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Energy consumption of heat pump (HP) systems plays a significant role in the global 

residential building energy sector. The conventional HP system evaluation method 

focused on the energy efficiency during a given time scale (e.g., hourly, seasonally, or 

annually). Nevertheless, these evaluation methods or test metrics are unable to fully 

reflect the thermodynamic characteristics of the system (e.g., the start-up process). In 

addition, previous researchers typically conducted HP field tests no longer than one 

year period. Only limited studies conducted the system performance tests over multiple 

years. Furthermore, the climate is changing faster than previously predicted beyond the 

irreversible and catastrophic tipping point. HP systems are the main contributor to 

global warming due to the increased demands but also can be a part of the solution by 

replacing fossil fuel burning heating systems. A holistic evaluation of the HP system’s 

global warming impact during its life cycle needs to account for the direct greenhouse 

gas (GHG) emissions from the  



  

refrigerant leakage, indirect GHG emissions from the power consumption and 

embodied equipment emissions. This dissertation leverages machine learning, deep 

learning, data digging, and Life Cycle Climate Performance (LCCP) approaches to 

develop next generation HP system evaluation methodologies with three thrusts: 1) 

field test data analysis, 2) data-driven modeling, and 3) enhanced life cycle climate 

performance (En-LCCP) analysis. This study made following observations: First, time-

average performance metrics can save time in extensive data calculation, while quasi-

steady-state performance metrics can elucidate some details of the studied system. 

Second, deep-learning-based algorithms have higher accuracy than conventional 

modeling approaches and can be used to analyze the system's dynamic performance. 

However, the complicated structure of the networks, numerous parameters needing 

optimization, and longer training time are the main challenges for these methods. Third, 

this dissertation improved current environmental impact evaluation method 

considering ambient conditions variation, local grid source structure, and next-

generation low-GWP refrigerants, which led the LCCP results closer to reality and 

provided alternative methods for determining LCCP input parameters with limited-data 

cases. Future work could be studying the uncertainty within the deep learning networks 

and finding a general process for modeling settings. People may also develop a multi-

objective optimization model for HP system design while considering both the LCCP 

and cost. 
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Preface 

This dissertation begins from a field test conducted in a campus office building.  I took 

over the experimental work of a Variable Refrigerant Flow (VRF) system from my 

colleague, Lei Gao, on August 22nd, 2017. L.G. Electronics sponsored this project. I 

never imagined that the VRF field evaluation works had been conducted for six years, 

and it would be the topic of my Ph.D. thesis at that time. As the test was conducted, the 

Data Acquisition System generated a large amount of data with different dimensions. I 

started to find appropriate methods to deal with the large data, the results of which were 

developed as chapter 2 in this dissertation. At the end of the year 2017, the visiting 

scholar, Dr. Wen Su, recommended me a paper about Neural Network’s application in 

Organic Rankin Cycle. This work inspired me to apply a machine-learning-based 

algorithm in Heat Pump (HP) system data analysis. I took a machine learning class in 

Fall 2018 and started using deep learning to improve the HP system models. This was 

the starting point of chapter 3. In Fall 2019, I began to conduct Life Cycle Climate 

Performance (LCCP) analysis for different HP systems like Unitary Heat Pumps, Heat 

Pump Variable Refrigerant Flow (HPVRF) systems, etc., with my co-advisor Prof. 

Hwang and improved current enhanced LCCP evaluation approach for HP systems 

with Dr. Andersen from the Institute for Governance & Sustainable Development. The 

result became chapter 4 of this dissertation. 

 

Everyone who had monitored the data from a building or conducted field tests for a HP 

system might have the same question: “How to make use of a large number of measured 
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data?” In this dissertation, I tried to use data digging tools, machine-learning-based 

algorithms, data visualization methods, and LCCP to answer this question. Previous 

HP system evaluations always focus on several energy efficiency metrics. In my 

opinion, this simple “scoring” approach would not be enough for future HP systems. A 

good evaluation methodology should be an all-around process including cost, energy 

efficiency, thermodynamic performance, environmental impacts, thermal comfort, etc.  

In addition, as future HP systems became more complicated and sampling time became 

smaller (data revolution became higher), the time consumed by the calculation 

functions and model training would also become longer. Thus, instead of only pursuing 

veracity, there would be a trade-off between accuracy and computational cost. Time-

saving is a significant factor for data analysis and model selection in the dissertation. 

 

I hope you enjoy your reading. 

 

Hanlong Wan 

University of Maryland, College Park 

May 17th, 2021 
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ṁ 
 

mass flow rate [kg/s] 

m mass of unit [kg] 

M correlation factor 

MAC mobile air conditioner 

MCHX microchannel heat exchanger 

MEAC multi evaporator air conditioning 

MM CO2 produced per unit of material [kg CO2e/kg] 

MPC model predictive control 

mr mass of recycled material [kg] 

MRE mean relative error [%] 

MSE mean square error [%] 

N number of data points 

n polytropic exponent 

NIST National Institute of Standards and Technology 

NN neural network 

NOAA National Oceanic and Atmospheric Administration 

NTU number of transfer units 



 

 

xx 

 

OAD outdoor air dehumidifier 

OAP outdoor air processing 

OU outdoor unit 

P pressure [kPa] 

PAC packaged air conditioner 

PCA principle component analysis 

PCM phase change material 

Pw power [W] 

q refrigerant quality [-] 

Q̇ capacity [W] 

QSS Quasi-Steady State 

RCD reverse cycle defrosting 

RCL refrigerant charge level 

RD relative deviation 

RE relative error 

RF random forest 

RFD refrigerant disposal emission [kg CO2e/kg] 

RFM refrigerant manufacturing emission [kg CO2e/kg] 

RH relative humidity [%] 

RM CO2 produced per recycled material [kg CO2e/kg] 

RME relative mean error 

RMSE root mean square error 



 

 

xxi 

 

RPM revolutions per minute 

s complex frequency [Hz] 

SCHX subcooling heat exchanger 

SCOP seasonal coefficient of performance 

SD standard deviation 

SEER seasonal energy efficiency ratio [-] 

SVM super vector machine 

SVR support vector regression 

T temperature [°C] 

TEV thermostatic expansion valve 

TEWI total equivalent warming impact 

THIC temperature humidity independent control 

TMY typical meteorological year 

U overall conductance [W/(m·K)], uncertainty [-] 

UAC unitary air conditioner 

UHI urban heat island 

UMCP University of Maryland, College Park 

V volume [m3], eigenvector 

v indoor thermal load [W] 

VCC vapor compression cycle 

VI HP vapor injection heat pump 

VRCS virtual refrigerant charge sensor 



 

 

xxii 

 

VRF variable refrigerant flow 

VRV variable refrigerant volume 

w dimensionless weight factor in the neural network [-] 

W power [W] 

X EEV opening degree [%] 

  

Greek symbols  

 

dimensionless parameter group 

 

dynamic viscosity [kg m-1 s-1] 

α needle angle [°] 

ε tolerance [-] 

η efficiency [-] 

ξ relaxing factor [-] 

ρ density [kg·m-3] 

σ surface tension [N m-1] 

 

electric expansion valve opening degree [%] 

 

specific volume [m3/kg] 

 

compressor frequency [Hz] 

 

efficiency [-] 

 

effectiveness [-] 

 

density [kg·m-3] 

 

difference [-] 



 

 

xxiii 

 

 

frictional two-phase multiplier 

  

Subscripts  

a ambient, air 

c critical, condensing 

comp compressor 

d discharge 

db dry bulb temperature 

dis discharge 

e experiment, evaporating, evaporator’s two-phase region 

EEV electronic expansion valve 

eq equivalent 

f saturated liquid 

g saturated vapor 

i inlet  

ind indoor 

l liquid 

max maximum 

meas measured 

min minimum 

out outlet 

outd outdoor 



 

 

xxiv 

 

pred predicted 

r room, refrigerant 

rate rating condition 

sh superheat 

sub subcooling 

suc suction 

th throat 

tot total  

wb wet bulb temperature 



 

 

1 

 

1. Introduction 

Air conditioning (AC) systems and heat pump (HP) systems are widely used to adjust 

the temperature and humidity of an occupied space to improve the users' thermal 

comfort or provide a unique environment. Not only in residential and commercial 

buildings but also in the industry and transportation, AC and HP systems play a 

significant role in providing a healthy and comfortable indoor environment for our 

daily life. For brevity, AC systems are referred to as HP systems operating in cooling 

mode in this dissertation. This dissertation mainly focuses on residential HP systems, 

while some mobile HP systems are also covered. The first section introduces the 

background knowledge and motivation of HP systems measurement. Then, the 

literature review results are summarized and discussed. Finally, three objectives of this 

dissertation are described. 

 

1.1. Background 

1.1.1. Energy Consumption and Carbon Emission of Heat Pump Systems 

People spend 80% of their time in buildings (Brodrick, 2002). The global energy 

consumption from both residential and commercial buildings has steadily increased, 

reaching figures between 20% and 40% in developed countries (Pérez-Lombard et al., 

2008). Among building services, the growth in Heating, Ventilation, and Air 

Conditioning (HVAC) system energy use is particularly significant as it is responsible 

for 50% of building consumption and 20% of total consumption in the U.S. (Pérez-

Lombard et al., 2008). The rapidly growing energy consumption raised concerns over 

energy supply difficulties, exhaustion of energy resources, and severe environmental 
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impacts, like ozone layer depletion, global warming, and climate change (Pérez-

Lombard et al., 2008). The climate is changing faster than predicted, with self-

reinforcing feedback loops in the climate system that pushes the planet past beyond 

irreversible and catastrophic tipping point (The Climate Reality Project, 2020). HP 

systems are one of the main contributors to global warming (Yang et al., 2021) and part 

of the solution at the same time. The challenge is to drastically increase energy 

efficiency even as electric supply shifts from fossil fuel to renewable energies like 

wind, solar and hydroelectric power, and shift from using high global warming 

potential (GWP) refrigerants to lower ones even as leak rates are minimized and 

refrigerants are fully recovered at the end of (product) life (EOL). 

 

1.1.2. Vapor Compression Cycle 

Although heat-driven HP systems such as absorption cycle (Herold and Radermacher, 

1989) and adsorption cycle (Suzuki and Suzuki, 1990) were developed in the 1900s, 

nearly all HP systems installed nowadays use the vapor compression cycle (VCC) for 

cooling and heating, in which the refrigerant undergoes phase changes and heat 

transfer. The VCC uses a circulating refrigerant as its working fluid, which absorbs 

heat from the space to be cooled and subsequently rejects that heat elsewhere. Figure 

1-1 depicts a typical, single-stage VCC system. All such systems have four 

components: a compressor, a condenser, an expansion valve (also called a throttle valve 

or metering device), and an evaporator. Circulating refrigerant enters the compressor 

as a superheated vapor and is compressed to a higher pressure, resulting in a higher 

temperature as well. The hot, compressed vapor is then cooled and condensed with 
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either cooling water or ambient air at lower temperatures. This is where the circulating 

refrigerant rejects heat from the system, and the rejected heat is carried away by either 

the water or the air (whichever may be the case). This dissertation discusses VCC-

based HP systems. 

 

Figure 1-1 Schematic of Typical Vapor Compression Heat Pump Cycle 

 

1.1.3. Heat Pump Systems Category 

General residential HP systems can be classified as duct and ductless systems. Ductless 

systems are widely used in commercial buildings and apartments (Kovler et al., 2002). 

Duct systems can provide ventilation function (Okochi and Yao, 2016). Compared with 

duct systems like Fan Coil systems, ductless systems have lower installation costs and 

are more convenient for maintenance (Lin et al., 2015a). This dissertation uses three 

typical HP systems include the Single-split Heat Pump (SHP) systems, Unitary Heat 

Pump (UHP) systems, and Variable Refrigerant Flow (VRF) systems (Multi-split Heat 

Pump systems) as case studies. 
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Unitary Heat Pump Systems 

Based on Air-Conditioning, Heating, and Refrigeration Institute (AHRI) definition, 

UHP systems refer to one or more factory-made assemblies and distribute the 

conditioned air directly to the space (AHRI, 2017). When such equipment is provided 

in more than one assembly, the separated assemblies shall be designed to be used 

together. Roof Top Unit (RTU), Window HP, and Packaged Through the wall Heat 

Pump (PTHP) Unit are common UHP systems in residential buildings. Figure 1-2 

shows a typical PTHP system. Due to the all-in-one design, UHP systems are 

economically efficient for manufacture, installation, and maintenance. 

 

Figure 1-2 Schematic of Typical PTHP System 

 

Split Heat Pump Systems 

Split Heat Pump (SHP) systems are another type of commonly seen HP system. SHP 

systems have Indoor Units (IDU) and Outdoor Units (ODU), as shown in Figure 1-3. 

The strength of Split HP systems is flexibility. First, sub-units could be easily added to 

SHP systems to provide extra function, like Heat Recovery Units (HRU) (Li and Wu, 
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2010). Second, SHP systems are able to provide better control than UHP systems (Kim 

et al., 2016a).  

 

Figure 1-3 Schematic of Typical Split Heat Pump System 

 

Variable Refrigerant Flow Systems 

The term variable refrigerant volume (VRV) system was first introduced in 1982 and 

is also known as VRF system nowadays (Thornton and Wagner, 2012). Since the 

1980s, VRF systems have been widely used in Japan: 50% of midsize office buildings 

(up to 6,500 m2) and 33% of large commercial buildings (more than 6,500 m2) 

(Goetzler, 2007). VRF systems were introduced to the U.S. around 2002 and are widely 

used in commercial and office buildings (Kwon et al., 2014). Figure 1-4 shows a 

schematic of a simplified VRF system. It typically consists of a variable speed 

compressor, one ODU, and multiple IDUs. The mass flow rate of each IDU is 

controlled by the electronic expansion valve (EEV). This simple VRF system is also 

called the Heat Pump VRF (HPVRF) system (Kwon et al., 2014). HPVRF systems can 

only provide heating or cooling at one time. By adding a so-called HRU, the Heat 

Recovery VRF (HRVRF) system can provide heating and cooling simultaneously (Joo 
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et al., 2011; Kang et al., 2009).  VRF systems have many advantages (Kwon et al., 

2014). First, the system is flexible to operate as each IDU can be controlled 

independently. In particular, the system with a variable speed compressor can easily 

match its cooling capacity to thermal loads at different indoor and ambient conditions. 

The VRF system is energy efficient as it does not lose too much energy through 

ductwork like conventional ducted UHP systems. Moreover, the HRVRF system can 

even provide heating and cooling to different IUs at the same time, which is especially 

useful in energy saving in shoulder seasons (Joo et al., 2011; Kang et al., 2009). 

Coefficient of Performance (COP), the most commonly used energy efficiency factor 

defined by output capacity over input power, could be 146.5% higher under HR mode 

than under cooling-only mode (Joo et al., 2011). 

 
Figure 1-4 Schematic of Typical HPVRF System 

 

1.1.4. Heat Pump Systems Evaluation 

HP systems contribute a lot to the total energy consumption and carbon emissions of 

buildings. Thus, how to evaluate the energy efficiency and environmental impact of 

HP systems become a significant problem. A reasonable and efficient evaluation 
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standard could not only provide guidelines for customers but also contribute to energy 

saving and reduction of environmental damage. Figure 1-5 shows the invention and 

evolution process of HP systems evaluation metrics. 

 

Figure 1-5 Invention and Evolution of HP Systems Evaluation 

 

The most widely used test metric now is the Coefficient of Performance (COP). COP 

could be defined by the eq. (1): 

 
𝐶𝑂𝑃 =

𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑜𝑟 𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
 

(1) 

 

The drawback of COP is that it could only be used to represent the steady-state 

performance. COP is not sufficient to evaluate the transient performance of the HP 

systems. Thus, numerous test metrics were proposed, and different regions have 

different standards. 

 

Wu et al. (2019) summarized the most commonly used energy efficiency metrics, as 

shown in Table 1-1. Seasonal Energy Efficiency Rate (SEER), Heating Seasonal 

Performance Factor (HSPF), Annual Performance Factor (APF), Cooling Seasonal 

Measure of 
equipment 
energy use 

(1800s)

Inclusion in 
equipment 
specificatio
ns (1900s)

Minimum 
energy 

efficiency 
standard

Mandatory 
labeling 
(1975)

Vehicle HP 
mileage 
rating 

(1980s)

Environmental 
evaluation 

metric (1990s)



 

 

8 

 

Performance Factor (CSPF), and Seasonal COP (SCOP) are different energy efficiency 

metrics. Engaging readers could read the reference (Wu et al., 2019). 

Table 1-1 Energy Efficiency Metrics 

Standard 

Category 

Test method 

standard 

Performance 

calculation method 

standard 

Energy efficiency standard 

Energy 

efficiency 

metrics 

U.S. AHRI 210/240:2017 AHRI 210/240:2017 Energy Star, DOE 
SEER, HSPF, 

APF 

China GB/T 7725:2004 GB/T 7725:2004 GB 21455:2013(VRFACs) 
SEER, HSPF, 

APF 

Japan 

JUSC 9612:2013, 

JRA 4048:2006, 

JISB 8615 

JISC 9612:2013,  

JRA 4046 
JRA 4046 

CSPF, HSPF, 

APF 

EU EN 14511:2011 EN 14825:2012 
EU No 206:2012,  

EU No 626:2011 
SEER, SCOP 

Australia 
AS/NZS 3823.1.1, 

AS/NZS 3823.1.2 
AS/NZS 3823.2:2013 AZ/NZS 3823.2:2013 

AEER, ACOP, 

SRI 

ISO ISO 5151:2017 
ISO 163581:2013, 

ISO 16368-2:2013 
ISO 13612-2:2014 

CSPF, HSPF, 

APF, TAPF 

 

1.1.5. Summary 

HP systems are widely used in residential and commercial buildings. Evaluating the 

performance of HP systems can help to cut energy consumption and carbon emissions. 

This dissertation uses VCC-based ductless HP systems as examples to explore the 

evaluation methods for any HP system. 

