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Abstract

Multi-Scale Modelling of Contact Interfaces
Keywords: Multi-Scale; Homogenization; Signorini Contact; Real Contact Area.

In virtually every structural, mechanical and biological system, it is by way of contact that
bodies interact, coming in to touch and interchanging energy. Despite being something
mundane, the physics of contact interaction is particularly complex and of multi-scale
and multi-physics character. A great example is a fundamental observation that all engi-
neering surfaces are rough, at a sufficiently small scale of inspection. It is intimately con-
nected with the contact interaction properties, determining the morphology and physics
at the interface. Therefore, contact problems are inherently non-linear, making them dif-
ficult to solve without resorting to approximate techniques. Taking into account that
experimental research on this subject can be very expensive/time-consuming, or some-
times even non-feasible, the field of computational contact mechanics is an ever-growing
field of research, demanding powerful numerical techniques that are able to accurately
predict contact phenomena.

In this work, the main objective is to establish a computational framework for the
analysis of tribological systems at multiple scales using the finite element method. The
dual-mortar contact algorithm is adopted as the foundation for the contact interaction
modelling of deformable bodies under a fully non-linear general hypothesis. Its formula-
tion is presented in detail, providing a comprehensive review on what can be regarded,
nowadays, as the state-of-the-art technique for computational contact mechanics. The
dual-mortar method provides an accurate and robust alternative for contact modelling,
owing to a well-established mathematical foundation. The trade-off, however, often re-
gards its considerable computational complexity. In order to attenuate this difficulty, the
algorithm is thus further optimised for the particular case of the Signorini problem (con-
tact with a rigid obstacle). This configuration is commonly found in contact homogenisa-
tion and originates from the well-known result from contact mechanics that, under cer-
tain conditions, the contact between two rough surfaces can be mapped to the contact
between an equivalent single rough surface and a rigid flat. The variational formulation
using a Petrov-Galerkin scheme is investigated, also proposing a new definition for the
nodal orthonormal moving frame attached to each contact node.

Then, the contact algorithm is embedded within a multi-scale framework for the mod-
elling of rough contact. It is based on the establishment of a representative contact ele-
ment, which is then separated into multiple smaller scales by splitting the power spectral
density function of the rough topography. The statistics of the contact pressure field are
integrated into a new multiplicative homogenization scheme, also investigating the def-
inition of the splitting frequencies, the generation of individual scales and the violation
of the principle of scale separation. From the numerical results, it is verified that the
multi-scale algorithm can reproduce the original problem, with a considerable reduction
in computational complexity. This is achieved by the information-passing scheme of the
multi-scale algorithm, without compromising the flexibility of the finite element method.



iv

Page intentionally left blank



v

Resumo

Modelação Multi-Escala de Interfaces de Contacto
Palavras-chave: Multi-Escala; Homogeneização; Contacto Signorini; Área Real de Contacto.

Em praticamente todos os sistemas estruturais, mecânicos e biológicos, é através de con-
tacto que os corpos interagem, trocando energia entre si. A física do contacto é partic-
ularmente complexa e com uma forte componente multi-escala e multidisciplinar. Um
exemplo pertinente é a observação de que todas as superfícies de engenharia são ru-
gosas, quando visualizadas uma escala suficientemente pequena. Isto está intimamente
relacionado com várias propriedades de contacto, determinando a morfologia e física
na interface. Adicionalmente, os problemas são inerentemente não-lineares, tornando-
os difíceis de resolver sem recorrer a técnicas de aproximação. Tendo em consideração
que a investigação experimental neste tópico é geralmente dispendiosa, ou até por vezes
impossível, a mecânica do contacto computacional tornou-se uma área de investigação
em crescimento contínuo, que procura desenvolver novas técnicas numéricas, capazes
de prever com precisão os fenómenos de contacto.

Neste trabalho, o objetivo principal é o estabelecimento de um algoritmo para a
análise de sistemas tribológicos a várias escalas através do método dos elementos finitos.
O método tem como base o algoritmo dual-mortar para modelar contacto não-linear
entre corpos deformáveis. A sua formulação é apresentada em detalhe, sendo feita uma
revisão do algoritmo que é considerado o estado-da-arte em modelação de contacto. Este
método caracteriza-se pela sua precisão e robustez, ambos garantidos pela sua cuidada
formulação matemática. No entanto, a principal desvantagem está relacionada com a
considerável complexidade computacional. De forma a atenuar esta dificuldade, o algo-
ritmo é otimizado para o caso particular do problema de Signorini (contacto com um
obstáculo rígido). Esta configuração é encontrada com frequência em homogeneização
de contacto, tendo como origem o resultado clássico da mecânica do contacto em que,
sob determinadas hipóteses, o contacto entre duas superfícies rugosas pode ser mapeado
para o contacto entre uma superfície com rugosidade equivalente e um liso rígido. A for-
mulação variacional de Petrov-Galerkin é investigada, sendo também proposta uma nova
definição para o sistema de eixos ortonormal associado com cada nó de contacto.

Na segunda parte do trabalho, o algoritmo de contacto é integrado num esquema
de modelação de contacto rugoso a várias escalas. Na base do método está o estabelec-
imento de um elemento de contacto representativo, que é depois separado em várias
escalas através da divisão da função de densidade espectral da topografia. É proposto
um esquema de homogeneização multiplicativo, que incorpora a natureza estatística do
campo de pressões de contacto. É também analisada a definição de frequências de sepa-
ração, geração de escalas individuais e a violação do princípio de separação de escalas. Os
resultados numéricos demonstram que o algoritmo multi-escala é capaz de reproduzir
o problema original, beneficiando no entanto de uma redução significativa no tempo de
cálculo. Isto é atingido pelo esquema de passagem de informação do algoritmo, sendo
garantida a preservação da flexibilidade do método dos elementos finitos.
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Chapter 1

Introduction

Contact mechanics has always been a discipline of particular importance in the mechan-
ics of solids. In virtually every structural, mechanical and even biological system, the
event of deformable bodies coming in contact with each other is ubiquitous. To a great
extent, it is indeed through contact that bodies interact, coming in to touch and exchang-
ing energy (either it is, for example, in the form of mechanical loads, heat or electrical
current). This has motivated the in-depth understanding of contact phenomena, espe-
cially when taking into account its technological and economic impact. Tzanakis et al.
(2012) reported that frictional losses are often estimated to cost more than 1 percent of
the gross national product in several nations. Another reported example is the power
dissipation in tire-road interaction, which is responsible for 20-30% of the total fuel con-
sumption (Nitsche, 2011).

However, the physics of contact interaction, is particularly rich and complex, turn-
ing it into a genuinely multi-scale and multi-disciplinary endeavour. Typical types of
phenomena taking place at contact interfaces include mechanical (solid and fluid), ther-
mal, electro-magnetic, metallurgical, quantum and others. Even from the simplest macro-
scopic continuum perspective, contact problems are inherently non-linear. Firstly, the
actual contact surface on which bodies interact is unknown beforehand and must be
determined as a part of the solution. Secondly, the boundary conditions at the contact
interface are complex, typically involving unknown stresses, displacements and other
relevant variables. This poses serious difficulties: conceptual, mathematical and compu-
tational.

Nonetheless, there are unique formulations of many classes of contact problems in
which these difficulties are minimized, making it possible to employ ingenious analysis
methods. Nowadays, processes such as deep-drawing and machine parts such as tires,
bearings or gears, are only possible because science and engineering have exploited the
principles of contact mechanics. Concrete applications that rely on the capacity to predict
contact interactions include, for example: analysis of head/disk interfaces in computer
magnetic storage devices; characterisation of adhesion and/or relative slip between con-
crete and reinforcing steel in structural engineering. Additionally, other representative
examples, beyond the realm of engineering applications, that are largely dominated by
contact and associated physical phenomena include: the analysis of plate tectonics pro-
cess in continental drift; the study of the capillary flow of red blood cells through blood
vessels in biological systems, just to name a few.
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1.1 Motivation

As already mentioned, contact problems are inherently non-linear, making them extremely
difficult to solve without resorting to approximate modelling techniques. This fact is even
more pronounced when additional sources of non-linearity are taken into account, e.g.,
complex interface phenomena, damage evolution or thermo-mechanical effects. On top
of that, if one wants to include the influence of surface roughness on the tribological
behaviour, an additional layer of complexity is introduced.

The interest in conducting research on robust and efficient numerical algorithms to
solve this class of problems is substantiated for many reasons. First of all, experimental
research on this subject can be very expensive and/or time-consuming. Typical exam-
ples are the automotive industry simulations (e.g., crash analysis or rolling contact of car
tires), which allow to reduce the expensive testing equipment and accelerate the develop-
ment. Secondly, some experiments can be difficult or even non-feasible to be executed
inside a laboratory, for example, the contact of a turbine blade and its frame case or in
situ observation of micromechanical contact. Altogether, this makes the field of compu-
tational contact mechanics an ever-growing discipline among computational mechanics,
demanding powerful numerical techniques that, ultimately, allow for a better understand-
ing of complex systems.

1.2 Historical note

This section presents a short overview of the history of the knowledge about tribology;
for a complete presentation, see Dowson (1991). In engineering, the study of bodies in
relative motion undergoing contact is commonly designated tribology. The word, intro-
duced in Jost (1966), is coined to David Tabor and Peter Jost and derives from the root
tribo (from the Greek term for rubbing) and the suffix logy (which means the study of ).
Awareness of contact and friction can be traced back to the construction of the Egyptian
pyramids (≈ 2600 BCE). The transportation of large blocks was a main technical diffi-
culty, which was tackled by wetting the desert sand to reduce friction. The first recorded
systematic study of friction has been credited to Leonardo da Vinci (1452-1519). Several
drawings from Leonardo’s notebooks, such as the one in Figure 1.1, became iconic among
tribologists, showing that da Vinci was fully familiar with the basic tribological concepts
of friction, lubrication and wear (see Hutchings [2016] for a historical overview). However,
only two hundred years later (in 1699), the two fundamental friction laws were formally
enunciated by Guillaume Amontons (1663-1705). These laws were later confirmed and ex-
tended to dynamic situations by Charles-Augustin de Coulomb (1736-1806), resulting in
the widely known Coulomb’s friction law. It states that the frictional force acting between
two sliding surfaces is proportional to the magnitude of the load pressing the surfaces
together, i.e., the forces have a constant ratio, commonly referred to as the coefficient of
friction. Furthermore, the frictional force is assumed to be independent of the apparent
area of contact and also the velocity (for ordinary sliding speeds). The first analysis of
contact from a mathematical standpoint amounts to the Swiss mathematician Leonhard
Euler (1707-1783), who assumed triangular section asperities in order to represent surface
roughness (Euler, 1750b,a). It was Euler who introduced the symbol µ for the coefficient
of friction.
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Figure 1.1: Sketch from Leonardo’s notebooks showing a set of similar blocks in differ-
ent orientations on a horizontal plane, from Codex Atlanticus, Biblioteca Am-
brosiana, Milan (CA folio 532r c. 1506–8).

The application of the theory of elasticity to contact mechanics was carried out by
Heinrich Hertz (1857-1894), who, at the age of 24, solved the problem of two non-conformal
elastic bodies undergoing frictionless contact (Hertz, 1881). While studying Newton’s op-
tical interference fringes in the gap between two glass lenses, Hertz was concerned with
the possible influence of the elastic deformation at the surfaces of the lenses due to the
contact pressure between them. His solution is commonly considered to be the corner-
stone of modern contact analysis and many of the analytical solutions available in the
literature have been building on his work. The seminal models by Johnson et al. (1971)
and Derjaguin et al. (1975), which describe adhesive contact between compliant or hard
spheres, are well known examples. A comprehensive overview of the basic principles of
contact mechanics, along with the essential analytical solution techniques, can be found
in the textbooks by Johnson (1987) and Timoshenko and Goodier (1951).

1.3 Literature overview on computational contact mechanics

Although analytical models are undoubtedly essential to the understanding of the me-
chanics of contact interactions, their application is restricted to a small number of contact
problems. In order to analyse real complex mechanical systems, the use of approximation
techniques is usually prefered and, with the ongoing advent of modern computing power
over the last decades, this has motivated both the industrial and scientific communities
to develop robust algorithms able to treat contact problems. Nowadays, computational
contact mechanics is one challenging but essential part of the discipline of computa-
tional mechanics, with methods like the Finite Element Method (FEM) and the Bound-
ary Element Method (BEM) being widely used within continuum mechanics modelling.
Throughout this work, all ideas and methods of computational contact mechanics are
discussed exclusively in the context of the FEM, which proves to be a versatile method for
solving boundary value problems in many fields of science and technology. The general
FEM literature is abundant, referring, for example, to the monographs by T. J. Hughes
(2000), Zienkiewicz et al. (2014), and Bathe (2006). A comprehensive overview of compu-
tational contact mechanics can be found in the textbooks by Laursen (2013) and Wriggers
(2006).
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1.3.1 Classical discretisation techniques

First applications of finite elements to contact problems between deformable bodies
can be traced back to the late 1970s and early 1980s. In Francavilla and Zienkiewicz (1975)
and T. J. Hughes, Taylor, Sackman, Curnier, et al. (1976), contact conditions are incorpo-
rated on a very simple, purely nodal basis. The method is restricted to node-matching
finite element meshes at the contact interface under the hypothesis of small deforma-
tions, see Figure 1.2a. The extension for the general case of large deformations contact
is not straightforward, as the actual active part of the contact interface is not known a
priori and must be determined throughout de solution process. The most widely known
technique for this class of problems is the so-called Node-To-Segment (NTS) approach,
which is based on discrete, point-wise enforcement of the contact constraints at the fi-
nite element nodes, see Figure 1.2b. Early implementations can be found in T. J. Hughes,
Taylor, Sackman, and Kanoknukulchai (1976) and J. O. Hallquist (1979), and have been
extended to more general cases in J. Hallquist et al. (1985), Bathe and Chaudhary (1985),
Wriggers, Vu Van, et al. (1990), Simo and Laursen (1992), and Laursen and Simo (1993),
just to name a few.

Even though widely used—and currently available in most commercial finite element
codes with contact formulations—there are well-known limitations in the robustness of
NTS algorithms. It has been shown in Papadopoulos and Taylor (1992) that the so-called
single-pass algorithms do not satisfy the contact patch test, being observed degradation
of the spatial convergence rate. Moreover, due to the non-smoothness of the discretised
surfaces, non-physical jumps in the contact forces can occur in problems undergoing
large amounts of sliding within the contact interface. Several strategies have been pro-
posed to overcome these issues, which are typically based on higher-order interpola-
tions for the surfaces, see e.g., Wriggers, Krstulovic-Opara, et al. (2001), Puso and Laursen
(2002), and M. Stadler and Holzapfel (2004). For a comprehensive overview on smooth
contact discretisation the interested reader is referred to Wriggers (2006).

1.3.2 Mortar-based contact formulations

Over the last two decades, alternative formulations for improved robustness have
gained considerable attention, particularly the application of the so-called mortar meth-
ods for contact problems. Before reviewing the literature on mortar methods, it is note-
worthy to mention that the basic idea of using contact segments has been proposed
by Simo, Wriggers, et al. (1985) and applied to problems involving large deformations,
see Papadopoulos and Taylor (1992). The resulting algorithm, commonly referred to as
Segment-To-Segment (STS), is based on a thorough sub-division of the contact surface
into individual segments for numerical integration, see Figure 1.2c, together with an ap-
proximation for the contact pressure. This method can be interpreted as a precursor of
mortar-based finite element methods for contact problems.

The mortar method (deriving from the old French word mortier) has been firstly intro-
duced by Bernardi et al. (1993) and constituted a variational operator for the imposition of
occurring interface constraints in an optimal weak sense. Although originally introduced
as an abstract domain decomposition technique, mortar methods can be applied to par-
tial differential equations for any type of domain, with few restrictions imposed on the
discretization procedure (Ben Belgacem and Maday, 1994; Belhachmi and Bernardi, 1994;
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(a) Node-to-node

(b) Node-to-segment

(c) Segment-to-segment

Figure 1.2: Graphical representation of different contact discretisations.

F. B. Belgacem, 1999). In the context of contact problems, this allows for a variationally
consistent treatment of contact constraints, despite the inevitably non-matching inter-
face discretisations in finite deformations. Early implementations of mortar methods for
contact mechanics within the context of small deformations can be found, for example,
in F. Belgacem et al. (1998), McDevitt and Laursen (2000), and Hild (2000). Subsequently,
mortar-based contact formulations aiming at covering the realm of fully non-linear large
deformation kinematics were gradually derived and, without claiming the following list to
be exhaustive, the reader is referred to Puso (2004), Puso and Laursen (2004a,b), B. Yang,
Laursen, and Meng (2005), Fischer and Wriggers (2005, 2006), Hesch and Betsch (2009),
and Tur, Fuenmayor, et al. (2009) for successful implementations.

A fundamental aspect of mortar methods is that the solution is enforced by using
Lagrange multipliers which, in order to preserve the accuracy of the solution, need to be
judiciously chosen. Given its importance to the mathematical structure and robustness
of the formulation, this topic has been extensively investigated and fundamental aspects
such as inf-sup stability conditions and optimal a priori error estimates have been care-
fully examined. The reader is referred to B. I. Wohlmuth (2012) and the references therein
for an overview in the context of domain decomposition techniques, and the contribu-
tions B. I. Wohlmuth (2011) and B. I. Wohlmuth, Popp, et al. (2012) in the context of
frictional contact. Nowadays, a popular choice for the Lagrange multiplier space is the
so-called dual Lagrange multipliers (B. I. Wohlmuth, 2000). In contrast with the standard
choice of mortar methods, dual Lagrange multipliers are of special interest because they
generate coupling conditions that are easier to realise, yet without compromising the
optimal convergence of the discretisation error. Early applications of this technique to
small deformation contact problems can be found in Hüeber and B. I. Wohlmuth (2005),
Brunssen et al. (2007), Flemisch and B. I. Wohlmuth (2007), and Hüeber, G. Stadler, et al.
(2008). In Hartmann, Brunssen, et al. (2007), the first steps towards the extension to finite
deformations were derived in the context of shell finite elements, with the full extension
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for general contact problems being carried out by Popp, Gee, et al. (2009) and Popp, Git-
terle, et al. (2010). The consistent treatment of particular cases such as partially integrated
domains (associated with dropping edge contact problems) can be found in Cichosz and
Bischoff (2011) and Popp, Seitz, et al. (2013) and second-order finite element interpola-
tion is addressed in Popp, B. I. Wohlmuth, et al. (2012). The inclusion of frictional contact
constraints amounts to Gitterle et al. (2010).

Another benefit of dual Lagrange multipliers is that the formulation is naturally suited
for the application of the so-called Primal-Dual Active Set Strategies (PDASS) to enforce
the contact constraints. The fundamental idea is to regularise the non-smoothness and
multivalued character of contact inequality constraints using Non-linear Complementar-
ity (NCP) functions. This makes it possible to apply a Newton-Raphson type algorithm,
comprising in an integrated manner all sources of non-linearities of the problem (includ-
ing the contact active set search itself). As well-known from the mathematical literature
on constrained optimization and applications in contact mechanics, the resulting PDASS
algorithms can be reinterpreted as semi-smooth Newton methods (Alart and Curnier,
1991; Strömberg et al., 1996; Christensen et al., 1998; Koziara and Bićanić, 2008).

For completeness, aside from mortar methods, a few alternative discretization meth-
ods have been proposed as well, see e.g., the contact domain method proposed in Oliver
et al. (2009) and Hartmann, Oliver, et al. (2009). Nonetheless, mortar-based contact formu-
lations have become well established and, in the meanwhile, can arguably be regarded as
the state-of-the-art method for computational contact mechanics. Recent developments
in the field of finite element mortar methods include to name only a few particularly
active research fields:

• Isogeometric analysis using NURBS (De Lorenzis, Temizer, et al., 2011; Temizer,
Wriggers, and T. Hughes, 2011, 2012; Seitz, Farah, et al., 2016), see De Lorenzis, Wrig-
gers, and T. J. Hughes (2014) for a review;

• Improved integration schemes (Farah, Popp, et al., 2015; Wilking and Bischoff, 2017);

• Smoothing techniques (Tur, Giner, et al., 2012);

• Complex interface laws, such as wear (Cavalieri and Cardona, 2013; Farah, Gitterle,
et al., 2016; Farah, Wall, et al., 2017; Doca and F. Andrade Pires, 2017);

• Mesh adaptivity (Kindo et al., 2014);

• Multigrid methods (Wiesner et al., 2018);

• Elasto-plastic contact (Seitz, Wall, et al., 2018).

• Termo-mechanical contact (Seitz, Popp, et al., 2015; Temizer, 2014; Dittmann et al.,
2014; Hüeber and B. Wohlmuth, 2009)

As a final remark, it is important to mention that mortar methods have caveats as any
numerical method. The main drawbacks are the higher computational cost associated
with the numerical evaluation of mortar integrals and the cumbersome consistent lineari-
sation within Newton-Raphson iterative procedures.
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1.4 Contact modelling across scales

The contact modelling techniques mentioned so far can be viewed as a particular case
of solid and structural mechanics, in which a purely macroscopic viewpoint based on
continuum assumptions is adopted; the actual interface is thought of as a surface with no
thickness. However, the mathematical notion of a surface (i.e., two-dimensional manifold
embedded in three-dimensional space) is an idealisation of a more complex reality, where
multiple time and length scales phenomena coexist. It is well-known that, at a sufficiently
small scale of observation, all engineering surfaces are, in fact, rough (Bowden and Tabor,
2001). For instance, Figure 1.3 shows experimental observations revealing that the real
contact area is much smaller than the apparent area. Typically, this is due to inevitable
abnormalities during manufacturing processes. Moreover, the surface can be covered by
a series of surface films, such as oxide, contaminant and lubricant layers, which further
increases the complexity of the physics occurring at the interface.

This has stimulated an active research field since the early 1970s, as surface roughness
is deeply connected with the contact properties, determining the morphology and me-
chanical response at the interface. Roughness can be directly related to the performance
of a mechanical component, since the irregularities on the surface may create nucleation
points for the formation of cracks or corrosion. Examples include the frictional response
of sliding contacts (Wriggers and Reinelt, 2009; Stupkiewicz et al., 2014; Wagner, Wriggers,
Veltmaat, et al., 2017), wear (Kubiak et al., 2011), electrical contact resistance (Greenwood,
1966), adhesion (Fuller and Tabor, 1975; Pastewka and Robbins, 2014) or thermal contact
resistance (Mikic and Rohsenow, 1966; Temizer, 2011; Anciaux and Molinari, 2013), just
to name a few.

Figure 1.3: Photomicrographs by Dieterich and Kilgore (1994) showing the real contact
area between rough acrylic plastic with increasing time of stationary contact
at 10 MPa normal stress. In red is represented the area of real contact after
1 s, while the yellow and blue areas are the increase in the area of real contact
after 100 s and 10000 s, respectively.
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Throughout the decades, the two main approaches to understand the effect of rough-
ness on contact have been:

• Analytical models based on experimental observations, phenomenological consid-
erations and basic principles of mechanics;

• Numerical models, e.g., based on the BEM, the FEM or discrete methods based on
molecular dynamics.

The multi-asperity analytical models have been, arguably, the most prominent methodol-
ogy. Typically, in these techniques, the response function for the normal stresses and the
true contact area is defined by using the solution of Hertz for elastic contact and/or other
more complex mathematical concepts (such as self-affine surfaces) as the theoretical
foundation. The pioneering work of Greenwood and Williamson (1966) is based on a dis-
tribution of heights and spheres, which has been the basis for several extensions, see, e.g.,
Greenwood (2006), Bush et al. (1975), and Afferrante et al. (2012). This type of analysis has
also been carried out to study other contact phenomena, e.g. friction anisotropy Mróz
and Stupkiewicz (1994) and Carbone, Lorenz, et al. (2009). Another popular analytical
model amounts to Persson (2001b), which establishes a scaling approach that includes
the presence of roughness on successive length scales; see Persson et al. (2005) for a
review. For a comprehensive overview and extensive list of references on the modelling
and simulation of tribology across scales, the interested reader is referred to the recent
overview by Vakis et al. (2018).

1.4.1 Computational contact homogenisation
While effectively capturing the influence of various parameters on the frictional re-

sponse, the aforementioned analytical models exhibit clear limitations when a quantita-
tive prediction is sought. Generally, the set of assumptions is rather restrictive and might
compromise the results for a wide range of conditions encountered in engineering appli-
cations, see Manners and Greenwood (2006), Carbone and Bottiglione (2008), Paggi and
Ciavarella (2010), and V. A. Yastrebov, Anciaux, et al. (2015) for a discussion on the sub-
ject. This fact, allied to the growth of computational power and contact algorithms over
the last decades, has fostered the numerical modelling of rough contact, which has be-
come increasingly adopted. In comparison with analytical models, these techniques are,
in general, more flexible, allowing for a more relaxed set of hypotheses and also for the
direct analysis of topography realizations. Examples of existing formulations include the
FEM (Hyun et al., 2004; Pei et al., 2005; V. A. Yastrebov, Durand, et al., 2011; Stupkiewicz
et al., 2014; Couto Carneiro et al., 2020), the BEM (Stanley and Kato, 1997; Polonsky and
Keer, 1999; V. A. Yastrebov, Anciaux, et al., 2015) and discrete methods based on molecular
dynamics (Campañá and Müser, 2006; C. Yang et al., 2006; Akarapu et al., 2011).

The foundation of computational rough contact models can be traced back to the
concept of homogenisation. By considering the interaction mechanisms at the micro-
scale, the objective is to provide a refined description of the macroscopic properties by
linking the two scales and, ultimately, an improved understanding of physical phenom-
ena. The major advantage is that more complex physics can be elegantly incorporated
in the formulation, with the potential to match experimental data both qualitatively and
quantitatively well. The fundamental concept behind homogenisation is the separation
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of scales, which is fulfilled whenever two physical entities of the body have very different
characteristic sizes—thus introducing the notion of macro-scale and micro-scale. The
basic idea is to establish a so-called representative element (Hill, 1963) and then solve its
equilibrium problem assuming a set of admissible boundary conditions, e.g., by means of
the FEM. The macroscopic continuum quantities (often referred to as homogenised quan-
tities) are typically linked to their micro-scale counterpart fields by means of some kind
of averaging process. This type of analysis has been extensively applied to the analysis
of heterogeneous bulk materials, which establishes the so-called Representative Volume
Element (RVE), see e.g., Moulinec and Suquet (1998), Michel et al. (1999), Ghosh and
Moorthy (1998), and Pinto Carvalho, Rodrigues Lopes, et al. (2018); see the overview by
Matouš et al. (2017).

Despite being widely applied within the context of the volumetric modelling of the
bulk of deformable solids, the concept of computational homogenisation can be applied
to interfaces as well (Stupkiewicz, 2007). When thinking about contact roughness, an es-
sential observation is that the characteristic dimension l of roughness features is much
smaller than the dimension L of the contacting bodies, i.e., L ¿ l ; see Figure 1.4 for an il-
lustration. This reassembles the principle of separation of scales and, therefore, naturally
fits a homogenisation framework. The physics occurring at both scales, despite being
intrinsically connected, is governed by different phenomena. At the micro-scale, contact
interaction occurs at small spots, leading to a highly inhomogeneous deformation field
governed by asperity interaction. At the macro-scale, it is the average contact traction
within the contact interface that influences the overall deformation of the bodies. Con-
tact homogenisation is based on the establishment of a Representative Contact Element
(RCE). It explicitly describes the topography, constitutive properties and local interaction
mechanisms of the contact surfaces, allowing to predict macroscopic contact properties
of interest, including friction, contact compliance, real contact area, thermal or electri-
cal contact conductance, wear, just to name a few. In the end, it allows replacing highly
complex and inhomogeneous surface layers of bodies in contact with a homogenized
interface, described by averaged properties obtained from the analysis of the micro-scale
(Stupkiewicz, 2007).

The main challenge for numerical models is related to the topographies’ discretiza-
tion, containing geometrical features that span a wide range of scales, making the mod-
els computationally demanding. For this reason, the most popular numerical technique
among the scientific community has been the BEM—precisely characterised by its re-
duced computational cost. However, its main disadvantage is that the bulk of the material
is modelled with fundamental solutions, which are only fulfilled for simple situations, e.g.,
elastic half-spaces under small deformations. Thus, while being extremely powerful in un-
derstanding the compression process under certain loading conditions and judging the
precision of analytical models, micromechanical contact is intrinsically a multi-physical
problem with many phenomena occurring at the contacting interface. As a consequence,
the application of the BEM to more complex scenarios becomes compromised (Vakis et
al., 2018). One of the most general and robust numerical methods is the FEM, which can
deal with several non-linearities simultaneously. However, this is achieved with consid-
erable computational effort. For this reason, the adoption of the finite element method
within the frictionless elastic contact analysis is more limited.
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Figure 1.4: Scale separation in the contact of rough bodies.

Early applications of contact homogenisation combined with the FEM can be found
in Tworzydlo et al. (1998), where contact homogenisation is applied in the context of
asperity-based small deformation contact. The macroscopic frictional and normal con-
tact behaviour of randomly rough surfaces is analysed through a combination of finite
element analysis of the surface asperities and statistical homogenisation techniques. In
Haraldsson and Wriggers (2000), the load and slip distance dependency of frictional be-
haviour between concrete and soil is investigated, considering elasto-plastic asperities un-
der the hypothesis of small strains. Already accounting for finite deformations, Bandeira,
Wriggers, et al. (2004) and Bandeira, Pimenta, et al. (2008) derived a micro-mechanically
motivated law to describe the variation of normal pressure during contact, by carrying
out three-dimensional finite element analyses of statistical surface models. Some notable
contributions using the finite element method include the works by Hyun et al. (2004),
Pei et al. (2005), and V. A. Yastrebov, Durand, et al. (2011). For completeness, other appli-
cations of computational contact homogenisation found in the literature using the FEM
include:

• Prediction of the macroscopic thermal response of contact interfaces between rough
surfaces (Temizer and Wriggers, 2010b; Temizer, 2014; Temizer, 2016);

• Friction anisotropy (Stupkiewicz et al., 2014);

• Eletrical contact (V. A. Yastrebov, Cailletaud, et al., 2015);

• Fretting wear (Pereira et al., 2017);

• Lubrication (Zhu and Y.-Z. Hu, 2001);
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It is noteworthy to mention that another concept closely related to contact homogeni-
sation is that of concurrent and hierarchical multi-scale modelling—in which two (or
more) different models associated with different scales exchange data continuously in a
fully coupled way. The work by Temizer and Wriggers (2008) uses this strategy to model
the contact interaction between a flat rubber block and a rigid base containing mov-
ing particles, also studying several aspects related to the RCE definition. Additional phe-
nomenological phenomena like visco-elastic constitutive behaviour, non-circular parti-
cles and homogenisation studies can be found in Temizer and Wriggers (2010a) and Tem-
izer (2013). One of the main challenges of these techniques regards the identification of
the entities and mechanisms relevant to the phenomena to be modelled.

1.4.2 Multi-scale rough contact modelling

While the contact homogenisation techniques can upscale the influence of inhomo-
geneities at the micro-scale to the macroscopic contact response, the problem of mod-
elling roughness at the micro-scale is still a major difficulty in terms of discretisation
requirements. This has originated what can be classified as another multi-scale contact
modelling class, in which the concepts of multi-scale modelling are applied to the micro-
scale itself. On its foundation is the consideration that the geometrical features of rough
profiles extend along with different length scales. In the work of Wriggers and Reinelt
(2009), the frictional contact between a flat rubber block and a rigid rough surface is ap-
proached with a formulation based on the Height Difference Correlation (HDC) function.
The rough surface is approximated by a sinusoidal function at each scale, whose ampli-
tude is selected from the spectrum of the HDC function. The main result of each scale is
a micromechanical friction law that can be inserted at larger scales. The algorithm has
a recursive character, deriving an effective macroscopic coefficient of friction function
dependent on the sliding velocity and normal pressure. Despite showing partially fair
agreement with experimental results, the downside of this technique is that the number
and frequency of the sinusoidal contributions in the contact description are not well-
established in the literature. In De Lorenzis and Wriggers (2013), this strategy is further
extended, and the numerical model improved by employing isogeometric analysis using
a mortar contact formulation. However, it also reports the quality and convergence of the
results to be difficult in some cases.

In the recent work by Wagner, Wriggers, Klapproth, et al. (2015), a simple information-
passing multi-scale scheme is proposed, which, as opposed to the previous approach,
directly models roughness with its asperities by its Power Spectrum Density (PSD). The
homogenisation procedure is based on the spectral decomposition of the topography. Dif-
ferent scales are obtained by splitting the PSD at different frequencies and filtering the to-
pography’s unwanted components. The algorithm’s main result is a constitutive frictional
law obtained from the results obtained at each scale, following an information-passing
scheme based on the evaluation of both the contact pressure and velocity distributions.

One key aspect of the techniques mentioned earlier is that the principle of scale sep-
aration is not fulfilled, since roughness covers a continuous spectrum of length scales,
i.e., the scales are not naturally separated. The smallest wavelength at a given scale is the
largest of the following smaller scale. This situation is pointed out by Wagner, Wriggers,
Veltmaat, et al. (2017), which is part of the motivation for the simplified homogeniza-
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tion scheme proposed in that contribution (together with the inclusion of adhesion). It
consists of applying a smoothing operation to the pressure downscaling procedure. The
average contact pressure and the tangential velocity at a given scale are enforced on the
following smaller scale. Then, the full-scale results are obtained through multiplicative
homogenization by upscaling the friction coefficient and real contact area.

In conclusion, the continuous effort from the scientific and industrial communities
to address contact interface problems from many different perspectives resulted in a
collection of modelling techniques for a range of different types of problems. However,
while nowadays elastic problems of great complexity can be solved successfully at various
scales, significant effort is still required to incorporate effects like plasticity, adhesion,
friction, wear, lubrication and surface chemistry in tribological surfaces. Although still
challenging to develop (mainly due to the multi-disciplinary character), multi-scale and
multi-physics models are entirely suitable to address this class of problems.

1.5 Objectives

The main goal of the present work is to develop a computational framework for the anal-
ysis of tribological systems at multiple scales using the FEM. The starting point is to
review and implement an efficient and robust algorithm for general, fully non-linear
contact problems. The class of mortar finite element algorithms is selected, focusing
in particular on the so-called dual mortar method. As mentioned, mortar methods fea-
ture a well-established mathematical foundation for their application to many different
physical problems, including finite deformation contact. Their mathematical foundations
comprise mixed variational formulations and easy-to-construct Lagrange multiplier inter-
polations, satisfying necessary conditions such as inf-sup and mathematical optimality.
Dual Lagrange multipliers, in particular, are especially advantageous for mortar-based
contact algorithms, as they inherently lead to contact constraints that are easier to re-
alise, while being perfectly suited for the application of efficient primal-dual active set
strategies.

Then, attention is shifted towards contact homogenisation. However, an additional
stage is introduced, in which the dual mortar contact algorithm is further optimised for
the particular case of Signorini contact, i.e., the contact of a deformable body against a
rigid foundation. This assumption is a commonly found scenario in contact homogenisa-
tion, with origin in a well-known result from contact mechanics. If there is no friction or
adhesion between two rough surfaces and the surface slope is small, the elastic contact
between two rough surfaces can be mapped to the contact between an equivalent single
rough surface and a rigid flat (Johnson, 1987). As mentioned, the main drawback of mor-
tar methods is, arguably, its higher computational cost, especially in three-dimensional
problems. Therefore, this motivates the development of strategies to reduce the compu-
tational complexity, mainly by exploiting the simplifications associated with the Signorini
contact. More specifically, the variational formulation using a Petrov-Galerkin scheme is
further investigated, together with a new definition for the nodal orthonormal moving
frame attached to each contact node.

The last point addressed in the present work regards the multi-scale modelling of
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rough contact. The combination of the micromechanical contact problem being approxi-
mated with the FEM, with the discretization requirements related to rough surfaces (cov-
ering geometrical features that span multiple physical scales), prompts the development
of alternative techniques. As a general guideline, this is to be accomplished without af-
fecting the flexibility achieved with the FEM—one of its strongest points. To achieve this
goal, a new homogenisation algorithm is proposed to predict in an efficient way the real
contact area. It enhances the information-passing scheme of the original algorithm pro-
posed by Wagner, Wriggers, Veltmaat, et al. (2017) by considering the contact pressure
field’s statistics. The cornerstone of this algorithm is the split of the PSD function of the
rough topography, in combination with a new multiplicative homogenization scheme.
Additionally, the definition of the splitting roughness frequencies, the methodology for
the generation of topographies of the individual scales and the numerical investigation
of the violation of the principle of scale separation is also investigated.

1.6 Outline

After this introductory chapter covering the motivation and literature overview on com-
putational contact mechanics, at both macro-scale and micro-scale, the remainder of this
document is organized as follows.

Chapter 2 – From Non-Linear Continuum Mechanics to Dual Mortar Contact

In this chapter, the relevant governing equations describing the physical laws of large
deformation contact mechanics are outlined. The starting point is the general non-linear
continuum mechanics framework, introducing the fundamental concepts of kinemat-
ics, strain and stress measures, constitutive laws and balance equations. Then, the initial
boundary value problem of finite deformation frictional contact is enunciated, discussing
the fundamental concepts of continuum contact kinematics, together with normal and
frictional contact constraints. The continuum framework is completed with a thorough
description of the mathematical variational framework needed to develop weak state-
ments for finite deformational frictional contact. It includes the introduction of the appro-
priate solution spaces, along with the reformulation of contact constraints as variational
inequalities.

Chapter 3 – Discrete Dual Mortar Contact Formulation and Global Solution Strategy

This chapter is dedicated to the application of the FEM to approximate the dual-
mortar contact problem derived in Chapter 2. It features a description of critical aspects
such as the numerical integration procedure for the mortar integrals and the choice for
the discrete Lagrange multiplier spaces. The employed primal-dual active set strategy
for the treatment of contact constraints is introduced, followed by the resulting semi-
smooth Newton solution method—including a detailed derivation of the required lin-
earisations. Along with the final algorithm, a suitable algebraic representation for the
resulting linearised system of equations is derived as well. Closely related to this chapter
is Appendix A, which comprises all details concerning the consistent linearisation of mor-
tar contact formulations, including a detailed algebraic representation of all the terms
needed for the actual implementation of the algorithm.
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Chapter 4 – Computational Implementation Approach and Numerical Validation

This chapter starts with a brief description of the devised implementation of the algo-
rithm, emphasizing the employed object-oriented programming approach. Then, several
examples are analysed in order to evaluate and validate the mortar-based contact al-
gorithm, investigating various important properties of the method, such as consistency,
convergence rates and capability to deal with simultaneous non-linearities.

Chapter 5 – An Efficient Dual Mortar Contact Technique for Rigid/Deformable Interac-
tion

An efficient version of the dual mortar contact algorithm is proposed in this chapter.
In the first stage, the simplifications involved in going from unilateral to rigid contact
are described and the formulation of the dual mortar algorithm is derived. Then, the first
concept to be analysed in more detail is the Petrov-Galerkin technique, showing its partic-
ular importance within rigid contact. The extension of this formulation towards quadratic
finite element interpolation is also carried out, by employing a piecewise linear interpola-
tion scheme for the variation of the Lagrange multipliers. The second idea regards a new
definition for the nodal orthonormal frame attached to each contact node, based on the
projection of frames from the rigid side to the deformable boundary. Lastly, several ex-
amples are shown in order to investigate critical aspects of the algorithm, such as spatial
convergence rates, consistency and improvement on computational complexity.

Chapter 6 – An Efficient Multi-scale Strategy to Predict the Real Contact Area

The multi-scale approach to contact homogenisation proposed in this work is ex-
plained in this chapter. In a first step, the micromechanical rough contact problem is
introduced by defining the concept of RCE. It is followed by an explanation of the tech-
nique used for the generation of rough boundaries using the power spectrum model.
Then, the proposed multi-scale strategy is described in detail, including the topography
decomposition method, the process for generating rough topographies for each scale,
and the new multiplicative homogenization scheme. The proposed multi-scale formula-
tion is validated, analysing the impact of key aspects such as the discretization error, the
number of scales, or bulk material constitutive behaviour. Particular attention is given
to the violation of the principle of scale separation by comparing the results obtained
with the original full-size problem and the multi-scale solution. The improvement in the
multi-scale algorithm’s computational performance over the original problem is quanti-
tatively measured, including a comparison between the proposed method with several
solutions available in the literature.

Chapter 7 – Summary and Outlook

The final chapter summarizes the most important results and accomplishments. Im-
portant aspects of mortar finite element methods are pointed out, giving insight into
future challenges on multi-scale contact modelling as well.
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1.7 Contributions

Most of the work developed in this thesis has either been published, submitted, or is
currently in preparation for submission. The main contributions are summarized in what
follows:

• Overview and detailed derivation of fully non-linear dual mortar contact, including
algebraic representations for all the terms involved and necessary for the actual
computational implementation.

• Incorporation of the dual mortar contact algorithm within the micro-scale mod-
elling of heterogeneous materials. This work was motivated by the previous ex-
perience of the author in volumetric homogenisation, analysing the constitutive
behaviour of a two-phase composite with debonded inclusions, and has been pre-
sented in the following communication:

R. Pinto Carvalho, A. M. Couto Carneiro, F. M. Andrade Pires, T. Doca
Computational Homogenization of Heterogeneous Materials
in the Presence of Contact Interactions
13th World Congress on Computational Mechanics (WCCM)

New York, NY, USA, July 22-27, 2018

• Implementation of an RCE model under fully non-linear assumptions, establishing
a computational homogenisation framework. This was the ground foundation for
a contribution on the representativeness of the RCE for micromechanical contact
of self-affine topographies:

A. M. Couto Carneiro, R. Pinto Carvalho, F. M. Andrade Pires
Representative Contact Element Size Determination
for Micromechanical Contact Analysis of Self-Affine Topographies
International Journal of Solids and Structures 206, pp. 262–281, 2020
Reference: Couto Carneiro et al. (2020)

• New dual mortar contact method for the efficient modelling of rigid/deformable
interactions. This contribution is submitted in a scientific journal and currently
under review:

R. Pinto Carvalho, A. M. Couto Carneiro, F. M. Andrade Pires, A. Popp
An Efficient Contact Algorithm for Rigid/Deformable Interaction
based on the Dual Mortar Method
Reference: Pinto Carvalho, Couto Carneiro, F. M. Andrade Pires, and Popp (2022)
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• Assessment on equivalent modelling of rough contact. This contribution ascertains
the assumption of mapping the contact between two rough surfaces to the contact
between an equivalent single rough surface and a rigid flat, and has been presented
in the following communication:

R. Pinto Carvalho, A. M. Couto Carneiro, F. M. Andrade Pires, T. Doca
A Multiscale Approach to Equivalent Modelling of Rough Contact
15th U. S. National Congress on Computational Mechanics (USNCCM)

Austin, TX, USA, July 28–Aug. 1, 2019

• Efficient multi-scale algorithm for the evaluation of the evolution of the real contact
area fraction between rough surfaces:

R. Pinto Carvalho, A. M. Couto Carneiro, F. M. Andrade Pires, T. Doca
An Efficient Multiscale Strategy to Predict the Evolution
of the Real Contact Area of Rough Surfaces
Tribology International 165, pp. 107255, 2022
Reference: Pinto Carvalho, Couto Carneiro, F. M. Andrade Pires, and Doca (2022)
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Chapter 2

From Non-Linear Continuum Mechanics to
Dual Mortar Contact

An introduction of the fundamental governing equations that describe large deforma-
tion contact is presented in this chapter. Starting with a brief overview on the essential
concepts of continuum mechanics, the important concepts of continuum contact kine-
matics and the associated contact constraints are introduced. The initial boundary value
problem of finite deformation frictional contact is enunciated. Then, the final step in
continuum specification of the frictional contact problem in large deformations is accom-
plished in the second part of this chapter, by deriving weak statements of the problem.
The mathematical structure is analysed in a variational context, thus setting the basis for
the application of displacement-based finite element discretization methods. Because the
equations describing the behaviour of each body do not change from typical non-linear
finite deformation problems, special attention is given to additional terms that emerge
from the contact interactions.

2.1 Continuum mechanics and governing equations

A brief overview of the fundamental concepts of non-linear continuum mechanics sets
the starting point for all other concepts discussed in this thesis. The presentation is kept
short, having as objective only the establishment of basic conceptual and notational foun-
dations for the study of computational contact mechanics to follow. For those who are
not familiar with and do not have a strong background in these topics, the classical text-
books by Bonet and Wood (2008), Holzapfel (2000), and Gurtin et al. (2010), for example,
are recommended.

2.1.1 Kinematics

The general continuum mechanics framework departs from the understanding of
the geometrical description of motion and deformation kinematics. The classical (Boltz-
mann) continuum model in a Euclidean space description is assumed. As indicated, the
Lipschitz bounded open set Ω0 ⊂Rd represents the bounded body in the reference con-
figuration, and point P ∈ Ω0 is referred by the position vector X . The symbol d stands
for the number of spatial dimensions, i.e., d = 2,3. During deformation, each point X is
mapped from the reference configuration Ω0 to the current configuration Ωt by a bijec-
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tive non-linear deformation map ϕ at each time instant t , which tracks its motion,

x =ϕ(X , t ) . (2.1)

The function ϕ is a one-to-one mapping such that superposition of material points is not
allowed. The absolute displacement of the material point is described as

u(X , t ) = x(X , t )−X . (2.2)

At this stage, one needs to choose the type of description for the problem. In a Lagrangean
(material) description of motion, the independent variable is the position vector in the
reference configuration, X , which is known a priori. The current position x is treated as a
dependent variable on the primary unknown to be solved: the deformation map ϕ(X , t ),
or equivalently the displacement vector u(X , t ). In an Eulerian (spatial) description, a
specific point in space is monitored, i.e., x is set as an independent variable.

Figure 2.1: Illustration and nomenclature of the deformable body at the reference and
current configurations.

The boundary of the deformable body in the reference configuration, denoted as
∂Ω0, is divided into two open disjoint open subsets: the Neumann partition Γσ, with
prescribed stresses; the Dirichlet partition Γu , with prescribed displacements. These are
the boundary conditions of the problem, and verify

∂Ω0 = Γu ∪Γσ ,

Γu ∩Γσ =; .
(2.3)

The counterparts in the reference configuration read γσ and γu .
A fundamental measure of deformation and strain of the body within finite defor-

mation is given by the deformation gradient. Here denoted by F , it is a second-order
tensor defined as the partial derivative of the current configuration x with respect to the
reference configuration X , i.e.,

F ≡ ∂x(X , t )

∂X
= I + ∂u(X , t )

∂X
. (2.4)
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Here, I is the second-order identity tensor. The deformation gradient is categorized as
a two-point tensor, as it features one basis defined in the current configuration and the
other in the reference configuration. Geometrically, it describes the mapping of an in-
finitesimal line element dX in the reference configuration to a corresponding line ele-
ment dx in the current configuration. The Jacobian determinant of the deformation, J ,
corresponds to the determinant of the gradient tensor

J ≡ det(F ) (2.5)

and relates the volumes in the reference and current configuration, denoted dV0 and dV ,
accordingly, i.e.,

dV = JdV0 . (2.6)

The physical condition of the material not being able to interpenetrate itself requires that

J > 0 , (2.7)

which also ensures that the transformation between reference and current configurations
is well-defined.

2.1.2 Strain measures

As a first step in quantifying finite strains, it may be noticed that the following decom-
position can always be made:

F = RU =V R . (2.8)

Equation (2.8) is often referred to as the polar decomposition theorem, according to which
any deformation can be split into two parts. A volume-preserving rigid body motion is
represented by the orthogonal rotation tensor R . A volume-changing part, represented
by the positive definite tensors U and V , also commonly called right and left stretches,
respectively. This means that various strain measures can be derived from the deforma-
tion gradient, which may depend on either the reference of current configurations (recall
that, being a two-point tensor, depends on both configurations).

When employing a Lagrangean description of motion, defining a strain measure de-
scribed in the reference configuration makes sense. Therefore, one can define the right
Cauchy-Green tensor,

C = F TF , (2.9)

which proves to be a proper foundation for the definition of a strain measure—mainly
because the C is an objective measure, i.e., it is not affected by rigid body motions con-
tained in the deformation gradient. To ensure a consistent definition of zero strain state
in the undeformed (reference) configuration, the so-called Green-Lagrange strain tensor
E is defined as

E = 1

2
(C − I ) . (2.10)

For the sake of completeness, it should be mentioned that strain measures are not unique
and other alternatives can be derived, e.g., depending only on the current configuration,
like the left Euler-Almansi tensor.
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2.1.3 Stress measures

In parallel with motion and strain measures, the fundamental concept of internal
stress is responsible for describing the internal forces that neighbouring particles of a
continuous medium exert on each other. The Cauchy stress tensor, σ, widely known from
the theory of infinitesimal deformations, is a stress measure that states the true internal
force in the body f to be

d f =σ ·dA n , (2.11)

with n denoting the outward normal vector to the surface element of area dA in the
current configuration. The Cauchy stress tensor is symmetric due to equilibrium consid-
erations, with diagonal and off-diagonal components being interpreted as normal and
shear stresses.

Alternatively, one can map the surface element area in the reference configuration
onto the resulting spatial force, by defining the first Piola-Kirchhoff stress tensor P , i.e.,

P = J σ ·F−T . (2.12)

Introducing the outward normal N to the surface element of area dA0 in the reference
configuration, it follows that

d f = P ·dA0 N . (2.13)

By further mapping the resulting force vector to the reference configuration, it is possible
to describe the internal forces in the body purely based on quantities in the reference
configuration, leading to the definition of the second Piola-Kirchhoff tensor S. Mathemat-
ically, it reads

S = F−1 ·P = JF−1 ·σ ·F−T . (2.14)

Like the Cauchy stress, the second Piola-Kirchhoff tensor is a symmetric tensor. However,
it does not have a clear physical interpretation, due to the pull-back operations involved.

As mentioned, a variety of strain and stress measures are available in non-linear con-
tinuum mechanics. Notwithstanding, these cannot be combined arbitrarily, but instead
defining the strain-stress pairs based on the concept of energy conjugate pairs, which
guarantee that the internal work is the same across configurations (Bonet and Wood,
2008).

2.1.4 Constitutive laws

Having introduced the descriptions for strain and stress, the missing element is the
constitutive relation relating both quantities, i.e., linking kinematics and material re-
sponse. Often termed as constitutive models, it can be expressed in terms of a strain
energy function Ψ (also known as elastic potential). It only depends upon the current
state of deformation, satisfying the physical requirements of objectivity and verification
of the second law of thermodynamics. For example, a standard formulation relates the
second Piola-Kirchhoff tensor S and the Green-Lagrange strain tensor E as

S = ∂Ψ

∂E
. (2.15)
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From this consideration, one can define the fourth-order constitutive tensor, CCC , specify-
ing the relation between increments in stress and strain to be

CCC = ∂S

∂E
. (2.16)

The choice for the definition of the strain energy function Ψ and constitutive tensor
CCC goes along with the type of material being modelled and its properties which, for
instance, can incorporate hyperelasticity or viscoelasticity. For further details concerning
constitutive modelling, the interested reader is referred to the abundant literature, e.g. in
Ogden (1997), Simo and T. J. R. Hughes (2006), Holzapfel (2000), and Neto et al. (2011).

2.1.5 Balance equations

Beyond the continuous descriptions of motion, strain, stresses and constitutive laws,
mechanical systems must always verify the fundamental laws of physics—conservation
of mass, equilibrium of linear and angular momentum and energy balance. Additionally,
there exist also conservation laws which, altogether, are applicable to any material and
must be satisfied at all times. Equilibrium of angular momentum reduces to the sym-
metry conditions of the Cauchy and second Piola-Kirchhoff stress tensors. As for energy
balance, since purely mechanical systems are considered throughout this work (i.e., no
other form of energy is taken into account), it becomes redundant with linear momen-
tum equilibrium. The conservation of mass and equilibrium of linear momentum are
introduced next. For the sake of brevity and scope of this work, no reference will be given
to the thermodynamic principles.

2.1.5.1 Conservation of mass

Every continuum body has mass, here denoted by m, and is a fundamental physical
property, directly related to the amount of material that the body contains. The conser-
vation of mass ensures that this quantity remains invariant during motion. Denoting ρ0

and ρ the body density at the reference and current configurations, respectively, it reads

dm

dt
= d

dt

∫
Ω0

ρ0 dV0 = d

dt

∫
Ωt

ρ dV = 0 . (2.17)

By applying Reynold’s transport theorem and taking into account that the reference con-
figuration does not depend on time, the conservation of mass reduces to the local verifi-
cation of

ρ̇+ρdiv u̇ = 0 ,

ρ̇0 = 0 .
(2.18)

In the above, the notation ˙(•) denotes the total time derivative and div (•) the spatial
divergence.

2.1.5.2 Equilibrium of linear momentum

The momentum balance principles can be interpreted as generalisations of Newton’s
first and second principles of motion to the context of continuum mechanics. In this
work, one quasi-static problem is considered, which yields the linear momentum to be
null. Under this condition, the balance of linear momentum reduces to the equilibrium
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between internal and external forces. By denoting body forces by b and the surface trac-
tion by t , both in the current configuration, the equilibrium of forces writes∫

Ωt

b dV +
∫
∂Ωt

t dA = 0 . (2.19)

After application of the Gauss divergence theorem, the linear momentum equilibrium
can be conveniently rewritten as

divσ+b = 0 . (2.20)

It should be noted that equivalent versions of the conditions above can be derived based
on the reference configuration of the body. These equations are also widely known as the
strong equilibrium equations.

2.1.6 The strong form of non-linear solid mechanics problems
At this point, all the fundamental concepts for the definition of the Initial Boundary

Value Problem (IBVP) are introduced, leading to a set of coupled second-order partial
differential equations satisfying a given set of boundary conditions:

Problem 2.1 (Strong form of IBVP of finite deformation non-linear solid mechanics)
For every solid Ωt , the deformed configuration must verify the system of equations that
encompasses both the momentum balance and the boundary conditions of the problem:

divσ+b = 0 , in Ωt , (2.21a)

u = ū , on γu , (2.21b)

σn = t̄ , on γσ , (2.21c)

where ū and t̄ denote the prescribed displacements and surface tractions at the current
configuration Dirichlet and Neumann boundaries, accordingly.

2.2 Contact kinematics

In standard non-linear solid mechanics, both Dirichlet and Neumann boundaries are es-
tablished a priori, meaning that either the prescribed displacements or the external forces
are known for the entire boundary of the body throughout the deformation process. The
extension of such a framework to account for potential contact interaction is based on
the apparent observation that an additional contact boundary exists, which is unknown
beforehand and changes continuously over time. This introduces an additional source of
non-linearity into the continuum mechanics formulation.

From a mathematical problem formulation standpoint, contact methods can be classi-
fied into several different categories. The one-body contact problem against a rigid obsta-
cle (commonly termed as Signorini contact), self contact and contact involving multiple
bodies are examples of problem types within the field of contact mechanics. Nonetheless,
attention is given to the general problem formulation of two deformable bodies under-
going large deformations and potentially contact interactions at this stage. It allows for
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the introduction of all the essential mathematical foundations of contact kinematics and
contact constraints.

Therefore, without loss of generality, attention is directed to Figure 2.2, which illus-
trates contact interactions between two deformable bodies undergoing finite deforma-
tions. The superscript s stands for the non-mortar body and m for the mortar body.* As
the two bodies experience motion and potentially come into contact, their boundaries
∂Ωi

0, i ∈ {s,m}, can be divided into three open disjoint subsets, satisfying for each of the
bodies i the relations

∂Ωi
0 = Γi

u ∪Γi
σ∪Γi

c ,

Γi
u ∩Γi

σ = Γi
u ∩Γi

c = Γi
σ∩Γi

c =; .
(2.22)

Recall that Γi
u and Γi

σ refer to the well-known Dirichlet and Neumann boundaries, respec-
tively, and Γi

c represents the potential contact surface. The counterparts in the current
configuration Ωs

t and Ωm
t ⊂ Rd , also satisfying Equation (2.22), are denoted as γi

u , γi
σ

and γi
c, respectively. As already mentioned, one of the challenges of contact modelling is

the fact that the so-called active boundary Γi
a ⊆ Γi

c is unknown beforehand and continu-
ously changes over time. For the sake of completeness, the currently inactive boundary
Γi

i = Γi
c \Γi

a should by interpreted as part of the Neumann boundary Γi
σ.

Figure 2.2: Two body unilateral contact problem illustration and nomenclature at the
reference and current configuration.

