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A B S T R A C T

Considering a temporal dimension allows for the delivery of rolling solutions to complex real-world problems.
Moving forward in time brings uncertainty, and large margins for potential error in solutions. For the multi-
year crop planning problem, the largest uncertainty is how the climate will change over coming decades. The
innovation this paper presents are novel methods that allow the solver to produce feasible solutions under
all climate models tested, simultaneously. Three new measures of robustness are introduced and evaluated.
The highly robust solutions are shown to vary little across different climate change projections, maintaining
consistent net revenue and environmental flow deficits.
1. Introduction

Time is an essential part of all human activities, yet its treatment in
optimisation problems has been fairly limited and unstructured. The
recent work of Randall, Montgomery and Lewis [1] has shown that
using an evolutionary algorithm (EA) to optimise over discrete and
connected time units gives the ability to do long-term planning in an
automated way. The issue, though, becomes a question of the value
of the solutions that have been produced. As planning is necessarily
forward in time, uncertainty increases the further the temporal margin
is pushed, as there may be many valid ways in which necessary values
could be predicted. Therefore, measures must be taken to reduce the
risk that uncertainty brings. A means to address this comes via robust
optimisation [2]. Though not specifically designed with time in mind,
it is demonstrated here that it can be adapted and is eminently suit-
able for this purpose. Therefore, in this paper, robust and temporal
optimisation methods are combined to address this issue.

There is a great need for techniques of the type previously described.
A large sector of many economies that requires extended planning
horizons, and which is subject to a great deal of variability due to
climate, is agriculture [3]. The problem that is used in this paper,
which aims to sensibly conserve water in a drier future, can indeed
be classified as a ‘‘wicked problem’’ [4]. It is used as the basis of the
development of the robust temporal framework and its formulation is
outlined in Randall et al. [1]. It concerns the planting of mixed crops
in a given area over time. Cropping, in terms of hectare allocations,
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is optimised so that overall net revenue is maximised while the subse-
quent water environmental flow deficit is minimised. In this problem,
the optimisation is carried out over a number of years (a decade for the
test problem instances).

In that previous work, only one climate projection scenario could
be used. The work in this paper, however, presents a new form of
innovative robust optimisation that allows the solver system to be
robust against multiple data sets with respect to an element of change
across those sets. This then allows the effects of multiple climate change
scenarios to be evaluated simultaneously and feasibly using novel
multi-objective functions. To the knowledge of the authors, this has not
been achieved before. This new robust framework is also generalisable
to other problems.

The remainder of this paper is organised as follows. Section 2
describes a crop planning decision problem that will underpin the
novel temporal robust framework, while Section 3 examines the area
of robustness from an operations research and evolutionary algorithm
perspective. Section 4 expands the definition of robustness to suit a
broader range of real-world problems. Section 5 explains a robust
temporal framework that includes new and adapted robust measures.
Section 6 implements these ideas on two decade-long problem in-
stances, one near-term and another far-future, that have known climate
change models factored into them. Section 7 elaborates on some of
the issues raised with the new form of robustness introduced in this
paper. Section 8 gives the conclusions and outlines the next stages of
the research.
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2. A crop planning optimisation problem

Agricultural production is one of the most important activities
that humanity must undertake on a consistent basis. With growing
populations, human induced and natural climate change, it is essential
that analytic tools, such as the techniques available to optimisation
and data analytics, be used to ensure ongoing food security. Implicit
in this is the fact that long term planning horizons for crop planning
and harvesting must be considered and factored into the techniques
that provide decision support. For reviews of work in the area of
optimisation of agriculture and water use the reader is referred to
Oyebode, Babatunde, Monyei and Babatunde [5], Khadem, Rougé and
Harou [6], Gebre, Cattrysse, and Van Orshoven [7], and Doorn [8].

A good example of representing agriculture as an optimisation
problem was first introduced by Xevi and Khan [9]. They describe
and model a problem which aims to return a selection of crops for
an area (in their case, the Murrumbidgee Irrigation Area (MIA) in
New South Wales, Australia), that maximises a combined net revenue
across the chosen crops, while minimising crop variable costs and
groundwater pumping expenses. The latter were considered under three
separate scenarios of wet, dry and average annualised conditions. The
decision variable that their goal programming approach considered was
to determine the number of hectares of land that should be devoted
to a particular crop. They used a selection of fifteen crops that are
commonly grown in the case study region of the MIA. Their model only
considered a single year.

As noted by Lewis and Randall [10], there were certain issues
with the previous work that could be addressed. Specifically, in Xevi
and Khan’s model the relationship between water requirements and
groundwater pumping needed was not defined. Another issue was that
the goal programming approach was not able to examine trade-off
solutions between attainable net revenue and water usage. As such,
Lewis and Randall [10] extended the previous work by addressing these
two concerns in a revised model. They precisely modelled the allocation
of surface water and ground water as well as sensibly incorporating
variable costs into the costs objective. The important aspect of this work
was to add an environmental objective to ensure sufficient downstream
flows for environmental purposes. Other reforms included limiting
the output of certain crops, based on economic viability. The results,
particularly in the dry (minimal rainfall scenario) suggested that crops
that society has depended on, like rice and cotton, will not be viable if
desired environmental flows are to be maintained. While these results
were interesting, it was difficult to use this for long term planning
purposes.

To adequately address the crop planning problem above, a temporal
component needed to be added. According to Randall et al. [1] a
temporal optimisation problem is defined as: ‘‘an optimisation problem
in which all relevant temporal data is considered, as well as the
interactions and cumulative effects of these data’’ (p. 2). In effect, these
problems are a set of joined problems in which each member of the
set represents one time unit (such as a year). These time units are
sequential, and every time unit is represented in a defined range (such
as a decade). These problems recognise that there may be dependencies
between the members that will affect the objective value(s) and the
feasibility of constraints.

