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Abstract: By making use of the concept of basic (or q-) calculus, many subclasses of analytic and
symmetric q-starlike functions have been defined and studied from different viewpoints and perspec-
tives. In this article, we introduce a new class of meromorphic multivalent close-to-convex functions
with the help of a q-differential operator. Furthermore, we investigate some useful properties such as
sufficiency criteria, coefficient estimates, distortion theorem, growth theorem, radius of starlikeness,
and radius of convexity for this new subclass.

Keywords: meromorphic functions; Janowski functions; q-calculus; q-differential operator

1. Introduction, Definitions and Motivation

Calculus without notion of limits is called q-calculus or quantum calculus. This rela-
tively new and advanced field of study became a core of attractions for many well-known
mathematicians and physicists due to its various applications in applied mathematics,
physics and various engineering areas, see details in [1,2]. The start of this field can be con-
nected with the research of Jackson [3,4], who gave various applications of q-calculus and
introduced the q-analogue of derivative and integral, while the most recent and trending
work can be viewed in the study of Aral and Gupta [1,2,5]. Later, Aral and Anastassiu [6–9]
gave the q-generalization of complex operators, which are known as q-Picard and q-Gauss–
Weierstrass singular integral operators.

In Geometric Function Theory, the role of the q-Deference operator is quite significant.
Historically speaking, it was Srivastava [10] who used the basic (or q-) hypergeometric
functions:

∇Φ∫ (∇, ∫ ∈ N0 = {0, 1, 2, · · · } = N∪ {0})

in Geometric Function Theory (GFT) of Complex Analysis (see, for details, [10]). Very
recently, Srivastava’s published review article [11] gave another flavor to this subject. In
their published review article [11], Srivastava highlighted the triviality of the so-called
(p, q)-calculus.

The aforementioned works of Srivastava [10,11] motivated a number of mathemati-
cians to give their findings. In the above-cited work by Srivastava [11], many well-known
convolution and fractional q-operators were surveyed. For example, in their published
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article [12], by use of the concept of convolution, a q-analogue of Ruscheweyh differen-
tial operator was defined by Kanas and Răducanu. More applications of this operator
can be seen in the paper [13]. Very recently, by using q-Deference operator, Srivastava
et al. [14] studied a certain subclass of analytic function with symmetric points. Several
other authors (see, for example, [15–22]) have studied and generalized the classes of sym-
metric and other q-starlike functions from different viewpoints and perspectives. For some
more recent investigation about q-calculus, we may refer the interested reader to [23,24]. In
this article, we introduce a new family of meromorphic multivalent functions associated
with Janowski domain using a differential operator and study some of its properties.

By the notation Ap, we denote the family of all meromorphic multivalent functions
that are analytic and invariant (or symmetric) under rotations, in the punctured disc
D = {z ∈ C : 0 < |z| < 1} and with the following normalization conditions

f (z) =
1
zp +

∞

∑
n=1

ap+nzp+n, (z ∈ D). (1)

Furthermore, a function f is said to be in the classMS∗p(α) (0 ≤ α < 1) of meromor-
phic p-valent starlike functions, if

f (z) ∈ MS∗p(α)⇔ <
z f ′(z)
p f (z)

< −α.

Next, a function f is said to be in the class MC p(α) (0 ≤ α < 1) of meromorphic
p-valent convex functions, if

f (z) ∈ MC p(α)⇔ <
(z f ′(z))′

p f ′(z)
< −α

Clearly, we see that MS∗p(0) = MS∗p, the class of meromorphic p-valent starlike
functions. SimilarlyMK∗p(α) denote the class of meromorphic p-valent close-to-convex
functions and defined as

f (z) ∈ MK∗p(α)⇔ <
z f ′(z)
pg(z)

< −α

where g(z) ∈ MS∗p.
The q-derivative (or q-difference) operator of a function f , where 0 < q < 1, is

defined by

∂q f (z) =
f (qz)− f (z)

z(q− 1)
, (z 6= 0). (2)

It can easily be seen that

∂q

{
∞

∑
n=1

anzn

}
=

∞

∑
n=1

[n, q]anzn−1, (n ∈ N, z ∈ D) (3)

where

[n, q] =
1− qn

1− q
= 1 +

n

∑
l=1

ql , and [0, q] = 0.

For any non-negative integer n, the q-number shift factorial is defined by

[n, q]! =
{

1, n = 0,
[1, q][2, q][3, q] · · · [n, q], n ∈ N.