 

 

1.2. Motivations 

Conventional approaches to evaluating the performance of HP systems are through 

experiments and models. Nowadays, the traditional evaluation methods can not satisfy 

the new requirements. On the one hand, besides laboratory tests, people also show 
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interest in field tests. Moreover, as novel algorithms developed, simulation models 

were involved as well. Both approaches can generate a large amount of data. Managing 

and utilizing the data are becoming challenges. In addition, methodology to evaluate 

environmental performance quantitatively, especially for low-GWP refrigerants, is 

significant since it can be used as the target function to optimize the HP systems design. 

 

1.2.1. Field Test and Data Analysis Methods Need 

Experimental evaluation includes laboratory tests and field tests. Field testing is a 

practical and effective way to study the performance of HP systems. While HP systems 

showed high performance in the laboratory, the COP in field tests was reported to be 

as low as 1.74 (Zhang et al., 2019). The core of the COP calculation was the 

measurement of the cooling or heating capacities. According to the literature, mainly 

two methods exist: testing from the air side (Won et al., 2009) or testing from the 

refrigerant side (Kwon et al., 2012). Nevertheless, both have challenges. From the air 

side, the most crucial step is to measure the air flow rate. However, the non-uniformity 

of air velocity could obstruct achieving an accurate air flow rate. On the other hand, 

from the refrigerant side, measuring the refrigerant mass flow rate needs cutting the 

refrigerant pipe. Besides, precision mass flow meters, like Coriolis type mass flow 

meters, are required. Thus, more field test of ductless systems is needed, and an 

efficient field test method is also needed. 

 

Modeling tools are another way to study HVAC systems, specifically complicated 

ductless systems (Qiao et al., 2017). However, some difficulties exist for using these 
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tools to analyze ductless systems. First, previous modeling tools required physical 

parameters from manufacturers, while some parameters were hard to achieve. Using 

the Electric Expansion Valve (EEV) as an example, manufacturers always only tested 

the valves with air flow, not refrigerant flow, for lower testing costs (Wan et al., 2019). 

Furthermore, previous modeling tools most require the system to be in a steady-state. 

However, in the field test, the ductless system seldom achieves a steady-state. Also, 

traditional modeling tools took a long time to get convergence and were difficult to 

debug. The software is also unfriendly to inexperienced users. 

 

In the past, two separate groups of experienced engineers did the field test and modeling 

work. The communications were severe. Gaps between the test and simulation always 

existed. The process would be much simplified if people could develop a model directly 

from the field test data and use the model to help analyze field tests. The main 

challenges include the high uncertainty of the field test data, the large number of data 

dimensions, and the complexity of using the data. This study answers the following 

questions: what is the difference between the data in the lab and data from the field 

test?; what kind of method should I use to build the mode?; and what is the difference 

between the methods? 

 

A large number of data is involved in the HP systems. These parameters include 

temperature, pressure, compressor frequency, the EEV opening pulse, humidity, etc. If 

I set the sampling time of the test to be 2 seconds, a VRF system for seven indoor units 

could generate 20 GB size data per year. The speed is 2.5 KB/s, which is similar to the 
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speed of a modem. The data of each component of the HP system could be stored in a 

table. Data tables of all the sub-components of a system can form a tablespace. In a 

building or house, all the system tablespaces can assemble a database. Such a database 

contains plenty of data. The challenge is digging important information from the 

database, storing the data, and utilizing the data. 

 

1.2.2. Models Selection Methods Need 

Simulation of HVHP systems is a popular topic nowadays, and VCC calculation is at 

the core of these software or programs (Aynur et al., 2009; Jiang et al., 2014; Okochi 

and Yao, 2016). The software is based on VCC models, which include empirical 

models and component-based models (Shao et al., 2012). Some researchers built their 

own model by the tools like Energy Plus (Crawley et al., 2000), TRANSYS (Wolf, 

1994), Modelica (Fritzson and Engelson, 1998), EES (Klein and Alvarado, 2002), and 

MATLAB (Higham and Higham, 2016). Others developed software with a friendly 

user interface like CYCLE_D-HX by NIST (Domanski et al., 2018), Vapcyc by CEEE 

(Richardson et al., 2004), and CoolPack by DTU (Jakobsen, 1999). 

 

1.2.3. Environmental Impact Evaluation Methods Need  

HP systems' environmental impact is under people's concern due to recent severe 

climate change and global warming issues. A holistic evaluation of the HP system's 

environmental impact during its life cycle requires the translation of Green House Gas 

(GHG) emissions from the direct refrigerant leakage, indirect fuel consumptions, and 

the embodied equipment emissions (Andersen et al., 2018). Institute of International 
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Refrigeration (IIR) developed the Life Cycle Climate Performance (LCCP) evaluation, 

which adopted the rigorous approach to identifying and quantifying the direct and 

indirect environmental impact over a stated life cycle (IIR, 2017).   

 

Andersen et al. (2018) summarized the calculation process of LCCP based on IIR's 

guidelines. LCCP is usually calculated in kgCO2e, consisting of direct and indirect 

emissions, as shown in eq. 2: 

 

𝐿𝐶𝐶𝑃 = 𝐸𝑑𝑖𝑟𝑒𝑐𝑡 + 𝐸𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 (2) 

 

Direct emissions (𝐸𝑑𝑖𝑟𝑒𝑐𝑡) are the emissions caused by:  

 

𝐸𝑑𝑖𝑟𝑒𝑐𝑡 = 𝐸𝑙𝑒𝑎𝑘 + 𝐸𝑠𝑒𝑟𝑣𝑖𝑐𝑒 + 𝐸𝑎𝑐𝑐𝑖𝑑 + 𝐸𝐸𝑂𝐿  (3) 

 

where 𝐸𝑙𝑒𝑎𝑘 is the total carbon dioxide equivalent emissions due to annual refrigerant 

leakage from the system over its operating lifetime (kg CO2e), 𝐸𝑠𝑒𝑟𝑣𝑖𝑐𝑒  is the total 

carbon dioxide equivalent emissions due to refrigerant release during servicing events, 

over the operating lifetime of the system (kg CO2e), 𝐸𝑎𝑐𝑐𝑖𝑑 is the total carbon dioxide 

equivalent emissions due to refrigerant release caused by accidents (kg CO2e), and 

𝐸𝐸𝑂𝐿  is the total carbon dioxide equivalent emissions due to refrigerant release at the 

End Of Life (EOL) of the system (kg CO2e). 

 

Indirect emissions ( 𝐸𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 ) include emissions from energy consumption, 

manufacturing of materials, manufacturing of refrigerant, and disposal of the unit (or 

recycling): 

 

𝐸𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 = 𝐸𝑒𝑛𝑒𝑟𝑔𝑦 + 𝐸𝑠𝑦𝑠,𝑚𝑎𝑛 + 𝐸𝑠𝑦𝑠,𝐸𝑂𝐿 + 𝐸𝑟𝑒𝑓,𝑚𝑎𝑛 + 𝐸𝑟𝑒𝑓,𝐸𝑂𝐿 (4) 
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where 𝐸𝑒𝑛𝑒𝑟𝑔𝑦  is the emission associated with the generation of electricity used to 

power the refrigeration system over its operating lifetime (kg CO2e), 𝐸𝑠𝑦𝑠,𝑚𝑎𝑛 is the 

emissions associated with the energy to manufacture the refrigeration system (kg CO2e), 

𝐸𝑠𝑦𝑠,𝐸𝑂𝐿 is the emission associated with the energy to dispose of the refrigeration 

system components at the end-of-life of the system (kg CO2e), 𝐸𝑟𝑒𝑓,𝑚𝑎𝑛 is the emission 

associated with the energy to manufacture the refrigerant (kg CO2e), and 𝐸𝑟𝑒𝑓,𝐸𝑂𝐿 is 

the emission associated with the energy to dispose of the refrigerant at the end-of-life 

of the system (kg CO2e). 

 

Some literature also translated LCCP into three parts: direct GHG emissions, indirect 

fossil fuel GHG emissions, and emissions embodied in equipment. The fossil fuel GHG 

emissions are the 𝐸𝑒𝑛𝑒𝑟𝑔𝑦  if the energy used is all from fossil fuel. The embodied 

emissions include materials, manufacturing, transportation, installation, service, and 

recycling at the EOL, and this part is the rest of the parts in the eq. 5. Thus, this 

categorization is the same as eq. 6 (Andersen et al., 2018). 

 

1.2.4. Summary 

Labotorary tests and field tests were reported to have different results. The method used 

for laboratory tests is not applicable for field tests. First, a steady-state is hard to achieve 

in field tests. Second,  field tests require long-time monitoring and a large number of 

measuring instruments, which are different from laboratory tests. Thus, field tests and 

new field test methodologies are needed for future HP evaluations. Modeling is another 
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tool to analyze HP systems. Conventionally, component-based white-box models were 

used. However, as new machine-learning and deep-learning algorithms develop, black 

box and grey box models gradually grasp people’s interests. Plus, both AI-based 

modeling and field test experiments involve a large amount of data. Therefore, novel 

simulation models and data analysis software are needed for novel HP systems. Last 

but not least, global warming has been becoming a big issue for HP system design and 

application. Environmental impact evaluation, including life cycle carbon emission, is 

needed for future HP system selection.   

 

1.3. Literature Review 

Due to the need for field tests, simulation models, data analysis approaches, and 

environmental evaluation, the related literatures are reviewed in this section.  

 

1.3.1. Field Tests and Experimental Works 

SHP and UHP Systems 

Due to the simple design, SHP and UHP systems typically show similar performances 

in field tests and laboratory tests. Most experimental studies for UHP systems focus on 

novel system design like using Vapor Injection cycle. Bourne et al. (2008) proposed a 

packaged rooftop unit (RTU) that provides heating, ventilation, and air conditioning 

solutions to buildings. Their work presents new RTU designs that include evaporative 

cooling of both ventilation air and a condensing refrigerant as well as other features to 

improve RTU efficiency significantly. Wohlert (2013) proposed a system comprising 

plural RTUs having a centralized refrigeration unit along with a method for retrofitting 
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existing independent HVAC units into the proposed system. Kennett et al. (2016) 

evaluated an extended-duct air delivery system in tall spaces by RTUs. 

 

VRF Systems 

Aynur (2010) and Lin et al. (2015) did a complete literature review about VRF system’s 

experiment works before 2014. Three kinds of experimental studies have been 

conducted since 2014. First, researchers used measured data to validate their models, 

most of which were developed in EnergyPlus. I already discussed these papers above 

(Hong et al., 2016a; Jiang et al., 2014; Raustad et al., 2013). Second, some scholars 

developed new control systems, like temperature and humidity independent control 

systems, and used experimental methods to evaluate the performance. I also reviewed 

these works in the system configuration section. Third, some researchers used field 

tests to conduct a parametric study of the VRF system. I discuss these studies in detail 

in chronological order as follows:  

 

Yun et al. (2016) conducted a series of experiments in the multi-calorimeter consisting 

of one outdoor unit chamber and two indoor unit chambers as part of their work to 

develop a load responsive control of the evaporating temperature in a VRF system 

under cooling operations. The results indicate that increasing the evaporating 

temperature can reduce the energy consumption of the system by up to 35%. Yu et al. 

(2016) compared the cooling performances of the VRF system and the VAV system in 

office buildings. The climate and operating hours data from their field measurements 

indicate that the cooling energy consumed by VRF systems was up to 70% lower than 
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that consumed by VAV systems. Xin et al. (2017) focused on the oil-return aspect. The 

sound velocity method was used to measure the oil concentration in the VRF system. 

The author mentioned that it was practical to use this method and the relative deviation 

between this method and the sampling method was 2.6%. The oil discharge ratio 

increased linearly with the increase of compressor speed. The oil separator had a 

limited separation efficiency. Guo et al. (2017) proposed a virtual variable-speed 

compressor power sensor for the VRF system. The author conducted a set of 

experiments to collect data to test the sensor under different refrigerant charge levels. 

Khatri and Joshi (2017) compared an inverted-based VRF HP performance with a 

constant speed unitary HP by using field performance testing. It was found that the 

VRF system had energy saving only on part-load conditions. Minimum savings were 

observed when the outdoor temperature was equal to the rated outdoor temperature, 

while maximum savings were observed when the outdoor temperature was nearly equal 

to the indoor set temperature. Özahi et al. (2017) compared the thermodynamic and 

economic performance of an air handling unit (AHU) and a VRF system in public 

buildings. Park et al. (2017) conducted a field test in an office building and compared 

the results with a simulation result by EnergyPlus. Three system configurations were 

used in this study: the VRF system without ventilation, the VRF system with energy 

recovery ventilation (ERV), and the VRF system with DOAS. According to their 

experimental results, the yearly energy use per unit area of the VRF system without 

ventilation was 213.6 kWh·m-2. The VRF system with ERV and the VRF with DOAS 

were 16.8% and 26%, respectively, higher than the VRF system without ventilation. 

Saab and Ali (2017) studied the performance of the VRF system under various 
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conditions in hot and humid climates. Their results show that the COP of the cooling 

cycle and the type of refrigerant used as working fluid were highly dependent on the 

evaporator and condenser pressures. They also mentioned that evaluating the effect of 

each parameter on the COP of the system could contribute to energy saving. Zhang et 

al. (2017) studied the operating performance of digital variable multiple HP systems, 

which was one type of VRF system. The results indicate that the variable refrigerant 

volume characteristics and excellent part-load performance were helpful for energy 

saving. Under the defrosting condition, the IU, which contributes the most to 

defrosting, was the one nearest to the OU, and its corresponding indoor thermal 

environment was adversely affected. Tu et al. (2017) used experiments to study the 

subcooling degree’s effect on the performance of the VRF system.  The results show 

that the reasonable adjustment of the subcooling EEV opening could improve the COP, 

increase the subcooling degree, and ensure the safe discharge superheat degree. They 

also discussed how to control the subcooling by EEV. 

 

Table 1-2 shows a summary of the experiment works conducted since 2014. 

Observations from this survey are as follows: first, since 2017, a significant number of 

VRF system experiment papers have been published; second, nearly all of them were 

conducted in the Asia region;  third, most of them focused on the cooling mode only.  
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Table 1-2 Experiment Studies Overview 

Author Year Mode Location Building type Research Target Time 

Jiang et al. 2014 
Cooling, 

Heating 

Shanghai, 

CN 
Office room 

Indoor air 

temperature, energy 

consumption, COP 

2 

months 

Lin et al. 2014 
Cooling, 

Heating 

College 

Park, US 
Office room COP 1 year 

Meng et al. 2015 Cooling 
Shanghai, 

CH 
n/a COP, PLR n/a 

Kim et al. 2015 Heating 
Busan, 

KR 
Test chamber 

COP, heating 

capacity 
n/a 

Yun et al. 2016 Cooling 
Yongin 

Si, KR 
Test chamber 

Energy 

consumption, 

exhaust air 

temperature 

n/a 

Yu et al. 2016 Cooling 
Beijing, 

CN 
Office room 

COP, energy 

consumption 
1 year 

Xin et al. 2017 Cooling 
Qingdao, 

CN 
n/a Oil return n/a 

Guo et al. 2017 
Cooling, 

Heating 

Wuhan, 

CN 
Test chamber 

Energy 

consumption, 

exhaust air 

temperature 

n/a 

Khatri et al. 2017 Cooling 
New 

Delhi, IN 

Brick wall 

building 

Energy 

consumption, 

outdoor air 

temperature 

1 month 

Ozahi et al. 2017 Cooling 
Turkey, 

TR 
Public building 

Cost, energy 

consumption 
1 year 

Kani-

Sanchez et 

al. 

2017 
Cooling, 

Heating 

Ontario, 

CA 
Office room Energy consumption 1 year 

Park et al. 2017 
Cooling, 

Heating 

Seoul, 

KR 
Office room 

Energy 

consumption, COP, 

ventilation 
1 year 

Saab and 

Ali 
2017 Cooling 

Abu 

Dhabi, 

AE 

Office room 
COP, energy 

consumption 
1 year 

Zhao et al. 2017 Cooling 
Shanghai, 

CN 

Office room, 

residential 

house 

Indoor air 

temperature, 

stability 
1 year 

Zhang et al. 2017 Heating 
Nanjing, 

CN 
Laboratory 

COP, PLR, defrost, 

energy consumption 
n/a 

Tu et al. 2017 
Cooling, 

Heating 

Ningbo, 

CN 
Laboratory 

COP, subcooling, 

superheat 
n/a 

Qian et al. 2020 
Cooling, 

Heating 

14 cities 

in China 

Office, 

Residential, 

Public building 

COP 1 year 
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A possible reason could be that in Southeast Asia (hot and humid conditions), the 

cooling demand is more significant than the heating demand. Fourth, most of the papers 

focused on the COP and energy consumption of the VRF system. Limited studies 

tackled other topics, like defrosting performance and the stability of the system. Thus, 

future research work could include more various environmental conditions around the 

world. Also, more studies on the effects of design parameters on the system 

performance are needed to be carried out. Finally, for the field test works, all the studies 

only conducted tests in one year. No one compares the performance of the same system in 

different years. Except for Qian et al. (2021), no study studied large data analysis for field tests. 

 

1.3.2. Modeling Methods for HP Systems 

Researchers built computer models as a bias for simulations to develop data utilized 

for HP system design, analysis, or comparison. Models were developed to describe the 

systems. 

 

HP models can be categorized as steady-state or transient models. The steady-state is 

defined as for all parameters of a system or process, the partial derivative to time is 

zero (Lecompte et al., 2018a). The unsteady-state is also called the transient state or the 

dynamic state. Besides steady-state or transient models, HP models could also be 

categorized as black-box models or gray-box models. The HP modeling could be 

categorized as shown in Figure 1-6. 
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Figure 1-6 HP Modeling Category 

 

Developing a transient model is more complicated than the steady-state model due to 

time derivative terms. The transient models were typically published in control design 

journals. In this part, some transient models are reviewed, and the control logics of the 

HP system are further discussed later. As for the transient models, state-space 

representation, which is a mathematical model of the physical system, is commonly 

used (Rovelli and Smolin, 1990). Two kinds of models exist, known as black-box 

models and gray-box models. In the black-box model, linearization is employed to 

simplify the models. In the grey-box model, some researchers considered the system in 

detail and built a complete component-based model.  
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Steady-state Empirical Model 

The most commonly used empirical model is the one used in EnergyPlus 7.2 

(Crawley et al., 2000). Polynomial equations are used to predict the parameters, like 

capacity, as shown below (Hong et al., 2014). 