*The classical nomenclature in contact mechanics of slave/master bodies can be easily recovered as,
equivalently, s refers to the slave and m to the master domains.
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2.2.1 Gap function
The first step towards the establishment of the normal contact constraints requires

the definition of fundamental measures for the proximity, potential contact and pen-
etration of two bodies. Therefore, and first of all, it proves convenient to choose one
boundary—the non-mortar subset γs

c—as the one used to parametrise contact, such that
the relative position of points belonging to this boundary is monitored with respect to
the other boundary—the mortar subset γm

c . Consequently, the contact conditions are
parametrised by xs ∈ γs

c, with the opposing mortar subset γm
c providing the additional

geometric information necessary for the definitions.

Remark. Since contact interaction takes place at bodies in their current configuration,
the foregoing exposition follows an Eulerian description of continuum mechanics.

For any point xs ∈ γs
c, a contact point x̂m ∈ γm

c on the mortar boundary is determined
as the projection of xs onto γm

c along the current outward unit normal vector η
(
xs, t

)
on

the non-mortar boundary γs
c (see Figure 2.3). This projection from the non-mortar onto

the mortar contact boundaries is represented by the smooth interface mapping operator

R :

{
γs

c → γm
c

xs 7→ x̂m (
xs, t

) (2.23)

which is assumed to be well defined. Note that the point x̂m is the result of the smooth
mapping ϕm of the corresponding point X̂ m in the reference configuration Γm

c , i.e.,

x̂m =ϕm (
X̂ m, t

)
, (2.24)

meaning that both x̂m and X̂ m are associated with xs via the described projection. This
also means that each contact pair possibly changes over time.

Figure 2.3: Schematic description of basis vectors and gap definition.

The so-called gap function g
(
xs, t

)
at a point xs ∈ γs

c in the current configuration may
then be introduced as

g
(
xs, t

)≡−η(
xs, t

) · [xs − x̂m (
xs, t

)]
. (2.25)
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This scalar quantity provides the fundamental geometrical measure employed to formu-
late the normal contact constraints. Figure 2.3 can be consulted for a schematic visuali-
sation of its geometrical interpretation. Note that points currently in contact are charac-
terised by the condition g

(
xs, t

)= 0. The gap vector g
(
xs, t

)
follows as

g
(
xs, t

)≡ xs − x̂m (
xs, t

)
. (2.26)

It is noteworthy to mention that the approach followed here differs from the classical
Closest Point Projection (CPP), which considers the projection based on the outward unit
normal to the current mortar surface γm

c . Even though the CPP is commonly adopted
in the context of note-to-segment discretisation techniques, for mortar finite element
discretisation the approach followed here has some practical advantages, as discussed in
more detail in Section 3.7. Nonetheless, a comprehensive overview of the closest point
projection can be found in Konyukhov and Schweizerhof (2013), which includes an ex-
tensive mathematical treatment of potential pitfalls due to non-uniqueness.

2.2.2 Frictional kinematics on interfaces
Paramount to characterising the frictional constitutive behaviour in the tangential

direction is the definition of the kinematic quantities on the contact surface. More pre-
cisely, the primary kinematic variable of interest is the relative tangential velocity between
a given point xs of the non-mortar boundary γs

c and its opposing point x̂m on the mor-
tar side γm

c . In a general framework entirely suitable for evolutionary frictional constitu-
tive laws, this quantity serves as a slip rate change measure and is particularly charac-
terised by depending on former states of motion. Even though several alternatives have
been proposed in literature—which are usually motivated by the discretisation technique
employed—the two most well-known approaches are introduced below: the formulation
using slip advected bases and the formulation by the difference of material velocities.

2.2.2.1 Formulation using slip advected bases

The treatment of frictional contact based on slip advected bases has its foundations
in the formulation of NTS algorithms, e.g., in Laursen and Simo (1993). This is mainly
motivated by the spatial discretisation characteristics, which prove to be entirely suitable
for mathematical treatment in light of differential geometry. When modelling tangential
interactions in this framework, it is possible to capture tangential interactions in the
covariant form and benefit from a clear physical interpretation of the quantities involved.
A fully covariant description for a consistent formulation following this approach can be
found in Schweizerhof and Konyukhov (2005).

The formulation of the slip advected bases requires the introduction of additional
notation, namely the specification of the underlying parametric representation of the
mortar boundary. Both subsets Γm

c and γm
c can be considered to be (d −1)-dimensional

manifolds in Rd , with coordinate systems given by the parametrizations

Γm
c =Ψm

0

(
A m)

,

γm
c =Ψm

t

(
A m)

,
(2.27)

where the parameter space A m ⊂ Rd−1 and the continuous mappings Ψm
0 and Ψm

t are
assumed smooth. General points of A m are denoted as ς and the particular point corre-
sponding to x̂m

(
xs, t

)
is similarly marked with ς̂

(
xs, t

)
.



26 Chapter 2

Since this formulation is established by writing frictional governing equations for a
point xs ∈ γs

c opposing the boundary γm
c , it proves convenient to introduce a basis that is

advected with each point xs throughout the deformation process—hence the designation
slip advected bases. Therefore, the following definitions are introduced (see Figure 2.4)

Tα ≡Ψm
0,α

(
ς̂

(
xs, t

))
,

tα ≡Ψm
t ,α

(
ς̂

(
xs, t

))
, α= 1, . . . ,d −1 .

(2.28)

Herein, the lowercase index α is reserved for quantities expressed on this basis. For nota-
tional convenience, the arguments of Tα and tα are suppressed, with the consideration
that they are always associated with a non-mortar point xs ∈ Γs

c and evaluated according
to its projection to γm

c , which is parametrised by ς̂
(
xs, t

)
.

Figure 2.4: Illustration of the parametric representation of the mortar domain and slip
advected bases.

Finally, to express the relative velocity by resorting to the slip advected bases, one may
consider that both points xs and x̂m remain coincident in space during perfect sliding.
This implies that the gap vector g

(
xs, t

)
and its total time derivative remain zero, viz.

ġ
(
xs, t

)= 0 . (2.29)

Remark. Because the fundamental kinematic field involved is the velocity field, a La-
grangian description is exceptionally preferred to facilitate the notation until the end of
this section. Nonetheless, it should be kept in mind that the original Eulerian description
can be easily recovered, understanding that both representations are related by

X s = [
ϕs (

xs, t
)]−1 . (2.30)



From Non-Linear Continuum Mechanics to Dual Mortar Contact 27

Recalling the definition of the gap vector given in Equation (2.26) (including the ap-
plication of the chain rule), it follows that

0 = d

dt

[
xs − x̂m (

xs, t
)]

= d

dt

[
ϕs (

X s, t
)−ϕm (

X̂ m (
X s, t

)
, t

)]
= Vs (

X s, t
)−Vm (

X̂ m (
X s, t

)
, t

)−F m (
Ψm

0

(
ς̂

(
X s, t

))) d

dt

[
X̂ m (

X s, t
)]

,

(2.31)

where F m is the deformation gradient of the mortar body. This equation can be conve-
niently rearranged as

Vs (
X s, t

)−Vm (
X̂ m (

X s, t
)

, t
)= F m (

Ψm
0

(
ς̂

(
X s, t

))) d

dt

[
X̂ m (

X s, t
)]

, (2.32)

and, upon examination, the quantity in the left-hand side is recognized as the difference
of the material velocities associated with the points X s and X̂ m, thus physically repre-
senting the instantaneous relative velocity:

υ
(

X s, t
)≡ Vs (

X s, t
)−Vm (

X̂ m, t
)

. (2.33)

Moreover, it also follows that while sliding is occurring, the relative velocity can also be
expressed by the right-hand side. As explained in more detail below, this geometric object
comprises a change of contact projection, thus enabling to write the relative velocity in
terms of vectors in the tangent spaces of Γm

c and γm
c .

Remark. It is noteworthy to mention that the slip rate measures derived from Equa-
tion (2.32) are only exact in the case of perfect sliding and persistent contact. In the case
of violation of these assumptions (as would occur, for instance, if the point xs become
out of contact), their precise physical interpretation becomes compromised. Nevertheless,
typically this approach is still employed for quantifying relative tangential movement
(Laursen, 2013).

In view of Equation (2.32), the spatial relative velocity can be defined as

υt
(

X s, t
)≡ F m (

Ψm
0

(
ς̂

(
X s, t

))) d

dt

[
X̂ m (

X s, t
)]

, (2.34)

and, likewise, the convected relative velocity as

υT
(

X s, t
)≡ d

dt

[
X̂ m (

X s, t
)]= ˙̂ςα

(
X s, t

)
Tα . (2.35)

Expressions for the components ˙̂ςα
(

X s, t
)

can be found in Laursen (2013).
Examination of the definitions above reveal that υT

(
X s, t

)
represents the pull back

operation of υt
(

X s, t
)

by the deformation map ϕm. Consequently, the spatial relative
velocity can also be written as

υt = ˙̂ςα
(

X s, t
)

tα , (2.36)

since, by virtue of the chain rule,
tα = F m Tα . (2.37)
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This means that the spatial relative velocity υt
(

X s, t
)
, although associated with a material

point X s ∈ Γs
c, physically represents a vector expressed in spatial coordinates. Additionally,

from Equation (2.35) and Equation (2.36), one can conclude that the components of
υT

(
X s, t

)
in the Tα basis are equal to those of υt

(
X s, t

)
in the tα basis. In other words,

the components of υT
(

X s, t
)

are the same as those obtained by expressing υt
(

X s, t
)

in
a basis attached—convected—to Γm

c as it deforms. These two definitions for the relative
velocity motivate the formulation of a frictional constitutive modelling framework either
in the spatial kinematic frame—with the equations cast in terms of υt

(
X s, t

)
—or in the

convected kinematic frame—considering instead the quantity υT
(

X s, t
)
. A comprehensive

treatment of these formulations has been firstly presented in Laursen (1994).

2.2.2.2 Formulation by the difference of material velocities

The formulation of frictional contact based on the difference of material velocities
has been carried out mainly in the context of mortar finite element discretisation. This
is due to the fact that, even though not strictly required, mortar-based frictional slid-
ing is typically described by means of mortar projected kinematics, which implies the
governing frictional laws to be fulfilled point-wise at non-mortar nodes. Examples of
this approach can be found in Puso and Laursen (2004b), B. Yang, Laursen, and Meng
(2005), Puso, Laursen, and Solberg (2008), and Gitterle et al. (2010). Following an alterna-
tive technique, Fischer and Wriggers (2006) and Tur, Fuenmayor, et al. (2009) proposed a
mortar-based framework in which frictional constitutive laws are evaluated at quadrature
points. This method emerges as the result of the applied integration scheme, with the par-
ticular advantage within the frictional context of exploiting the quantities derived using
slip advected bases. However, while benefiting from a strong continuum framework, the
integration method possibly leads to discontinuities of the integrand. This has practical
implications and numerical experience has shown very sensitive results—especially in
the tangential direction—with regard to the employed number of integration points and
finite element mesh size ratio between contacting domains (Fischer and Wriggers, 2006;
Farah, Popp, et al., 2015). Hence, aiming at a robust frictional contact modelling algorithm
fully suitable for further extension, this approach is not followed here and attention is
given to mortar projected kinematics instead.

Recalling Equation (2.32), the relative velocity can be represented in terms of mate-
rial velocities by considering the quantity υ

(
X s, t

)
defined in Equation (2.33). For perfect

sliding, which assumes the contact points to remain exactly coincident during active
sliding, this quantity acts in the tangential plane. However, as already mentioned, when
this assumption is not valid, this quantity may lose its precise interpretation as the rela-
tive tangential velocity. Therefore, in order to remove a potential normal component, the
difference in material velocities is projected in the tangential plane as follows:

υτ
(

X s, t
)≡ (

I d −η⊗η)
υ . (2.38)

Alternatively, one can expose the relative material velocity components, υτα
(

X s, t
)
, along

each tangential direction τα by writing

υτ
(

X s, t
)≡ d−1∑

α=1
υτατα . (2.39)
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Here, the vectors τα are unit tangent vectors, forming together with the normal vector
η an orthonormal basis in Rd , see Figure 2.3. Their orientation regarding the rotation
around the normal vector η axis is therein arbitrary. These components are obtained as

υτα
(

X s, t
)≡τα ·υ , (2.40)

and can be conveniently arranged in a (d −1)-dimensional vector υτ as follows,

υτ
(

X s, t
)≡ (

υτ1 , . . . ,υτd−1
)

. (2.41)

It is noteworthy to mention that for a proper formulation of rate measures in the
realm of finite deformations, such as the tangential relative velocity υτ, frame indifference
must be guaranteed. As explained in great detail in Laursen (2013), the definition of the
relative tangential velocity according to Equation (2.38) is not frame indifferent. However,
this aspect is kept in mind and carefully dealt with during the spatial discretisation of the
formulation; further discussion about this topic follows in Section 3.4.2.

2.3 Contact constraints

With all the necessary notation and kinematic measures for finite deformation unilat-
eral contact introduced, attention is now given to the fundamental contact conditions
governing the interaction at the boundaries γi

c undergoing contact. These conditions en-
compass the normal constraints—enforcing the physical requirement of non-penetration
and compressive interaction between bodies—and the frictional conditions—describing
contact interactions along the tangential direction.

2.3.1 Contact traction
All the contact measures discussed in Section 2.2 are derived from purely kinematical

considerations. Nevertheless, the establishment of contact constraints requires a com-
patible mathematical description of the forces that develop at the active contact region.
Therefore, the contact traction t s

c

(
xs, t

)
acting on the current non-mortar contact region

γs
c is introduced and, similarly to the kinematic measures defined in Section 2.2, for three-

dimensional problems, the decomposition into normal and tangential components yields

t s
c

(
xs, t

)= pηη+ tτ . (2.42)

The term pη
(
η, t s

c

)
represents the contact pressure,

pη
(
η, t s

c

)≡η · t s
c , (2.43)

and the frictional traction vector tτ
(
xs, t

)
results from the projection on the tangential

plane, i.e.,
tτ

(
xs, t

)≡ (
I d −η⊗η)

t s
c . (2.44)

Alternatively (and in a similar way as the relative tangential velocity), this last term can
also be written as

tτ
(
xs, t

)≡ d−1∑
α=1

tτατα , (2.45)
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i.e., by exposing the tangential components tτα of the contact traction t s
c along each

tangential direction τα, which can also be arranged in the (d −1)-dimensional vector

tτ
(
xs, t

)≡ (
tτ1 , . . . , tτd−1

)
. (2.46)

Additionally, as a result of the balance of linear momentum at the contact interface,
the traction vector t m

c

(
x̂m, t

)
acting on the current mortar contact region γm

c becomes
identical to t s

c

(
xs, t

)
except for the opposite sign, i.e.,

t m
c

(
x̂m, t

)=−t s
c

(
xs, t

)
. (2.47)

2.3.2 Normal contact constraints

As mentioned, the contact constraints in the normal direction enforce the geometri-
cal condition of non-penetration together with the physical requirement of compressive
interaction between bodies. A closer inspection of Equation (2.25) reveals that a positive
value g > 0 describes points not in contact, due to the sign convention. Therefore, the set
of Karush-Kuhn-Tucker (KKT) optimality conditions† can be stated as

g
(
xs, t

)≥ 0 , (2.48a)

pη
(
η, t s

c

)≤ 0 , (2.48b)

pη
(
xs, t

)
g

(
xs, t

)= 0 , (2.48c)

which must hold for all xs ∈ γs
c. The first KKT condition imposes the geometrical con-

straint of non-penetration, whereas the second KKT condition precludes adhesive stresses
at the contact interface, thus only allowing for compressive interaction between bodies.
Finally, the third constraint, the complementarity condition, ensures that the normal con-
tact stress is only generated when contact is occurring, i.e., when g = 0. That is, pη

(
η, t s

c

)
is forced to be zero when the out-of-contact condition g > 0 is verified (the gap is open).

Figure 2.5 gives a schematic representation of the admissible combinations of pη
(
η, t s

c

)
and g

(
xs, t

)
that fulfil the set of KKT conditions given in Equation (2.48). As can be seen,

it defines a contact law not only non-smooth and non-linear, but also of multi-valued
character at g = 0.

g

pη

Figure 2.5: Schematic description of Karush-Kuhn-Tucker conditions.

†In the parlance commonly used in the contact mechanics community, also referred to as Hertz-
Signorini-Moreau (HSM) conditions for frictionless unilateral contact.
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2.3.3 Frictional contact constraints
Along with normal contact, the understanding and capacity to accurately model fric-

tion during relative motion is crucial for many technical systems. Due to the many dif-
ferent physical interface phenomena involved (such as the interaction between rough
surfaces, adhesion and chemical interaction, to name a few), friction is recognised as a
highly complex discipline among the scientific field of tribology. Despite the various mod-
elling approaches available in the literature, the following overview is restricted to dry fric-
tion, which is commonly described in continuum mechanics by the classical Coulomb’s
friction law.

By introducing the coefficient of friction µ ≥ 0, the frictional contact conditions ac-
cording to Coulomb’s law can be stated as follows:

ψ
(
tτ, pη

)≡ ‖tτ
(
xs, t

)‖−µ|pη
(
xs, t

)| ≤ 0 , (2.49a)

υτ
(
xs, t

)+βtτ
(
xs, t

)= 0 , (2.49b)

β≥ 0 , (2.49c)

ψ
(
tτ, pη

)
β= 0 . (2.49d)

In the above, ψ
(
tτ, pη

)
is termed the slip function and β ≥ 0 is a scalar parameter. Due

to its phenomenological character, Coulomb’s friction law allows for an intuitive physical
interpretation. The first condition, Equation (2.49a), also known as the slip condition, re-
quires that the magnitude of the tangential stress tτ not exceeds a threshold defined by
the coefficient of friction µ times the contact pressure pη. Then, as a result of the com-
plementarity condition given in Equation (2.49d), the frictional response at the contact
interface can be characterised by two physically distinct regimes:

• Stick condition: ψ< 0
The magnitude of the tangential stress tτ is less than the Coulomb limit and, in
view of Equation (2.49b) (with β = 0), no relative tangential displacement in the
contact zone is allowed, i.e., υτ = 0.

• Slip condition: ψ= 0
The scalar β can be greater than zero and Equation (2.49b), also known as slip
rule, requires any tangential sliding that does occur to be collinear and in opposing
direction with the frictional traction tτ.

A graphical depiction of Coulomb’s friction law for one-dimensional sliding (as would
happen for two-dimensional problems) is shown in Figure 2.6. Just as KKT conditions in
the normal direction, Coulomb friction describes a non-smooth and non-linear constitu-
tive law with a multivalued structure, which has to be taken care of within the solution
process. Moreover, a striking analogy between friction and elasto-plasticity formulation
can be readily recognised. This has been commonly exploited in the development of
numerical algorithms for friction, articulating and adapting well-known methodologies
from the elasto-plasticity framework to model tangential sliding in the contact interface,
see e.g., Laursen (2013).
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µpη

υτ

tτ

Figure 2.6: Schematic illustration of Coulomb’s friction law for one-dimensional sliding.

2.4 Initial boundary value problem of finite deformation frictional
contact

The main concepts of continuum contact kinematics have been introduced and, in order
to facilitate future reference, the IBVP of finite deformation frictional contact is stated:

Problem 2.2 (The strong form of IBVP of finite deformation frictional contact)
On each sub-domain Ωi

t , the momentum balance principle is defined by the system of
equations

divσi +bi = 0 , in Ωi
t , (2.50a)

ui = ūi , on γi
u , (2.50b)

σi ni = t̄ i , on γi
σ , (2.50c)

and the contact constraints in the normal and tangential directions are given by

g ≥ 0 , pη ≤ 0 , g pη = 0 on γs
c , (2.51a)

ψ≤ 0 , υτ+βtτ = 0 , β≥ 0 , βψ= 0 on γs
c , (2.51b)

accordingly.

2.5 Weak formulation

Building upon the continuous framework laid out so far, in the following the weak state-
ments of the frictional contact problem in large deformations is derived. First of all, ap-
propriate notions of solution space U i and weighting space V i are introduced as

U i ≡
{

ui ∈ [
H 1(Ωi

t

)]d | ui = ūi on γi
u

}
, (2.52)

V i ≡
{
δui ∈ [

H 1(Ωi
t

)]d | δui = 0 on γi
u

}
, (2.53)

where H 1
(
Ωi

t

)
represents the Sobolev space, i.e., all functions over Ωi

t whose values and
first derivatives are square integrable over the domain (e.g., refer to Marsden and T. J. R.



From Non-Linear Continuum Mechanics to Dual Mortar Contact 33

Hughes [2012] for additional details). For notational convenience, the collection of map-
pings defined by the product spaces U ≡U s×Um and V ≡Vs×Vm are introduced as well.
With the solution and weighting spaces at hand, the so-called Principle of Virtual Work
(PVW) can be obtained by multiplying the momentum balance (2.50) with an arbitrary
displacement δui and integrating over Ωi

t . It leads to

δΠint
(
u,δu

)−δΠext
(
δu

)+δΠc
(
u,δu

)= 0 , ∀ δu ∈V , (2.54)

where δΠint
(
u,δu

)
represents the internal virtual work—the virtual work due to inter-

nal stresses—and δΠext
(
δu

)
the external virtual work—the virtual work due to externally

applied loadings. Each one of these contributions to the PVW equation is obtained by
adding the individual weak forms on each body, meaning that it can be written in full
length as

δΠint
(
u,δu

)≡− ∑
i∈{s,m}

δΠi
int

(
ui ,δui )≡− ∑

i∈{s,m}

[∫
Ωi

t

σi (ui ) : ∇x
(
δui ) dΩi

t

]
, (2.55a)

δΠext
(
δu

)≡− ∑
i∈{s,m}

δΠi
ext

(
δui )≡− ∑

i∈{s,m}

[∫
Ωi

t

bi ·δui dΩi
t +

∫
γi
σ

t̄ i ·δui dγi
σ

]
. (2.55b)

The third term, δΠc
(
u,δu

)
, represents the virtual work of contact forces,

δΠc
(
u,δu

)≡− ∑
i∈{s,m}

δΠi
c

(
ui ,δui )≡− ∑

i∈{s,m}

[∫
γi

c

t i
c

(
ui ) ·δui dγi

c

]
, (2.56)

which, by enforcing linear momentum across the contact interface, see Equation (2.47),
can be conveniently rewritten as

δΠc
(
u,δu

)≡−
∫
γs

c

t s
c ·

(
δus −δûm)

dγs
c . (2.57)

In Equation (2.57), the contact traction t s
c is subjected to contact constraints. Therefore,

depending upon the solution method employed, different definitions can be derived;
further discussion on this topic follows in the succeeding Section 2.6.

Remark. Problems of constrained evolution, such as large deformation frictional con-
tact, can be equally addressed in terms of the so-called variational inequalities. This
alternative approach consists of ordinarily introducing all the kinematical restrictions
of the problem on the solution space itself, thus making the solution and variational
spaces equivalent. This leads to a variational inequality, instead of obtaining the weak
solution from a minimization problem on a convex set. For a mathematical overview of
this approach, the interested reader is referred to Kikuchi and Oden (1988).

2.6 Treatment of the contact constraints

It is well-known that, with appropriate mathematical abstraction, a wide range of contact
problems can be treated in the light of optimization theory as a problem of constrained
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minimization. Historically, this fact has been exploited to develop several contact algo-
rithms and, among them, the two most widely implemented are the Lagrange multipliers
and penalty methods (Wriggers, 2006; Laursen, 2013). In this work, the focus is on mortar-
based finite element methods for contact mechanics which, as explained in more detail
in the following, are based on Lagrange multipliers. Nonetheless, for a comprehensive
overview of various existing techniques for the treatment of contact constraints, the in-
terested reader is referred to Wriggers (2006) and references therein. Worth referring as
well the landmark work of Kikuchi and Oden (1988) for the mathematical framework of
contact problems in solid mechanics, especially the theory of variational inequalities.

2.6.1 Lagrange multiplier
As mentioned, mortar methods are based on the introduction of the Lagrange mul-

tiplier vector λ as an additional unknown. This sets the basis for a mixed variational
approach, with the Lagrange multiplier vector physically modelling the contact pressure
on the contact interface. Alternatively, Lagrange multipliers can be interpreted as the
necessary forces to enforce the kinematic contact constraints—in a weak integral sense
within the mortar method. In this work, the Lagrange multiplier vector λ is set to repre-
sent the negative contact traction on the non-mortar side, viz.

λ=−t s
c . (2.58)

As the decomposition into normal and tangential components employed in the definition
of the contact traction in Equation (2.42), the Lagrange multiplier vector can be under-
stood as the sum of two components as well:

λ=ληη+
d−1∑
α=1

λταττα . (2.59)

Here, λτα denote the tangential components of the Lagrange multiplier vector λ along
each tangential direction ττα , which as the tangential relative velocity υτ and tangential
contact traction tτ, can also be arranged in the (d −1)-dimensional vector

λτ ≡ (
λτ1 , . . . ,λτd−1

)
. (2.60)

By inserting Equation (2.58) into Equation (2.57), the contact virtual work comes as

δΠc
(
u,δu

)≡ ∫
γs

c

λ · (δus −δûm)
dγs

c . (2.61)

At this stage, the weak formulation of mortar-based frictional contact problems requires
the selection of an appropriate solution space for the Lagrange multiplier. First, let the
trace space Ws represent the restriction of the solution space U s to the potential contact
boundary γs

c. In terms of functional analysis, this means that Ws = H 1/2
(
γs

c

)
, with Ws

denoting the single scalar components of the corresponding vector-valued space Ws.
This work employs the dual mortar method, which specifies the Lagrange multipliers
to be in the space M: the dual space of the trace space Ws. In terms of functional
analysis characterization, the dual space components are now M= H−1/2

(
γs

c

)
(see, e.g.,

B. I. Wohlmuth [2012]).
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Based on these considerations, according to Hüeber (2008), the Lagrange multiplier
vector is chosen from the convex cone M (λ) ⊂M given by

M (λ) ≡
{
δλ ∈M | 〈δλ,ϑ〉γs

c
≤ 〈µλη,‖ϑτ‖〉γs

c
, ϑ ∈Ws with ϑη ≤ 0

}
, (2.62)

where 〈•,•〉γs
c

stands for the H 1/2-duality pairing between Ws and M on γs
c,

〈λ,δu〉γs
c
≡

∫
γs

c

λδu dγs
c , (2.63)

and δλ represents a trial contact traction. The solution cone for the Lagrange multipliers
space in Equation (2.62) simultaneously satisfies, in a weak sense, the KKT conditions in
the normal direction and the Coulomb’s tangential law of friction.

2.6.2 Contact constraints as variational inequalities

In order to derive weak statements of the contact constraints (2.51), it proves conve-
nient first to express them in the alternative form of variational inequalities. Only the
principal ideas are emphasized in the following, referring the reader to Hüeber (2008) for
a comprehensive description and proof of equivalence between the variational inequali-
ties and their continuum counterparts introduced in Chapter 2.

The KKT optimality conditions (2.48) in the normal direction can be equivalently
rewritten as

λη ∈R+
0 : g

(
δλη−λη)≥ 0 ∀ δλη ∈R+

0 , (2.64)

where R+
0 represents the semi-positive real half-space. Likewise, the frictional contact

conditions along the tangential direction, given in Equation (2.49), follow as

λτ ∈B (
µλη

)
: υτ · (δλτ−λτ)≤ 0 ∀ δλη ∈B (

µλη
)

. (2.65)

Here, B
(
µλη

)
represents a (d −1)-dimensional sphere centred at 0 and of radius µλη—

also commonly referred to as friction bound. Note that the condition (2.65) can be inter-
preted as a representation of the principle of dissipation inequality representing Coulomb’s
friction law, e.g., see Strömberg et al. (1996) or Strömberg (1997).

2.7 Summarized weak form

With the fundamental aspects of the variational continuum framework discussed, the
final weak saddle point type formulation for mortar-based finite deformation frictional
contact can be obtained by introducing the Lagrange multiplier in the general weak form
(2.54) and by integrating the variational inequalities (2.64) and (2.65) over the non-mortar
contact interface γs

c. The problem can be stated as:
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Problem 2.3 (Weak form of IBVP of finite deformation frictional contact)
Given the internal forces and boundary conditions, find the kinematically admissible
displacement function, u ∈ U , and Lagrange multiplier, λ ∈ M (λ), such that, for all
t ∈ [t0,T ], the virtual work equations

δΠint
(
u,δu

)−δΠext
(
δu

)+∫
γs

c

λ · (δus −δûm)
dγs

c = 0 , ∀ δu ∈V , (2.66)

〈 g , δλη−λη 〉γs
c
≥ 0 , ∀ δλ ∈M (λ) , (2.67)

〈υτ, δλτ−λτ 〉γs
c ≤ 0 , ∀ δλ ∈M (λ) , (2.68)

are satisfied for any admissible test functions δu ∈V and δλ ∈M (λ).

Note that, since the underlying potentials of the weak form introduced in Section 2.5
are convex (thus representing positive definite operators with unique minima), the solu-
tion of Problem 2.3 constitutes a saddle point of the associated potential (2.66), i.e., the
solution corresponds to a minimum with respect to the displacements u and a maximum
concerning the Lagrange multipliers λ, see e.g., Kikuchi and Oden (1988) and Luenberger
and Ye (2008).
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Chapter 3

Discrete Dual Mortar Contact Formulation
and Global Solution Strategy

Building upon the continuous framework laid out in Chapter 2, this chapter focuses on
the development of the discrete form of mortar-based frictional contact using the FEM.
A brief overview of discrete Lagrange multiplier spaces is given (with particular emphasis
on dual Lagrange multipliers), followed by a detailed description of the evaluation and
numerical integration of discrete mortar finite element contributions. Then, the primal-
dual approach is presented, with the reformulation of nodal inequality constraints with
non-linear complementarity functions. The Newton-type algorithm for the solution of
the spatially discrete frictional contact problem is introduced, describing in detail the
subsequent linearisation of all the terms related to contact. Finally, the algebraic repre-
sentation for the final linearised system of equations is explained in detail, emphasizing
the elimination of the Lagrange multiplier.

3.1 Finite element approximation

Within this work, the weak form introduced in Problem 2.3 is discretised using the FEM
exclusively. Nonetheless, since a detailed description of all the FEM concepts is beyond
the scope of this work, only the basic notions and notation are emphasized. For a com-
plete treatment of finite element methods, the reader is referred to the abundant literature
regarding this topic, see, e.g., T. J. Hughes (2000), Zienkiewicz et al. (2014), Bathe (2006),
Reddy (2014), and Belytschko et al. (2013).

In a nutshell, the concept of finite element discretisation consists of finding an ap-
proximate solution for the primary variable of the problem (i.e., the displacement field
u) at discrete points of interest—commonly referred to as nodes. The nodes are conve-
niently connected to establish elements, which altogether (as a mesh) allows formulating
the following geometrical approximation*:

Ω≈Ωh ≡
ne⋃

e=1
Ωe . (3.1)

Essentially, the approximation is obtained by partitioning the domain Ω=Ωs ∪Ωm into
ne element subdomains Ωe ⊂ Ωh. Mathematically speaking, this introduces the finite-

*Throughout this document the superscript (•)h denotes a spatially discretised quantity.
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dimensional subsets Uh ⊂ U and Vh ⊂ V as approximations for their corresponding
functional sets. These approximations are typically expressed as an expansion in terms
of shape (or interpolation) functions, which are usually low-order polynomials (e.g., La-
grange polynomials, associated with specific nodal positions in the mesh) meeting the
differentiability requirements of the weak form. Following the isoparametric approach,
both geometry and field variables are approximated using the same shape functions and,
furthermore, the element subdomain Ωe is typically mapped to the parameter (or refer-
ence) space:

ξ= (ξ1, . . . ,ξd ) (3.2)

With focus placed on finite element discretisation of frictional contact, only the associ-
ated physical quantities are considered in the following. Moreover, it is important to refer
that, throughout this work, the actual mortar-based contact modelling is completely in-
dependent of the finite element formulation employed for the remaining terms (internal
forces, external loads, etc.).

3.1.1 Finite element interpolation at the contact interface

As already mentioned in Chapter 2, the contact boundaries γi
c can be understood

as (d −1)-dimensional manifolds embedded in the corresponding d-dimensional space.
This means that contact interactions are evaluated on the contact subdomains γi

c and,
consequently, a direct inheritance between the employed finite element discretisation
and resulting contact interface elements is typically exploited. The following general form
for geometry approximation on the discrete non-mortar and mortar boundaries holds:

xs ≈{
xs}h ∣∣∣{γs

c}h
≡

ns∑
k=1

N s
k

(
ξs)xs

k ; (3.3a)

xm ≈{
xm}h ∣∣∣{γm

c }h
≡

nm∑
l=1

N m
l

(
ξm)

xm
l . (3.3b)

Herein, ns and nm denote the total number of nodes on discrete non-mortar subdomain{
γs

c

}h and mortar counterpart
{
γm

c

}h, respectively, and the corresponding discrete nodal
coordinates (in current configuration) are represented by xs

k and xm
l . The shape functions

N s
k and N m

l are defined with respect to the associated finite element parameter space

ξi , i ∈ {s,m}, which for contact interface elements is defined similarly to the reference
space introduced in Equation (3.2), with the exception of being a (d − 1)-dimensional
space, i.e., for two-dimensional problems it reduces to ξi and in three dimensions is
denoted as ξi = (

ξi
1,ξi

2

)
. The displacement field interpolation is obtained from the nodal

displacements ds
k and dm

l in a similar way

us ≈{
us}h ∣∣∣{γs

c}h
≡

ns∑
k=1

N s
k

(
ξs)ds

k ; (3.4a)

um ≈{
um}h ∣∣∣{γm

c }h
≡

nm∑
l=1

N m
l

(
ξm)

dm
l . (3.4b)

In addition to geometry and displacement fields, a suitable discretisation strategy for
the Lagrange multipliers λ is required too. Within this work, the Lagrange multipliers
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interpolation is employed on the non-mortar side and its approximation is based on the
introduction of the discrete Lagrange multiplier space Mh ⊂M. All details concerning
the choice of this discrete space, its fundamental properties and implementation strategy
follow in Section 3.2. At this stage, though, a generic notation can be introduced as

λ≈λh ≡
nλ∑
j=1
Φ j

(
ξs)z j , (3.5)

with Φ j representing the Lagrange multiplier interpolation, nλ the total number of non-
mortar nodes carrying additional Lagrange multiplier degrees of freedom and z j the dis-
crete nodal Lagrange multipliers. In mortar methods it is a common practice to consider
that every non-mortar node serves as coupling node, thus nλ = ns. However, for general-
ity, this is not considered at this stage.

3.2 Discrete Lagrange multiplier spaces

This section focuses on the choice of the discrete Lagrange multiplier space Mh. Given
its importance to the mathematical structure, robustness and numerical efficiency of
the resulting mortar mixed formulation, this has been a topic of extensive research over
the last two decades. In particular, fundamental aspects, such as inf-sup stability con-
ditions and optimal a priori error estimates, have been carefully examined. As a result,
a well-established mathematical framework has been gradually built up, thus creating
appropriate theoretical foundations for the application of mortar methods to many differ-
ent physical problems. With the focus of the present work not being on the mathematical
analysis of mortar methods though, the reader is instead referred to B. I. Wohlmuth (2012)
and references therein for an overview in the context of domain decomposition tech-
niques, or the review article B. I. Wohlmuth (2011) and the contribution B. I. Wohlmuth,
Popp, et al. (2012) in the context of frictional contact. Historically, two classes of discrete
Lagrange multipliers—standard and dual Lagrange multipliers—are distinguished and
described in the following.

3.2.1 Standard Lagrange multipliers

Standard Lagrange multipliers are the classical choice of discrete Lagrange multipli-
ers within mortar methods. This approach consists of taking the interpolation functions
from the finite-dimensional subset Wh ⊂W (recall that W stands for the trace space
of the virtual displacements Vs on the non-mortar side), which leads to identical shape
functions for Lagrange multipliers and non-mortar displacement interpolation, i.e.,

Φ j = N s
j . (3.6)

One important property of this methodology is that it leads to mortar coupling conditions
with global support. Mathematically, and explained in more detail later on, this property
is displayed in the first mortar coupling becoming densely populated. Further details and
illustrations on how to construct typical shape functions for finite element interpolation
can be found, for instance, in T. J. Hughes (2000).
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3.2.2 Dual Lagrange multipliers
The dual Lagrange multipliers for mortar methods have firstly been presented in B. I.

Wohlmuth (2000). Exploiting the local dual basis functions, originally used in Scott and
Zhang (1990) to define global projection-like operators, the dual mortar approach uses
the same dual basis functions, to define the discrete Lagrange multipliers space. As em-
phasized in B. I. Wohlmuth (2000), this technique is motivated by the observation that,
in the continuous setting, the Lagrange multipliers physically represent fluxes (tractions)
on the contact interface. This duality argument is reflected by the use of the so-called
bi-orthogonality condition with the displacements in Wh to construct dual Lagrange
multiplier shape functions. A typical notation for the bi-orthogonality condition is∫

{γs
c}h
Φ j N s

k dγs
c = δ j k

∫
{γs

c}h
N s

k dγs
c . (3.7)

Here, δ j k represents the Kronecker delta, and this relation holds for every non-mortar
node j = {1, . . . ,nλ} and k = {1, . . . ,ns}. The main advantage of this approach is that it
heavily facilitates the treatment of mortar problems, without impinging upon the optimal
convergence of the discretisation error. Firstly, the coupling conditions are now localized.
With this, the first coupling mortar matrix

[
D

]
reduces to a diagonal matrix, thus allowing

at later stages of the algorithm the application of efficient condensation procedures of the
discrete Lagrange multiplier degrees of freedom—ultimately removing the troublesome
saddle point structure of the underlying mixed formulation. Furthermore, in the context
of contact problems, the local support character of dual mortar coupling is particularly
attractive, as it allows to decouple point-wise the contact constraints, thus setting the
basis for the application of efficient solution algorithms (Hüeber, 2008).

Remark. During the analysis of the dual shape functions, it is crucial to consider the
unique requirements for mortar-based finite deformation contact. These are essentially
associated with the inequality nature of contact constraints and, thus, positivity require-
ments for the Lagrange multiplier basis functions. For the sake of simplicity, however,
it is only mentioned as a remark at this stage, referring to Section 5.3 of Chapter 5 for
a more in-depth overview. In doing so, it is not considered second-order interpolation
in three-dimensions, as proper techniques to establish dual shape functions for contact
problems successfully are required. This part of the work is focused on the building blocks
of the dual mortar method instead and, therefore, this particular case is only analysed
later in Chapter 5. Notwithstanding, all the remaining concepts in this chapter remain
thoroughly valid for every possible combination of interpolation degree and finite ele-
ment geometry. In the following, a brief overview of the construction of the actual dual
Lagrange multiplier shape functions is given, mentioning the issue of consistency of dual
Lagrange multipliers in partially integrated non-mortar elements.

3.2.2.1 Construction of dual Lagrange multiplier space

Within this work, dual shape functions are constructed by employing the strategy
proposed by Flemisch and B. I. Wohlmuth (2007). The theoretical details are carefully
described in the original publication, including a set of mathematical proofs and a pri-
ori results. Nonetheless, here only the main ideas needed for the actual implementation
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of the method are emphasized. First, note that the bi-orthogonality condition in Equa-

tion (3.7) can be equally evaluated element-wise on each non-mortar element
{
γs

c

}h
e , viz.∫

{γs
c}h

e

Φ j N s
k dγs

c = δ j k

∫
{γs

c}h
e

N s
k dγs

c , (3.8)

which hold for every non-mortar element node j = {
1, . . . ,nλ

e

}
and k = {

1, . . . ,ns
e

}
within

the non-mortar element. Herein, ns
e represents the number of nodes in a given non-

mortar element e and nλ
e the corresponding number of non-mortar element nodes car-

rying Lagrange multipliers. Then, the dual shape function Φ j is defined by introducing
unknown linear coefficients aΦj k such that

Φ j =
ns

e∑
k=1

aΦj k N s
k , (3.9)

that is, a linear combination of standard shape functions N s
k . Therefore, by introducing

the vector
{
Φe

} ∈Rnλ
e conveniently gathering all dual shape functions defined at the non-

mortar element e,

{
Φe

}≡

Φ1

...

Φnλ
e

 , (3.10)

and the vector
{

ne
} ∈Rns

e containing the associated standard shape functions,

{
ne

}≡


N1
...

Nns
e

 , (3.11)

one can determine the dual shape functions from the transformation{
Φe

}= [
AΦe

]{
ne

}
. (3.12)

The coefficients matrix
[
AΦe

]= [
aΦj k

] ∈Rnλ
e ×ns

e is computed by inserting Equation (3.9) into
Equation (3.8), which yields the local mass matrix system to be solved on each element:[

AΦe
]= [

DΦ
e

][
MΦ

e

]−1 . (3.13)

Individual entries for the matrices
[
DΦ

e

] = [
dΦj k

] ∈ Rnλ
e ×ns

e and
[
MΦ

e

] = [
mΦ

j k

] ∈ Rns
e×ns

e are
defined as

dΦj k ≡ δ j k

∫
{γs

c}h
e

N s
k

(
ξs) dγs

c ≈ δ j k

ngp∑
gp=1

wgpN s
k

(
ξs

gp

)
J s

e , (3.14)

mΦ
j k ≡

∫
{γs

c}h
e

N s
j

(
ξs)N s

k

(
ξs) dγs

c ≈
ngp∑

gp=1
wgpN s

j

(
ξs

gp

)
N s

k

(
ξs

gp

)
J s

e , (3.15)

where J s
e stands for the non-mortar element Jacobian determinant and ngp the number

of Gauss points for numerical integration over the non-mortar element. Lastly, the dual
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basis functions are constructed by a node-wise gluing process, just as in standard finite
element methods.

It is essential to point out that the bi-orthogonality condition, both in Equation (3.7)
or in its element-wise version in Equation (3.8), must be satisfied in the current physical
space. Consequently, dual shape functions not only depend on the actual distortion of the
individual finite element—which means that cannot be defined a priori for non-constant
non-mortar element Jacobian determinant—but also need to be constantly re-evaluated.
Illustrative examples of dual shape functions for first-order undistorted finite elements
are represented in Figure 3.1, along with their standard counterparts. For further details
on the construction of the dual basis, the interested reader is referred to Flemisch and
B. I. Wohlmuth (2007) and Popp, B. I. Wohlmuth, et al. (2012). Worth mentioning as well
Lamichhane et al. (2005), for a comprehensive mathematical analysis of higher-order dual
mortar methods, and also Hartmann, Brunssen, et al. (2007) for a clear illustration and
numerical results.

Besides its intricate construction process, it should also be noticed that dual shape
functions themselves are deformation-dependent too. Therefore, consistent linearisation
is required for the application of Newton-Raphson methods, which turns out to represent
one of the main challenges for dual mortar contact implementation. As suggested by
Popp, Gee, et al. (2009) and Popp, Gitterle, et al. (2010), the numerical procedure can be
based on linearising the bi-orthogonality condition, which is provided in Appendix A with
considerable detail, together with a suitable algebraic representation of the associated
directional derivatives.

3.2.2.2 Consistency of dual Lagrange multipliers at boundaries

As a final topic to be addressed in this section, attention is shifted towards the algo-
rithmic aspect of a consistent definition of bi-orthogonality and dual Lagrange multiplier
shape functions in partially integrated non-mortar elements. In the foregoing discus-
sion, it is assumed that all non-mortar elements on the contact boundary γs

c are com-
pletely integrated. However, in finite deformation contact, there most likely exist scenar-
ios where non-mortar elements do not fully participate in the integration area, e.g., the
so-called dropping edge problems (when one body slides off another at an edge). This
may lead to consistency issues, as different integration domains are employed. While the
bi-orthogonality condition in Equation (3.7) is still defined on each entire non-mortar
element, element contributions to mortar integrals are calculated on the sub-domains
where, as explained in more detail in Section 3.7, the projection onto the mortar bound-
ary is still feasible. As a consequence, the dual shape functions obtained by the strategy
described lose the sought-after localized character. As originally proposed by Cichosz and
Bischoff (2011) for two-dimensional problems, and later on extended to three dimensions
in Popp, Seitz, et al. (2013), a solution to make the bi-orthogonality condition consistent
in any event is to replace the integration domain in Equation (3.8) by the actual overlap-
ping region of the non-mortar element. It is important to mention that, by employing
this strategy, exceptional attention to some aspects such as integral positivity and an ill-
conditioned system of equations is needed. For further details on appropriate algorithmic
treatment to these issues, refer to Popp, Seitz, et al. (2013).
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Figure 3.1: Dual shape functions for undistorted first-order finite elements.
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3.3 Discrete contact virtual work

Following the finite element scheme introduced in the previous section, the discretised
version of the virtual contact work given in Equation (2.61) yields

δΠc ≈ δΠh
c ≡

∫
{γs

c}h
λh ·

[{
δus}h −{

δûm}h
]

dγs
c (3.16)

which, recalling the interpolations in Equations (3.4) and (3.5), can be rearranged as

Πh
c =

nλ∑
j=1

ns∑
k=1

{
z j

[∫
{γs

c}h
Φ j

(
ξs)N s

k

(
ξs) dγs

c

]
δds

k

}

−
nλ∑
j=1

nm∑
l=1

{
z j

[∫
{γs

c}h
Φ j

(
ξs)N m

l

(
ξ̂m)

dγs
c

]
δdm

l

}
.

(3.17)

This expression motivates the introduction of two fundamental entities of mortar meth-
ods: the first mortar coupling matrix, herein denoted by

[
D

] ∈R(d ·nλ)×(d ·ns ), and the sec-

ond mortar coupling matrix, represented by
[
M

] ∈R(d ·nλ)×(d ·nm). Their nodal blocks D[ j ,k]
and M[ j ,l] are readily identified in Equation (3.17) as

D[ j ,k] ≡ D j k Id , j = 1, . . . ,nλ, k = 1, . . . ,ns , (3.18a)

M[ j ,l] ≡ M j l Id , j = 1, . . . ,nλ, l = 1, . . . ,nm , (3.18b)

with Id representing the d-dimensional identity matrix, together with the abbreviations:

D j k ≡
∫

{γs
c}h
Φ j

(
ξs)N s

k

(
ξs) dγs

c ; (3.19a)

M j l ≡
∫

{γs
c}h
Φ j

(
ξs)N m

l

(
ξ̂m)

dγs
c . (3.19b)

As mentioned, due to the bi-orthogonality condition (3.7), the first mortar coupling matrix[
D

]
becomes diagonal and can be evaluated as

D j k = δ j k

∫
{γs

c}h
N j

(
ξs) dγs

c . (3.20)

It is important to note that, while the first mortar coupling matrix
[
D

]
is exclusively con-

cerned with terms defined on the non-mortar side (recall that the Lagrange multipliers
are interpolated on the non-mortar boundary), the second mortar coupling matrix

[
M

]
is

more intricate, since it involves terms related to both sides. This becomes clear by having

in mind the projection operation underlying the definition of the point
{
δûm

}h, typically
represented by the notation {

δûm}h ≡ {
δum}h ◦Rh , (3.21)

with Rh denoting the discrete version of the contact mapping operator introduced in
Equation (2.23). This reveals to be one of the challenges of mortar-based contact al-
gorithms, mainly because the discrete mapping changes due to relative movement be-
tween contact subdomains. Consequently, mortar coupling terms must be continuously
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re-evaluated and, at later stages, with regard to nonlinear solution schemes of Newton-
Raphson type, this requires the consistent linearisation of all the above deformation-
dependent quantities as well. Details on the actual numerical integration of the afore-
mentioned mortar coupling terms follow in Section 3.7.

3.4 Discrete contact constraints

In addition to the discrete contact virtual work discussed in Section 3.3, the discrete
version of contact constraints given in Equations (2.67) and (2.68) must be derived as
well. Following the same line of thought as Chapter 2, the next paragraphs treat contact
constraints separately in normal and tangential directions.

3.4.1 Discrete contact constraints in the normal direction

The discrete counterpart of the contact constraints in the normal direction, Equa-
tion (2.67), follows as∫

γs
c

g
(
δλη−λη

)
dγs

c ≈
∫

{γs
c}h

g h
({
δλη

}h −{
λη

}h
)

dγs
c ≥ 0 , (3.22)

with g h
(
ξs) representing the discretised version of the gap function introduced in Equa-

tion (2.25), i.e.,

g h(
ξs)≡−ηh(

ξs) ·[ ns∑
j=1

N s
j

(
ξs)xs

j −
nm∑
l=1

N m
l

(
ξ̂m)

xm
l

]
. (3.23)

At this stage, an abstract compact notation for the interpolated unit normal vector ηh
(
ξs)

is adopted, referring to Section 3.7 for additional details on the employed discretisation

strategy. The normal component of the Lagrange multiplier
{
λη

}h is, as the contact trac-
tion vector, obtained by projecting the discrete Lagrange multiplier vector λh along the
normal direction ηh, i.e., {

λη
}h ≡λh ·ηh ; (3.24)

the same applies to the discrete test functions
{
δλη

}h. Then, by considering the finite
element interpolation (3.5) for the Lagrange multiplier, it follows that Equation (3.22) can
be rewritten as

nλ∑
j=1

(
δzηj −zηj

)∫
{γs

c}h
Φ j

(
ξs)g h (

ξs) dγs
c . (3.25)

It is important to mention that in Equation (3.25), the tangential plane, and consequently
the interpolated normal vector ηh, is assumed to be constant within the local support of
node j . Finally, by choosing carefully in a targeted oriented way the discrete Lagrange
multiplier component zηj and test function δzηj , i.e., by assuming

δzηj ≥ 0 (3.26)

for a given non-mortar node j and

zηk ≥ 0 (3.27)
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for the remaining non-mortar nodes k—thus defining a subset of the trace space Wh—
the use of constrained dual basis enables to decouple the weak form of the contact con-
straints in the normal direction in Equation (2.67), leading to the following set of point-
wise conditions:

g̃ j ≥ 0 , (3.28a)

zηj ≥ 0 , (3.28b)

g̃ j zηj = 0 , (3.28c)

holding for all non-mortar discrete nodes j = 1, . . . ,nnλ

. Herein, the discrete weighted gap
g̃ j at a given non-mortar node j is defined as

g̃ j ≡
∫

{γs
c}h
Φ j

(
ξs)g h (

ξs) dγs
c . (3.29)

It should be pointed out that the transition from Equation (3.25) to the point-wise condi-
tions (3.28) is only possible for dual Lagrange multiplier interpolation; see Hüeber (2008)
for a thorough explanation, including a mathematical proof for equivalence between
Equation (3.28) and Equation (2.67). Examining the contact constraints (3.28) more care-
fully, a striking analogy with the set of KKT optimality conditions given in Equation (2.48)
becomes apparent. Essentially, the decoupled point-wise conditions (3.28) can be inter-
preted as a discrete formulation of the continuum KKT conditions. Furthermore, the
former must be enforced independently at discrete non-mortar nodal points, as in clas-
sical NTS discretisation schemes. This similarity, however, proves only to be superficial,
since the conditions (3.28) for mortar methods carry substantially more information.

3.4.2 Discrete contact constraints in the tangential direction
The discrete version of the tangential contact constraints introduced in Equation (2.68)

follows as ∫
γs

c

υτ ·
(
δλτ−λτ

)
dγs

c ≈
∫

{γs
c}h

{
υτ

}h ·
({
δλτ

}h −{
λτ

}h
)

dγs
c ≤ 0 , (3.30)

with the term
{
λτ

}h representing the vector containing the tangential components of

the discrete Lagrange multiplier vector λh; analogously,
{
δλτ

}h denotes the tangential

projection of the discrete test functions. The discrete relative tangential velocity
{
υτ

}h

is determined such that it satisfies the requirement of frame indifference and, given its
importance, is discussed in more detail in the following paragraphs. Nonetheless, one can
already further rearrange Equation (3.30) by considering the finite element interpolation
of Lagrange multipliers in Equation (3.5), viz.

nλ∑
j=1

(
δzτj −zτj

)∫
{γs

c}h
Φ j

(
ξs) ·{υτ}h (

ξs) dγs
c ; (3.31)

note that, once again, the tangent plane is assumed constant within the local support of
node j . Then, by defining the weighted tangential relative velocity at a node j as

υ̃τj ≡
∫

{γs
c}h
Φ j

(
ξs) ·{υτ}h (

ξs) dγs
c , (3.32)
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and following a similar approach to the discrete normal constraints in the previous sec-
tion, that is, by carefully choosing the discrete test function δzτj at node j to be

‖δzτj ‖ ≤µ |z
η

j | (3.33)

and
‖zτk‖ ≤µ |z

η

k | (3.34)

for the remaining nodes k, the discrete test functions are in the admissible space δλh ∈
Mh(

λh)
. By means of the constrained dual basis, the tangential contact constraints yield

the following set of point-wise conditions:

ψ j ≡ ‖zτj ‖−µ |z
η

j | ≤ 0 , (3.35a)

υ̃τj +β j zτj = 0 , (3.35b)

β j ≥ 0 , (3.35c)

ψ jβ j = 0 , (3.35d)

which must hold for all non-mortar nodes j = 1, . . . ,ns. Similar to the normal constraints,
the frictional conditions (3.35) can be interpreted as a weak statement of the original
Coulomb’s friction law in Equation (2.49), with an additional weighting based on the La-
grange multiplier dual shape functions Φ j . The integral character of the weak formulation
is embedded in the mortar projected discrete geometrical measures, namely the weighted
tangential relative velocity υ̃τj (and weighted gap function g̃ j , in the normal constraints).
Again, for a comprehensive mathematical treatment of the aforementioned deviations,
the interested reader is referred to Hüeber (2008).

3.4.2.1 Frame indifference of relative tangential velocity

An aspect in the formulation of large deformation frictional contact widely discussed
in the literature is that of frame indifference of the rate measures necessary for the ex-
pression of the evolution laws associated with friction. The concept of frame indifference,
also commonly referred to as objectivity, evaluates if a given physical quantity is prop-
erly invariant, i.e., unaffected by any rigid body motion the material may undergo during
the deformation process. Mathematically speaking, such evaluation can be performed
by defining an alternative reference frame composed by a proper rotation and transla-
tion, with respect to the coordinate system in which the problem is formulated. A given
quantity is frame indifferent if and only if it remains unaffected by such transformation.

Within the ongoing formulation, frame indifference of the frictional problem in Equa-
tion (3.35) must be guaranteed. Therefore, the definition of a frame indifferent mortar-

projected tangential relative velocity
{
υτ

}h is required. However, the relative tangential
velocity definition introduced in Section 2.2.2 is not frame indifferent, even in the contin-
uous setting, see e.g., Laursen (2013). Therefore, it is no surprise that its discrete version
and, consequently, the weighted tangential relative velocity in Equation (3.32) are not
frame indifferent either. In order to overcome this problem, and assure that the frictional
constitutive relation (3.35) is objective, in Puso and Laursen (2004b), a solution based
on adding in a dilatant portion to the tangential velocity measure is proposed. This idea
has been broadly exploited and adopted, e.g., in B. Yang, Laursen, and Meng (2005), Puso,
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Laursen, and Solberg (2008), B. Yang and Laursen (2009), Popp, Gitterle, et al. (2010), and
Gitterle et al. (2010), and is briefly described here within the context of mortar-based
contact. The starting point is the definition of the weighted gap vector g̃ j at a node j as

g̃ j ≡
∫

{γs
c}h
Φ j

(
ξs)g h (

ξs) dγs
c , (3.36)

which, taking into account the structure of the discrete version of the gap vector,

g h(
ξs)≡ ns∑

k=1
N s

k

(
ξs)xs

k −
nm∑
l=1

N m
l

(
ξ̂m)

xm
l , (3.37)

can be further rearranged as

g̃ j =
ns∑

k=1
D[ j ,k] xs

k −
nm∑
l=1

M[ j ,l ] xm
l . (3.38)

Thus, similarly to the approach presented in Section 2.2.2, the contacting points are as-
sumed to remain coincident in space. This implies that the total time derivative of Equa-
tion (3.38) remains zero, i.e.,

˙̃g j =
(

ns∑
k=1

D[ j ,k] ẋs
k −

nm∑
l=1

M[ j ,l ] ẋm
l

)
+

(
ns∑

k=1
Ḋ[ j ,k] xs

k −
nm∑
l=1

Ṁ[ j ,l ] xm
l

)
≈ 0 . (3.39)

The first term in brackets leads precisely to the non-objective measure for the tangential
relative velocity previously introduced in Equation (3.32). The second term in brackets,
however, is frame indifferent under all conditions of contact, as the time derivatives of the
mortar coupling matrices nodal blocks Ḋ[ j ,k] and Ṁ[ j ,l ] remain zero during rigid body mo-
tions. This means that by changing its sign, it can be used as a measure for the tangential
relative velocity. Although, it is important to note that the normal contact constraints only
enforce the normal projection of the weighted gap g̃ h to be zero (not the vector itself). So,
in order to remove any potential normal component, Equation (3.39) is projected in the
nodal tangential plane. The components of the nodal tangential relative velocity follow
as

υ̃τj ≡−P j

(
ns∑

k=1
Ḋ[ j ,k] xs

k −
nm∑
l=1

Ṁ[ j ,l ] xm
l

)
. (3.40)

Here, the tangential projection matrix
[
P j

] ∈ R(d−1)×d has been introduced, and is de-
fined as the assembly of interpolated unit tangent vectors {ταj }h at the non-mortar node
j , i.e.,

P j ≡


{
τ1

j

}h

...{
τd−1

j

}h

 . (3.41)

While this expression is general for mortar-based contact methods, further simplification
can still be employed for dual Lagrange multipliers. Owing to the bi-orthogonality condi-
tion (3.7), the first mortar coupling matrix

[
D

]
has local support, which allows rewriting
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Equation (3.40) as

υ̃τj ≡−P j

(
Ḋ[ j , j ] xs

j −
nm∑
l=1

Ṁ[ j ,l ] xm
l

)
, (3.42)

At this stage, a time discretisation scheme for the mortar coupling terms in Equation (3.42)
is required, which is described in the following for the adopted method.