Symmetry 2021, 13, 1840 3 of 12

Furthermore, the q-generalized Pochhammer symbol for x ∈ R is given by

[x, q]n =

{
1, n = 0,
[x, q][x + 1, q] . . . [x + n− 1, q], n ∈ N,

The differential operator Dµ,q : Ap → Ap is defined in [25] as

Dµ,q f (z) = (1 + [p, q]µ) f (z) + µqpz∂q f (z). (4)

where µ ≥ 0.
Now, using Equation (1), one can easily find that

Dµ,q f (z) =
1
zp +

∞

∑
n=1

(1 + [p, q]µ + µqp[n, q]) ap+nzp+n.

where
D0

µ,q f (z) = f (z).

and
D2

µ,q f (z) = Dµ,q
(
Dµ,q f (z)

)
=

1
zp +

∞

∑
n=1

(1 + [p, q]µ + µqp[n, q])2 ap+nzp+n

in a similar way for m ∈ N, we have

Dm
µ,q f (z) =

1
zp +

∞

∑
n=1

(1 + [p, q]µ + µqp[n, q])m ap+nzp+n. (5)

In this article, we are essentially motivated by the recently published paper of Hu
et al. in Symmetry (see [26]) and some other related works as discussed above (see for
example [27–31]), we now define a subclassMKµ,q(p, m, A, B) of Ap by using the operator
Dm

µ,q as follows.

Definition 1. A function f ∈ Ap is said to be in the functions classMKµ,q(p, m, A, B), if the
following condition is satisfied

−qpz∂qDm
µ,q f (z)

[p, q]g(z)
≺ 1 + Az

1 + Bz
, (6)

where g(z) ∈ MS∗p, −1 ≤ B < A ≤ 1 and 0 < q < 1, here the notation “≺” stands for the
familiar concept of subordinations.

For particular values to parameters m, p, µ, A, B and q, we have some known and new
consequences as follows.

1. If we put m = 0 and let q → 1−, we have MK∗p[A, B], where MK∗p[A, B], is the
functions class of Janowski-type meromorphic multivalent close-to-convex functions.

2. If we put
A = 1, B = −1 and m = 0

we haveMK∗p,q, whereMK∗p,q, is the class of meromorphic multivalent q-close-to-
convex functions.

3. By putting
A = 1, B = −1 and m = 0

and let q → 1−, we have MK∗p, where MK∗p, is functions class of meromorphic
multivalent close-to-convex functions.
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4. If we take
A = 1 = p, B = −1 and m = 0

and let q → 1−, we have MK∗, where MK∗, denotes the class of meromorphic
close-to-convex functions.

The following equivalent condition for a function f ∈ MKµ,q(p, m, A, B) can be
verified easily ∣∣∣∣∣∣

qpz∂qDm
µ,q f (z)

[p,q]g(z) + 1

A + B
qpz∂qDm

µ,q f (z)
[p,q]g(z)

∣∣∣∣∣∣ < 1. (7)

For our main result, we need the following important result.

Lemma 1 ([32]). An analytic function h(z) having series representation

h(z) = 1 +
∞

∑
n=1

dnzn,

and another function k(z) with the following series representation

k(z) = 1 +
∞

∑
n=1

knzn.

If h(z) ≺ k(z), then |dn| ≤ |k1|, for n ∈ N.

2. A Set of Main Results

In this section, we give our main results.

Theorem 1. If a function f ∈ Ap has a series representation given by Equation (1), then
f ∈ MKµ,q(p, m, A, B) if it satisfies the following inequality

∞
∑

n=1

(
qp[p + n, q](1 + B)(1 + [p, q]µ + µqp[p + n, q])m∣∣ap+n

∣∣+ 2p[p,q](1+A)
p+n

)
≤ [p, q](A− B). (8)

it holds true.