The temporal aspect was introduced by extending the original ‘‘an-
nual’’ expression of the problem across a number of years.1 A decision
vector is constructed, partitioned into several, successive years. Each
year consists of two components: (a) a vector of all of the possible
crops (16 in work to date) with each element containing the number

1 As a temporal measure, years were used for this problem, given the
lanning horizons that farmers use. Temporal optimisation applied to other
roblems will use different units. For example, in scheduling or planning
roblems, days may be a more appropriate unit.
2
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of hectares of land assigned to the crop and (b) a vector of all of the
months in that year with each element containing the amount of water
(in gigalitres) that will be released for environmental purposes. For
a 10-year planning horizon and 16 crops this leads to a 280-element
decision vector. Each crop has a total crop income that it can achieve
for each hectare planted, and the amount of water it will require to
grow, given the projected climate data for that year. These values
are summed together, i.e., the revenues from year 1 to year 10, are
totalled and represent that net revenue objective value. Similarly, the
environmental flow deficits for each year are summed to produce the
second objective value. This temporal expression of the problem is
described in Equations 8–14 (p. 4) of Randall et al. [1].

A trade-off surface generated by the solver will typically consist
of solutions having properties from high revenues with large water
usage, to lower revenues, but far more sustainable in terms of the
water required. Temporal components of the problem were defined as
conditions that need to have interactions amongst sequential years. In
this context, they related to the perennial plants.2 The two temporal
components were:

• Maturity—As the crop matures over a period of years, the yield
percentage will change. For example, after five years, grapes may
have a yield of 40% of the total potential crop, whereas this may
be 80% at seven years. This value is multiplied by the total crop
income for a unit of land that has been planted continuously with
the same crop for that period of time. This was complicated by the
fact that each new planting from a time period would begin its
own maturity cycle. When less area is allocated to a crop in one
year than previously, the most recently planted area is assumed
to be removed.

• Establishment and removal costs—If units of land (hectares) are
added to a crop, or removed from it, from year to year, appro-
priate establishment and removal costs will be subtracted from
that year’s total revenue. For example, if citrus trees are to be
removed this will require a significant amount of work and hence
expenditure.

It is important to note that temporal optimisation, for this problem,
could only accommodate one set of climate data. As there are valid
alternative climate models, the development of a robust version of this
concept was necessary, which is defined next.

3. Robust optimisation

Robust optimisation has been applied for both exact and heuristic
approaches. Given the nature of the problem in this paper, and the fact
that heuristic algorithms will be used, the focus will be placed on the
latter. However, in terms of the former, some well-known works are
described here.

Bertsimas and Sim [11] present a robust framework and show that
the degree of robust conservatism for potential constraint violation can
be incorporated into altered integer linear programs. Using a portfolio
and knapsack problem instances, they were able to adequately deter-
mine the probability of constraint violation and robust cost. Ben-Tal
and Nemirovsky [12] distinguish between hard and soft constraints for
robust problems expressed as linear programs. Using a robust counter-
part, they ensure that the former can be satisfied, even under uncertain
conditions. Gorrisen, Yanıkoğlu and Hertog [13] provide a practical
guide to using robust optimisation from an operations research oriented
perspective. In it, amongst other topics, they describe multi-stage and
adjustable robust optimisation, how to choose the uncertainty set and
what is truly meant by the worst case in a robust setting. Additionally,

2 These are plants such as grapes and citrus which can planted for two years
r more, but can exist and be productive potentially for decades.
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the different aspects of robust solutions (such as probability distribu-
tions and sampling methods) are set forth giving a basis for ways in
which the quality of different robust solutions can be compared.

Heuristic algorithms have often been used in solving large and in-
tractable problems, to provide approximate solutions in relatively short
periods of computational time [14]. Metaheuristic approaches, such as
evolutionary algorithms, are appropriate for real-world problems that
do not often have a single, clearly specified objective (they are multi-
or many-objective in nature), or are difficult (NP-hard) with moderate
size. The crop selection component of the problem considered here
can be considered a variant of the knapsack problem [15] in which
each crop (in each planning year) represents an item that may be
selected, but for which the quantity (1–120 k) must also be chosen,
subject to land area and water availability constraints. The additional
120 decision variables relating to environmental water flows further
add to the problem’s complexity.

While the concept of multi-criteria optima was first espoused in the
19th century [16] and Pareto optimality was formally defined at the
start of the 20th century, it was not until the publication of Pareto’s
work in English in 1971 [17] that its use began to grow rapidly in
the computational sciences. Now its theory is well established and
resources for its practical application are readily available [18]. The
outcome from the use of metaheuristic evolutionary algorithms for
multi-objective optimisation problems is a set of solutions that approx-
imate a Pareto-optimal set. As such, they are close to the achievable
envelope of feasible solutions.

In the context of real-world problems, uncertainties are inevitable:
they may arise in input parameters, environmental or operating con-
ditions, or the outputs generated (for example, from numerical mod-
elling.) Two main approaches to dealing with uncertainty are stochastic
optimisation [19] and robust optimisation [20].

To apply stochastic optimisation one requires some probabilistic
knowledge of the distribution of uncertainties [13], which is often
unavailable for real-world problems. As a case in point, the application
area of the work described in this paper does not provide this sort of
information.

Robust optimisation refers to finding optimal solutions for a par-
ticular problem that have least variability in response to probable
uncertainties. It does not require any probabilistic knowledge but in-
stead assumes that uncertain parameters arise from an ‘‘uncertainty
set’’. The instances of this set are denoted as scenarios [21].

Although these uncertainties are usually small perturbations, they
can have significant impacts on outcomes. Beyer and Sendoff [20]
identify that for certain optima in a search space, small perturbations
in solution values would lead to large changes in objective values. In
the context of real-world problems (such as engineering problems) that
have certain tolerances, this may lead to unacceptably large variations
in performance. Thus robust optimisation is concerned with finding
solutions that, when uncertain quantities are varied, display only small
amounts of change to the value of the objective function or functions.
While these solutions may not represent the global optima, they will
fare better under uncertainty as objective variation is minimised.

In their seminal work, Deb and Gupta [22] develop two definitions
for robustness for multi-objective optimisation and approaches to their
solution that they label Type I and Type II:

• For Type I, the problem objective functions are replaced by their
means over a given neighbourhood, giving ‘‘expectation values’’,
which are then minimised (assuming, without loss of generality,
that the objective functions are to be minimised.)