 Qtot,ind = Qrate,ind ∙ CapFTind (7) 

 CapFTind = a1 + a2Twb,ind + a3Twb,ind
2 + a4Tdb,outd 

+a5Tdb,outd
2 + a6Twb,indTdb,outd 

(8) 

Eq. (7) is used to calculate the actual output of each IU by the capacity in the rated 

condition. The correction factor can be computed by eq. (8), which incorporates the 

modifiers correlated with average room wet bulb temperature and outdoor dry bulb 

temperature. This model is called the “system-curve-based model” or “SysCurve.” As 

shown by the equations, the system is described by several curves. EnergyPlus is an 

open-source simulation engine for building performance analysis. According to Lin’s 

research (Lin et al., 2015b), most of the steady-state modeling studies (Hong et al., 

2014; Li and Wu, 2010; Liu and Hong, 2010; Raustad et al., 2013; Shen et al., 2013; 

Shen and Rice, 2012) were based on EnergyPlus and started with a hard-coded module 

due to the reason that early version of EnergyPlus was unable to support an HP system. 

EnergyPlus is a popular tool in HP system simulation, and some studies (Hong et al., 

2016a; Kim et al., 2016b; Wang, 2014) are introduced in detail in the simulation 

section. As the new version of EnergyPlus (version 9.0) was released, other models, 

such as the physics-based model, also known as “FluidTCtrl,” were developed to be 

able to describe the system dynamics (Hong et al., 2016a).  

 



 

 

22 

 

Recently, the Artificial Neural Network (ANN)-based model is a hot topic. ANN, also 

called Shallow Neural Network (SNN), or just Neural Network (NN), is a kind of 

black-box data-driven model, which was typically used to predict energy 

consumptions. Kang et al. (2018) proposed an ANN model using weather data 

including outside temperature, relative humidity, solar radiation, cloudiness, wind 

speed, and rainfall events as input data to predict the energy consumption. The mean 

square error (MSE) of their work is 10.3%. Chung et al. (2017a) used ambient 

temperature, outside humidity, cooling load, saturated temperature, condensate 

temperature, and condense pressure as input neurons to predict energy consumptions. 

ANN, which is one kind of machine learning methods, is a powerful method with low 

error and can be used as a substitute for traditional empirical methods in most cases. 

Since this method is also widely used in subcomponent modeling, control design, and 

FDD, I use a separate chapter to discuss this topic. 

 

Steady-state Component-based Model 

Some researchers used component-based models for the HP system (Cheung and 

Braun, 2014; Sun et al., 2017). These models consist of compressor models, condenser 

models, evaporator models, EEV models, pipeline models, and accumulator models. 

Various algorithms were adopted to connect the component models. 

a. Compressor Model 

For the simulation of VCC systems, the compressor models fell into three categories: 

1) map-based models, 2) efficiency-based models, and 3) distributed parameter models 

(Zhao et al., 2009; Qiao et al., 2010). The most commonly used model for the HP 

system was the efficiency-based model (Cheung and Braun, 2014; Sun et al., 2017). 
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Several research groups also studied the efficiency-based model (Jähnig et al., 2000; 

Li, 2013a). Jähnig’s model is listed here: 

 
ṁ = {1 − Ccomp,1 [(

Pdis
Psuc

)

1/k

− 1]} ∙
V ∙ RPM

νsuc ∙ 60
 (9) 

 

W ∙ η
comp

= ṁ ∙
k

k− 1
∙
Pdis
Psuc

∙ νsuc [(
Pdis
Psuc

)

k−1
k
− 1] (10) 

 ηcomp = Ccomp,2 + Ccomp,3exp(Ccomp,4Psuc) (11) 

where k is the specific heat ratio. 𝐶𝑐𝑜𝑚𝑝,1, 𝐶𝑐𝑜𝑚𝑝,2, 𝐶𝑐𝑜𝑚𝑝,3, and 𝐶𝑐𝑜𝑚𝑝,4 are regression 

parameters that are obtained from experimental data. Cheung and Braun (2014a) used 

this model. They also made a polytropic compression assumption, as shown in eq. (12).  

 Psucνsuc
n = Pdisνdis

n  (12) 

where n is the polytropic exponent and can be calculated from experimental data by eq. 

(13). 

 

n =
1

N
∑

ln(Psuc,i/Pdis,i)

ln(νsuc,i/νdis,i)

N

i=1

 (13) 

Then the model can be solved by minimizing the objective functions in eq. (14) and 

eq.(15). 

 

J = ∑(
ṁpred,i − ṁmeas,i

ṁmeas,i

)

2N

i=1

 (14) 

 

J = ∑(
Ẇpred,i − Ẇmeas,i

Ẇmeas,i

)

2N

i=1

 (15) 

 

The accumulator is a device that stores liquid refrigerant before the compressor while 

maintaining the refrigerant close to the vapor state at its outlet (Cheung and Braun, 

2014). Some authors merged it with the compressor (Sun et al., 2017). Others 
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considered it separately (Cheung and Braun, 2014). The accumulator was generally 

modeled as a liquid-vapor separator, which discharged vapor only. This also implied 

that pressure and enthalpy remained unchanged across the accumulator, and the inlet 

quality of the accumulator should be greater or equal to one (Cheung and Braun, 2014). 

 

b. Heat Exchanger Model 

Heat exchanger models could be classified into four groups: 1) lumped parameter 

models, 2) zone model or moving boundary model, 3) distributed parameter models or 

finite volume models, and 4) tube-by-tube models (Qiao et al., 2010).  Cheung and 

Braun (2014b) used a lumped parameter model, which is the simplest one. The heat 

exchanger was treated as a single control volume. The so-called NTU-effectiveness 

(NTU-ε) method (Bergman et al., 2011) was adopted without providing details of the 

model.  Sun et al. (2017) used a four-section lumped model developed by Ge and 

Cropper (2005). They also used the NTU-ε method to carry out the calculation of heat 

transfer. The heat balance is provided by eq. (16). 

 Q̇ = ṁaCpa(Ta,in− Ta,out) = ε(G)min(Tr,in− Tr,out) (16) 

where the effectiveness “ε” can be calculated by eq. (17). 

ε = {
1 − exp [

NTU0.22

(G)min/(G)max
(exp(−(G)min/(G)max) ∙ NTU

0.78) − 1]

1 − exp(−NTU)

 
single-phase region 

(17) 

two-phase region 

 

The inlet refrigerant parameters of each section are from the outlet parameters of the 

section above directly except for the superheated region. For steady-state modeling, 

researchers generally use a lumped parameter model for heat exchanger modeling. The 
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simplified model is enough to describe the steady-state. However, for the transient 

state, the case is different, which is further discussed later. 

 

c. EEV Model 

The EEV model is typically described by the mass flow rate equation, as shown in eq. 

(18) (Wile, 1935): 

 
ṁ = CEEVA√2ρin(Pin − Pout) 

(18) 

where A, ρin, Pin, and Pout are the flow area of the EEV, the inlet density of the 

refrigerant, the inlet pressure, and outlet pressure, respectively. CEEV is the EEV 

correlation factor (Wan et al., 2018). Different authors used different forms of 

correlations to estimate the CEEV. Three kinds of EEV correlations existed: 1) power-

law correlation (Chen et al., 2009a, 2017a; Park et al., 2007a; Tian et al., 2015a; Ye et 

al., 2007a; Zhang et al., 2006a; Zhifang et al., 2008a); 2) polynomial correlation (Li, 

2013a); and 3) Neural Network (NN) correlation (Cao et al., 2016a; Tian et al., 2015a; 

Wan et al., 2019). The most common correlation adopted in the HP model was the 

power-law correlation. 

 

d. Pipeline Model 

The pressure drop across the pipeline was typically evaluated by a simple correlation 

(Müller-Steinhagen and Heck, 1986), as shown in eq. (19) for single-phase flow and 

eq. (20) for multi-phase flow: 

 ∆P = (fLρu2)/2D (19) 

 ∆P = ∅(fLρu2)/2D (20) 
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where f is the frictional coefficient, u is the flow velocity, D is the diameter, and ∅ is 

the frictional two-phase multiplier, L is the length of the pipe, and ρ is the density of the 

fluid. 

 

e. System Configuration 

Most studies relied on a fixed system configuration. Park et al. (2001) and Shah et al. 

(2004) studied two IUs’ models. Wu et al. (2005a) and Lin and Yeh (2007) conducted 

three IUs’ models. Very limited scholars focused on models for arbitrary system 

configuration. Shao et al. (2012) developed a dynamic model for an arbitrary 

configured refrigeration cycle, which would be further discussed later. Sun et al. (2017) 

carried out a steady-state model for arbitrary system configuration based on Shao’s 

research. They used a matrix to save the arbitrary system configuration and solved the 

model by graph theory. Interested readers can read the references for detail. 

 

f. Iteration Algorithm 

Though different authors used a slightly different iteration algorithm in their models 

due to different component models, the basic process was similar. Most researchers 

used the same order from the compressor model to the accumulator model. As 

mentioned above, Sun et al. used a graph-theory-based generation method of 

computation sequences to trace the calculation order of components and pipeline. Thus, 

their solver was different from the traditional one. A tailor-made refrigerant mass-

induced iteration algorithm was developed to solve the internal coupled component 

models.  
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Transient Linearized Model 

Perhaps due to confidential policy, most transient model-related papers just mentioned 

the dynamics of their model generally. Only one research group gave the details of their 

model. Lin and Yeh (2007) used the following approach, as shown in eq. (21) to 

describe the dynamics of the HP system. 

 

[
δTsh
δTe

] =

[
 
 
 
 
b11
s + a1

b12
s + a1

b21
s + a2

b22
s + a2]

 
 
 
 

[
δω
δα
] (21) 

This model could describe each IU of the HP system. This model was expressed in 

Laplace transform form. 𝑎1 and 𝑎2  represent the most dominating poles for each 

indoor unit. 𝑇𝑠ℎ and 𝑇𝑒 are superheat and evaporate temperature, respectively. 𝑏 are the 

control gains. 𝛿  is used to show the model is based on linearization, so inputs 

(compressor frequency 𝜔 and target IU EEV opening degree 𝛼) and outputs are all in 

the perturbed form. The parameters (𝑎 and 𝑏) are identified from the experiments. 

 

Transient Component-based Model 

Shao et al. (2012) built mathematical component models of the HP system and 

integrated them with the framework of the two-phase fluid network. They also 

mentioned that the models used for the transient state of the compressor and EEV 

model were the same as that of the steady-state model.  

a. Heat Exchanger Model 

Shao et al. (2012) adapted the moving boundary method. The evaporator has two 

refrigerant regions, i.e., two-phase and superheated regions. The condenser has three 

refrigerant regions, i.e., superheated vapor, two-phase, and subcooled liquid regions. 
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The non-linear state-space matrix representations of the evaporator were given by Shao 

et al. The axial conduction in the unidirectional pipe can be neglected as compared to 

the heat transfer through the condenser surface. They used mass balance equations, 

energy balance equations, and temperature relationships to set up the model. Interesting 

readers can check more details from references. 

 

b. Accumulator and Receiver Model 

Since the accumulator volume is typically small, its effect is generally considered to be  

negligible by some researchers (Sun et al., 2017). However, the lumped parameter 

model was widely used when the accumulator was modeled. The following model was 

adopted by Shao et al. (2012). They applied the mass and energy balances in their 

model. The equations of the accumulator are shown in eqs. (22) and (23). The receiver 

model can be expressed in a similar way, which is not be repeated here. 

 Vacc
dρacc
dt

= ṁin,acc − ṁout,acc (22) 

 Vacc (
d(ρacchacc)

dt
−
dPacc
dt

) = ṁin,acchin,acc − ṁout,acchout,acc + αaccAacc(Ta,acc − Tr,acc) (23) 

   

Summary 

The steady-state HP system model has been well studied. The component-based steady-

state model is mature. Future work of this part could be exploring new refrigerants, like 

flammable refrigerants. Furthermore, complicated structured HP systems, like the 

system with HRU or subcooling heat exchanger, need further study. A lot of empirical 

steady-state models exist. However, these methods require big data sets and are 

unexplainable. 
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Nearly all of the previous works of the dynamic models were component-based. The 

methods used to describe each subcomponent were also similar. Nevertheless, the 

component-based method has some flaws. First, the current dynamic HP model lacks 

in accuracy. Second, such model utilization requires a high level of knowledge. When 

some error existed, the model would be hard to converge. Third, different researchers 

used different platforms. Evaluating and comparing different models brought 

challenges. Future work could be made to develop some user-friendly dynamic tools. 

A model that can detect its faults and provides the users some suggestions might be a 

good appraoch. Scholars rarely mentioned empirical dynamic models. Future research 

may also be done in this area since the characteristics of the knowledge-based method 

could fill in the gap of the traditional methods. 

 

1.3.3. Data Analysis and Current Applications 

Researchers already proposed a framework for HP systems control, as shown in Figure 

1-7. As I mentioned above, data analysis is a significant part of modeling, simulation, 

control, and FDD. Namely, three methods including statistics-based, machine learning-

based, and physic-based exist as shown in Figure 1-8. Some readers might argue about 

the differences between statistical methods and machine learning methods. They are 

two different critters. Machine learning models aim at making the most accurate 

predictions, while statistical models are designed for inference among variables. They 

also have many other different characteristics. Engaging readers could read the famous 
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paper for reference (Breiman, 2001). Statistic methods are usually considered more 

interpretable than machine learning methods. 

 

Figure 1-7 Existing Database Framework for HP Systems (Lachhab et al., 2018) 

 

 
Figure 1-8 Data Analysis Framework 
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In the first place, I prefer physics-based models since they could be explained well and 

have decent accuracy. However, a physics-based model is usually hard to derive. A 

more general way is a semi-empirical method, which is also known as the grey-box 

method, as I mentioned in the modeling chapter. Take eq. 18, the EEV mass flow rate 

equation, as an example. The equation is based on fluid mechanics, but statistic 

methods still can obtain the EEV correlation factor (CEEV) through the experiment. It 

is the most commonly used method in the past few years. 

 

As for machine learning, it has become a hot topic recently due to its amazing accuracy 

for some proper cases. As shown in Figure 1-8, numerous algorithms exist. However, 

only NN was widely used in nearly every field, including modeling (Cao et al., 2016a; 

Tian et al., 2015a; Wan et al., 2019), control (Kang et al., 2018), and FDD (Nasrabadi, 

2007). Other methods were only used in FDD. The reason might be the toolbox 

function of some commercial software like Matlab lowers the threshold to the field. 

Other algorithms do not have such an easy way until now. Since different researchers 

use different standards of these algorithms in different fields, it is hard to conclude 

which algorithm has the best performance in HP modeling. The different device 

capacities and the test conditions also brought difficulty in comparing their works. 

Thus, the future work of the HP system modeling study could be using different 

machine learning algorithms for the same system and developed a component-based 

model to evaluate the performance of these algorithms. 
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All the previous studies only focused on three months to one-year scale data as 

mentioned in Table 1-2. The system performance was seldom compared year by year. 

The reason could be that previous slow hardware and shorten data analysis techniques 

limited the scale of the database. 

 

As the industry has been evolving to the 4.0 Industrial Revolution environment, 

including cyber-physical systems, artificial intelligence, cloud computing, and the 

internet of things (Yan et al., 2017), big data techniques have been utilized in the 

construction industry (Bilal et al., 2016), to building management (Dey et al., 2018), 

and now gradually to  HP systems (Capozzoli et al., 2017; Lachhab et al., 2018; Li et 

al., 2020). The existing big data analytic method provides us a tool for dealing with a 

much larger scale database. Thus, how to apply these tools would become a problem 

for novel HP systems. 

 

1.3.4. Life Cycle Climate Performance Analysis 

The climate is changing faster further than predicted, with self-reinforcing feedback 

loops in the climate system that risk pushing the planet past irreversible and 

catastrophic tipping points (The Climate Reality Project, 2020). HP systems are both 

one of the main contributors to global warming (Yang et al., 2021) and can be part of 

the solution. The challenge is to drastically increase energy efficiency even as electric 

supply has been shifting from fossil fuels to renewable energies and simultaneously 

shift from high global warming potential (GWP) refrigerants even as leak rates are 

minimized and refrigerants are fully recovered at the end of (product) life (EOL).  
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Life Cycle Climate Performance (LCCP) has been invented and evolves in the past 

decades, as shown in Figure 1-9. Other environmental evaluation metrics exist for HP 

systems before the LCCP. Global warming potential (GWP), a famous ecological 

metric for refrigerants, only accounts for the direct emission from the refrigerant 

(Makhnatch and Khodabandeh, 2014). Total Equivalent Warming Impact (TEWI) is 

the summation of carbon-equivalent direct refrigerant and indirect power generation 

GHG emissions (Sand et al., 1997). At the same time, LCCP, which is more 

comprehensive, adds carbon-equivalent and embodied emissions. In turn, Life Cycle 

Assessment (LCA) involves a thorough inventory of the energy and materials that are 

required across the industry value chain of the product (Mota-Babiloni et al., 2020). 

LCA is widely used in other fields like building and aviation sectors other than HP 

systems (Bachmann et al., 2017; Vilches et al., 2017). Recently, some researchers came 

up with a new concept: Enhanced-LCCP (EL-LCCP) (Andersen et al., 2018), which 

considers local climate, heat islands, and local power supply characteristics. 

 
Figure 1-9 Invention and Evolution of LCCP 

 

The LCCP has been used to evaluate the LCCPs of different HVAC systems in the past 

ten years, as shown in Table 1-3.  
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Table 1-3 Recent LCCP Evaluation Research 

Author (year) System Refrigerant Country 

Horie et al. (2013) 1.3 kW HP R-410A, R-32, R-1234yf Japan 

Zhang et al. (2014) 11 kW HP R-410A, R134a, R-1234yf U.S. 