Proof. For f to be in the classMKµ,q(p, m, A, B), we only need to prove the inequality (7).
For this, we consider ∣∣∣∣∣∣

qpz∂qDm
µ,q f (z)

[p,q]g(z) + 1

A + B
qpz∂qDm

µ,q f (z)
[p,q]g(z)

∣∣∣∣∣∣
=

∣∣∣∣∣ qpz∂qDm
µ,q f (z) + [p, q]g(z)

A[p, q]g(z) + Bqpz∂qDm
µ,q f (z)

∣∣∣∣∣
If the series representation of g(z) is given by

g(z) =
1
zp +

∞

∑
n=1

bp+nzp+n, (z ∈ D),
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Now, by using Equation (4), and then with the help of Equations (2) and (5), we find,
after some simplification, that the above is equal to∣∣∣∣ ∑∞

n=1(1+[p,q]µ+µqp [p+n,q])mqp [p+n,q]ap+nzp+n+∑∞
n=1[p,q]bp+nzp+n

(A−B)[p,q]
zp +∑∞

n=1 A[p,q]bp+nzp+n+B ∑∞
n=1 qp(1+[p,q]µ+µqp [p+n,q])m [p+n,q]ap+nzp+n

∣∣∣∣
=

∣∣∣∣ ∑∞
n=1(1+[p,q]µ+µqp [p+n,q])mqp [p+n,q]ap+nzn+2p+∑∞

n=1[p,q]bp+nzp+2n

(A−B)[p,q]+∑∞
n=1 A[p,q]bp+nzp+2n+B ∑∞

n=1 qp(1+[p,q]µ+µqp [p+n,q])m [p+n,q]ap+nzp+2n

∣∣∣∣
≤ ∑∞

n=1(1+[p,q]µ+µqp [p+n,q])mqp [p+n,q]|ap+n|+∑∞
n=1[p,q]|bp+n|

(A−B)[p,q]−∑∞
n=1 A[p,q]|bp+n|−B ∑∞

n=1 qp(1+[p,q]µ+µqp [p+n,q])m [p+n,q]|ap+n|

Now, for g(z) ∈ MS∗p, we have

∣∣bp+n
∣∣ = 2p

p + n
, (9)

and using the inequality (11) we find that the above is less than 1. The direct part of the
proof of our theorem is now completed.

Conversely, let f ∈ MKµ,q(p, m, A, B) and is given by Equation (1), then from
Equation (7), we have for z ∈ D, ∣∣∣∣∣

qpz∂qDm
µ,q f (z)

[p,q]g(z) +1

A+B
qpz∂qDm

µ,q f (z)
[p,q]g(z)

∣∣∣∣∣
=

∣∣∣∣ ∑∞
n=1(1+[p,q]µ+µqp [p+n,q])mqp [p+n,q]ap+nzn+2p+∑∞

n=1[p,q]bp+nzp+2n

(A−B)[p,q]+∑∞
n=1 A[p,q]bp+nzp+2n+B ∑∞

n=1 qp(1+[p,q]µ+µqp [p+n,q])m [p+n,q]ap+nzp+2n

∣∣∣∣
Since |<(z)| ≤ |z|, we have

<
{

∑∞
n=1(1+[p,q]µ+µqp [p+n,q])mqp [p+n,q]ap+nzn+2p+∑∞

n=1[p,q]bp+nzp+2n

(A−B)[p,q]+∑∞
n=1 A[p,q]bp+nzp+2n+B ∑∞

n=1 qp(1+[p,q]µ+µqp [p+n,q])m [p+n,q]ap+nzp+2n

}
< 1 (10)

Now, choose values of z on the real axis so that
qpz∂qDm

µ,q f (z)
[p,q]g(z) is real. Upon clearing

the denominator in Equation (10) and letting z → 1− through real values, we obtain
Equation (11).

For an analytic case, the result is as follows:

Corollary 1. If a function f ∈ A, then f ∈ MKµ,q(1, m, A, B) if it satisfies the following
inequality

∞
∑

n=1

(
q[n + 1, q](1 + B)(1 + µ + µq[n + 1, q])m|an+1|+ 2(1+A)

n+1

)
≤ (A− B). (11)

is holds true.

In the next theorem, we obtain the coefficient bounds of the functions of this class.

Theorem 2. Let f ∈ MKµ,q(p, m, A, B) and be of the form (1). Then∣∣ap+n
∣∣ ≤ 2p[p,q]

l(n)qp [p+n,q]

(
1

p+n + (A− B)∑n−1
i=0

1
p+i

)
where

l(n) = (1 + [p, q]µ + µqp[p + n, q])m. (12)
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Proof. If f ∈ A and is in the classMKµ,q(p, m, A, B), then it satisfies

−qpz∂qDm
µ,q f (z)

[p, q]g(z)
≺ 1 + Az

1 + Bz
.

Now, if

h(z) =
−qpz∂qDm

µ,q f (z)
[p, q]g(z)

, (13)

then it will have the representation

h(z) = 1 +
∞

∑
n=1

dnzn.

which implies that

h(z) ≺ 1 + Az
1 + Bz

.