• For Type II, objective functions are constrained below a given
‘‘variance’’ threshold.

Using a number of standard multi-objective test functions and the
real-world welded beam problem running under Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II) [23], they found that Type II
3

was a more practicable approach. It was determined that more work
needed to be done to reduce the computational time required, par-
ticularly for calculating neighbourhood values. Section 4 expands on
these mechanisms to support their application to a broader range of
real-world problems. Robust applications since have largely followed
these perturbation-based approach models.

Central to these methods is an implicit assumption that problems
have some underlying ‘‘correct’’ solutions that have been perturbed
by features of the problem environment. This can be expressed as a
belief that the feasible solution set remains unchanged in different
scenarios [21]. If this does not hold for a given problem, the feasible
set is defined as the set of solutions feasible for every scenario. There
is another implicit assumption in this definition that, for practical
purposes, the perturbations are relatively minor.

There have been recent works that have moved beyond tolerances,
to allowing robust methods to consider changes in data and multiple
data sets. These data sets (scenarios) are either generated by random
perturbations of an original data set or are drawn from real-world
observations. Typically, the solver will consider each data instance
separately and generate different solutions that satisfy these. After
the solver has completed, post processing, by comparative metrics
and discussion, then determines how robust the solutions are. Good
examples of this type of approach are by Toklu, Gambardella and Mon-
temanni [24] and Toklu, Yanık, and Montemanni [25] when solving the
travelling salesman problem and vehicle routing problem, respectively.
Beh, Zheng, Dandy, Maier, and Kapelan [26] also take the novel
approach of using artificial neural networks to assess objective function
values and robust measures for each of the scenario solutions.

Ide and Schöbel [21] present a survey paper of robust applications
up to the year 2016. One of the most important findings is the differ-
ent types of solutions that robust applications produce. They refer to
solutions as being ‘‘flimsily robust’’ if they are only robust efficient in
a single scenario, or ‘‘highly robust efficient’’ if they are efficient for all
scenarios. They admit that many real-world problems are not likely to
have many highly robust efficient solutions. A further class of ‘‘light
robustness’’ is defined in reference to a ‘‘nominal’’ scenario, chosen as
‘‘most likely’’ or ‘‘most important’’.

For the problem addressed in this work, there are a set of chaotically
different, equally probable scenarios. No single scenario is considered,
a priori, more likely or important than others. Furthermore, the actual
likelihood of a particular scenario cannot be determined [27], i.e., the
problem is subject to ‘‘deep uncertainty’’ [28–31]. Perturbations are
sufficiently large that standard (non-robust oriented) algorithmic mech-
anisms are inadequate to produce anything other than ‘‘flimsily robust’’
solutions. It should be noted that the uncertainty affects the feasibility of
the solution. However, as there are no nominal parameter values, alter-
native algorithmic approaches focused on achieving minimal deviation
from such (c.f., Gabriel, Murat and Thiele [32]) are thus impractical.

In fact, there is still ‘‘no clear methodology on how to address robust
problems’’ [33] (p. 8). For the target problem, exceeding constraints
imposed by limited resources is not possible, and the consequences
of decisions that lead to infeasible solutions can be catastrophic in
financial terms, endangering the future viability of agricultural enter-
prises. In these circumstances, useful solutions must be highly robust
efficient, sometimes termed ‘‘strictly robust’’ [33]. Some computational
approaches to achieve useful solutions to the problem are described
in Section 4. The novel form of robust temporal optimisation (RTO)
described there aims to produce highly robust efficient solutions.

4. An expanded set of robust optimisation components

As outlined in Section 3, in the literature to date for both single- and
multi-objective optimisation, quite a few robust implementations relate
to solution tolerances. This means minimising the variation across a
sample of neighbouring points in state space. While this is clearly
useful, this paper takes a broader approach. In general terms, a ‘‘robust’’
solution is robust with respect to some aspect of the problem that varies,
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Table 1
An expanded set of robust optimisation components.

Description

Quality measures (𝑓 (𝑥))

Original objective(s) In cases where robustness is sought with respect to implementation tolerance,
the solution’s original value(s) may be used; on its own this offers no guarantee
of robustness

Average Type I as defined by Deb and Gupta [22]
Median An alternative to average that may better suit problems where the variability is

intrinsic to the problem and there is no original, ‘central’ solution

Variability measures (𝑣𝑎𝑟(𝑥))

Range Type II as defined by Deb and Gupta [22]
Standard deviation Combines features of Type I and II by capturing both variability and central

tendency
Maximum variation per
component

Where a solution has components for which variation (range, standard
deviation, etc.) can be measured independently, taking the maximum variation
across components may be suitable. (For the multi-year crop planning problem
each year is a component.)

Controls

None No direct control over robustness is employed. If average or median is used as a
quality measure this will implicitly respond to some variation in solution quality

Constraint Solutions are considered infeasible if the variability measure exceeds a
user-defined threshold: 𝑣𝑎𝑟(𝑥) > 𝑡𝑜𝑙 (part of Deb and Gupta’s Type II)

Penalty A weighted penalty is applied to the selected quality measure based on the
degree of variability: 𝑓 (𝑥) −𝑤 × 𝑣𝑎𝑟(𝑥)

Objective The variability measure is treated as an additional objective, to be minimised
with implementation tolerance being just one example. This idea, as
seen in the previous section has been emergent in the literature and ex-
amples include changing data files, as has been covered in Section 3. A
robust optimisation algorithm must select which aspects of the problem
it seeks to be robust to. In the example agricultural planning problem
solved in the present work, solutions need to be robust to variations in
climatic conditions over multiple years, represented by the variability
in predictions from different climate models. Each of these models can
be considered as a separate scenario.

The range of mechanisms for measuring and ensuring robustness is
also broader than the Type I and II definitions proposed by Deb and
Gupta [22]. Type I is not a measure of robustness, but of the central
tendency of a solution’s objective values when implemented, while
Type II is one measure of robustness – the range of observed objective
values – conflated with a particular, constraint-based mechanism for
ensuring robust solutions. Considered more broadly, this implies the
existence of various components to a robust optimisation algorithm, a
subset of which is summarised in Table 1.

