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In many fields of science, it is often impossible to preserve the information about the phase 
of the electromagnetic field, and only the information about the magnitude is available. This 
is known as the phase problem. Various algorithms have been proposed to recover the infor-
mation about phase from intensity measurements. Nowadays, iterative algorithms of phase 
retrieval have become popular. Many of these algorithms are based on modulating the object 
under study with several masks and retrieving the missing information about the phase of an 
object by applying mathematical optimization methods. Several of these algorithms are able 
to retrieve not only the phase but also the magnitude of the object under study. In this study, 
we investigate the effect of the range of modulation of a mask on the accuracy of the retrieved 
magnitude and phase map. We conclude that there is a sharp boundary of the range of modu-
lation separating the successfully retrieved magnitude and phase maps from those retrieved 
unsuccessfully. A decrease in the range of modulation affects the accuracy of the retrieved 
magnitude and phase map differently.
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1. INTRODUCTION

Due to the extremely rapid oscillations 
of the electromagnetic field [1], it is often 
impossible to preserve the information 
about the phase of the field, and only the 
information about the magnitude is avail-
able [2]. This is widely known as the phase 
problem and is encountered in many fields 
of science. The information about the phase 
of the diffracted field, however, is very 
important to retrieve the structure of the dif-
fracting object [3]. In order to overcome the 
phase problem, various algorithms of phase 
retrieval have been proposed. Historically, 
the first algorithm proposed to retrieve the 
phase of an object from diffraction patterns 
was the Gerchberg-Saxton algorithm based 
on alternating projections [4]. Later, Fienup 
modified the Gerchberg-Saxton algorithm 
by replacing some of the constraints in the 
real domain with other constraints in accor-
dance with the measured Fourier magnitude 
[5]. The Fienup algorithm is itself divided 
into two different subversions [6]. The 
Gerchberg-Saxton and Fienup algorithms 
were followed by the transport of intensity 
equation (TIE) [7]. In TIE, two intensity 
measurements at adjacent planes are suffi-
cient to retrieve the phase of an object. TIE 
has also several versions like standard TIE, 
higher-order TIE and Gaussian process TIE.

Today, many iterative phase retrieval 
algorithms have been developed. An itera-
tive algorithm PhaseLift requires modulat-
ing the object under study by a very limited 
number of masks and recovers the structure 
of the object from coded diffraction patterns 
under very noisy conditions [8], [9]. The 
original solution to PhaseLift is based on 
convex optimization; however, it was later 
optimized using low-rank Riemannian opti-
mization methods [10]. PhaseLift formu-
lates phase retrieval as finding a rank-one 

matrix. An algorithm PhaseCut [11] may be 
seen as a modification of PhaseLift. Phase-
Cut separates phase and magnitude vari-
ables and has been shown to be more stable 
than PhaseLift in the presence of noise. 
An algorithm SR-SPAR using sparsity in 
a complex object domain allows achieving 
superresolution about a quarter wavelength 
[12], while an algorithm GESPAR is able to 
recover a sparse object from intensity mea-
surements and repeatedly updates the sup-
port of the object to avoid getting stuck [13]. 
While the aforementioned algorithms have 
been primarily developed to solve the phase 
problem, as the name suggests, several of 
them, e.g., PhaseLift, SPAR and GESPAR 
are also able to retrieve the complex field, 
i.e., the magnitude of the object along with 
the phase. As already mentioned, the algo-
rithm PhaseCut separates the phase and 
magnitude of the object to be recovered. 
Generally, the magnitude retrieved by algo-
rithms of phase retrieval has been studied 
minimally [14], [15].

In this study, we simulated the retrieval 
of a complex object with the algorithm 
PhaseLift and studied its accuracy depend-
ing on the range of modulation of pure 
phase masks. We chose the algorithm 
PhaseLift for its several advantages com-
pared to other algorithms. As already men-
tioned, it requires a smaller number of 
modulating masks compared to other algo-
rithms. Candes and Huang [8]–[10] showed 
that six modulating masks were sufficient 
for successful phase retrieval by PhaseLift. 
We have shown previously that four ampli-
tude masks generated from a single mask 
are sufficient for reasonable phase retrieval 
[16], while other algorithms require all 
masks being different. PhaseLift is also 
able to retrieve the phase of an object from 
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very sparse data suggesting that imaging 
cameras of low bit depth are sufficient for 
capturing diffraction patterns. As far as the 
authors know, the performance of Phase-

Lift has been studied for different types and 
number of modulating masks; however, the 
effect of the range of modulation on its per-
formance has never been studied before.