However, by simple calculations we get

1+Az
1+Bz = 1 + (A− B)z + ....

with the help of Lemma 1 we obtain

|dn| ≤ (A− B) (14)

we now put the series expansions of h(z), g(z) and f (z) in Equation (13), simplifying and
comparing the coefficients of zn+p on both sides

−qp(1 + [p, q]µ + µqp[n + p, q])m[p + n, q]ap+n = [p, q] bp+n

+[p, q]∑n−1
i=0 bp+idn−i

Taking absolute on both sides of this equation and using the triangle inequility with
the help of Equation (14), we obtain

(1 + [p, q]µ + µqp[p + n, q])mqp[p + n, q]
∣∣ap+n

∣∣ ≤
[p, q]

∣∣bp+n
∣∣+ [p, q](A− B)∑n−1

i=1

∣∣bp+i
∣∣

Now, using Equations (9) and (15), we find that

(1 + [p, q]µ + µqp[p + n, q])mqp[p + n, q]
∣∣ap+n

∣∣ ≤
[p, q] 2p

p+n + [p, q](A− B)∑n−1
i=1

2p
p+i

⇒
∣∣ap+n

∣∣ ≤ 2p[p,q]
l(n)(p+n)qp [p+n,q] +

2p[p,q](A−B)
l(n)qp [p+n,q] ∑n−1

i=0
1

p+i

we obtain the required result.

Corollary 2. If f ∈ MKµ,q(1, m, A, B) and is of the form (1). Then,

|an+1| ≤ 2
l(n)q[n+1,q]

(
1

n+1 + (A− B)∑n−1
i=0

1
1+i

)
where

l(n) = (1 + µ + µq[n + 1, q])m. (15)

Next, for our defined functions class, we give results related to growth and distortion.
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Theorem 3. If the function f ∈ MKµ,q(p, m, A, B). Then, for |z| = r, we have

1
rp −Φrp ≤ | f (z)| ≤ 1

rp + Φrp,

where
Φ = (p+1)[p,q](A−B)−2p[p,q](1+A)

qp(p+1)[p+1,q](1+B)(1+[p,q]µ+µqp [p+1,q])m .

Proof. Since

| f (z)| =

∣∣∣∣∣ 1
zp +

∞

∑
n=1

ap+n zp+n

∣∣∣∣∣,
≤ 1
|zp| +

∞

∑
n=1

∣∣ap+n
∣∣ |z|p+n

=
1
rp +

∞

∑
n=1

∣∣ap+n
∣∣ rp+n

Since for |z| = r < 1 we have rp+n < rp and

| f (z)| ≤ 1
rp + rp

∞

∑
n=p+1

∣∣ap+n
∣∣ (16)

Similarly,

| f (z)| ≥ 1
rp − rp

∞

∑
n=p+1

∣∣ap+n
∣∣ (17)

As by Equation (11), we know that

∞
∑

n=1

(
qp[p + n, q](1 + B)(1 + [p, q]µ + µqp[p + n, q])m∣∣ap+n

∣∣+ 2p[p,q](1+A)
p+n

)
≤ [p, q](A− B).

However,

2p[p,q](1+A)
p+1 + qp[p + 1, q](1 + B)(1 + [p, q]µ + µqp[p + 1, q])m ∞

∑
n=1

∣∣ap+n
∣∣

≤
∞
∑

n=1

(
qp[p + n, q](1 + B)(1 + [p, q]µ + µqp[p + n, q])m∣∣ap+n

∣∣+ 2p[p,q](1+A)
p+n

)
.

Hence,

2p[p,q](1+A)
p+1 + qp[p + 1, q](1 + B)(1 + [p, q]µ + µqp[p + 1, q])m ∞

∑
n=1

∣∣ap+n
∣∣

≤ [p, q](A− B),

which can be written as

∞
∑

n=1

∣∣an+p
∣∣ ≤ (p+1)[p,q](A−B)−2p[p,q](1+A)

qp(p+1)[p+1,q](1+B)(1+[p,q]µ+µqp [p+1,q])m (18)

Now, the required result can easily be obtained if we make use of Equations (16)–(18).

Corollary 3. For a function f ∈ MKµ,q(p, 1, A, B). Then, for |z| = r, we have

1
rp −Φrp ≤ | f (z)| ≤ 1

rp + Φrp,
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where
Φ = (p+1)[p,q](A−B)−2p[p,q](1+A)

qp(p+1)[p+1,q](1+B)(1+[p,q]µ+µqp [p+1,q]) .

