (Cat. No. 99CH36305). IEEE, 1999, pp. 261–267. [Cited

on page 37.]

[73] A. Brandão, J. S. Resende, and R. Martins, “Hardening cryptographic operations

through the use of secure enclaves,” Computers & Security, vol. 108, p. 102327,

2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0167404821001516 [Cited on page 37.]

[74] A. Tirumala, “Iperf: The TCP/UDP bandwidth measurement tool,”

http://dast.nlanr.net/Projects/Iperf/, 1999. [Cited on page 39.]

https://www.lastline.com/blog/virtualization-based-sandboxes/
https://github.com/MISP/PyMISP
https://www.fail2ban.org/wiki/index.php/MANUAL_0_8##Jails
https://www.fail2ban.org/wiki/index.php/MANUAL_0_8##Jails
https://github.com/canonical/multipass
https://github.com/canonical/multipass
https://linuxcontainers.org/lxd/introduction/
https://www.sciencedirect.com/science/article/pii/S0167404821001516
https://www.sciencedirect.com/science/article/pii/S0167404821001516

	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Proposed solution
	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Honeypots
	2.2 Threat intelligence
	2.3 Cyberattacks in IoT
	2.4 Research Study on CVE and IDS
	2.4.1 CVE
	2.4.2 IDS

	3 Related work
	3.1 Host-based Intrusion Detection Systems
	3.1.1 AIDE
	3.1.2 Fail2ban
	3.1.3 OSSEC
	3.1.4 Sagan
	3.1.5 Samhain
	3.1.6 Tripwire

	3.2 Threat Sharing Platforms
	3.2.1 IBM X-Force Exchange
	3.2.2 Anomali ThreatStream
	3.2.3 ThreatConnect
	3.2.4 CrowdStrike Falcon X
	3.2.5 ThreatQ
	3.2.6 Malware Information Sharing Platform

	3.3 IoT Honeypots

	4 Study on Host-based Intrusion Detection Systems
	4.1 Experimental setup and methodology
	4.2 Results

	5 System design
	5.1 Architecture
	5.2 Components
	5.2.1 Threat Sharing Platform
	5.2.1.1 Indicators of Compromise
	5.2.1.2 Common Vulnerabilities and Exposures

	5.2.2 Host Intrusion Detection System
	5.2.3 STDM Central Coordinator
	5.2.4 Watchdog
	5.2.5 Honeypot

	6 Implementation
	6.1 Threat Sharing Platform
	6.2 STDM
	6.3 Host Intrusion Detection System
	6.4 Isolated environments
	6.4.1 Virtualisation
	6.4.2 Honeypot

	6.5 Watchdog

	7 Evaluation
	7.1 Environment description
	7.2 Methodology
	7.3 Results

	8 Security Analysis
	8.1 Attacker compromises the Sandbox system
	8.2 Unknown Zero-Day detected
	8.3 Physical access to the machine
	8.4 Denial-of-Service scenario

	9 Conclusion
	9.1 Limitations
	9.2 Future Work
	9.3 Conclusions

	Acronyms
	Bibliography