Consequently, and in consideration of the above, discovering robust
solutions for a problem requires at least four attributes:

1. How is robustness defined? Robustness is, in fact, a relative
measure and must be defined relative to a particular quantity.
The work in this field to date has had an emphasis on imple-
mentation robustness whereby additional sample solutions nearby
in the design space are generated so as to determine the level
of variation. The present work, however, focuses on robustness
with respect to different climate scenarios with each solution
being re-evaluated under each scenario.

2. What is the measure of a solution’s quality? This could be the
original solution’s value (possible when considering implemen-
tation robustness, but inappropriate for the current problem of
crop planning), or the average or median over sampled objective
values.

3. How is variability (a lack of robustness) measured? While range
has been a commonly used measure in past work, standard
deviation can be a more sophisticated measure of spread that
does not need a central point (and hence is suitable in situations
where a single ‘original’ solution does not exist or when a single
solution can be evaluated under different, equally likely sce-
narios). Sample standard deviation should be used. Approaches
4

for implementation robustness only ever sample a subset of
neighbouring solutions. In the present crop planning problem,
there are many potential climate models that may exist and only
a subset are being used. Additionally, if a problem has multiple
components for which objective values may be measured sep-
arately, variability may be measured for each and a summary
measure (like maximum) taken of that.

4. How can robustness be enforced? The aim is to encourage or
enforce robust solutions throughout the search process. Options
include using no active control (allowing the summary quality
measure to account for any lack of robustness), treating robust-
ness as a constraint, using variability as a penalty, or adding
robustness as an additional objective to be minimised.

It may be noted that, consistent with the approach of Mirjalili, Lewis
et al. [34,35], all the robustness methods implemented make use of
existing solution samples. No additional solutions are constructed or
sampled in order to assess the degree of robustness.

5. A robust temporal framework

Referring to the working definition of temporal optimisation in Sec-
tion 2, an inevitable part of it is projecting conditions into the future.
For the problem under consideration, these are the climate conditions
which affect a crop’s water needs. Any such projections will have a
degree of uncertainty attached to them. Hence the need for a set of
tools and concepts that are in the realm of robust optimisation [2,36].

As previously discussed, Beyer and Sendoff [20] describe the chief
characteristics of robust optimisation as being that it is immune to
parameter and model sensitivity. The temporal version of the water
management problem has a number of variables/parameters that can
change with time. These are any of those that are now augmented
by a 𝑦 (year) index. The major form of uncertainty inherent to this
model comes from climate, in particular the prediction of rainfall
and temperature over the coming years and decades. In the temporal
model of this problem, these values are used to calculate the water
requirement (𝑊𝑅𝐸𝑄) values for each crop.

Randall et al. [1] based their temperature and rainfall predictions
on a large study conducted into climate ensemble methods [37], which
focused on New South Wales and the Australian Capital Territory.
This is referred to as NARCLiM (NSW/ACT Regional Climate Modelling
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Project) and covers the area of interest, namely the Murrumbidgee Irri-
gation Area (MIA). Twelve different climate models are developed for
the region in the timeframes of 2020–2040 and 2060–2080. The work
herein will concentrate on the first decade of each of these ranges. The
12 models are all combinations of four global models downscaled by
three regional models. Each of these models predicts monthly rainfall
and temperature in a defined sub-region. The output of each model
can be considered as a separate scenario. The temperature and rainfall
values are used to calculate the 𝑊𝑅𝐸𝑄 values, expected river flows
and cost of groundwater pumping necessary for the problem. The main
question is how to sensibly include these climate change models as part
of a generalisable robust approach. Three initial candidate approaches
have been identified below.

For this problem, and others like it, solutions in the local neighbour-
hood in decision space (defined by smooth changes in crop allocations
or water usage) are very similar to each other. Variation in solution per-
formance comes from the actual climatic conditions encountered when
it is implemented in the field, which is captured by using different data
sets to predict those values. As introduced in Section 4, this approach
will be robust with respect to climate change models. Accordingly, each
solution generated by the solver is evaluated over all possible scenarios
(in this case climate models) simultaneously rather than generating
separate solutions for each scenario. These climate models define the
relevant neighbourhood (which has a size of 12).

The main aims of this form of robust optimisation is to (a) find
solutions that can satisfy all models (data sets) and (b) minimise the
variation for the two objective values across these models. Therefore,
in terms of the latter, rather than use difference from a central point
to characterise dispersion, range or sample standard deviation are used
instead. This makes intuitive sense for the problem under consideration
as solutions are sought that, across the various climate models, are very
close to one another in terms of net revenue (𝑁𝑅) and environmental
low deficit (𝐸𝐹𝐷). While these may not necessarily produce the best
olution in either objective, at least farm and regional planning can be
ndertaken with greater certainty. The normal robust dominance rules
ill then apply to determine if the solution will be eligible to be part
f the attainment surface. If the solution is not feasible under the other
limate models, then it simply needs to be reported to be infeasible (as
t would fail any robustness test).

The three approaches examined here are a subset of the many
ossible defined by the components in Table 1. All three use average
cross the climate models’ objective values as the quality measure for
olutions (all models are considered equally likely), with two applying
penalty-based approach to control the degree of robustness. This gives

hree approaches, illustrated below and in Algorithm 1:

1. Average: Solutions are assigned the average of the objective
measures across climate models, with no direct control over
robustness. This is the baseline, control setting, similar to Deb
and Gupta’s Type I.

2. Range: Each solution’s objectives are penalised by a weighted
range across models, hence 𝑁𝑅 = 𝑎𝑣𝑔(𝑁𝑅) −𝑤 ⋅ range(𝑁𝑅) and
the equivalent for 𝐸𝐹𝐷, where 𝑤 is the weight (a parameter).

3. Maximum annual variation: Variation (in this case, standard
deviation) is measured across models for each year in the plan-
ning horizon, and the maximum of these is used as a weighted
penalty.