3.4.2.2 Time discretisation

Although this work focuses on quasi-static problems, an appropriate time discretisa-
tion scheme for the relative tangential velocity discussed above is still required. Thus, by
choosing a backward Euler scheme, the so-called weighted tangential relative slip incre-
ment ũτ

j at a non-mortar node j is introduced as

ũτ
j ≡ υ̃τj ·∆t , (3.43)

which results in

ũτ
j ≡−P j ·

[(
Dtn

[ j , j ] −Dtn−1

[ j , j ]

)
xs

j −
nm∑
l=1

(
Mtn

[ j ,l ] −Mtn−1

[ j ,l ]

)
xm

l

]
. (3.44)

Since the underlying integration method is implicit, it can be shown to be unconditionally
stable, thus providing a robust algorithm even compatible with large time step sizes. By
defining β̃ j =β j ·∆t , the nodal tangential contact conditions at each non-mortar node j
can be re-written as

ψ j ≡ ‖zτj ‖−µ |z
η

j | ≤ 0 , (3.45a)

ũτ
j + β̃ j zτj = 0 , (3.45b)

β̃ j ≥ 0 , (3.45c)

ψ j β̃ j = 0 . (3.45d)

3.5 Averaged orthonormal moving frame

With the discrete version of the virtual contact work and contact constraints at hand,
attention is now shifted towards their computational treatment. One fundamental ingre-
dient of contact methods regards the local orthonormal frame attached to each contact
node carrying a Lagrange multiplier. Its definition has a profound impact on the enforce-
ment of contact constraints, as it establishes the basis for the split of surface contact
tractions into normal and tangential components. Moreover, as explained in more detail
in Section 3.7, within the numerical evaluation of mortar integrals, the discrete projection
of Gauss points between sides of the contact interface also requires a continuous field of
normals. The idea originally proposed by B. Yang, Laursen, and Meng (2005) defines, at a
given non-mortar node j , the averaged nodal unit normal as†

η̃ j

(
ξs

j

)≡ ∑nadj

e=1η
a
e

(
ξs

j

)
‖∑nadj

e=1η
a
e
(
ξs

j

)‖ , (3.46)

†As suggested by Popp, Gee, et al. (2009), no weighting whatsoever of the element normals ηa
e is consid-

ered.
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Here, ηa
e stands for the outward unit normal of the adjacent non-mortar element e, eval-

uated at the slave node k, and nadj is the total number of adjacent non-mortar facets (for
further details, see Appendix A). Although this definition is equally applicable to both
two- and three-dimensional problems, conceptually, the definition of the averaged unit
tangent vectors requires additional consideration. While in two dimensions, the tangent
vector is uniquely defined. In three dimensions, the pair of tangent vectors is not unique
within the tangent plane to the non-mortar node. The strategy adopted in this work is
based on considering the projection of the first edge connected with the non-mortar
node j , see Figure 3.2 for a schematic representation.

Based on this definition, a C 0-continuous field of normals is, then, defined through
finite element interpolation as

η≈ηh(
ξs)≡ ∑ns

e

k=1 N s
k

(
ξs

)
η̃k

‖∑ns
e

k=1 N s
k

(
ξs

)
η̃k‖

. (3.47)

The normalization procedure is required, as the finite element interpolation may lead to
a non-unit normal vector—which ultimately compromises the correct evaluation of the
gap function. The same interpolation procedure is applied to the definition of the unit
tangent vectors. As explained in B. Yang, Laursen, and Meng (2005), this procedure has
clear advantages compared with traditional mortar segmentation techniques based on
closest point projection. It smooths the discontinuities associated with the discretization
of the contact interface, proving specially powerful at avoiding degenerate cases such as
the non-uniqueness of the CPP.

η̃ j

xs
j {

γs
c
}h

ηa
2ηa

1
η̃ j+1η̃ j−1

xs
j−1 xs

j+1

τ̃ j

(a) Averaged unit normal and tangent vector in two-dimensions.

(b) Averaged unit normal vector and tangent vectors in three-dimensions.

Figure 3.2: Averaged orthonormal moving frame for first-order interpolation.
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3.6 Contact search

The next key step to be addressed is the contact search procedure. This is an essen-
tial algorithmic aspect of any contact formulation, in particular within the context of
finite deformations, where large sliding motions can occur. The main goal is to iden-
tify bodies or finite elements that might possible come into contact, i.e., it defines the
list of element pairs to be integrated. Historically, contact search has been an intense
research topic since the origins of computational contact mechanics, with some popu-
lar approaches being found in Benson and J. O. Hallquist (1990), Zhi-Hua and Nilsson
(1990), and Williams and O’Connor (1999). The reader is referred to Wriggers (2006) for a
comprehensive overview of the subject.

In this work, the algorithm proposed by B. Yang and Laursen (2008) has been im-
plemented. It consists of two components: a hierarchical global search structure (search
tree), together with a simplified geometry representation using bounding volumes. It
utilises discretised orientation polytopes with k edges (k-DOPs), which are typically 8-
DOPs in two-dimensions and 18-DOPs in the three-dimensional case. During the prob-
lem initialisation, both the mortar and non-mortar boundaries are stored within a hierar-
chical binary tree structure in a top-down way. Starting from a root node, containing the
entire associated boundary, each level is obtained by dividing into halves until reaching
the individual finite element elements (leaf nodes). The search tree must be updated at
each geometry update for finite deformations, i.e., at each iteration step. The contact
search procedure itself consists of a recursive algorithm based on intersection tests be-
tween both boundaries. Starting at the root nodes, wherever an overlap of the bounding
volumes is detected, the algorithm proceeds to the next lower level of the search tree.
This procedure continues until reaching the leaf nodes, where the contact pair can be
identified.

The computational complexity of the algorithm is expected to be O(N ·log(N 2)).‡ This
is a considerably faster procedure than the naive brute-force approach of checking all
the possible combinations of finite elements, which has a computational complexity of
O(N 2). Further development towards the parallelization of the algorithm can be found in
Popp (2012).

3.7 Numerical integration of mortar integrals

As briefly mentioned in Section 3.3, the computation of mortar integrals is one of the
main challenges of mortar contact algorithms. The reason for that is mainly related to the
terms involving the relative description of between boundaries (e.g., the second mortar
coupling matrix). They require integration over the non-mortar interface (i.e., curve and
surface integrals for two-dimensional and three-dimensional contact problems, accord-
ingly) with an integrand containing quantities defined on both mortar and non-mortar
sides. Since several fundamental quantities, e.g., the weighted gap and relative tangential
velocity, directly depend on the mortar coupling terms, this algorithmic aspect dramati-
cally impacts on the global accuracy and computational efficiency of the overall numeri-

‡For the sake of simplicity, it is assumed that ns ≈ nm = N .
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cal procedure. Therefore, the selection of an adequate numerical integration scheme for
the interface coupling terms is one fundamental aspect of the mortar-based frictional
contact modelling.

In the literature, two approaches have been predominantly adopted: mortar integra-
tion by employing a segmentation strategy or utilizing an appropriate element-wise inte-
gration scheme. The first method, originally outlined by Simo, Wriggers, et al. (1985) and
Zavarise and Wriggers (1998) for the classical segment-to-segment contact formulations,
has been extensively applied in the context of mortar contact (Puso and Laursen, 2004a;
B. Yang, Laursen, and Meng, 2005; Puso, Laursen, and Solberg, 2008; Popp, Gitterle, et al.,
2010) and is based on subdividing each integration domain into sub-domains—herein
termed as integration segments. The idea is to prevent all possible discontinuities (typ-
ically in the form of kinks) that might deteriorate the achievable accuracy of the Gauss
quadrature. The second approach, firstly introduced by Fischer and Wriggers (2005, 2006),
ignores the possibility of discontinuities in the integrands and tries to minimize the result-
ing error by employing high-order integration rules. Both methodologies are explained
in more detail in Section 3.7.1 and Section 3.7.2, accordingly.

A comprehensive comparison between these methods is presented in Farah, Popp,
et al. (2015), where it has been concluded that both techniques demonstrate solid re-
sults, but with the element-based integration being significantly more efficient. How-
ever, the segment-based integration provided better results for particular scenarios, such
as quadratic interpolation or sensitive frictional problems. In the same publication, an
alternative integration strategy is also proposed in order to reach an ideal compromise be-
tween the characteristics of the both aforementioned techniques—designated as boundary-
segmentation. The idea is to employ the segment-based strategy for problematic non-
mortar elements having strong discontinuities, while using the element-based integra-
tion for the remaining non-critical elements. The identification of critical elements is
performed by detecting if any Gauss point projection has failed. Based on the numerical
experience of the author of the present work, this integration scheme provides solid re-
sults in general, while being much more computationally efficient than the segmentation
strategy. However, as pointed out by Farah, Popp, et al. (2015), it should be applied care-
fully when dealing with quadratic interpolation or frictional problems, where the error in
the mortar integrals may deteriorate the convergence of the global algorithm. Therefore,
the logical recommendation is to use, whenever possible, the segment-based integration,
while recurring to the boundary-segmentation for computationally demanding problems.

In the following paragraphs, both the element-wise and segment-based mortar inte-
gration algorithms are outlined for one integration segment, formed by one pair (s,m) of
non-mortar and mortar elements. As mentioned in Section 3.6, this information about
element pairs can be found using an efficient search strategy.
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Remark. It is noteworthy mentioning that the first mortar coupling matrix
[
D

]
could be

evaluated directly by element-wise integration on γs
c (theoretically without any compro-

mise) since the integrand exclusively contains quantities defined on the non-mortar side.
However, the segmentation integration scheme mentioned earlier is employed anyhow.
As shown, for example, in Puso and Laursen (2004a) or Popp, Gitterle, et al. (2010), this
reveals to be advantageous with regard to the fulfilment of the fundamental conserva-
tion laws in the discrete setting. A description of the integration strategy in two and three
dimensions, including the set of projection rules and Gaussian quadrature, is described
in the following paragraphs.

3.7.1 Element-wise integration
Originally proposed in Fischer and Wriggers (2005, 2006), the element-based integra-

tion scheme defines the integration domain to be identical to the non-mortar boundary,
i.e., the numerical integration is performed directly on the non-mortar elements without
any segmentation, see Figure 3.3. This requires finding the projected coordinate on the
mortar domain, ξ̂m

g , which can be obtained by solving the local system of equations

ns
e∑

j=1

[
N s

j

(
ξs

g
)
xs

j

]
+αηh

g
(
ξs

g
)− nm

e∑
l=1

[
N m

l

(
ξ̂m

g
)
xm

l

]
= 0 . (3.48)

Here, α denotes the normal distance between the points, and once again, the compact
notation for the interpolated unit normal vector at the Gauss point ηh

g has been adopted.
While for 2-noded line elements or 3-noded triangle surface elements, it leads to a linear
system of equations (which can be solved directly), for the remaining cases, it requires
the application of a local Newton-Raphson scheme. In three dimensions, each iteration
reads 

∆ξ̂m
1

∆ξ̂m
2

∆α

= [W]−1

{
ns

e∑
j=1

[
N s

j

(
ξs

g
)
xs

j

]
+αηh

g
(
ξs

g
)− nm

e∑
l=1

[
N m

l

(
ξ̂m

g
)
xm

l

]}
, (3.49)

where the tangent matrix [W] ∈Rd×d comes as

[W] ≡
[

nm
e∑

l=1

[
N m

l ,ξm
1

(
ξ̂m

g
)
xm

l

] ∣∣∣ nm
e∑

l=1

[
N m

l ,ξm
2

(
ξ̂m

g
)
xm

l

] ∣∣∣ ηh
g
(
ξs

g
)]

. (3.50)

The two-dimensional version is rather straightforward by simply omitting the second col-
umn. As mentioned, this strategy will most likely lead to discontinuities in the integrands
involving both mortar and non-mortar boundaries simultaneously (e.g., the discrete gap
or second mortar matrix) and, therefore, should be used with caution.

3.7.2 Segment-based integration
As mentioned, the segment-based integration is based on the prevention of discon-

tinuities by the establishment of smooth integrable segments. This is accomplished by
the joint transmission of geometrical information between both boundaries, by means
of projections based on the continuous field of normals. Even though the algorithmic
approach to both two- and three-dimensional mortar contact shares the same concept,
they require different strategies and, therefore, are discussed separately in the following.
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Figure 3.3: Illustration of the element-wise scheme. The integration Gauss points are
projected directly from the discrete non-mortar boundary onto the mortar
side, without caring for discontinuities. For example, in the particular case in
the illustration each integration point falls onto different mortar elements.

3.7.2.1 Two-dimensional problems

As schematically represented in Figure 3.4, in two dimensions, the integration seg-
ments endpoints can be either nodes themselves or a projection of mortar nodes onto
the non-mortar side—and vice versa. The projections are based on the collinearity con-
dition with the outward normal vector, i.e., the projection of a non-mortar node xs

a onto
the related mortar element e with nodes xm

l

(
l = 1, . . . ,nm

e

)
is obtained by solving[

nm
e∑

l=1

(
N m

l

(
ξm

a
)

xm
l

)
−xs

a

]
× η̃a = 0 , (3.51)

where ξm
a is the sought-after projection coordinate; the projection of a mortar node xm

b
onto the related non-mortar element e, with nodes xs

k

(
k = 1, . . . ,ns

e

)
, can be determined

by finding the coordinate ξs
b satisfying[

xm
b −

ns
e∑

k=1

(
N s

k

(
ξs

b
)
xs

k

)]
×

[
ns

e∑
k=1

(
N s

k

(
ξs

b
)
η̃k

)]
= 0 . (3.52)

In general, Equations (3.51) and (3.52) yield non-linear conditions for the projection co-
ordinates, thus usually solved by a local Newton-Raphson scheme.

Finally, the local parameter space ζ ∈ [−1,1] is introduced and the integrals are eval-
uated using Gauss quadrature. Considering the notation ξs

a and ξs
b for the integration

segment end coordinates on the non-mortar side, the mapping from integration segment
coordinates, ζ, to non-mortar coordinates, ξs, reads

ξs
g = 1

2

(
1−ζg

)
ξs

a+
1

2

(
1+ζg

)
ξs

b . (3.53)
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{
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Figure 3.4: Schematic description of the segmentation method for two-dimensional first-
order interpolation.

With regard to the mapping from the local integration coordinates ζ to the mortar coordi-
nates, ξm, the technique proposed by Popp (2012) is adopted and, instead of establishing
an interpolation rule for ξm, the individual Gauss points ζg (with global coordinates xs

g)
are projected from the non-mortar the mortar side just as in Equation (3.51), i.e.,[

nm
e∑

l=1

(
N m

l

(
ξm

g
)
xm

l

)
−xs

g

]
×

[
ns

e∑
k=1

(
N s

k

(
ξs

g
)
η̃k

)]
= 0 . (3.54)

The Gauss quadrature can finally be written as:

D(s,m)
j k ≈

ng∑
g=1

wgΦ j
(
ξs

g
(
ζg

))
N s

k

(
ξs

g
(
ζg

))
Jseg , (3.55)

M(s,m)
j l ≈

ng∑
g=1

wgΦ j
(
ξs

g
(
ζg

))
N m

l

(
ξm

g
(
ζg

))
Jseg , (3.56)

where Jseg comprises the set of mappings

Jseg ≡
∥∥∥∥∂

{
xs

}h

∂ξs

∥∥∥∥∣∣∣∣∂ξs

∂ζ

∣∣∣∣ , (3.57)

i.e., the mapping from physical space to non-mortar element parameter space and from
non-mortar element space to local integration segment space.

3.7.2.2 Three-dimensional problems

In the three-dimensional space, the geometrical treatment is altogether much more
intricate. For instance, the definition of integration elements now involves arbitrarily
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shaped polygons. Beyond that, even the choice of an adequate integration surface itself
is quite difficult. The approach followed in two dimensions of performing the integration
directly on the non-mortar side is not trivial because of the possible warping of surface
facets. Aiming to solve these difficulties, a simplified algorithm employing piecewise flat
segments was originally proposed in Puso (2004) and is adopted here. For further details,
the interested reader is also referred to Puso and Laursen (2004a,b). The main steps of
the algorithm are outlined in Table 3.1.

While capable of providing accurate results under any circumstances, the computa-
tional complexity of this algorithm is a significant drawback. The total number of pro-
jection operations grows considerably with problem size and, therefore, strategies to ac-
celerate the algorithm are crucial. In Wilking and Bischoff (2017), this topic is tackled
by combining adjacent triangular together to form quadrilateral integration domains.
This significantly reduces the total number of Gauss points while maintaining integra-
tion accuracy. Despite the Jacobian determinant of quadrilateral integration cells being
non-constant, its impact on the overall performance is negligible and, when combined
with the suitable Gauss-Legendre quadrature, yields stable and accurate results. For ex-
ample, in Figure 3.5 all the integration cells are represented for a simulation of a half
torus, in which the vast majority of the cells can be merged to quadrilaterals. In Wilking
and Bischoff (2017), the use of alternative quadratures with reduced integration points is
also explored. However, it resulted in integration errors, mainly due to the rational poly-
nomials emanating from the nodal projections and non-constant Jacobian determinants.
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Table 3.1: Main steps of three-dimensional mortar integration algorithm.

Step 1
Create an auxiliary plane X for numerical integration, based on

the non-mortar element center
{

xs¯
}h and the corresponding

unit normal vector ηh¯. X

ηh¯{
xs¯

}h

Step 2
Project all ns

e non-mortar element nodes xs
k

(
k = 1, . . . ,ns

e
)

onto

the auxiliary plane along ηh¯. This can be interpreted as an ap-
proximation for the non-mortar surface obtained by removing
element warping.

X

Step 3
Project all nm

e mortar element nodes xs
l

(
l = 1, . . . ,nm

e
)

onto the

auxiliary plane along ηh¯.

X

Step 4
Find the clip polygon C (see e.g., Foley et al. [1996]) to define
the overlapping region of the projected non-mortar and mortar
elements on the auxiliary plane X . X

C

Step 5
Perform a decomposition (e.g., by applying Delauney
triangulation) of the clip polygon C into ncell easy-
to-integrate triangular subdomains: herein termed in-
tegration cells. On each integration cell, a standard
triangular finite element interpolation is employed,
thus introducing the integration cell parameter space,

ζ= {
(ζ1,ζ2) | ζ1 ≥ 0 , ζ2 ≥ 0 , ζ1 +ζ2 ≤ 1

}
. (3.58)

X

Step 6
Define ng Gauss integration points with coordinates
ζg

(
g= 1, . . . ,ng

)
on each cell (see, e.g., Cowper [1973]),

and project back along ηh¯ to non-mortar and mor-
tar elements to obtain ξs (

ζg
)

and ξm (
ζg

)
. Then, per-

form Gauss integration of D(s,m)
j k and D(s,m)

j k (with

j ,k = 1, . . . ,ns
e and l = 1, . . . ,nm

e ) on all integration cells.

D(s,m)
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(
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c (3.59)

M(s,m)
j l ≈

ncell∑
c=1

ng∑
g=1

wgΦ j
(
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g
(
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N m

l

(
ξm

g
(
ζg

))
J cell

c (3.60)

where J cell
c is the integration cell c Jacobian determinant.

X
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Quadra
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Figure 3.5: Integration cells in the simulation of a half torus with quadrangulation of
integration cell triangles.
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3.8 Summarized discrete form

With all the main aspects of the finite element approximation of mortar-based frictional
contact discussed, the employed algebraic representation of the discrete entities involved
is now introduced. This is done with the actual computational implementation of the
algorithm in mind, and the resulting expressions are the starting point of the global solu-
tion method discussed in the rest of the chapter.

As a first step, all nodes (and corresponding degrees of freedom) of the two sub-
domains Ωs and Ωm are partitioned into three disjoint sets S ∪M∪N : a group S con-
taining all non-mortar quantities, a group M of all mortar quantities and a group N
associated with all remaining nodes or degrees of freedom. This allows for the definition
of the displacement global vector

{
d
} ∈Rd ·nnod as

{
d
}≡


dN

dM

dS

 . (3.61)

The same structure applies to the virtual displacement global vector
{
δd

}
. The discrete

contact virtual work Equation (3.17) can thus be written as

Πh
c = {

δd
}T{

fc
}

, (3.62)

where the discrete vector of contact forces
{

fc (d,z)
} ∈Rd ·nnod is constructed as{

fc (d,z)
}≡ [

C
]{

z
}

. (3.63)

Herein, the global vector
{

z
} ∈Rd ·nλ

contains all the Lagrange multipliers and the discrete

mortar contact operator
[
C (d)

] ∈R(d ·nnod)×(d ·nλ) is defined as

[
C (d)

]≡
 0

−MT

DT

 . (3.64)

Finally, by introducing the global vectors of internal forces
{

fint (d)
} ∈Rd ·nnod and external

forces
{

fext
} ∈Rd ·nnod , the discrete finite deformation contact problem can finally be stated

as:

Problem 3.1 (The discrete form of finite deformation frictional contact)
Given the internal forces and boundary conditions, find the displacement vector, d, and
Lagrange multiplier vector, z, such that, for all t ∈ [t0,T ], the set of discrete non-linear
ordinary differential equations of motion including frictional contact are satisfied:

fint (d)− fext + fc (d,z) = 0 , (3.65)

g̃ j ≥ 0 , zηj ≥ 0 , g̃ j zηj = 0 , ∀ j ∈S , (3.66)

ψ j ≤ 0 , ũτ
j + β̃ j zτj = 0 , β̃ j ≥ 0 , ψ j β̃ j = 0 , ∀ j ∈S . (3.67)
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3.9 Primal-dual active set strategy

When compared with the classical non-linear solid mechanics, the discrete contact prob-
lem comprises an additional source of non-linearity apart from the well-known geometri-
cal and material non-linearities: the contact inequality constraints. In the discrete setting,
the set of discrete normal constraints—enforced point-wise at each non-mortar node—is
divided into two a priori unknown sets of active and inactive constraints. On top of that,
the discrete tangential constraints for the active contact nodes must be fulfilled as well.
Within the context of Coulomb’s friction constitutive law, in particular, stick and sliding
nodes need to be identified and the associated kinematical constraints enforced.

The idea of an active set strategy for frictional unilateral contact comes down to find-
ing the correct subset of all non-mortar nodes which are effectively in contact and at
the stick/slip condition at the end of each step of the global incremental algorithm. The
simplest possible approach to this problem consists of defining an iterative scheme for
the active set where, for each guess, the solution of the underlying convex problem is
obtained. Then, the constraints are checked and updated, if necessary. However, this
approach is undesirable from a computational efficiency standpoint, as it leads to two
nested iterative solution schemes: the outer loop (fixed-point type) searching for the ac-
tive set and the inner loop (Newton-Raphson type) solving the constrained non-linear
finite element problem. To overcome this problem, an efficient and robust alternative is
employed here: the so-called Primal-Dual Active Set Strategy (PDASS). The fundamen-
tal idea is to regularise the problem by reformulating the discrete nodal inequality con-
straints with the so-called Non-linear Complementarity (NCP) functions. This introduces
a certain regularisation on the active set search and, as explained in more detail in Sec-
tion 3.10, enables the application of a Newton-Raphson type algorithm, comprising not
only geometrical and material non-linearities, but also the contact active set search itself
as well. In the following paragraphs, the complementarity functions used to express the
contact constraints in the normal and tangential directions are introduced.

3.9.1 Non-linear complementarity function for normal constraints

According to Hüeber and B. I. Wohlmuth (2005), the complementarity function in
normal direction can be defined as

Cη

j

(
d,z j

)≡ zηj −max
{

0, zηj −cη g̃ j

}
, cη > 0 , (3.68)

where cη represents the so-called normal complementarity parameter (its concrete role
is discussed later in this paragraph). With the NCP function (3.68) defined, it can be
easily shown that the normal inequality constraints in Equation (3.66) can be equivalently
rewritten as the following equality condition:

Cη

j = 0 , ∀ j ∈S . (3.69)

Figure 3.6 schematically illustrates the nodal complementarity function, highlighting the
equivalence with the KKT conditions. The distinction between the active and inactive
sets is contained in the solution branch structure of the non-smooth max-operator. Thus,
even though the NCP function (3.68) is continuous, it is non-smooth and has no uniquely
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defined derivative at zηj − cη g̃ j = 0. Yet, the max-function can be classified as a semi-
smooth function and directional derivatives can still be extracted, which allows for the ap-
plication of a semi-smooth Newton method, see, e.g., Hintermüller et al. (2002). Herewith,
all sources of non-linearity, i.e,. geometrical, material and contact itself, can be treated
within a single iterative scheme.

00

0

inactive
active

g̃ j
z
η
j

C
η j

Figure 3.6: Nodal complementarity function Cη

j for the normal contact constraints (with

cη = 1).

As a final remark, it is pointed out that the normal complementarity parameter cη

represents a purely algorithmic parameter. Despite its similarities, at first sight, with a
penalty parameter, it only affects the convergence behaviour of the semi-smooth Newton
algorithm—not the accuracy of the results. The value of cη has been suggested in Hüeber
and B. I. Wohlmuth (2005) to be of the order of the Young’s modulus of the involved con-
tacting bodies to obtain optimal convergence. However, several numerical investigations
have shown very little influence on the semi-smooth Newton convergence rate (Popp,
Gee, et al., 2009; Popp, Gitterle, et al., 2010).

3.9.2 Non-linear complementarity function for frictional constraints
Similar to the normal contact constraints, the PDASS strategy also reformulates the

frictional inequality constraints (3.67) within a NCP function. There are various possi-
bilities to define a suitable complementarity function, see, e.g., Alart and Curnier (1991),
Christensen et al. (1998), and Hüeber (2008) for a comprehensive overview. In this work,
the formulation introduced in Hüeber (2008) and successfully validated in Gitterle et al.
(2010) is employed, which defined the tangential NCP function as

Cτ
j

(
d,z j

)≡zτj max
{
µ

(
zηj −cη g̃ j

)
,‖zτj +cτũτ

j ‖
}

−µ(
zτj +cτũτ

j

)
max

{
0,zηj −cη g̃ j

}
, cη ,cτ > 0 .

(3.70)
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As the normal complementarity parameter cη, the tangential complementarity parameter
cτ is a purely algorithmic parameter affecting only the convergence behaviour (Gitterle
et al., 2010). Note that the NCP function (3.70) is formulated for the three-dimensional
case and, thus, constitutes a vector with two components associated with each tangential
direction at a contact point. For two-dimensional problems, Equation (3.70) reduces to a
scalar NCP function. In analogy to the reformulated normal contact constraints in Equa-
tion (3.69), the solution of Coulomb’s friction law in (3.67) can be equivalently expressed
by the equality condition

Cτ
j = 0 , ∀ j ∈S . (3.71)

Figure 3.7 gives a schematic description of the tangential NCP function (3.70) in the two-
dimensional case and emphasizes the equivalence with the frictional contact constraints
(3.67). The distinction between slip and stick nodes is again implicitly contained in the
NCP function (3.70) due to the non-smoothness of the max operator.

00

0

slip
stick

slip

zτjũτj

C
τ j

Figure 3.7: Nodal complementarity function Cτ
j for the tangential contact constraints in

two-dimensions (with cη = 1 and a constant value of µzηj = 7).

3.10 Semi-smooth Newton solution method

With the active set strategy thought out, attention is now shifted towards the actual nu-
merical solution of the spatially discrete frictional contact problem stated in Problem 3.1.
As mentioned in Section 3.9, the reformulation of inequality contact constraints as NCP
functions can be interpreted as an algorithmic regularisation for the non-smoothness
and multivalued character of contact conditions. The resulting PDASS algorithm is well-
known from the general mathematical literature on constrained minimization and, as
pointed out by Christensen et al. (1998) or Hintermüller et al. (2002), can be conveniently
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reinterpreted as a semi-smooth Newton method. For additional information on semi-
smooth Newton methods, the interested reader is referred to Hintermüller et al. (2002) or
Qi and Sun (1993). Regarding applications of semi-smooth methods for contact problems,
early implementations within the context of classical NTS formulations can be found,
e.g., in Alart and Curnier (1991), Strömberg et al. (1996), and Christensen et al. (1998) also
referring to Koziara and Bićanić (2008) for frictional contact between pseudo-rigid bod-
ies. In what concerns mortar-based contact formulations, in Hüeber and B. I. Wohlmuth
(2005), the algorithm is applied for small deformation contact and, later on, extended
by Popp, Gee, et al. (2009) and Popp, Gitterle, et al. (2010) for finite deformation dual
mortar contact. The inclusion of frictional constraints is credited to Hüeber, G. Stadler,
et al. (2008).

By introducing the NCP functions (3.69) and (3.71) in Problem 3.1, the discrete fric-
tional contact problem can be rewritten as the set of equality conditions:

r (d,z) ≡ fint (d)− fext + fc (d,z) = 0 , (3.72)

Cη

j

(
d,z j

)= 0 , ∀ j ∈S , (3.73)

Cτ
j

(
d,z j

)= 0 , ∀ j ∈S . (3.74)

At this point, Equations (3.72) to (3.74) establish the basis for the application of a Newton-
type algorithm. Essentially, the discrete balance of linear momentum equation (here rep-
resented by the residual r) and discrete contact constraints (now expressed using the NCP
functions) are linearised. Each non-linear solution step consists of solving the resulting
linearised system of equations. An incremental update of the unknown displacements d
and Lagrange multipliers z is applied repeatedly until a user-defined convergence crite-
rion is met. Within the global incremental load algorithm, this solution method is applied
for each load factor. With regard to the current formulation, the application of a Newton-
type algorithm requires subsequent linearisation of the terms in Equations (3.72) to (3.74),
as explained in the following paragraphs.

3.10.1 Consistent linearisation
The aforementioned semi-smooth Newton method is solved in each iteration k for

the primal-dual pair
(
dk+1,zk+1

)
and is defined by:

Dr =−{
r
}k , (3.75)

DCη

j =−{
Cη

j

}k , ∀ j ∈S , (3.76)

DCτ
j =−{

Cτ
j

}k , ∀ j ∈S , (3.77)

followed by the update (
dk+1,zk+1)= (

dk,zk)+ (
∆d,∆z

)
. (3.78)

Herein, the compact notation D (•) has been introduced for the so-called directional
derivative, i.e.

D (•) ≡ ∂ (•)

∂d

∣∣∣∣k

∆d+ ∂ (•)

∂z

∣∣∣∣k

∆z . (3.79)
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The linearisation of the discrete balance equation residual r, Equation (3.75), includes
the linearisation of the internal forces vector fint and the contact forces vector fc, viz.

Dr =Dfint +Dfc . (3.80)

The linearisation of the internal force vector fint with respect to the displacements leads
to the well-known tangent stiffness matrix, herein represented by K; since it only de-
pends on the finite element technology employed—it is entirely independent of the con-
tact enforcement—it is not addressed here. The remaining terms, related to contact, are
treated individually in the following paragraphs.

Remark. For notational convenience, the Newton iteration step superscript k is omitted
from the linearisation derivations.

3.10.1.1 Contact forces vector

By recalling the definition of the contact forces global vector in Equation (3.63), its
linearisation yields

Dfc =

 0

−DMTz−MTDz

DDTz+DTDz

 . (3.81)

As can be observed, the directional derivative of the contact forces vector requires the con-
sistent linearisation of the mortar coupling matrices

[
D

]
and

[
M

]
, whose computation, as

explained in great detail in Section 3.7, is performed by employing a segmentation-based
strategy. Therefore, by taking into account the Gauss quadrature scheme given in Equa-
tions (3.55) and (3.56) for two-dimensional problems and Equations (3.59) and (3.60) for
three-dimensional problems, the linearisation of one integration segment contribution
to the entries D j k of the first mortar coupling matrix

[
D

]
can be written as

DD j k =
ng∑

g=1
wg DΦ j

(
ξs

g
)

N s
k

(
ξs

g
)

J
(
ξs

g
)

+
ng∑

g=1
wgΦ j

(
ξs

g
)
DN s

k

(
ξs

g
)

J
(
ξs

g
)

+
ng∑

g=1
wgΦ j

(
ξs

g
)

N s
k

(
ξs

g
)
D J

(
ξs

g
)

,

(3.82)

and the linearisation of the entries M j k to the second mortar coupling matrix
[
M

]
reads

DM j l =
ng∑

g=1
wg DΦ j

(
ξs

g
)

N m
l

(
ξm

g
)

J
(
ξs

g
)

+
ng∑

g=1
wgΦ j

(
ξs

g
)
DN m

l

(
ξm

g
)

J
(
ξs

g
)

+
ng∑

g=1
wgΦ j

(
ξs

g
)

N m
l

(
ξm

g
)
D J

(
ξs

g
)

.

(3.83)
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Here, the generic notation J for the integration segment Jacobian determinant has been
used, considering that it corresponds to the Jacobian determinant of the integration seg-
ment Jseg in two dimensions and the integration cell Jacobian determinant J cell in three
dimensions.

Examining the directional derivatives (3.82) and (3.83) in more detail, one can readily
identify several element contributions: the linearisation of the dual shape functions Φ j ,
the displacement shape functions N s

k and N m
l and the Jacobian determinant J . Applying

the chain rule of differentiation, further elementary linearisations will naturally emerge,
e.g., that of the averaged unit normal vector η̃ j and of the integration Gauss points ξs

g
or ξm

g . Since this stage of the algorithm accounts for the more significant part of the
numerical effort of mortar-based finite deformation contact, in Appendix A, a detailed
derivation and corresponding algebraic representation for all individual terms necessary
to evaluate the directional derivatives of mortar coupling matrices is provided.

3.10.1.2 NCP function for normal constraints

While the contact forces global vector is differentiable in the classical sense, the NCP
functions (3.68) and (3.70) contain the max-operator and, therefore, must be handled
properly as a differentiable function (Hintermüller et al., 2002). In terms of mathematical
characterization, the resulting condition is classified as of Robin type since it involves
both the displacement and the Lagrange multiplier.

As a preliminary step, recall that the generalised derivative of the max-function can
be defined as

f (x) = max{a, x} −→ ∂ f (x)

∂x
=

{
0 , if x ≤ a ,

1 , if x > a ,
(3.84)

i.e., it reproduces the underlying branch structure of the max-function. Since active and
inactive branches are separated, one can define the disjoint partitioning of the non-
mortar set S into an inactive nodes set I and active nodes set A as

I ≡
{

j ∈S | zηj −cη g̃ j ≤ 0
}

, (3.85)

A≡
{

j ∈S | zηj −cη g̃ j > 0
}

, (3.86)

which is tantamount to an update scheme to be applied after each iterative step. Defining
χ(•) as a characteristic function for the set (•), i.e.

χ(•) ≡
{

0 , if j ∈ (•) ,

1 , if j 6∈ (•) ,
(3.87)

the linearisation of the NCP function in the normal direction (3.68) can be written as

DCη

j ≡Dzηj −χA
[
Dzηj −cηD g̃ j

]
, (3.88)

with the abbreviation
Dzηj ≡Dηh

j ·z j +ηh
j ·Dz j . (3.89)

The numerical integration of the weighted gap function g̃ j , by considering its definition
in Equation (3.29) and the employed segmentation scheme for numerical integration of
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mortar integrals, can be expressed by the generic notation

g̃ j ≈
ng∑

g=1
wgΦ j

(
ξs

g
)

g h(
ξs

g,ξm
g

)
J
(
ξs

g
)

, (3.90)

whose consistent linearisation yields

D g̃ j =
ng∑

g=1
wgDΦ j

(
ξs

g
)

g h(
ξs

g,ξm
g

)
J
(
ξs

g
)

+
ng∑
g

wgΦ j
(
ξs

g
)
Dg h(

ξs
g,ξm

g
)

J
(
ξs

g
)

+
ng∑
g

wgΦ j
(
ξs

g
)

g h(
ξs

g,ξm
g

)
D J

(
ξs

g
)

.

(3.91)

Once again, the generic notation J for the integration segment Jacobian determinant has
been used. For a detailed description of the linearisation of all the involved terms, refer
to Appendix A.

Finally, consideration of the definitions (3.85) and (3.86) in Equation (3.88) results in
the following compact notation:

• Inactive nodes: zηj −cη g̃ j ≤ 0 {
Cη

j

}
I ≡ zηj (3.92){

DCη

j

}
I =Dzηj (3.93)

• Active nodes: zηj −cη g̃ j > 0 {
Cη

j

}
A ≡ cηg̃ j (3.94){

DCη

j

}
A = cηD g̃ j (3.95)

3.10.1.3 NCP function for tangential constraints

First of all, for notational convenience, the abbreviations

bη
(
d,z j

)= zηj −cη g̃ j , (3.96)

bτ
(
d,z j

)= zτj +cτũτ
j , (3.97)

are introduced; this allows to rewrite Equation (3.70) using the compact notation

Cτ
j ≡ zτj max

{
µbη,

∥∥bτ
∥∥}−µbτmax

{
0,bη

}
. (3.98)

Like the NCP function in the normal direction, at this stage, it is convenient to introduce
a characteristic function for the relevant sets. While in the normal direction, the set of
non-mortar nodes is divided into two disjoint sets of active and inactive nodes; along the
tangential direction, there are three sets: the set I of inactive nodes (not in contact); the
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set Q of nodes in contact and stick state; the set L of nodes in contact and slip condition.
Mathematically, these disjoint sets follow as§:

I ≡
{

j ∈S | zηj −cη g̃ j ≤ 0
}

, (3.99)

Q≡
{

j ∈A | ‖zτj +cτũτ
j ‖−µ

[
zηj −cη g̃ j

]< 0
}

, (3.100)

L≡
{

j ∈A | ‖zτj +cτũτ
j ‖−µ

[
zηj −cη g̃ j

]≥ 0
}

. (3.101)

By using the characteristic function χ already introduced in Equation (3.87), the direc-
tional derivative of Equation (3.98) yields

DCτ
j =Dzτj

(
χQµbη+χI∪L

∥∥bτ
∥∥)

+zτj

(
χQµDbη+χI∪L bτ∥∥bτ

∥∥ ·Dbτ
)

−χQ∪L
(
µbηDbτ+µbτDbη

)
,

(3.102)

where the individual linearisations Dbη and Dbτ are computed as

Dbη =Dzηj −cηD g̃ j , (3.103)

Dbτ =Dzτj +cτD ũτ
j , (3.104)

respectively. Here, the directional derivative of the nodal Lagrange multiplier projection
in the tangential plane zτj reads

Dzτj =DP j z j +P j Dz j , (3.105)

and, recalling the nodal weighted slip increment ũτ
j definition in Equation (3.44), its lin-

earisation results in

D ũτ
j =−DPh

j

[(
Dtn

[ j , j ] −Dtn−1

[ j , j ]

)
xs

j −
nm∑
l=1

(
Mtn

[ j ,l ] −Mtn−1

[ j ,l ]

)
xm

l

]

−P j

[(
DDtn

[ j , j ] −DDtn−1

[ j , j ]

)
xs

j −
nm∑
l=1

(
DMtn

[ j ,l ] −DMtn−1

[ j ,l ]

)
xm

l

]

−P j

[(
Dtn

[ j , j ] −Dtn−1

[ j , j ]

)
∆xs

j −
nm∑
l=1

(
Mtn

[ j ,l ] −Mtn−1

[ j ,l ]

)
∆xm

l

]
.

(3.106)

The linearisation of the discrete tangential projection operator P j at non-mortar node j
gathers the derivatives of individual unit tangent vectors, i.e.,

DP j =


{
Dτ1

j

}h

...{
Dτd−1

j

}h

 . (3.107)

§It should be noted that, although leading to identical sets (cf. Equation (3.85) and Equation (3.99), for
instance), this division is independent of the partitioning resulting from the NCP function in the normal
direction.
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Again, all the individual entries in the expressions above can be found in Appendix A.
Finally, by isolating each solution branch and expanding the notation, the following ex-
pressions are obtained:

• Inactive nodes: zηj −cη g̃ j ≤ 0

{
Cτ

j

}
I ≡ zτj ‖zτj +cτũτ

j ‖ (3.108)

{
DCτ

j

}
I =Dzτj ‖zτj +cτũτ

j ‖+zτj

[(
zτj +cτũτ

j

‖zτj +cτũτ
j ‖

)
·
(
Dzτj +cτD ũτ

j

)]
(3.109)

• Stick nodes: ‖zτj +cτũτ
j ‖−µ

[
zηj −cη g̃ j

]< 0

{
Cτ

j

}
Q ≡−µcτũτ

j

(
zηj −cη g̃ j

)
(3.110){

DCτ
j

}
Q =−µcτD ũτ

j

(
zηj −cη g̃ j

)
−µcτũτ

j

(
Dzηj −cηD g̃ j

)
(3.111)

• Slip nodes: ‖zτj +cτũτ
j ‖−µ

[
zηj −cη g̃ j

]≥ 0

{
Cτ

j

}
L ≡zτj ‖zτj +cτũτ

j ‖−µ
(
zηj −cη g̃ j

)(
zτj +cτũτ

j

)
(3.112)

{
DCτ

j

}
L =Dzτj ‖zτj +cτũτ

j ‖+zτj

[(
zτj +cτũτ

j

‖zτj +cτũτ
j ‖

)
·
(
Dzτj +cτD ũτ

j

)]
(3.113)

−µ
(
Dzηj −cηD g̃ j

)(
zτj +cτũτ

j

)
−µ

(
zηj −cη g̃ j

)(
Dzτj +cτD ũτ

j

)
3.10.2 Semi-smooth Newton algorithm

With all the required derivatives obtained, the global semi-smooth Newton algorithm
can finally be summarized. Before doing that, however, it should be noted that the La-
grange multipliers only enter the discrete frictional contact problem in a linear fashion.
This means that one can write

Dz = zk+1 −zk (3.114)

for all linearisations above, thus allowing to solve directly for the unknown Lagrange mul-
tipliers zk+1 at each iteration, without any compromises (i.e., without employing an incre-
mental formulation). Moreover, a closer inspection of the conditions in Equations (3.92)
and (3.93) and Equations (3.108) and (3.109) for the inactive set I reveals that an addi-
tional simplification can still be adopted. Since for inactive nodes, the friction bound is
zero, there is no need to enforce collinearity between zτj and ũτ

j and, thus, the choice

z j = 0 , ∀ j ∈ I , (3.115)

is consistent within the iterative process.
The global algorithm is described in Algorithm 1, considering a semi-smooth Newton

step at the current iterate k to be solved for the primal-dual pair of discrete variables
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(
dk+1, zk+1

)
. Herein, the variable εr represents an absolute Newton convergence toler-

ance for the L2-norm of the total residual vector rtot, which comprises not only the force
residual, but the residual of the contact constraints as well.

The procedure described in Algorithm 1, besides being able to handle in an aggre-
gate manner all sources of non-linearities within a single iterative loop—including the
search for the correct sets for the contact constraints—has also shown to have a good
convergence behaviour, see, e.g., Hüeber, G. Stadler, et al. (2008), Popp, Gee, et al. (2009),
and Gitterle et al. (2010). Typically, while the contact sets are not found, locally super-
linear convergence rates are expected due to the consistent linearisation (Hintermüller
et al., 2002). Once the sets are resolved and fixed, a standard (smooth) Newton-Raphson
is recovered and locally quadratic convergence rates can be achieved.
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Algorithm 1: Semi-smooth Newton algorithm

(1) Set k = 0 and initialize the solution
(
d0,z0

)
(2) Initialise I0, A0, Q0 and L0 such that:

I0 ∪A0 =S (3.116)

Q0 ∪L0 =A0 (3.117)

I0 ∩Q0 = I0 ∩L0 =Q0 ∩L0 =; (3.118)

(3) Find the primal-dual pair
(
∆d,zk+1

)
by solving:

Dr =−rk (3.119)

zk+1
j = 0 , ∀ j ∈ Ik (3.120){

DCη

j

}
A =−{

Cη

j

}k
A , ∀ j ∈Ak (3.121){

DCτ
j

}
Q =−{

Cτ
j

}k
Q , ∀ j ∈Qk (3.122){

DCτ
j

}
L =−{

Cτ
j

}k
L , ∀ j ∈Lk (3.123)

(4) Update displacements:
dk+1 = dk +∆d (3.124)

(5) Set Ik+1, Qk+1 and Lk+1 to:

Ik+1 ≡
{

j ∈S | {
zηj

}k+1 −cη
{

g̃ j
}k+1 ≤ 0

}
Ak+1 ≡

{
j ∈S | {

zηj
}k+1 −cη

{
g̃ j

}k+1 > 0
}

Qk+1 ≡
{

j ∈Ak+1 | ‖{zτj
}k+1 +cτ

{
ũτ

j

}k+1‖−µ [{
zηj

}k+1 −cη
{

g̃ j
}k+1]< 0

}
Lk+1 ≡

{
j ∈Ak+1 | ‖{zτj

}k+1 +cτ
{

ũτ
j

}k+1‖−µ [{
zηj

}k+1 −cη
{

g̃ j
}k+1]≥ 0

}
(3.125)

(6) If Ik+1 = Ik, Ak+1 =Ak, Qk+1 =Qk, Lk+1 =Lk and ‖rtot‖ ≤ εr then
stop

else
set k := k+1 and go to step (3).
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3.11 Algebraic representation for Dual mortar methods

As a final topic to be addressed in this chapter, an algebraic representation for the globally
assembled matrix notations is provided. As before, special attention is given to the terms
related to contact and, with the assembly procedure itself being relatively well-known
from finite element technology, only abstract definitions of the individual blocks are given.
Moreover, the condensation of the discrete Lagrange multipliers is explained as well. Due
to the bi-orthogonality condition of dual Lagrange multipliers, it can be performed in an
efficient and variationally consistent way for dual mortar methods.

3.11.1 Linearised system
As already mentioned, Algorithm 1 is constructed around the linearised system to be

solved within each semi-smooth Newton iteration. In the following paragraphs, algebraic
notations for the linearised versions of all involved terms are provided.

3.11.1.1 Discrete force equilibrium

The first term to be analysed is the discrete force equilibrium given in Equation (3.119).
By isolating in the directional derivative of the contact forces vector derived in Equa-
tion (3.81), the terms associated with the derivative with respect to the discrete displace-
ments vector {d} and Lagrange multipliers vector {z}—thus exposing the vector {∆d} of
unknown displacement increments—one can write that

{
Dfc

}=
 0

−DMT

DDT

{
z
}+

 0

−MT

DT

{
Dz

}= [
C̃

]{
∆d

}+ [
C

]{
Dz

}
. (3.126)

Herein, the contact stiffness matrix
[

C̃
(
d,z

)] ∈ R(d ·nnod)×(d ·nnod) contains the directional
derivatives of both mortar coupling matrices

[
D

]
and

[
M

]
concerning the discrete dis-

placements vector {d}, together with the current Lagrange multipliers vector {z}. Note that,
by employing the nodal ordering for the incremental displacements vector {∆d} given in
Equation (3.61), the matrix

[
C̃

]
contains blocks associated with non-mortar and mortar

degrees of freedom only, i.e.,

[
C̃

(
d,z

)]≡
 0

C̃M

C̃S

 . (3.127)

Considering the directional derivative of the Lagrange multipliers vector in Equation (3.114),
the following notation for the semi-smooth Newton step k for the contact forces vector
{fc} can be obtained: {

Dfc
}=−{

fc
(
dk,zk)}[

C̃
(
dk,zk)]{∆d

}+ [
C

(
dk)]({

zk+1}−{
zk})=−[

C
(
dk)]{zk}[

C̃
(
dk,zk)]{∆d

}+ [
C

(
dk)]{zk+1}= 0 .

(3.128)

Thus, each iteration of the discrete force equilibrium in Equation (3.119) yields{
Dr

}=−{
r
(
dk,zk)}[

K̃
(
dk,zk)]{∆d

}+ [
C

(
dk)]{zk+1}=−{̃

r
(
dk)} (3.129)
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with the matrix
[
K̃

(
d,z

)] ∈ R(d ·nnod)×(d ·nnod) representing the effective stiffness matrix in-
cluding contact, i.e. [

K̃
(
d
)]≡ [

K
(
d
)]+ [

C̃
(
d,z

)]
, (3.130)

and the vector
{̃

r
(
d
)} ∈Rd ·nnod an abbreviation for the residual,{̃

r
(
d
)}≡ {

fint
}−{

fext
}

. (3.131)

Note that, by solving directly for the current Lagrange multipliers vector
{

zk+1
}
, the cur-

rent contact forces vector
{

fc
(
dk,zk

)}
vanishes, see Equation (3.128), and the final residual{̃

r
}

simplifies to the difference between internal and external forces, as in standard finite
element methods.

3.11.1.2 Normal contact constraints

As can be observed in Equations (3.94) and (3.95), the NCP function in the normal
direction for the active set

{
Cη

j

}
A and its linearisation

{
DCη

j

}
A involve only the weighted

gap function g̃ j and its directional derivative, accordingly. Therefore, the semi-smooth
Newton iteration step k can be simply written as

D g̃ j =−g̃ k
j , ∀ j ∈Ak , (3.132)

or, by converting to an algebraic representation, equivalently as[
AM

(
dk)]{∆dM

}+ [
AS

(
dk)]{∆dS

}=−{
g̃
(
dk)} . (3.133)

Here,
{

g̃
(
d
)} ∈Rna

represents a global vector gathering the weighted gaps g̃ j for all the na

active non-mortar nodes,

A
j∈A

g̃ j =
{

g̃
(
d
)}

, (3.134)

and the matrices
[
AM

(
d
)] ∈Rna×(d ·nm) and

[
AS

(
d
)] ∈Rna×(d ·ns) stand for the assembly of

all directional derivatives covered in D g̃ j , i.e.

A
j∈A

D g̃ j =
[
AM

]{
∆dM

}+ [
AS

]{
∆dS

}
. (3.135)

Herein, A denotes the standard finite element assembly operator.

3.11.1.3 Tangential contact constraints

While in the normal direction, only matrix notations for the active set are needed, in
the tangential direction, both stick and slip conditions need to be imposed throughout the
iterative scheme. Starting by the stick regime, according to Equations (3.110) and (3.111),
the semi-smooth Newton step k can be written in full extent as

−µcτD ũτ
j

({
zηj

}k −cη
{

g̃ j
}k

)
−µcτ

{
ũτ

j

}k
(
Dzηj −cηD g̃ j

)
=µcτ

{
ũτ

j

}k
({

zηj
}k −cη

{
g̃ j

}k
)

, ∀ j ∈Qk .
(3.136)

Considering that insertion of Equation (3.114) into Equation (3.89) yields

Dzηj =Dηh
j ·

{
z j

}k +{
ηh

j

}k ·
({

z j
}k+1 −{

z j
}k

)
, (3.137)
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it follows that Equation (3.136) can be further simplified to

{
DC̃τ

j

}
Q =−{

C̃τ
j

}k
Q , ∀ j ∈Qk , (3.138)

with the abbreviations:

{
C̃τ

j

}k
Q ≡−µcη cτ

{
g̃ j

}k{ũτ
j

}k ; (3.139){
DC̃τ

j

}
Q ≡−µcτD ũτ

j

({
ηh

j

}k ·{z j
}k −cη

{
g̃ j

}k
)

(3.140)

−µcτ
{

ũτ
j

}k
(
Dηh

j ·
{

z j
}k +{

ηh
j

}k ·{z j
}k+1 −cηD g̃ j

)
.

The equations for all nstick sticking nodes can be equally written in matrix form as

[
QM

(
dk,zk)]{∆dM

}+ [
QS

(
dk,zk)]{∆dS

}+ [
T
(
dk)]{zk+1

Q
}=−{

rstick(dk)} , (3.141)

where the vector
{

rstick
(
z
)} ∈Rnstick

represents the residual,

A
j∈Q

{
C̃τ

j

}
Q = {

rstick} , (3.142)

and
[
QM

(
d,z

)] ∈ Rnstick×(d ·nm),
[
QS

(
d,z

)] ∈ Rnstick×(d ·ns) and
[
T
(
d
)] ∈ Rnstick×(d ·nstick) are the

matrices containing the directional derivatives covered in
{
DC̃τ

j

}
Q,

A
j∈Q

{
DC̃τ

j

}
Q = [

QM
]{
∆dM

}+ [
QS

]{
∆dS

}+ [
T
]{

zk+1
Q

}
. (3.143)

Focusing now on the slip state, by recalling Equations (3.112) and (3.113), the semi-
smooth Newton step k is defined as

Dzτj

∥∥∥{
zτj

}k+cτ
{

ũτ
j

}k
∥∥∥+{

zτj
}k

{
zτj

}k+cτ
{

ũτ
j

}k∥∥∥{
zτj

}k+cτ
{

ũτ
j

}k
∥∥∥ ·

(
Dzτj +cτD ũτ

j

)
−µ

(
Dzηj −cηD g̃ j

)({
zτj

}k +cτ
{

ũτ
j

}k
)
−µ

({
zηj

}k −cη
{

g̃ j
}k

)(
Dzτj +cτD ũτ

j

)
=−{

zτj
}k

∥∥∥{
zτj

}k+cτ
{

ũτ
j

}k
∥∥∥+µ({

zηj
}k−cη

{
g̃ j

}k
)({

zτj
}k+cτ

{
ũτ

j

}k
)

, ∀ j ∈Lk .

(3.144)

Then, substitution of Equation (3.114) into Equation (3.105) yields

Dzτj =DP j
{

z j
}k +P j

({
z j

}k+1 −{
z j

}k
)

, (3.145)

and Equation (3.144) can be rewritten as

{
DC̃τ

j

}
L =−{

C̃τ
j

}k
L , (3.146)
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with

{
C̃τ

j

}k
L ≡µcτũτ

j cη g̃ j +
[
µηh

j ·z j −
( P j z j +cτũτ

j

‖P j z j +cτũτ
j ‖

)
· (P j z j

)]
P j z j , (3.147)

{
DC̃τ

j

}
L ≡ ‖P j z j +cτũτ

j ‖
(
DP j z j +P j

{
z j

}k+1
)

+
[( P j z j +cτũτ

j

‖P j z j +cτũτ
j ‖

)
·
(
DP j z j +P j

{
z j

}k+1 +cτD ũτ
j

)]
P j z j

−µ
(
Dηh

j ·z j +ηh
j ·

{
z j

}k+1 −cηD g̃ j

)(
P j z j +cτũτ

j

)
(3.148)

−µ
(
ηh

j ·z j −cη g̃ j

)(
DP j z j +P j

{
z j

}k+1 +cτD ũτ
j

)
.