2. METHODS

2.1. Phase Retrieval

A two-dimensional complex object to 
be retrieved is given by

 (1)

while its vectorized form is given by

 (2)

where 1 2n n n= ⋅ .

The discrete Fourier transform (DFT) of 

0x  is given by

0 0(x ) T xℑ = ⋅ , (3)

where the matrix T is the Kronecker pro-
duct of the DFT matrix W , i.e.,

T W W= ⊗ . (4)

The size of the matrix W  is 1n  by 2n . 
Let us also suppose we have l  complex 
random modulating masks

 (5)

where 1,2,...,i l= .

Let us denote the vectorized form of id  
by  and point-wise multiplication by 
. ⋅ . The DFT of the modulated object 0d xi ⋅  
is given by

0 0(d . x ) Z xi iℑ ⋅ = ⋅ ,  (6)

where the matrix Zi  is given by an equation

Z T Diag(d )i i= ⋅ ,   (7)

where Diag(d )i  is an n  by n  matrix with 
the modulating waveform di  on its main 
diagonal all other elements being zeros.

For the i -th mask, we have the modulus 
of the DFT of the modulated object in a vec-
tor b

ki  given by an equation

0b z ,x
k ki i= ,  (8)

where z
ki  is the k -th row of the matrix Zi  

and the index of measurement 1,2,...,k n= .

Let us define a matrix Z  for all l  masks:

1

2

Z
Z

Z

Zl

 
 
 =
 
 
 


.   (9)

We can write

0b z ,xp p= , (10)

where z p  is the p-th row of the matrix Z  
and the index of measurement 1,2,...,p m= . 
Here, 1 2m l n l n n= ⋅ = ⋅ ⋅ .
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If we denote a vector containing all the 
moduli by b  then we can write

0b Z x= ⋅ .   (11)

As only intensity, i.e., the squared mod-
ulus of the DFT or Fraunhofer diffraction 
pattern, is detected, we have quadratic mea-
surements of form

, (12)

where  denotes the vector contain-
ing squared elements of the vector b , 

* *
0 0diag(Z x x Z )⋅ ⋅ ⋅  denotes the vectorial 

form of the matrix * *
0 0Z x x Z⋅ ⋅ ⋅  while the 

asterisk * denotes the conjugate transpose.

If we denote *
0 0x x⋅  by 0X , the phase 

retrieval by PhaseLift can be formulated as 
finding a rank-one matrix [8]–[11]:

find

0X

subject to

Here, 0X  is the rank-one solution and 
factorizing it in the form *

0 0x x⋅  yields the 
solution to the phase retrieval problem. The 
rank minimization problem, however, is NP 
hard and in convex programming can be 
relaxed to trace minimization:

min

0trace(X )

subject to

Huang suggested using an alternate cost 
function due to the complexity associated 
with convex programming [10]. It is known 
that if the rank of 0X  is p , then there is 

 satisfying *
0Y Y Xp p⋅ = . Then 

the following cost function can be used:

 (13)

PhaseLift optimizes the cost function 
in each iteration using one of several low-
rank Riemannian optimization methods 
[10]. The algorithm was stopped when the 
norm of the gradient of the cost function fell 
below 10-5.

2.2. Simulations

Complex objects of unity large magni-
tude maps and distorted phase maps were 
used as test objects in the simulations (see 
Fig. 1 left). The phase maps of the objects 
were scaled versions of each other. One 
of the objects was selected as the origi-
nal object, while the phase maps of other 
objects were obtained by multiplying the 

phase map of the original object with a scal-
ing factor s  taking values 0.5, 1.5, 2.0., and 
2.5. In order to generate the phase map of 
the original object, random Zernike coeffi-
cients in the range from -1 µm to 1 µm up 
to the 6th order were generated. The units of 
phase distortions were radians. The size of 
the objects were 256 by 256 pixels.
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Fig. 1. Left – one of the objects used in the simulations. The scale on the right side is given in radians. 
Middle – one of the phase masks with the range of modulation  = 0.8. The scale on the right side is given in 

radians. Right – the surface profile of a cut-out of the phase mask. The length of the cut-out is 16 pixels.

The root-mean-square error of the phase 
map of an object poRMSE  was calculated 
according to an equation

2
0 0

1
( )

n
i

i
poRMSE

n

ϕ ϕ
=

−∑
= , (14)

where 0ϕ  is the average value of all data 
points of a phase map 0ϕ , 0iϕ  is the value 
of the i-th data point, and n  is the number 
of data points.