Note that given the robust optimisation components identified in
Table 1 many other possibilities exist to construct a robust technique
for this problem. The above three examples avoid the need to pre-
select an acceptance threshold (as would be used in a constraint-based
approach) and are good as an initial investigation. Integrating these
5

into the overall solver framework yields Algorithm 2.
Algorithm 1 Robust Temporal Solution Evaluation
for 𝑠 ∈ 𝑆 do

(𝑁𝑅𝑠, 𝐸𝐹𝐷𝑠, 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑠) ← Evaluate the solution using scenario 𝑠
end for
𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 ← 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑠 ∀ 𝑠 ∈ 𝑆
(𝑁𝑅,𝐸𝐹𝐷) ← Average (𝑁𝑅𝑠, 𝐸𝐹𝐷𝑠) across 𝑠 ∈ 𝑆
if 𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 is Average then

(𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑁𝑅, 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝐸𝐹𝐷) ← (0, 0)
else if 𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 is Range penalty then
𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑁𝑅 ← 𝑤 ⋅ range(𝑁𝑅𝑠∈𝑆 )
𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝐸𝐹𝐷 ← 𝑤 ⋅ range(𝐸𝐹𝐷𝑠∈𝑆 )

else if 𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 is Maximum annual variation then
𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑁𝑅 ← 𝑤 ⋅ argmax{stdev(𝑁𝑅𝑦

𝑠∈𝑆 ), 𝑦 ∈ 𝑌 𝑒𝑎𝑟𝑠)}
𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝐸𝐹𝐷 ← 𝑤 ⋅ argmax{stdev(𝐸𝐹𝐷𝑦

𝑠∈𝑆 ), 𝑦 ∈ 𝑌 𝑒𝑎𝑟𝑠)}
end if
(𝑁𝑅,𝐸𝐹𝐷) ← (𝑁𝑅,𝐸𝐹𝐷) − (𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑁𝑅, 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝐸𝐹𝐷)

Algorithm 2 Robust Temporal Optimisation Framework
𝑆 ← Load problem scenarios
𝑃 ← Generate 𝑚 solutions
while termination criteria not met do

𝑃 ′ ← Generate 𝑛 solutions from 𝑃 (using any suitable EA)
for 𝑠 ∈ 𝑃 ′ do

Evaluate robust objective value of 𝑠 using Algorithm 1
end for
𝑃 ← Non-dominated sorting of 𝑃 ∪ 𝑃 ′

end while
Output 𝑃

6. Computational experience

As mentioned above, the aim of this work is twofold. The first, and
most important question is, can a robust model and implementation be
produced such that solutions will be feasible across all of the climate
models that are presented to it? The second question is, do the proposed
methods minimise variations across the two objective values of 𝑁𝑅 and
𝐸𝐹𝐷?

In regard to the first question, initial experimentation was under-
taken in which, for each decade data file, the 12 climate models were
each run separately and the final archive of each of these 12 runs
preserved. After this, each of the solutions in a particular archive
was evaluated against the other 11 climate models. The aim was to
determine if any of the solutions were feasible across more than one
model. For the data files used here (described next), none of the solutions
were generally feasible. In essence, there was zero robustness exhibited by
the existing temporal optimisation approach as developed by Randall
et al. [1].

This section applies the robust techniques described in Section 5
with two decade-long data files. As mentioned, the extent to which
the generated solutions are now valid and feasible across the climate
models will be tested, as well as the degree to which they vary. In
a practical sense, the latter is very important as it will point to crop
mixes that will give more certainty to farmers and regional planners,
no matter which of the climate change models turns out to be correct.

6.1. Temporal decadal data

As previously indicated, the set of climate change models used in
this study are from the NARCliM Project 1.0 [37]. This is a research
partnership between the New South Wales and Australian Capital Ter-
ritory state governments in Australia and the Climate Change Research

Centre at the University of New South Wales. It incorporates four
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Fig. 1. Predicted monthly water inflows for the 12 climate models (four model families, each with three regional models). Seasonal patterns such as high winter rainfall are
evident, but considerable disagreement exists between models about the timing of precipitation.
global climate models named CCCMA3.1, CSIRO-MK3, ESCHAM5 and
MIROC3.2. Each of these is dynamically downscaled by three regional
climate models, thus giving 12 models in total. The complete data sets
include predictions for three time periods: 1990 to 2009 (base), 2020
to 2039 (near future), and 2060 to 2079 (far future). The predictions
for each model consist of daily temperature and precipitation levels.
Meteorological data are available on a 10 km grid across the NARCliM
domain, which covers most of South East Australia.

For this study, the predominantly future decadal periods of 2020–
2029 and 2060–2069 are used. Note that in the previous work of
Randall et al. [1], only the model CCCMA3.1_R1 (the CCCMA global
model combined with the first local downscaled model) was used as
it was deemed an average model. This is now simply one of the 12
alternative models that the robust temporal framework uses.

As in the precursor work [1], water requirements and projected
income per hectare for 16 crops are used: rice, wheat, barley, maize,
canola, oats, soybean, winter pasture, summer pasture, lucerne, vines,
winter vegetables, summer vegetables, citrus, stone fruit, and cotton.

As mentioned above, solutions produced under one climate model
are generally infeasible when re-evaluated under other climate models.
This is due to disparities in the timing of rainfall and resultant monthly
inflow totals predicted by each model (see Fig. 1), which causes solu-
tions optimised for one model to fail a groundwater pumping constraint
as they require more water than is (legally) available for one or more
of the 120 months in the planning horizon. Fig. 1 presents a qualitative
view of the disagreement between climate models’ rainfall predictions,
which concerns not just annual or decadal total inflow, but the months
in which it is predicted to occur. As crops’ water needs vary by month,
the timing of inflows is important for which crops can be effectively
grown.

Consequently, modified instances were created that used the mini-
mum per month inflow across all 12 models (instances still differed in
crop water requirements and anticipated cost of groundwater pumping
based on temperature estimates). This is a form of a priori robustness,
because solutions are guaranteed to be feasible with respect to wa-
er consumption and the groundwater pumping constraint. However,
hey will also be highly conservative—a point that will require future

investigation.
Given that the modified instances all share a common set of inflows
6

there will be no observable variation in the 𝐸𝐹𝐷 objective in the
present study. Therefore, the remainder of the investigation focuses on
the robustness of the net revenue 𝑁𝑅 objective.