Li (2015) 13, 14 kW AC R-410A, R-22 U.S. 

Troch et al. (2016) 11 kW HP R-410A U.S. 

Lee et al. (2016) 11 kW HP 
R-410A, R-32, R-290, DR5, 

L41, D2Y60 
U.S. 

Choi et al. (2017) 11 kW VI HP R-410A, R-32, R-290 Korea 

Wu and Jiang 

(2018) 

- R-410A China 

Kim et al. (2018) 12.4 kW VI HP R-410A U.S. 

 

Horie et al. (2010) assessed the LCCP of the residential heat pump in Japan. Zhang et 

al. (2011) developed an LCCP tool for a residential heat pump for four U.S. cities. Li 

(2015a) evaluated the LCCP of various Packaged Air Conditioners (PAC) involving 

micro-channel heat exchangers for typical U.S. cities. Troch et al. (2016) and Lee et al. 

(2016) conducted an LCCP evaluation for the same heat pump system in five U.S. 

cities. Choi et al. (2017) developed an LCCP model and evaluated it for South Korean 

weather conditions. Wu and Jiang (2017) developed an LCCP calculation software to 

analyze different climate zones in China. Kim et al. (2018) applied a Neural Network 

algorithm to predict the LCCP value using three different U.S. weather conditions.   In 

most of the past LCCP works, the environmental impact of the system was not 

evaluated in different countries but rather evaluated in one country. Also, half of the 

literature only focused on R-410A. Almost none of them discussed the recently 

announced refrigerants like R-466A and R-452B. Besides weather conditions, other 

factors can affect the LCCP evaluation. First, the grid emission factors are different in 

different countries. The range could be from 0.1 to 1.0 kg CO2e per kWh 

(Transparency, 2018). This difference can bring obvious gaps in indirect carbon 
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emission calculation. Second, the Embodied Carbon-dioxide Coefficients (ECCs) of 

the materials are different. They can bring discrepancies in calculating the carbon 

emission in the system’s manufacturing phase.  Previous studies did not consider all 

these differences at the same time. 

 

The LCCP has some successful applications. In 2009 SAE International approved 

standard J2766-200902 “GREEN-MAC-LCCP” (SAE International, 2009), which was 

the basis for industry decision to shift from HFC-134a to HFO-1234yf rather than to 

other refrigerant candidates available at that time (Andersen et al., 2013). Horie et al. 

(2010) assessed a residential heat pump in Japan. Zhang et al. (2011) developed an 

LCCP tool for a residential heat pump for four U.S. cities. Li (2015a) evaluated various 

Packaged Air Conditioners (PAC) involving micro-channel heat exchangers for typical 

U.S. cities. Troch et al. (2016) and Lee et al. (2016) conducted an LCCP evaluation for 

the same heat pump system for five U.S. cities. Choi et al. (2017) developed an LCCP 

model and evaluated it for South Korean weather conditions. Wu and Jiang (2017) 

developed LCCP-calculation software to analyze different climate regions in China. 

Kim et al. (2018) applied a Neural Network algorithm to predict the LCCP value using 

three different U.S. weather conditions. A new application in replacing older 

refrigeration and HP with refrigerators using LCCP was reported (Aprea et al., 2016).  

 

Studies related to HP system environmental impact have grown steadily over the last 

20 years and have become a mainstream topic but not always using the comprehensive 

LCCP metric. Figure 1-10 shows the number of papers reported on ScienceDirect using 
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the keywords “life cycle” for “heat pump” or “air conditioning.” 1,508 papers 

mentioned LCA, while only 84 papers mentioned the LCCP concepts. Makhnatch et 

al. (2014) reviewed LCCP, TEWI, and GWP publications in 2014 but mainly focused 

on different calculations of carbon-equivalent refrigerant effect. Chau et al. (2015) and 

Sharma et al. (2011) reviewed LCA for buildings, but although the HP systems were 

mentioned in their work, they were not analyzed in detail.  

 

 
Figure 1-10 Histogram of Annual Environmental Impact Publications for HP 

systems (ScienceDirect, 2021) 

 

This study presents the first survey of how different researchers estimate the direct, 

indirect, and embodied carbon-equivalent emission factors listed in IIR LCCP 

guidelines (IIR, 2017). In addition, my study could be considered as a supplement to 

the guideline. In the IIR LCCP guideline, the recommendation values were based on 
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North American regions, and some assumptions used in the guideline were not realistic 

enough. My review study analyzes how these assumptions were handled in the latest 

literature. For the current research gap, I provide my suggestions for future works.  

 

Figure 1-11 shows the relationship between each sub-emission of LCCP. This study 1) 

discusses the refrigerant effects on LCCP calculations, 2) compares four different 

methods to predict the annual energy consumption of a given HP system, 3) adds the 

grid effect that is usually ignored by previous studies, and 4) summarizes a commonly 

used dataset for material embodied emissions. I then discuss current LCCP studies 

focusing on different impact factors, challenges, and purposes. Finally, I point out 

possible future work to enhance the framework and improve the LCCP studies. 
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Figure 1-11 Elements of LCCP 

 

1.3.5. Summary 

Nearly all the researchers conducted field tests only in one city. Moreover, all the field 

tests were conducted in less than one year. Thus, the large data was seldom mentioned 

in the literature. Only Qian et al. (2021) reported data from multiple cities. However, 

they focused on “space,” not “time.” Though they had a large data set, the data was not 

collected from the same space. The systems in different climate regions were 
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compared, but the system’s performance in the same place in different years was not 

reported.  

 

“FlyData” summarized several challenges in large data (usually more than 10 Giga 

Byte) analysis (“The 6 Challenges of Big Data Integration | FlyData,” 2021). First, a 

talent gap exists in large data. Several tools were developed to analyze large data, but 

handling these tools requires expertise. Second, getting data into a large data structure 

is difficult. The large data is usually saved in a different format from the normal data 

source. Loading the data into a large data platform also has a high cost. Third, the data 

sources are usually different, which means synchronizing across the sources is not easy. 

The data copies migrated from a wide range of sources at different rates, and schedules 

can rapidly evade the synchronization with the originating system. Fourth, extracting 

information from the data set requires knowledge. 

 

For the HVAC system, I summarize several challenges based on our previous works 

and the literature. The data source would be a big challenge. I need to consider cross-

platform data analysis and simulation. In addition, in the HVAC industry, our devices 

usually had limited Radom-Access Memory (RAM). This could bring an extremely 

long time in data analysis or breakdown of the program. Besides, previous researchers 

always focused on energy efficiency. How to find out other crucial information from 

the field test dataset is a problem. 
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1.4. Problem Statement 

As the background information, the energy consumption of HP systems plays a 

significant role in the world residential building energy sector. The conventional HP 

system evaluation method focused on the energy efficiency of a given time scale (e.g., 

hourly, seasonally, or annually). From the literature review part, previous evaluation 

methods or test metrics were unable to reflect the thermodynamic characteristics of the 

system. In addition, previous researchers conducted HP tests within one year. Limited 

studies revealed the system performance in different years. Finally, as the climate is 

changing faster than predicted with self-reinforcing feedback loops in the climate 

system that risk pushing the planet past irreversible and catastrophic tipping points, HP 

systems are both main contributors to global warming and can be part of the solution. 

A holistic evaluation of the HP system’s global warming impact during the life cycle 

needs to account for the direct refrigerant GHG emissions, indirect fossil fuel GHG 

emissions, and embodied equipment emissions. This dissertation proposes an 

experimental, emulational, and environmental (EEE) evaluation method for modern 

HP systems. National Institute of Standards and Technology (NIST) came up with 

HVAC Functional Inspection and Testing Guide (Kao, 1992), as shown in Figure 1-12. 

This dissertation mainly focuses on the data analysis part. The author leverages 

machine learning, deep learning, data digging, and LCCP approaches to develop next 

generation HP system evaluation methodologies with three thrusts: 1) field test data 

analysis, 2) data-driven modeling, and 3) Enhanced Life Cycle Climate Performance 

(En-LCCP). First, the dissertation compares time-average performance metrics with 

quasi-steady-state performance metrics in all time scales. Second, different machine 
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learning and deep learning algorithms are compared with physics-based and statistical 

methods. Third, the current environmental impact evaluation method is enhanced by 

considering ambient conditions variation, local grid source structure, and next-

generation low GWP refrigerants.  

 

The objectives of this dissertation are listed below: 

• Develop a field test method and large-scale database for HP systems; 

• Develop data-driven models for HP systems and sub-components; 

• Improve current HP environmental evaluation method using more realistic 

criteria. 

 

Figure 1-12 HP System Evaluation Process  
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2. Field Test, Database Development, and Data Analysis 

Field tests are commonly used to test the energy efficiency of HP systems in buildings. 

They are considered as one of the most convincing ways to reflect the systems’ 

performance in residential buildings. Current research and standards only focus on 

short-term field tests and average performance metrics. This chapter uses a HP-VRF 

system case study as an example to discuss the field test approach and data analysis.  

2.1. Basic Information 

I conducted field tests of a VRF system since August 2017 in an office building in MD, 

U.S. As shown in Figure 2-1, seven same indoor units were installed in five rooms. The 

users controlled the indoor units. The system had two HRUs and one Water Heating 

Unit (WHU). In the presented tests, the WHU was not used. Interested readers can use 

Lin et al. (2014) as a reference for WHU related tests. 

 

Figure 2-1 Room Layout (third floor) 
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Figure 2-2 describes the fourth-floor plan. The ODU of the system was installed on this 

floor, as well as the water tank and hydro kit of the WHU. For both room and ambient 

environments, I measured the temperature and humidity. Figure 2-3 shows the indoor 

and outdoor photos of the tested building. 
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Figure 2-2 Room Layout (fourth floor) 

 
Figure 2-3 Pictures of Indoor and Outdoor Units 
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The system diagram is given in Figure 2-4. This figure shows the system operation 

status when seven indoor units are in cooling mode, as an example. I measured the 

pressure, temperature, mass flow rate, and power consumption of the system. The 

sensors’ positions are also shown in this figure. I used the DAQ system and made the 

measurement every two seconds, as shown in Figure 2-5. The thermocouples were 

calibrated as shown in Figure 2-6. The specifications of the measuring instruments are 

shown in Table 2-1. The tested system also had built-in sensors. The data like 

compressor frequency, fan speed, and EEV openings could be reached from the 

manufacture’s software. 

 

 

Figure 2-4 System Diagram 
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Table 2-1 Specifications of Measuring Instruments 

Instrument Type Range Accuracy 

Thermocouple T type -200~350 °C ± 0.5 K 

Pressure transducer (high pressure)  Capacitive 0~6,770 kPa ± 6.34 kPa 

Pressure transducer (low pressure)  Capacitive 0~3,339 kPa ± 4.21 kPa 

Mass flow meter Coriolis 3~457.5 g·s-1 ± 0.9 g·s-1 

Wattmeter (Outdoor unit) Electrostatic 0~40 kW ± 0.5% FS 

Wattmeter (Indoor unit) Electrostatic 0~4 kW ± 0.5% FS 

RH sensor Capacitive 0~100%  3% 

 

 

   
(a) Sensors in ceiling (b) Power sensors for ODU (c) Thermocouples in ODU 

 

Figure 2-5 Sensors Installation 

 

 
(a) Thermocouples          (b) Water Bath 

 

Figure 2-6 Sensors Calibration 
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2.2. Data Processing and Database Development 

Figure 2-7 shows the process of analyzing the data. The crucial part is how to 

synchronize the data from the manufacture monitoring system and the data from the 

field test sensors. Besides, the data from the weather station can also be used for the 

data analysis. These data also need to be synchronized with the data from other sources. 

I handled the data with different platforms. Based on my experience, MATLAB is more 

user-friendly due to the “structure” and “mat” functions (or called data type). When 

MATLAB handles large data set (> 1 GB), the software automatically compresses and 

separates the data sheet. This can avoid the problem like exceeding the RAM limitation. 

If the user used EXCEL or Python to handle the data, the user may want to write the 

compress and separation process themselves. 

 

Figure 2-7 Data processing flow chart 

 

I summarized the methods used in my previous publication (Wan et al., 2020). A lot of 

field test studies only focus on time-average power, part-load ratio, and COP using 
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statistical methods. The other methods were usually adopted by modeling or control 

researchers. In fact, in field tests, many parameters can also be focused and are able to 

affect the system performance, like peak pressure values, refrigerant charge levels, the 

time needed to reach setting IDU temperature, IDU humidity variation, etc. 

Table 2-2 Datasheet Example 

Time 

Condensing 

Pressure [kPa] 

Evaporating 

Pressure [kPa] 
Mass flow 

rate [g·s-1] 

(LabView) 

ODU Power 

[kW] 

(LabView) 
LGMV LabView LGMV LabView 

…       

'26-Dec-2019 

08:53:29' 
866 780 778 783 0.86 18.22 

'26-Dec-2019 

08:53:31' 
890 796 742 718 0.97 28.48 

'26-Dec-2019 

08:53:33' 
890 810 742 685 1.20 25.56 

'26-Dec-2019 

08:53:35' 
947 842 669 614 1.44 26.21 

'26-Dec-2019 

08:53:37' 
988 902 585 576 1.54 26.08 

…       

 

A database for four-year field test data (2017-2021) was developed. The database is a 

two-dimension matrix or a table. The row is the time. The difference between two 

adjacent rows is 2 seconds, which is the sampling time. The table has 99 columns, 

which are the tested parameters like temperatures, pressures, mass flow rate, power 

consumption, etc. 

 

Figure 2-8 shows an example of the data, which could be accessed from the database 

directly except COP. The COP here is the energy efficiency at each tested time point, 
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which could be calculated by eq. 24. The cooling capacity and heating capacity can be 

calculated by the enthalpy difference across the indoor units. The power consumption 

is the measured value. 

𝐶𝑂𝑃𝑖 =
𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑡𝑖) + 𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑡𝑖)

𝑃𝑜𝑤𝑒𝑟(𝑡𝑖)
 (24) 

 
Figure 2-8 January 14th 2018 Data Example 

 

2.3. Online Monitoring and Time-average Performance Metrics 

For HP system measurement, people usually take an interest in energy efficiency. In 

chapter 2.2, the author gives an equation to calculate the COP at each measured time 

point, t. However, for a large dataset, it’s impossible to calculate the COP for each 

measured time point since if the sampling time is short (e.g., 1 second or 2 seconds), 

the number of the measured time points can exceed billions easily. In order to describe 

the system’s performance in a time period, previous researchers used time-average 
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performance metrics to evaluate the system performance. Daily Performance Factor 

(DPF) is a commonly used metric defined as follows: 

𝐷𝑃𝐹 =
∫ �̇�(𝑡)𝑑𝑡
𝑡1
𝑡0

∫ 𝑃(𝑡)𝑑𝑡
𝑡1
𝑡0

 (25) 

�̇� is the total capacity at time t, while P is the total power at time t; t0 is the start time 

in the day, while t1 is the end time. Other similar metrics, like Annual Performance 

Factor (APF), Seasonal Performance Factor (SPF), etc., are summarized in the 

literature view part (chapter 1.3.1) and can be calculated using the same approach. 

 

In practice, the integral is not easy to calculate. Researchers used an approximation 

form to estimate the DPF (Kwon et al., 2014): 

𝐷𝑃𝐹 ≈
∑ �̇�𝑖 ∙ ∆𝑡𝑖
𝑛
𝑖=1

∑ 𝑃𝑖 ∙ ∆𝑡𝑖
𝑛
𝑖=1

 (26) 

The DPF of the VRF system field test is shown in Figure 2-9. 

 

Figure 2-9 2019 DPF Evaluation 
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�̇�𝑖 = (ℎ1,𝑖 − ℎ2,𝑖) ∙ 𝑚𝑖 (27) 

ℎ𝑖 = ℎ(𝑃, 𝑇, 𝜎) (28) 

The capacity could be calculated by enthalpy difference and mass flow rate as shown 

in eq. 27. The enthalpy is a function of pressure, temperature, and quality. For each 

time slot, the total capacity should be calculated by multiplying the differential time 

(∆𝑡𝑖) to the instantaneous capacity. The true performance is to calculate the enthalpy at 

each time slot and then calculate the overall enthalpy difference. This could be 

explained by eq. 29.  

�̅�𝑖 ∙ ∆𝑡𝑖 = ∑(ℎ1,𝑖𝑗 − ℎ2,𝑖𝑗) ∙ 𝑚𝑖𝑗 ∙ ∆𝑡𝑖𝑗

𝑛→∞

𝑗=1

 (29) 

However, in practice, people usually used the average property (pressure, temperature) to 

calculate the enthalpy. This could be explained by eq. 30. 

�̅�𝑖 ∙ ∆𝑡𝑖 = (ℎ̅1,𝑖 − ℎ̅2,𝑖) ∙ �̅�𝑖 ∙ ∆𝑡𝑖 (30) 

So, the question is that do the two methods give the same result? Mathematically, it’s 

obvious that the two equations don’t agree with each other. In this study, the author 

used the field test data to check whether, in engineering, this approach is acceptable. 

In this dissertation, the difference of performance among two metrics is described by a 

metric, Mean Absolute Percentage Error (MAPE), which could be given by the 

following equation: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝒀𝑖 − �̂�𝑖
𝒀𝑖

|

𝑛

𝑖=1

× 100% (31) 

In addition, the authors also set the error bound to be within ± 15% to check whether a 

metric could be used as a substitute for another metric. Figure 2-10 shows the results. 

The x-axis is the accumulative performance factor, which is the metric given by eq. 27 
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(�̇�𝑖) and is the true performance. The y-axis is the time-averaged property performance, 

which is the metric given by eq. 30 (�̅�𝑖) and is the estimated performance. 