Theorem 4. If f ∈ MKµ,q(p, m, A, B) and is of the form (1). Then, for |z| = r

[p, q]m
qmp+ζrm+p −Ψrp ≤

∣∣∣∂m
q f (z)

∣∣∣ ≤ [p, q]m
qmp+ζrm+p + Ψrp.

where
Ψ = (A−B)[p,q](p+1)−2p[p,q](1+A)

(p+1)qp(1+B)(1+[p,q]µ+µqp [p+n,q])m and ζ =
m
∑

n=1
n.

Proof. With the help of Equation (2) and using Equation (3), we can easily find that

∂m
q f (z) =

(−1)m[p, q]m
qmp+ζzp+m +

∞

∑
n=1

[p + n− (m− 1), q]m+1ap+nzp+n−m.

Since, for the parameters m ≤ n, n ≥ p + 1 and also for |z| = r < 1 implies that
rn−m ≤ rp hence, we have∣∣∣∂m

q f (z)
∣∣∣ ≤ [p, q]m

qmp+ζrm+p + rp
∞

∑
n=1

[p + n− (m− 1), q]m+1
∣∣ap+n

∣∣, (19)

Similarly, ∣∣∣∂m
q f (z)

∣∣∣ ≥ [p, q]m
qmp+ζrm+p − rp

∞

∑
n=1

[p + n− (m− 1), q]m+1|an|. (20)

Now, by using Equation (11), we obtain the following inequality(
2p[p,q](1+A)

p+1 + qp(1 + B)(1 + [p, q]µ + µqp[p + n, q])m ∞
∑

n=1
[p + n, q]

∣∣ap+n
∣∣)

≤ [p, q](A− B).

which implies that

qp(1 + B)(1 + [p, q]µ + µqp[p + n, q])m ∞
∑

n=1
[p + n, q]|an|

≤ (A−B)[p,q](p+1)−2p[p,q](1+A)
p+1 .

so we have
∞
∑

n=1
[p + n, q]|an| ≤ (A−B)[p,q](p+1)−2p[p,q](1+A)

(p+1)qp(1+B)(1+[p,q]µ+µqp [p+n,q])m ,

but it can easily be seen that

∞

∑
n=1

[p + n− (m− 1), q]
∣∣ap+n

∣∣ ≤ ∞

∑
n=1

[p + n, q]|an|,

which implies

∞
∑

n=1
[p + n− (m− 1), q]

∣∣ap+n
∣∣ ≤ (A−B)[p,q](p+1)−2p[p,q](1+A)

(p+1)qp(1+B)(1+[p,q]µ+µqp [p+n,q])m .

Now, using the last inequality in Equations (19) and (20), we can obtain our result.
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Corollary 4. If f ∈ MKµ,q(p, 1, A, B) and is of the form (1). Then, for |z| = r

[p, q]
qp+ζrp+1 −Ψrp ≤

∣∣∂q f (z)
∣∣ ≤ [p, q]

qp+ζrp+1 + Ψrp.

where
Ψ = (A−B)[p,q](p+1)−2p[p,q](1+A)

(p+1)qp(1+B)(1+[p,q]µ+µqp [p+n,q]) and ζ = n(n+1)
2 .

In the next two theorems for the functions classMµ,q(p, m, A, B), the radii of starlike-
ness and convexity is given.

Theorem 5. Let f ∈ MKµ,q(p, m, A, B). Then, f ∈ MC p(α) for |z| < r1, where

r1 =
(

p(p−α)qp(p+1)[p+n,q](1+B)(1+[p,q]µ+µqp [p+n,q])m

(p+n)(n+p+α)([p,q](A−B)(p+1)−2p[p,q](1+A))

) 1
n+2p .

Proof. Let f be in the classMKµ,q(p, m, A, B), to prove that f is in the classMC p(α), it
will be enough if we show ∣∣∣∣ z f ′′(z) + (p + 1) f ′(z)

z f ′′(z) + (1 + 2α− p) f ′(z)

∣∣∣∣ < 1,

Using Equation (1) in conjunction with some elementary calculations, we have

∞

∑
n=1

(p + n)(p + n + α)

p(p− α)

∣∣an+p
∣∣|z|n+2p < 1, (21)

From Equation (11), we can easily find that

∞
∑

n=1
qp[p + n, q](1 + B)(1 + [p, q]µ + µqp[p + n, q])m∣∣ap+n

∣∣
≤ [p,q](A−B)(p+1)−2p[p,q](1+A)

p+1 .

which gives, after some simplification, that

∞
∑

n=1

qp(p+1)[p+n,q](1+B)(1+[p,q]µ+µqp [p+n,q])m

[p,q](A−B)(p+1)−2p[p,q](1+A)

∣∣ap+n
∣∣ < 1.