In order to assess the quality of the 
retrieved magnitude map rA , the root-
mean-square error of the residual magni-
tude map of an object mresRMSE  was cal-
culated according to an equation

( ) ( )( )20 0
1

n
r r ii

mres

A A A A
RMSE

n
=

− − −∑
= , (15)

where 0 rA A−  is the average value of all 
data points of the residual magnitude map 

0 rA A− , ( )0 r iA A−  is the value of the i-th 
data point, and n  is the number of data 
points.

In order to assess the quality of the 
retrieved phase map, the root-mean-square 
error of the residual phase map of an object 

presRMSE  was calculated according to an 
equation

( ) ( )( )20 0
1

n
r r ii

presRMSE
n

ϕ ϕ ϕ ϕ
=

− − −∑
= , (16)

where 0 rϕ ϕ−  is the average value of 
all data points of the residual phase map 

0 rϕ ϕ− , ( )0 r iϕ ϕ−  is the value of the i-th 
data point, and n  is the number of data 
points.

In order to compare the presRMSE  
among objects with different poRMSE , the 

presRMSE  was divided by the respective 
poRMSE .

The masks used to modulate the object 
were of the same size as the object. The 
masks were random pure phase masks mod-
ulating the phase of the object at each point 
by a random value within a certain range 
(see Fig. 1 right). The inset shown on the 
right side of Fig. 1 is a region of the phase 
mask contained within the white square. 
Here, we introduce the range of modulation 
of a mask denoted by M  and defined as

max min
2

M ϕ ϕ
π
−

=
⋅

, (17)

where maxϕ  and minϕ  are the maximum 
and minimum value of the phase mask, 
respectively, within the range from -π to +π.

The range of modulation M  varied 
between 0.1 and 0.8 in steps of 0.1. The 
selected range of modulation was based on 



8

a spatial light modulator (SLM) available in 
our laboratory guaranteeing that the range 
of phase modulation M  as the results of 
simulations indicate the achievable accu-
racy of the retrieved magnitude and phase 
maps of an object. The size of a pixel of the 
SLM is 8 µm so that an object and mask of 
size 256 by 256 pixels correspond to the lin-

ear size 2048 by 2048 µm. The maximum 
phase shift that can be introduced by the 
SLM is 2.9⋅π radians at the wavelength of a 
He-Ne laser (λ = 0.6328 µm corresponding 
to 2⋅π radians). The peak-to-valley value of 
the original object was about 11.2 radians 
corresponding to about 1.1 µm at the wave-
length of a He-Ne laser.

3. RESULTS

Figure 2 shows the retrieved magni-
tude and phase maps of the object with 
the scaling factor s  = 2 for all ranges of 
modulation M . The range of modulation 
M  increases from left to right and from 
top to bottom. It can be easily noticed that 
the range of modulation M  of at least 60 
% of a full wave is required for a success-

ful retrieval of the magnitude map of the 
selected object. A sharp boundary separat-
ing successfully retrieved magnitude maps 
from those retrieved unsuccessfully was 
characteristic of all objects. The values of 
the magnitude maps are shown in arbitrary 
units and have been normalized so that the 
maximum value equals unity.

Fig. 2. The retrieved magnitude maps of the object with the scaling factor s = 2 for all ranges of modulation M 
changing from 0.1 to 0.8 in steps of 0.1. The range of modulation M increases from left to right and from top 
to bottom. One can notice the sharp boundary separating successfully retrieved magnitude maps from those 

retrieved unsuccessfully.

Figure 3 shows the retrieved phase 
maps of the same object with the scaling 
factor s = 2 for all ranges of modulation M. 
The retrieved phase maps were wrapped 
within the range from -π to +π and had to be 
unwrapped using an algorithm freely avail-
able on the Internet. The retrieved phase 
map is also comparable to the original one 
starting from the same range of modulation 

M, i.e., 60 %. Below this level, there is no 
similarity between the retrieved phase map 
and the object. Generally, the minimum val-
ues of the range of modulation M for suc-
cessful retrieval of the magnitude and phase 
map are always equal given one and the 
same object. The units of phase maps are 
given in radians. 
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Fig. 3. The retrieved phase maps of the object with the scaling factor s = 2 for all ranges of modulation M 
changing from 0.1 to 0.8 in steps of 0.1. The range of modulation M increases from left to right and from top to 
bottom. One can notice the sharp boundary separating successfully retrieved phase maps from those retrieved 

unsuccessfully.