 

(a) 10-second Performance Factor (10sPF) 

MAPE=0%; P=97% 

 

 

(b) Minutely Performance Factor (MPF) 

MAPE=1%; P=95% 
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(c) Hourly Performance Factor (HPF) 

MAPE=6%; P=69% 

Figure 2-10 Comparison between the Accumulative Performance Factor 

 and Average Performance Factor 

 

As a result, ∆𝑡 is very important for the accuracy of the estimation performance. When ∆𝑡 

equals 10 seconds, the overall error would be very close to 0%, and the possibility the error 

appears would also be very low, which means the average performance could be used as the 

substitute of the accumulative performance. The reason is that the slope of enthalpy is not 

continuous at the phase change point. I pick one point, which the estimation performance is far 

from the accumulative performance in the MPF figure, and check what was happened in this 

minute duration. 
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Figure 2-11 Temperature Change Example of the Misestimated Point 

 

 

Figure 2-11 shows the inlet of the heat exchanger, the outlet temperature of the heat 

exchanger, the condensing temperature, the evaporating temperature, and the suction 

temperature of the misestimated point. The x-axis is the normalized time in one day 

(normalize 00:00-24:00 to 0-1). This example is in heating mode. In this one-minute 

duration, the outlet of the heat exchanger becomes the two-phase state. Thus, the 

enthalpy at the outlet of the heat exchanger is a piecewise function. Mathematics 

knowledge tells us that for a piecewise function 𝑓(�̅�) ≠ 𝑓(𝑥)̅̅ ̅̅ ̅̅ . 

 

The reason to use the time average performance is that the enthalpy calculation takes 

a large time in the whole process to calculate the system efficiency. 
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Figure 2-12 Time Consuming for Each Function to Calculate System Efficiency 

 

Figure 2-12 shows the time consumed by each sub-function in the program to calculate 

the system efficiency. In this program, refrigerant properties were calculated and stored 

in tables by “REFPROP.”  Then polynomial interpolation was used for “lookup” tables. 

Thus, the light blue part in the figure called “Fit type for curves” (or selection of types 

of fitting equations) shows the time consumed to calculate the enthalpy. This part takes 

more than 50% of the total time. Thus, using time-average performance means that one 

can call the “lookup” function less, and this definitely leads to a time-saving result. 

 

Determining ∆t is important in the time-average performance calculation. The 

frequency that one side of the heat exchanger becomes the two-phase state needs to be 

considered since this is the reason that the error occurs. Obviously, the on-off ratio is a 

significant factor affecting the frequency that the heat exchanger outlet becomes the 
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two-phase state. The on-off ratio is affected by the system’s load and maximum 

capacity. If the system's maximum capacity is larger than the building load, the 

frequency that the heat exchanger outlet becomes the two-phase state would be high. If 

the system capacity is lower than the building load, the system is kept operating, which 

means that the frequency would be low. In conclusion, for the case that the system 

maximum capacity is small but still larger than the building load, the time average 

performance method is not recommended to be used. 

 

2.4. Quasi-steady State Performance 

Another method, which can also screen out some data, is the Quasi-Steady State (QSS) 

performance method. In HP system field tests, the QSS data was seldom mentioned. 

However, the QSS performance usually reflected the performance of the system better 

than time-average performance metrics. The first challenge of QSS data analysis is 

searching for semi-steady-state or QSS data.  

 

2.4.1. Steady-state and Filter 

 

A great number of methods have been adapted to detect the steady-state of the systems. 

Some of them were shown in Table 2-3. 
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Table 2-3 Different Steady-state Detection Methods 

Methodology Author and Year Demonstrated Application 

F-test Cao et al., 1995 Experimentally measured pH, 

temperature, and pressure 

Standard deviation  Kim et al., 2008, 2017 

Bejarano et al., 2016 

Lecompte et al., 2018 

Heat pump, Organic Rankine cycle 

(ORC), vapor compression 

refrigeration system 

Linear regression Holly et al., 1989 

Bethea and Rhinehart, 1991 

Wu et al., 2013 

Acoustic emission monitoring, mass 

flow rate measurements 

T-test Narasimhan et al., 1987 Simulation 

Bayesian inference Wu et al., 2016 Cavitation Noise Power (CNP) 

signals 

Slope and Second 

Derivative 

Perez et al., 2018 Building Management System (BMS) 

R-test Bianchi et al., 2017 ORC 

 

These methods can be divided into several groups. One is using the so-called moving 

data window. This method sets only one moving data window and monitors the 

standard deviation or does linear regression and compares the target value with a 

threshold value. If the value is below the threshold value, the status can be considered 

to be a steady-state.  

 

Another group is setting two recently adjacent moving data windows. Some statistical 

values can be used to detect the steady-state. In these methods, Kim’s method (Kim et 

al., 2008) is the most widely used method for vapor compression cycle. 
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Figure 2-13 Kim’s Method Explanation (Kim et al., 2008) 

 

Figure 2-13 (Kim et al., 2008) shows that measurements are averaged, and the space 

between those averages is used to determine steady-state conditions. Table 2-4 shows 

the comparison criteria for each measurement for steady-state conditions. 

Table 2-4 Kim's Method Criteria (Kim et al., 2008) 
Measurement QSS Criteria 

Temperature Difference < 0.5 K 

Pressure Change < 2% 

Mass Flow Change < 2% 

Rotating Equipment Speed Change < 2% 

 
 

For the steady-state detection, three questions need to be answered. First, which method 

is the most proper one for HP systems? Second, which parameter is important? And 

third, which moving data window scale is proper? 

 

I applied Kim’s method in the VRF system case study. The test time was July 7th to 

July 18th, 2018. Table 2-5 shows the ratio between the STD and average value for four 

parameters in 30 seconds (four points were shown as examples). It could be found that 

the mass flow rate had the highest deviation. In other words, for VRF systems, we can 

assume that the QSS filter only needs to constrain the mass flow rate. The benefit is 
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time-saving. Considering that we need a label to check the system’s on-off status, the 

compressor frequency was also used in the filter for QSS detection. 

Table 2-5 Parameter Difference 

No. Pressure 1 Pressure 2 Temperature 1 Temperature 2 MFR 

1 0.70% 1.33% 0.67% 0.48% 0.44% 

2 0.60% 1.57% 0.70% 0.57% 1.89% 

3 0.41% 1.22% 1.34% 0.50% 1.89% 

4 0.34% 0.90% 1.35% 0.36% 1.81% 

 

Thus, in this dissertation, the author used the following equations as the filter to detect 

QSS in an M-second time widow with n data points exist: 

{
 
 

 
 
𝑆𝑇𝐷(𝑀𝐹𝑅) = √

1

𝑛 − 1
∑(𝑀𝐹𝑅𝑖 −𝑀𝐹𝑅̅̅ ̅̅ ̅̅ ̅)2
𝑛

𝑖=1

≤ 𝑇𝑟

𝐹𝑖 = �̅�                                                 𝑖 = 1,  2,  … ,  𝑛

 (32) 

 

In the VRF system field test, the author used M=60, n=30, and Tr=1 g·s-1. The M value 

is from the literature (Qiu, 2018). The time for HP system charging is around one 

minute. The Tr value is set based on the uncertainty of the MFR meter used, which is 

0.98 g·s-1. In fact, setting M and Tr also need to consider how many data points are 

expected to get. 

 

The steady-state status of a typical day is shown in Figure 2-14. The mass flow rate 

shows the average measurements due to noise in the signal. The pressure was the 

original value. ‘1’ means steady-state while ‘0’ means not. 
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Figure 2-14 Steady-state Status Example 

 

Studying the system's QSS performance can lead to several interesting results. Chapter 

2.4.2, 2.4.3, and 2.4.4 show the power consumption in QSS, COP in QSS, and some 

information found from QSS performance, respectively. 

 

2.4.2. Power Consumption in QSS 

The QSS conditions in my study were set for the standard deviation of the total mass 

flow rate to be smaller than 5 g·s-1 in a ten-second time window while the compressor 

frequency and all the Electric Expansion Valve (EEV) opening degrees were kept 

unchanged. I finally secured 23,323 data points. I defined a one-digit number “M.” The 

“M” value means the number of indoor units operating in cooling mode. As an example, 

“M=3” means that three cooling units operated. Table 2-6 shows the distribution of the 

“M” value of my database. The second column, count number, means the number of 

data points that “M” indoor units operate in cooling mode. I ignored the group with a 
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count number smaller than 100 (ignored “M” equaled “6” or “7”, which means the 

system was seldom operating with 6 or 7 indoor units in cooling mode).  

Table 2-6 Tabulated Data 

M Value Count Percentage 

1 1,167 5.0% 

2 6,182 26.5% 

3 7,425 31.8% 

4 3,191 13.7% 

5 371 1.6% 
 

 

The field test result of the power consumption is shown in Figure 2-15. Different rows 

indicate a different number of cooling units. For example, the first row means that there 

is only one cooling unit operating. As can be found in Figure 2-15, the slope of the data 

points increases with the number of cooling units (M). It is because the cooling load is 

increased with the ambient temperature. In this situation, the system control logic 

would apply a higher frequency of the compressor. Therefore, the power consumption 

of the compressor was increased with the compressor frequency. According to Figure 

2-15, it is hard to conclude the energy efficiency of different cases. Thus, I conducted 

a machine learning-based model using the two data sets. The goal was to predict the 

power consumption under the same ambient and operating conditions. 
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Figure 2-15 Power Consumption versus Ambient Temperature 

2.4.3. Energy Efficiency Analysis in QSS 

Figure 2-16 shows the Coefficient of Performance (COP). Similar to what Figure 2-15 

shows, the trend of the COP is not apparent when M is small. When M equals 4 or 5, 

as the ambient temperature increases, the COP of the system decreases. The reason 

might be that when only 1 or 2 indoor units operated, the cooling load was not high 

          
 

 

 
 
 

 
 
 
 
  
  
 

 

          
 

 

 
 
 

 
 
 
 
  
  
 

 

          
 

 

 
 
 

 
 
 
 
  
  
 

 

          
 

 

 
 
 

 
 
 
 
  
  
 

 

          

                        

 

 

 
 
 

 
 
 
 
  
  
 

 



 

 

62 

 

enough. Thus, the compressor was working under low frequency, which caused that 

the efficiency of the compressor was low due to a low inverter drive efficiency. This 

would make a complicated result for the COP. However, when the compressor 

frequency was high, the efficiency of the heat exchanger would be a significant factor. 

When ambient temperature decreases, the heat transfer efficiency of the outdoor unit 

heat exchanger increases and the COP of the system should also increase. In addition, 

lower ambient temperature also results in a lower pressure ratio, which results in higher 

compressor efficiency. 

 

Figure 2-16 COP versus Ambient Temperature 
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2.4.4. Data Digging in QSS 

QSS performance can show the relationship between different system parameters. 

Figure 2-17 shows the cross-relationship map for HP systems with different parameters, 

including cooling capacity, power consumption, ambient temperature, subcooling EEV 

opening degree, COP, and compressor frequency. All the parameters were normalized. 

From the figure, a linear relationship between cooling capacity, power consumption, 

and compressor frequency can be noticed easily. 

 

Figure 2-17 Cross-relationship Map for HP System 
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The relationship between the ambient temperature and COP is not obvious. I draw a 

figure for these parameters alone in Figure 2-18 for two different controls: “OFF” and 

“DSEC.” “OFF” mode didn’t consider changing of IDU capacity and fixed value of 

target refrigerant temperature, while “DSEC” mode can calculate the target value of 

system actuator, especially ODU and IDU fan RPM, to optimize COP of the system. 

Similar to Figure 2-16, the trend between the two parameters is not strong since some 

small M value points exist. The author applied a different method to screen out the 

information. If the data is screened out by only considering the compressor frequency 

larger than 30 Hz, Figure 2-19 shows the new trend. A nearly linear relationship can be 

found. 

 

Figure 2-18 COPs for Two Controls for all Compressor Frequencies 
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Figure 2-19 COPs for Two Controls (Compressor Frequency > 30 Hz) 

 

In addition, from Figure 2-19, the difference between the two controls can also be 

found. The “DSEC” control has a better performance than the “OFF” control. The 

author used a similar method to study the relationship between power consumption and 

outdoor fan speed. The two modes can be differentiated clearly in Figure 2-20. More 

about labeling points with control modes are discussed in the next chapter. 

 

Figure 2-20 Comparing Power Consumption of Two Controls 
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2.5. Comparing Time-average Performance with QSS Performance 

The next question is what the difference between the QSS performance metric and the 

time-average performance metric is. To further compare the two metrics, the author 

picked one typical day, January 11th, 2019. The QSS performance factor (QSS-COP) 

is compared with MPF and HPF. The moving window size is 60 s, and the threshold 

value is 1 g·s-1. The result is shown in Figure 2-21. 

 

Figure 2-21 Performance Factor on January 11th, 2019 

 

Except for limiting data points, the two methods show a close result. For the points in 

which the two methods have different results, the system is in either start-up or shut-

down process and loses superheat or subcooling.  
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Table 2-7 Comparisons of Two Methods 

 QSS performance Time-average performance 

Core parameters Moving window size, Target 

function, Target thresholds 
∆𝑡 

Pros 

• Make sense on the P-h diagram 

• Reflect the highest performance 

of the system 

• Reflect the relationship between 

ambient conditions and system 

performance (like COP versus 

ambient temperature) 

• Save time when ∆𝑡 is large 

• Reflect the transient phase 

performance to some extent 

Cons 

• Cannot reflect the transient 

performance between on and off 

status 

• Does not get enough data if the 

system startup and shut down 

frequently 

• Doesn’t make sense 

thermodynamically 

• Provide limited information to 

improve system design 

 

 

Figure 2-22 P-h Diagram Example of the System at 7:00 am January 11th, 2019 

 

Table 2-7 shows the comparison of the two methods. The moving window size, target 

function, and target threshold are the most important parameters for QSS performance.  

∆𝑡 is the most significant parameter for time-average performance. The benefits of 

using the QSS metric include reflecting the heist performance of the system, reflecting 



 

 

68 

 

the relationship among different tested parameters, and making sense on the P-h 

diagram, as shown in Figure 2-22. In contrast, the benefits for using time-average 

performance are saving time when ∆𝑡  is large and reflecting the transient phase 

performance to some extent. 

 

2.6. Dynamic Performance in Field Test 

Dynamic performance is the direct way to show the system performance and comparing 

two different controls. However, it’s hard to find the system operating in the same 

condition under different control logics. Figure 2-23 shows the comparison of two 

control start-up processes. 

 
Figure 2-23 Pressure Variations during Start-up Process for Two Controls 

 

The whole start-up process lasts nearly 15 minutes. The ambient conditions are shown 

in Figure 2-24. The ambient condition would not keep unchanged in 15 minutes. It can 

be found that for the “DSEC” mode, the ambient temperature has a 1.5 °C sharp 
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increase in the middle of the process. This caused the high-pressure value of the 

“DSEC” mode to keep increase by 200 seconds. 

 
Figure 2-24 Ambient Conditions for Two Modes 

Figure 2-25 shows the power and compressor frequency changes for the same time 

periods. For the “DSEC” mode, the compressor frequency keeps unchanged from 

time=110 to time=320. In contrast, the “OFF” mode keeps decreasing in this range. In 

order to compare the two modes in the same condition, a Neural-Network-based (NN-

based) model was used to predict the performance. The time period in which the 

performances showed differences caused by the different ambient conditions were 

eliminated. The performance was predicted by the NN-based model using the same 

ambient condition. 
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Figure 2-25 Power and Compressor Frequency for Two Modes 

The results are shown in Figure 2-26. The input setting and ambient conditions are 

shown in Figure 2-27 and Figure 2-28, respectively. “A” is the baseline mode, which 

is the “OFF” mode. “B” is the “DSEC” mode, while “NB” (“New mode B”) is the 

predicted mode for the “DSEC” mode. “A” using a lower outdoor fan speed than “NB” 

mode, which caused a better heat transfer performance of the outdoor heat exchanger. 

The high pressure for the “NB” mode is lower, and lower pressure is higher than those 

of “A” mode. These differences bring better performance for the “NB” mode than the 

“A” mode (which means “DSEC” mode is better than “OFF” mode) as a conclusion. 

 
Figure 2-26 Predicted Pressure for Two modes 
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Figure 2-27 Outdoor Fan Speed and Ambient Temperature for Prediction 

 

 
Figure 2-28 Compressor Frequency and EEV Opening Used for Prediction 

 

2.7. Summary 

In this chapter, a data analysis process for field tests is developed. Figure 2-29 shows 

the process suggested for HP system-tested data analysis. The first step is the direct 

metrics calculation, including part load ratio, usage ratio, cooling combination ratio, 
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operating unit ratio, etc. The next step is to decide whether the details could be ignored 

or not. If this study doesn’t care about the system performance details, the time-average 

performance metrics are recommended to be used. If the study needs some details of 

the system, for example, the P-h diagram, then the QSS performance method is 

recommended to be used. The final decision to make is whether transient data needing 

analysis or not. If the transient performance needs to be studied, some modeling tools 

might be needed for prediction. 

 

Figure 2-29 Flow Chart Suggested for the Data Analysis Process 

 

In fact, choosing an appropriate method needs to consider a lot of factors. Goals (the 

purpose of the field test) and testing constraints (test facility, computer performance, 

etc.) also need to be considered. 
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3. Modeling from the Field Test Data 

Modeling is an important tool for data analysis. The Shallow-Neural-Network-based 

model was used to predict the dynamic system performance presented in chapter 2.6. 

In this chapter, different modeling approaches, as shown in Figure 3-1, are compared 

when dealing with HP system data.  

 
Figure 3-1 Modeling Approaches for HP System Data Analysis 

 

3.1. System Modeling 

 

3.1.1. Classification: Control Labeling 

I want to study whether I can distinguish two controls by only using some previous test 

data. The reason is that identifying different controls in the datasheets from the field 

tests may not always be straightforward. First, I need to find the target value and the 

reference value for the classification. I did part of the work in Figure 2-20 using outdoor 
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fan speed and power consumption to compare two controls. However, no evidence 

shows whether power consumption and outdoor fan speed are independent parameters. 