6.2. Experimental design

The set of experiments in this paper set out to test the notion
that the revised form of robustness produces valid solutions across
a range of models (or data sets) and to characterise the degree of
variability that each of the three measures produces (from Section 5).
In particular, the experiments seek to explore the impacts of the choice
of penalty-based robustness approach and associated penalty weights.
Both range and standard deviation were investigated as measures of
variability, with range used in combination with the final solution value
and standard deviation used with the maximum per-year measure of
variability across models. When using the range approach, the penalty
weight 𝑤 ∈ {0.1, 1, 10}, while when using the maximum annual variation
approach 𝑤 ∈ {1, 10, 100}, as the base penalty is an order of magnitude
smaller than the range, being the variability for a single year instead
of across the entire decade.

The solver used is multi-objective Differential Evolution (DE) ap-
plied to the temporal crop planning problem defined in Randall
et al. [1]. This was effective at producing trade-off solutions to this
problem for a single climate scenario. The solver uses the solution
generation mechanics of DE/rand/1/bin [38] with newly generated
and archive solutions filtered using non-dominated sorting at each
iteration. The DE parameters were 𝐶𝑟 = 0.5 and 𝐹 = 0.8 (as per Randall
et al. [1]). In this work, 11 randomised trials were performed for
each combination of robustness approach and penalty weight (where
applicable) for the two decadal instances 2020–29 and 2060–69.

Search progress in objective space was measured by comparing
the generational distance (GD) [1,39] between the attainment surface
defined by the average 𝑁𝑅 value per solution and an artificial Pareto
front generated by selecting the best trade-off solutions produced across
all approaches. The values reported are thus indicative of relative
performance more than absolute performance. To ensure both objec-
tives carry equal weight, objective values are normalised within the

experimentally observed bounds for each decadal problem.
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Fig. 2. Generational distance for the Average robustness approach over time. Error bars show the 95% confidence interval on the plotted averages (across 11 trials).
Table 2
95% confidence intervals on GD by robustness approach and approximate performance rank (bold indicates
a statistically significant result).
Robustness approach 2020–2029 Rank 2060–69 Rank

Average [0.0022, 0.0040] 3 [0.0022, 0.0035] = 5
Range, 𝑤 = 0.1 [0.0026, 0.0047] = 4 [0.0019, 0.0035] = 5
Range, 𝑤 = 1 [0.0020, 0.0036] = 1 [0.0017, 0.0032] = 3
Range, 𝑤 = 10 [0.0028, 0.0051] = 4 [0.0016, 0.0027] = 1
Max annual variation, 𝑤 = 1 [0.0029, 0.0046] = 4 [0.0017, 0.0033] = 3
Max annual variation, 𝑤 = 10 [0.0021, 0.0037] = 1 [0.0013, 0.0029] = 1
Max annual variation, 𝑤 = 100 [0.0046, 0.0064] 𝟕 [0.0021, 0.0034] = 5
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6.3. Results

Initial investigation found that, regardless of robustness approach
used, the algorithm achieved most of its progress within 100,000
iterations (with 1,000,000 solutions being generated). Doubling the
iterations only led to a further improvement of the order of 10−3 in
the generational distance measure. Fig. 2 shows the average GD for
solution sets produced by the Average robustness approach over time.
While the algorithm continues improving beyond 100,000 iterations,
the improvement is slight and in practice the relative performance
of the different approaches (depicted in later figures) is relatively
stable. This provides confidence that the attainment surfaces shown
in the figures are close approximations to the Pareto-optimal set of
solutions, the envelope of achievable, feasible solutions. Hence, all
other experimental runs are stopped after 100,000 iterations.

Table 2 shows the 95% confidence intervals on the GD achieved
by each robustness approach for the two problems. For 2020–29, both
Range and Max annual variation with moderate penalty weights produce
he best quality attainment surfaces, closely followed by Average, with
Max annual variation with 𝑤 = 100 (the maximum tested) producing
the poorest attainment surfaces (a statistically significant result based
on pairwise t-tests with 𝛼 = 5%). There are no statistically significant
ifferences in GD for the 2060–69 problem, although there the data
uggest that Range, 𝑤 = 10 (its maximum) and Max annual variation,
𝑤 = 10 achieved superior results, while Average and Max annual
ariation, 𝑤 = 100 performed relatively poorly.

Figs. 3 and 4 show the median attainment surfaces (in terms of GD)
roduced by each approach for 2020–29 and 2060–69, respectively.
he top-left plot shows the surfaces defined by the 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑁𝑅) of each
olution, while the remaining plots show the surfaces for each approach
ith error bars showing 𝑟𝑎𝑛𝑔𝑒(𝑁𝑅) for each solution. Note that the
inimum achievable 𝐸𝐹𝐷 is 936,539 for 2020–29 and 2,002,946 for
060–69, and that every robustness approach had one or more (often
ll) trials discovering solutions with that minimum 𝐸𝐹𝐷. Illustrative
bjective values from different regions of the attainment surfaces for
he best performing approaches (in terms of generational distance, not
ecessarily in terms of robustness) are presented in Table 3.

Firstly, it should be remembered that solutions are robust in 𝐸𝐹𝐷
y design. Success in producing solutions robust in 𝑁𝑅 is measured
7

y examining the average per-solution 𝑟𝑎𝑛𝑔𝑒(𝑁𝑅). As the error bars
n Figs. 3 and 4 show, increasing the penalty weight for Range and
ax annual variation can reduce the amount of variation in 𝑁𝑅. This

s further illustrated in Fig. 5, which shows the average per-solution
𝑎𝑛𝑔𝑒(𝑁𝑅) of solutions produced by each approach, within different
𝑅 bins. Note that the axes in the figure are scaled to improve read-

bility, as the focus is on the relative differences between robustness
ontrol measures, not the absolute differences between approach or
ecadal problem instances. The observed 𝑟𝑎𝑛𝑔𝑒(𝑁𝑅) is proportional to
𝑣𝑒𝑟𝑎𝑔𝑒(𝑁𝑅) (and the amount of land allocated to cropping), so this
ost hoc measure of performance cannot be calculated across an entire
olution set. Both Range and Max annual variation with their highest
enalty weights produce clearly more robust solutions on the 2020–
9 problem, which is also true for Range, 𝑤 = 10 on the 2060–69
roblem. It is not evident why Max annual variation, 𝑤 = 100 did not
roduce more robust solutions (in terms of 𝑟𝑎𝑛𝑔𝑒(𝑁𝑅)) on the 2060–69
roblem, but inspection of the solutions produced by the two penalty-
ased approaches suggest that Max annual variation, 𝑤 = 100 reduced
ariability in the penalty values across the population of solutions,
hich consequently makes the penalty ineffective (all solutions’ 𝑁𝑅
re reduced by similar amounts).