Here, for ease of notation, the iteration index k has been omitted, with the exception of

the sought-after unknown Lagrange multiplier vector
{

z j
}k+1; it should be kept in mind,

though, that all the remaining terms are evaluated at the current iteration state k. Each
semi-smooth Newton step comprising all nslip slipping nodes can be alternatively be
written using the algebraic notation[

LM
(
dk,zk)]{∆dM

}+ [
LS

(
dk,zk)]{∆dS

}+ [
H

(
dk)]{zk+1

Q
}=−{

rslip(
dk)} , (3.149)

with the residual vector
{

rslip
(
z
)} ∈Rnslip

assembled as

A
j∈L

{
C̃τ

j

}
L = {

rslip}
, (3.150)

and the matrices
[
LM

(
d,z

)] ∈Rnslip×(d ·nm),
[
LS

(
d,z

)] ∈Rnslip×(d ·ns) and
[
H

(
d
)] ∈Rnslip×(d ·nslip)

comprising the directional derivatives in
{
DC̃τ

j

}
L,

A
j∈L

{
DC̃τ

j

}
L = [

LM
]{
∆dM

}+ [
LS

]{
∆dS

}+ [
H

]{
zk+1
L

}
. (3.151)

3.11.1.4 Final equation system before Lagrange multipliers condensation

Having established all the algebraic representations, the final equation system to be
solved at each semi-smooth Newton iteration can finally be assembled. However, in or-
der to handle in a fully integrated fashion all equations (both in normal and tangential
direction), one needs to further separate from the active set A the non-mortar nodes in
the stick set Q and in the slip set L (keeping in mind that A=Q∪L). Thus, the global
vector of displacement increments {∆d} is reorganized as

{
∆d

}≡


∆dN

∆dM

∆dI

∆dQ

∆dL


(3.152)
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and the vector of unknown Lagrange multipliers
{

zk+1
}

split as

{
zk+1}≡


zk+1
I

zk+1
Q

zk+1
L

 . (3.153)

Moreover, taking into account that, for dual Lagrange multipliers, the first mortar cou-
pling matrix

[
D

]
reduces to a diagonal matrix, it can be rearranged as follows

[
D

]≡
DI 0 0

0 DQ 0

0 0 DL

 . (3.154)

The second mortar coupling matrix
[
M

]
, on the other hand, yields

[
M

]≡
MI

MQ

ML

 . (3.155)

Finally, the assembled system to be solved within each semi-smooth Newton step can be
expressed as:

0

0

0

0

KLN

KQN

KIN

KMN

KNN

LM

QM

AM

0

K̃LM

K̃QM

K̃IM

K̃MM

KNM

LI

QI

AI

0

K̃LI

K̃QI

K̃II

K̃MI

KNI

LQ

QQ

AQ

0

K̃LQ

K̃QQ

K̃IQ

K̃MQ

KNQ

LL

QL

AL

0

K̃LL

K̃QL

K̃IL

K̃ML

KNL

0

0

0

II

0

0

DT
I

−MT
I

0

0

T

0

0

0

DT
Q

0

−MT
Q

0

H

0

0

0

DT
L

0

0

−MT
L

0



zk+1
L

zk+1
Q

zk+1
I

∆dL

∆dQ

∆dI

∆dM

∆dN


=−


rslip

rstick

g̃

0

r̃L

r̃Q

r̃I

r̃M

rN


. (3.156)

Herein, the current iteration index k has been dropped, once again for ease of nota-
tion. Examining the linear system (3.156), one can recognise the first five rows as the
linearised form of the discrete force equilibrium in Equation (3.72). The sixth row rep-
resents the trivial contact constraints for non-mortar nodes of the inactive set I , with
II ∈Rd ·(ns−na)×d ·(ns−na) as an identity matrix. With regard to the active set A, the contact
constraints in the normal direction are enforced in the seventh row, while stick and slip
tangential contact constraints are imposed in rows eight and nine, accordingly.

It should be noted that, although the algebraic representation in Equation (3.156)
consists of nine rows and eight columns, the system block matrix still reassembles a
square matrix structure. This is due to the fact that the normal and tangential contact
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constraints are enforced independently in the last three rows, while using a vector-valued
Lagrange multiplier. When compared with standard FE problems without contact, the
final global equation system displays an increased size (recall that the Lagrange multipli-
ers are introduced as unknowns) with the typical saddle point structure easily recognised.
Nonetheless, as explained in the following, the use of dual Lagrange multipliers allows to
simplify the equation system further.

3.11.2 Elimination of the Lagrange multiplier

As already mentioned, the dual Lagrange multiplier shape functions are constructed
such that the interface contact coupling problem is reduced to a localized form. Alge-
braically, this is characterized by the first mortar coupling matrix

[
D

]
becoming a diagonal

matrix. This also means that its inversion becomes trivial, thus allowing the condensation
of the discrete Lagrange multipliers in the linear system (3.156) to be performed in an
efficient manner. Ultimately, the undesirable saddle point structure can be conveniently
removed while maintaining the original saddle point formulation.

First of all, note that by considering the separation between the mortar set M, the
non-mortar set S and the set N comprising the remaining degrees of freedom, based on
Equation (3.129), the discrete Lagrange multipliers vector {z }k+1 can be obtained from
the following general expression:

{
z
}k+1 =−[

D
]−T

({̃
rS

}+ [
KSN

]{
∆dN

}+ [
K̃SM

]{
∆dM

}+ [
K̃SS

]{
∆dS

})
. (3.157)

Alternatively, and following the nodal ordering scheme used in Equation (3.156), the La-
grange multipliers {zI }k+1 associated with inactive non-mortar nodes can easily be con-
densed by extracting the identity {zI }k+1 = 0 from the sixth row in Equation (3.156); this
means that the sixth row and column can be removed. Then, based on the fourth and
fifth rows, one can write that

{
zQ

}k+1 =−[
DQ

]−T
({̃

rQ
}+ [

KQN
]{
∆dN

}+ [
K̃QM

]{
∆dM

}
+ [

K̃QI
]{
∆dI

}+ [
K̃QQ

]{
∆dQ

}+ [
K̃QL

]{
∆dL

})
,

(3.158)

{
zL

}k+1 =−[
DL

]−T
({̃

rL
}+ [

KLN
]{
∆dN

}+ [
K̃LM

]{
∆dM

}
+ [

K̃LI
]{
∆dI

}+ [
K̃LQ

]{
∆dL

}+ [
K̃LL

]{
∆dL

})
.

(3.159)

Examining the definitions above, one can easily conclude that Equations (3.158) and (3.159)
have the same structure as Equation (3.157), with the only difference being the involved
nodal subsets. Finally, the substitution of the expressions above into Equation (3.156)
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leads to the final condensed system:
L̆N

Q̆N

0

KIN

K̆N

KNN

L̆M

Q̆M

AM

K̃IM

K̆M

KNM

L̆I

Q̆I

AI

K̃II

K̆I

KNI

L̆Q

Q̆Q

AQ

K̃IQ

K̆Q

KNQ

L̆L

Q̆L

AL

K̃IL

K̆L

KNL


∆dL

∆dQ

∆dI

∆dM

∆dN

=−

 r̆slip

r̆stick

g̃

r̃I

r̆M

rN


. (3.160)

Here, several algebraic functions and abbreviations have been introduced to facilitate the
notation. First, the algebraic function

[
K̆(•)

]
appearing in the second row is defined as

[
K̆(•)

]≡


[
KM(•)

]+ [
JQ

]T[
KQ(•)

]+ [
JL

]T[
KL(•)

]
, if (•) ∈N ,[

K̃M(•)
]+ [

JQ
]T[

K̃Q(•)
]+ [

JL
]T[

K̃L(•)
]

, if (•) 6∈N ,
(3.161)

where the stick and slip parts of the so-called mortar projection operator, denoted as[
JQ

] ∈R(d ·nstick)×(d ·nm) and
[
JL

] ∈R(d ·nslip)×(d ·nm), have been introduced:[
JQ

]≡ [
DQ

]−1[MQ
]

;
[
JL

]≡ [
DL

]−1[ML
]

. (3.162)

The residual
{

r̆M
} ∈Rd ·nm

denotes the abbreviation{
r̆M

}≡ {̃
rM

}+ [
JQ

]T{̃
rQ

}+ [
JL

]T{̃
rL

}
. (3.163)

Focusing now on the fifth row of Equation (3.160), the function algebraic function
[
Q̆(•)

]
is defined as [

Q̆(•)
]≡

 −[
T
][

DQ
]−T[

KQ(•)
]

, if (•) ∈N ,[
Q(•)

]− [
T
][

DQ
]−T[

K̃Q(•)
]

, if (•) 6∈N ,
(3.164)

and the residual
{

r̆stick
} ∈Rnstick

yields{
r̆stick}≡ {

rstick}− [
T
][

DQ
]−T{̃

rQ
}

. (3.165)

At last, in the sixth row of the system (3.160), the function
[
L̆(•)

]
is constructed as

[
L̆(•)

]≡
 −[

H
][

DL
]−T[

KL(•)
]

, if (•) ∈N ,[
L(•)

]− [
H

][
DL

]−T[
K̃L(•)

]
, if (•) 6∈N ,

(3.166)

and the residual
{

r̆slip
} ∈Rnslip

as{
r̆slip}≡ {

rslip}− [
H

][
DL

]−T{̃
rL

}
. (3.167)
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It should be noted that by using this approach, the discrete Lagrange multipliers are
evaluated by using Equations (3.158) and (3.159) as a post-processing step at the end of
each iterative Newton step—within mortar formulations, in a variationally consistent way.
Given its physical interpretation as contact stresses, this stage of the algorithm is critical
to several contact algorithms extensions, such as wear modelling or termo-mechanical
problems; e.g., refer to Wilking, Bischoff, and Ramm (2018), where contact stress recovery
for dual mortar formulations is analysed.

As a final remark, a recapitulation of some numerical properties of the condensed
system in Equation (3.160) is given. As already mentioned, the mortar-typical generalised
saddle point structure is algebraically removed and the global system size is reduced
to the number of primary (i.e., the displacement field) degrees of freedom. While being
beyond the scope of the current work, this allows the application of state-of-the-art itera-
tive solvers with algebraic multigrid preconditioners for efficiently solving large contact
problems. For further information on this topic, the interested reader is referred to B. I.
Wohlmuth and Krause (2003), Brunssen et al. (2007), and Wiesner et al. (2018) and the
references therein.
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Chapter 4

Computational Implementation Approach
and Numerical Validation

The contact algorithm has been implemented within an in-house Fortran program named
LINKS (Large Strain Implicit Non-linear Analysis of Solids Linking Scales, see Figure 4.1).
It is a multi-scale finite element code for implicit small and large strain analysis of hyper-
elastic and elasto-plastic solids, developed jointly by CM2S (Computational Multi-Scale
Modelling of Solids and Structures) at the Faculty of Engineering of the University of
Porto. Because the contact implemented has been entirely made from scratch, the gen-
eral design approach has been carefully analysed.

Figure 4.1: LINKS logo.

The first section of this chapter describes the devised implementation of the algo-
rithm, emphasizing the adopted software design approach and concrete solutions to
mortar-based finite element algorithms. Then, in order to evaluate and validate the mor-
tar algorithm implementation for finite deformation contact, several numerical examples
are presented and analysed.

4.1 Object-oriented approach

The main objective is to develop a robust framework suitable to various contact algo-
rithms and flexible enough to facilitate the future development of multi-scale contact
formulations. In order to achieve this goal, the code architecture has been throughout
designed by means of Object-Oriented (OO) software techniques since they inherently
promote code modularity and data-hiding—both critical concepts for flexible software
design. Naturally, this choice is only possible because Fortran 2003 and subsequent stan-
dard levels provide OO language constructs, thus allowing to fully exploit the concepts of
OO programming (Metcalf et al., 2011). In the following paragraphs, a brief introduction
to the general principles of OO programming is presented. Then, the most important
classes and abstractions created to implement the present dual-mortar contact frame-
work are explained.
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4.1.1 General principles of Object-Oriented programming

The object-oriented paradigm is a software development strategy based on the con-
cept that systems should be built from a collection of reusable components called objects.
While in purely structured programming (the base concept of procedural programming,
the classical approach in Fortran), data and functionality are treated separately, objects
encompass both in a self-contained manner: the data is contained in the form of at-
tributes and the procedures in the form of methods. This means that instead of having
data structures passing around to all the program logic that acts on it, a OO program
consists of a set of interacting objects, which combine data and logic altogether.

As mentioned, central to OO programming lies the goal of code reuse. Usually, it takes
the form of inheritance. Authors frequently refer to inheritance as an "is a" relationship,
in the sense that one object is a specific sub-category of another object. The lower-level
objects inherit both the instance variables and methods of the object from which it is
derived while still being able to add additional attributes or methods. This allows pro-
grammers to create objects that are built upon existing objects and, ultimately, reuse
code.

Another fundamental concept is that of polymorphism, i.e., the ability to present the
same interface for different objects. While each object provides its own implementation of
the interface, different objects can still be treated as generic ones. Ultimately, this allows
having code working with multiple objects without needing to know its specific type. In
practice, a polymorphic variable is a variable whose data type is dynamic at runtime, thus
eliminating the need to use conditional statements to select the proper methods.

The benefits of the OO paradigm can be further exploited if encapsulation is em-
ployed, i.e., if the implementation details of an object are hidden from the other objects
in the program. Also commonly referred to as data hiding, it implies that objects can only
interact with each other by invoking their methods. Encapsulation provides two primary
benefits to software developers. First, it provides code modularity since an object can be
written and maintained independently from the remaining objects in the system. Addi-
tionally, while the public interface is not changed, an object’s variables and methods can
be changed whenever needed without introducing side effects in the other objects that
depend on it.

The last topic to be addressed in this short discussion about the general concepts of
OO programming is design patterns. The effort put into thinking abstractly about soft-
ware structure ultimately leads towards high-level designs that prove useful and inde-
pendent of the application and implementation language. This motivated software engi-
neers to create the so-called design patterns, reusable designs formalized as best practices
used by experienced OO software developers to solve common occurring problems. It
gained popularity with the book Design Patterns: Elements of Reusable Object-Oriented
Software, which classifies design patterns into creational, structural and behavioural pat-
terns (Gamma et al., 1995). Whenever convenient, patterns are employed in the present
implementation in order to take full advantage of the capabilities of OO programming.
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4.2 Code structure

Another essential feature of OO programming is that it allows the use of Unified Modeling
Language (UML), an abstract schematic toolset for describing object-oriented software
independently from any chosen implementation language (Rumbaugh et al., 1999). The
following paragraphs describe the most important classes of the present contact algo-
rithm implementation by using class diagrams. It is the most common UML diagram,
in which class attributes and methods are represented together with interactions and
relationships among different classes. For additional information on UML notation, the
reader is referred to the vast literature available (Rumbaugh et al., 1999; Rouson et al.,
2011).

4.2.1 Contact facade

The main class of contact implementation is the contact package. Following the fa-
cade design pattern guidelines, the contact main class provides a unified higher-level
interface that makes the contact algorithm sub-system easier to use. All the interactions
with the remaining code are established using this class, which contains all the geomet-
rical information, main variables (e.g., mortar matrices or contact constraints) and op-
erations needed within the algorithm (e.g., contact search). Figure 4.2 shows the class
diagram.

contact

- DMat : DMat

- MMat : MMat

- ctConstraints : ctConstraints

- cInt : array<cInt>

- LagMul : array<real>

...

+ readInput

+ update

+ solver

+ output

...

Figure 4.2: UML diagram for the main contact class.

This class contains the variables needed to describe the contact interactions with
the mortar method, e.g., the mortar coupling matrices and the contact constraints. As
described in the following paragraphs, the entire geometrical information is contained
within a list of candidate interfaces. Moreover, all the global nodal variables are stored,
e.g., the nodal Lagrange multipliers. In order to maintain encapsulation, all attributes
are set as private, leaving only the main operations open to the rest of the code. This
includes the information reading, output and the two main procedures: the update, which
is needed after every update in the body configuration, and the solver procedure, which is
responsible for evaluating all the derivatives and assembly of the global equation system.
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4.2.2 Candidate interface

One of the main challenges is how to define the potential contact boundaries. The
objective is to derive a class entirely capable of containing the geometrical information
and operations needed within the algorithm, e.g., numerical integration of mortar inte-
grals. Figure 4.3 represents the class diagram of the fundamental concepts and classes
and is described as follows.

2

1..*

cInt

+ mortCndBnd : mortCndBnd

+ nonMortCndBnd : nonMortCndBnd

+ intBnd : intBnd

+ dualBnd: dualBnd

...

cndBnd

- cndNods : array<integer>

- cndEl : array<bndEl>

...

+ setCndBnd (cndNods)

- checkCndNods

+ getNCndNods

+ getCndNodPos

+ getICndEl

...

nonMortCndBnd

+ movFrame : array<movFrame>

...

...

mortCndBnd

movFrameStrat

bndEl

- domainType : integer

- elNods : array<integer>

...

+ setBndEl (elNods)

+ getXe

+ getNe

+ getBe

...

line2 line3 tri3

Figure 4.3: UML diagram for the contact interface class.

First, the class contact interface (cInt) is introduced, which is defined as the aggrega-
tion of the non-mortar and mortar candidate boundaries, i.e., a collection of nodes/facets
that, altogether, form the potential contact zone. Considering the fact that either the non-
mortar and mortar boundaries are formed by candidate elements, they are defined as
extensions of the abstract class candidate boundary (cndBnd)—thus taking advantage of
code re-usability in inheritance constructs. This abstract class is initialised based on a list
of candidate nodes specified by the user, from which the associated collection of finite
elements can be extracted from the finite element mesh. This requires the definition of
another fundamental object: that of boundary elements (bndEl). Besides other auxiliary
variables (such as type of domain, number of spatial dimensions, etc.), a boundary ele-
ment is essentially defined as a list of nodal connectivities and, to exploit once more code
re-use, it is defined as an abstract class, with concrete implementations being specific
types of finite elements. It is important to note that this strategy makes it possible to set
the boundary element independently from the global mesh.
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Lastly, because the mortar integration scheme requires projections of Gauss points
between the non-mortar and mortar boundaries, the non-mortar candidate boundary
(nonMortCndBnd) further contains the list of the nodal moving frame. The strategy pat-
tern is adopted and concrete algorithms are encapsulated within the interface moving
frame strategy (movFrameStrat) to provide flexibility in implementing different methods
of defining the averaged normal vector

4.2.3 Integration boundary
With the potential contact interface defined, attention is now focused on the abstrac-

tions needed to implement the mortar integration algorithm. As shown in Figure 4.4, the
class integration boundary (intBnd) is defined as the collection of integration segments
together with a quadrature rule. Its initialisation procedure takes as input the candidate
boundaries and the list of contact element pairs, which is to be obtained by the contact
search algorithm (for the sake of brevity, not discussed here).

Following an approach similar to the one proposed in Badia et al. (2018), the nu-
merical quadrature is based on the abstract class quadrature (quadrature), which can
be interpreted as a place-holder for quadrature points and weights. Concrete numerical
quadratures, such as Gauss-Legendre or Gauss-Lobatto rules, must implement this in-
terface. The main goal here is to exploit polymorphism and treat different domain types
dynamically at runtime.

In the segmentation strategy described in Chapter 3 to evaluate mortar integrals, the
fundamental entities are two- and three-dimensional integration segments. Therefore,
they are both set as implementations of the abstract class integration segment (intSeg),
where information like the type of domain is shared in both two and three dimensional
problems. The interfaces for the deferred methods encompass operations such as the
mapping from integration segment space to boundary element finite element space or
the corresponding Jacobian determinant, together with the corresponding directional
derivatives. Once again, this allows the use of polymorphism and reuse the same code
for mortar integrals evaluation in two- and three-dimensional problems.

Lastly, note that either type of integration segment is composed of a list of nodes. This
motivates the introduction of the abstract class integration segment node (intSegNod),
which, besides some common properties (e.g., knowing if the node is projected or not),
is defined depending on the type of problem. While in two-dimensions, an integration
segment node is defined by its boundary element isoparametric coordinate, for three-
dimensional integration cells, the nodes are defined by their global coordinates.
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1

1..*

4 3..*

intBnd

+ intSeg : array<intSeg>

- quadrature : quadrature

+ setIntBnd (cndInt, elPairs)

+ getNIntSeg

...

quadrature

- nDim : integer

- nGauss : integer

- points : array<real>

- weights : array<real>

...

+ set (nGauss, nDim)

...

GaussLegendre

GaussLobatto

intSeg

- domainType : integer

...

+ set (nonMortCndBnd, mortCndBnd, elPair)

+ getXiGS

+ linXiGS

+ getXiGM

+ linXiGM

+ jacob

+ linJacob

...

intSeg2D

mortSegNods : array<intSegNod2D>

nonMortSegNods : array<intSegNod2D>

+ getXiGS

+ linXiGS

+ getXiGM

+ linXiGM

+ jacob

+ linJacob

...

intSeg3D

clipPoly : array<intSegNod3D>

...

+ getXiGS

+ linXiGS

+ getXiGM

+ linXiGM

+ jacob

+ linJacob

...

intSegNod2D

isoCoord : real

...

intSegNod3D

glbCoord : array<real>

...

intSegNod

- isProj : logical

...

+ isProjected ...

Figure 4.4: UML diagram for the integration boundary class.
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4.2.4 Dual boundary
The last fundamental abstraction to be discussed regards the dual basis. As repre-

sented in Figure 4.5, the class dual boundary (dualBnd) is introduced as the collection
of dual elements, used to interpolate Lagrange multipliers within the integration bound-
ary, and a quadrature rule, necessary to evaluate dual shape functions numerically. Its
initialisation takes the candidate boundaries, the list of contact element pairs and the
integration boundary. It should be noted that the Gauss quadrature used to evaluate the
dual basis does not need to be the same used to evaluate mortar integrals.

As described in Chapter 3, dual shape functions are defined as a linear combination of
standard shape functions. Thus, the object dual element (dualEl) can be simply defined
as a coefficient matrix attached to a non-mortar boundary element, to be numerically
determined at each global iteration. However, in order to deal with partially integrated
elements, additional information must be stored. Namely, a flag identifying partially in-
tegrated elements and the list of integration segments related to that boundary element.
Lastly, besides being able to determine the dual shape functions, the dual element must
also evaluate their directional derivatives.

1..*

dualBnd

+ dualEl : array<dualEl>

- quadrature : quadrature

...

+ setDualBasis (nonMortCndBnd, mortCndBnd, elPairs, intBnd)

...

dualEl

- isPartiallyInt : logical

- Amat : array<real>

- relIntSeg : array<integer>

...

+ getDualSF

+ linDualSF

...

quadrature

Figure 4.5: UML diagram for the dual boundary class.
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4.3 Numerical examples

In what follows, various numerical examples are presented and analysed, to evaluate the
mortar algorithm implementation. The first example is the contact patch test, whose
main objective is to check for consistency for non-matching discretisations at the contact
interface. Then, attention is given to the classical Hertzian contact problem of a cylinder
being pressed against a block. The results are compared with both the analytical solution
and other commercial finite element packages. Optimal spatial convergence rates are
verified, as well as the numerical efficiency of the semi-smooth Newton algorithm. The
following example is dedicated to the large deformation problems involving plasticity—
an additional source of non-linearity apart from the enforcement of contact constraints. It
consists of the contact problem of two deformable rings, assuming for both solids plastic-
ity under large deformations. The last two examples focus on frictional contact problems.
The shallow ironing problem is analysed, comparing results with other algorithms pro-
posed in the literature. Lastly, the three-dimensional compression of a cylindrical plastic
tube is simulated in a 5 stage non-monotonic loading configuration.

If not stated otherwise, first-order finite elements combined with dual Lagrange multi-
plier interpolation are used. The normal complementarity parameter is set to cη = E , and
a total of ng = 9 Gauss points for numerical evaluation of mortal integrals is considered.

4.3.1 Patch test

Originally introduced in Bazeley et al. (1966), patch tests are one of the most com-
mon validation techniques within finite element technology. It checks the robustness of a
finite element form by ascertaining if an arbitrary patch of assembled elements subjected
to boundary displacements, consistent with constant straining, can reproduce exactly the
behaviour of an elastic solid material. Satisfaction of the patch test constitutes a neces-
sary condition for algorithmic convergence while assessing the asymptotic convergence
rate (Taylor, Simo, et al., 1986). In the context of contact problems, in particular, patch
tests can be used to assess the capability of a contact formulation to exactly transmit a
continuous field of normal stresses between two contacting surfaces, regardless of their
discretisation. If the algorithm fails the patch test, it may lead to solution errors at the
contacting surfaces, which do not necessarily decrease with mesh refinement. As pointed
out in the early work of Taylor and Papadopoulos (1991) and further analysed in Crisfield
(2000), collocation methods such as the classical NTS discretisation schemes have diffi-
culties passing the contact patch test.* In contrast, mortar-based finite element methods
guarantee the exact satisfaction of patch tests by design due to their variationally consis-
tent interpolation of the contact tractions via discrete Lagrange multipliers.

The considered contact patch test is depicted in Figure 4.6 and is inspired by the
patch test proposed in Crisfield (2000). The problem consists of two blocks (with non-
conforming meshes) making up a square of size L = 1 m, interacting with each other at
a plane contact interface. The lower block is supported at its bottom boundary and a
uniform displacement ūy = 0.01 m is applied at the top surface of the upper block. The

*Nonetheless, it should be mentioned that modified versions of the algorithm aiming at guaranteeing
the patch test satisfaction have been proposed, referring to Zavarise and De Lorenzis (2009) for a successful
implementation of such algorithms.
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material is considered to be linear elastic with Young’s modulus E = 10 GPa and Poisson’s
ratio ν= 0.35. The top contact boundary is chosen as non-mortar and the bottom surface
as mortar. The obtained results with both first- and second-order mortar finite element
interpolation follow in Figures 4.7 and 4.8. As expected, the algorithm is capable of ex-
actly (up to machine precision) transmitting a constant contact pressure along with the
interface, thus leading to a linear displacement field, see Figure 4.7, and constant stress
field, see Figure 4.8. Finally, it is worth mentioning that the exact patch test compliance
is not influenced by choice of non-mortar and mortar sides and, ultimately, both lead to
the same results.

γs
c

γm
c

x
y

ūy

L

L

(a) Two-dimensional patch test.

L

ūy

x

y

z

L

γs
c

γm
c

(b) Three-dimensional patch test.

Figure 4.6: Contact patch test – schematic representation of the problem setting.
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(a) tri3 (b) quad4

(c) tri6 (d) quad8

(e) tetra4 (f ) hexa8

0-0.01 -0.05

uy [m]

Figure 4.7: Contact patch test – displacement along y-direction for different types of first-
and second-order mortar finite element interpolation.
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(a) tri3 (b) quad4

(c) tri6 (d) quad8

(e) tetra4 (f ) hexa8

0-0.598 -0.299

σy y [GPa]

0.5980 0.299

t s
c [GPa]

Figure 4.8: Contact patch test – Cauchy stress along y-direction and contact traction for
different types of first- and second-order mortar finite element interpolation.
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4.3.2 Hertzian contact

In this section, attention is given to the solution of the classical contact problem of an
elastic cylinder being pressed against an elastic block. It belongs to a class of problems
commonly referred to as Hertzian contact and is recognised as one of the most popu-
lar examples within contact mechanics. It features a highly non-linear geometry setting
stemming from the curved and evolving contact interface, and, more importantly, the
great asset of this benchmark relies on the existence of an analytical solution originally
proposed by Hertz (1881). In his treatment of the problem, he considers the equilibrium
of two elastic bodies in contact on surfaces whose projection in the plane were conic sec-
tions, under the assumption that the contact area is obtained within an ellipse. Moreover,
for the purpose of calculating the local deformations, at least one body is considered as
an elastic half-space loaded over a small elliptical region of its place surface. As a result,
Hertz derived formulas for the contact pressure and indentation between the two bodies.

The geometry and boundary conditions of the problem are schematically represented
in Figure 4.9. It features a hard steel cylinder being pressed against an aluminium alloy
block, both assumed to be linear elastic, with the properties summarized in Table 4.1.
Only half of the cylinder is modelled, under the hypothesis of plane strain and frictionless
contact. The lower boundary of the block is fixed and a concentrated vertical load F is
applied in the top cylinder (various load magnitudes will be analysed). The radius of the
cylinder is R1 = 50 mm, while the lower block has W2 = 100 mm and H2 = 50 mm of width
and height, respectively. The surface of the cylinder is set as non-mortar and the block
top surface as mortar. By using this problem setting, various aspects of the mortar-based
contact formulation will be addressed and individually discussed in the following.

Table 4.1: Hertzian contact - material properties.

Young’s modulus, E (GPa) Poisson’s ratio, ν

Cylinder 210 0.3

Block 70 0.3

4.3.2.1 Comparison with analytical solution and commercial FE software

The first aspect to be studied is a comparison of the contact pressure distribution
along with the contact interface according to different solutions for a load of magnitude
F = 35 kN. The analytical solution can be obtained from the Hertzian contact for two
cylinders (line contact), which is characterized via the maximum contact pressure,

pη
max =

√
F E∗

2πR∗ , (4.1)

and contact width

a =
√

8F R∗

πE∗ . (4.2)

Here, F denotes the applied normal force and E∗ the combined elasticity modulus, which
can be determined from the modulus of elasticity and Poisson’s ratio of the cylinder and
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Figure 4.9: Hertzian contact – schematic representation of the problem setting.

block, E1, ν1 and E2, ν2, respectively, using the equation

E∗ = 2E1E2

E2
(
1−ν2

1

)+E1
(
1−ν2

2

) . (4.3)

The combined radius of curvature, R∗, is evaluated from the radius of curvature of the
cylinder, R1, and block, R2, as follows

R∗ = R1R2

R1 +R2
. (4.4)

For the particular type of problem at hand, it follows that R2 →+∞, which yields

R∗ = lim
R2→+∞

R1R2

R1 +R2
= R1 . (4.5)

The pressure distribution along the contact width is determined by

pη = pη
max

√
1−

( x

a

)2
. (4.6)

Considering the numerical values for the problem at hand, the following results are ob-
tained:

a ≈ 6.21 mm , pη
max ≈ 3585.37 MPa . (4.7)

Note that half of the contact length is equal to 6.21 mm, which corresponds to ≈ 7.1° of
the cylinder. This aspect should be kept in mind since, in order to simulate this problem
appropriately, a very fine finite element mesh near the contact zone is required.

Regarding the numerical solution of the problem, besides the mortar algorithm pre-
sented in this work, results obtained with the commercial programs Abaqus/Standard®

and MSC.MARC® are considered as well (Konter, 2006). Both linear and quadratic finite
element interpolations are employed using the element types summarized in Table 4.2.
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For the dual mortar algorithm, the 4-noded F-bar quadrilateral (QUAD4-FBAR) element
and the 8-noded quadrilateral element with reduced integration (QUAD8-RI) are used
for linear and quadratic interpolations, respectively. The two-dimensional bi-linear F-bar
finite element is used because of its improved behaviour under nearly isochoric defor-
mations. Essentially, the concept of this type of element is to substitute the volumetric
component of the deformation gradient at the Gauss point that is being evaluated, cal-
culating this term at the centroid of the element (de Souza Neto et al., 1996). Along with
the main advantages of such an approach, in the present context of contact interactions,
the fact that this element is able to avoid volumetric locking and is suitable to capture
strain localisation is of particular interest. In what concerns the commercial programs,
linear elements with reduced integration and fully integrated quadratic elements are used
for linear and quadratic interpolations, accordingly. The hard contact algorithm is used,
which is based on direct coupling of the displacements using automatically generated
constraint equations. The slave nodes (contacting nodes) correspond to the nodes on the
cylinder, while the master nodes (contacted nodes) are set to the upper edge of the block.
For all numerical solutions, the generated finite element mesh is such that the smallest
element edges near the contact zone have approximately 0.59 mm for the cylinder and
1.5 mm for the block (see Figure 4.11 for an exemplary mesh).

Table 4.2: Hertzian contact - finite element types.

LINKS Abaqus/Standard® MSC.MARC®

Linear QUAD4-FBAR CPE4R Type 115

Quadratic QUAD8-RI CPE8 Type 27

The results for the contact pressure distribution along the contact interface are sum-
marized in Figure 4.10, representing as well in Figure 4.11 an exemplary deformed config-
uration (obtained with the dual mortar algorithm and linear finite element interpolation).
A close agreement of the dual mortar algorithm with the analytical reference contact pres-
sure distribution is confirmed for both linear and quadratic interpolations. It should be
noted, however, that an oscillating type of behaviour is obtained for the commercial FE
programs, especially when using the quadratic elements.
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Figure 4.10: Hertzian contact – contact pressure distribution along with the contact in-
terface for the analytical and numerical solutions.
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Figure 4.11: Hertzian contact – finite element mesh (on the left) and deformed geometry
and displacement along the y-direction (on the right).

4.3.2.2 Spatial convergence rate

The next aspect to be addressed is the optimal convergence rates of the devised mor-
tar algorithm. In order to investigate this property, progressive mesh refinement is applied
to the entire model and the convergence of the numerical solution for the maximum con-
tact normal pressure, pη

max, is analysed. Furthermore, aiming at covering the convergence
properties over a wide range of deformation magnitudes, three specific loads are con-
sidered: F = 3.5, 17.5 and 35 kN. The results are all gathered in Figure 4.12, from which
expected convergence rates can be observed while reaching an asymptotic numerical
solution. Another trend in the results is that by increasing the load magnitude, the rel-
ative error of the numerical results with respect to the analytical solution increases as
well. This deviation is solely due to the fact that while the analytical solution is based on
the small deformation assumption, the numerical algorithm fully considers all sources
of non-linearity in the problem, including the geometrical finite deformation hypothesis.
For higher loads, the deformation magnitude of the bodies is higher and, as a conse-
quence, the impact of this fact in the results will be more pronounced and, ultimately,
both solutions will diverge.

Lastly, in order to further analyse the capacity of the algorithm to reproduce the stress
state along with the contact interface (and not only the maximum contact pressure pη

max),
in Figure 4.13, the contact normal pressure distribution is represented for each load mag-
nitude, considering two different discretisations (1/h ≈ 0.56 and 1/h ≈ 1.29). Again, a
close agreement with the analytical solution is observed for both discretisations, even for
the smallest load case (F = 3.5 kN), where only a few elements are in contact.
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max, with mesh re-

finement for three different values of load magnitude.



96 Chapter 4

F === 3.5 kN

−4 −2 0 2 4
0

500

1000

1500

a [mm]

p
η

[M
Pa

]

−4 −2 0 2 4

a [mm]

F === 17.5 kN

−6 −3 0 3 6
0

1000

2000

3000

a [mm]

p
η

[M
Pa

]

−6 −3 0 3 6

a [mm]

F === 35 kN

−8 −4 0 4 8
0

1500

3000

4500

a [mm]

p
η

[M
Pa

]

Analytical Linear Quadratic

−8 −4 0 4 8

a [mm]
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4.3.2.3 Numerical efficiency of the semi-smooth Newton algorithm

The last property to be analysed is the numerical efficiency of the employed semi-
smooth Newton algorithm. Characteristic results are given in Figure 4.14 for both linear
and quadratic finite element interpolations. Regardless of the interpolation order, the
active set strategy algorithm finds the correct active set within a few iterations steps.
Once stabilised, the non-linear iterative scheme reduces to a standard (smooth) Newton-
Raphson method and, ultimately, quadratic convergence is obtained, due to the underly-
ing consistent linearisation.
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Figure 4.14: Hertzian contact – exemplary convergence behaviour of the semi-smooth
Newton algorithm in terms of the L2-norm of the residual (top) and active
contact set (bottom). The shaded regions indicate the iterations steps with
contact active set.
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4.4 Large deformation rings

In this section, the large deformation contact between two rings is analysed. This problem
has been analysed by several authors, see, e.g., Tur, Giner, et al. (2012), and its geome-
try and boundary conditions are schematically illustrated in Figure 4.15. Essentially, it
consists of a ring of size R int

1 = 8 mm and Rext
1 = 10 mm contacting against a fixed ring of

size R int
2 = 10 mm and Rext

2 = 12 mm. The upper ring is subjected to a horizontal displace-
ment of ūx = 35 mm, applied at its top boundary in 70 increments. The two rings are
assumed to be made of the same material and, with the aim of incorporating additional
sources of non-linearity in the problem, an elasto-perfectly-plastic constitutive behaviour
described by the von Mises model is considered. The Young’s modulus is E = 689.56 MPa,
the Poisson ratio ν= 0.32 and the yield strength σy = 31 MPa.
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Figure 4.15: Large deformation rings – schematic representation of the problem.

Figure 4.16 shows the deformed configuration and the von Mises equivalent stress for
various incremental steps. Both rings undergo a significant level of deformation and, due
to the amount of plastic deformation accumulated, the initial geometry is not recovered
and the final configuration changes significantly in relation to the initial one. Nonetheless,
the optimal convergence properties of the algorithm are kept throughout the simulation
and the imposed horizontal displacement to the top ring is successfully applied.

Remark. In Tur, Giner, et al. (2012), two material behaviours are compared, considering
the material to be elastic as well. However, such comparison cannot be carried out due
to the presence of a snap-through phenomenon which, without appropriate algorithmic
treatment, severely affects the convergence properties of the algorithm. This instability
needs to be handled by using continuation techniques, such as the arc-length scheme.
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Figure 4.16: Large deformation rings – distribution of the von Mises equivalent stress at
various stages of the deformation process.
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4.5 Shallow ironing

The class of ironing contact problems is a popular choice for the analysis of finite defor-
mation frictional contact between two deformable bodies undergoing a non-monotonic
loading path. The geometry of the specific problem is schematically represented in Fig-
ure 4.17, which consists of the contact problem between a deformable indenter with a
rounded side and a rectangular flat base. The foundation is fixed at the bottom and the
indenter’s top boundary is prescribed in a two-stage deformation process. Firstly, it is
pressed down against the deformable base under the prescribed vertical displacement
ūy = 1. Secondly, the horizontal displacement ūx = 10 makes the indenter slide along
the deformable base. Each stage lasts 1 second and the Coulomb’s law with the friction
coefficient µ= 0.3 is considered. The solution of the problem requires modelling friction
during two distinct contact scenarios. During the compression stage, the main difficulty
involves determining which nodes come into contact, with contact nodes at both stick
and slip conditions. During the sliding stage, the indenter starts sliding and the correct
evaluation of the tangential forces becomes critical. It is expected that, as the relative mo-
tion between the indenter and the base occurs, nodes at the stick state become sliding
nodes.
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Figure 4.17: Shallow ironing – schematic representation of the problem setting.

The incrementation originally proposed in Fischer and Wriggers (2006) is adopted,
according to which the compression stage is performed in 10 increments and the hori-
zontal displacement in 500 increments. For the numerical model employed in this work,
both bodies are modelled using the Ogden elastic model and discretised using 4-noded
quadrilateral F-bar finite elements. The number of elements, ne = 3672, is such that the
total number of degrees of freedom remains the same as in Fischer and Wriggers (2006).†

Figure 4.18 shows the deformed configuration throughout the process, including a con-
tour plot of the shear stresses at the deformable base. Two regions with opposite shear
stresses can be identified, which move along the base as the indenter slides over it.

†The numerical model in Fischer and Wriggers (2006) uses 9-noded quadratic finite elements.
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Figure 4.18: Shallow ironing – distribution of the Cauchy shear stress σx y at various
stages of the deformation process.
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In this example, the sum of the reaction forces at the top of the indenter is typically
measured throughout the simulation, existing several results available in the literature.
Figure 4.19 shows a comparison between the ongoing formulation and other solutions.
The green curve corresponds to the formulation proposed by Fischer and Wriggers (2006),
based on a mortar contact formulation using the concept of the moving friction cone and
a penalty regularisation scheme. In blue, the results amount to Hartmann, Oliver, et al.
(2009) using the contact domain method. The results in red, given in V. Yastrebov (2011),
are obtained with the NTS discretisation and the augmented Lagrangian method.

Figure 4.19: Shallow ironing – vertical and horizontal reactions on the indenter compared
with the results obtained by Fischer and Wriggers (2006), Hartmann, Oliver,
et al. (2009) and V. Yastrebov (2011).

As reported by all the authors mentioned in Figure 4.19, the two stages of the prob-
lem can be identified in the plot. During the compression process, both the vertical and
horizontal components of the reactions at the indenter increase as it is pressed against
the base. Once the indenter starts sliding, there is an increase in both vertical and hori-
zontal reactions and subsequent stabilisation. This jump represents the resistance that
the foundation offers to the sliding motion and is most likely originated by the change
in contact conditions (since there are multiple contact nodes transitioning from stick
to slide state). Throughout this stage, the ratio between the normal and horizontal reac-
tions approximates the value of the coefficient of friction. Comparing the present results
with the remaining authors, the ongoing formulation estimates the vertical reaction to be
higher and the horizontal component to be smaller. Since the algorithms are significantly
different, the answer for the origin of such differences is not obvious. Nonetheless, the
oscillations observed in the remaining methods are more pronounced than in the present
work. Since the total number of degrees of freedom is kept the same across all results, this
demonstrates the quality of results achieved with the dual mortar contact formulation.
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4.6 Squeezed plastic tube

The last numerical example presented in this chapter is a three-dimensional problem
that demonstrates the capability of the dual mortar contact algorithm to deal with multi-
ple sources of non-linearity simultaneously. It features frictional contact combined with
plasticity at finite deformations. The problem setting is schematically represented in Fig-
ure 4.20 and has been originally presented in Seitz, Popp, et al. (2015)—which is also
inspired by a similar example analysed in Hager and B. I. Wohlmuth (2009). It consists of
a cylindrical tube, prescribed at both ends, that is squeezed by two rigid semi-cylindrical
tools in a five-stage process. Starting from a stress-free configuration, the tools are pre-
scribed along the vertical direction in the first stage, squeezing the tube for the first time
(stroke 1). Then, the load is released by imposing the opposite displacement to the tools,
finishing the first cycle. In the third intermediate stage, a 90 degrees rotation is imposed
to the tube’s ends and, then, the second compression cycle is applied (stroke 2 and re-
lease). In this work, the problem is solved using the 8-noded F-bar hexahedron finite
element and the outer boundary of the cylindrical tube is set as mortar and the tools as
non-mortar. The plastic behaviour of the cylindrical tube is described by the von-Mises
constitutive model and the finite element mesh consists of ≈ 30k nodes. The geometry,
dimensions and properties of the problem are all indicated in Figure 4.20.
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σy=0.45 25% hardening
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Figure 4.20: Squeezed plastic tube – schematic representation of the problem setting.

The deformed configuration at the end of each stage of the process is given in Fig-
ure 4.22. The contour plot represents the von-Mises equivalent stress, from which it is
possible to identify the residual stress present in the cylindrical tube after each stroke.
During the release of the tool and rotation of the tube, there is not any external solicita-
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tion to the cylinder and, therefore, the stresses are entirely due to the accumulated plastic
strain, see Figure 4.23 for its distribution.

In order to have a better understanding of the problem, Figure 4.21a shows the evolu-
tion of the vertical reaction forces at the tool during each stroke. The main observation
obtained from these results is that, at the second stroke, the tool touches the tube earlier
than the first stroke. This is happening due to the permanent deformation present in
the cylinder after the first compression. After the 90 degrees rotation, it decreases the
initial gap distance between the cylinder and the tools. Moreover, the reaction forces are
more significant during the second stroke, which is consistent with the earlier contact
interaction and material hardening.

Lastly, in Figure 4.21b the total number of active contact nodes is also presented, also
representing the partial sum of stick and slip nodes. It can be seen that, for both stroke
cycles, the number of active contact nodes increases at a more significant rate during
the initial contact interactions (finding several nodes at stick state), after which a slight
stabilisation is observed (most of the contact nodes become sliding). This behaviour is
more pronounced during the first stroke, while in the second, the existent plastic de-
formation changes the geometry of the contact zone and originates a more significant
contact region (with nodes at both stick and slip states).
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(a) Sum of the vertical reaction forces at the outer boundary of the upper tool.

(b) Total number of active contact nodes and partial count of stick and slip nodes.

Figure 4.21: Squeezed plastic tube – reactions and number of active nodes at each stroke
stage.
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(a) Initial configuration (t = 0.0 s) (b) First stroke (t = 1.0 s)

(c) Release (t = 2.0 s) (d) Rotation (t = 3.0 s).

(e) Second stroke (t = 4.0 s) (f ) Release (t = 5.0 s)

σeq

0 0.57

Figure 4.22: Squeezed plastic tube – distribution of the equivalent stress at the end of
each stage of the simulation.
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(a) Initial configuration (t = 0.0 s) (b) First stroke (t = 1.0 s)

(c) Release (t = 2.0 s) (d) Rotation (t = 3.0 s).

(e) Second stroke (t = 4.0 s) (f ) Release (t = 5.0 s)

0

ε̄p

1.06

Figure 4.23: Squeezed plastic tube – distribution of the accumulated plastic strain at the
end of each stage of the simulation.
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Chapter 5

An Efficient Dual Mortar Contact Technique
for Rigid/Deformable Interaction

The classification of contact and impact procedures is typically based upon the prob-
lem configuration, with factors like the total number of bodies contacting each other or
their physical behaviour originating different classes of contact problems. While the con-
tact between two deformable bodies is typically termed as unilateral contact, the setup
consisting of one single deformable body going against a rigid obstacle is commonly re-
ferred to as Signorini contact. The former can be interpreted as the most general class,
turning out essential to derive the fundamental mathematical and computational frame-
works. However, the underlying assumptions in Signorini contact promotes opportunities
for simplifications. This chapter is precisely dedicated to the development of such tech-
niques, having in mind the goal of reducing the computational complexity of the dual
mortar contact algorithm for Signorini contact.

The topic of rigid/deformable contact is encountered in a wide range of practically
important problems, such as forming operations and impact tests. Under these circum-
stances, assuming that one of the contacting bodies is rigid is an excellent approximation
to the physical phenomenon, which can significantly simplify the contact analysis. In
addition, within the framework of multi-scale contact modelling, it is also convenient to
adopt this simplification, which is supported by a classic result from contact mechanics.
For micromechanical contact without friction or adhesion between two rough surfaces
with a small slope, the elastic contact can be mapped to an equivalent problem pre-
cisely involving one deformable body (with a combined roughness profile) and a rigid
flat (Johnson, 1987). Taking into consideration that the computational complexity of the
FEM typically discourages its application to model rough contact, there is a natural mo-
tivation for the development of strategies that aim at attenuating the overall complexity
of the finite element algorithm. This aspect becomes even more relevant when the dual
mortar method is employed, which involves complex concepts and algorithms.

This chapter starts with the mathematical formulation of rigid/deformable contact
under large deformations, both in strong and weak forms. Then, the finite element dis-
cretisation is described, emphasizing the two main concepts proposed as simplifications
of the algorithm. Firstly, the variational formulation using a Petrov-Galerkin scheme is fur-
ther investigated, as it unlocks a significant simplification of the algorithm by removing
the need to evaluate the dual shape functions. In this regard, the extension for quadratic
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dual mortar interpolation is also carried out. Secondly, a new definition for the nodal
orthonormal moving frame attached to each contact node is proposed. Then, several
numerical examples are presented and discussed, in order to validate and inspect the
computational performance of the algorithm.

5.1 Continuum mechanics of the Signorini contact problem

From the viewpoint of mathematical problem formulation, the Signorini contact is a
popular alternative to introduce the fundamental concepts of contact mechanics within
the linear regime. Nonetheless, the approach to rigid/deformable contact derived in this
work assumes large deformations and generic constitutive behaviour. This leads to a
fully non-linear problem, which can be obtained based upon the concepts of unilateral
contact between two deformable bodies introduced in Chapter 2. The problem is derived
in its strong and weak forms in the following.

5.1.1 Strong form

The nomenclature and illustration of the problem are schematically illustrated in Fig-
ure 5.1. The (only) deformable body is designated as non-mortar and identified with the
superscript (•)s. The open set Ωs

0 ⊂Rd (d = 2,3) represents its reference configuration and
the boundary Γr

c stands for the rigid body contour. Herein, the superscript (•)r relates to
quantities associated with the rigid boundary (thus replacing the notion of the mortar
side). The boundary ∂Ωs

0 in the reference configuration can be divided into three open
disjoint subsets: the Dirichlet boundary Γs

u , with prescribed displacements ūs, the Neu-
mann boundary Γs

σ, satisfying a given surface traction t̄ s, and the non-mortar potential
contact interface Γs

c. As the body undergoes motion, denoted by the smooth mapping
ϕs, the counterparts in the current configuration Ωs

t ⊂ Rd are denoted as γs
u , γs

σ and γs
c,

respectively. Note that the rigid boundary Γr
c remains stationary throughout the entire

process, thus having a null displacement field.

Remark. The mathematical formulation and computer implementation for the case of
a rigid boundary undergoing rigid-body motions poses no additional difficulties at all to
the problem setting. Only for the sake of simplicity, the particular case of a non-moving
rigid boundary is exclusively considered in the present work.

The continuum mathematical framework presented in Chapter 2 is equally applicable
to this problem, with the only exception being a slight modification in the gap vector
definition. As a fundamental entity of contact kinematics, the gap vector is involved in
the definition of both the gap function g and instantaneous relative velocity υτ, and for
rigid/deformable contact follows as

g
(
xs, t

)≡ xs − x̂r (xs, t
)

. (5.1)

The contact point x̂r on the rigid boundary Γr
c stands for the projection of the non-mortar

point xs ∈ γs
c along its current outward unit normal vector η. Compared with the general

counterpart in Equation (2.26), the difference is that the coordinates on the opposing



An Efficient Dual Mortar Contact Technique for Rigid/Deformable Interaction 111

Figure 5.1: Illustration and nomenclature of the Signorini contact problem in the refer-
ence and current configurations.

side to the non-mortar boundary γs
c remain fixed, i.e.,

xr ≡ X r . (5.2)

Nonetheless, the projection itself, x̂r, still depends on the deformation of the opposite
contact boundary γs

c since the projection possibly changes over time. As explained in
more detail in the following paragraphs describing the discrete version of the problem,
the fact that one of its terms remains fixed simplifies the algorithm. Notwithstanding, the
strong form of the IBVP of finite deformation frictional contact between a deformable
body and a rigid obstacle is stated in the following.

Problem 5.1 (The strong form of IBVP of finite deformation frictional rigid/de-
formable contact)
In the domain Ωt , the momentum balance principle and the set of Dirichlet and Neu-
mann boundary conditions read

divσs +bs = 0 , in Ωs
t , (5.3a)

us = ūs , on γs
u , (5.3b)

σsns = t̄ s , on γs
σ , (5.3c)

and the contact constraints in the normal and tangential directions are given by

g ≥ 0 , pη ≤ 0 , g pη = 0 on γs
c , (5.4a)

ψ≤ 0 , υτ+βtτ = 0 , β≥ 0 , βψ= 0 on γs
c , (5.4b)

accordingly.
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5.1.2 Weak form
The derivation of the weak version of the problem begins with the introduction of the

solution space U s and weighting space Vs:

U s ≡
{

us ∈ [
H 1(Ωs

t

)]d | us = ūs on γs
u

}
, (5.5)

Vs ≡
{
δus ∈ [

H 1(Ωs
t

)]d | δus = 0 on γs
u

}
. (5.6)

These spaces are conceptually similar to the general case of unilateral contact, although
involving only the mappings on the deformable non-mortar body. Consideration of the
principle of virtual work allows rewriting the momentum balance, Equation (5.3a), as

δΠs
int −δΠs

ext −δΠs
c = 0 , ∀ δus ∈Vs , (5.7)

where δΠs
int

(
us,δus

)
represents the internal virtual work, δΠs

ext

(
δus

)
the external virtual

work and the third term, δΠs
c

(
us,δus

)
, the virtual work of contact forces. These terms

remain unchanged from the classical unilateral contact problem, with the exception be-
ing the virtual work of contact forces. For the particular case of Signorini contact, this
contribution involves only the virtual displacements of the non-mortar side, i.e.,

δΠs
c

(
us,δus)≡−

∫
γs

c

t s
c ·δusdγs

c . (5.8)

As discussed in more detail in Section 5.2, this is the origin of one of the main simplifi-
cations of the algorithm. The so-called second mortar coupling matrix can be removed,
thus evaluating the virtual work of contact forces using solely the first mortar coupling
matrix.

The last step towards the formulation of the weak version of rigid/deformable large
deformation contact comprises the treatment of the contact constraints. In this regard,
the concepts introduced in Chapter 2 are thoroughly applicable. The Lagrange multiplier
is introduced as the negative contact traction on the non-mortar side and chosen from
the convex cone M (λ), see Section 2.6. Then, by adopting the concept of variational
inequalities, the final weak form of the problem can be stated.

Problem 5.2 (The weak form of IBVP of finite deformation frictional rigid/de-
formable contact)
Given the internal forces and boundary conditions, find the kinematically admissible
displacement function, u ∈U s, and Lagrange multiplier, λ ∈M (λ), such that, for all
t ∈ [t0,T ], the virtual work equations

δΠs
int

(
u,δu

)−δΠs
ext

(
δu

)+∫
γs

c

λ ·δus dγs
c = 0 , ∀ δu ∈Vs , (5.9)

〈 g , δλη−λη 〉γs
c
≥ 0 , ∀ δλ ∈M (λ) , (5.10)

〈υτ, δλτ−λτ 〉γs
c ≤ 0 , ∀ δλ ∈M (λ) , (5.11)

are satisfied for any admissible test functions δu ∈Vs and δλ ∈M (λ).
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5.2 Mortar finite element discretisation

The weak form derived in Section 5.1.2 is approximated using the FEM, whose founda-
tions are not affected by the presence of a rigid boundary. Therefore, most of the con-
cepts described in Chapter 3 remain unchanged: the domain Ωs is partitioned into ne ele-
ment sub-domains and the geometry and displacement field are approximated at discrete
points of interest. The finite element interpolation at the contact interface is repeated
here for convenience:

xs ≈{
xs}h ∣∣∣{γs

c}h
≡

ns∑
k=1

N s
k

(
ξs)xs

k , (5.12a)

us ≈{
us}h ∣∣∣{γs

c}h
≡

ns∑
k=1

N s
k

(
ξs)ds

k . (5.12b)

Here, ns denotes the total number of nodes on discrete non-mortar subdomain
{
γs

c

}h. The
corresponding discrete nodal coordinates (in the current configuration) are represented
by xs

k and the nodal displacement by ds
k . The shape functions N s

k are defined with respect
to the associated finite element parameter space ξs.

One important notion to introduce at this stage is that the geometry of the rigid
boundary Γr

c is also discretised, i.e.

xr ≈ {
xr}h ≡

nr∑
l=1

N r
l

(
ξr)xr

l , (5.13)

with nr denoting the total number of nodes defining the rigid boundary. From a concep-
tual point of view, this step is not mandatory, as the rigid boundary could be equally de-
fined by some analytical function. From a practical perspective, however, finite element
interpolation is possibly more convenient, as it allows for the treatment of arbitrarily
complex geometries found in engineering applications (which can be difficult to describe
analytically). It also allows reusing several procedures and algorithms already established
for unilateral contact, such as contact search and the numerical evaluation of mortar in-
tegrals. Notwithstanding, it should be kept in mind that all the techniques described in
the following are still applicable for analytical representations of rigid boundaries (and,
in some cases, even simplified).

5.3 Petrov-Galerkin approach to dual mortar contact

This work is entirely based on the so-called dual mortar method. It consists of defining
dual shape functions to interpolate the Lagrange multipliers satisfying the bi-orthogonality
condition, given by Equation (3.7). As already mentioned, this technique becomes partic-
ularly advantageous within contact problems, as it localizes the coupling conditions while
preserving the optimal convergence of the discretisation error. The first mortar coupling
matrix becomes diagonal and the contact constraints decouple to point-wise conditions,
thus creating a perfect fit for the application of efficient active set strategies. However,
when thinking about the requirements of the dual shape functions for contact mechanics,
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several aspects need to be carefully analysed. More specifically, the inequality nature of
contact constraints requires positivity for the Lagrange multiplier basis functions.

First of all, it can be easily shown that dual Lagrange multiplier shape functions are
guaranteed to satisfy partition of unity on each non-mortar element, i.e.,

ns
e∑

j=1
Φ j = 1 , j = 1, . . . ,ns

e . (5.14)

This property is assured by the bi-orthogonality condition given in Equation (3.8), see
Flemisch and B. I. Wohlmuth (2007) for a proof. Moreover, the partition of unity yields
another important feature of dual Lagrange multiplier basis:∫

{γs
c}h

e

Φ j dγs
c =

∫
{γs

c}h
e

N s
j dγs

c . (5.15)

As mentioned below, this property plays a crucial role in ensuring the integral positivity
of Lagrange multiplier interpolation.