Thus, I use linear Principal Component Analysis (PCA) to generate several new 

dimensions. PCA can be used to decrease the dimensions of the inputs and also make 

the dimensions in the new input matrix be independent of each other. The details of 

PCA are discussed in chapter 3.2.1. One important metric used to select a new 

dimension in PCA is the Percentage of Variance Explained (PVE). 

 𝑃𝑉𝐸𝑖 =
𝞴𝑖

∑ 𝞴𝑗
5
𝑗=1

 (33) 

A larger PVE means that the dimension is more important in the new input matrix. 

Table 3-1 shows the PVE for the top five dimensions in the new input after PCA. The 

first three dimensions can explain 98.7% of the data. Thus, only the first three 

dimensions need to be considered in the classification. 

Table 3-1 PVE for Different New Dimensions 

Dimension PVE [%] 

1 68.95 

2 18.69 

3 11.18 

4 0.92 

5 0.24 

 

The data can be drawn in the new 3-Dimension space, as shown in Figure 3-2. The two 

groups of data for the two control modes are at different sides in the new space. 
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Figure 3-2 Classification of Two Controls 

 

3.1.2. Regression: Power Consumption and Pressure Predictions 

Power Consumption Prediction 

In the field test, the ambient conditions were not controlled. It was challenging to make 

the system working under the same condition. Thus, modeling work was needed to 

simulate each working model of the system to compare their performance under the 

same conditions. In the model, SVR was applied. The SVR was a regression algorithm 

based on a classification algorithm called Support Vector Machine (SVM). The 

objective of the SVM algorithm is to find a hyperplane in a space that distinctly 

classifies the data points (Cortes and Vapnik, 1995). For the details of this algorithm, 

interested readers could read the reference (Li et al., 2016). In a simple two-dimension 

case, the algorithm was used to solve the following optimization problem: 
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 𝑀𝑖𝑛(
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑁
𝑖=1 )  (34) 

subject to 

 𝑦
𝑖
− 𝑤𝑥𝑖 − 𝑏 ≤ 휀 + 𝜉

𝑖
  (35) 

 𝑤𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 휀 + 𝜉𝑖
∗  (36) 

 𝜉
𝑖
, 𝜉
𝑖
∗ ≥ 0  (37) 

 

where symbols “w” and “b” are weighting factor and bias, respectively. “C” and “ε” 

are two crucial parameters that would affect the performance of the algorithm. “x” and 

“y” are inputs and outputs. “𝜉” is the deviation from the margin. 

 

In this study, I conducted a parametric study to optimize the two parameters to build a 

robust and accurate model. I used Python to conduct this study. The ambient 

temperature range was from 20 °C to 40 °C. 

 

Typically, the compressor map, which is developed under the steady-state operation at 

a given ambient condition, is used in VRF system models. However, in the field test, 

the steady-state condition is difficult to find, and the ambient temperature is not 

controlled so that the compressor map cannot be used. Therefore, I proposed machine 

learning-based modeling work, which only required hundreds of field test data points. 

For this, I conducted data-based modeling work to simulate the power consumption of 

the system based on the SVR algorithm. This model could be used as a substitution for 

the compressor map. However, before the modeling work, I needed to decide which 

input parameters should be used. I drew a so-called heatmap to see the effect of seven 
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possible parameters that might affect the outdoor unit power consumption. The 

parameters selected were outdoor power consumption, compressor frequency, 

condensing temperature, suction temperature, outdoor fan speed, evaporating 

temperature, and ambient temperature, respectively.  

 

The heatmap, Figure 3-3, shows the covariance between each pair of these parameters. 

The covariance means the relation between the two parameters. The absolute value of 

the covariance equals one means the two parameters are the same, while if the 

covariance equals zero, the two parameters have no relationship. In Figure 3-3, I use 

the light color to show a positive relationship, while the dark color to show a negative 

relationship. I sort the parameters according to the absolute value of their covariance 

with the outdoor unit power consumption. The frequency of the compressor is the most 

significant factor which might affect power consumption. The ambient temperature is 

a minor factor compared with the compressor frequency. It is possible since a 

significant part of the outdoor unit power consumption is from the compressor.  

 

The performance of the model is evaluated by Mean Squared Error (MSE), which is 

defined by the following equation: 

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑡𝑟𝑎𝑖𝑛,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)

2𝑁
𝑖=1   (38) 
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Figure 3-3 Covariance Heatmap 

It was also known as the loss function in SVR modeling. I built SVR models based on 

the data sets. All the data were normalized before the modeling. I first used “C=1 and 

ε=0.08”. The result validation was shown in Figure 3-4. The two dash lines in these 

figures represented a “±10%” deviation. The denormalized result is shown in Figure 

3-4 (a). The measured value and the predicted value did not match very well before the 

parametric study. Then I continued to optimize the parameters, C and ε, in the model. 

I separated the data set into training and testing data set. The training data set has 60% 

data points, and the testing data set has 40% data points, respectively. The MSE, C, and 

ε listed here are dimensionless since all the parameters are normalized.  
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                (a) Before Parametric Study                       (b) After Parametric Study 

Figure 3-4 Model Validation 

From Figure 3-5, I could see that for the training data set, C should be as large as 

possible, while for the testing data set, the MSE decreased first and then increased as 

C increased. Thus, C should not be too large. Furthermore, as Figure 3-5 (b) shows, ε 

should be as small as possible. In this case, ε should be small, and C should not be too 

large. I used “C=20 and ε=0”. The mean relative error, which represented the average 

percentage error of the prediction of this case, was 7%. 

 

                    (a) Effect of C on MSE                          (b) Effect of Epsilon on MSE 

Figure 3-5 Parametric Study 

As mentioned above, I applied the three operating conditions for the model to predict 

power consumption. Table 3-2 shows the modeling results. The parameters in each 

column mean suction temperature, condensing temperature, evaporating temperature, 
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compressor frequency, outdoor fan speed, and outdoor power consumption, 

respectively. However, the conclusion could not be made without the uncertainty 

analysis. 

Table 3-2 Modeling Results 

SucT (°C) ConT (°C) EvaT (°C) 

Comp. 

Frequency 

(Hz) 

Fan out 

(RPM) 

OU Power 

(kW) 

9.8 45.3 4.5 30 200 2.02 

10.2 42.4 6.3 40 200 2.39 

12.4 45.4 8.7 50 200 3.18 

 

I used the quantitative method introduced by Lecompte et al. (2018a) and Koçyigit and 

Bulgurcu (2015) to conduct an uncertainty analysis. The uncertainty on the variable y 

was calculated as a function of uncertainties Uxi on each measured variable xi, as shown 

in eq. (39). 

 𝑈𝑦 = √∑ (
𝜕𝑦

𝜕𝑥𝑖
)
2

𝑈𝑥𝑖
2

𝑖   (39) 

The accuracy of the measurement equipment used is given in Table 2-1. Since the 

correlation obtained from the model is complicated, the value of the partial derivative 

was derived by numerical differentiation. The uncertainty of the modeling power 

consumption varied when the input values varied. Thus, I only gave the uncertainty of 

one point when the suction temperature was 10.2 °C, condensing temperature was 

42.4 °C, the compressor frequency was 40 Hz, and the outdoor fan speed was 200 RPM, 

respectively. I applied a 1% variation to each input parameter, excluding compressor 

frequency and outdoor fan speed. The condensing temperature and evaporating 

temperature were calculated by the high pressure and low pressure. Thus, the 

instrument uncertainty was calculated based on the uncertainty of the pressure sensor. 
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Table 3-3 Uncertainty Analysis 

 Instrument 

uncertainty (°C) 

1% Deviation 

(°C) 
OU Power 

deviation (-) 
Uy (-) 

SucT 0.5 0.1 0.01% 1.54e-06 

ConT 0.1 0.4 0.71% 1.82e-05 

EvaT 0.03 0.06 0.06% 6.99e-07 

Uncertainty of the model (B type) 0.5% 

Power meter uncertainty (A type) 0.5% 

Total Uncertainty 0.7% 

 

 

According to the calculation, the total uncertainty of power consumption should be 

0.7%, as shown in Table 3-3. I could further find that the condensing temperature, 

which also meant the high pressure had the most critical impact on the outdoor power 

consumption when frequency and outdoor fan speed were fixed. This result was 

consistent with my result shown in the heatmap. 

 

Pressure Prediction 

In this part, I report one prediction work for the high pressure and low pressure only 

using the control metrics. The inputs for the model are the control parameters metrics 

on the time domain, including ODU fan speed, EEV openings, and compressor 

frequency. The initial status of the outputs was also required. A Neural Network (NN) 

method or Convolutional Neural Network (CNN) method can all be used. If the NN 

was used, the filter to reduce the input dimensions was needed to be designed separately. 

Figure 3-6 shows the result. 
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Figure 3-6 Pressure Validation 

The benefit of the work is that I can predict the performance for different controls using 

the same ambient conditions. This can be helpful for us to compare different controls. 

A similar method can be used to predict other temperatures like the suction and 

discharge temperature of the compressors. 

 

 

3.2. Subcomponent Modeling 

 

3.2.1. EEV Model 

Background 

As for the HP system, the significance of controlling the EEV opening to regulate the 

part-load efficiency has been confirmed by some researchers (Choi and Kim, 2003; Wu 

et al., 2005b; Tu et al., 2011; Xiangguo et al., 2013; Yun et al., 2017). In order to know 
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the coefficient of performance (COP) of the cooling system, the accurate mass flow 

rate of each indoor unit is needed. However, most commercial HP systems don’t 

measure it.  Only for research purposes, one mass flow meter is typically installed for 

the total mass flow rate. Thus, finding the relationship between the opening degree of 

the EEV and the mass flow rate through the EEV is necessary. Eq. 40. first developed 

by Wile (1935), which is derived from Bernoulli Equation, it has been widely used to 

describe the characteristics of the EEV for single-phase flow. 

 �̇� = 𝐶𝑓𝐴𝑟√2𝜌𝑖(𝑝𝑖 − 𝑝𝑜)  (40) 

 

where the parameters (ρi, pi, and po) are the inlet density of the refrigerant, inlet pressure, 

and outlet pressure, respectively. The flow area (Ar) can be calculated by: 

 𝐴𝑟 =
𝜋𝑑𝑐

2

4
− 𝜋(𝐻𝑐 −𝐻)

2 𝑡𝑎𝑛2 𝛼 =
𝜋𝐷2

4
  (41) 

 

where the parameters (dc, Hc, H, and α) are the geometric parameters shown in Figure 

3-7. D is called ‘orifice diameter’ in some literature (Zhifang et al., 2008), which is 

used to describe the flow area.  

 

Figure 3-7 The Geometrical Structure of EEV 
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The coefficient (Cf) must be determined to predict the mass flow rate (Chen et al., 2017, 

2018). Since the flow through the EEV is typically a multi-phase flow, Cf in eq. 40 can 

be affected by many factors, such as the pressure, geometry of the EEV, and the 

physical properties of the refrigerant. The most convenient and economical way is to 

request the data from the EEV manufacturer. Nevertheless, EEV manufacturer often 

only provides test data obtained by testing with air instead of refrigerant. Furthermore, 

due to the two-phase flow and complicated geometry, building a physical model to 

calculate Cf is difficult (Zhifang et al., 2008b). As an alternative method, an empirical 

correlation seems a reasonable way (Park et al., 2007b). However, some other 

correlations like polynomial correlation exist (Li, 2013; Chen et al., 2017, 2018). The 

power-law correlation method is the conventional and most popular method for the 

EEV correlation (Chen et al., 2009, 2017, 2018; Hou et al., 2014; Kim et al., 2010; 

Liang et al., 2009; Liu et al., 2016; Park et al., 2007; Shanwei et al., 2005; Ye et al., 

2007; Zhang et al., 2006; Zhifang et al., 2008). This method is also recommended by 

the American Society of Heating, Refrigerating, and Air-Conditioning Engineers 

(ASHRAE) (Kavanaugh and Simplified, 2006). The core of this method is to develop 

a power-law correlation formula of the mass flow coefficient Cf by several 

dimensionless π groups as shown: 

 𝐶𝑓 = 𝑎0∏ 𝜋𝑖
𝑎𝑖𝑛

𝑖=1   (42) 

where ai (i=0, 1, …, n) are constants. 

 

While the same π groups could have similar forms, they have the same physical 

meaning unnecessarily. The performance of this method varies depending on the 
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authors and refrigerants. Correlations were usually assessed by relative deviation (RD) 

as defined: 

 𝑅𝐷 =
�̇�𝑝𝑟𝑒−�̇�𝑒𝑥𝑝

�̇�𝑒𝑥𝑝
  (43) 

 

This method is based on the assumption that all the dimensionless correlations obey 

the Buckingham π theorem (Sonin, 2001), but no study shows that the relationship 

should be power-law. Some researchers (Chen et al., 2017b) stated that the result was 

from Choi’s work (2004). However, Choi’s paper is for short tube orifices, and no study 

proves that this work can be used for EEV correlation. In another paper (Chen et al., 

2018), the authors mentioned that the proposed correlations mentioned above could 

only be available when the orifice diameter is smaller than 1.4 mm and propose a new 

correlation that was more normalized.  

 

Neural Network Method 

Recently, the Artificial Neural Network (ANN) or NN, SNN method, developed by 

Warren and Walter (1943), is widely adopted to build a nonlinear correlation between 

inputs and outputs, especially in air conditioning and refrigerant fields (Deng et al., 

2016; Yun et al., 2017; Liu et al., 2017; Jahani et al., 2018). The ANN structure consists 

of an input layer, several hidden layers (always one or two in practice), and an output 

layer. The input neurons can include as many parameters as possible. Nevertheless, to 

reduce the time of training, only a limited number of inputs are used. The input values 

(Xi) and output values (Yk) are always normalized (xi and yk) by following equations 

to ensure the equivalence between the variables (Tian et al., 2015b). 

 𝑥𝑖 = 2(
𝑋𝑖−𝑋𝑖.𝑚𝑖𝑛

𝑋𝑖,𝑚𝑎𝑥−𝑋𝑖.𝑚𝑖𝑛
) − 1  (44) 
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 𝑦𝑘 = 2(
𝑌𝑘−𝑌𝑘.𝑚𝑖𝑛

𝑌𝑘,𝑚𝑎𝑥−𝑌𝑘.𝑚𝑖𝑛
) − 1  (45) 

 

If there’s only one hidden layer, the process of the ANN can be given by: 

 𝑦𝑘 = 𝑔𝑜𝑢𝑡𝑝𝑢𝑡{∑ 𝑤′𝑗𝑘 × [𝑔ℎ𝑖𝑑𝑑𝑒𝑛(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗
𝑚
𝑖=1 )] + 𝑏′𝑘

𝑛
𝑗=1 }  (46) 

 

The normalized input parameter xi is multiplied by the weight factor wij and added by 

the bias bj to get a new value x’. The value x’ can be used to get the value ghidden (x’) 

for each hidden neuron by the hidden layer transfer function ghidden, which is called 

transfer function or activation function. Similarly, the value of the hidden layer can also 

be multiplied by another group of weight factors w’jk, added up with another group of 

bias b’k, and transferred by the output transfer function goutput to get the kth output 

parameter. Researchers always use the linear function as the output transfer function. 

 

The next step of the ANN is the training process, which is repeated to obtain optimized 

groups of the weight factor wij and w’jk, and bias bj and b’k for each neuron with a 

minimized deviation between the predicted data and the original data (e.g., measured 

data). Back Propagation (BP) is a popular method for the training process. Figure 3-8 

illustrates the process of the BP algorithm. 

 

The ANN has been used in various engineering fields due to its ability to solve physical 

problems in engineering applications without explicit mathematical equations (Tian et 

al., 2015b). In the field of HP system design, the ANN also works. For example, the 

ANN was used to determine the energy-efficient operation set-points of the HP cooling 

system (Chung et al., 2017b). As for EEV correlation, the ANN is a reasonable method 
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due to the complexity of the fluid dynamic process and many factors involved. Two 

research papers about using the ANN for EEV correlation have been published since 

2015 (Cao et al., 2016; Tian et al., 2015). Cao’s group used the Levenberg-Marquardt 

BP algorithm (‘trainlm’) in MATLAB for the ANN training (Cao et al., 2016). There 

was one hidden layer. They used four input parameters, which are the input pressure of 

the EEV, the output pressure of the EEV, the inlet subcooling temperature of the EEV, 

and the opening degree of the EEV. They chose the most popular Tan-sigmoid function 

(eq. 47) and the nth-order polynomial function (eq. 48), which had been found quite 

accurate by some researchers (Deng et al., 2016; Su et al., 2017) as the hidden layer 

transfer functions. They used ‘purelin’ function, which is the linear function, as the 

output layer transfer function. 

 𝑔ℎ𝑖𝑑𝑑𝑒𝑛(𝑥) = tansig(𝑥) =
2

1+𝑒−2𝑥
− 1  (47) 

 

 𝑔ℎ𝑖𝑑𝑑𝑒𝑛(𝑥) = 𝑥
𝑛  (48) 

 

Tian’s group also used the Levenberg Marquardt BP algorithm (trainlm) as the 

gradient-based training algorithm. They also chose the Tan-sigmoid function and Log-

sigmoid function for the transfer function of the hidden layer.  

 𝑔ℎ𝑖𝑑𝑑𝑒𝑛(𝑥) = logsig(𝑥) =
1

1+𝑒−𝑥
  (49) 

 

They also used ‘purelin’ function as the output layer transfer function. 

The dimensionless output is given by: 

 𝑦 = 𝜋1 =
�̇�

(𝑑𝑐
2√𝜌𝑖(𝑝𝑖−𝑝𝑜))

  (50) 

 

Tian also conducted the parametric study, in which one parameter was removed each 

time, and the ANN model was trained with the other seven parameters. As a result, they 
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found that π6 was the most significant factor in the ANN sensitivity and accuracy 

because of the surface tension, which represented the metastable flow. 

 

The ANN performance could be evaluated by several statistical coefficients. Though 

the two groups of authors used a different name, they used a similar standard for 

assessment. Mean Relative Error (MRE) used by Tian, also called the average relative 

deviation (AD) by Cao, was given in the following equation. The correlation of Tian’s 

group resulted in MRE of 4 %, and that of Cao’s group was 1 %. 