Figure 4 shows the mresRMSE  (left) 
and the normalized presRMSE  (right) for 
all ranges of modulation M . The error 
bars are standard errors calculated from 
the results of five simulations. The labels 
top right show the poRMSE  of the objects. 
The presRMSE  was normalized by dividing 
it with the corresponding poRMSE . It can 
be easily noticed that the mresRMSE  grows 
for all objects as the range of modulation 
M  is reduced while three distinct regions 
of the presRMSE  can be noted. For the 
largest range of modulation M , i.e., 0.8 of 
a full wave, the presRMSE  of all objects is 
low except the object having the smallest 

poRMSE . Starting from a certain value of 

the range of modulation M , the presRMSE  
starts to increase rapidly as the range of 
modulation M  is decreased. The exact 
range of modulation M  at which the 

presRMSE  starts to grow rapidly depends 
on the poRMSE . It should also be noted 
that the highest presRMSE  also depends 
on the poRMSE , i.e., the presRMSE  was 
higher for objects having small poRMSE . 
As the range of modulation M  is further 
reduced, the presRMSE  of objects having 
small poRMSE  remained constant while the 

presRMSE  of objects having large poRMSE  
started to fall reaching the level of objects 
having small poRMSE .

Fig. 4. Dependence of the RMSEmres (left) and RMSEpres (right) on the range of modulation M. Generally, the 
growth of the RMSEmres is similar for all objects except the object with the smallest RMSEpo. The RMSEpres is 
always low for large ranges of modulation M irrespective of RMSEpo. For medium ranges of modulation M, 
the RMSEpres strongly depends on the RMSEpo while for low small ranges of modulation M the RMSEpres is 

approximately constant and does not vary considerably with the RMSEpo.
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4. DISCUSSION AND CONCLUSIONS

The results suggest that the retrieval 
of the magnitude and phase of an object 
is compromised differently as the range 
of modulation is reduced. Differences 
between the changes in the mresRMSE  and 

presRMSE  along with the changes in the 
range of modulation M  may be explained 
by separating the magnitude and phase of 
an object and analysing the spatial spectrum 
of both components.

The magnitude map being completely 
flat contains predominantly low spatial fre-
quencies, and hence the intensity of high 
spatial frequencies strongly depends on 
the range of modulation M . Due to zero-
ing the high spatial frequencies because of 
the low bit depth, the amount of informa-
tion carried by the high spatial frequencies 
decreases and the mresRMSE  increases as 
the range of modulation M  decreases. For 
all objects, except the object with the small-
est poRMSE , the effect of the poRMSE  on 
the mresRMSE  seems negligible.

The analysis of the effect of the range of 
modulation M  on the presRMSE  is more 
complicated. In the region, where the range 
of modulation M  is low, high spatial fre-
quencies are of low intensity irrespective 
of the poRMSE  and are forced to zero due 
to the low bit depth. The bright central part 
occupies about the same region of the dif-
fraction pattern irrespective of the poRMSE
, and therefore the normalized presRMSE  
is approximately constant. In the region, 
where the range of modulation M  is large, 
high spatial frequencies are intense for all 
objects despite the low bit depth ensuring 
favourable conditions for the algorithm to 
converge to a solution. 

One can also note that smaller ranges 
of modulation M  are required for objects 
of large poRMSE  compared to objects 

of smaller poRMSE . The middle region 
is a transition between the two extremes 
where zeroing the high spatial frequencies 
depends both on the M  and the poRMSE
. If the poRMSE  is small, the high spatial 
frequencies are still forced to zero because 
of the low bit depth despite that the range of 
modulation M  is moderate; however, for 
objects with higher poRMSE  high spatial 
frequencies are non-zero. Particularly large 

presRMSE  of the object with the small-
est poRMSE  suggests that the probability 
of unsuccessful phase retrieval from very 
sparse intensity measurements increases as 
the range of modulation M  increases given 
that the sparsity of the intensity measure-
ments remains the same. To summarise, 
the effect of the range of modulation M  
dominates when reaching the extreme val-
ues while at moderate levels of the range 
of modulation M  the contents of spa-
tial frequencies of the object dictate the 

presRMSE .
Finally, we conclude that increasing the 

bit depth of intensity measurements may 
lower the minimum the range of modula-
tion M  sufficient for successful retrieval of 
a complex object. It can also be expected 
that the probability of retrieving an object 
with small poRMSE  increases as the bit 
depth is increased given that the range of 
modulation M  remains the same. Objects 
having particularly large poRMSE  may 
even be retrieved from diffraction patterns 
of very low bit depth. 

Ability to retrieve phase maps having 
large poRMSE  from very sparse intensity 
measurements is very important in astron-
omy where imaging the celestial objects 
is compromised by very turbulent atmo-
spheric layers [17]. Studying the effect of 
bit depth on the quality of phase and mag-
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nitude retrieval constitutes a wide scope of 
research, and we plan to address this ques-
tion in future. It can also be expected that 

oversampling the diffraction patterns may 
lower the requirements of the minimum 
necessary range of modulation M .
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