While Equations (5.14) and (5.15) are proven properties of dual shape functions, when
considering the transmission of contact stresses across the interface additional require-
ments are needed. First of all, in order to render the first mortar matrix non-singular, thus
invertible, the condition of non-zero integrals arises, i.e.,∫

{γs
c}h

e

Φ j dγs
c 6= 0 . (5.16)

While this requirement is sufficient for mesh tying applications, inequality constraints
in contact problems require the Lagrange multiplier shape functions to satisfy at least
integral positivity, i.e., ∫

{γs
c}h

e

Φ j dγs
c > 0 . (5.17)

This condition becomes necessary within contact modelling due to the physical inter-
pretation of the KKT conditions. In their discrete form, the KKT conditions are written
using the weighted nodal gap g̃ j , which is constructed based on the nodal shape func-
tions used to interpolate the variation of the Lagrange multipliers, see Equation (3.29).
Therefore, it turns out reasonable to require that arbitrary positive discrete gap functions,
g h > 0, correspond to weighted gaps g̃ j that are also positive—otherwise, it would lose
its physical meaning. From a closer inspection of the definition of the weighted gap,
Equation (3.29), it is possible to conclude that this is only satisfied if integral positivity of
Lagrange multiplier shape functions is guaranteed, i.e., if Equation (5.17) holds. Moreover,
the first mortar coupling matrix, is responsible for characterizing the Lagrange multiplier
distribution as contact forces on the non-mortar boundary. Negative entries in this ma-
trix can compromise the physical interpretation of the third KKT condition, and, in turn,
positivity of D j k is a critical assumption in the mathematical proof of optimal spatial
convergence rates (B. I. Wohlmuth, Popp, et al., 2012).

According to Equation (5.15), integral positivity is directly inherited from the corre-
sponding displacement shape functions N s

j . Unfortunately, while for first-order finite
element interpolation, this property is fulfilled, for second-order approximation in three
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dimensions, this aspect reveals to be particularly troublesome. Integral positivity does not
hold for specific elements there, e.g., corner nodes of eight-noded quadrilateral (quad8)
or six-noded triangular (tri6) facets. For standard Lagrange multipliers, in Puso, Laursen,
and Solberg (2008), this issue has been addressed either by choosing nλ < ns (i.e., only
the corner nodes carry discrete Lagrange multipliers) or by employing piecewise linear
polynomials on subsegments. In the dual Lagrange multiplier case, a solution based on
special basis transformation procedures is proposed in Popp, B. I. Wohlmuth, et al. (2012)
and B. I. Wohlmuth, Popp, et al. (2012). In this approach, a modified basis of interpola-
tion functions based on a well-designed linear combination of the standard interpolation
functions N s

j replaces the latter in the bi-orthogonality condition to construct the corre-
sponding dual shape functions.

5.3.1 Motivation for the Petrov-Galerkin technique

When dealing with contact problems under large deformations, integral positivity
can be viewed as a minimum requirement for contact modelling. It assures convergence
of the global active set algorithm at least under approximately constant gap conditions,
but certainly not in every situation and most likely not for severe gradients found in
coarse meshes with high curvatures. An illustrative two-dimensional example with first-
order interpolation is represented in Figure 5.2, in which the sign of contributions to the
weighted gap g̃ j at a given non-mortar node j is highlighted. Even though there is no
overlap between the two boundaries, node j will be erroneously identified as active. The
reason for that has to do with the negative part of the dual shape function Φ j , which
yields for those regions weighted gap values g̃ j with the opposite sign of the discrete gap
g h. Whenever severe geometrical curvatures are found, this effect can be amplified and,
possibly, yield unphysical results that can compromise the convergence of the active set
algorithm.

Positive contribution Negative contribution

{
γs

c
}h

{
γr}h

Φ j

False
active

Figure 5.2: Illustration of a possible unphysical contact state in two-dimensions.

Since the severity of these artefacts is h-dependent, a possible solution to avoid these
situations is the refinement of the finite element mesh. However, these options are not
always available in practice, due to possible limitations in computational resources or
even time to iterate on the numerical model. The ideal solution is a further restriction to
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strictly positive dual shape functions, i.e., by imposing

Φ j ≥ 0 , (5.18)

since the possibility of obtaining unphysical contact states is entirely eliminated. How-
ever, in the case of strictly positive standard interpolation functions, as in two- and three-
dimensional first-order elements, it is mathematically impossible to generate strictly pos-
itive dual shape functions. In the work by Popp, Seitz, et al. (2013), this problem is tackled
by means of a Petrov-Galerkin technique. While in the standard Bubnov-Galerkin method,
the dual shape functions Φ j are used to interpolate both the Lagrange multipliers, λh,
and their variation, δλh, the Petrov-Galerkin type uses different interpolations for each
term. The Lagrange multipliers are discretised using the dual basis,

λh ≡
ns∑

j=1
Φ j

(
ξs)z j , (5.19)

and their variation using the standard shape functions,

δλh ≡
ns∑

j=1
N s

j

(
ξs)δz j . (5.20)

Under these circumstances, all the previously introduced discrete quantities still remain
valid, except for the weighted gap, which now writes

g̃ j ≡
∫

{γs
c}h

N s
j

(
ξs)g h (

ξs) dγs
c . (5.21)

Following this technique, the Lagrange multipliers can still be condensed from the global
system of equations, while preserving the robustness of standard Lagrange multipliers for
the treatment of the contact constraints. However, it should be pointed out that this ap-
proach also leads to a non-symmetric global system of equations (even though one could
argue that from a physics-based perspective, symmetry is only achieved for frictionless
contact anyway).

5.3.2 Additional advantages for rigid/deformable interaction

For the case of rigid/deformable contact, in particular, the application of the Petrov-
Galerkin technique becomes extremely important for an additional reason: it allows us to
completely eliminate the evaluation of the dual shape functions. As already mentioned,
the second mortar coupling matrix vanishes due to the fact that one of the opposing con-
tact surfaces remains fixed. Moreover, the bi-orthogonality condition leads to a diagonal
first mortar coupling matrix, which can be evaluated using the standard shape functions
only, see Equation (3.20). Therefore, the only terms left involving the dual shape func-
tions are the contact constraints. As a consequence, and as explained in more detail in
the following paragraphs, if the variation of the Lagrange multipliers is interpolated using
standard shape functions, the dual shape functions are not explicitly used.
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5.3.3 Extension to quadratic elements using piecewise linear interpolation
The establishment of quadratic dual shape functions in three dimensions has always

been a challenging topic, especially for contact problems. Additional techniques are re-
quired for assuring integral positivity, which, as mentioned previously, is twofold: ensure
optimal spatial convergence and physically meaningful weighted gaps. In this work, the
locally quadratic technique proposed in Popp, B. I. Wohlmuth, et al. (2012) is employed
to address the first point. Essentially, it consists of combining the bi-orthogonality condi-
tion, Equation (3.7), with a basis transformation procedure. As suggested in Flemisch and
B. I. Wohlmuth (2007), feasible dual shape functions are constructed from the element-
wise bi-orthogonality condition, although based on the introduction of modified shape
functions Ñ s

j , i.e., ∫
{γs

c}h
e

Φ j Ñ s
k dγs

c = δ j k

∫
{γs

c}h
e

Ñ s
k dγs

c . (5.22)

It is noteworthy to mention that this technique leads to a non-diagonal first mortar cou-
pling matrix that, notwithstanding, can still be trivially inverted due to the closed-form
character of the transformation scheme. For additional details on this strategy, the reader
is referred to the original publication in Popp, B. I. Wohlmuth, et al. (2012).

If strict positivity is to be further pursued, the situation becomes even more com-
plicated. The original motivation for the Petrov-Galerkin technique relies on the preser-
vation of the properties of standard shape functions in the contact constraints, while
keeping the localization character of the dual basis in the coupling conditions. However,
it is rather obvious that the requirement of non-negativity is only fully met by standard
Lagrange multiplier basis functions for first-order finite element interpolation. For exam-
ple, Figure 5.3 represents the integral value of the quadratic shape function associated
with the first node of an 8-noded (serendipity) quadrilateral. The integration domain is
considered rectangular, and, as can be observed in the contour plot, there is a region over
which the integral value becomes negative. Within the context of the contact formulation,
this compromises the physical interpretation of the weighed gap function and impairs
the convergence of the active set search. Therefore, an additional modification of the in-
terpolation scheme for the variation of the Lagrange multipliers is required for quadratic
elements.

This topic has been firstly addressed in Sitzmann et al. (2016) within the context of
dual mortar contact with regularisations. Similar to the concepts already introduced in
Puso, Laursen, and Solberg (2008), an alternative is proposed to define Lagrange multipli-
ers only at corner nodes, interpolating their variation using the associated first-order stan-
dard shape functions. Despite leading to a semi-smooth Newton method with a smaller
active set to be iterated, this technique has the disadvantage of losing surface information
for curved boundaries. The enforcement of contact constraints at edge nodes is ignored
and, for coarse meshes, this can lead to unphysical results. Furthermore, as this approach
inherently relies on nλ < ns, the construction of the dual basis is slightly more involved
and requires substantial algorithmic adaptations, see Popp, B. I. Wohlmuth, et al., 2012.

In this work, an alternative technique for quadratic Petrov-Galerkin dual mortar con-
tact is proposed. In the spirit of the concepts presented in Puso, Laursen, and Solberg
(2008) for the evaluation of the mortar integrals for quadratic elements, it is based on the
establishment of linear sub-elements and corresponding piecewise interpolation. The
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Figure 5.3: The integral value of the standard shape function node 1, N1, of the 8-noded
quadratic element over partial rectangular domains.

Lagrange multipliers are approximated using the quadratic dual shape functions, while
the piecewise linear standard shape functions are used for its variation, i.e.,

δλh ≡
ns∑

j=1
N sub

j

(
ξs)δz j . (5.23)

Compared with the alternative proposed by Sitzmann et al. (2016), all non-mortar nodes
are checked for contact, thus preserving more information about the interface geome-
try. As the condition nλ = ns is retained, the implementation of the proposed approach
requires little effort and enables recycling of most of the pre-existing algorithmic compo-
nents. In combination with the certainty of strict positivity of the piecewise linear shape
functions, this allows for a robust algorithm that becomes less sensitive to discretiza-
tion problems. However, as a trade-off, the computational complexity in the numerical
evaluation of mortar integrals increases. Instead of approximating a single linear element
(containing only the corner nodes), each quadratic facet is divided into multiple linear/bi-
linear sub-elements, which may require further sub-divisions within the clipping polygon
algorithm. This downside, however, is not intrinsically related to the proposed approach
but is already present in popular mortar segmentation procedures for quadratic elements
in deformable/deformable contact (Puso, Laursen, and Solberg, 2008). Notwithstanding,
for rigid/deformable contact, this aspect can be counterbalanced by employing the effi-
cient projected orthonormal frame to be described in Section 5.6.

The application of the piecewise linear interpolation requires the establishment of
proper mappings, referring to Appendix B for their explicit expressions and associated
Jacobian matrices. Figure 5.4 gives an overview of the various finite element interpola-
tion schemes used within the Petrov-Galerkin dual mortar contact algorithm, also repre-
senting the shape functions characteristic of both corner and edge nodes of a quadratic
8-noded quadrilateral (quad8).
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(a) Standard shape functions Geometry

xr ≈ {
xr}h ≡∑ns

k=1 N s
k

(
ξs)xs

k

xs ≈ {
xs}h ≡∑ns

k=1 N s
k

(
ξs)xs

k

Displacements

us ≈ {
us}h ≡∑ns

k=1 N s
k

(
ξs)ds

k

Displacements variation

δus ≈ {
δus}h ≡∑ns

k=1 N s
k

(
ξs)δds

k

(b) Dual shape functions

Lagrange multipliers

λ≈λh ≡∑ns

j=1Φ j
(
ξs)z j

(c) Piecewise linear shape functions

Lagrange multipliers variation

δλ≈ δλh ≡∑ns

j=1 N sub
j

(
ξs)δz j

Figure 5.4: Finite element interpolations for rigid/deformable Petrov-Galerkin dual mor-
tar contact and shape functions for a quadratic 8-noded quadrilateral.
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Remark. From a mathematical point of view, the Petrov-Galerkin technique introduces
modifications into the variational structure of the problem. As demonstrated in Hüeber
(2008), decoupling of the contact constraints into point-wise conditions is only possi-
ble due to the localized character of the dual Lagrange multipliers. Therefore, only for
the Bubnov-Galerkin approach, the bi-orthogonality condition is fulfilled and, conse-
quently, the contact conditions are localized. In the Petrov-Galerkin technique, however,
the discrete dual space is switched to the trace space of the displacements for the varia-
tion of the Lagrange multipliers. In doing so, it should be expected that the localization
property will be affected and additional coupling terms will originate. Nevertheless, the
transformation of weak contact constraints to a set of point-wise conditions has been em-
ployed extensively in the literature, e.g., see Puso and Laursen (2004a,b), Puso, Laursen,
and Solberg (2008), Popp, Seitz, et al. (2013), and Sitzmann et al. (2016). In analogy to
mass lumping techniques, it can be interpreted as a form of lumping of the contact con-
straints (Sitzmann et al., 2016). For an exemplary formulation considering fully coupled
constraints, see Blum et al. (2016). The assessment of the impact of the Petrov-Galerkin
approach on the mathematical structure of the method would fall beyond the scope of
the present work and, therefore, this topic is addressed from a practical perspective in
the numerical investigations presented in Section 5.9.

5.4 Discrete contact virtual work

Based upon the finite element interpolation scheme introduced in the previous section,
the discretised version of the contact virtual work δΠc, given in Equation (5.8), can be
written as

δΠs
c ≈

{
Πs

c

}h ≡
ns∑

j=1

ns∑
k=1

{
z j

[∫
{γs

c}h
Φ j

(
ξs)N s

k

(
ξs) dγs

c

]
δds

k

}
. (5.24)

It should be noticed that the contact virtual work is entirely based on the first mortar
coupling matrix. In contrast to the mortar boundary in unilateral contact problems, the
rigid side remains completely prescribed (fixed), it does not contribute to the virtual work
by the contact forces—the second mortar matrix is not required.

5.5 Discrete contact constraints

The treatment of the contact constraints starts by the definition of the discrete version of
the gap vector, g h

(
ξs), which for rigid/deformable contact reads

g ≈ g h (
ξs)≡ ns∑

j=1
N s

j

(
ξs)xs

j −
nr∑

l=1
N r

l

(
ξ̂r)xr

l . (5.25)

When compared with the general case of unilateral contact introduced in Chapter 3, they
both have the same structure. However, because the derivative of the rigid surface coor-
dinates vanishes, its linearisation is simplified.

As a final remark, it is worth mentioning that if the rigid boundary geometry is discre-
tised using finite elements, the projection operations can be performed by employing the
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techniques already described for unilateral contact. These typically include an efficient
global search algorithm and a continuous field of normals associated with the non-mortar
boundary, see Section 5.6.

5.5.1 Discrete contact constraints in the normal direction
The discrete point-wise conditions (3.66) described in Chapter 3 remain unchanged,

except for the weighted gap g̃ j definition, which by employing the Petrov-Galerkin ap-
proach is interpolated using the standard shape functions, viz.

g̃ j ≡
∫

{γs
c}h

N s
j

(
ξs)g h (

ξs)dγs
c . (5.26)

The discrete gap function g h is still evaluated as

g h (
ξs)≡ηh (

ξs) ·g h (
ξs) , (5.27)

yet considering the discrete gap vector in Equation (5.25).
For quadratic finite elements, the piecewise linear interpolation is employed, i.e.,

g̃ j ≡
∫

{γs
c}h

N sub
j

(
ξsub)

g h(
ξs(ξsub))

dγs
c . (5.28)

It is worth mentioning that the discrete gap is still defined based on the quadratic shape
functions, with coordinates obtained using the mappings given in Appendix B. This al-
lows to retain the quadratic interpolation of the geometry and, therefore, capture smooth
curvatures in the evaluation of the discrete gap function.

5.5.2 Discrete contact constraints in the tangential direction
In the same way, both the point-wise tangential conditions (3.67) and all the concepts

regarding the backward Euler scheme for time integration remain consistent. The only
difference regards the evaluation of the incremental slip, which now must be derived
from the modified weighted gap vector, g̃ j

(
ξs), which reads

g̃ j

(
ξs)≡ ns∑

k=1

[∫
{γs

c}h
N s

j

(
ξs)N s

k

(
ξs)dγs

c

]
xs

k

−
nr∑

l=1

[∫
{γs

c}h
N s

j

(
ξs)N r

l

(
ξ̂r)dγs

c

]
xr

l .

(5.29)

5.6 Projected averaged moving frame

With the discrete version of the contact virtual work and contact constraints thought
out, attention is now shifted towards their computational treatment. The importance
of mortar integral evaluation within mortar methods is well-known and represents one
of the main challenges. Their correct evaluation is essential to preserve the sough-after
properties of the mortar-based variational formulation. It requires approximating surface
integrals with complex geometrical operations involved and, therefore, ends up being one
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of the main contributors to the overall cost of the algorithm. Therefore, there is a clear
motivation for new strategies that are able to facilitate the complexity of the algorithm
without affecting its accuracy and robustness. For the particular case at hand of rigid/de-
formable contact under large deformations, the fact that one of the boundaries remains
fixed can be exploited and, as explained in the following paragraphs, a new definition for
the continuous field of orthonormal frames is proposed.

In all contact problems, it is necessary to define a local orthonormal moving frame
attached to each contact node containing a Lagrange multiplier. It splits the surface con-
tact tractions into normal and tangential components and establishes projection rules
necessary for the evaluation of mortar coupling terms. The overall idea of the proposed
method consists in defining an initial field of orthonormal frames on the rigid side, which
is then continuously projected onto the non-mortar side throughout the deformation
process. On the ground foundation of this idea is the fact that, while contact occurs, the
boundaries of both sides tend to coincide and, for the regions in full contact, become
practically identical. Therefore, the field of orthonormal frames on the rigid side can be
defined using sophisticated and accurate methodologies, which are then transmitted to
the deformable side by means of simple projections rules, similar to the ones already
used within the integration algorithm. The individual steps are described in more detail
in the following.

Firstly, it is necessary to define the field of orthonormal frames on the rigid side. This
operation is only realised once during problem initialisation and the averaged normal ap-
proach described in Chapter 3 is employed here. Originally proposed by B. Yang, Laursen,
and Meng (2005), and later on slightly simplified by Popp, Gee, et al. (2009), it is based on
a continuous field of normal vectors defined on the non-mortar side, which smoothens
the discontinuities associated with the discretization of the contact interface by averaging
the nodal unit normals.

Next, the unit normal vector is projected to the non-mortar contact boundary and
inverted in order to still point outwards, see Figure 5.5. For a given non-mortar node j
with coordinates xs

j , the projection consists of finding the isoparametric coordinate ξ̂r on
the rigid side such that the following condition holds:

nr
e∑

k=1
N r

k

(
ξ̂r)[xr

k +αη̃r
k

]−xs
j = 0 . (5.30)

Here, nr
e denotes the total number of nodes of the rigid element and η̃r

k the averaged unit
normal vectors. The parameter α relates to the normal distance between the points.* This
system of equations can be solved with a local Newton-Raphson procedure, where each
iteration reads 

∆ξ̂r
1

∆ξ̂r
2

∆α

= [W]−1

{
nr

e∑
l=1

N r
l

(
ξ̂r)(xr

l +αη̃r
k

)
−xs

j

}
. (5.31)

The matrix [W] ∈ Rd×d is obtained from the derivative of the projection condition with

*For the sake of simplicity, the interpolated normal vector is not normalized. This does not change the
solution of the projection procedure, thus affecting the physical meaning of the parameter α only.
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respect to the rigid side coordinate ξr and the parameter α. In three dimensions, it yields

[
W

]≡ [
nr

e∑
l=1

N r
l ,ξr

1

(
xr

l + η̃l

) ∣∣∣ nr
e∑

l=1
N r

l ,ξr
2

(
xr

l + η̃l

) ∣∣∣ nr
e∑

l=1
N r

l η̃l

]
. (5.32)

The two-dimensional version is relatively straightforward by simply omitting the second
column. Lastly, with the projection coordinate ξ̂r at hand, the associated frame can be
inverted, which means that the unit normal vector ηh

j at the non-mortar node j yields

ηh
j =−

∑nr
e

l=1 N r
l

(
ξ̂r)η̃r

k∥∥∥∑nr
e

l=1 N r
l

(
ξ̂r)η̃r

k

∥∥∥ . (5.33)

Having the unit normal vector at hand, the tangent vector can be freely chosen from the
tangential plane. A recommended technique is, for example, considering the direction of
the interpolated tangent vector on the rigid side.

In practice, the projection is performed considering various rigid interface elements
until a valid solution is found. The application of an efficient global search algorithm (see
Section 3.6) is, thus, highly recommended in order to perform this iterative procedure
based on a reduced list of target elements. The averaged frame can still be employed
in situations where no valid projection is found (e.g., in dropping edge problems), as it
depends only on the deformable boundary itself.

Figure 5.5: Projection of the averaged orthonormal frame from the rigid onto the non-
mortar boundary.

The local frame is deformation-dependent for contact under large deformations, and,
therefore, needs to be linearised within the Newton-Raphson algorithm. In fact, this now
exposes the main advantage of this technique, which regards the self-contained char-
acter of the projection procedure. As demonstrated in more detail in Section 5.8.1, the
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projected frame derivative is guaranteed to have the minimum bandwidth, i.e., it con-
tains only the degrees of freedom associated with the non-mortar node itself. This has a
beneficial impact on the computational complexity of the algorithm by reducing the total
number of individual operations. As the derivatives of the normal and tangent vectors
appear (directly and indirectly) in every term of the formulation, the reduction in the
derivatives’ number of terms becomes amplified in the overall computational cost. Recall
that, beyond the contact constraints, the integration scheme is based on projections that
also use the continuous field of normals on the non-mortar side. The improvements in
computational complexity are carefully investigated and quantitatively measured in the
numerical examples shown in Section 5.9.2.

5.7 Numerical evaluation of mortar integrals

The prime cause for the difficulty in evaluating mortar integrals is related to the quanti-
ties with terms belonging to different sides of the contact interface—usually connected
by means of projection rules that, within the ongoing formulation, are based on the
projected frame. Generally speaking, these include the transmission of contact stresses
across the interface, described by the second mortar coupling matrix, and the kinemat-
ics describing the relative motion between both boundaries, namely in the form of the
weighted gap and the incremental slip. One of the main simplifications for the particu-
lar case of rigid/deformable contact is that the second mortar matrix vanishes. However,
even in the simplest case of frictionless contact, the weighted gap still needs to be evalu-
ated and, therefore, the challenge of correctly evaluating mortar integrals is still present.

The primary source of complexity involves the transmission of geometrical informa-
tion between boundaries (to determine the overlap of both domains) and, in the three-
dimensional case, the evaluation of surface integrals with complex geometries. As the
rigid boundary is interpolated using finite elements, the techniques described in the
overview work by Farah, Popp, et al. (2015) are equally applicable to the problem at
hand. Both the segmentation and element-wise integration schemes remain practically
unchanged, with the only exception being the displacements of the mortar side vanishing.
Nonetheless, for quadratic interpolation using piecewise linear interpolation, the under-
standing of how the subdivision of the interface element into multiple sub-elements
affects the integration scheme is noteworthy to mention. In the spirit of preserving all
the techniques derived for linear elements, each individual sub-element of the parent
quadratic facet is treated accordingly. The two strategies employed for the numerical
approximation of mortar integrals are described in the following.

5.7.1 Evaluation of mortar integrals for piecewise linear interpolation

For the segmentation strategy in two dimensions, segments are formed using each
pair of nodes of the involved 3-noded line elements, while in three dimensions, the clip-
ping polygon is established using the sub-elements (3-noded triangles or 4-noded quadri-
laterals). Because the clipping polygon technique for three-dimensional problems is only
valid for linear facets (otherwise, it would be impractical to perform the clipping algo-
rithm based on curved domains), this means that the quadratic facets on the rigid side
also need to be divided into sub-elements. The basic steps of the algorithm remain the
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same: after defining the clipping polygon, it is divided into multiple cells to be numer-
ically integrated (triangles and quadrilaterals) and the Gauss points are projected back
to the sub-element. At this stage, however, an additional step needs to be performed by
recovering the original isoparametric coordinate at the parent element (quadratic) using
the mappings described in Appendix B. The contribution of a given pair of non-mortar
and rigid elements, for instance, to the first mortar coupling matrix, becomes

D(s,r)
j j ≈

nsub∑
s=1

ncell∑
c=1

ng∑
g=1

wg N j
(
ξs

g
(
ξsub

g
(
ζg

)))
J cell

c , (5.34)

where nsub stands for the total number of sub-elements and ncell is the total number of
integration cells. The Gaussian quadrature is defined over ng integration points with wg

weights and coordinates ζg. The Jacobian determinant, Jc , defines the transformation
from the integration cell of the sub-element to the global spatial configuration, i.e.,

J cell
c

(
ξsub)= ∥∥∥∥∂

{
xs

}h

∂ξs

∥∥∥∥ ·∥∥∥∥ ∂ξs

∂ξsub

∥∥∥∥ . (5.35)

For the element-based integration, the Gauss points are defined on the sub-element and
directly projected to the opposite side. Figure 5.6 schematically represents the boundary-
segmentation method in three dimensions, which is based on the combination of both
strategies. The algorithm is illustrated for a pair of non-mortar and rigid elements, which,
after division into sub-elements, yields both types of integration cells. For the sub-element
represented in red, all the Gauss points are successfully projected, whereas the remaining
sub-elements require segmentation.

It is important to mention that, from a practical perspective, there exists a slight differ-
ence in both strategies that motivates a modified physical interpretation of the Jacobian
determinant. For element-wise integration, all the nodes of the integration cell belong to
the parent finite element and, therefore, the mapping to the parent element is explicitly
employed and the Jacobian evaluated using the two terms in Equation (5.35). However,
when applying the segmentation scheme, the sub-element is projected to the auxiliary
plane, which leads to a relative loss of geometrical information (interpreted as a kind
of faceting of the quadratic element).† The nodes of the integration cells become either
projections of the sub-element nodes to the auxiliary plane or nodes generated by the
clipping algorithm. The Jacobian determinant is evaluated directly by using the global
coordinates of the integration cell nodes and, thus, overlooking the two-step operation
in Equation (5.35).

As a final remark, it is typical to address conservation properties of the spatially
discrete problem in mortar contact formulations, especially concerning linear momen-
tum conservation. In deformable/deformable contact settings, this is trivially ensured by
adopting the same quadrature rules for both mortar coupling terms. In contrast, in the
current scenario dealing with rigid/deformable contact, linear momentum conservation
is not affected by the occurrence of contact and, thus, this topic is not relevant here. For
the sake of simplicity, the same integration scheme is employed for every mortar integral,
with respect to the first mortar matrix and weighting gap.

†Strictly speaking, this becomes relevant only for 4-noded quadrilateral facets, in which the possibility
of element warping exists.
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Figure 5.6: Schematic illustration of the boundary-segmentation integration method for
the piecewise linear interpolation in three dimensions. The top two figures
represent the division into sub-elements and the bottom two figures corre-
spond to the integration cells originated from two of the five sub-elements.
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5.8 Global solution algorithm

The final step to obtain the final discrete non-linear contact problem between a de-
formable body and a rigid obstacle regards the active set strategy. As for the general
case of unilateral contact between two deformable bodies, the contact inequality con-
straints require identifying the subset of interface nodes effectively in contact, as well as
the necessary tangential contact states (stick/slip). To address this problem, the PDASS
described in Chapter 3 is thoroughly applied without any modifications. In a nutshell, it
consists of reformulating the discrete nodal inequality constraints using NCP functions.
This introduces a certain regularisation on the active set search and enables the applica-
tion of a Newton-Raphson type algorithm, comprising not only geometrical and material
non-linearities, but also the contact active set search itself. After all, the final discrete
contact problem can be written as the entire set of equality conditions, which is repeated
here for convenience:

r (d,z) ≡ fint (d)− fext + fc (d,z) = 0 ,

Cη

j

(
d,z j

)= 0 , ∀ j ∈S ,

Cτ
j

(
d,z j

)= 0 , ∀ j ∈S .

Recall that r (d,z) represents the residual vector, fint (d) and fext the internal and external
forces vectors and fc (d,z) for the discrete contact forces. At this stage, the foundations
for the application of a Newton-type algorithm are complete. Thus, we describe in the
following the consistent linearisation of the problem.

5.8.1 Consistent linearisation
The application of the semi-smooth Newton algorithm requires consistent linearisa-

tion of both the discrete balance equations and the NCP functions. In this section, the fo-
cus is exclusively placed on the terms introduced within the current formulation for non-
linear rigid/deformable contact, namely the piecewise linear interpolation for quadratic
dual mortar contact and the projected orthonormal frame. The remaining derivations
remain unchanged from the unilateral contact case and, therefore, the reader is referred
to Chapter 3 and Appendix A and the discussions in Puso and Laursen, 2004a; Popp, Gee,
et al., 2009; Popp, Gitterle, et al., 2010, to name a few.

5.8.1.1 Piecewise linear interpolation

The piecewise linear interpolation affects the definition of the isoparametric coordi-
nates at each Gauss point. As the interface element is divided into sub-elements, the nu-
merical integration requires the application of mappings between domains. These need
to be taken into account within the derivative chain rule and, for example, the derivative
of the isoparametric non-mortar coordinate, Dξs, yields

Dξs = ∂ξs

∂ξsub
Dξsub . (5.36)

The first term regards the Jacobian matrix of the mappings, referring to Appendix B for
its definition. The derivative Dξsub contains the directional derivative of the sub-element
parameter space, which is computed using the typical first-order element procedures.
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5.8.1.2 Projected orthonormal frame

Considering the definition of the projected unit normal given in Equation (5.33), its
linearisation reads

Dηh
j =

(
1

lη̌r
I − 1

l 3
η̌r

η̌r ⊗ η̌r

)
D η̌r . (5.37)

Here, η̌r
j

(
ξ̂r) has been introduced as an abbreviation for the non-unit normal vector on

the rigid boundary,

η̌r
j

(
ξ̂r)≡ nr

e∑
l=1

N r
l

(
ξ̂r)η̃r

k , (5.38)

whose derivative yields

D η̌r
j

(
ξ̂r)= nr

e∑
k=1

N r
k,ξr

1

(
ξ̂r)D ξ̂r

1 η̃
r
k +

nr
e∑

k=1
N r

k,ξr
2

(
ξ̂r)D ξ̂r

2 η̃
r
k . (5.39)

Note that the only derivative needed arises from the projection procedure, given that
the averaged unit normal linearisation vanishes (the rigid boundary remains fixed). The
linearisation of the projected rigid isoparametric coordinate ξ̂r can be extracted from the
projection condition in Equation (5.31) as follows


D ξ̂r

1

D ξ̂r
2

Dα

= [
W

]−1{
∆xs

j

}
. (5.40)

It is noteworthy to mention that the matrix [W] to be inverted is already computed during
the projection, see Equation (5.32), which makes the computational evaluation of the
orthonormal moving frame relatively straightforward and efficient.

5.8.2 Algebraic representation

This last section provides the algebraic representation of the discrete entities involved
in the contact algorithm. As the approach adopted in Chapter 3, all nodes and correspond-
ing degrees of freedom are partitioned into two (instead of three) disjoint sets S ∪N : a
group S containing all non-mortar quantities and a group N associated with all remain-
ing nodes or degrees of freedom. Then, the non-mortar set S is further partitioned into
three disjoint sets: the inactive nodes set I , the set Q of nodes in contact and stick state
and the set L of nodes in contact and slip condition. The assembled system to be solved
within each semi-smooth Newton step k in order to obtain the incremental displacements
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vector ∆d and current Lagrange multipliers zk+1 can be expressed as:


0

0

0

0

KLN

KQN

KIN

KNN

LI

QI

AI

0

K̃LI

K̃QI

K̃II

KNI

LQ

QQ

AQ

0

K̃LQ

K̃QQ

K̃IQ

KNQ

LL

QL

AL

0

K̃LL

K̃QL

K̃IL

KNL

0

0

0

II

DT
LI

DT
IQ

DT
II

0

0

T

0

0

DT
LQ

DT
QQ

DT
IQ

0

H

0

0

0

DT
LL

DT
QL

DT
IL

0


 zk+1
L

zk+1
Q

zk+1
I

∆dL

∆dQ

∆dI

∆dN


=−


rslip

rstick

g̃

0

r̃L

r̃Q

r̃I

rN


. (5.41)

For convenience, the nomenclature is recalled in the following. The blocks K denote
the stiffness matrix resulting from the linearisation of the internal forces vector. The
blocks K̃ represent the effective stiffness matrix, obtained from the summation of the
respective stiffness blocks K with the linearization terms of the contact force vector fc

in order of the displacements, see Equation (3.130). Blocks A contain the derivatives in
order to the displacements of the NCP function for the normal contact constraints, while
Q and L regard the stick and slip equations derivatives, respectively. The matrices T and H
aggregate the derivative of the tangential NCP function in order to the Lagrange multiplier.
The residual blocks r̃ comes as a result of solving directly for the unknown Lagrange
multipliers zk+1 at each iteration (i.e., without employing an incremental formulation),
see Equation (3.131). The vector g̃ gathers all the nodal weighted gaps and rstick and
rslip are the residuals for the stick and slip equations. Compared with the counterpart
in Equation (3.156) for unilateral contact, the only difference is that there are no mortar
degrees of freedom, thus leading to a smaller total number of stiffness matrix blocks.

Remark. It should be mentioned that, in Equation (5.41), the case of a non-diagonal
first mortar coupling matrix is assumed for the sake of generality. Nonetheless, for first-
order finite elements, it retains the diagonal structure due to the bi-orthogonality con-
dition given in Equation (3.7). For second-order interpolation, on the other hand, the
application of the modified dual shape functions, see Equation (5.22), leads to a non-
diagonal first mortar matrix (although, still easily inverted).

5.8.2.1 Elimination of the Lagrange multipliers

As already mentioned, the use of dual Lagrange multipliers allows for a straightfor-
ward simplification of the system of equations by performing the condensation of the
Lagrange multipliers (thus removing the unwanted saddle point structure). This is possi-
ble because the first mortar coupling matrix D can be trivially inverted. The evaluation
of the Lagrange multipliers at a given configuration starts with the consideration of the
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following system of equationszk+1
L

zk+1
Q

zk+1
I

=−


D−T
LI

D−T
QI

D−T
II

D−T
LQ

D−T
QQ

D−T
IQ

D−T
LL

D−T
QL

D−T
IL


 r̃L+∑

X∈{N ,I,Q,L} KLX∆dX

r̃Q+∑
X∈{N ,I,Q,L} KQX∆dX

r̃I +∑
X∈{N ,I,Q,L} KIX∆dX

 . (5.42)

Consideration of the fifth row of Equation (5.41) yields zk+1
I = 0 and, therefore, one has

{
zk+1
Q

}=− ∑
Y∈{I,Q,L}

D−T
QY

[
r̃Y + ∑

X∈{N ,I,Q,L}
KYX∆dX

]
, (5.43)

{
zk+1
L

}=− ∑
Y∈{I,Q,L}

D−T
LY

[
r̃Y + ∑

X∈{N ,I,Q,L}
KYX∆dX

]
. (5.44)

This also allows the third and fourth rows of Equation (5.41) to be solved. It should be
mentioned that the presented condensation procedure becomes simplified for first-order
finite elements, as the first mortar coupling matrix maintains a diagonal structure. Substi-
tution of the expressions above into Equation (5.41) leads to the final condensed system:

L̆N

Q̆N

0

K̆N

KNN

L̆I

Q̆I

AI

K̆I

KNI

L̆Q

Q̆Q

AQ

K̆Q

KNQ

L̆L

Q̆L

AL

K̆L

KNL



∆dL

∆dQ

∆dI

∆dN

=−

 r̆slip

r̆stick

g̃

r̆I

rN


. (5.45)

Here, several algebraic functions and abbreviations have been introduced to facilitate the
notation. The algebraic function K̆(•) in the second row of Equation (5.45) is defined as

[
K̆(•)

]≡


KI(•) − ∑
Y∈{I,Q,L}

DT
IQD−T

QYKYN∆dN − ∑
Y∈{I,Q,L}

DT
ILD−T

LYKYN∆dN , if (•) ∈N ,

K̃I(•) − ∑
Y∈{I,Q,L}

DT
IQD−T

QYKY(•)∆d(•) − ∑
Y∈{I,Q,L}

DT
ILD−T

LYKY(•)∆d(•), if (•) 6∈N ,

(5.46)
and the corresponding residual comes as{

r̆I
}≡ r̃I −

∑
Y∈{I,Q,L}

DT
IQD−T

QY r̃Y − ∑
Y∈{I,Q,L}

DT
ILD−T

LY r̃Y . (5.47)

The algebraic function
[
Q̆(•)

]
on the fourth row of Equation (5.45) is defined as

[
Q̆(•)

]≡


− ∑
Y∈{I,Q,L}

TD−T
QYKYN∆dN , if (•) ∈N ,

Q(•) − ∑
Y∈{I,Q,L}

TD−T
QYKY(•)∆d(•) , if (•) 6∈N ,

(5.48)
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and the corresponding residual
{

r̆stick
} ∈Rnstick

yields{
r̆stick}≡ rstick − ∑

Y∈{I,Q,L}
TD−T

QY r̃Y . (5.49)

On the fifth row of Equation (5.45), the function
[
L̆(•)

]
is constructed as

[
L̆(•)

]≡


− ∑
Y∈{I,Q,L}

HD−T
LYKYN∆dN , if (•) ∈N ,

L(•) − ∑
Y∈{I,Q,L}

HD−T
LYKY(•)∆d(•) , if (•) 6∈N ,

(5.50)

and the residual
{

r̆slip
} ∈Rnslip

as{
r̆slip}≡ rslip − ∑

Y∈{I,Q,L}
HD−T

LY r̃Y . (5.51)

5.9 Numerical results

In the following, several numerical examples are presented and analysed in order to vali-
date the proposed formulation for rigid/deformable finite deformation contact. The set
of numerical examples presented is exclusively focused on particular aspects of the pro-
posed formulation. Firstly, the optimal convergence rate of the Petrov-Galerkin approach
is discussed in Section 5.9.1, considering the classical Hertzian contact problem in two
dimensions under uniform mesh refinement. The spatial convergence of the proposed
piecewise linear interpolation scheme for quadratic finite elements is also analysed. The
improvement in computational complexity is measured in Section 5.9.2 by analysing the
three-dimensional contact problem of a half torus going against a complex rigid boundary.
Lastly, the proposed piecewise linear interpolation scheme for quadratic finite elements
in three dimensions is employed in Section 5.9.3 to solve the contact of a deformable
base against a rigid punch.

5.9.1 Spatial convergence - Hertzian contact

The first numerical example to be analysed regards the Hertzian frictionless contact
between two cylinders under plane strain conditions. The objective is to assess the spatial
convergence rate of the Bubnov-Galerkin and the Petrov-Galerkin approaches, including
also the proposed piecewise linear interpolation scheme. The geometry of the problem is
schematically represented in Figure 5.7. It consists of one deformable cylinder with radius
R1 = 8, described by the St.-Venant-Kirchhoff hyperelastic material model, with Young’s
modulus E = 200 and Poisson’s ratio ν= 0.3, contacting against a rigid cylinder with the
same radius R2 = 8. For simplicity, only half of the deformable cylinder is modelled and
the constant pressure of p0 =−0.8 is applied to the top surface of the hemisphere. The
problem is discretised using a structured mesh of standard 4- and 8-noded quadrilateral
elements for first- and second-order interpolation. The external pressure is applied in-
crementally in 20 steps, considering a relative convergence tolerance for the nonlinear
solver of εr = 1×10−10. Only the segment-based strategy is considered in order to not
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Figure 5.7: Hertzian contact – schematic representation of the problem setting.

compromise the spatial convergence properties of the underlying mixed finite element
formulation.

Firstly, in order to inspect the convergence rate, successive uniform mesh refinement
steps are employed in a structured manner. Figure 5.8a shows the entire coarse finite
element mesh, including a snippet of the remaining refinement levels. The contact region
starts with a discretisation based on 4 elements, which is then doubled four times, i.e.,
until reaching 64 elements. The idea is to compare the solution of each level with a
reference solution, here obtained using the second-order finite element mesh with 256
elements (two refinement levels above the most refined mesh). The Bubnov-Galerkin and
the Petrov-Galerkin formulations are considered, including the piecewise interpolation
scheme for second-order interpolation as well.

Figure 5.8b shows the discretisation error based on the H 1-norm of the error in the
displacement field, i.e., by evaluating directly ||u −uh|| between solutions. For first-order
interpolation, O(h) convergence is observed, while for second-order interpolation, opti-
mal results of O(h3/2) are achieved. These are in accordance with the theoretical estimates
and numerical investigations carried out within the context of unilateral contact due to
a reduced regularity of contact solutions, e.g., see B. I. Wohlmuth, Popp, et al. (2012)
and Popp, B. I. Wohlmuth, et al. (2012). Regarding the ongoing formulation for rigid/de-
formable contact, one significant result is that the Petrov-Galerkin convergence rates are
practically identical with the classical Bubnov-Galerkin approach. This indicates that the
mathematical structure of the dual mortar formulation remains unaffected by the mixed
interpolation scheme used in the Petrov-Galerkin approach. The same is observed for the
piecewise linear interpolation.

Numerical results for the contact pressure distribution are illustrated in Figure 5.9
for first-order interpolation using different discretization levels.‡ As expected, no oscilla-
tions on the contact normal pressure are observed throughout the active contact region,
and the solution with the second level of refinement, n = 2, is practically identical with
the remaining finer meshes. The coarse mesh, n = 1, appears to be inappropriate to
model the contact problem accurately, as the active region is only described by three

‡Even though not documented here for the sake of brevity, similar results are obtained with the second-
order interpolation.
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elements. Notwithstanding, this problem configuration has been intentionally consid-
ered beforehand to identify possible limitations of the formulations. Even in this case,
no particular formulation becomes clearly more compelling in terms of accuracy and,
therefore, reinforces the conclusion that the Petrov-Galerkin approach behaves similarly
to the Bubnov-Galerkin scheme.

Figure 5.10 shows the maximum normal contact pressure, pη
max, with mesh refine-

ment for all the combinations considered in this section. All the results converge to
the same value, with the only significant difference being the results obtained with the
coarse mesh. While the first-order Bubnov-Galerkin tends to underestimate the maxi-
mum contact pressure, the first-order Petrov-Galerkin technique tends to follow the trend
of second-order interpolation and overestimates the result. The results obtained with the
piecewise linear interpolation have the slightest variation.

Lastly, in order to have a complete picture of the results, Figure 5.11 shows the de-
formed configuration of the cylinder, including a coloured representation of the verti-
cal displacement. Only the case with the coarse mesh is represented, as the remaining
meshes are similar. In fact, even for the coarse mesh, the difference in the displacement
field is so slight that the only significant difference regards the results obtained with the
Petrov-Galerkin approach with first-order elements. A small penetration of the nodes at
the end of the active contact zone is observed, which reflects the difference in the way the
weighted gap is evaluated. Nonetheless, this is consistent with similar studies based on
the Petrov-Galerkin technique, e.g., in Popp, Seitz, et al. (2013) and Sitzmann et al. (2016),
and is a behaviour that tends to vanish with mesh refinement. No overlap is observed in
the results obtained with the next finer mesh, n = 2.
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Figure 5.8: Hertzian contact – convergence of the H 1-norm of discretization error ||u −
uh||, for both first- and second-order finite interpolation based on quadrilat-
erals.
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Figure 5.9: Hertzian contact – convergence of the contact pressure distribution pη with
mesh refinement for first-order quadrilateral meshes.

Figure 5.10: Hertzian contact – maximum normal contact pressure, pη
max, with mesh re-

finement for first-order and second-order quadrilateral meshes.
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Figure 5.11: Hertzian contact – vertical displacement for different methods. The penetra-
tion obtained with the Petrov-Galerkin approach and linear finite elements
is highlighted.
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5.9.2 Computational complexity - Half-torus Signorini contact

In this section, the computational complexity of dual mortar formulations for rigid/de-
formable contact is quantitatively measured. Besides robustness, the motivation for the
proposed techniques is mainly driven by improving the numerical efficiency of contact
modelling. Therefore, a numerical example designed to unveil the computational perfor-
mance of the contact algorithm has been carried out. The problem setup and dimensions
are schematically illustrated in Figure 5.12, which consists of the contact of a deformable
half-torus against a rigid surface with a relatively complex shape. This example renders a
high ratio between the contact interface and total degrees of freedom, while involving a
non-trivial rigid boundary to define the projected normal vectors. The Neo-Hookean ma-
terial model is considered for the half-torus, which is subjected to an incremental vertical
displacement and has its outer surface set as non-mortar. Frictionless contact is assumed
based on four combinations of formulations:

• Bubnov/Petrov-Galerkin techniques;

• Averaged/projected orthonormal moving frame.

The idea is to measure the impact of the two main aspects discussed in this work (individ-
ually and combined), thus getting an estimate of the overall computational performance
of the algorithms for rigid/deformable contact.

Material
Neo-Hookean
E1=3000 ν1=0.3

Γr

Rt = 38
ūy = 12.3

γs
c

Cross-section
Re = 22.5

R
i = 18

z x

y

(0,0,0)

y=A·cos(2πz/λz )·cos(2πxλx )+B x2+C z2

A=0.04Rt B=0.01 C=0.05 λx=0.6Rt λz=Rt

Rigid surface

Figure 5.12: Half-torus – schematic representation of the problem setting.

The body is discretised using a structured 8-noded hexahedron mesh with F-bar ele-
ments (de Souza Neto et al., 1996) and the rigid side is discretised using 4-noded bilinear
quadrilaterals. The total dimension of the problem is around 85k nodes, from which 13k
are rigid. The displacement is applied in 27 equally spaced increments and a relative con-
vergence tolerance of εr = 1×10−6 is considered. In order to accentuate the complexity of
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the contact algorithm, the mortar integrals are evaluated using the segmentation method
exclusively. Using a desktop workstation, the total simulation time has varied between 3
and 5 hours. An exemplary representation of the deformed configuration at the end of
the simulation is given in Figure 5.13, including glyphs representing the contact stress
field.

Contact stresses, t s
c

0 374

Figure 5.13: Half-torus – deformed configuration contact stress field.

The time needed to evaluate all the terms related to contact is represented in Fig-
ure 5.14. Here, the average time per iteration of a given increment is plotted against the
ratio between the total number of active nodes and the total number of nodes of the finite
element mesh. As the number of active nodes increases monotonically with the pseudo-
time, the horizontal axis can be interpreted as the pseudo-time, or currently prescribed
displacement, yet adjusted to a more relevant quantity for the current analysis. In turn,
the ratio of active node numbers measures the impact of contact modelling within the
global finite element problem. On the vertical axis, the contact time (mainly dominated
by the linearisation update procedures) is summed per iteration and, after the global
Newton algorithm converges, it is averaged over the total number of iterations needed to
achieve equilibrium conditions. It is observed that, as expected, the computational time
increases with the total number of active nodes. The classical formulation based on the
Bubnov-Galerkin approach with the averaged orthonormal frame is the most computa-
tional demanding combination. In contrast, the newly proposed methodology based on
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the Petrov-Galerkin/projected frame is the fastest. In order to evaluate the differences
more clearly, the bottom graph in Figure 5.14 shows the speed-up of each formulation in
relation to the Bubnov-Galerkin/averaged frame method. The most significant improve-
ment in efficiency is achieved by switching from Bubnov- to Petrov-Galerkin techniques,
with an average reduction of ≈ 35% in computation time. The projected frame achieves
a reduction of ≈ 10%, which means that the two methodologies combined sum up to a
≈ 45% reduction in the computation time for contact evaluation.

At this stage, it seems appropriate to discuss the impact of the contact algorithm
within the global framework of finite element modelling. One can acknowledge that the
impact of this reduction in the global simulation time is highly dependent on the problem
size, the computational implementation and the computer hardware. All the examples
presented in this work have been solved using a desktop workstation. The global linear
system of equations have been solved by employing a direct solver and all the operations
have been carried out in serial. Under these conditions, the problem is dominated by
the contact algorithm and, therefore, the global computation times follow approximately
the same tendency of the times plotted in Figure 5.14. By employing strategies such as
parallelisation, one should expect the problem to become dominated more by the linear
solver. Nonetheless, even for such an optimised scenario, the computational complexity
associated with the contact algorithm (especially the geometrical operations and subse-
quent linearisation) is typically not negligible. It is expected to remain an essential part of
the overall computational performance for more demanding problems with a high ratio
of active contact nodes.

In order to understand more clearly the reduction in computational complexity, one
can look at memory usage. Figure 5.15 shows the total number of non-zero entries in the
derivatives of the unit normal vector at each active contact node for both the averaged
and projected techniques. For the sake of simplicity, only the results obtained with the
Petrov-Galerkin approach are shown, as the results of Bubnov-Galerkin are exactly the
same. As expected, this number increases throughout the simulation, and the bandwidth
of the derivative of the projected frame is smaller than for the averaged method. The
derivative of the unit normal vector appears in every term of the mortar formulation. As
already mentioned, it has an amplified effect by dictating the total number of individual
operations within the sparse matrix procedures.

Besides the total number of non-zero entries, one can look at the sparsity pattern of
the global stiffness matrix to understand the improvements in computational complexity.
Figure 5.16 shows a visualisation of an exemplary square system matrix originating from
the averaged and projected methodologies, in which a non-zero entry in the matrix is
marked with a black pixel. For ease of interpretation, a magnified representation of the
blocks associated with the contact constraints is also included, as any modification in the
contact algorithm will be reflected there. As expected, the pattern is more compact in the
projected frame variant because the projected frame derivative involves fewer terms than
the averaged strategy. Nonetheless, both global system matrices exhibit the pronounced
band structure obtained with mortar methods, see e.g., Popp (2018).
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Figure 5.14: Time required to complete all operations related with contact (the solid lines
are linear fittings).

Figure 5.15: Half-torus – number of non-zero entries of the derivative of the unit normal
vector Dη≡ Kη∆d.
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(a) Averaged. (b) Projected.

Figure 5.16: Half-torus – exemplary sparsity pattern of the global stiffness matrix, where
black pixels represent non-zero entries.
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5.9.3 Piecewise linear interpolation - 3D punch

The last numerical example is focused on demonstrating the effect of the piecewise
linear interpolation for quadratic dual mortar methods based on the Petrov-Galerkin tech-
nique in three dimensions. The problem is schematically represented in Figure 5.17 and
consists of a deformable cuboid base being pressed against a rigid pin with rounded edges
under frictionless conditions. The small fillet radius on the rigid punch naturally produces
high local curvatures, especially for coarse discretisation, thus posing substantial conver-
gence problems for algorithms that do not rely on strictly positive interpolation functions
for the weighted gap calculation. The base material is characterised by the Neo-Hookean
constitutive model. Both the bottom and lateral faces have their vertical displacement
prescribed and are fixed along the remaining directions, such that no lateral movement
is allowed (thus avoiding unstable configurations). The displacement is applied in 65
equally spaced increments, considering a convergence tolerance of εr = 1×10−6.

Figure 5.17: 3D punch – schematic representation of the problem setting.

The deformable base is discretised using 20-noded hexahedra with full integration,
while the rigid pin is discretised with 8-noded quadrilateral elements. For the sake of
integration accuracy, the mortar integrals are being evaluated using the segmentation
method exclusively. The deformed configuration of the base at the end of the simulation
is represented in Figure 5.18, including a contour plot of the displacement field along the
vertical direction. The proposed algorithm converges without any spurious contact states
or oscillations for both coarse and fine finite element meshes.
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Figure 5.18: 3D punch – vertical displacement of the deformable base at the end of the
simulation. Only half of the base is visualized.

In order to visualise more clearly the concepts of the projected frame and piecewise
linear interpolation, a snippet of the integration cells at the final increment of the simula-
tion is schematically represented in Figure 5.19. The unit normal vector associated with
each non-mortar node is also indicated. Looking at the unit normals, one can see that
they all point towards the rigid punch, which does not match the contour of the body for
inactive regions of the contact interface (e.g. top left part of the left image in Figure 5.19).
Nonetheless, as the distance between both surfaces decreases, they become almost iden-
tical and the normal vectors start capturing the contour of the non-mortar boundary very
precisely. This aspect of the algorithm is also visualised when looking at the orientation
of the integration cells, which are established based on the auxiliary plane defined from
the continuous field of normal vectors. Lastly, in Figure 5.19 the division of the elements
into sub-elements can also be identified when looking at the contour of the integration
cells.
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Figure 5.19: 3D punch – slice of the central section of the deformed configuration. The ar-
rows represent the unit normal vector at each non-mortar node and the blue
cells are the integration cells resulting from the segmentation algorithm.
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Chapter 6

An Efficient Multi-scale Strategy to Predict
the Real Contact Area

As mentioned in arguably every publication in the literature, micromechanical contact is
a truly multi-physical problem. Numerous phenomena take place simultaneously at the
contact interface, spanning over multiple temporal and physical scales. In reality, a strong
coupling between all the physical properties and effects is expected, which proves to be
one of the main challenges for computational modelling of micromechanical contact.
In fact, one of the main arguments favouring numerical models is quite the opposite,
i.e., the capability to isolate individual phenomena and, ultimately, access its underlying
trend. In experiments, on the contrary, the ability to isolate individual effects proves to be
a typical challenge. For this reason, no strategy has prevailed over the other and, over the
last decades, both have been continuously developed in a combined effort to understand
better what is still today an answered question: what are precisely the microscopic origins
of friction and wear?

In engineering, one of the main aspects behind contact interaction regards the sur-
face’s topography. It is widely recognised that, in real surfaces, roughness has entities
that span over multiple length scales. This is a challenge for numerical modelling of
rough contact, as the computational complexity grows along with the considered band-
width roughness spectra. The dangerous combination of the discretization requirements
to properly assemble the smallest geometrical features, combined with the model size
needed to encompass the largest ones, makes the application of methods like the FEM
difficult. One of the approaches that tackle this issue is the multi-scale modelling of rough
contact, which applies the concepts of homogenisation to the roughness itself.

This chapter starts with the definition of the RCE, the fundamental entity used to
model the physics at the contact interface. The generation of rough boundaries using the
power spectrum model is also presented, followed by the proposed multi-scale strategy.
This includes the topography decomposition method, the process for generating rough
topographies for each scale, and the new multiplicative homogenization scheme. The
rest of the chapter is dedicated to numerical investigations. The multi-scale formulation
is validated based on the comparison against the original full-size problem. Particular
attention is given to the violation of the principle of scale separation. The impact of key
aspects such as the discretization error, the number of scales, or bulk material constitutive
behaviour are also investigated. Finally, the overall improvement in terms of computa-
tional complexity is quantitatively measured, including also a comparison with several
solutions available in the literature.
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6.1 Contact homogenization and the definition of a representa-
tive contact element

As mentioned in Chapter 1, in engineering, when thinking about roughness, one can
recognise that the physical dimension of roughness features is considerably smaller than
the characteristic size of the contacting bodies. This reassembles the principle of separa-
tion of scales and, thus, allows the establishment of a statistically representative element
of the micro-scale features. To do so, the geometry and material properties for the con-
tacting bodies must be specified, together with a set of admissible boundary conditions.
Figure 6.1 shows a schematic representation of all the boundary conditions for a particu-
lar body being pressed against a rigid flat surface.

Remark. The strategy developed assumes that the contact interaction occurs between a
deformable body and a rigid flat base. In this case, the enforcement of contact constraints
in the multi-scale algorithm becomes considerably simplified. Nonetheless, this is done
just for the sake of simplicity, bearing in mind that the multi-scale formulation is equally
applicable in the general scenario of unilateral contact between two deformable bodies.

The RCE can be understood as a periodic unit cell containing a rough surface sur-
rounded by boundaries under the periodic condition and an exterior boundary, subjected
to a uniform external pressure p0.* Furthermore, to simplify and improve the numerical
stability of the model, the vertical displacement of the nodes at the exterior boundary
is set to be the same (thus remaining horizontal throughout the deformation process).
Appendix C provides additional details on the treatment of edges and vertices, as this
detail is typically not addressed in the literature.

Figure 6.1: Numerical setup for the representative contact element.

*Within a fully coupled multi-scale framework, the external pressure establishes the fundamental link
between both scales (Temizer and Wriggers, 2008). In this work, though, only the micro-scale is analysed
and, therefore, the external pressure is freely imposed on the RCE.
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6.2 Numerical generation of rough boundaries

One of the main aspects of the RCE geometry is its rough boundary. Typically, it can be
either extracted from experimental measurement or artificially generated by employing
some random process generation algorithm, see Y. Z. Hu and Tonder (1992) and Wu
(2000) for exemplary strategies. The latter approach proves to be more convenient in
the sense that it is less time-consuming, while also being suitable for integration within
a scripted computational framework. Large numbers of rough topographies realizations
with controlled statistical and spectral properties can be easily generated, thus promoting
the execution of parametric studies.