Given the lack of directly comparable robust techniques for this
roblem, additional experiments were conducted using the most ef-
ective robustness approach observed here with a strongly negative
eight, 𝑅𝑎𝑛𝑔𝑒,𝑤 = −10. This makes the algorithm seek less robust

olutions, thereby providing an approximate upper bound on the de-
ree of variability in the 𝑁𝑅 objective, which is plotted in black in
ig. 5. The degree of variability is ∼2.4% (of a solution’s 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑁𝑅))
hen using no active robustness control, ∼1.7% when using the best
erforming control (𝑅𝑎𝑛𝑔𝑒,𝑤 = 10) and ∼3% when actively seeking less
obust solutions. That the observed variability for techniques without
ctive control over robustness (and those which penalise variability too
eakly) lie approximately half way between the approximated upper
ound and the best results observed suggests that the penalty-based
echniques are able to find genuinely robust solutions for this problem.

It is interesting that while Max annual variation, 𝑤 = 100 produces
ore robust solutions on 2020–29, its performance in terms of GD (a
easure of the overall quality of the solutions produced) is the poorest,

uggesting that there can be a trade-off between seeking robustness and
earch progress.
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Table 3
Sample objective values for individual solutions from median trials for approaches achieving equal best GD performance (not
best robustness). Objective region ‘Best 𝐸𝐹𝐷’ is a solution with equal-best 𝐸𝐹𝐷 but highest 𝑁𝑅 within an attainment surface.
Robustness approach Objective 𝐸𝐹𝐷 𝑁𝑅 ($B) 𝑁𝑅

Region (PL) Average Min Max Range

2020–29
Range, 𝑤 = 1 Best 𝐸𝐹𝐷 0.94 1.01 1.01 1.03 1.9%

Midpoint 1.10 1.45 1.43 1.47 2.3%
Max 𝑁𝑅 1.92 1.88 1.86 1.91 2.4%

Max ann. var., 𝑤 = 10 Best 𝐸𝐹𝐷 0.94 1.00 0.99 1.02 2.8%
Midpoint 1.13 1.49 1.47 1.51 2.4%
Max 𝑁𝑅 2.08 1.97 1.95 2.00 2.5%

2060–69
Range, 𝑤 = 10 Best 𝐸𝐹𝐷 2.00 0.63 0.62 0.63 2.1%

Midpoint 2.14 1.13 1.12 1.14 1.6%
Max 𝑁𝑅 3.47 1.64 1.63 1.65 1.6%

Max ann. var., 𝑤 = 10 Best 𝐸𝐹𝐷 2.00 0.76 0.75 0.77 2.4%
Midpoint 2.11 1.12 1.11 1.14 2.3%
Max 𝑁𝑅 2.91 1.49 1.46 1.50 2.5%
Fig. 3. Median attainment surfaces (selected by GD) for each robustness approach on 2020–29 problem, with 𝑁𝑅 objective range shown. The median attainment surface for
Average is reproduced, faded, on each plot to provide a reference.
7. Discussion

The highly robust efficient solutions produced above required highly
8

conservative estimates of water availability, a design decision that will
(unnecessarily) constrain crop production and revenues. At the same
time, the results confirm that crop selections in the future will need to
change in response to the deep uncertainty posed by climate change.

Each of these issues is discussed below.
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Fig. 4. Median attainment surfaces (selected by GD) for each robustness approach on 2060–69 problem, with 𝑁𝑅 objective range shown. The median attainment surface for
Average is reproduced, faded, on each plot to provide a reference.
7.1. Achieving robustness at the expense of quality

Using the novel robust techniques developed in this paper, the
solutions produced were ‘‘highly robust efficient’’. However, to achieve
this it was necessary to use the ‘‘worst case’’, minimal inflows across
the models, which adversely affects solutions achieving higher net rev-
enues. As suggested by Ide and Schöbel [21], highly robust efficiency
has come at the expense of solution quality. In contrast, while standard
temporal optimisation can produce solutions that achieve much better
outcomes in individual scenarios, they only produce flimsily robust
solutions, where solutions are highly unlikely to be feasible under other
climate models. The extent of this degradation in outcomes is illustrated
in Fig. 6.

To ameliorate the effects of using the most conservative inflow,
a variety of options are available. Inflows could be modelled on an
annual basis as an aggregated/smoothed water availability. Fig. 7
demonstrates the effect of accumulating available water annually. Com-
pared to the data in Fig. 1, the discrepancy between maximum water
accumulated and minimum is of the order of a factor of 3, rather than
a factor of 12. From within this ‘‘annual water budget’’ water could be
released from upstream dams month-by-month as demanded for crop
needs and desired environmental flow events, based on environmental
9

need analyses. The problem model itself can also be refined including
the allowance for more realistic modelling of seasonal flows and the
effects of dam storage [40]. The question of drought-proofing by use of
dams and its feasibility over multi-year water shortages is a critical one,
not only in Australia, but all arid and semi-arid environments across the
world.

7.2. Implications for cropping in the future

The analysis of the solutions, in terms of which crops are being
planted when, is highly instructive. It gives us a guide to the crops that
are going to be suitable for production over the coming decades, and
those which are not. The latter crops essentially clutter solutions with
intermittent, small parcels of land, and do not contribute significantly
to the net revenue or environmental flow deficit. Thus, these can be po-
tentially eliminated with the revised data sets having only those crops
that have been deemed significant. It is likely that clearer indications
of how crop mixes need to change into the far future will be evident.
It also has the advantage that the problem size will be significantly
reduced, and further iterations of the algorithm will be possible, for
the same expenditure of computational resources.