 𝑀𝑅𝐸 = 𝐴𝐷 =
1

𝑛
∑

|𝑦𝑝𝑟𝑒−𝑦𝑒𝑥𝑝|

𝑦𝑒𝑥𝑝

𝑛
𝑖=1   (51) 

 

Furthermore, Tian also used Root Mean Square Error (RMSE), which was given by eq. 

52 for evaluation. According to their study, the ANN model showed the RMSE of 7.59 

kg h-1. In addition, Cao used another parameter, Standard Deviation (SD), in eq. 53, 

which was 2.7 % of their work to assess the performance. 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑝𝑟𝑒 − 𝑦𝑒𝑥𝑝)

2𝑛
𝑖=1   (52) 

 𝑆𝐷 = √
1

𝑛−1
∑ (

𝑦𝑝𝑟𝑒−𝑦𝑒𝑥𝑝

𝑦𝑒𝑥𝑝
− 𝐴𝐷)

2
𝑛
𝑖=1  (53) 

 

In addition, the R-squared (R2) statistic was also used by Tian. Their model had R2 of 

0.994. 

 

In this study, I adopted MRE, RMSE, and R2 to evaluate the correlations. The MRE, 

RMSE, and R2 are all widely used to evaluate a model, but they are different. MRE is 
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a measure of deviation, while RMSE and R2 are statistical measures of the variance. 

MRE and R2 are relative measurements, while RMSE is an absolute measurement. 

 

Research Gap 

According to the existing literature, the NN method has a better performance than the 

conventional way. However, only limited studies used the NN model for EEV 

correlation. Thus, various limitations exist, and more work needs to be done in this 

field. First, since the criteria and the procedure varied in the literature, a clear 

conclusion cannot be made for parameter selections. Specifically, though parameter 

and transfer function studies were mentioned, the question of which combination of the 

transfer function and the inputs had the best performance has not been answered yet. 

Secondly, these studies all used the BP algorithm for data training, while other 

algorithms were neither mentioned nor compared.  

 

To fill these gaps, the objective of this study is to develop an EEV modeling framework 

and optimize the input parameter number and hidden neuron number. The work is 

presented through a case study on a VRF system. The database was built based on the 

experiment results of a field test in the heating season. Models were built to predict the 

mass flow rate through the EEV in VRF systems operated with one indoor unit (IU). 

The system was equipped with a variable frequency compressor. A Principal-

Component-Analysis (PCA)-based NN method was adapted to build the correlation 

and reduce the dimensions of the inputs. Besides commonly used input parameters in 

the literature, such as inlet and outlet pressure and temperature, other system 

parameters like the frequency of the compressor and the power consumption of the 
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indoor and outdoor units were also added in the modeling-built process. Optimization 

work was conducted to optimize input parameters, transfer function, and the number of 

hidden layer neurons of the NN method. A power-law correlation method was also 

developed to compare with the PCA-based NN method. 

 

Methodologies 

Field test results were used to build the model. The benefit of using the field test data 

is to get enough data sets available representing real-life operations. However, the 

quality of the data regarding stability may be lower than that from the laboratory. The 

field test was conducted on the third floor of a university office building in College 

Park, Maryland, U.S. Information about the building and the VRF system is provided 

in Table 3-4. Figure 3-8 shows the building floor plan. The VRF system consisted of 

seven indoor units (IU), one outdoor unit (OU), and one water heating unit. The system 

was controlled by each EEV in the IU and the inverter compressor in the OU. The 

indoor units were installed in five different rooms. The outdoor unit was installed on 

the fourth floor. To simplify the test and control the variables, only IU2 was operated 

during the test period, while all other IUs, including the water heating unit, were off. 

The data was saved from 6:20 PM, December 25th, 2017, to 10:40 AM, December 27th, 

2017. The indoor unit was set at 20 °C. The data were saved every 2s. 
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Figure 3-8 BP Algorithm Flow Chart 

Table 3-4 Building and System Information 

Field Information 

Location College Park, MD, U.S. 

Number of Rooms 5 

Space area of Room B (m2) 22.1 

Number of occupants of Room B 7 

Nominal heating capacity (Btu/h) 81,000 

Refrigerant R-410A 

 

Seventeen groups of parameters were tested during the experiment, which was 

summarized in Table 3-5. The first group parameter is my target parameter, mass flow 

rate. The second group parameter is the frequency of the compressor, which was not 

discussed in most former research. All the parameters were tested directly except for 

the third and the twelfth. The third group is the target EEV opening degree, which was 

calculated by the current pulse number over the maximum pulse number of the EEV. 
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The twelfth group is the subcooling temperature before the EEV. It was calculated by 

the temperature before the EEV subtracted the saturated temperature. 

Table 3-5 Test Parameters 

Test parameter Symbol (Unit) 

Mass flow rate q (g·s-1) 

Frequency of compressor f (Hz) 

Target EEV opening degree X (%) 

Compressor suction pressure Ps (kPa) 

EEV inlet pressure Pi (kPa) 

EEV outlet pressure Po (kPa) 

EEV inlet temperature Ti (°C) 

EEV outlet temperature To (°C) 

Ambient temperature Ta (°C) 

Suction temperature Ts (°C) 

Discharge temperature Td (°C) 

Subcooling temperature Tsub (°C) 

IDU room temperature TIDU (°C) 

Liquid Line temperature Tl (°C) 

Outdoor unit power Pwo (kW) 

Indoor unit power Pwi (kW) 

Outdoor Humidity Rho (%) 

Room Humidity RHr (%) 

 

Figure 2-1 shows the system layout and the position of all sensors. As described above, 

all the IUs except IU2 were set off during the test period. The water heating unit was 

also off. The EEV near the Sub-Cooling Heat Exchanger (SCHX), EEV A, and EEV B 

were kept at the same opening degree during the test to control the variable. Table 2-1 

shows the specifications of the instruments used in the field test. 
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The traditional method (power-law correlation) and ANN method were adopted in this 

research to develop the correlation between parameters collected from the field test 

data and the mass flow rate of the target EEV. Only the steady-state data were 

considered in this research to guarantee the quality of the model. Methods to detect the 

steady-state of air conditioning and refrigerant cycle have been discussed (Lecompte 

et al., 2018b). The methodology developed by Kim et al. (2008) was adopted in this 

study. The standard deviation was monitored in a moving data window. If the standard 

deviation was below a threshold, the status of this moving data window could be 

considered steady. The threshold in this study was set as 5 %, and the moving data 

window was 20 seconds long, according to Kim’s research. The data collection 

frequency was 0.5 Hz. Thus, the moving data window had 10 points. According to this 

standard, the sample number of my study was 10,851 for the IU2’s steady-state data. 

 

PCA method, which was proposed by Pearson (1901), is a statistical procedure that 

uses an orthogonal transformation to convert a set of observations of possibly 

correlated variables into a set of values of linearly uncorrelated variables into a set of 

values of linearly uncorrelated variables. PCA is usually used to select input parameters 

and reduce dimensions. The PCA method was adapted to reduce the dimensions of the 

input parameter matrix. In this way, the complexity of the NN training can be reduced. 
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To make all the input parameters comparable, the data was normalized by the following 

steps. If the input parameter matrix was B (n×14), the normalized matrix b could be 

given by: 

 𝑏𝑖,𝑗 = 2(
𝐵𝑖,𝑗−𝐵𝑚𝑖𝑛, 𝑗

𝐵𝑚𝑎𝑥, 𝑗−𝐵𝑚𝑖𝑛, 𝑗
) − 1  (54) 

 

Here, 1≤i≤n and 1≤j≤17. Some literature changed input parameters to dimensionless 

parameters (Tian et al., 2015). For example, they used 𝑃𝑖/𝑃𝑐 instead of 𝑃𝑖 to substitute 

in the above equation. Nevertheless, this step was not necessary because if I put them 

into eq. 54, the same result was given due to the critical pressure of a certain refrigerant 

was constant. 

 

In addition, in order to decrease the complexity of PCA, the centralization method was 

needed. This step aimed at changing the mean value of each column of matrix b to zero. 

The process could be expressed by: 

 𝑐𝑖,𝑗 = 𝑏𝑖,𝑗 − 𝑏𝑚𝑒𝑎𝑛,𝑗  (55) 

 

The next step was calculating the covariance matrix C (shown by eq. 57) of c (shown 

by eq. 56). I need to write matrix c as 17 groups of column vectors. Each column means 

the jth parameters of all the samples. 

 𝑐 = [𝑐1, 𝑐2, . . . , 𝑐14]  (56) 

 

 

 𝐶 = [

𝑐𝑜𝑣(𝑐1, 𝑐1) 𝑐𝑜𝑣(𝑐1, 𝑐2) ⋯ 𝑐𝑜𝑣(𝑐1, 𝑐17)

𝑐𝑜𝑣(𝑐2, 𝑐1) 𝑐𝑜𝑣(𝑐2, 𝑐2) ⋯ ⋮
⋮ ⋮ ⋱ ⋮

𝑐𝑜𝑣(𝑐17, 𝑐1) 𝑐𝑜𝑣(𝑐17, 𝑐2) ⋯ 𝑐𝑜𝑣(𝑐17, 𝑐17)

]  (57) 
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Then I calculate the eigenvalue (E) and the eigenvector (V) of C and rearrange them 

into a descending order to get a new matrix V’. The more important the group was, the 

higher-order the group would be in the new eigenvector. 

 𝐶 = 𝑉 × 𝐸 × 𝑉−1  (58) 

 

In my study, I tried different numbers of input parameters based on the PCA to figure 

out the minimum number of input parameters for the ANN model building. 

 

As for the NN modeling, I used the BP neural network prediction model in Matlab 

R2018a. The field test result of IU2 from Dec. 25 to Dec. 27, 2018, was used to build 

the NN model. 60 % of the data was used for training, 20 % of the data was used for 

testing, and 20 % of the data was used for validation. In the discussion and result part, 

I would further discuss selecting the transfer function pairs and deciding the hidden 

layer node numbers. 

 

Discussions and Results 

As shown in Figure 3-9, I used two methods for modeling: NN correlation and power-

law correlation. As for NN modeling, I used PCA introduced above first to decrease 

the dimension of the input data matrix. I optimized the number of the input parameter 

groups and the number of the hidden layer nodes. In this study, I only consider the one-

layer model since I tried two hidden layer models and found out a similar result but 

consuming a much longer training time. Using much more hidden layers is in the range 

of deep learning, like residual neural networks, with more than one hundred layers, 
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which is another topic and could be my future work. In addition, I also compared 

different transfer function pairs.  

 

Figure 3-9 EEV Modeling Work Flowchart 

 

The field test result of IU 2 was used to build the model. First, I optimized the number 

of the input parameter groups (N) and the number of the hidden layer nodes (M). The 

data was trained repeatedly with different N and M. The vectors in matrix V’ were 

sorted by importance. Thus, it could be guaranteed that the first N vectors are chosen 

from V’ would have the best result. In this research, N was set from 1 to 17. 
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Nevertheless, no standard exists for choosing M, the proper number of hidden neurons. 

Some literature mentioned M should be smaller than N (Tian et al., 2015). However, 

some other studies also considered the situation that M was larger than N (Cao et al., 

2016b; Liu et al., 2017). The only certain rule was that M should be smaller than the 

number of samples used for training. Therefore, in this research, I would discuss the 

range of M from 1 to 25 to investigate what the result could be if M was larger than N. 

 

Figure 3-10 MRE with Different M and N 

 

The transfer function pair used for the parameter study of this part was ‘tansig’ for the 

hidden layer and ‘purelin’ for the output layer. This was a proper assumption, and the 

reason would be given in the next section. Figure 3-10 shows the MRE of the results 

with different pairs of M and N. For each M and N pair, the data were trained six 

times, and the best one was kept and as shown in the figure. Since the training group, 
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the testing group, and the validation group data show the same trend. I only show the 

figures for all the samples.  

 

In Figure 3-10, the y-axis of the graph is MRE, and the x-axis is M. Different lines in 

the graphs mean different N. When N was small, the ANN was large, which means the 

model accuracy was poor. When the N increased, the MRE decreased, which means 

the model improved. However, when N reached a threshold, in this case, around 15, 

the MRE decreased so small that I could ignore it. Therefore, I can conclude that a 

minimum number of N existed to guarantee the performance of the model. I always 

prefer a small N and M because large N and M would increase the complexity and the 

risk of over-fitting (Liu et al., 2017).  

 

According to the analysis above, I used the model with N=15 and M=13. The 

performance parameter is given in Table 3-6. 

Table 3-6 Performance Parameters when N=15, M=13 

 MRE RMSE R2 

Total 2.16% 0.3954 0.9985 

Training group 2.13% 0.3946 0.9985 

Testing group 2.18% 0.3974 0.9985 

Validation group 2.21% 0.3957 0.9985 
 

Based on the conclusion from the previous discussion, I used N=15 and studied the 

different transfer function pairs. According to the literature, ‘tansig’, ‘logsig’ and 

‘purelin’ are the most commonly used transfer function (Tian et al., 2015). In this study, 

I used these three transfer functions for the hidden layer and output layer, respectively. 

Thus, I had 9 different transfer function pairs: ‘tansig-tansig’, ‘tansig-logsig’, ‘tansig-
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purelin’, ‘logsig-tansig’, ‘logsig-logsig’, ‘logsig-purelin’, ‘purelin-tansig’, ‘purelin-

logsig’ and ‘purelin-purelin’. Each pair was trained with a different range of M. I also 

trained each case 6 times and kept the one with the best performance. 

 

Similar to what I discussed in the previous section, in Figure 3-11, the y-axis of the 

graph was MRE, and the x-axis was M. Different lines in the graphs mean different 

transfer function pairs. The lines could be separated into three different groups, as 

shown in the graphs. The pairs of ‘tansig-logsig’, ‘logsig-logsig’ and ‘purelin-logsig’ 

were the first group. The MRE was higher than 70 % whenever the M changed. That 

meant the ‘logsig’ transfer function was not good enough to be chosen as the output 

layer transfer function. Furthermore, the ‘purelin-tansig’ and ‘purelin-logsig’ pairs 

were in the second group. The MRE was higher than 20 %, which means ‘purelin’ 

transfer function was not proper to be chosen as the hidden layer transfer function. In 

addition, for the rest pairs, they were the third group with similar performance. The 

‘tansig-tansig’, ‘tansig-purelin’, ‘logsig-tansig’ and ‘logsig-purelin’ pairs were all 

proper for EEV NN training. I could also find out that for those pairs in the third group, 

M increased inversely with MRE. When the M was large enough (around 13), the MRE 

only decreased a little. This conclusion was in accordance with what I discussed in the 

previous section. 
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Figure 3-11 MRE with Different M and Transfer Function Pair 

According to the analysis, my assumption to use ‘tansig-purelin’ transfer function pair 

was reasonable. When I did ANN training, I could choose one from the third group.  

Figure 3-12 shows the JointPlot when N=15 and M=13, which provide information 

about the regression and distribution of the data between the predicted value and 

experiment value. The x-axis is the experiment value, and the y-axis is the predicted 

value. Except for limited data points (1 % among all data), my model has a decent 

performance in that the predicted value exactly matches the experiment value. In 

addition, I can find out data mostly focused at 0 g·s-1 and 15 g·s-1. The reason is that 

the database is from a field test. In the field test, the two most commonly observed 

conditions for the system are when the compressor is off and when the system is 

working under-designed conditions. Due to the concentration of the data, one drawback 
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of my model is the limited confidence of the points between the two points. This 

problem can be solved by adding some data points of the same system working in a lab 

experiment under these conditions, which is considered as future work. 

 

 

Figure 3-12 Cross-Validation JointPlot 

 

Uncertainty Analysis 

I used the same method for uncertainty analysis as chapter 3.1.2. The uncertainty on 

the variable y was calculated as a function of uncertainties Uxi on each measured 

variable xi: 

𝑈𝑦 = √∑ (
𝜕𝑦

𝜕𝑥𝑖
)
2

𝑈𝑥𝑖
2

𝑖   (59) 
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Table 3-7 Uncertainty Analysis 

Parameter Unit Point 1 Point 2 

Mass flow rate absolute 

uncertainty (ANN model) 

g·s-1 0.15 0.17 

Experiment Mass flow rate g·s-1 21.37 13.80 

ANN predicted Mass flow rate g·s-1 22.48 13.38 

Frequency of compressor Hz 20 31 

Target EEV opening degree % 11 6.5 

EEV inlet pressure kPa 3014 2360 

EEV outlet pressure kPa 1182 841 

EEV inlet temperature °C 49.7 39.2 

EEV outlet temperature °C 41.1 30.5 

Ambient temperature °C -0.5 4.1 

Suction temperature °C 0.5 4.8 

Discharge temperature °C 71.0 77.0 

IDU room temperature °C 17.8 22.4 

Outdoor unit power kW 2.50 2.65 

Indoor unit power kW 0.06 0.06 

Outdoor relative humidity % 36 27 

Room relative humidity % 12 10 

 

The accuracy of the measurement equipment used is given in Table 2-1. Since the 

correlation obtained from ANN regression was complicated, the value of the partial 

derivative was derived by numerical differentiation. The uncertainty of compressor 

frequency and the opening degree of target EEV were considered as zeros. The 

uncertainty of the mass flow rate varied when the input point varied. I gave the absolute 

uncertainty of the mass flow rate at two points in Table 3-7. 
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Comparisons 

I studied and compared the conventional method, which is a power-law correlation, 

with the NN method. The same data as I used for the NN training was used to build the 

power-law correlation model. Two different power-law correlation methods were 

adopted. For the first one, I used the same input parameter groups as I used for the NN 

training. In the second one, I adopted the most commonly used model, Park’s model 

(Park et al., 2007b). Since I only considered one IU, which means the EEV would not 

be changed, the π group for geometry in their model was not considered. To compare 

these methods, I used the same performance parameter as I used for ANN performance 

evaluation. I calculated MRE, RMSE, and R2 for each case. Table 3-8 summarizes the 

results. According to Park’s experiment data, the RD was between -4.2 % and 11.4 %, 

and their MRE was 0.76 %. My result in Table 3-8 shows the MRE of power-law 

correlation, which is 5.72%, which is worse than Park’s result. That might be due to 

their experiment was conducted in the laboratory, but my data was from the field test. 