Since the present work aims at establishing a fully automated framework for multi-
scale analysis of rough contacts, the Gaussian topography generation algorithm proposed
in Wu (2000), applicable both to random profiles and surfaces, has been implemented.
The reader is referred to the original publication for further details and an informative
flowchart presented in Couto Carneiro (2019) and Couto Carneiro et al. (2020). This al-
gorithm is based on Fast Fourier Transforms and consists of synthesizing rough topogra-
phies as the superposition of waves with randomly generated phases and amplitudes, and
dependent on the input Power Spectral Density (PSD) function. This function describes
the frequency content of rough topographies in an unbiased and scale-independent way,
and can arguably be regarded as the most important tool to characterise rough topogra-
phies (Persson, 2014; Jacobs et al., 2017). Moreover, the PSD is related to both Root Mean
Square (RMS) and fractal parameters, thus proving to be a powerful way to describe
roughness (V. A. Yastrebov, Anciaux, et al., 2015). In fact, the spectral content, together
with a statistical description of the heights distributions, is capable of adequately describ-
ing a significant number of rough topographies in the context of engineering applications.
Additionally, it should be noted that the topographies generated with this methodology
are periodic, thus having the practical convenience of being naturally tailored for the
construction of the periodic cell described in Section 6.1.

6.2.1 Roughness power spectrum model
Real engineering surfaces typically have fractal behaviour between a high-frequency

cut-off ks and a roll-off frequency kr (Persson et al., 2005). Moreover, between the roll-off
frequency and a low-frequency cut-off kl , a plateau of constant PSD is generally identified.
However, for the sake of simplicity, in this work, the plateau is not considered (kr = kl ).
The PSD of an isotropic self-affine profile is mathematically defined as

ΦPSD
θ (k) =

C0

(
kr

k

)1+2H

, kl ≤ k ≤ ks ,

0 , elsewhere ,

(6.1)

see Figure 6.2, and for surfaces as

ΦPSD (k) =

C ′
0

(
kr

‖k‖
)2(H+1)

, kl ≤ ‖k‖ ≤ ks ,

0 , elsewhere .

(6.2)

Here, C0 and C ′
0 are scale constants and H ∈ [0,1] is the Hurst roughness exponent. In the

end, the generation of a random self-affine topography requires the specification of a long
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cut-off wavelength λl = 2π/kl , the roughness bandwidth λl /λs , the Hurst exponent H and
the scale factor C0 (for profiles) or C ′

0 (for surfaces). This scale factor can be determined
by fixing the RMS slope (defined as the square root of the profile spectral moment of order
2), which proves advantageous since this parameter can be controlled independently of
the employed discretization (V. A. Yastrebov, Anciaux, et al., 2015).

6.3 Multi-scale formulation

The methodology described so far can model contact interaction at roughness level and,
essentially, establishes a general framework for contact homogenization. However, as al-
ready mentioned, roughness itself spans over multiple length scales, which ultimately
may yield a cumbersome numerical model. To tackle this problem, in this work, a multi-
scale approach for rough contact is proposed.

6.3.1 Topography decomposition

The basis for the multi-scale formulation is the decomposition of the surface spec-
trum. This idea has been originally proposed in Wagner, Wriggers, Klapproth, et al. (2015)
and Wagner, Wriggers, Veltmaat, et al. (2017) within the context of rubber friction analysis,
although it can be equally applied for the modelling of normal contact. As graphically
represented in Figure 6.2, the topography is decomposed on the frequency domain by
splitting the PSD function. Each part will correspond to a scale, with a frequency content
smaller than the original topography. This decomposition must be embedded within a
statistical description of the problem, to integrate all frequency contributions and recover
the original problem.

Figure 6.2: Surface decomposition.

6.3.2 Definition of splitting frequencies

At this stage, it is crucial to note that one needs a criterion for the definition of the
splitting frequencies. In fact, in the original work of Wagner, Wriggers, Klapproth, et al.
(2015), this problem is not clearly addressed and, to the author’s knowledge, no other
sources referring to similar issues have been found. Therefore, the idea proposed here
consists of defining a constant bandwidth of ζ=λl /λs across all scales. This means that,
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for a generic decomposition of a given topography into ns scales, the splitting frequency

λ
{ j }
split for each scale { j } writes

λl

λ{1}
split

=
λ{1}

split

λ{2}
split

= ·· · =
λ

{ns}
split

λs
= ζ . (6.3)

The scale bandwidth ratio that fulfils Equation (6.3) is

ζ= ns

√
λl

λs
, (6.4)

and, thus, all splitting frequencies λ{ j }
split can be obtained from

λ
{ j }
split =

λl

ζ j
, for j = 1, . . . ,ns −1 . (6.5)

The motivation for such a criterion is twofold. On the one hand, this ratio achieves maxi-
mum computational efficiency since all scales have similar discretization requirements
(defined by the ratio between the maximum and minimum wavelengths). On the other
hand, it is essential to note that the principle of separation of scales is not entirely fulfilled
at roughness level—its various length scales cover a continuous spectrum. The smallest
length scale at a given PSD range is the largest scale at the following one, which means
that scales are not naturally separated. Nonetheless, as investigated in great detail in
Section 6.4, the impact of the violation of the scale separation principle on the numeri-
cal accuracy of the method tends to vanish for sufficiently large roughness bandwidths.
Therefore, the proposed decomposition strategy assures that the bandwidth across all
scales (constant) is kept to the maximum, thus ultimately aiming at preserving the over-
all numerical accuracy.

6.3.3 Generation of rough topographies for each scale
An essential detail of the multi-scale framework regards the generation of the topog-

raphy for each scale. For example, in Figure 6.2, the original profile is separated into two
scales with the same length but with different, yet, consistent cut-off wavelengths. If these
profiles were to be used directly in the numerical model, there would be no improvement
in computational cost. Even though a coarse discretization could be employed at the
macro-scale, the micro-scale would still require a mesh as fine as the original single scale
problem (because its physical length is still the same). One way to circumvent this prob-
lem is by generating a full-length micro-scale topography and, then, truncating the profile.
However, as shown below, such an approach distorts the micro-scale PSD and, on top of
that, compromises the topography periodicity. The alternative method employed in this
work is to directly use the random roughness generator, describing in the following the
consequences of such a choice.

The frequency resolution of the power spectrum (i.e., the spacing between the dis-
crete PSD points) is inversely proportional to the topography length and, together with
the number of discrete points, dictates the maximum frequency available in the PSD.
Using a generic random topography (complete) as a reference, Figure 6.3 represents its
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power spectral density, including the macro-scale and micro-scale contributions. The
macro-scale topography, having the same length as the original one, can reproduce pre-
cisely the discrete PSD points of the complete topography (but only within its reduced
bandwidth). The micro-scale, however, despite covering the expected frequency range,
has a much less populated spectrum, owing to its shorter length. Nonetheless, as investi-
gated in great detail in Couto Carneiro et al. (2020), a converging behaviour of the sample
length is expected, which means that the impact on the results of increasing the topog-
raphy length becomes gradually smaller. Within the multi-scale formulation, this means
that if the bandwidth ζ is kept to reasonable values, it is expected to have no significant
impact on the results due to the decrease in the number of discrete frequencies on the
problem.

Figure 6.3: Power spectral density of a complete rough topography, together with the cor-
responding macro- and micro-scale contributions.

Besides the power spectrum, one can assess the micro-scale topography generation
by looking at the RMS slope of the profile. As an example, consider a complete topography
characterised by H = 0.8, L = 1, λl = L/8, λs = L/128 and RMS slope set to 0.2. This means
that, by separating the profile into two scales, the largest wavelength of the micro-scale
is λ{2}

l = L/32, according to the previously defined rule. The full micro-scale (i.e., keeping
the original length) is discretized with 1024 points and the generated micro-scale with
256. Figure 6.4 shows the statistical distribution of the RMS slope of the full, generated
and truncated micro-scale topographies. It should be remarked that the RMS slope of the
full and generated micro-scale topographies is only dictated by the prescribed discrete
PSD, so they are represented by a Dirac Delta function centred at the respective value.
In contrast, the RMS slope of the truncated topography depends on the region of the
full micro-scale topography that is extracted, which originates a collection of RMS slope
values following approximately a normal distribution centred at the prescribed value.

From a qualitative perspective, both the truncated and generated profiles look similar.
A quantitative analysis of the statistical properties of the RMS slope, however, reveals
that only the generated profile can reproduce very closely the value obtained with the
full micro-scale. The truncated profile assumes a wide range of values depending on the
extracted region and, therefore, does not resemble the statistical properties of the full
micro-scale.†

†Note that for all cases, the RMS slope of the micro-scale is necessarily smaller than 0.2, as a conse-



An Efficient Multi-scale Strategy to Predict the Real Contact Area 151

Figure 6.4: Comparison between the profile statistics of a directly generated topography
and truncated one.

6.3.4 Multi-scale post-processing algorithm

Having specified the separation of the roughness scales and the corresponding RCEs,
the contact area evolution curve for each scale can be independently obtained by perform-
ing a finite element simulation up to full contact conditions. With a complete description
of the contact area at all load ranges for every scale at hand, the main objective is to
establish a database of area-pressure pairs, which can then be post-processed according
to several strategies.

The strategy proposed in Wagner, Wriggers, Veltmaat, et al. (2017), based on multi-
plicative homogenization, serves as the basis for the proposed methodology. It consists of
passing, for a given load step at the macro-scale (scale 1), the mean contact normal pres-

quence of the scale separation (recall that the scale constants C0 and C ′
0 in Equation (6.1) and Equation (6.2),

respectively, are determined by fixing the RMS slope).
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sure, p̄η{1}, to the following scale (scale 2). This contact pressure now acts as the uniform
contact pressure, applied at the exterior boundary of scale 2. This downscaling process
continues until the last scale is reached and, in the end, a list of real contact area fractions
at all scales can be upscaled. The multi-scale solution for the real contact area is, then,
computed in a multiplicative homogenization step, by taking the product between all
contact area fractions of the said list. Mathematically, for a given scale { j } it verifies

Ah{ j }
r = A{ j }

r ·
[

Ah{ j+1}
r

(
p̄η{ j }

)]
, (6.6)

for 1 ≤ j < ns −1, and assuming that, for the smallest scale, it reads

Ah{ns}
r = A{ns}

r . (6.7)

Here, the index (•)h has been introduced to denote the homogenized quantity and the
abbreviation

Ar = Ac

A
(6.8)

for the relative contact area. From a physical standpoint, this homogenization method-
ology originates from the fact that the variable of interest represents a fraction of some
quantity. Considering that, at the macro-scale, the contact pressure field is generally dis-
tributed along many disconnected regions on the contact interface, the following scale
setup can be thought of as being loaded—in an average sense—by the local pressure
distribution, in every region.

The scale transition of the methodology mentioned earlier can be categorized as a
zeroth-order approximation, where only the average pressure is passed to the following
scale. However, as investigated in great detail in Section 6.4.1, this approximation might
be inappropriate in some situations, especially at later stages near full contact conditions.
In order to understand this more clearly, in Figure 6.5, the typical contact pressure distri-
bution at different stages for elastic materials is represented, including the corresponding
average contact pressure. It can be verified that the contact pressure is non-Gaussian
throughout the entire load range, especially for the early stages of lower contact area frac-
tions, in which the contact pressure field reveals a very pronounced skewness. As the
external pressure increases, the real contact area raises continuously, and the overall con-
tact pressure distribution spreads along the pressure axis. The average contact pressure,
although being able to measure the central tendency, compacts all the information avail-
able into a single value, thus being inadequate to describe the statistics of the contact
pressure field.

6.3.5 Enhancement of the information passing scheme
To incorporate additional information in the formulation and capture more precisely

the pressure distribution, a new information passing scheme is proposed. Starting at the
macro-scale, for a given load step, the distribution of contact pressures is compacted into
nb bins, between 0 and the maximum—this process can be thought of as a discretization
of the pressure field. As histograms, this gives a rough sense of the probability density of
the underlying contact pressure distribution at the interface. In doing so, the question is:
how can data binning be performed in a physically meaningful way? It should be kept in
mind that the number of bins is strictly related to the compromise between probability
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Figure 6.5: Typical contact pressure distribution for elastic materials at different real con-
tact area fractions: (a) 10%, (b) 30% and (c) 60%.

density estimation and noise: the use of narrower bins gives precision to the density
function, while wider bins lead to a reduction of the noise originated by the discretized
nature of the problem.

The suggested approach is based on the relation between the physical lengths that
can be associated with each scale. Assuming a uniformly structured discretization of the
rough interface, each nodal contact pressure value can be thought to act over a region
with size ∆x{ j }, directly related to the mesh step (see Figure 6.6). Since each bin contains
a given number of samples (pressure values), it can be linked with a physical length. Thus,
rather than the trivial choice of evenly spaced bins, the pressure distribution is discretized
using equiprobable bins. This assures an approximately equal number of samples (pres-
sure value) in each bin, i.e., they are associated with a constant physical length. Fixing
the length contained in each bin also means that the number of bins grows continuously
with the contact area, as more nodes come into contact. As demonstrated in Section 6.3.6,
the proposed methodology is expected to be particularly adequate for the region of high
contact area fraction. The number of nodes in contact allows for a higher number of bins
with narrower limits. Since the area of each bin is equal (recall that the probability of a
bin is given by its area), another feature of this methodology is that it aims at capturing
well gradients in the probability density function. This is, ranges of pressure with high
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probability are discretized more accurately, in exchange for a lower number of bins in
regions with low probability.

Consider the rough contact problem at a generic scale { j }, modelled with a rough
profile with length L{ j }. The extent of the contact area associated with each pressure bin is

given by n{ j }
n ·∆x, where n{ j }

n is the number of samples contained in each bin and ∆x is the
uniform mesh spacing. At each scale, one can define a reference or representative length

scale L{ j }
Ref, that can generally be expressed in proportion to the long cut-off wavelength of

the scale, λ{ j }
l , see Couto Carneiro et al. (2020) and V. A. Yastrebov, Anciaux, et al. (2012).

The number of samples contained in each bin, n{ j }
n , is set such that it represents a fraction

of the length L{ j } equal to the ratio of between the reference lengths between the two
scales, viz.

n{ j }
n ∆x{ j }

L{ j }
≈ L{ j+1}

Ref

L{ j }
Ref

⇔ L{ j }
Ref

L{ j }
n{ j }

n ∆x{ j } ≈ L{ j+1}
Ref , (6.9)

see Figure 6.6. This strategy ensures that the maximum number of discrete contact pres-
sure values is equal to the number of reference micro-scale lengths that fit into the ref-
erence macro-scale length, in a full-contact condition. Moreover, Equation (6.9) assures
proper scaling of the total number of nodes on each bin with the actual length L{ j } of the

RCE, in relation to its representative length L{ j }
Ref. By expressing the representative length

L{ j }
Ref of both scales as a function of the corresponding cut-off wavelength λ

{ j }
l , and noting

that the full length of the current scale is given by L{ j } = n{ j }
c ∆x, where n{ j }

c stands for the
total number of interface nodes at the scale { j }, Equation (6.9) can also be written as

n{ j }
n

n{ j }
c

≈
λ

{ j+1}
l

λ
{ j }
l

. (6.10)

In order to have the maximum number of bins and, thus, great discretization of the pres-

sure field, the number of samples contained in each bin, n{ j }
n should be as low as possible,

yet, without compromising its physical meaning given by Equation (6.10). It should also
be remarked that even though Equation (6.10) has been idealised in a two-dimensional
setting, it also seamlessly represents the three-dimension extension, thus providing a very
concise and general definition of the algorithmic number of pressure bins.

Lastly, with the pressure field being discretized, each bin needs to be represented
by a contact pressure value. One possible definition would be its centre value (i.e., the
average of the limits of the bin). Nonetheless, the arithmetic mean of the actual contact
pressure values inside each bin is suggested, to preserve as much information as possible
from the packed data.‡ The multi-scale solution is obtained by performing, once again,
a multiplicative homogenization step, yet considering the set of contact pressure values
being transmitted to the next scale. Recalling that each bin is associated with the same
probability, the homogenized real contact area fraction for a given scale { j } is obtained as

Ah{ j }
r = A{ j }

r ·
[

1

nb

nb∑
b=1

Ah{ j+1}
r

(
pη{ j }

b

)]
, (6.11)

‡Even though not documented (for the sake of brevity), the difference between both options has been
investigated and shown to have a negligible impact on the results.
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Figure 6.6: Physical relation used to establish the discretization of the contact pressure

field. The bins are equiprobable, all containing n{ j }
n nodes, associated with

the mesh step size ∆x{ j }. The total length associated with each bin is set in
relation to the length of the next scale, L{ j+1}.

for 1 ≤ j < ns −1, and assuming that, for the smallest scale, once again it reads

Ah{ns}
r = A{ns}

r . (6.12)

As more than one value is transmitted between scales, the resulting downscaling process
has a recursive and cascading character, that grows to reach the last smallest scale. From
a practical standpoint, the implementation of the algorithm can be viewed more easily
from bottom to top. The procedure starts at the micro-scale, where the contact area
evolution is known. Moving to the following upper scale, the discrete contact pressure
values (for each bin) at each load step are identified. Then, the homogenized evolution
at the current scale can be constructed by applying the homogenization step with the
information available at the micro-scale (and interpolating the real contact area fractions,
if needed). The process repeats for all scales until reaching the macro-scale, where the
final homogenized solution can be obtained.

6.3.6 Combined multiplicative homogenization
As already mentioned, within the proposed information passing scheme, the contact

pressure field is better discretized as the contact area grows (because it allows a higher
number of bins with narrower limits). This means that, while suitable for high contact
areas, for small contact area fractions, the contact pressure is not properly discretized and
the overall methodology loses its physical interpretation. When just a few nodes are in
contact, the change in the number of bins originates a jump on the homogenised result.
In order to overcome this difficulty, a multiplicative homogenization scheme based on
the combination of the two described methodologies is proposed. The idea consists of
defining the homogenized solution as the affine combination between both strategies,
using the real contact area fraction itself as a coefficient, i.e.

Ah{ j }
r = A{ j }

r ·
[(

1− A{ j }
r

)
· Ah{ j+1}

r

(
p̄η{ j }

)
+ A{ j }

r

nb

nb∑
b=1

Ah{ j+1}
r

(
pη{ j }

b

)]
. (6.13)

Comparing with Equation (6.6) and Equation (6.11), this method essentially establishes a
compromise between both. For small contact area fractions, the solution is mainly given
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by the average contact pressure. For near full contact conditions, the solution is domi-
nated by the discretization of the pressure field with equiprobable bins. Both solutions
are combined for values in between, and the transition between them occurs in a smooth
fashion.

In Figure 6.7, a schematic representation for the simplest case of splitting the original
problem into ns = 2 scales is given. After performing the topography decomposition (step
A), for each value of external pressure at the macro-scale, it is necessary to evaluate the
average contact pressure (step B) and to discretise the corresponding contact pressure
distribution (step C). For the sake of simplicity, in the example, only nb = 3 bins are
represented. Then, the average contact pressure and the representative value of each
bin are transmitted to the micro-scale (step D). Finally, the homogenized response is
obtained (step E) by combining both solutions:

Ah
r = A{1}

r ·
[(

1− A{1}
r

) · A{2}
r

(
p̄η{1})+ A{1}

r

nb

nb∑
b=1

A{2}
r

(
pη{1}

b

)]
. (6.14)

For the general case of more than two scales, the problem has a recursive character. For
any intermediate scale, each value of external pressure to be analysed requires both the
average and the discretization into a given number of bins, that are downscaled to the
following smaller scale.

As a final remark, it is important to mention that, many realizations are considered
for each scale, due to the inherent statistical nature of roughness. Therefore, within the
multi-scale framework, the response at each scale is defined as the average of all the corre-
sponding realizations. Under these circumstances, Equation (6.10) should be interpreted
on an ensemble basis, concatenating the information of all realisations.

6.3.7 Contact area and contact pressure field evaluation
In all discretization-based techniques, there is always an error associated with their

grid/mesh, which affects the accuracy with which both the real contact area and contact
pressure field are evaluated (V. A. Yastrebov, Anciaux, et al., 2017a). For multi-scale algo-
rithms, in particular, this topic should be carefully addressed, because the source of error
can even be amplified due to the multiplicative nature of the homogenization process.

In the simplest way to approach the problem, two main definitions are typically em-
ployed. The first one consists of simply defining the real contact area based on the ratio
between the number of active nodes and the total number of nodes. The second one is
based on the sum of all the individual areas of all the active elements—here, defined as
the individual cells of the grid in which all its corresponding nodes are active. The main
difference between the two is related to the consideration of isolated nodes. The node-
based definition can essentially be viewed as an upper bound and the element-based
solution as a lower bound. The solution proposed here is to use the average between the
two solutions since, as shown in more detail in Section 6.4.1.1, they both tend to converge
to approximately the same value.
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Figure 6.7: Illustration of the multi-scale algorithm for the simplest case of ns = 2 scales.
The five main steps are: (A) Surface decomposition; (B) Evaluation of the av-
erage of the contact pressure; (C) discretization of the contact pressure distri-
bution into nb equiprobable bins; (D) Downscaling of all the contact pressure
values; (E) Combined multiplicative homogenization.
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6.4 Numerical results

To demonstrate the validity and efficiency of the proposed multi-scale rough contact algo-
rithm, several numerical examples are presented and discussed in this section. Firstly, the
algorithm is validated by comparing the results obtained with single-scale and multi-scale
analyses. Additional aspects regarding mesh convergence and the effect of the number
of scales are also analysed. Then, the validity of the method is further investigated within
the context of elastoplastic rough contact. The computational performance of the multi-
scale algorithm is compared with the single-scale model. In the end, based upon the
conclusions obtained with two-dimensional simulations, a three-dimensional problem is
analysed, comparing the results with several solutions available in the literature.

For the sake of simplicity, in all the examples, only the particular case of a rough body
being pressed against a rigid flat surface is considered. The problem setup, properties and
employed finite element discretization are schematically represented in Figure 6.8. Only
a small portion of the finite element mesh is represented, showing the adopted refined
layer near the rough interface and corresponding mesh transition scheme. In order to
reduce volumetric locking effects, the block is discretized with the bilinear quadrilateral
F-bar finite element. The external pressure p0 is applied incrementally until full-contact.

Regarding the self-affine rough topography, the following properties are kept constant
across all investigations: the long cut-off wavelength λl is fixed at 1µm, the Hurst rough-
ness exponent at H = 0.8 and the RMS slope at

p
m2 = 0.2. These are typical values found

in the literature. The only property left to characterise the rough topography—the short
cut-off wavelength, λs—is set as a free variable to investigate different roughness spec-
tral bandwidths. The RCE dimensions are defined according to the strategy presented in
Couto Carneiro et al. (2020), in which all the dimensions are obtained as a function of the
topography roughness model. The length of the RCE, here termed as L, is expressed as
a function of the long cut-off wavelength λl , whereas the mesh step size, ∆x, is defined
based on the small cut-off frequency λs . As shown in Couto Carneiro et al. (2020), the
values L/λl = 8 and λs/∆x = 8 are the suggested starting values to discretise the problem
properly. Additionally, both the total height of the substrate, HSub, and of the refined layer,
HRef, are defined based on the value of the RMS height, σz . The value of HSub = 160 σz

is employed for the total height and the refined layer is set at HRef = 30 σz . Lastly, the
material elastic behaviour is modelled by considering the Young’s modulus E = 210 GPa
and Poisson coefficient ν= 0.3.

Remark. The Hurst exponent is intrinsically associated with the contribution of higher
frequencies on the topography. This means that for low pressures, the load-bearing ca-
pacity is directly affected and, therefore, one might expect a significant change in the
behavior of the multi-scale algorithm. However, even though not documented, the nu-
merical validation with two scales has also been carried out using different Hurst ex-
ponents and its effect on the results is negligible. Therefore, it is expected that all the
conclusions obtained with H = 0.8 remain valid for other values of the Hurst exponent.
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Figure 6.8: Problem setup and employed finite element discretization.

6.4.1 Numerical validation with two scales
In the first stage, the rough contact of an elastic body is investigated by employing

two-dimensional RCEs containing random self-affine topographies with three roughness
bandwidths:§

λl /λs = {8,32,64} .

To assess the validity and global accuracy of the proposed method, the evolution of the
real contact area obtained with Direct Numerical Simulation (DNS)—i.e., by employing a
single scale containing the original topography—is taken as reference and compared with
the multi-scale algorithm proposed in this work and Wagner, Wriggers, Veltmaat, et al.,
2017.

The results are gathered in Figure 6.9, where, for each bandwidth, the entire range
of contact area evolution and a snippet of the light contact region are represented. The
background colours indicate the number of equiprobable bins used by the multi-scale
method to discretise the contact pressure field. Overall, the proposed multi-scale algo-
rithm is able to capture the original problem with an accuracy that, as expected, tends
to improve with the increase in roughness bandwidth. This can be related to the viola-
tion of scale separation, which is expected to attenuate for increasing bandwidths. This
is particularly noticeable in the region of low pressure, where contact spots occur at the
top of some asperities. Therefore, the impact of changing its spectral content becomes
more evident. Near the full contact condition, though, the algorithm reveals an accuracy
that does not depend so much on the roughness bandwidth. In fact, the enhancement of
the information passing scheme is mostly visualised in this region. Compared with the
algorithm based on the average of the normal contact pressure, the real contact area is
better estimated. The transition between both regimes is also correctly captured, proving
that the combined multiplicative homogenization is able to couple both solutions in a
smooth and accurate manner. Lastly, by analysing the number of bins, it is verified that
it increases with both the contact area fraction and the roughness bandwidth. This result
reflects the direct relation between the number of bins and the total number of active
contract nodes, c.f. Equation (6.10).

§Having specified the spectral properties of the topography, the associated Nayak parameter α can be
obtained, referring to Couto Carneiro et al. (2020) for the corresponding analytical expression.
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Figure 6.9: Evolution of the contact area fraction Ar for three different roughness band-
widths: (a) λl /λs = 8; (b) λl /λs = 32; (c) λl /λs = 64. The black line is the
reference results obtained with DNS. The multi-scale algorithms based on the
average contact pressure and the combined homogenization are represented
by the red dashed and solid blue lines.
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6.4.1.1 Mesh convergence

In order to evaluate the validity of the presented so far, a mesh convergence analysis
focused on the contact area fraction and contact pressure field is carried out. Only the
roughness bandwidth of λl /λs = 8 is considered, as the sensitivity to discretization er-
rors tends to increase for topographies with narrower bandwidths (Couto Carneiro et al.,
2020). The main objective is to analyse the variation of the results, considering the same
roughness profiles, yet with increasing mesh refinements:

λs/∆x = {4,8,16,32} .

In Figure 6.10, the evolution of the contact area fraction for both DNS and multi-scale
solutions is represented, containing once again snippets of different regions of interest.
For the sake of clarity, only the multi-scale algorithm based on the combined multiplica-
tive homogenization algorithm is presented, bearing in mind that similar behaviour is
observed for the algorithm based on the average contact pressure.

As expected, the results show a global converging behaviour, with the discretizations
λs/∆x = 16 and 32 being practically overlapped. A very similar progression is observed
for both DNS and multi-scale solutions, meaning that the information passing scheme
is not interfering with the expected discretized nature of the problem. The example with
λs/∆x = 4 deviates the most from the converged solution, especially for the region of near
full contact. This result is consistent with the conclusions presented in Couto Carneiro
et al. (2020), where the minimum value of λs/∆x = 8 is recommended. This applies to
both single-scale or multi-scale analyses.

Within the multi-scale algorithm, aside from the contact area fraction, the contact
pressure field also plays a crucial role in the final homogenized result. Thus, instead of
only looking at the contact area evolution throughout the entire load range, an additional
mesh convergence investigation focused on the convergence of both the contact area
fraction and average pressure for just the macro-scale at a given load step is presented.
Figure 6.11 shows the average contact pressure and contact area fraction for the external
pressure of p0 ≈ 10.4087 GPa. The shaded regions denote the range between the solution
with and without isolated nodes for each of the 20 realizations. The solid lines represent
their average (the values used within the multi-scale algorithm), indicating the associated
standard deviation.

The average pressure and the real contact area converge with increasing mesh re-
finements. However, they have the opposite tendency: the contact area decreases as it
converges, while the average contact pressure increases. Moreover, the discretization sen-
sitivity is slightly more significant for the average contact pressure. For this particular
example under analysis, the recommended discretization λs/∆x = 8 used so far is ar-
guably the limit below what the results may be affected. As a final remark, it is essential
to recall that the particular case under analysis is the smallest of the analysed roughness
bandwidths. Even though not documented here, the sensitivity to both the discrete and
statistical nature of random surface topographies tends to decrease for larger bandwidths
(Couto Carneiro et al., 2020). Ultimately, this means that the results shown in Figure 6.9
are properly discretized and, thus, validates the obtained conclusions regarding the accu-
racy of the multi-scale algorithm.
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Figure 6.10: Mesh convergence for the roughness bandwidth of λl /λs = 8, considering
a step mesh size of λs/∆x = {4,8,16,32}. The black gradient represents the
DNS solution and the multi-scale (MS) results are in blue.
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Figure 6.11: Contact area fraction and average contact pressure evolution for the macro-
scale at an external pressure of p0 ≈ 10.4087 GPa with increasing mesh re-
finement levels. The shaded regions denote the range between the solutions
with and without isolated nodes for each of the 20 realizations. The solid
lines denote their average, together with the associated standard deviation.
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6.4.2 Analysis of the number of scales
One of the fundamental aspects of the multi-scale techniques discussed in this work

is the number of scales into which the rough topography is decomposed. To understand
how it impacts the homogenized solution and give insight into the recommended guide-
lines for its choice, this section presents an investigation in which the same rough to-
pography is decomposed into an increasing number of scales. Since the bandwidth of
each individual scale becomes gradually smaller, a rough topography with λl /λs = 64 is
analysed (thus allowing for a great number of scale divisions). Figure 6.12 shows the ref-
erence solution obtained with DNS and both multi-scale algorithms with the following
decompositions:

ns = {2,3,4,5} .

The colour gradients represent the number of scales and, once again, different snippets
of the contact area curve are highlighted.

Qualitatively, the main conclusion from the obtained results is that the accuracy of
the multi-scale models is expected to decrease with the number of scales. Quantitatively,
however, the behaviour of the multi-scale algorithms is different. The combined algo-
rithm reveals to be more sensitive to the number of scales in the region of low to mid
contact area fractions, with practically no impact on results at near full contact condi-
tions. The average, while being more stable in the transition between low to mid contact
area fractions, is very sensitive at later stages of near full compression, with a maximum
variation that is greater than the one obtained with the combined algorithm. This means
that the new proposed algorithm is less sensitive to the number of scales which, as a
general rule, should be as low as possible to achieve the maximum accuracy potential.

The selection of the number of scales is mainly guided by the computational power
available in each situation. For example, consider a rough contact problem involving a
roughness spectrum so vast that it renders the direct numerical simulation completely
intractable with the resources at hand. One can still obtain reasonably accurate results by
employing the present multi-scale algorithm in a two-scale setup, as long as each scale
can fit within the resources available. If this is not the case, the dimension of the problem
at each scale can be further reduced by moving to a three-scale setup, yet sacrificing the
overall accuracy, as shown in Figure 6.12. Ultimately, the number of scales should be
set according to a trade-off between the desired accuracy and the computational power
available.
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Figure 6.12: Contact area fraction for the different number of scales for the roughness
bandwidth λl /λs = 64. The black line is the reference obtained with DNS, the
dashed lines denote the multi-scale solution based on the contact average
and the solid lines the combined algorithm. The associated colour gradient
represents the number of scales.
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6.4.3 Numerical validation for elastoplastic rough contact
In all the examples analysed so far, the material constitutive behaviour is assumed to

be elastic. Locally at each contact spot, however, the material may undergo stress levels
able to induce permanent plastic deformation on individual asperities. This has a great
impact on the physical behaviour of the contact interface, for instance, changing the
contact stress distribution and real contact area. In order to investigate its effect on the
multi-scale algorithm, the numerical model complexity is further increased by modelling
the elasto-plastic response of the material with a J2 isotropic plasticity law. A validation
study similar to the one presented in Section 6.4.1 is performed, considering three yield
stresses:

σy = {2,4,10} GPa .

For numerical stability, 5% hardening is considered. For the sake of brevity, only the
roughness bandwidth λl /λs = 32 is analysed.

In the first step, the impact of plasticity on the contact stress field is investigated by
looking at the contact pressure distribution at a given stage of the compression process.
Figure 6.13 shows the results obtained for each material at the contact area fraction of
Ar = 20%, also indicating the value of nominal pressure necessary to achieve that area
fraction. For a more precise interpretation of the results, the deformed configuration of
a single asperity is included, showing the accumulated plastic strain and nodal contact
stresses.

The distributions show a relation between the admissible stress field on the material
and the developed contact interaction at the interface. As the yield stress decreases, the
contact pressure field range tends to get narrower. The distribution becomes skewed,
with the pressure field being almost constant for the yield stress σy = 2 GPa. This result
is expected, as the stress state developed at the interface is deeply connected to the con-
stitutive behaviour of the bulk material, both reflecting the yield stress limit. This type
of stress saturation is also consistent with similar studies presented in Gao et al., 2006;
Pei et al., 2005. Moreover, the nominal contact pressure required to achieve the contact
area fraction of Ar = 20% lowers with the yield strength, thus being already possible to
expect accentuated differences in the contact area evolution curves. Finally, by inspect-
ing the accumulated plastic strain and contact pressure nodal values, all the conclusions
mentioned so far can be visualised. As the yield stress decreases, the plastic deformation
spreads around the asperity (forming a typical pattern of an arc around it), and the nodal
contact stresses range decreases.

The contact area curves for all the materials are shown in Figure 6.14, together with
the results obtained with the elastic material (for reference). As expected, the material
response has a significant impact on the real contact area. At the nominal pressure of
p0 = 10 GPa, while the contact area fraction is at Ar ≈ 30% for the elastic material, the
elastoplastic material with σy = 2 GPa is already at full contact. This comes as a natu-
ral consequence of the reduced load capacity of the materials with lower yield strength,
which accentuates the rate of contact area fraction evolution. Regarding the accuracy of
the multi-scale algorithms, similar conclusions obtained in the elastic case are verified in
the elastoplastic material. However, the algorithm based on the average contact pressure
becomes closer to the remaining solutions—the reason for that is due to the statistical
properties of the contact stress field. Because the contact pressure becomes almost con-
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Figure 6.13: Contact stress distribution at the contact area fraction of Ar = 20% for
(a) elastic material and elastoplastic materials with yield stresses: (b) σy =
10 GPa; (c) σy = 4 GPa; (d) σy = 2 GPa. The nominal contact pressure neces-
sary to achieve that contact area fraction is indicated, together with a snippet
of the deformed configuration of a single asperity, showing the distribution
of accumulated plastic strain and nodal contact stresses.

stant with the decrease in the yield strength, the discretization using equiprobable bins
practically overlaps with the use of the arithmetic average. Nevertheless, the combined
algorithm can keep a consistent level of accuracy between all the materials, particularly
at the region of near full contact.
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Figure 6.14: Evolution of the contact area fraction Ar for different materials and rough-
ness bandwidth of λl /λs = 32. The black solid line is the reference result
obtained with DNS, the red dashed line the multi-scale algorithm based on
the average contact pressure and in solid blue the combined multi-scale
algorithm.
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6.4.4 Computational performance
This work focuses on the modelling of rough contact homogenization using the fi-

nite element method combined with the dual mortar contact algorithm. It establishes,
arguably, one of the most versatile and accurate methodologies to carry this type of analy-
sis. However, the main disadvantage regards its computational cost, which is expected to
follow a power law with the number of degrees of freedom of the numerical model. The
multi-scale strategies discussed throughout this work are one of the possible solutions to
circumvent this problem. Having investigated, so far, the possible trade-off in terms of
validation and accuracy, this section focuses on measuring the improvement in compu-
tational performance. To do so, the calculation time required to obtain the contact area
curve for an elastic material with increasing roughness bandwidth is compared, showing
in Figure 6.15 the results obtained with the DNS and combined multi-scale algorithm.

From the analysis of the evolution of the DNS method, it is possible to conclude that
the expected power-law growth is observed. This takes into account that the number of
degrees of freedom also follows approximately a power-law with the roughness band-
width. The roughness bandwidth λl /λs = 62 takes approximately 40 times the calculation
time of the bandwidth λl /λs = 6. The computation time of the combined multi-scale
algorithm also increases more slowly than the single-scale model and, for the considered
roughness bandwidth range, is at least one order of magnitude faster. Comparing the
computational times between distinct number of scales, it can be seen that, despite hav-
ing more RCEs to be analysed in total, the model with ns = 3 scales is computationally
faster than the model with ns = 2 scales. This means that, more than the total number
of simulations on the database, the main factor driving the computational time of the
multi-scale scheme is the complexity of each individual scale. As a final remark, it is es-
sential to mention that despite the multi-scale model adopting ns = 3 scales being faster,
the accuracy of the results is not as good as the case with ns = 2 scales, c.f. Section 6.4.2.
Therefore, as a general rule of thumb, more than 2 scales should only be employed when
the computational complexity of the model requires.
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Figure 6.15: The computational time for the DNS and multi-scale solutions with two and
three scales for a range of roughness bandwidth. The time of the DNS algo-
rithm for the bandwidth of λl /λs = 6 is taken as a reference. The solid line
is the numerical fit, showing the results in linear and logarithmic scales on
the left and right, respectively.
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6.4.5 Comparison with other models

The last numerical study focuses on the comparison between the proposed multi-
scale algorithm and other solutions available in the literature. Persson’s contact theory
(Persson, 2001b,a) is considered and two solutions within the class of multiasperity mod-
els: the asymptotic linear limit by Bush-Gibson-Thomas (BGT) (Bush et al., 1975) and the
Greenwood-Williamson simplified elliptic model (GW-SE) by Greenwood (2006). The nu-
merical results obtained with the boundary element method provided in V. A. Yastrebov,
Anciaux, et al. (2017b) are also represented.

In order to allow a fair direct comparison between the multi-scale algorithm and the
remaining solutions, the numerical model described so far is extended to three dimen-
sions. Due to the additional complexity of the numerical model, the DNS model would
lead to impractical computation times and, thus, only the multi-scale solution is provided.
Nonetheless, this is done bearing in mind the conclusions obtained with two-dimensional
simulations. The roughness bandwidth is set to the value of λl /λs = 64, i.e., the largest
bandwidth of the analysed set. It should be noted that the homogenization algorithm re-
mains the same regardless of the number of spatial dimensions. Even though the contact
stress field and contact area fraction might be evaluated using any physical model, the
post-processing algorithm only needs input from the database of contact pressure and
contact area fraction values. This aspect is an advantage of the proposed multi-scale algo-
rithm and, therefore, is applied to Persson’s model (since it gives a solution for both the
area fraction and contact pressure field). This allows us also to investigate its behaviour
beyond the realm of the finite element method.

An exemplary finite element mesh is represented in Figure 6.16, made up of 8-noded
F-bar hexahedron mixed with 4-noded pyramidal and 6-noded wedge elements at the
mesh transition layer. Compared with the 2D case, some discretization parameters have
been relaxed, to obtain a problem that can still be solved under the 24 hours mark using
a desktop workstation. The length of the RCE is reduced to L = 4λl , the mesh step size to
∆x =λs/6 and the refined region near the rough topography is made of 4 layers of finite
elements. It results in a finite element mesh of ≈ 200k nodes, with 200×200 elements
along each direction at the interface. All the remaining properties are the same as in the
2D case, c.f. Figure 6.8. Each realization requires ≈ 20h to solve, using ≈ 100 increments
that typically require 3-4 iterations of the semi-smooth Newton-Raphson iterative scheme
(considering a convergence tolerance of 1×10−6 for the relative residual). Note that, even
using the reduced parameters, the DNS simulation of the single scale problem would
require a mesh with 1500×1500 elements at the interface, thus leading to an impractical
problem with millions of degrees of freedom.

The evolution of the real contact area fraction is shown in Figure 6.17. Firstly looking
at the region of light contact, all the numerical solutions are contained within limits
provided by the GW-SE and asymptotic BGT. Overall, a good agreement between Persson’s
model and the FEM solution is found, with the BEM predicting a higher real contact
area fraction. In fact, this result is observed throughout the entire load range. The FEM
solution estimates a lower real contact area fraction at the middle region, between light
and full contact. Another important result is that the proposed multi-scale algorithm can
capture the original solution when applied to Persson’s model, with an accuracy level
consistent with the results obtained with finite elements. The homogenization based
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Figure 6.16: Finite element discretization and mesh transition scheme. The colours rep-
resent the initial height of the interface nodes.

on the average contact pressure tends to overestimate the real contact area fraction for
the region of near full contact. This fact shows that the proposed algorithm is suitable
to be applied to frameworks other than the FEM, thus revealing that the statistics of
the contact pressure field are properly captured. Analysing the results obtained with the
elastoplastic material, similar results as in Section 6.4.3 are obtained: the contact area
fraction evolution rate increases, as a result of the load capacity limit introduced by the
plastic deformation behaviour.

Other than the contact area fraction evolution, one can look at the morphology of the
contact area regions. Figure 6.18 shows the active contact area for the elastic and elasto-
plastic materials at different stages of the compression process. The main observation
is that the morphology of the active contact zone is practically similar. This leads to the
conclusion that despite the evolution of the real contact area being highly affected by
material behaviour—in this case, two materials with different load capacity—the shape
of the contact clusters will be mostly identical. A possible explanation for this result is
that both material models are isotropic, with the saturation character impacting only the
distribution of contact stresses and the rate of change of the contact area fraction.
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Figure 6.17: Contact area fraction for elastic rough contact according to different mod-
els: multi-scale (FEM and Persson), Persson, BEM, Greenwood-Williamson
simplified elliptic (GW-SE) and the asymptotic linear limit by Bush-Gibson-
Thomas (BGT). The solution obtained with the FEM multiscale algorithm
for rough contact with plasticity is also included.
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Figure 6.18: Contact area morphology at different stages of the compression process for
the elastic and elastoplastic (σy = 7 GPa) materials.
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Chapter 7

Summary and Outlook

The focus of this work is on the computational modelling of contact across scales using
the FEM. After a brief historical note about tribology, an overview of recent developments
with regard to computational contact mechanics is given. Both classical continuum me-
chanics and multi-scale methods are reviewed, giving particular emphasis on the class
of mortar contact algorithms. The remaining introductory state-of-the-art focuses on the
multi-scale modelling of contact, with special attention being given to computational
contact homogenisation and numerical models based on the FEM.

The first part of this work is dedicated to an overview and subsequent implementa-
tion of the so-called dual mortar contact method. The choice for this algorithm is mo-
tivated by its solid mathematical formulation, accuracy and ability to deal with general,
fully non-linear contact problems. The formulation is presented in detail, including the
derivation of the strong and weak statements and the finite element approximation of
the problem. Particular emphasis is given to the numerical evaluation of mortar integrals
and the definition of the discrete Lagrange multiplier space. The employed primal-dual
active set strategy is then discussed and the resulting semi-smooth Newton algorithm
is introduced. Throughout the formulation, a suitable algebraic representation for the
discrete entities is provided, including a detailed derivation of all the required consistent
linearisation of mortar-based contact formulations. This stage of the work finishes with
a discussion on the actual computational implementation of the algorithm, analysing
several benchmarks and examples in order to validate the implementation.

Secondly, in preparation for the application of the dual mortar contact method to
contact homogenisation, new concepts are proposed to optimise the algorithm for the
particular case of Signorini contact, i.e., the contact of a deformable body against a rigid
foundation. This is a problem configuration commonly found in contact homogenisation,
which originates from a well-known result from contact mechanics: if there is no friction
or adhesion between two rough surfaces and the surface slope is small, the elastic contact
between two rough surfaces can be mapped to the contact between an equivalent single
rough surface and a rigid flat (Johnson, 1987). The main motivation for this contribution
is the considerable computational complexity of dual mortar methods, especially in three
dimensions. The FEM itself is already regarded as an expensive alternative to model
rough contact, which becomes an even more computationally demanding option when
used in combination with mortar methods. Therefore, the simplifications associated with
Signorini contact are exploited in order to simplify the algorithm while preserving its
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accuracy and flexibility—the main argument favouring the FEM. The first idea regards
the variational formulation using a Petrov-Galerkin scheme. In the particular case of
Signorini contact, this methodology is particularly attractive, as it eliminates the need
to evaluate the dual basis during the simulation. The extension of this formulation to
quadratic interpolation in three-dimensions is also carried out, proposing a piecewise
linear interpolation for the variation of the Lagrange multipliers. The second idea is based
on a new definition for the nodal orthonormal moving frame attached to each contact
node, using the projection of the frame on the rigid side to the deformable body. When
compared with the well-established method based on the averaged unit normal, this
technique reduces the bandwidth of the derivatives associated with both the normal and
tangential vectors, which now depend only on the degrees of freedom associated with the
finite element node itself. This effect propagates throughout all the computations and, in
the end, a significant reduction in the computation time of all the operations related to
contact is achieved.

At the last stage of this thesis, a multi-scale algorithm for the evaluation of the real
contact area fraction is proposed. It is based on the establishment of an RCE, which is
then separated into multiple smaller scales by splitting the roughness spectrum. The
statistics of the contact pressure field are incorporated into a new multiplicative homog-
enization scheme, combining two solutions based on: the average contact pressure field
at the interface; the discretization of its PDF using equiprobable bins. The goal of the
new formulation is to consistently integrate more information regarding the contact so-
lution at the rough interface onto the homogenization algorithm, in order to achieve the
robustness needed to deal with general scenarios and pressure distributions. Additional
considerations of the method are also discussed, namely the definition of the splitting
frequencies of the PSD function and the generation of the rough topography for the indi-
vidual scales. The final algorithm can estimate the real contact area fraction from a given
database of contact area fraction and pressure values, which can be obtained using any
method. Numerical investigations on the violation of the principle of scale separation, the
discretization error, the number of scales and the effect of bulk material are performed.
The adopted strategy relies on the comparison of the results obtained with the multi-
scale algorithm and the direct simulation of the entire rough topography. It is verified
that the multi-scale algorithm can reproduce the original problem, with an accuracy that
tends to increase with the roughness spectrum bandwidth. In terms of computational
performance, it is demonstrated that the multi-scale algorithm is considerably faster than
the original problem. For the analysed roughness spectra, the multi-scale algorithm is, at
least, one order of magnitude faster. It is also shown that the number of scales should be
as low as possible, to achieve better accuracy, i.e., it is limited by the computational com-
plexity of the underlying model. The bulk material constitutive behaviour, as expected,
has a significant impact on the problem, with the saturation character on the material
stress response being reflected on the contact pressure, changing is contact pressure dis-
tribution, and the rate of change of the contact area fraction. Nonetheless, the accuracy
of the multi-scale model keeps consistent even in this scenario. A comparison with sev-
eral solutions available in the literature is also performed. Additionally, the multi-scale
algorithm is applied to Persson’s model, showing behaviour that is consistent with the
numerical results obtained with the FEM.
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7.1 Outlook and future challenges

Within the field of tribology, multi-scale computational contact mechanics based on the
FEM, despite standing as an active research area over the last decade, is not so widespread
as methodologies like analytical and phenomenological approaches. The main reason be-
hind this trend regards the prohibitive computational complexity of full computational
models. However, by employing alternative strategies like the one presented in this thesis,
it has been shown that it is possible to circumvent this difficulty and still employ the
FEM to model contact across scales. Furthermore, the field of computational sciences
is growing rapidly, with new technologies and frameworks involving high-performance
computing or data science making this argument weaker with time. The future is ex-
pected to be smarter, using technologies powered by embedded systems using advanced
sensors and artificial intelligence. In this reality, one can expect the capacity to have high-
fidelity large-scale numerical models feeding complex databases to become increasingly
more important. In the following, further improvement of the proposed methods and
computational algorithms is suggested, settling future research directions on multi-scale
computational contact modelling.

Based on the methodology and framework presented in this thesis, the extension to-
wards complex interface effects is easily ensured by the flexibility of the combination
of finite deformation finite element technology and the dual mortar contact algorithm.
The first obvious extension regards the modelling of frictional contact due to its practical
and multidisciplinary importance. The developed homogenization framework is perfectly
suitable to model frictional sliding, by considering an additional simulation step with pre-
scribed external velocity. This type of approach has been already employed in the litera-
ture, e.g., in Stupkiewicz et al. (2014), and proved to be capable of accurately determining
non-Coulomb frictional behaviour. Moreover, in Wagner, Wriggers, Veltmaat, et al. (2017),
a multi-scale approach has been applied within the context of rubber friction, thus indi-
cating the potential for the extension and further development of approximation multi-
scale techniques. In this regard, the question of how to define individual smaller scales
seems particularly interesting and challenging, especially considering non-Gaussian and
anisotropic topographies.

The extension towards multi-physics systems, such as thermo-mechanics and electro-
chemistry, are possible directions building upon the developed framework. However, the
challenge in this extension becomes the identification of the critical phenomena tak-
ing place at the interface. For instance, several modern technologies in tribology are
strongly based on the metal/polymer interaction under dry friction conditions. These
components typically offer low friction and, consequently, good wear performance, en-
suring self-lubricating features that are critical for maintenance-free systems. The ability
to model the complex contact interaction between different materials with very distinct
properties enables the design of optimised solutions for specific applications. In this re-
gard, the incorporation of effects like adhesion and thermo-mechanical contact within
the current formulation is a logical step. Notwithstanding, the validation of the numerical
models renders another big challenge. Experiments to access local interface states are
not easy to accomplish, mainly due to the difficulty of performing in situ observations.



178

Page intentionally left blank



179

Appendix A

Dual mortar contact consistent linearisation

The consistent linearisation of mortar-based contact problems undergoing finite defor-
mation requires finding directional derivatives for the first and second mortar coupling
matrices,

[
D

]
and

[
M

]
, respectively, and also for the discrete gap function g h. To obtain

these results, several elementary linearisations are needed. In the following, a compre-
hensive description of each of these terms is presented, including a suitable algebraic
representation for the actual numerical implementation of the method. Firstly, two- and
three-dimensional integration segments are treated individually and, at last, the discre-
tised gap function and dual shape functions are derived.

A.1 Linearisation of mortar contact in two-dimensions

• Averaged normal and tangential vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix A.1.1

• Integration segment end coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix A.1.2

• Integration segment Gauss points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Appendix A.1.3

• Integration segment Jacobian determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix A.1.4

A.1.1 Averaged normal and tangential vectors

Linearisation of the averaged normal and tangential unit vectors is described in the
following. Firstly, the fundamental steps for the evaluation of the directional derivatives
of the averaged normal vector are presented and then, based on those results, the lineari-
sation of the averaged tangential vector is obtained.

First of all, recall the definition of the averaged nodal unit normal η̃ j

(
ξs

j

)
at a non-

mortar node j ∈S ,

η̃ j

(
ξs

j

)≡ η̌ j∥∥∥η̌ j

∥∥∥ , (A.1)

where η̌ j

(
ξs

j

)
has been introduced as an abbreviation for the non-unit averaged normal

vector at a non-mortar node j , obtained by adding all adjacent element unit normals,
ηa

e

(
ξs

j

)
, e ∈ {

1, . . . ,nadj
}
, i.e.

η̌ j

(
ξs

j

)≡ nadj∑
e=1

ηa
e

(
ξs

j

)
. (A.2)
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Herein nadj represents the total number of adjacent elements, which for two-dimensional
analyses typically is nadj = 2 (with the exception of interior nodes in the case of three-
noded line segments used in quadratic finite element interpolation). Denoting the length
of η̌ j as lη̌ j ≡ ‖η̌ j‖, the directional derivative of Equation (A.1) leads to

D η̃ j =D

(
η̌ j

lη̌ j

)
=

D η̌ j

lη̌ j

−
(
η̌ j ·D η̌ j

)
η̌ j

l 3
η̌ j

=
 1

lη̌ j

I − 1

l 3
η̌ j

η̌ j ⊗ η̌ j

D η̌ j . (A.3)

This means that linearisation of the non-unit normal vector η̌ j given in Equation (A.2)
is required in order to further trace back the linearisation of the averaged unit normal
vector to elementary nodal displacement increments. Therefore, introducing the non-
unit normal η̌a

e

(
ξs

j

)
to the adjacent element e and the corresponding length lη̌a

e
≡ ‖η̌a

e‖,
the directional derivative of Equation (A.2) gives*

D η̌ j =D

(
nadj∑
e=1

ηa
e

)
=D

(
nadj∑
e=1

η̌a
e

lη̌a
e

)

=
nadj∑
e=1

(
D η̌a

e

lη̌a
e

−
(
η̌a

e ·D η̌a
e

)
η̌a

e

l 3
η̌a

e

)
=

nadj∑
e=1

[(
1

lη̌a
e

I − 1

l 3
η̌a

e

η̌a
e ⊗ η̌a

e

)
D η̌a

e

]
.

(A.4)

Finally, taking into account that
η̌a

e = e3 × τ̌a
e , (A.5)

with τ̌a
e

(
ξs

j

)
representing the non-unit tangent vector to the adjacent non-mortar element

e, i.e.

τ̌a
e

(
ξs

j

)≡ {
xs

,ξ

}h =
ns

e∑
k=1

N s
k,ξ

(
ξs)xs

k , (A.6)

the directional derivative given in Equation (A.4) can then be defined in terms of nodal
displacement increments:

D η̌a
e =D

(
e3 × τ̌a

e

)= e3 ×
(

ns
e∑

k=1
N s

k,ξ

(
ξs

j

)
∆xs

k

)
. (A.7)

Herein ns
e denotes the total number of nodes associated with non-mortar element e and

N s
k,ξ the shape function derivative with respect to its local coordinate ξs,

N s
k,ξ

(
ξs)≡ dN s

k

(
ξs

)
dξs . (A.8)

With the directional derivative of the averaged nodal unit normal vector at hand, by
taking into account the definition of the corresponding nodal averaged tangential vector,

τ̃ j = η̃ j ×e3 , (A.9)

its linearisation becomes trivial:

D τ̃ j =D η̃ j ×e3 . (A.10)

*Note that, for ease of notation, the subscript j in entities related to adjacent elements has been omitted,
with the understanding that they are always associated with a given non-mortar node j .
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A.1.1.1 Algebraic representation

To establish a suitable algebraic representation for the previous results, a set of matri-
ces is firstly introduced. Starting by element-wise entities, the vector

{
xs

e

} ∈R2·ns
e contain-

ing the nodal coordinates of all ns
e nodes of a given non-mortar element e is constructed

as

{
xs

e

}≡


xs
1
...

xs
ns

e

 . (A.11)

Furthermore, the element matrix
[
Bs

e

(
ξs

)] ∈R2×2·ns
e denotes the discrete FE gradient oper-

ator, comprising the shape function derivatives evaluated at a given local coordinate ξs.
For two-dimensional problems as

[
Bs

e

(
ξs)]≡ [

N s
1,ξ

(
ξs

)
0

0 N s
1,ξ

(
ξs

) · · · N s
ns

e,ξ

(
ξs

)
0

0 N s
ns

e,ξ

(
ξs

) ]
. (A.12)

Then, the global discrete gradient operator
[
Bs

(
ξs

)] ∈ R2×2·ns
also contains the shape

function derivatives, but instead inserted into their corresponding columns (with the
remaining blocks equal to zero), i.e.,

[
Bs(ξs)]≡ [

0 0
0 0

· · · N s
k,ξ

(
ξs

)
0

0 N s
k,ξ

(
ξs

) · · · 0 0
0 0

]
. (A.13)

Finally, the rotation matrix
[
R

] ∈R2×2 is used to reproduce the cross product between a
given vector and the basis vector e3, i.e.,

[
R

]≡ [
0 −1

1 0

]
, (A.14)

such that for a generic vector a = e3 ×b one has{
a

}= [
R

]{
b
}

. (A.15)

With the entities introduced above, the non-unit normal vector
{
η̌a

e

(
ξs

j

)} ∈ R2 to a
given adjacent non-mortar element e (associated with a non-mortar node of local coor-
dinate ξs

j in that element) can be expressed as{
η̌a

e

(
ξs

j

)}= [
R

][
Bs

e

(
ξs

j

)]{
xs

e

}
. (A.16)

Moreover, its directional derivative vector
{
D η̌a

e

(
ξs

j

)} ∈R2 can be computed via{
D η̌a

e

(
ξs

j

)}= [
Kη̌a

e

]{
∆dS

}
, (A.17)

where the global matrix
[
Kη̌a

e

(
ξs

j

)] ∈R2×2·ns
is defined as[

Kη̌a
e

(
ξs

j

)]≡ [
R

][
Bs(ξs

j

)]
, (A.18)
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which yields

[
Kη̌a

e

(
ξs

j

)]= [
0 0
0 0

· · · 0 −N s
k,ξ

(
ξs

j

)
N s

k,ξ

(
ξs

j

)
0

· · · 0 0
0 0

]
. (A.19)

Once evaluated for each adjacent element the quantities described above, the non-
unit averaged normal vector

{
η̌ j

(
ξs

j

)} ∈R2 is determined by

{
η̌ j

(
ξs

j

)}= nadj∑
e=1

(
1

lη̌a
e

{
η̌a

e

})
, (A.20)

and its directional derivative vector
{
D η̌ j

(
ξs

j

)} ∈R2 by

{
D η̌ j

(
ξs

j

)}= [
Kη̌ j

]{
∆dS

}
. (A.21)

Here the global matrix
[
Kη̌ j

(
ξs

j

)] ∈R2×2·ns
has been introduced, which is obtained by the

sum [
Kη̌ j

(
ξs

j

)]≡ nadj∑
e=1

[(
1

lη̌a
e

[
I
]− 1

l 3
η̌a

e

{
η̌a

e

}{
η̌a

e

}T

)[
Kη̌a

e

]]
, (A.22)

with
[

I
] ∈R2×2 denoting the identity matrix.