Now, inequality (21) will be true, if the following holds

∞
∑

n=1

(p+n)(n+p+α)
p(p−α)

∣∣an+p
∣∣|z|n+2p <

∞
∑

n=1

qp(p+1)[p+n,q](1+B)(1+[p,q]µ+µqp [p+n,q])m

[p,q](A−B)(p+1)−2p[p,q](1+A)

∣∣an+p
∣∣,

which implies that

|z|n+2p < p(p−α)qp(p+1)[p+n,q](1+B)(1+[p,q]µ+µqp [p+n,q])m

(p+n)(n+p+α)([p,q](A−B)(p+1)−2p[p,q](1+A))
,

and so

|z| <
(

p(p−α)qp(p+1)[p+n,q](1+B)(1+[p,q]µ+µqp [p+n,q])m

(p+n)(n+p+α)([p,q](A−B)(p+1)−2p[p,q](1+A))

) 1
n+2p

= r1,

we get the required condition.
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Corollary 5. Let f ∈ MKµ,q(1, m, A, B). Then, f ∈ MC p(α) for |z| < r1, where

r1 =
(
(1−α)2q[n+1,q](1+B)(1+µ+µq[n+1,q])m

(n+1)(n+1+α)(2(A−B)−2(1+A))

) 1
n+2 .

Theorem 6. Let f ∈ MKµ,q(p, m, A, B). Then, f ∈ MS∗p(α) for |z| < r2, where

r2 =
(
(p−α)(qp [p+n,q](1+B)+(1+A)[p,q])(1+[p,q]µ+µqp [p+n,q])m

(n+p+α)(A−B)[p,q]

) 1
n+2p .

Proof. We know that f is in the classMS∗p(α), if and only if∣∣∣∣ z f ′(z) + p f (z)
z f ′(z)− (p− 2α) f (z)

∣∣∣∣ < 1.

Now, make use of Equation (1) and, after some simple calculations, we have

∞

∑
n=1

(
n + p + α

p− α

)∣∣an+p
∣∣|z|n+2p < 1. (22)

Now, from Equation (11) we can easily obtain

∞
∑

n=1

qp(p+1)[p+n,q](1+B)(1+[p,q]µ+µqp [p+n,q])m

[p,q](A−B)(p+1)−2p[p,q](1+A) |an| < 1.

Inequality (22) will be true if

∞
∑

n=1

(
n+p+α

p−α

)∣∣an+p
∣∣|z|n+2p <

∞
∑

n=1

qp(p+1)[p+n,q](1+B)(1+[p,q]µ+µqp [p+n,q])m

[p,q](A−B)(p+1)−2p[p,q](1+A) |an|.

This gives

|z|n+2p < (p−α)qp(p+1)[p+n,q](1+B)(1+[p,q]µ+µqp [p+n,q])m

(n+p+α)([p,q](A−B)(p+1)−2p[p,q](1+A))
,

and hence

|z| <
(
(p−α)(qp [p+n,q](1+B)+(1+A)[p,q])(1+[p,q]µ+µqp [p+n,q])m

(n+p+α)(A−B)[p,q]

) 1
n+2p

= r2 .

The proof of our Theorem is now complete.

Corollary 6. Let f ∈ MKµ,q(1, m, A, B). Then f ∈ MS∗(α) for |z| < r2, where

r2 =
(
(1−α)(q[n+1,q](1+B)+(1+A))(1+µ+µq[n+1,q])m

(n+1+α)(A−B)

) 1
n+2 .

3. Concluding Remarks and Observations

Recently, the basic (or q-) calculus is a center of attraction for many well-known math-
ematicians, because of its diverse applications in many areas of Mathematics and Physics
see for example [11,33]. In our present investigations, we were essentially motivated by
the recent research going on in this field of study, and we have first introduced a new class
of meromorphic multivalent q-close-to-convex function with the help of a q-differential
operator. We next investigate some useful properties such as sufficiency criteria, coeffi-
cient estimates, distortion theorem, growth theorem, radius of starlikness and radius of
convexity for this new subclass of meromorphic multivalent q-close-to-convex functions.
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