To facilitate this analysis, principles of visual analytics [41] have
been applied. ‘‘Heatmaps’’ have been derived from the numerical data
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Fig. 5. Average 𝑟𝑎𝑛𝑔𝑒(𝑁𝑅) of solutions within different 𝑁𝑅 bins by robustness approach and planning decade.
Fig. 6. Median attainment surfaces produced using robust approach (Max annual variation, 𝑤 = 10) and when optimising for a single climate model [1].
of the area of land devoted to individual crops in particular years,
for the decade 2020–2029, and contrasted with the decade 2060–
2069, displayed in Fig. 8. The heatmaps are divided into one showing
broadacre crops and another for the perishable commodities that have
been subject to constraints on maximum area of cultivation. It should
be noted that colour intensity is thus quite different between these two
classes, and they should be interpreted independently. In addition, two
sets of heatmaps have been generated, for solutions maintaining equal
best 𝐸𝐹𝐷 (upper row) and those that attain maximum net revenue
(lower row).

It can be seen immediately that, if water efficiency is considered
important, the profitable cultivation of broadacre crops is significantly
reduced by 2060. Even if more emphasis is placed on net revenue, as
in the lower set of maps, the cultivation of cotton is still deprecated,
with the exception of during the wettest years. Canola has become the
major, surviving, broadacre crop.

The foundation of significant financial returns appears to be in
horticulture. In the current models used in this work, these crops are
10

subject to constraints on their areas of cultivation. Investigation needs
to be made into the implications of these preliminary findings and the
relationships with market forces to ensure realistic recommendations
can be derived for planning future profitable farming in the area con-
sidered in this case study. The significant contribution of the cultivation
of stone fruit to future revenues also bears further consideration.

These results, in themselves not the intended primary contribution
of the work due to their preliminary nature, give some indication of
the utility of tools based on the methods and approaches proposed.
While useful to assist decision making on the part of individual farmers,
they can also provide guidance for regional policy-making in terms of
allocation of scarce water resources. Inspection of Fig. 7 indicates the
projected decline in available inflows, making this a policy issue of
increasing importance. The possible changes required in agricultural
enterprises may also be of significance in decisions of allocation of
financial capital and fiscal policy regarding assistance with climate

change adaptation.
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Fig. 7. Predicted annualised water inflows for the 12 climate models exhibits smaller variation between models than predicted monthly inflows (shown in Fig. 1).
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7.3. Dealing with uncertainty

The problem considered in this work can be characterised as having
‘‘deep uncertainty’’. Approaches structured around Scenario-Focused
Decision Analysis [29] have shown promise in dealing with problems
of this nature, and may prove effective in this context. In addition,
Roach et al. [42] have compared and contrasted Info-Gap Decision-
Making (IGDM) methods with robust optimisation approaches, with
particular application to the closely allied problem of water resource
management. Subject to the ability to adequately formulate objective
function risk thresholds for the problem considered in this paper,
consideration may be given to IGDM.

When considering long-term planning, Walker et al. [30] emphasise
the importance of plans being adaptive. As changing climate evolves, it
may be possible to predict with increasing certainty which of several fu-
ture climate scenarios are more likely, and adapt agricultural planning
decisions accordingly. The potential outcomes of such an approach are
worthy of further study.

8. Conclusions

Real-world problems are built around extensive forward planning
and usually include elements of uncertainty. Robust temporal opti-
misation presents a set of techniques to address this systematically
for uncertain environments. For the agricultural planning problem in
this paper, varying crop mixes over extended timeframes were able
to be derived that optimised overall revenue with minimal water
deficit. Importantly, the amount of variation in net revenue due to the
uncertainty of climatic conditions can be reduced by penalising less
robust solutions. This was achieved by developing new robust temporal
objective measures. The solutions that the solver produced, despite the
particular robust method used, can all be classified as highly robust
efficient. Of all of these, the range-based penalty with weights 1 and
10 seemed to show the most promise, able to encourage robustness
without impeding overall search progress, but additional variations on
robust mechanisms need to be explored.

There are a number of directions that this initial work can and
should be taken. The framework for developing different robust tech-
niques in Section 4 allows for many different types of robustness to
11
be defined. These need to be compared for robust performance on the
data sets used in this paper. Additionally, the enhanced concept of
robustness developed in this paper needs to be explored in problems
beyond the domain of agriculture. Use of alternative EAs, such as
NSGA-II [23], should also be investigated to explore the interaction
between solver and robustness controls.

In terms of the problem itself, there are a number of significant
directions for future work, some of which will be mentioned here.
Initially, there needs to be improved/smoothed modelling of water
inflows so that the discrete allocation to months does not create an
unduly pessimistic prediction produced by taking the minimum across
models, which may exclude novel and useful robust solutions. Addi-
tionally, climate change affects more than just temperature and rainfall
levels. Some of the areas of particular concern are yield, quality and
pest/disease load of the crops being produced. These factors influence
price and hence have a direct bearing on the net revenue objective.

In addition, the structuring of the problem, as defined by Randall
et al. [1], needs to be reformulated. At present, it simply allocates
hectares of available land to crops each year considered in isolation.
However, land, and in particular soil, has certain characteristics that
yield better outcomes if certain crops are grown at certain times, and
in certain sequences (to preserve nutritive value). Therefore, the focus
needs to shift to decision values being based on land management
units [43] instead. These will take into account physical characteristics
of the land to better suit various crops and also allow for crop rotation
sequences to be planned.
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Fig. 8. Average crop area by year for selected solutions produced by the median trial with Range, 𝑤 = 1 for 2020–29 (left column) and 𝑤 = 10 for 2060–69 (right column). The
top row are solutions with the highest 𝑁𝑅 but equal best 𝐸𝐹𝐷, bottom row are solutions from the upper extreme of those attainment surfaces (max 𝑁𝑅, max 𝐸𝐹𝐷).
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