Finally, the averaged nodal unit normal vector
{
η̃ j

(
ξs

j

)} ∈R2 can be expressed as

{
η̃ j

(
ξs

j

)}= 1

lη̌ j

{
η̌ j

}
. (A.23)

Its linearisation is represented by the vector
{
D η̃ j

(
ξs

j

)} ∈R2 which, as in Equation (A.21),
comes as {

D η̃ j

(
ξs

j

)}= [
Kη̃ j

]{
∆dS

}
. (A.24)

The tangent matrix
[
Kη̃ j

(
ξs

j

)] ∈R2×2·ns
is constructed as

[
Kη̃ j

(
ξs

j

)]≡
 1

lη̌ j

[
I
]− 1

l 3
η̌ j

{
η̌ j

}{
η̌ j

}T

[
Kη̌ j

]
. (A.25)

With both averaged nodal unit normal vector and corresponding directional deriva-
tive at hand, the tangent vector

{
τ̃ j

(
ξs

j

)} ∈R2 can be computed as

{
τ̃ j

(
ξs

j

)}= [
R

]T{
η̃ j

}
, (A.26)

and its directional derivative
{
D τ̃ j

(
ξs

j

)} ∈R2 as

{
D τ̃ j

(
ξs

j

)}= [
R

]T[
Kη̃ j

]{
∆dS

}
. (A.27)
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A.1.2 Integration segment end coordinates

Since integration segments generation possibly evolves deformation-dependent pro-
jections of nodes from one boundary to another, its linearisation requires analysing dif-
ferent integration element configurations. A schematic depiction of all possible types of
integration elements in two dimensions is given in Figure A.1. From it, one can easily
conclude that there are two possibilities for the origin of the integration segment end
coordinates ξs

a and ξs
b on the non-mortar side and ξm

a and ξm
b on the mortar side, respec-

tively. They can either coincide with:

• A finite element node of the corresponding surface: the directional derivative of
the segment end coordinate simply vanishes;

• Projection of a finite element node from the respective other surface: the direc-
tional derivative has to be computed by linearising the associated projection con-
dition.

In what follows, two distinct cases—Case 1 and Case 2, according to Figure A.1—are con-
sidered, which allow establishing directional derivatives for any possible mortar element
type.

xs
2

ξm
a ξm
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{
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Figure A.1: Different combinations of integration element types.

A.1.2.1 Case 1: Projection of a non-mortar node onto a mortar element

First, let ξs
a be coincident with a non-mortar node, i.e., xs

a ≡ xs
1 and η̃a ≡ η̃1. Addition-

ally, it also follows that

Dξs
a = 0 , (A.28)
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and, at the same time, the projection ξm
a of the non-mortar node xs

a onto the mortar
element e with nodes xm

l

(
l = 1, . . . ,nm

e

)
is obtained by solving[

nm
e∑

l=1

(
N m

l

(
ξm

a
)
xm

l

)
−xs

a

]
× η̃a = 0 , (A.29)

with η̃a representing the averaged unit normal vector at the non-mortar node xs
a.

Starting by taking into account that, for two-dimensional problems, the cross product
yields [

nm
e∑

l=1

(
N m

l

(
ξm

a
)
xm

l x

)
−xs

ax

]
η̃ay −

[
nm

e∑
l=1

(
N m

l

(
ξm

a
)
xm

l y

)
−xs

ay

]
η̃ax = 0 , (A.30)

its linearisation reads[
nm

e∑
l=1

(
N m

l ,ξ

(
ξm

a
)
D

(
ξm

a
)

xm
l x

)
+

nm
e∑

l=1

(
N m

l

(
ξm

a
)
∆xm

l x

)
−∆xs

ax

]
η̃ay

+
[

nm
e∑

l=1

(
N m

l

(
ξm

a
)

xm
l x

)
−xs

ax

]
D η̃ay

−
[

nm
e∑

l=1

(
N m

l ,ξ

(
ξm

a
)
D

(
ξm

a
)

xm
l y

)
+

nm
e∑

l=1

(
N m

l

(
ξm

a
)
∆xm

l y

)
−∆xs

ay

]
η̃ax

−
[

nm
e∑

l=1

(
N m

l

(
ξm

a
)

xm
l y

)
−xs

ay

]
D η̃ax = 0 .

(A.31)

Thus, by evidencing the term Dξm
a , the linearisation of the integration segment end coor-

dinate ξm
a can be expressed as

Dξm
a =−

Cnum
ξm

a

Cden
ξm

a

, (A.32)

with

Cnum
ξm

a
≡

[
nm

e∑
l=1

(
N m

l

(
ξm

a
)
∆xm

l x

)
−∆xs

ax

]
η̃ay −

[
nm

e∑
l=1

(
N m

l

(
ξm

a
)
∆xm

l y

)
−∆xs

ay

]
η̃ax

+
[

nm
e∑

l=1

(
N m

l

(
ξm

a
)
xm

l x

)
−xs

ax

]
D η̃ay −

[
nm

e∑
l=1

(
N m

l

(
ξm

a
)
xm

l y

)
−xs

ay

]
D η̃ax

(A.33)

and

Cden
ξm

a
≡

[
nm

e∑
l=1

(
N m

l ,ξ

(
ξm

a
)
xm

l x

)]
η̃ay −

[
nm

e∑
l=1

(
N m

l ,ξ

(
ξm

a
)
xm

l y

)]
η̃ax . (A.34)

A.1.2.2 Algebraic representation

The algebraic representation of the previous result requires the introduction of ad-
ditional entities. Thus, starting again by element-wise quantities, the matrix

[
Nm

e

(
ξm

)] ∈
R2×2·nm

e contains the shape functions of the mortar element e, evaluated at a given point
of local coordinate ξm. In two dimensions comes as

[
Nm

e

(
ξm)]≡ [

N m
1

(
ξm

)
0

0 N m
1

(
ξm

) · · · N m
nm

e

(
ξm

)
0

0 N m
nm

e

(
ξm

) ]
. (A.35)



Dual mortar contact consistent linearisation 185

Likewise, the element discrete gradient operator
[
Bm

e

(
ξm

)] ∈R2×2·nm
e contains the shape

functions derivatives with respect to the local mortar element coordinate evaluated at a
point ξm, i.e.,

[
Bm

e

(
ξm)]≡ [

N m
1,ξ

(
ξm

)
0

0 N m
1,ξ

(
ξm

) · · · N m
nm

e ,ξ

(
ξm

)
0

0 N m
nm

e ,ξ

(
ξm

) ]
. (A.36)

The vector
{

xm
e

} ∈R2·nm
e is constructed by gathering the mortar element nodal coordinates

xm
l

(
l = 1, . . . ,nm

e

)
, viz.

{
xm

e

}≡


xm
1
...

xm
nm

e

 . (A.37)

Another required entity is the vector
{

m
(
ξm,ξs

)} ∈ R2 connecting a given point on the
non-mortar boundary to another point on the opposing mortar counterpart, i.e.,{

m
(
ξm,ξs)} := {

xm(
ξm)}h −{

xs(ξs)}h . (A.38)

For the particular case under analysis, it connects the integration segment end points,{
ma

}= [
Nm

e

(
ξm

a
)]{

xm
e

}−{
xs

a
}

. (A.39)

Focusing on globally assembled entities, the global shape function matrix
[
Nm

(
ξm

)] ∈
R2×2·nm

is defined as

[
Nm(

ξm)]≡ [
0 0
0 0

· · · N m
k

(
ξm

)
0

0 N m
k

(
ξm

) · · · 0 0
0 0

]
, (A.40)

and the global discrete gradient operator
[
Bm

(
ξm

)] ∈R2×2·nm
as

[
Bm(

ξm)]≡ [
0 0
0 0

· · · N m
k,ξ

(
ξm

)
0

0 N m
k,ξ

(
ξm

) · · · 0 0
0 0

]
. (A.41)

The global auxiliary matrix
[

Ĭs
k

] ∈R2×2·ns
is introduced in order to multiply some quantity

by the nodal displacement increments of a given non-mortar node k, coming in two
dimensions as [

Ĭs
k

]≡ [
0 0
0 0

· · · ︸ ︷︷ ︸
node k

1 0
0 1

· · · 0 0
0 0

]
. (A.42)

The linearisation of the integration segment end coordinate ξm
a can finally be written

as

Dξm
a = {

Kξm
a

}{
∆dM

∆dS

}
, (A.43)

where the row vector
{

Kξm
a

(
ξm

a
)} ∈R2·(nm+ns) is decomposed as follows:{
Kξm

a

(
ξm

a
)}≡ {

Kξm
a M , Kξm

a S
}

. (A.44)
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Here, the vector
{

Kξm
a M

(
ξm

a
)} ∈ R2·nm

contains the terms associated with mortar nodes
and is calculated as {

Kξm
a M

(
ξm

a
)}≡ Cξm

a

{
τ̃a

}T[
Nm(

ξm
a

)]
. (A.45)

Similarly, the vector
{

Kξm
a S

(
ξm

a
)} ∈R2·ns

is related with non-mortar nodes and is given by

{
Kξm

a S
(
ξm

a
)}≡ Cξm

a

({
ma

}T[
R

]T[
Kη̃a

]−{
τ̃a

}T[
Ĭs
a
])

. (A.46)

The constant Cξm
a

(
ξm

a
)

is computed as

Cξm
a

(
ξm

a
)≡− 1{

τ̃a
}T[

Bm
e

(
ξm

a
)]{

xm
e

} . (A.47)

In the equations above, the averaged unit tangent vector
{
τ̃a

}
can be obtained from Equa-

tion (A.26), written in this case as

{
τ̃a

}T = {
η̃a

}T[
R

]
. (A.48)

The matrix
[
Kη̃a

]
, defined in Equation (A.25), is associated with the linearisation of the

averaged unit normal vector
{
η̃a

}
, here evaluated at the non-mortar node xs

a.

A.1.2.3 Case 2: Projection of a mortar node onto a non-mortar element

The second possible configuration for a integration segment end coordinate corre-
sponds to the projection of a mortar node onto a non-mortar segment. Thus, as in Case
2 of Figure A.1, let ξm

a be coincident with mortar node, i.e., xm
a = xm

1 . Consequently, one
obtains

Dξm
a = 0 , (A.49)

and the sought-after projection coordinate ξs
a on the related non-mortar element e, with

nodes xs
k

(
k = 1, . . . ,ns

e

)
, can be determined by solving

[
xm

a −
ns

e∑
k=1

(
N s

k

(
ξs

a
)
xs

k

)]
×

[
ns

e∑
k=1

(
N s

k

(
ξs

a
)
η̃k

)]
= 0 . (A.50)

Starting once again by expanding the cross product operator,

[
xm

ax −
ns

e∑
k=1

(
N s

k

(
ξs

a
)
xs

kx

)][
ns

e∑
k=1

(
N s

k

(
ξs

a
)
η̃k y

)]

−
[

xm
ay −

ns
e∑

k=1

(
N s

k

(
ξs

a
)
xs

k y

)][
ns

e∑
k=1

(
N s

k

(
ξs

a
)
η̃kx

)]
= 0 ,

(A.51)
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its linearisation yields[
∆xm

ax −
ns

e∑
k=1

(
N s

k,ξ

(
ξs

a
)
D

(
ξs

a
)

xs
kx

)
−

ns
e∑

k=1

(
N s

k

(
ξs

a
)
∆xs

kx

)][
ns

e∑
k=1

(
N s

k

(
ξs

a
)
η̃k y

)]

+
[

xm
ax −

ns
e∑

k=1

(
N s

k

(
ξs

a
)

xs
kx

)][
ns

e∑
k=1

(
N s

k,ξ

(
ξs

a
)
D

(
ξs

a
)
η̃k y

)
+

ns
e∑

k=1

(
N s

k

(
ξs

a
)
D η̃k y

)]

−
[
∆xm

ay −
ns

e∑
k=1

(
N s

k,ξ

(
ξs

a
)
D

(
ξs

a
)

xs
k y

)
−

ns
e∑

k=1

(
N s

k

(
ξs

a
)
∆xs

k y

)][
ns

e∑
k=1

(
N s

k

(
ξs

a
)
η̃kx

)]

−
[

xm
ay −

ns
e∑

k=1

(
N s

k

(
ξs

a
)

xs
k y

)][
ns

e∑
k=1

(
N s

k,ξ

(
ξs

a
)
D

(
ξs

a
)
η̃kx

)
+

ns
e∑

k=1

(
N s

k

(
ξs

a
)
D η̃kx

)]
= 0 .

(A.52)

Finally, by rearranging the previous equation, the linearisation of the integration segment
end coordinate ξs

a results in

Dξs
a =−

Cnum
ξs

a

Cden
ξs

a

, (A.53)

where

Cnum
ξs

a
≡

[
∆xm

ax −
ns

e∑
k=1

(
N s

k

(
ξs

a
)
∆xs

kx

)][
ns

e∑
k=1

(
N s

k

(
ξs

a
)
η̃k y

)]

−
[
∆xm

ay −
ns

e∑
k=1

(
N s

k

(
ξs

a
)
∆xs

k y

)][
ns

e∑
k=1

(
N s

k

(
ξs

a
)
η̃kx

)]

+
[

xm
ax −

ns
e∑

k=1

(
N s

k

(
ξs

a
)

xs
kx

)][
ns

e∑
k=1

(
N s

k

(
ξs

a
)
D η̃k y

)]

−
[

xm
ay −

ns
e∑

k=1

(
N s

k

(
ξs

a
)
xs

k y

)][
ns

e∑
k=1

(
N s

k

(
ξs

a
)
D η̃kx

)]
(A.54)

and

Cden
ξs

a
≡−

[
ns

e∑
k=1

(
N s

k,ξ

(
ξs

a
)
xs

kx

)][
ns

e∑
k=1

(
N s

k

(
ξs

a
)
η̃k y

)]

+
[

ns
e∑

k=1

(
N s

k,ξ

(
ξs

a
)
xs

k y

)][
ns

e∑
k=1

(
N s

k

(
ξs

a
)
η̃kx

)]

+
[

xm
ax −

ns
e∑

k=1

(
N s

k

(
ξs

a
)
xs

kx

)][
ns

e∑
k=1

(
N s

k,ξ

(
ξs

a
)
η̃k y

)]

−
[

xm
ay −

ns
e∑

k=1

(
N s

k

(
ξs

a
)
xs

k y

)][
ns

e∑
k=1

(
N s

k,ξ

(
ξs

a
)
η̃kx

)]
.

(A.55)

A.1.2.4 Algebraic representation

First, the auxiliary entities needed for the algebraic representation of Equation (A.53)
are presented. The element matrix

[
Ns

e

(
ξs

)] ∈ R2×2·ns
e contains the non-mortar element

shape functions, coming in the two-dimensional case as

[
Ns

e

(
ξs)]≡ [

N s
1

(
ξs

)
0

0 N s
1

(
ξs

) · · · N s
ns

e

(
ξs

)
0

0 N s
ns

e

(
ξs

) ]
. (A.56)
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Moreover, the element vector
{
η̃e

} ∈ R2·ns
e gathers all the averaged unit normal vectors

η̃k

(
k = 1, . . . ,ns

e

)
of the non-mortar element, i.e.,

{
η̃e

}≡

η̃1
...

η̃ns
e

 . (A.57)

This vector can, for instance, be combined with the matrix
[
Ns

e

(
ξs

)]
to compute the inter-

polated non-unit normal vector
{
η̌h

a
(
ξs

a
)} ∈R2 at the integration segment end coordinate

ξs
a, viz. {

η̌h
a
(
ξs

a
)}≡ ns

e∑
k=1

N s
k

(
ξs

a
)
η̃k = [

Ns
e

(
ξs

a
)]{
η̃e

}
. (A.58)

Recalling Equation (A.26), the corresponding non-unit tangent vector
{
τ̌h

a
(
ξs

a
)} ∈R2 can

be defined as {
τ̌h

a
(
ξs

a
)}= [

R
]T{
η̌h

a
}

. (A.59)

The vector
{

ma
}
, already introduced in Equation (A.38), for this case reads{

ma
(
ξs

a
)}= {

xm
1

}− [
Ns

e

(
ξs

a
)]{

xs
e

}
. (A.60)

Similarly to the matrix
[
Ĭs

k

]
defined in Equation (A.42), the global matrix

[
Ĭm

l

] ∈ R2×2·nm

for this case comes as [
Ĭm

l

]≡ [
0 0
0 0

· · · ︸ ︷︷ ︸
node l

1 0
0 1

· · · 0 0
0 0

]
. (A.61)

Finally, examining Equation (A.54) in more detail, it reveals helpful to construct a compact
representation for the sum

ns
e∑

k=1
N s

k

(
ξs

a
)
D η̃k . (A.62)

Therefore, the matrix
[
Kη̃e

] ∈ R(2·ns
e)×(2·ns) is introduced, which is constructed by assem-

bling line-by-line all the individual matrices
[
Kη̃k

](
k = 1, · · · ,ns

e

)
, defined in Equation (A.25),

i.e.,

[
Kη̃e

]≡


Kη̃1

...

Kη̃ns
e

 . (A.63)

Each matrix block is related to the linearisation of the averaged unit normal vector at
each non-mortar node and, more importantly, it makes it possible to write the sum Equa-
tion (A.62) as

ns
e∑

k=1
N s

k

(
ξs

a
)
D η̃k = [

Ns
e

(
ξs

a
)][

Kη̃e

]{
∆dS

}
. (A.64)

Making use of all the aforementioned matrices, the linearisation in Equation (A.53)
can be arranged as

Dξs
a =

{
Kξs

a

}{
∆dM

∆dS

}
, (A.65)
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with the row vector
{

Kξs
a

(
ξs

a
)} ∈R2·(nm+ns) constructed as{

Kξs
a

(
ξs

a
)}≡ {

Kξs
aM , Kξs

aS
}

. (A.66)

The vector
{

Kξs
aM

(
ξs

a
)} ∈R2·nm

is defined by

{
Kξs

aM
(
ξs

a
)}≡−Cξs

a

{
τ̌h

a
}T[

Ĭm
a

]
, (A.67)

and the vector
{

Kξs
aS

(
ξs

a
)} ∈R2·ns

as

{
Kξs

aS
(
ξs

a
)}≡ Cξs

a

({
ma

}T[
R

]T[
Ns

e

(
ξs

a
)][

Kη̃e

]−{
τ̌h

a
}T[

Ns(ξs
a
)])

, (A.68)

where the constant Cξs
a

(
ξs

a
)

is given by

Cξs
a

(
ξs

a
)≡− 1{

ma
}T[

R
]T[

Bs
e
(
ξs

a
)]{
η̃e

}−{
τ̌h

a
}T[

Bs
e
(
ξs

a
)]{

xs
e
} . (A.69)

A.1.3 Integration segment Gauss points

Due to the fact that the employed mortar integration scheme requires evaluating
individual segment contributions, the linearisation of Gauss point coordinates Dξs

g and
Dξm

g are typically non-zero as one or both segment end coordinates are possibly defined
via deformation-dependent projections of mortar nodes. Recalling the mapping from
segment Gauss point coordinate ζg to element Gauss point coordinate on the non-mortar
side,

ξs
g = 1

2

(
1−ζg

)
ξs

a+
1

2

(
1+ζg

)
ξs

b , (A.70)

its linearisation is relatively straightforward and yields

Dξs
g = 1

2

(
1−ζg

)
Dξs

a+
1

2

(
1+ζg

)
Dξs

b . (A.71)

The directional derivative of the Gauss point coordinate on the mortar side ξm
g is

more intricate, since it requires projecting the Gauss point ξs
g from the non-mortar onto

the mortar side, i.e., finding the coordinate ξm
g satisfying

[
nm

e∑
l=1

(
N m

l

(
ξm

g
)
xm

l

)
−xs

g

]
×

[
ns

e∑
k=1

(
N s

k

(
ξs

g
)
η̃k

)]
= 0 . (A.72)

For the sake of simplicity, in Equation (A.72), a slight abuse of notation is permitted† and
xs

g
(
ξs

g
)

represents the position of the non-mortar element Gauss point, i.e.

xs
g
(
ξs

g
)= ns

e∑
k=1

N s
k

(
ξs

g
)
xs

k . (A.73)

†According to the adopted notation, the exact representation would be
{

xs
g
(
ξs
g
)}h.
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Once again, starting by expanding the cross product,[
nm

e∑
l=1

(
N m

l

(
ξm

g
)
xm

l x

)
−xs

gx

][
ns

e∑
k=1

(
N s

k

(
ξs

g
)
η̃k y

)]

−
[

nm
e∑

l=1

(
N m

l

(
ξm

g
)
xm

l y

)
−xs

gy

][
ns

e∑
k=1

(
N s

k

(
ξs

g
)
η̃kx

)]
= 0 ,

(A.74)

its linearisation yields[
nm

e∑
l=1

(
N m

l ,ξ

(
ξm

g
)
D

(
ξm

g
)

xm
l x

)
+

nm
e∑

l=1

(
N m

l

(
ξm

g
)
∆xm

l x

)
−Dxs

gx

][
ns

e∑
k=1

(
N s

k

(
ξs

g
)
η̃k y

)]

+
[

nm
e∑

l=1

(
N m

l

(
ξm

g
)
xm

l x

)
−xs

gx

][
ns

e∑
k=1

(
N s

k,ξ

(
ξs

g
)
D

(
ξs

g
)
η̃k y

)
+

ns
e∑

k=1

(
N s

k

(
ξs

g
)
D η̃k y

)]

−
[

nm
e∑

l=1

(
N m

l ,ξ

(
ξm

g
)
D

(
ξm

g
)

xm
l y

)
+

nm
e∑

l=1

(
N m

l

(
ξm

g
)
∆xm

l y

)
−Dxs

gy

][
ns

e∑
k=1

(
N s

k

(
ξs

g
)
η̃kx

)]

−
[

nm
e∑

l=1

(
N m

l

(
ξm

g
)
xm

l y

)
−xs

gy

][
ns

e∑
k=1

(
N s

k,ξ

(
ξs

g
)
D

(
ξs

g
)
η̃kx

)
+

ns
e∑

k=1

(
N s

k

(
ξs

g
)
D η̃kx

)]
= 0

(A.75)

and, consequently, Dξm
g can be expressed by

Dξm
g =−

Cnum
ξm

g

Cden
ξm

g

, (A.76)

with

Cnum
ξm

g
≡

[
nm

e∑
l=1

(
N m

l

(
ξm

g
)
∆xm

l x

)
−Dxs

gx

][
ns

e∑
k=1

(
N s

k

(
ξs

g
)
η̃k y

)]

−
[

nm
e∑

l=1

(
N m

l

(
ξm

g
)
∆xm

l y

)
−Dxs

gy

][
ns

e∑
k=1

(
N s

k

(
ξs

g
)
η̃kx

)]

+
[

nm
e∑

l=1

(
N m

l

(
ξm

g
)
xm

l x

)
−xs

gx

][
ns

e∑
k=1

(
N s

k,ξ

(
ξs

g
)
D

(
ξs

g
)
η̃k y

)
+

ns
e∑

k=1

(
N s

k

(
ξs

g
)
D η̃k y

)]

−
[

nm
e∑

l=1

(
N m

l

(
ξm

g
)
xm

l y

)
−xs

gy

][
ns

e∑
k=1

(
N s

k,ξ

(
ξs

g
)
D

(
ξs

g
)
η̃kx

)
+

ns
e∑

k=1

(
N s

k

(
ξs

g
)
D η̃kx

)]
(A.77)

and

Cden
ξm

g
≡

[
nm

e∑
l=1

(
N m

l ,ξ

(
ξm

g
)

xm
l x

)][
ns

e∑
k=1

(
N s

k

(
ξs

g
)
η̃k y

)]

−
[

nm
e∑

l=1

(
N m

l ,ξ

(
ξm

g
)

xm
l y

)][
ns

e∑
k=1

(
N s

k

(
ξs

g
)
η̃kx

)]
.

(A.78)

Here the directional derivative Dξs
g can be obtained from Equation (A.71).
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Note that when replacing the Gauss point subscript g by the segment end point in-
dex a, it is obvious the similar structure between the result above and the one given in
Equation (A.32) for the projection of a non-mortar node onto a mortar segment. The
additional complexity is that it involves the linearisation of not only the Gauss point xs

g,
but all the averaged unit normal vectors associated with that non-mortar element as well.
Nonetheless, the former is relatively straightforward and yields

Dxs
g =

ns
e∑

k=1

(
N s

k,ξ

(
ξs

g
)
D

(
ξs

g
)

xs
k

)
+

ns
e∑

k=1

(
N s

k

(
ξs

g
)
∆xs

k

)
. (A.79)

A.1.3.1 Algebraic representation

The linearisation of the non-mortar element Gauss point coordinate ξs
g can be written

as

Dξs
g = {

Kξs
g

}{
∆dM

∆dS

}
, (A.80)

with the row vector
{

Kξs
g

(
ζg

)} ∈R2·(nm+ns) defined as

{
Kξs

g

(
ζg

)}≡ 1

2

(
1−ζg

){
Kξs

a

}+ 1

2

(
1+ζg

){
Kξs

b

}
. (A.81)

Both vectors
{

Kξs
a

}
and

{
Kξs

b

}
are constructed based on the non-mortar segment end

coordinates linearisation (discussed in Appendix A.1.2), taking into account the node
type. If it results from the projection of a mortar node onto the non-mortar element, one
must recall Equation (A.66). If the point coincides with a non-mortar node, the associated
vector vanishes. Following the separation between terms associated with non-mortar and
mortar nodes, the vector

{
Kξs

g

}
can be rearranged as follows:{

Kξs
g

}= {
Kξs

gM , Kξs
gS

}
. (A.82)

Here,
{

Kξs
gM

(
ζg

)} ∈R2·nm
and

{
Kξs

gS
(
ζg

)} ∈R2·ns
have a similar structure:

{
Kξs

gM
(
ζg

)}≡ 1

2

(
1−ζg

){
Kξs

aM
}+ 1

2

(
1+ζg

){
Kξs

bM
}

; (A.83){
Kξs

gS
(
ζg

)}≡ 1

2

(
1−ζg

){
Kξs

aS
} + 1

2

(
1+ζg

){
Kξs

bS
}

. (A.84)

Focusing now on the linearisation of the integration point on the mortar side ξm
g ,

firstly, an algebraic representation for the directional derivatives of the Gauss point coor-
dinates on the non-mortar element xs

g is obtained. This is done by introducing the vector{
Dxs

g
(
ξm

g ,ξs
g
)} ∈R2, which follows as

{
Dxs

g
(
ξm

g ,ξs
g
)}= [

Kxs
g

]{
∆dM

∆dS

}
, (A.85)

with the matrix
[
Kxs

g

(
ξm

g ,ξs
g
)] ∈R2×2·(nm+ns) assembled as[

Kxs
g

(
ξm

g ,ξs
g
)]≡ [

Kxs
gM | Kxs

gS
]

. (A.86)
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The block
[
Kxs

gM
(
ξm

g ,ξs
g
)] ∈R2×2·nm

is defined by[
Kxs

gM
(
ξm

g ,ξs
g
)]≡ [

Bs
e

(
ξs

g
)]{

xs
e

}{
Kξs

gM
}

, (A.87)

and contains the terms related to mortar nodes. The matrix
[
Kxs

gS
(
ξm

g ,ξs
g
)] ∈R2×2·ns

com-
bines with non-mortar nodes and is given as follows:[

Kxs
gS

(
ξm

g ,ξs
g
)]≡ [

Bs
e

(
ξs

g
)]{

xs
e

}{
Kξs

gS
}+ [

Ns(ξs
g
)]

. (A.88)

Additionally, the vector
{

mg
}

previously introduced in Equation (A.38) is used once again,
although here connecting both non-mortar and mortar integration points, i.e.,{

mg
(
ξm

g ,ξs
g
)}= [

Nm
e

(
ξm

g
)]{

xm
e

}− [
Ns

e

(
ξs

g
)]{

xs
e

}
. (A.89)

Finally, the linearisation of the Gauss coordinate ξm
g can be written as

Dξm
g = {

Kξm
g

}{
∆dM

∆dS

}
, (A.90)

where the row vector
{

Kξm
g

(
ξm

g ,ξs
g
)} ∈R2·(nm+ns) is assembled as follows{

Kξm
g

(
ξm

g ,ξs
g
)}≡ {

Kξm
g M , Kξm

g S
}

. (A.91)

The vector
{

Kξm
g M

(
ξm

g ,ξs
g
)} ∈R2·nm

is defined as

{
Kξm

g M
(
ξm

g ,ξs
g
)}≡Cξm

g

[{
mg

}T[
R

]T[
Bs

e

(
ξs

g
)]{
η̃e

}{
Kξs

gM
}

+{
η̃e

}T[
Ns

e

(
ξs

g
)]T[

R
]([

Nm(
ξm

g
)]− [

Kxs
gM

])] (A.92)

and the vector
{

Kξm
g S

(
ξm

g ,ξs
g
)} ∈R2·ns

as

{
Kξm

g S
(
ξm

g ,ξs
g
)}≡Cξm

g

[{
mg

}T[
R

]T
([

Bs
e

(
ξs

g
)]{
η̃e

}{
Kξs

gS
}+ [

Ns
e

(
ξs

g
)][

Kη̃e

])
−{
η̃e

}T[
Ns

e

(
ξs

g
)]T[

R
]{

Kξs
gS

}] (A.93)

with constant Cξm
g

(
ξm

g ,ξs
g
)

given by

Cξm
g

(
ξm

g ,ξs
g
)≡− 1{

η̃e

}T[
Ns

e
(
ξs

g
)]T[

R
][

Bm
e

(
ξm

g
)]{

xm
e

} . (A.94)

A.1.4 Integration segment Jacobian determinant
The employed numerical integration scheme, along with individual segment contribu-

tions, also requires the evaluation of the non-mortar element Jacobian and its directional
derivative. Thus, recalling Equation (3.57), the non-mortar element Jacobian for a given
Gauss point ξs

g is evaluated as

J s
e

(
ξs

g
)≡ ∥∥∥{

xs
,ξ

(
ξs

g
)}h

∥∥∥=
∥∥∥∥ ns

e∑
k=1

N s
k,ξ

(
ξs

g
)
xs

k

∥∥∥∥ (A.95)
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and its linearisation yields

D J s
e =

1

J s
e
(
ξs

g
) [

ns
e∑

k=1

(
N s

k,ξ

(
ξs

g
)

xs
k

)][
ns

e∑
k=1

(
N s

k,ξξ

(
ξs

g
)
Dξs

g xs
k

)
+

ns
e∑

k=1

(
N s

k,ξ

(
ξs

g
)
∆xs

k

)]
. (A.96)

Note that the term Nk,ξξ containing the second derivative, viz.

Nk,ξξ ≡
d2 N s

k

(
ξs

)
(dξs)2 , (A.97)

only becomes relevant for second-order or higher-order finite element interpolation.

A.1.4.1 Algebraic representation

While the non-mortar element Jacobian determinant definition is relatively straight-
forward and can be written as

J s
e

(
ξs

g
)= ‖ [

Bs
e

(
ξs

g
)]{

xs
e

}‖ , (A.98)

its directional derivative requires introducing the matrix
[
Ss

e

(
ξs

)] ∈R2·ns
e , containing the

shape functions second-order derivatives of a given non-mortar element e. In two dimen-
sions it follows as

[
Ss

e

(
ξs)]≡ [

N s
1,ξξ

(
ξs

)
0

0 N s
1,ξξ

(
ξs

) · · · N s
ns

e,ξξ

(
ξs

)
0

0 N s
ns

e,ξξ

(
ξs

) ]
. (A.99)

Then, the directional derivative of the non-mortar element Jacobian can be written as

D J s
e

(
ξm

g ,ξs
g
)= {

KJ s
e

}{
∆dM

∆dS

}
, (A.100)

with the row vector
{

KJ s
e

(
ξm

g ,ξs
g
)} ∈R2·(nm+ns) assembled as{
KJ s

e

(
ξm

g ,ξs
g
)}≡ {

KJ s
eM , KJ s

eS
}

. (A.101)

The vector
{

KJ s
eM

(
ξm

g ,ξs
g
)} ∈R2·nm

, related with mortar nodes, is defined as

{
KJ s

eM
}≡ 1

J s
e
(
ξs

g
){

xs
e

}T[
Bs

e

(
ξs

g
)]T[

Ss
e

(
ξs

g
)]{

xs
e

}{
Kξs

gM
}

, (A.102)

and the vector
{

KJ s
eS

(
ξm

g ,ξs
g
)} ∈R2·ns

, related with non-mortar nodes, is defined as

{
KJ s

eS
}≡ 1

J s
e
(
ξs

g
){

xs
e

}T[
Bs

e

(
ξs

g
)]T

([
Ss

e

(
ξs

g
)]{

xs
e

}{
Kξs

gS
}+ [

Bs(ξs
g
)])

. (A.103)

Remark. As mentioned, for first-order finite element interpolation, the second-order deriva-
tives vanishes and, therefore, the linearisation of the non-mortar element Jacobian deter-
minant reduces to

D J s
e

(
ξs

g
)= {

KJ s
e

}{
∆dS

}
, (A.104)

with {
KJ s

e

(
ξs

g
)}= 1

J s
e
(
ξs

g
){

xs
e

}T[
Bs

e

(
ξs

g
)]T[

Bs(ξs
g
)]

. (A.105)
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A.2 Linearisation of mortar contact in three-dimensions

• Averaged normal and tangential vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix A.2.1

• Auxiliary plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix A.2.2

• Integration cell vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Appendix A.2.3

• Integration cell Gauss points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix A.2.4

• Integration cell Jacobian determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix A.2.5

A.2.1 Averaged normal and tangential vectors

The linearisation of the three-dimensional version of the averaged unit normal η̃ j and

tangential vectors τ̃1
j and τ̃2

j at a non-mortar node j ∈S can be treated in a very similar
way to the two-dimensional counterpart addressed in Appendix A.1.1. Thus, the following
paragraphs focus only on the additional complexities that emerge in three dimensions.

Firstly, the definition of the non-unit normal η̌a
e to the adjacent element e given Equa-

tion (A.5) is no longer valid. Nonetheless, in three dimensions, it can still be obtained
as

η̌a
e

(
ξs

j

)≡ τ̌a
e,ξ1

× τ̌a
e,ξ2

. (A.106)

Here, τ̌a
e,ξi

(
ξs

j

)
represents the non-unit tangent vector to the adjacent non-mortar ele-

ment e along the isoparametric coordinate ξi (i = 1,2), which can be obtained as

τ̌a
e,ξi

(
ξs

j

)≡ {
xs

,ξi

(
ξs

j

)}h =
ns

e∑
k=1

N s
k,ξi

(
ξs

j

)
xs

k , (A.107)

Recall that, according to the notation used previously, N s
k,ξi

(
ξs) represents the shape func-

tion derivatives with respect to each local coordinate ξi , i.e.,

N s
k,ξi

(
ξs)≡ dN s

k

(
ξs)

dξs
i

. (A.108a)

From Equation (A.106), the directional derivative of the non-unit normal η̌a
e follows as

D η̌a
e =D τ̌a

e,ξ1
× τ̌a

e,ξ2
+ τ̌a

e,ξ1
×D τ̌a

e,ξ2
, (A.109)

and, recalling Equation (A.107), the linearisation of the non-unit tangent vector τ̌a
ξi

yields

D τ̌a
e,ξi

=
ns

e∑
k=1

N s
k,ξi

(
ξs

j

)
∆xs

k . (A.110)

With the expressions introduced so far, the averaged unit normal η̃ j can be already
obtained by following the expressions given in Appendix A.1.1 for two-dimensional prob-
lems. However, the definition of the associated nodal tangent vectors τ̃i

j

(
i = 1,2

)
requires

further investigation. While in two dimensions, the tangent vector is uniquely defined by
using Equation (A.9), in three dimensions, the pair of tangent vectors τ̃i

j is not unique
within the tangent plane to the non-mortar node j . The strategy adopted in this work to
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solve this problem is explained in detail in Chapter 3, and is based on considering the
projection of the first edge connected with the non-mortar node j .

First of all, let one define e i (i = 1, ...,ne ) as the edges connected to the non-mortar
node j (i.e., vector connecting the node j to the other node of the edge); herein ne stands
for the total number of associated edges. By projecting one of the edges, for example e1,
onto the plane T that passes the non-mortar node j and is orthogonal to its averaged
unit normal vector η̃ j , one can define the averaged unit tangent vector τ̃1

j

(
ξs

j

)
as

τ̃1
j

(
ξs

j

)≡ τ̌1
j∥∥∥τ̌1
j

∥∥∥ , (A.111)

where τ̌1
j

(
ξs

j

)
represents the non-unit tangent vector obtained by the projection, i.e.,

τ̌1
j

(
ξs

j

)≡ (
I − η̃ j ⊗ η̃ j

)
e1 . (A.112)

Denoting the length of the non-unit tangent vector τ̌1
j as lτ̌1

j
≡ ‖τ̌1

j‖, the directional deriva-

tive of Equation (A.111) yields

D τ̃1
j =

D τ̌1
j

lτ̌1
j

−
(
τ̌1

j ·D τ̌1
j

)
τ̌1

j

l 3
τ̌1

j

=
 1

lτ̌1
j

I − 1

l 3
τ̌1

j

τ̌1
j ⊗ τ̌1

j

D τ̌1
j . (A.113)

This requires obtaining the directional derivative of the non-unit tangent vector τ̌1
j which,

considering Equation (A.112), can be written as

D τ̌1
j =

(
I − η̃ j ⊗ η̃ j

)
De1 −

(
D η̃ j ⊗ η̃ j

)
e1 −

(
η̃ j ⊗D η̃ j

)
e1

=
(

I − η̃ j ⊗ η̃ j

)
De1 −

(
η̃ j ·e1 + η̃ j ⊗e1

)
D η̃ j .

(A.114)

Finally, the second averaged unit tangent vector τ̃2
j

(
ξs

j

)
is obtained as

τ̃2
j

(
ξs

j

)≡ η̃ j × τ̃1
j , (A.115)

and its directional derivative follows as

D τ̃2
j =D η̃ j × τ̃1

j + η̃ j ×D τ̃1
j . (A.116)

A.2.1.1 Algebraic representation

Starting by the derivation of the algebraic representation for the non-unit tangent
vector to the adjacent element e defined in Equation (A.107), firstly, it proves convenient
to define the three-dimensional version of the element and global discrete gradient op-
erators previously introduced in Equations (A.12) and (A.13), respectively. On the one
hand, the element matrix

[
Bs

e,ξi

(
ξs)] ∈ R3×3·ns

e contains the shape functions derivatives

with respect to ξi at a given isoparametric coordinate ξs, i.e.,

[
Bs

e,ξi

(
ξs)]≡

N s
1,ξi

(
ξs) 0 0

0 N s
1,ξi

(
ξs) 0

0 0 N s
1,ξi

(
ξs) · · ·

N s
ns

e,ξi

(
ξs) 0 0

0 N s
ns

e,ξi

(
ξs) 0

0 0 N s
ns

e,ξi

(
ξs)

 . (A.117)
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On the other hand, its global counterpart is denoted as
[
Bs
ξi

(
ξs)] ∈R3×3·ns

and comes as

[
Bs
ξi

(
ξs)]≡

 0 0 0
0 0 0
0 0 0

· · ·
N s

k,ξi

(
ξs) 0 0

0 N s
k,ξi

(
ξs) 0

0 0 N s
k,ξi

(
ξs) · · ·

0 0 0
0 0 0
0 0 0

 . (A.118)

With these definitions at hand, the non-unit tangent vector
{
τ̌a

e,ξi

(
ξs

j

)} ∈R3 to the adjacent
element e along the direction ξs

i can be expressed as{
τ̌a

e,ξi

(
ξs

j

)}= [
Bs

e,ξi

(
ξs

j

)]{
xs

e

}
, (A.119)

and its directional derivative vector
{
D τ̌a

e,ξi

(
ξs

j

)} ∈R3 gives

{
D τ̌a

e,ξi

(
ξs

j

)}= [
Bs
ξi

(
ξs

j

)]{
∆dS

}
. (A.120)

Recall that the definition of the element vector of nodal coordinates
{

xs
e

}
is assembled

as in Equation (A.11). The non-unit normal vector
{
η̌a

e

(
ξs

j

)} ∈R3 to a given adjacent non-
mortar element e defined in Equation (A.106) follows as{

η̌a
e

(
ξs

j

)}= [
τ̌a

e,ξi

]
×
{
τ̌a

e,ξ2

}
. (A.121)

Here, the matrix notation
[
τ̌a

e,ξi

]
× ∈ R3×3 is a skew-symmetric matrix representation of

the vector
{
τ̌a

e,ξi

}
, which establishes an alternative representation for the cross product

between two vectors. For a generic vector
{

a
} ∈ R3, the matrix

[
a

]
× ∈ R3×3 is assembled

as

[
a

]
× ≡

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 , (A.122)

such that the cross product of
{

a
}

with other generic vector
{

b
} ∈R3 can be written as

{
a

}×{
b
}= [

a
]
×
{

b
}= [

b
]T
×

{
a

}
. (A.123)

The vector
{
D η̌a

e

(
ξs

j

)} ∈R3 represents its directional derivative and, accordingly to Equa-
tion (A.110), can be written as {

D η̌a
e

(
ξs

j

)}= [
Kη̌a

e

]{
∆dS

}
(A.124)

with the global matrix
[
Kη̌a

e

(
ξs

j

)] ∈R3×3·ns
being

[
Kη̌a

e

(
ξs

j

)]≡ [
τ̌a

e,ξ2

(
ξs

j

)]T
×

[
Bs
ξ1

(
ξs

j

)]+ [
τ̌a

e,ξ1

(
ξs

j

)]
×
[
Bs
ξ2

(
ξs

j

)]
(A.125)

The remaining operations needed to obtain the averaged unit normal vector
{
η̃ j

(
ξs

j

)} ∈
R3 have already been introduced in Appendix A.1.1 and are equally applicable in three
dimensions.
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Focusing now on the algebraic representation of the first averaged unit tangent vector{
τ̃1

j

(
ξs

j

)} ∈R3 defined in (A.111), it follows that

{
τ̃1

j

(
ξs

j

)}= 1

lτ̌1
j

{
τ̌1

j

}
. (A.126)

Here, the vector
{
τ̌1

j

(
ξs

j

)} ∈R3 represents the non-unit tangent vector with length lτ̌1
j

and,

considering (A.112), it can be obtained as{
τ̌1

j

(
ξs

j

)}= ([
I
]−{

η̃ j

}{
η̃ j

}T
){

e1
}

. (A.127)

The vector
{

e1
} ∈R3 represents the first edge that passes the non-mortar node j , which,

by denoting the second node of the edge by k, is defined as{
e1

}≡ {
xs

k

}−{
xs

j

}
. (A.128)

The directional derivative of the averaged tangent vector
{
D τ̃1

j

(
ξs

j

)} ∈ R3 can be com-
puted as {

D τ̃1
j

(
ξs

j

)}= [
Kτ̃1

j

]{
∆dS

}
. (A.129)

with the matrix
[
Kτ̃1

j

(
ξs

j

)] ∈R3×3·ns
defined as

[
Kτ̃1

j

(
ξs

j

)]≡
 1

lτ̌1
j

[
I
]− 1

l 3
τ̌1

j

{
τ̌1

j

}{
τ̌1

j

}T

[
Kτ̌1

j

]
. (A.130)

Here, the matrix
[
Kτ̌1

j

(
ξs

j

)] ∈R3×3·ns
represents the directional derivative of the non-unit

tangent vector
{
D τ̌1

j

(
ξs

j

)} ∈R3, i.e.,

{
D τ̌1

j

(
ξs

j

)}≡ [
Kτ̌1

j

]{
∆dS

}
, (A.131)

which can be defined as[
Kτ̌1

j

(
ξs

j

)]≡ ([
I
]−{

η̃ j

}{
η̃ j

}T
)[

K
e j

1

]− ({
η̃ j

}T{
e1

}+{
η̃ j

}{
e1

}T
)[

Kη̃ j

(
ξs

j

)]
. (A.132)

In this equation,
[
Ke1

] ∈R3×3·ns
stands for the directional derivative of the edge,[

Ke1

]≡ [
Ĭs

k

]− [
Ĭs

j

]
, (A.133)

with
[

Ĭs
k

] ∈R3×3·ns
denoting the auxiliary matrix previously introduced in Equation (A.42),

which in three dimensions reads

[
Ĭs

k

]≡
 0 0 0

0 0 0
0 0 0

· · ·
︸ ︷︷ ︸

node k

1 0 0
0 1 0
0 0 1

· · ·
0 0 0
0 0 0
0 0 0

 . (A.134)
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Finally, once obtained the first averaged unit tangent vector
{
τ̃1

j

}
, the second averaged

unit tangent vector
{
τ̃2

j

(
ξs

j

)} ∈R3 follows as

{
τ̃2

j

(
ξs

j

)}= [
η̃ j

]
×
{
τ̃1

j

}
. (A.135)

Its directional derivative is represented by the vector
{
D τ̃2

j

(
ξs

j

)} ∈R3, which comes

{
D τ̃2

j

(
ξs

j

)}= [
Kτ̃2

j

]{
∆dS

}
, (A.136)

with the matrix
[
Kτ̃2

j

(
ξs

j

)] ∈R3×3·ns
defined as

[
Kτ̃2

j

(
ξs

j

)]≡ [
τ̃1

j

]T
×

[
Kη̃ j

]+ [
η̃ j

]
×
[
Kτ̃1

j

]
. (A.137)

A.2.2 Auxiliary plane

The next stage in the linearisation of three-dimensional mortar-based contact algo-
rithms is the treatment of the entities associated with the auxiliary plane X . As explained
in Section 3.7, the algorithmic approach for mortar integrals in three dimensions requires
the establishment of piecewise flat segments along the non-mortar boundary. Under-
lying these segments is the definition of the auxiliary plane X , which, as illustrated in

Figure A.2, is based on the non-mortar element center
{

xs¯
}h and the corresponding av-

eraged unit normal vector ηh¯.

xs
4

η̃4

X

ηh¯{
xs¯

}h

η̃3
xs

3

xs
2

xs
1

η̃2

η̃1

Figure A.2: Definition of the auxiliary plane for mortar integrals approximation.

On the one hand, due to the employed isoparametric discretisation scheme, the cen-

ter of the element
{

xs¯
(
ξs
¯
)}h can be obtained

{
xs
¯
(
ξs
¯
)}h ≡

ns
e∑

k=1
N s

k

(
ξs
¯
)

xs
k . (A.138)

For example, for quadrilateral elements, one has

ξs
¯ = 0 . (A.139)
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The associated directional derivative yields

{
Dxs

¯
}h =

ns
e∑

k=1
N s

k

(
ξs
¯
)
∆xs

k . (A.140)

On the other hand, the averaged unit normal ηh¯
(
ξs
¯
)

can be obtained by FE interpo-
lation as

ηh
¯
(
ξs
¯
)≡ η̌h¯∥∥η̌h¯

∥∥ , (A.141)

with η̌h¯
(
ξs
¯
)

denoting the non-unit averaged unit normal vector, i.e.,

η̌h
¯
(
ξs
¯
)≡ ns

e∑
k=1

N s
k

(
ξs
¯
)
η̃s

k . (A.142)

Its directional derivative follows as

Dηh
¯ =

 1

lη̌h¯

I − 1

l 3
η̌h¯

η̌h
¯⊗ η̌h

¯

D η̌h
¯ (A.143)

where lη̌h¯
≡ ‖η̌h¯‖ has been introduced as the length of the non-unit interpolated normal

vector η̌h¯, with directional derivative

D η̌h
¯ =

ns
e∑

k=1
N s

k

(
ξs
¯
)
D η̃k . (A.144)

A.2.2.1 Algebraic representation

The algebraic treatment of the equations above is relatively straightforward, having
the majority of the entities involved been introduced previously already. The only ad-
ditional requirement is the three-dimensional version of the FE interpolation matrix[
Ns

e

(
ξs)] ∈R3×3·ns

e , which is now assembled as

[
Ns

e

(
ξs)]≡

 N s
1

(
ξs) 0 0

0 N s
1

(
ξs) 0

0 0 N s
1

(
ξs) · · ·

N s
ns

e

(
ξs) 0 0

0 N s
ns

e

(
ξs) 0

0 0 N s
ns

e

(
ξs)

 . (A.145)

Firstly, the center of the non-mortar element is represented by the vector
{

xs¯
(
ξs
¯
)}h ∈

R3, which can be computed as {
xs
¯
(
ξs
¯
)}h = [

Ns
e

(
ξs
¯
)]{

xs
e

}
, (A.146)

and its directional derivative by the vector
{
Dxs¯

(
ξs
¯
)}h ∈R3, which reads{

Dxs
¯
(
ξs
¯
)}h = [

Ns
e

(
ξs
¯
)]{
∆dS

}
. (A.147)

Lastly, the averaged unit normal vector
{
ηh¯

(
ξs
¯
)} ∈R3 follows as{

ηh
¯
(
ξs
¯
)}= 1

lη̌h¯

{
η̌h
¯
}

, (A.148)
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with the non-unit averaged normal vector
{
η̌h¯

(
ξs
¯
)} ∈R3, with length lη̌h¯

, being obtained
as {

η̌h
¯
(
ξs
¯
)}= [

Ns
e

(
ξs
¯
)]{
η̃e

}
. (A.149)

Recall that the element vector
{
η̃e

}
is assembled just as in Equation (A.57). Finally, its

directional derivative,
{
Dηh¯

(
ξs
¯
)} ∈R3, is defined as{
Dηh

¯
(
ξs
¯
)}= [

Kηh¯

]{
∆dS

}
, (A.150)

with the matrix
[
Kηh¯

(
ξs
¯
)] ∈R3×3·ns

written as

[
Kηh¯

(
ξs
¯
)]≡ (

1

lη̌h¯

[
I
]−{

η̌h
¯
}{
η̌h
¯
}T

)[
Kη̌h¯

]
. (A.151)

Here, the matrix
[
Kη̌h¯

(
ξs
¯
)] ∈ R3×3·ns

denotes the directional derivative of the non-unit

averaged normal vector,
{
D η̌h¯

(
ξs
¯
)} ∈R3 , i.e.,{

D η̌h
¯
(
ξs
¯
)}= [

Kη̌h¯

]{
∆dS

}
, (A.152)

and can be defined as [
Kη̌h¯

(
ξs
¯
)]≡ [

Ns
e

(
ξs
¯
)][

Kη̃e

]
. (A.153)

It should be reminded that the matrix
[
Kη̃e

]
in the equation above has been introduced in

Equation (A.63), which gathers all the directional derivatives associated with the averaged
unit normal vector at each node of the non-mortar element.

A.2.3 Integration cell vertices

As mentioned in Appendix A.2.2, the algorithm used to approximate mortar integrals
is based on the subdivision of the active interface into piecewise flat segments—here
termed as integration cells. These easy-to-integrate triangular subdomains result from
a thorough division of the overlapping region between the non-mortar and mortar sur-
faces, which is based on suitable nodal projections, polygon clipping and Delaunay trian-
gulation algorithms. Therefore, one must be aware of the different cases from which an
integration cell vertex may have been originated. This can be visualized in Figure A.3, in
which:

• The first and last integration cell vertices, xcell
1 and xcell

3 , are the projection of a non-
mortar and mortar node, accordingly, onto the auxiliary plane X ;

• the second node xcell
2 results from the intersection of two projected non-mortar and

mortar edges and, thus, is originated by the line clipping operation.

In order to be able to derive the consistent linearisation of the vertices, the different
types of nodes must be appropriately identified and treated accordingly. In the following
paragraphs, each case is discussed individually.
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X

xcell
1

xcell
2

xcell
3

Figure A.3: Different cases for the definition of the integration cell vertices: xcell
1 is a pro-

jected non-mortar node; xcell
2 is generated by the line clipping algorithm; xcell

3
is a projected mortar node.

m

X

ηh¯ {
xs¯

}h

xs
k

xcell
k

Figure A.4: Projection of a non-mortar node onto the auxiliary plane X .

A.2.3.1 Case 1: Projection of a non-mortar/mortar node onto the auxiliary plane

The first case to be analysed is the projection of a non-mortar/mortar node onto the
auxiliary plane X . An exemplary projection of a non-mortar node is illustrated in Fig-
ure A.4. Nonetheless, it is important to note that, since the procedure is the same, either
the element is non-mortar or mortar, the discussion throughout the following paragraphs
is applicable for both cases.

By considering the projection formula of a node xs/m
k (either non-mortar or mortar)

onto the auxiliary plane X , it follows that

xcell
k = {

xs
¯
}h +

(
I −ηh

¯⊗ηh
¯
)

m

= xs/m
k −

(
ηh
¯⊗ηh

¯
)

m ,
(A.154)

where the auxiliary vector m stands for the vector connecting the center of the non-

mortar element,
{

xs¯
}h, and the node xs/m

k being projected, i.e.,

m ≡ xs/m
k −{

xs
¯
}h . (A.155)

Its directional derivative results in

Dxcell
k =∆xs/m

k −
(
ηh
¯⊗ηh

¯
)
Dm−

(
ηh
¯ ·m+ηh

¯⊗m
)
Dηh

¯ , (A.156)

with
Dm ≡∆xs/m

k −{
Dxs

¯
}h . (A.157)
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A.2.3.2 Algebraic representation

The algebraic representation of the projection operation is straightforward and the
node

{
xcell

k

} ∈R3 is computed by{
xcell

k

}= {
xs/m

k

}−{
ηh
¯
}{
ηh
¯
}T{

m
}

. (A.158)

Recall that the vector
{

m
} ∈ R3 can be directly computed by using Equation (A.155). Its

directional derivative is represented by the vector
{
Dxcell

k

} ∈R3, which is defined as

{
Dxcell

k

}= [
Kxcell

k

]{
∆dM

∆dS

}
. (A.159)

Here, the matrix
[
Kxcell

k

] ∈R3×3·(nm+ns) is assembled as[
Kxcell

k

]≡ [
Kxcell

k M | Kxcell
k S

]
, (A.160)

with the block
[
Kxcell

k M
] ∈R3×3·nm

, related with mortar degrees of freedom, being defined
as [

Kxcell
k M

]≡χM ([
I
]−{

ηh
¯
}{
ηh
¯
}T

)[
Ĭs/m

k

]
. (A.161)

The block
[
Kxcell

k S
] ∈R3×3·ns

, related non-mortar degrees of freedom, follows as

[
Kxcell

k S
]≡χM ([

I
]−{

ηh
¯
}{
ηh
¯
}T

)[
Ĭs/m

k

]−{
ηh
¯
}{
ηh
¯
}T[

Ns
e

(
ξs
¯
)]

+
({
ηh
¯
}T{

m
}+{

ηh
¯
}{

m
}T

)[
Kη̌h¯

]
.

(A.162)

In the expressions above, the characteristic function χM is used to differentiate the type
of node being projected, such that

χM ≡
{

1 , if k ∈M ,

0 , if k ∈S .
(A.163)

This means that if the node being projected is non-mortar, i.e., k ∈ S and thus χM = 0,
one have that the auxiliary matrix

[
Ĭs/m

k

]⇒ [
Ĭs

k

]
is assembled as in Equation (A.42) and,

consequently, derivative matrix
[
Kxcell

k

]
contains only terms related to non-mortar degrees

of freedom. On the other hand, if k ∈ M, it follows that χM = 1, the auxiliary matrix[
Ĭs/m

k

] ⇒ [
Ĭm

k

]
is assembled as in Equation (A.61) and, consequently, the matrix

[
Kxcell

k

]
contains terms related to both mortar and non-mortar degrees of freedom.

A.2.3.3 Case 2: Node generated by the line clipping algorithm

The second case to be analysed relates to the nodes generated by the intersection
of lines within the polygon-clipping algorithm. In this work, the Sutherland-Hodgman
algorithm (Sutherland and Hodgman, 1974) is employed, which is based on a divide-and-
conquer strategy (e.g., refer to Foley et al. [1996] for additional details on the computa-
tional implementation of the algorithm). Of particular importance for the discussion is
the fact the intersection of edges is carried out by the parametric Cyrus-Beck algorithm
(Cyrus and Beck, 1978), based on which the intersection point xcell

k can be written as

xcell
k = x̂s

a+ t
(
x̂s

b− x̂s
a
)

. (A.164)
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The constant t, associated with the parametrization of the non-mortar edge, follows as

t=
(
x̂m

a − x̂s
a
)× (

x̂m
b − x̂m

a
) ·ηh¯(

x̂s
b− x̂s

a
)× (

x̂m
b − x̂m

a
) ·ηh¯

. (A.165)

As represented in Figure A.4, x̂s/m
a and x̂s/m

b are the starting and end points, accordingly,
of the segments connecting the projected mortar/non-mortar nodes. It should be noticed
that Equation (A.164) is no longer valid if the two edges become parallel with each other
and, consequently, the denominator becomes zero. Nonetheless, such particular cases
are adequately detected and treated by the line clipping algorithm, i.e., it reduces to Case
1 treated above.

X
xcell

k

x̂m
b

x̂m
a

x̂s
a

x̂s
bηh¯

Figure A.5: Integration cell vertex originating from the line clipping algorithm.

The linearisation of the expression above, although quite laborious, is relatively straight-
forward. Thus, in order to compact the notation, it reveals convenient to introduce some
abbreviations. Firstly, the mortar/non-mortar projected edge ês/m is defined as

ês/m ≡ x̂s/m
b − x̂s/m

a , (A.166)

and the vector m̂a, connecting the first nodes of the non-mortar and mortar projected
edges, i.e.,

m̂a ≡ x̂m
a − x̂s

a . (A.167)

These allow one to rewrite Equations (A.164) and (A.165) as

xcell
k = x̂s

a+ tês , (A.168)

and

t= m̂a× êm ·ηh¯
ês × êm ·ηh¯

, (A.169)

respectively. The linearisation of the intersection point xcell
k yields

Dxcell
k =D x̂s

a+Dt ês + tD ês (A.170)

with the derivative of the parameter t coming as

Dt= 1(
ês × êm ·ηh¯

)2

{[
ês × êm ·ηh

¯
][

êm ×ηh
¯ ·Dm̂a+ηh

¯×m̂a ·D êm +m̂a× êm ·Dηh
¯
]

−
[

m̂a× êm ·ηh
¯
][

êm ×ηh
¯ ·D ês +ηh

¯× ês ·D êm + ês × êm ·Dηh
¯
]}

.

(A.171)
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Here, the directional derivatives of the abbreviations are given by

D ês/m =D x̂s/m
b −D x̂s/m

a , (A.172)

and
Dm̂a =D x̂m

a −D x̂s
a . (A.173)

Note that all these directional derivatives, since they are projected nodes, can be obtained
based on the results derived in Case 1.

A.2.3.4 Algebraic representation

The integration cell vertex
{

xcell
k

} ∈R3 can be simply written as{
xcell

k

}= {
x̂s

a
}+ t

{
ês} , (A.174)

with the parameter t computed as

t=
{
ηh¯

}T[
m̂a

]
×
{

êm
}{

ηh¯
}T[

ês
]
×
{

êm
} . (A.175)

The algebraic representation for the abbreviations is also clear, with the vector
{

ês/m
} ∈R3

following as {
ês/m}= {

x̂s/m
b

}−{
x̂s/m

a
}

, (A.176)

and the vector
{

m̂a
} ∈Rd as {

m̂a
}= {

x̂m
a

}−{
x̂s

a
}

. (A.177)

Before continuing to the derivation of the algebraic representation for the linearisa-
tion of the integration cell vertex, the derivatives of the abbreviations are firstly presented.
It should be noticed that, since both abbreviations have similar definitions, i.e., they are
based on the difference between projected nodes, their linearisation is straightforward
and can be carried out by using the expressions obtained for Case 1 treated before. Firstly,
the linearisation of the projected mortar edge

{
D êm

} ∈R3 is obtained from

{
D êm}= [

KêmM | KêmS
]{
∆dM

∆dS

}
, (A.178)

and, whereas the matrix
[
KêmM

] ∈R3×3·nm
relates with mortar degrees of freedom,[

KêmM
]= [

Kx̂m
b M

]− [
Kx̂m

a M
]

, (A.179)

the matrix
[
KêmS

] ∈R3×3·ns
relates with non-mortar terms,[

KêmS
]= [

Kx̂m
b S

]− [
Kx̂m

a S
]

. (A.180)

The directional derivative of the projected non-mortar edge,
{
D ês

} ∈R3, can be written
in a more compact way, as it contains only terms associated with non-mortar degrees of
freedom, i.e., {

D ês}= [
Kês

]{
∆dS

}
. (A.181)
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Here, the derivative matrix
[
Kês

] ∈R3×3·ns
reads[

Kês
]= [

Kx̂s
b

]− [
Kx̂s

a

]
. (A.182)

As mentioned, all the directional derivatives of the projected nodes associated with each
edge can be obtained from Equations (A.161) and (A.162). Lastly, the linearisation of
the auxiliary vector

{
m̂a

}
connecting the first nodes of the mortar/non-mortar edges is

represented by the vector
{
Dm̂a

} ∈R3, which can be obtained from

{
Dm̂a

}= [
Km̂aM | Km̂aS

]{
∆dM

∆dS

}
. (A.183)

Here, and similarly to the linearisation of the projected edges vector, the matrix
[
Km̂aM

] ∈
R3×3·nm

is defined as [
Km̂aM

]= [
Kx̂m

a M
]− [

Kx̂s
aM

]
(A.184)

and the matrix
[
Km̂aS

] ∈R3×3·ns
as[
Km̂aS

]= [
Kx̂m

a S
]− [

Kx̂s
aS

]
. (A.185)

Finally, the linearisation of the intersection point is represented by the vector
{
Dxcell

k

} ∈
R3, which is defined as {

Dxcell
k

}= [
Kxcell

k

]{
∆dM

∆dS

}
, (A.186)

where the matrix
[
Kxcell

k

] ∈R3×3·(nm+ns) follows the structure[
Kxcell

k

]≡ [
Kxcell

k M | Kxcell
k S

]
. (A.187)

Here, the derivatives matrix
[
Kxcell

k M
] ∈R3×3·nm

follows as[
Kxcell

k M
]≡ {

ês}{K tM
}

, (A.188)

and the matrix
[
Kxcell

k S
] ∈R3×3·ns

results in[
Kxcell

k S
]≡ [

Kx̂s
a

]+{
ês}{K tS

}+ t
[
Kês

]
. (A.189)

The last term still to be defined is the linearisation of the parameter t, which follows as

Dt= {
Kt

}{
∆dM

∆dS

}
. (A.190)

Here, the matrix
{

K t
} ∈R3·(nm+ns) is assembled as{

K t
}≡ {

K tM , K tS
}

, (A.191)

with the matrix
{

K tM
} ∈R3·nm

, related with non-mortar degrees of freedom, being com-
puted as{

K tM
}≡C t

[({
ηh
¯
}T[

ês]
×
{

êm})({
ηh
¯
}T[

êm]T
×
[
Km̂aM

]+{
m̂a

}T[
ηh
¯
]T
×

[
KêmM

])
−

({
ηh
¯
}T[

m̂a
]
×
{

êm})({
ês}T[

ηh
¯
]T
×
[
KêmM

])]
.

(A.192)
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The matrix
{

K tS
} ∈R3·ns

relates with mortar degrees of freedom and can be computed as
follows:{

K tS
}≡C t

[({
ηh
¯
}T[

ês]
×
{

êm})({
ηh
¯
}T[

êm]T
×
[
Km̂aS

]+{
m̂a

}T[
ηh
¯
]T
×

[
KêmS

]+{
êm}T[

m̂a
]T
×

[
Kηh¯

])
−

({
ηh
¯
}T[

m̂a
]
×
{

êm})({
ηh
¯
}T[

êm]T
×
[
Kês

]+{
ês}T[

ηh
¯
]T
×
[
KêmS

]+{
êm}T[

ês]T
×
[
Kηh¯

])]
.

(A.193)
The auxiliary constant C t is defined as

C t ≡ 1({
ηh¯

}T[
ês

]
×
{

êm
})2 . (A.194)

A.2.4 Integration cell Gauss points
As explained in Section 3.7, on each integration cell, a standard triangular FE interpo-

lation is employed by introducing the integration cell parameter space ζ, viz.

ζ= {
(ζ1,ζ2) | ζ1 ≥ 0 , ζ2 ≥ 0 , ζ1 +ζ2 ≤ 1

}
, (A.195)

for triangles and
ζ= {

(ζ1,ζ2) | −1 ≤ ζ1 ≤ 1 , −1 ≤ ζ2 ≤ 1
}

, (A.196)

for quadrilaterals. In order to approximate the mortar integrals, an appropriate Gauss
quadrature is employed on the integration cell domain and, then, the mortar and non-
mortar Gauss points coordinates ξm

g and ξs
g, respectively, are obtained by projecting the

integration cell Gauss points ζg back onto the mortar and non-mortar elements. This is
illustrated in Figure A.6 and, in general, the projection requires the solution of a system
of three non-linear equations (which can be achieved by a local Newton scheme). Con-
sidering the projection of the integration cell Gauss point ζg back onto the non-mortar
element the relevant conditions are‡

ns
e∑

k=1
N s

k

(
ξs

g
)

xs
k −αηh

¯−xcell
g = 0 , (A.197)

where the parameter α represents the distance along with the normal direction between
the two points and xcell

g
(
ζg

)
the integration cell Gauss point global coordinates, obtained

by standard FE interpolation, i.e.,

xcell
g

(
ζg

)= ncell
e∑

v=1
N cell

v

(
ζg

)
xcell

v . (A.198)

Here, ncell
e denotes the total number of nodes of the integration cell and N cell

v (v = 1, ...,ncell)
stands for the standard linear shape functions in the reference domain.

Remark. In what follows, for the sake of brevity, only the non-mortar Gauss points coordi-
nates are analysed, given that the mortar Gauss points are absolutely analogous.

‡As in Appendix A.1.3 for the two-dimensional case, the notation is slightly violated here. According to

the adopted notation, the exact representation of xcell
g would be

{
xcell

g
(
ζg

)}h.
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xs
4

X

ηh¯

xcell
1

xs
1

xcell
3

xcell
2

xs
2

xs
3

xcell
g

xs
g

ζ2

ζg

ξs
g

ξ2

ξ1

ζ1

Figure A.6: Projection of Gauss points from the integration cell to the associated non-
mortar element.

Linearisation of Equation (A.197) yields

ns
e∑

k=1

[
N s

k,ξs
1

(
ξs

g
)
Dξs

1 xs
k +N s

k,ξs
2

(
ξs

g
)
Dξs

2 xs
k

]
+

ns
e∑

k=1

(
N s

k

(
ξs

g
)
∆xs

k

)
−Dαηh

¯−αDηh
¯−Dxcell

g = 0 .

(A.199)

which, after being rearranged, allows to expose the directional derivatives of the non-
mortar coordinates ξs

g,1 and ξs
g,2, i.e.,

Dξs
g,1

Dξs
g,2

Dα

= W−1

(
αDηh

¯+Dxcell
g −

ns
e∑

k=1
N s

k

(
ξs

g
)
∆xs

k

)
. (A.200)

Here, the matrix W is defined as

W ≡
[

N s
k,ξs

1

(
ξs

g
)

xs
k

∣∣∣ N s
k,ξs

2

(
ξs

g
)

xs
k

∣∣∣ −ηh
¯

]
, (A.201)

and the linearisation of the integration cell Gauss point global coordinates results in

Dxcell
g =

3∑
v=1

N cell
v

(
ζg

)
Dxcell

v . (A.202)

Note that all the individual contributions in the expressions above have been treated so
far.

A.2.4.1 Algebraic representation

Firstly, the integration cell Gauss point global coordinates
{

xcell
g

(
ζg

)} ∈R3 follows as{
xcell

g
(
ζg

)}= [
Ncell

e

(
ζg

)]{
xcell

e

}
, (A.203)
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where the matrix
[
Ncell

e

(
ζg

)] ∈R3×3·ncell
e represents the FE interpolation discrete operator

and the vector
{

xcell
e

} ∈R3·ncell
e the vector of element coordinates. Its directional derivative

is represented by the vector
{
Dxcell

g
(
ζg

)} ∈R3, which follows as

{
Dxcell

g
(
ζg

)}= [
Kxcell

g M | Kxcell
g S

]{
∆dM

∆dS

}
, (A.204)

where the matrix
[
Kxcell

g M
(
ζg

)] ∈R3×3·nm
, related with mortar degrees of freedom, reads[

Kxcell
g M

(
ζg

)]≡ [
Ncell

e

(
ζg

)][
Kxcell

e M
]

, (A.205)

and the matrix
[
Kxcell

g S
(
ζg

)] ∈R3×3·ns
, associated with non-mortar terms, follows as[

Kxcell
g S

(
ζg

)]≡ [
Ncell

e

(
ζg

)][
Kxcell

e S
]

. (A.206)

Here, the matrices
[
Kxcell

e M
] ∈R3×3·nm

and
[
Kxcell

e S
] ∈R3·ns

are obtained by assembling the
directional derivatives of all the three nodes of the integration segment, i.e.,

[
Kxcell

e M
]≡


Kxcell

1 M
Kxcell

2 M
Kxcell

3 M

 ,
[
Kxcell

e S
]≡


Kxcell

1 S
Kxcell

2 S
Kxcell

3 S

 . (A.207)

Finally, the linearisation of the first non-mortar isoparametric coordinate ξs
g,1 can be

written as

Dξs
g,1

(
ζg

)= [
Kξs

g,1M | Kξs
g,1S

]{
∆dM

∆dS

}
, (A.208)

and the second coordinate ξs
g,2 as

Dξs
g,2

(
ζg

)= [
Kξs

g,2M | Kξs
g,2S

]{
∆dM

∆dS

}
. (A.209)

The directional derivatives related to mortar degrees of freedom can be extracted from
the system 

Kξs
g,1M

Kξs
g,2M

KαM

= W−1
(
αKηh¯M+Kxcell

g M

)
, (A.210)

whereas the non-mortar terms from
Kξs

g,1S

Kξs
g,2S

KαS

= W−1
(
αKηh¯S +Kxcell

g S − [
Ns(ξs

g
)])

. (A.211)

The matrix
[
W

] ∈R3×3 follows as

W ≡
[ [

Bs
e,ξ1

(
ξs

g
)]{

xs
e

} ∣∣∣ [
Bs

e,ξ2

(
ξs

g
)]{

xs
e

} ∣∣∣ −{
ηh
¯
} ]

. (A.212)
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A.2.5 Integration cell Jacobian determinant

The integration cells Jacobian determinant J cell at a given Gauss point can be written
as

J cell(ζg
)= ∥∥∥τ̌cell

1 × τ̌cell
2

∥∥∥ . (A.213)

Here, τ̌cell
i

(
ζcell) represents the non-unit tangent vector along the isoparametric coordi-

nate ζi (i = 1,2), which can be obtained as

τ̌cell
i

(
ζcell)≡ ncell

e∑
k=1

N cell
k,ζi

(
ζcell)xcell

k , (A.214)

The directional derivative of A.213 results in

D J cell = τ̌cell
1 × τ̌cell

2

J cell
·
(
D τ̌cell

1 × τ̌cell
2 + τ̌cell

1 ×D τ̌cell
2

)
, (A.215)

with the linearisation of each non-unit tangent vector obtained as

D τ̌cell
i =

ncell
e∑

k=1
N cell

k,ζi

(
ζcell

g
)
Dxcell

k . (A.216)

Recall that the linearisation of the integration cell nodes is described in Appendix A.2.3. It
is also noteworthy to mention that for three-noded integration cells, the standard shape
functions derivatives yield a constant Jacobian, i.e., it is directly evaluated using the edges
of the triangle.

A.2.5.1 Algebraic representation

The integration cell Jacobian determinant can be evaluated as

J cell =
∥∥∥[
τ̌cell

1

]
×
{
τ̌cell

2

}∥∥∥ , (A.217)

with the non-unit tangent vectors
{
τ̌cell

i

} ∈R3 obtained as{
τ̌cell

i

}= [
Bcell

e,ζi

(
ζcell

g
)]{

xcell
e

}
. (A.218)

The linearisation of the Jacobian determinant can be written as

D J cell = {
KJ cell

}{
∆dM

∆dS

}
. (A.219)

The matrix
{

KJ cell

} ∈R3·(nm+ns) is assembled as{
KJ cell

}≡ {
KJ cellS | KJ cellM

}
, (A.220)

with the block related with non-mortar degrees of freedom,
{

KJ cellS
} ∈R3·ns

, coming as

{
KJ cellS

}≡ {
τ̌cell

2

}T[
τ̌cell

1

]T
×

J cell

([
τ̌cell

2

]T
×

[
Kτ̌cell

1 S
]+ [

τ̌cell
1

]
×
[
Kτ̌cell

2 S
])

, (A.221)



210 Appendix A

and the block
{

KJ cellM
} ∈R3·nm

, related with mortar degrees of freedom, as

{
KJ cellM

}≡ {
τ̌cell

2

}T[
τ̌cell

1

]T
×

J cell

([
τ̌cell

2

]T
×

[
Kτ̌cell

1 M
]+ [

τ̌cell
1

]
×
[
Kτ̌cell

2 M
])

. (A.222)

In Equations (A.221) and (A.222), the directional derivative of the non-unit tangent vec-
tors is given by [

Kτ̌cell
i M

]= [
Bcell

,ζi

(
ζcell

g
)][

Kxcell
e M

]
, (A.223)[

Kτ̌cell
i S

]= [
Bcell

,ζi

(
ζcell

g
)][

Kxcell
e S

]
. (A.224)

These derivatives are traced back to the type of node of the integration cell, cf. Appendix A.2.3.

A.3 Discretised gap function

Remark. In what follows, without any loss of generality, contact modelling in three di-
mensions is assumed. This means that the parameter space for FE interpolation of contact
terms is ξi = (

ξi
1,ξi

2

)
. For the two-dimensional version, it reduces to ξi .

The linearisation of the discretised version of the gap function, g h, appears along with
the determination of the directional derivative of the weighted gap function g̃ . Thus, by
considering that at each Gauss point one have§

g h(
ξm

g ,ξs
g
)≡−ηh

g ·
(
xs

g −xm
g

)
, (A.225)

its directional derivative reads

Dg h =−Dηh
g ·

(
xs

g −xm
g

)
−ηh

g ·
(
Dxs

g −Dxm
g

)
. (A.226)

Examining in more detail the expression above, two additional terms are yet undefined
and, therefore, must be derived. First, the Gauss point coordinate on the mortar side xm

g ,
which, analogously to the term xs

g, can be written as

xm
g

(
ξm

g
)≡ nm

e∑
l=1

N m
l

(
ξm

g
)

xm
l , (A.227)

and its directional derivative

Dxm
g =

nm
e∑

l=1

(
N m

l ,ξ1

(
ξm

g
)
Dξm

1 xm
l +N m

l ,ξ2

(
ξm

g
)
Dξm

2 xm
l +N m

l

(
ξm

g
)
∆xm

l

)
. (A.228)

Second, the interpolated unit normal vector ηh
g accounts for a more elaborate treatment

and, thus, comes described in detail below.

§For simplicity, a minor abuse of notation is permitted again and, in this case, the representation for the

interpolated Gauss point position on the mortar side,
{

xm
g

(
ξm

g
)}h, is simplified to xm

g .
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A.3.1 The interpolated unit normal vector
Based on the averaged unit normal vector η̃ j discussed in Appendix A.1.1, the contin-

uous field of normals over the non-mortar boundary is obtained through finite element
interpolation. Within a given non-mortar element e, the approximation at a Gauss point
coordinate ξs

g follows as

ηh
g
(
ξs

g
)= η̌h

g∥∥∥η̌h
g

∥∥∥ , (A.229)

with η̌h
g
(
ξs

g
)
, already introduced in Equation (A.58), representing the abbreviation for the

non-unit interpolated normal vector, viz.

η̌h
g
(
ξs

g
)≡ ns

e∑
k=1

N s
k

(
ξs

g
)
η̃k . (A.230)

The linearisation of the interpolated normal ηh
g can be handled identically to the first

step of the linearisation of the unit averaged normal η̃ j presented in Appendix A.1.1, i.e.,

Dηh
g
(
ξs

g
)=

 1

lη̌h
g

I − 1

l 3
η̌h

g

η̌h
g ⊗ η̌h

g

D η̌h
g , (A.231)

where lη̌h
g

has been introduced as the length of the non-unit interpolated normal vector

η̌h
g, with directional derivative

D η̌h
g
(
ξs

g
)= ns

e∑
k=1

(
N s

k,ξ1

(
ξs

g
)
Dξs

1 η̃k +N s
k,ξ2

(
ξs

g
)
Dξs

2 η̃k +N s
k

(
ξs

g
)
D η̃k

)
. (A.232)

A.3.2 Algebraic representation
Before establishing a suitable algebraic representation for the linearisation of the dis-

cretised gap function g h, one must first define the necessary entities to represent the
directional derivative of the Gauss point coordinate on the mortar side xm

g . Thus, by de-

noting this term by the vector
{
Dxm

g
(
ξm

g ,ξs
g
)} ∈Rd , it can be written that

{
Dxm

g
(
ξm

g ,ξs
g
)}= [

Kxm
g

]{
∆dM

∆dS

}
, (A.233)

which, following the line of thought adopted in the remaining deviations, assumes the
matrix

[
Kxm

g

(
ξm

g ,ξs
g
)] ∈Rd×d ·(nm+ns) assembled as[

Kxm
g

(
ξm

g ,ξs
g
)]≡ [

Kxm
g M | Kxm

g S
]

. (A.234)

The structure of both matrices
[
Kxm

g M
(
ξm

g ,ξs
g
)] ∈Rd×nm·d and

[
Kxm

g S
(
ξm

g ,ξs
g
)] ∈Rd×ns·d is

similar to the ones related with the linearisation of the Gauss point on the non-mortar
side, viz.[

Kxm
g M

(
ξm

g ,ξs
g
)]≡[

Bm
e,ξ1

(
ξm

g
)]{

xm
e

}{
Kξm

1 M
}+ [

Bm
e,ξ2

(
ξm

g
)]{

xm
e

}{
Kξm

2 M
}+ [

Nm(
ξm

g
)]

, (A.235)[
Kxm

g S
(
ξm

g ,ξs
g
)]≡[

Bm
e,ξ1

(
ξm

g
)]{

xm
e

}{
Kξm

1 S
}+ [

Bm
e,ξ2

(
ξm

g
)]{

xm
e

}{
Kξm

2 S
}

. (A.236)
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Additionally to the Gauss point coordinate on the mortar side, an algebraic represen-
tation for the interpolated unit normal and corresponding directional derivative must be
defined as well. First, let the vector

{
ηh

g
(
ξs

g
)} ∈Rd represent the interpolated unit normal

vector at a given Gauss point of local coordinate ξs
g, i.e.,

{
ηh

g
(
ξs

g
)}≡ 1

lη̌h

{
η̌h

g
}

, (A.237)

recalling Equation (A.58) for the definition of the non-unit interpolated normal vector{
η̌h

g
}

, here evaluated at the Gauss position ξs
g instead. The linearisation of the unit normal

vector,
{
Dηh

g
(
ξm

g ,ξs
g
)} ∈Rd , follows as

{
Dηh

g
(
ξm

g ,ξs
g
)}≡ [

Kηh
g

]{
∆dM

∆dS

}
, (A.238)

with the matrix
[
Kηh

g

(
ξm

g ,ξs
g
)] ∈Rd×d ·(nm+ns) constructed as[

Kηh
g

(
ξm

g ,ξs
g
)]≡ [

Kηh
gM | Kηh

gS
]

. (A.239)

Once again, the terms related with mortar and non-mortar nodes are isolated and the
matrix

[
Kηh

gM
(
ξm

g ,ξs
g
)] ∈Rd×nm·d comes as

[
Kηh

gM
(
ξm

g ,ξs
g
)]≡

 1

lη̌h
g

[
I
]− 1

l 3
η̌h

g

[
W̌h

g
] (A.240)

([
Bs

e,ξ1

(
ξs

g
)]{
η̃e

}{
Kξs

1M
}+ [

Bs
e,ξ2

(
ξs

g
)]{
η̃e

}{
Kξs

2M
})

, (A.241)

and the matrix
[
Kηh

gS
(
ξm

g ,ξs
g
)] ∈Rd×ns·d as

[
Kηh

gS
(
ξm

g ,ξs
g
)]≡

 1

lη̌h
g

[
I
]− 1

l 3
η̌h

g

{
η̌h

g
}{
η̌h

g
}T

 (A.242)

([
Bs

e,ξ1

(
ξs

g
)]{
η̃e

}{
Kξs

1S
}+ [

Bs
e,ξ2

(
ξs

g
)]{
η̃e

}{
Kξs

2S
}+ [

Ns
e

(
ξs

g
)][

Kη̃e

])
. (A.243)

Finally, after introducing all the necessary entities, the linearisation of the discretised
gap function can be written as

Dg h(
ξm

g ,ξs
g
)= {

Kg h

}{
∆dM

∆dS

}
, (A.244)

with the row vector
{

Kg h

(
ξm

g ,ξs
g
)} ∈Rd ·(nm+ns) divided into{

Kg h

(
ξm

g ,ξs
g
)}≡ {

Kg hM , Kg hS
}

. (A.245)

Here both vectors
{

Kg hM
(
ξm

g ,ξs
g
)} ∈Rd ·nm

and
{

Kg hS
(
ξm

g ,ξs
g
)} ∈Rd ·ns

have similar defini-
tions, with the only difference being the type of nodes involved, namely{

Kg hM
(
ξm

g ,ξs
g
)}≡ {

mg
}T[

KηgM
]−{

ηh
g
}T

([
Kxs

gM
]− [

Kxm
g M

])
(A.246)
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and {
Kg hS

(
ξm

g ,ξs
g
)}≡ {

mg
}T[

KηgS
]−{

ηh
g
}T

([
Kxs

gS
]− [

Kxm
g S

])
(A.247)

In the equations above, the vector
{

mg
}

is used once again, recalling Equation (A.89) for
its calculation.

A.4 Dual shape functions

As discussed in Section 3.2, the dual shape functions Φ j within a non-mortar element
e are constructed as a linear combination of the element’s standard shape functions N s

k .
Thus, by recalling Equation (3.9), the dual shape function Φ j at a given Gauss point ξs

g
(
ζg

)
is defined as

Φ j
(
ξs

g
)= ns

e∑
k=1

aΦj k N s
k

(
ξs

g
)

, (A.248)

and its linearisation yields the sum

DΦ j
(
ξs

g
)= ns

e∑
k=1

(
DaΦj k N s

k

(
ξs

g
)+aΦj k N s

k,ξ1

(
ξs

g
)
Dξs

1 +aΦj k N s
k,ξ2

(
ξs

g
)
Dξs

2

)
. (A.249)

At this stage, linearisation of the linear coefficients aΦj k must be performed, given that
they are deformation-dependent for non-constant non-mortar element Jacobian deter-
minants. Within the current formulation, these linear coefficients are grouped in the
matrix

[
AΦe

]= [
aΦj k

]
which, recalling Equation (3.13), is defined as

[
AΦe

]= [
DΦ

e

][
MΦ

e

]−1 . (A.250)

Thus, linearisation of the expression above results in[
DAΦe

]= [
DDΦ

e

][
MΦ

e

]−1 − [
AΦe

][
DMΦ

e

][
MΦ

e

]−1 , (A.251)

which means that further linearisation of the matrices
[
DΦ

e

]
and

[
MΦ

e

]
is required. Ac-

cording to the individual entries given in Equations (3.14) and (3.15), their linearisation
yields

Dd j k =δ j k

ngp∑
gp=1

wgN s
k

(
ξs

gp

)
D J s

e

(
ξs

gp

)
, (A.252)

Dm j k =
ngp∑

gp=1
wgpN s

j

(
ξs

gp

)
N s

k

(
ξs

gp

)
D J s

e

(
ξs

gp

)
. (A.253)

It is important to stress out that throughout the derivation of the expressions above, the
evaluation of the matrices

[
DΦ

e

]
and

[
MΦ

e

]
is independent of any other Gauss quadrature

the resulting dual shape functions Φ j might be involved. This means the Gauss point co-
ordinates ξs

gp in Equations (A.252) and (A.253) are completely unrelated with, for instance,
the Gauss coordinates ξs

g aforementioned in Equations (A.248) and (A.249). Moreover, for
non-mortar elements entirely integrated, their computation does not require the appli-
cation of any segmentation strategy whatsoever, which means that integration points
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coordinates ξs
gp do not depend on the displacement field and, consequently, their lineari-

sation vanishes. Therefore, the directional derivatives of matrices
[
DΦ

e

]
and

[
MΦ

e

]
only

require linearisation of the non-mortar element Jacobian, which, following the same line
of thought as in Appendix A.1.4, results in

D J s
e

(
ξs

gp

)= 1

J s
e
(
ξs

gp

) (
ns

e∑
k=1

N s
k,ξ

(
ξs

gp

)
xs

k

)(
ns

e∑
k=1

N s
k,ξ

(
ξs

gp

)
∆xs

k

)
. (A.254)

Once again, since integration Gauss points do not depend on the displacements, when
compared with Equation (A.96), this expression becomes simplified.

A.4.1 Algebraic representation

In order to establish an algebraic representation suitable to handle dual shape func-
tions, some element-wise matrices are introduced first. The auxiliary matrix

[
D̆Φ

e

(
ξs)]=[

d̆Φj k

] ∈Rnλ
e ×ns

e , used to define the matrix
[
DΦ

e

]
, is defined as

d̆Φj k

(
ξs)≡ δ j k N s

j

(
ξs) . (A.255)

For the particular case where nλ
e = ns

e, it yields the trivial diagonal matrix structure

[
D̆Φ

e

(
ξs)]≡


N s

1

(
ξs) · · · 0

...
. . .

...

0 · · · N s
ns

e

(
ξs)

 . (A.256)

Analogously, the auxiliary matrix
[
M̆Φ

e

(
ξs)]= [

m̆Φ
j k

] ∈Rns
e×ns

e comes as

m̆Φ
j k

(
ξs)≡ N s

j

(
ξs)N s

k

(
ξs) , (A.257)

which yields the square matrix

[
M̆Φ

e

(
ξs)]≡


N s

1

(
ξs)N s

1

(
ξs) · · · N s

1

(
ξs)N s

ns
e

(
ξs)

...
. . .

...

N s
ns

e

(
ξs)N s

1

(
ξs) · · · N s

ns
e

(
ξs)N s

ns
e

(
ξs)

 . (A.258)

By using these notations, the matrices
[
DΦ

e

]
and

[
MΦ

e

]
can be conveniently computed as

[
DΦ

e

]= ngp∑
gp=1

wgp
[
D̆Φ

e

(
ξs

gp

)]
J s

e

(
ξs

gp

)
, (A.259)

[
MΦ

e

]= ngp∑
gp=1

wgp
[
M̆Φ

e

(
ξs

gp

)]
J s

e

(
ξs

gp

)
. (A.260)

Recall that the non-mortar element Jacobian J s
e

(
ξs

gp

)
is given by Equation (A.98). The di-

rectional derivatives of the matrix
[
DΦ

e

]
and

[
MΦ

e

]
, derived in Equations (A.252) and (A.253),
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can be constructed as

[
DDΦ

e

]= ngp∑
gp=1

wgp
[
D̆Φ

e

(
ξs

gp

)]({
KJ s

e

(
ξs

gp

)}{
∆dS

})
, (A.261)

[
DMΦ

e

]= ngp∑
gp=1

wgp
[
M̆Φ

e

(
ξs

gp

)]({
KJ s

e

(
ξs

gp

)}{
∆dS

})
, (A.262)

where the tangent vector
{

KJ s
e

}
has already been introduced in Equation (A.105). At last,

using the algebraic notations above, the directional derivative of the coefficients matrix[
AΦe

]
given in Equation (A.251) is represented by the vector

[
DAΦe

] ∈Rnλ
e ×ns

e , defined as

[
DAΦe

]= ngp∑
gp=1

wgp

([
D̆Φ

e

(
ξs

gp

)][
MΦ

e

]−1− [
AΦe

][
M̆Φ

e

(
ξs

gp

)][
MΦ

e

]−1
)({

KJ s
e

(
ξs

gp

)}{
∆dS

})
.

(A.263)
With the directional derivatives of the linear coefficients matrix

[
AΦe

]
at hand, atten-

tion is now shifted towards linearisation of the dual shape functions Φ j . As already ex-
plained in Section 3.2, the dual shape functions Φ j within a non-mortar element can be
handled simultaneously by using the vector

{
Φe

}
, defined in Equation (3.10). Thus, by

recalling Equation (3.12), {
Φe

(
ξs

g
)}= [

AΦe
]{

ns
e

(
ξs

g
)}

, (A.264)

the linearisation of the dual shape functions vector
{
Φe

}
yields{

DΦe
}= [

DAΦe
]{

ns
e

(
ξs

g
)}+ [

AΦe
]{

Dns
e

}
. (A.265)

Here, the vector
{
Dns

e

(
ξs

g
)} ∈ Rns

e , containing the directional derivatives of the standard
shape functions vector

{
ns

e

}
, is defined as

{
Dne

(
ξs

g
)}= ({

bs
e,ξ1

(
ξs

g
)}{

Kξs
1

}+{
bs

e,ξ2

(
ξs

g
)}{

Kξs
2

}){
∆dM

∆dS

}
, (A.266)

where the vector
{

bs
e,ξi

(
ξs)} ∈Rns

e contains the standard shape functions derivatives with
respect to the local isoparametric coordinate ξs

i , i.e.,

{
bs

e,ξi

(
ξs)}≡


N s

1,ξi

(
ξs)

...

N s
ns

e,ξi

(
ξs)

 . (A.267)

Finally, by gathering all the introduced matrix notations, Equation (A.265) can be rewrit-
ten as {

DΦe
(
ξs

g
)}= [

KΦe

]{
∆dM

∆dS

}
(A.268)

where the tangent matrix
[
KΦe

(
ξs

g
)] ∈Rnλ

e ×d ·(nm+ns) is constructed as[
KΦe

(
ξs

g
)]≡ [

KΦe M | KΦe S
]

. (A.269)
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Here, the matrix
[
KΦe S

(
ξs

g
)] ∈ Rnλ

e ×d ·ns
contains the terms related with non-mortar de-

grees of freedom and is defined as

[
KΦe S

]≡ ngp∑
gp=1

[
wgp

([
D̆Φ

e

(
ξs

gp

)][
MΦ

e

]−1 − [
AΦe

][
M̆Φ

e

(
ξs

gp

)][
MΦ

e

]−1
){

ns
e

(
ξs

g
)}{

KJ s
e

(
ξs

gp

)}]
+ [

AΦe
]{

bs
e,ξ1

(
ξs

g
)}{

Kξs
1S

(
ξs

g
)}+ [

AΦe
]{

bs
e,ξ2

(
ξs

g
)}{

Kξs
2S

(
ξs

g
)}

.
(A.270)

Likewise, the matrix
[
KΦe M

(
ξs

g
)] ∈Rnλ

e ×d ·nm
relates with mortar degrees of freedom and

yields [
KΦe M

]≡ [
AΦe

]{
bs

e,ξ1

(
ξs

g
)}{

Kξs
1M

(
ξs

g
)}+ [

AΦe
]{

bs
e,ξ2

(
ξs

g
)}{

Kξs
2M

(
ξs

g
)}

. (A.271)

It is important to note that in Equation (A.270), the distinction between the Gauss coor-
dinate ξs

gp, associated with the numerical integration of the coefficients matrix
[
AΦe

]
, and

the Gauss coordinate ξs
g, emerging from the segmentation scheme used to approximate

mortar integrals.
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Mapping operations between quadratic finite
elements and linear sub-elements

The application of the piecewise interpolation requires the establishment of proper map-
pings, herein denoted by Λ, from the parent element space, ξ, to the sub-element space,
ξsub, viz.

ξsub =Λ(ξ) . (B.1)

Conversely, the inverse mapping from the sub-element space ξsub back to the parent
element reads

ξ=Λ−1(ξsub) . (B.2)

These mappings can be derived by employing simple linear transformations between
both domains based on geometrical considerations. Table B.1 shows the transformations
associated with quadratic 6-noded triangles, followed in Tables B.2 and B.3 by the 8-
noded and 9-noded quadrilaterals, respectively. Besides the expressions for the mappings,
linearisation of all deformation-dependent terms in mortar integrals requires taking into
account the mapping in the derivative chain rule. Therefore, one also needs to derive the
Jacobian matrices associated with the mapping operations, which are represented by the
matrices

[
Ξ

] ∈R(d−1)×(d−1). The construction of these matrices is as follows:

[
Ξ

]≡ ∂ξsub

∂ξs =
ξsub

1,ξ1
ξsub

1,ξ1

ξsub
2,ξ1

ξsub
2,ξ2

 . (B.3)

Their inverse read [
Ξ

]−1 = ∂ξ

∂ξsub
=

ξ1,ξsub
1

ξ1,ξsub
1

ξ2,ξsub
1

ξ2,ξsub
2

 . (B.4)
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Sub-element Order Λ(ξ) Ξ Λ−1(ξsub) Ξ−1

1 1, 4, 6
ξsub

1 = 2ξ1

ξsub
2 = 2ξ2

+2 0

0 +2

 ξ1 = 1/2ξsub
1

ξ2 = 1/2ξsub
2

+1/2 0

0 +1/2



2 4, 2, 5
ξsub

1 = 2ξ1 −1

ξsub
2 = 2ξ2

+2 0

0 +2

 ξ1 = 1/2 (ξsub
1 +1)

ξ2 = 1/2ξsub
2

+1/2 0

0 +1/2



3 6, 5, 3
ξsub

1 = 2ξ1

ξsub
2 = 2ξ2 −1

+2 0

0 +2

 ξ1 = 1/2ξsub
1

ξ2 = 1/2 (ξsub
2 +1)

+1/2 0

0 +1/2



4 5, 6, 4
ξsub

1 =−2ξ1 +1

ξsub
2 =−2ξ2 +1

−2 0

0 −2

 ξ1 = 1/2 (−ξsub
1 +1)

ξ2 = 1/2 (−ξsub
2 +1)

−1/2 0

0 −1/2


Table B.1: Mapping between interface elements and the associated sub-elements for the

quadratic 6-noded triangle.
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Sub-element Order Λ(ξ) Ξ Λ−1(ξsub) Ξ−1

1 1, 5, 8
ξsub

1 = ξ1 +1

ξsub
2 = ξ2 +1

+1 0

0 +1

 ξ1 = ξsub
1 −1

ξ2 = ξsub
2 −1

+1 0

0 +1



2 2, 6, 5
ξsub

1 = ξ2 +1

ξsub
2 =−ξ1 +1

 0 +1

−1 0

 ξ1 =−ξsub
2 +1

ξ2 = ξsub
1 −1

 0 −1

+1 0



3 3, 7, 6
ξsub

1 =−ξ1 +1

ξsub
2 =−ξ2 +1

−1 0

0 −1

 ξ1 =−ξsub
1 +1

ξ2 =−ξsub
2 +1

−1 0

0 −1



4 4, 8, 7
ξsub

1 =−ξ2 +1

ξsub
2 = ξ1 +1

 0 −1

+1 0

 ξ1 = ξsub
2 −1

ξ2 =−ξsub
1 +1

 0 +1

−1 0



5 5, 6, 7, 8
ξsub

1 = ξ2 +ξ1

ξsub
1 = ξ2 −ξ1

+1 +1

−1 +1

 ξ1 = 1/2 (ξsub
1 −ξsub

2 )

ξ2 = 1/2 (ξsub
1 +ξsub

2 )

+1/2 −1/2

+1/2 +1/2


Table B.2: Mapping between interface elements and the associated sub-elements for the

quadratic 8-noded quadrilateral.
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Sub-element Order Λ(ξ) Ξ Λ−1(ξsub) Ξ−1

1 1, 5, 9, 8
ξsub

1 = 2ξ1 +1

ξsub
2 = 2ξ2 +1

+2 0

0 +2

 ξ1 = 1/2 (ξsub
1 −1)

ξ2 = 1/2 (ξsub
2 −1)

+1/2 0

0 +1/2



2 5, 2, 6, 9
ξsub

1 = 2ξ2 −1

ξsub
2 = 2ξ1 +1

+2 0

0 +2

 ξ1 = 1/2 (ξsub
2 +1)

ξ2 = 1/2 (ξsub
1 −1)

+1/2 0

0 +1/2



3 9, 6, 3, 7
ξsub

1 = 2ξ1 −1

ξsub
2 = 2ξ2 −1

+2 0

0 +2

 ξ1 = 1/2 (ξsub
1 +1)

ξ2 = 1/2 (ξsub
2 +1)

+1/2 0

0 +1/2



4 8, 9, 7, 4
ξsub

1 = 2ξ2 +1

ξsub
1 = 2ξ2 −1

+2 0

0 +2

 ξ1 = 1/2 (ξsub
1 −1)

ξ2 = 1/2 (ξsub
2 +1)

+1/2 0

0 +1/2


Table B.3: Mapping between interface elements and the associated sub-elements for the

quadratic 9-noded quadrilateral.
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Appendix C

RCE Boundary Conditions at Edges and
Vertices

The type of boundary conditions the RCE is subjected to is relatively standard, referring to
references such as Stupkiewicz (2007) for discussions on the topic. However, a small detail
that usually is not addressed regards the intersections between boundaries (edges and
vertices). The employed solution to avoid overconstraints applies to discretization meth-
ods that use regular meshes and is based on master-slave conditions (see Figure C.1).

Figure C.1: Master-slave conditions of the RCE.

Starting by the edges at the intersections between periodic and contact boundaries
(red and blue lines), the idea is to impose the contact constraints only at the master edges
(solid lines), and then setting the matching points at the opposite edge as slaves (dashed
lines). The same idea applies to the edges that result from the intersection between the
periodic faces of the RCE (green lines), with the only difference being that only one edge
is set as master, with the remaining three being slaves.

As for the vertices, two groups can be identified: the vertices at the exterior (top)
boundary and the ones at the contact (bottom) boundary. The idea is to set one of them
as master—for convenience, the one at the master edge—and the remaining three as
slaves. The vertex at the contact boundary satisfies the contact constraints and the one
at the exterior boundary a combination of boundary conditions: periodic displacement
except along the direction defined by the normal to the exterior boundary, where the
displacement is the same as the remaining nodes at the exterior boundary.
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Koziara, T. and Bićanić, N. (2008). “Semismooth Newton Method for Frictional Contact
between Pseudo-Rigid Bodies”. In: Computer Methods in Applied Mechanics and Engi-
neering 197 (33-40), pp. 2763–2777.

Kubiak, K. J., Liskiewicz, T. W., and Mathia, T. G. (2011). “Surface Morphology in Engi-
neering Applications: Influence of Roughness on Sliding and Wear in Dry Fretting”. In:
Tribology International 44 (11), pp. 1427–1432.

Lamichhane, B. P., Stevenson, R. P., and Wohlmuth, B. I. (2005). “Higher Order Mortar
Finite Element Methods in 3D with Dual Lagrange Multiplier Bases”. In: Numerische
Mathematik 102 (1), pp. 93–121.

Laursen, T. A. (1994). “The Convected Description in Large Deformation Frictional Con-
tact Problems”. In: International Journal of Solids and Structures 31 (5), pp. 669–681.

Laursen, T. A. (2013). Computational Contact and Impact Mechanics: Fundamentals of
Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis. Springer Science
& Business Media.

Laursen, T. A. and Simo, J. C. (1993). “A Continuum-Based Finite Element Formulation
for the Implicit Solution of Multibody, Large Deformation-Frictional Contact Problems”.
In: International Journal for Numerical Methods in Engineering 36 (20), pp. 3451–3485.



230 References

Luenberger, D. G. and Ye, Y. (2008). Linear and Nonlinear Programming. Springer Sci-
ence & Business Media.

Manners, W. and Greenwood, J. A. (2006). “Some Observations on Persson’s Diffusion
Theory of Elastic Contact”. In: Wear 261 (5), pp. 600–610.

Marsden, J. E. and Hughes, T. J. R. (2012). Mathematical Foundations of Elasticity. Courier
Corporation.

Matouš, K. et al. (2017). “A Review of Predictive Nonlinear Theories for Multiscale Mod-
eling of Heterogeneous Materials”. In: Journal of Computational Physics 330, pp. 192–
220.

McDevitt, T. W. and Laursen, T. A. (2000). “A Mortar-Finite Element Formulation for Fric-
tional Contact Problems”. In: International Journal for Numerical Methods in Engineering
48 (10), pp. 1525–1547.

Metcalf, M., Reid, J., and Cohen, M. (2011). Modern Fortran Explained. Oxford: Oxford
University Press.

Michel, J., Moulinec, H., and Suquet, P. (1999). “Effective Properties of Composite Mate-
rials with Periodic Microstructure: A Computational Approach”. In: Computer Methods
in Applied Mechanics and Engineering 172 (1-4), pp. 109–143.

Mikic, B. B. and Rohsenow, W. M. (1966). Thermal Contact Resistance. Technical Report.
Cambridge, Mass. : M.I.T. Dept. of Mechanical Engineering, [1966].

Moulinec, H. and Suquet, P. (1998). “A Numerical Method for Computing the Overall
Response of Nonlinear Composites with Complex Microstructure”. In: Computer Methods
in Applied Mechanics and Engineering 157 (1-2), pp. 69–94.

Mróz, Z. and Stupkiewicz, S. (1994). “An Anisotropic Friction and Wear Model”. In:
International Journal of Solids and Structures 31 (8), pp. 1113–1131.

Neto, E. A. d. S., Peric, D., and Owen, D. R. J. (2011). Computational Methods for Plastic-
ity: Theory and Applications. John Wiley & Sons.

Nitsche, R. (2011). “A Multiscale Projection Method for Contact on Rough Surfaces”. PhD
thesis. Hannover: Institut für Kontinuumsmechanik.

Ogden, R. W. (1997). Non-Linear Elastic Deformations. Courier Corporation.

Oliver, J. et al. (2009). “A Contact Domain Method for Large Deformation Frictional
Contact Problems. Part 1: Theoretical Basis”. In: Computer Methods in Applied Mechanics
and Engineering 198 (33-36), pp. 2591–2606.

Paggi, M. and Ciavarella, M. (2010). “The Coefficient of Proportionality κ between Real
Contact Area and Load, with New Asperity Models”. In: Wear 268 (7), pp. 1020–1029.

Papadopoulos, P. and Taylor, R. L. (1992). “A Mixed Formulation for the Finite Element
Solution of Contact Problems”. In: Computer Methods in Applied Mechanics and Engi-
neering 94 (3), pp. 373–389.



References 231

Pastewka, L. and Robbins, M. O. (2014). “Contact between Rough Surfaces and a Cri-
terion for Macroscopic Adhesion”. In: Proceedings of the National Academy of Sciences
111 (9), pp. 3298–3303.

Pei, L. et al. (2005). “Finite Element Modeling of Elasto-Plastic Contact between Rough
Surfaces”. In: Journal of the Mechanics and Physics of Solids 53 (11), pp. 2385–2409.

Pereira, K., Yue, T., and Abdel Wahab, M. (2017). “Multiscale Analysis of the Effect of
Roughness on Fretting Wear”. In: Tribology International 110 (February), pp. 222–231.

Persson, B. N. J. (2001a). “Elastoplastic Contact between Randomly Rough Surfaces”. In:
Physical Review Letters 87 (11), p. 116101.

Persson, B. N. J. (2001b). “Theory of Rubber Friction and Contact Mechanics”. In: The
Journal of Chemical Physics 115 (8), pp. 3840–3861.

Persson, B. N. J. (2014). “On the Fractal Dimension of Rough Surfaces”. In: Tribology
Letters 54 (1), pp. 99–106.

Persson, B. N. J. et al. (2005). “On the Nature of Surface Roughness with Application
to Contact Mechanics, Sealing, Rubber Friction and Adhesion”. In: Journal of Physics:
Condensed Matter 17 (1), R1.

Pinto Carvalho, R., Couto Carneiro, A. M., Andrade Pires, F. M., and Doca, T. (2022).
“An Efficient Multiscale Strategy to Predict the Evolution of the Real Contact Area between
Rough Surfaces”. In: Tribology International 165, p. 107255.

Pinto Carvalho, R., Couto Carneiro, A. M., Andrade Pires, F. M., and Popp, A. (2022).
“An Efficient Contact Algorithm for Rigid/Deformable Interaction Based on the Dual Mor-
tar Method”. In: arXiv:2201.01165 [cs].

Pinto Carvalho, R., Rodrigues Lopes, I. A., and Andrade Pires, F. M. (2018). “Prediction
of the Yielding Behaviour of Ductile Porous Materials through Computational Homoge-
nization”. In: Engineering Computations 35 (2), pp. 604–621.

Polonsky, I. A. and Keer, L. M. (1999). “A Numerical Method for Solving Rough Con-
tact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Tech-
niques”. In: Wear 231 (2), pp. 206–219.

Popp, A. (2012). “Mortar Methods for Computational Contact Mechanics and General
Interface Problems”. PhD thesis.

Popp, A. (2018). “State-of-the-Art Computational Methods for Finite Deformation Con-
tact Modeling of Solids and Structures”. In: Contact Modeling for Solids and Particles. Ed.
by A. Popp and P. Wriggers. CISM International Centre for Mechanical Sciences. Cham:
Springer International Publishing, pp. 1–86.

Popp, A., Gee, M. W., and Wall, W. A. (2009). “A Finite Deformation Mortar Contact For-
mulation Using a Primal-Dual Active Set Strategy”. In: International Journal for Numerical
Methods in Engineering 79 (11), pp. 1354–1391.



232 References

Popp, A., Gitterle, M., et al. (2010). “A Dual Mortar Approach for 3D Finite Deformation
Contact with Consistent Linearization”. In: International Journal for Numerical Methods
in Engineering 83 (11), pp. 1428–1465.

Popp, A., Seitz, A., et al. (2013). “Improved Robustness and Consistency of 3D Contact Al-
gorithms Based on a Dual Mortar Approach”. In: Computer Methods in Applied Mechanics
and Engineering 264, pp. 67–80.

Popp, A., Wohlmuth, B. I., et al. (2012). “Dual Quadratic Mortar Finite Element Methods
for 3D Finite Deformation Contact”. In: SIAM Journal on Scientific Computing 34 (4),
B421–B446.

Puso, M. A. (2004). “A 3D Mortar Method for Solid Mechanics”. In: International Journal
for Numerical Methods in Engineering 59 (3), pp. 315–336.

Puso, M. A. and Laursen, T. A. (2004a). “A Mortar Segment-to-Segment Contact Method
for Large Deformation Solid Mechanics”. In: Computer Methods in Applied Mechanics
and Engineering 193 (6-8), pp. 601–629.

Puso, M. A. and Laursen, T. A. (2004b). “A Mortar Segment-to-Segment Frictional Con-
tact Method for Large Deformations”. In: Computer Methods in Applied Mechanics and
Engineering 193 (45-47), pp. 4891–4913.

Puso, M. A., Laursen, T. A., and Solberg, J. (2008). “A Segment-to-Segment Mortar Con-
tact Method for Quadratic Elements and Large Deformations”. In: Computer Methods in
Applied Mechanics and Engineering 197 (6-8), pp. 555–566.

Puso, M. A. and Laursen, T. A. (2002). “A 3D Contact Smoothing Method Using Gregory
Patches”. In: International Journal for Numerical Methods in Engineering 54 (8), pp. 1161–
1194.

Qi, L. and Sun, J. (1993). “A Nonsmooth Version of Newton’s Method”. In: Mathematical
Programming 58 (1-3), pp. 353–367.

Reddy, J. N. (2014). An Introduction to Nonlinear Finite Element Analysis: With Applica-
tions to Heat Transfer, Fluid Mechanics, and Solid Mechanics. Second. Oxford: Oxford
University Press.

Rouson, D., Xia, J., and Xu, X. (2011). Scientific Software Design: The Object-Oriented
Way. Cambridge: Cambridge University Press.

Rumbaugh, J., Jacobson, I., and Booch, G. (1999). Unified Modeling Language Reference
Manual. New York: Addison-Wesley.

Schweizerhof, K. and Konyukhov, A. (2005). “Covariant Description for Frictional Con-
tact Problems”. In: Computational Mechanics 35 (3), pp. 190–213.

Scott, L. R. and Zhang, S. (1990). “Finite Element Interpolation of Nonsmooth Functions
Satisfying Boundary Conditions”. In: Mathematics of Computation 54 (190), pp. 483–483.



References 233

Seitz, A., Farah, P., et al. (2016). “Isogeometric Dual Mortar Methods for Computational
Contact Mechanics”. In: Computer Methods in Applied Mechanics and Engineering 301,
pp. 259–280.

Seitz, A., Popp, A., and Wall, W. A. (2015). “A Semi-Smooth Newton Method for Or-
thotropic Plasticity and Frictional Contact at Finite Strains”. In: Computer Methods in
Applied Mechanics and Engineering 285, pp. 228–254.

Seitz, A., Wall, W. A., and Popp, A. (2018). “A Computational Approach for Thermo-
Elasto-Plastic Frictional Contact Based on a Monolithic Formulation Using Non-Smooth
Nonlinear Complementarity Functions”. In: Advanced Modeling and Simulation in Engi-
neering Sciences 5 (1), pp. 5–5.

Simo, J. C. and Hughes, T. J. R. (2006). Computational Inelasticity. Springer Science &
Business Media.

Simo, J. C. and Laursen, T. A. (1992). “An Augmented Lagrangian Treatment of Contact
Problems Involving Friction”. In: Computers & Structures 42 (1), pp. 97–116.

Simo, J. C., Wriggers, P., and Taylor, R. L. (1985). “A Perturbed Lagrangian Formulation
for the Finite Element Solution of Contact Problems”. In: Computer Methods in Applied
Mechanics and Engineering 50 (2), pp. 163–180.

Sitzmann, S., Willner, K., and Wohlmuth, B. I. (2016). “Variationally Consistent Quadratic
Finite Element Contact Formulations for Finite Deformation Contact Problems on Rough
Surfaces”. In: Finite Elements in Analysis and Design 109, pp. 37–53.

Stadler, M. and Holzapfel, G. A. (2004). “Subdivision Schemes for Smooth Contact Sur-
faces of Arbitrary Mesh Topology in 3D”. In: International Journal for Numerical Methods
in Engineering 60 (7), pp. 1161–1195.

Stanley, H. M. and Kato, T. (1997). “An FFT-Based Method for Rough Surface Contact”.
In: Journal of Tribology 119 (3), pp. 481–485.

Strömberg, N. (1997). “An Augmented Lagrangian Method for Fretting Problems”. In:
European journal of mechanics. A, Solids 16 (4), pp. 573–593.

Strömberg, N., Johansson, L., and Klarbring, A. (1996). “Derivation and Analysis of a
Generalized Standard Model for Contact, Friction and Wear”. In: International Journal of
Solids and Structures 33 (13), pp. 1817–1836.

Stupkiewicz, S. (2007). Micromechanics of Contact and Interphase Layers. Lecture Notes
in Applied and Computational Mechanics v. 30. Berlin ; London: Springer.

Stupkiewicz, S., Lewandowski, M. J., and Lengiewicz, J. (2014). “Micromechanical Anal-
ysis of Friction Anisotropy in Rough Elastic Contacts”. In: International Journal of Solids
and Structures 51 (23), pp. 3931–3943.

Sutherland, I. E. and Hodgman, G. W. (1974). “Reentrant Polygon Clipping”. In: Com-
mun. ACM 17 (1), pp. 32–42.



234 References

Taylor, R. L. and Papadopoulos, P. (1991). “On a Patch Test for Contact Problems in Two
Dimensions”. In: Nonlinear Computational Mecahnics. Berlin: Springer-Verlag, pp. 690–
702.

Taylor, R. L., Simo, J. C., et al. (1986). “The Patch Test—a Condition for Assessing FEM
Convergence”. In: International Journal for Numerical Methods in Engineering 22 (1),
pp. 39–62.
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