In addition, I could find that my NN work has a little bit better performance than Tian’s 

work (Tian et al., 2015b) since I optimized the input parameters and hidden neurons. 

As I mentioned in the beginning, the compressor frequency was considered as an 

important parameter in the modeling work. I can validate this by deleting the column 

of the compressor frequency in the raw data sheet and repeating the process introduced 

in my manuscript. I still used N=15, M=13, and ‘tansig-purelin’ as transfer function 

pairs. The result was MRE=3.92%, RMES=0.6683 g·s-1, R2=0.995. This result was 

close to Tian’s work but worse than the result I showed with the compressor frequency 
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data. Overall, the PCA-based NN method had a better performance than the power-law 

correlation methods and previous NN correlation work. 

Table 3-8 Comparison of the Conventional Method and NN Method 

Method MRE RMSE (g·s-1) R2 

Power-law correlation 1 

(same input parameter groups as 

NN) 

5.40% 1.5873 0.9756 

Power-law correlation 2 

(input parameter groups Park 

suggested) 

5.72% 1.0566 0.9889 

NN (N=15, M=13) 2.16% 0.3954 0.9985 

Tian’s work (Tian et al., 2015b) 3.62% 0.6611 0.994 

Park’s work (Park et al., 2007b) 0.76% Not mentioned Not mentioned 
 

 

Summary 

I proposed an EEV modeling framework with a case study on VRF systems. In 

particular, I developed an NN correlation for the EEV used in VRF systems and 

optimized the input parameter number and hidden neuron number. In this study, I used 

the field test data of a VRF system to build the models and applied PCA in optimizing 

the NN input parameter number. Furthermore, I also discussed the proper number of 

hidden neurons and different transfer functions. The performances of the power-law 

correlation and the NN correlation in existing literature were compared to my work, 

and my model has a better performance. I found that the performance parameters of the 

NN modeling wouldn’t change a lot when the number of the input parameter and 

hidden neurons reached a threshold. In my case, when I used 15 input parameters and 

13 hidden neurons, the model performance was acceptable. I also gave three 

recommended transfer function pairs for this case. When I compared my NN model 
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and the conventional method, my NN model improved the accuracy by having the 2.2 % 

MRE, 0.395 g·s-1 RMSE, and 0.999 R2, while those of the conventional methods are 

5.7 % MRE, 1.057 g·s-1 RMSE and 0.989 R2. 

 

Therefore, the PCA-based NN regression method proposed in the manuscript is more 

practical and accurate for EEV correlation development than the conventional method 

when a number of data is available. Since no certain criteria in NN model parameter 

optimization exist, my work gave the following strategies in utilization of NN modeling 

in HP EEV model development, which has never been discussed in previous NN EEV 

modeling works. First, a threshold exists for hidden neuron numbers. Second, ‘purelin’ 

function cannot be used as a hidden neuron layer function, while ‘logsig’ function 

cannot be used as an output layer function. Third, the more input parameters used, the 

better performance a model can have. But after a threshold, the performance cannot be 

improved a lot. The model development process and observation presented here are 

applicable to EEV modeling for other HP systems. Future research could focus more 

on using different machine learning algorithms to model other parts of the refrigerant 

system, like compressor and heat exchanger, and compare the performance of these 

different algorithms. 

 

 

3.2.2. Steady-state Compressor Model 

Background 

The compressor is the central part of the HP system. The power consumption of the 

compressor accounts for 70% of the total energy consumption, according to my field 
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test. Compressor models were widely used in cycle design, control strategy, and fault 

detection. Compressor models mainly include the mass flow rate prediction model, the 

power consumption prediction model, and the current prediction model. In this thesis, 

I discuss the mass flow rate prediction model since the mass flow rate is the core of 

capacity calculation, which leads to energy efficiency directly. 

 

In this study, I mainly focus on compressor performance in the whole system. First, I 

conducted field tests in an office building that installed a ductless VRF system with 

seven indoor units. I used the moving window method to get a QSS data set from the 

field test data. In addition, I compared this data set with the one from the manufactures. 

Furthermore, I summarized three compressor mass flow rate prediction methods from 

the literature. I compared the performance of these methods. I also applied three 

machine-learning-based methods to analyze the data set from the field test and the data 

set from the manufactures. Finally, I compared the performance of all the six methods 

to predict transient data. Uncertainty analysis was also conducted for the experiment 

test and the models I built. 

 

Methodologies 

I conducted a field test in a campus office building in College Park, MD, U.S. The 

target ductless VRF system had 7 indoor units and 1 outdoor unit. The test time period 

was from November 2019 to February 2020. The pressure sensors were installed to 

measure the suction and discharge pressure of the compressor. The compressor 

frequency was directly read from the system’s control software. Thermocouples were 
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used to measure the suction and discharge temperature. The accuracy of the instruments 

could be found in Table 2-1. The mass flow rate was measured by a mass flow meter. 

The sampling time was 2 seconds. The nominal heating capacity of this system was 

23.74 kW. The refrigerant of the system was R-410A. The average heating area for 

each indoor unit was 11 m2. The shell volume of the compressor was 48 cc. 

 

Only heating mode data were considered in this study. Simultaneous heating and 

cooling mode were not considered. The screening method was checking the operation 

mode of each indoor unit. A QSS filter introduced in chapter 2 was applied in this study. 

Δt equals 60 seconds. The “threshold” is that the relative deviation of each parameter 

should be smaller than 1%. The mean value of every parameter in this minute was used 

to represent the target value of this data point. In this study, the accuracy of the mass 

flow meter was 0.9 g·s-1. When the system was operating in low frequency, the mass 

flow rate through the system could be as low as 10 g·s-1. Thus, the uncertainty from the 

measurement was already nearly 10%. Therefore, for the steady-state filter, I didn’t use 

the ‘1%’ requirement for the mass flow rate. 

 

In this study, I only considered the case in which the pressure ratio was smaller than 6. 

The purpose was to guarantee the characteristics of the compressor performance. Based 

on my test experience, the compressor would show a large difference when the pressure 

ratio is either low or high. First, I introduce three concepts in machine learning. 

“Training data set” is the data set I used to build the model. “Testing data set” is the 

data set I used to optimize the parameters set in the model. “Validation data set” is the 
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data set that I used to verify the model. Based on the literature review (Wan et al., 2020), 

two existing modeling methods are physics-based and knowledge-based models. 

Physics-based methods can reflect physics and thus is more reliable. However, physics-

based methods are complicated, and sometimes even no physics equation exists. If the 

physics-based method was used in dynamic modeling, it might take a long time for the 

solver to get a result due to the non-linear property. Knowledge-based methods are easy 

to adapt. Since the knowledge-based model relied on the data, the accuracy was always 

better. Nevertheless, knowledge-based methods had a problem called “overfitting”, 

which meant such models only work well in the range of the training data set. Strictly 

speaking, no completely physics-based model was used in practice. The difference was 

how much this model relied on physics. 

 

Traditional modeling tools used physics-based methods. While nowadays, knowledge-

based methods using machine learning algorithms have become popular. However, 

limited research reported the differences between different methods. In this research, I 

first compare several physics-based methods. Then I compare these methods with three 

different machine-learning-based methods. 

 

Method 1: 20-coefficient Polynomial Correlation Methods 

 

�̇� = 𝑓(𝐹, 𝑇𝑑𝑖𝑠, 𝑇𝑠𝑢𝑐) 
     = 𝑀1 +𝑀2𝑇𝑑𝑖𝑠 +𝑀3𝑇𝑠𝑢𝑐 +𝑀4𝐹 +𝑀5𝑇𝑑𝑖𝑠𝑇𝑠𝑢𝑐 +⋯+𝑀20𝑇𝑠𝑢𝑐

3  
 

(60) 

This method was widely used in the industry to predict the performance of variable 

speed compressors (Guo et al., 2017b). Hereafter, I use the ‘20-c’ to represent this 

method. In the equation, M is the correlation factor. Tdis is the discharge temperature, 
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which can be calculated by the discharge pressure I measured. Tsuc can be obtained by 

the suction pressure. F is the frequency of the compressor, which is directly obtained 

from the control software. 

 

The benefit of this method is that this method is easy to use and has a good performance 

in the range of the training database. However, if the predicting point is beyond this 

range, the performance would decrease sharply. Obviously, this is a knowledge-based 

method. 

 

Method 2: Efficiency-based Model 

 

This is another method widely used in both industry and academic fields (Jähnig et al., 

2000; Li, 2013a). The mass flow rate could be represented by the compressor frequency, 

suction density, compressor volume, and volumetric efficiency (eqs. 61 and 62). Except 

for the efficiency, other parameters required could be obtained directly from the test. 

There are several different ways to calculate volumetric efficiency. According to Li 

(2013c), the volumetric efficiency had a strong linear relationship with the pressure 

ratio, especially when the pressure ratio was low. Besides, the frequency had a second-

order polynomial relationship with volumetric efficiency. Thus, I derived a model using 

linear regression to obtain the volumetric efficiency first (63). I use the ‘eff’ in the 

following study to represent this method. This was a highly physics-based method. 

 
�̇� = {1 − 𝐶𝑐𝑜𝑚𝑝,1 [(

𝑃𝑑𝑖𝑠
𝑃𝑠𝑢𝑐

)
1 𝑘⁄

− 1]} ∙
𝑉 ∙ 𝑅𝑃𝑀

𝜈𝑠𝑢𝑐 ∙ 60
 (61) 
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�̇�

𝑓𝜌𝑠𝑢𝑐𝑉
= 𝜂𝑣𝑜𝑙 = 𝑓(𝑓, 𝑃𝑑𝑖𝑠, 𝑃𝑠𝑢𝑐) (62) 

𝜂𝑣𝑜𝑙 = 𝑀1 +𝑀2𝐹 +𝑀3𝐹
2 + (𝑀4 +𝑀5𝐹 +𝑀6𝐹

2)(𝑏1 + 𝑏2 (
𝑃𝑑𝑖𝑠
𝑃𝑠𝑢𝑐

)
1 𝑘⁄

) (63) 

 
Method 3: Efficiency-based Model, using 20-coefficient Polynomial Correlation for 

Volumetric Efficiency 

Of course, a polynomial correlation was always a choice to develop a correlation. Thus, 

I derived a 20-coefficient model to predict volumetric efficiency (64). 

𝜂𝑣𝑜𝑙 = 𝑓(𝐹, 𝑇𝑑𝑖𝑠, 𝑇𝑠𝑢𝑐) 
         = 𝑀1 +𝑀2𝑇𝑑𝑖𝑠 +𝑀3𝑇𝑠𝑢𝑐 +𝑀4𝐹 +𝑀5𝑇𝑑𝑖𝑠𝑇𝑠𝑢𝑐 +⋯+𝑀20𝑇𝑠𝑢𝑐

3  
(64) 

 

The difference between this method and the ‘method 1: 20-c’ was that this method was 

based on the efficiency calculation. Applying this method did not require correction 

with different suction conditions. I use ‘eff-20c’ to represent this method. This method 

relied on physics, but it also used a knowledge-based approach to predict the 

parameters. 

 
Figure 3-13 Structure of the Compressor Model Study 

 

The structure of this study is shown in Figure 3-13. Nowadays, machine-learning-based 

methods are widely used in compressor modeling and air condition system modeling. 

I am not introducing too many details of each method. Interested readers can read the 

reference (Chen et al., 2020; Cho et al., 2020; Hipple et al., 2020). 
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For every method mentioned in this part, I divided the original database into three parts: 

training set, testing set, and validation set. The ratios of every data set were 60%, 20%, 

and 20%. The data were normalized before the training process. I used MATLAB as 

the platform. Toolboxes: ‘Fitrsvm’, ‘net’, and ‘fitrensemble’ were used for SVR, NN, 

and RF, respectively. Like my previous methods, I used discharge temperature, suction 

temperature, and compressor frequency as the input parameters. Output was the mass 

flow rate. 

 

Method 4: Support Vector Regression (SVR) 

 

SVR is a regression method using the Support Vector Machine algorithm. This is a 

linear regression method. Several groups of researchers already used this method to 

predict the performance of the compressor (Li et al., 2018) or for the fault diagnosis 

(Qin et al., 2012). The main parameter in the modeling work is the ε value. I optimized 

the ε in the modeling. I changed ε from 0.01 to 1.00 and found that when ε was 0.16, 

the accuracy of the model was the best in this study. Eq. (65) shows the equation that 

SVR generally solved: 

 𝑀𝑖𝑛(
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑁
𝑖=1 )  (65) 

where symbols w and b are weighting factor and bias, respectively. C and 𝜉 are two 

crucial parameters that would affect the performance of the algorithm. 

 

Method 5: Neural Network (NN) 

 

Neural Network is also a common method for compressor modeling (Ghorbanian and 

Gholamrezaei, 2009). In this study, the network had one hidden layer with 7 neurons. 
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I changed the number of hidden neurons from 1 to 10 and found that when the number 

was larger than 7 the performance didn’t improve a lot. Transfer function pairs used 

were ‘tansig-tansig’. I also tried other pairs like ‘tansig-logsig’. The ‘tansig-tansig’ pair 

had the best performance.  The maximum epochs were 2,000. The following equation 

could explain the one-hidden-layer NN model. y was the output. “g” were the transfer 

functions. “w” were the weights and “b” are the bias. 

 𝑦𝑘 = 𝑔𝑜𝑢𝑡𝑝𝑢𝑡{∑ 𝑤′𝑗𝑘 × [𝑔ℎ𝑖𝑑𝑑𝑒𝑛(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗
𝑁
𝑖=1 )] + 𝑏′𝑘

𝑛
𝑗=1 }  (66) 

 

 
Method 6: Random Forest (RF) 

 

Yu et al. (2017) used Random Forest (RF) to predict the COP of a chiller.  RF was also 

used to do fault detection work (Aravinth and Sugumaran, 2018). I used the default 

setting in MATLAB. RF method-based model was hard to write in a simple equation. 

Interesting readers can read the reference for details (Aravinth and Sugumaran, 2018). 

 

 

Discussions 

Most previous research used the data obtained in the laboratory to build the compressor 

model. Limited research used the data from the field test. The main reason was that a 

steady state was hard to be achieved in the field test. The uncertainty of the data brought 

difficulties in building a model. The conventional approach to build the models, 

including polynomial regression, had poor performance when dealing with high 

uncertainty data. While field test data is easy to access, conducting experiments in the 

laboratory is expensive. Normally, when researchers collected the data from the 

laboratory, they would test the compressor in a refrigerant cycle. After the system 

reached a steady-state, they would record the evaporating and condensing temperature 
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(or pressure), the frequency of the compressor, the target information they need (mass 

flow rate, power consumption, or capacity), and the suction condition. When they 

conducted the experiments, they would keep the suction condition (especially 

superheat) to be the same. In contrast, in field tests, people always recorded all the 

information time by time.  

 

By the way, in the laboratory test, research always cared about the distribution and the 

range of the data samples. They would evenly distribute the data sample points. They 

would also choose several frequencies to do the test. Nevertheless, in the field test, the 

data points would distribute concentrating on several ranges. The ranges were the ‘0’ 

point and the points which match with the capacities of the user’s requirements. Table 

3-9 shows a detailed comparison between data from the laboratory and the data from 

the field test. 

Table 3-9 Comparison between Performance Map Test and Field Test 

Parameter Performance map test Field test 

Input TE, TC, Fcomp, CDsuc TE, TC, Fcomp… 

Distribution Evenly distributed 
Heterogeneously 

distributed 

Distribution Range Large Small 

Lower bound 30 Hz 0 Hz 

Data number 128 
1,000 for steady state 

624,476 for transient 

 

 

First, I compare the three traditional methods. 
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Figure 3-14 Pressure Ratio and Volumetric Efficiency 

 

In Figure 3-14, the x-axis is the pressure ratio. The y-axis is the volumetric efficiency 

of the compressor. As shown in the figure, the shapes of the models are different. First, 

the ‘eff’ method is consistent with my model assumption. For the ‘20-coef’ method, 

when the pressure ratio decreases below 2, the efficiency would increase sharply. 

However, for the actual compressor, when the pressure ratio was meager, for example, 

at the start-up period, the efficiency was not so high. For ‘eff-20c’ method, when the 

pressure ratio decreased below 1.5, the efficiency started to decrease. As for the 

accuracy, the ’20-c’ and ‘eff-20c’ methods had better performance than the ‘eff’ 

method. 
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Figure 3-15 Transient Validation 

Figure 3-15 shows a comparison between these modeling results and the field test 

results. The x-axis is the time. The y-axis is the mass flow rate. I could find that at the 

steady-state, all these methods had similar performance. However, at the beginning of 

the startup period, all methods failed to predict. The reason could be that at first when 

the compressor frequency increased, the mass flow rate needed a few seconds to 

increase due to inertia. After these periods, only the ‘eff’ method could predict the value 

well. During these periods, the compressor frequency was low, which was also beyond 

the training data set range of the data obtained from the manufacture.  

 

The above work all used the data from the manufacture. Then, I would use the field test 

data set to build the model.  
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Figure 3-16 Validation by Field Test Data (eff) 

 
 

Figure 3-17 Validation by Field Test Data (SVR) 
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First, I used the model ‘eff’, which had the best overall performance, to predict the field 

test database, as shown in Figure 3-16. The x-axis is the value of the experiment (field 

test). The y-axis is the expected value from the model. Most of the data was within the 

15% range. As I could find in the figure, there were several points with larger deviations 

than 15%. In fact, for these data points, the evaporating temperature was around -21 °C. 

However, in my training database, the lowest evaporating temperature was -10 °C. 

Thus, it was beyond this range. 

 

The next step was applying machine learning algorithms. I used the SVR method as an 

example to treat the same data set, as shown in Figure 3-17. Applying other machine 

learning algorithms would be similar. I could see that for this data set, the SVR method 

had a better performance than the ‘eff’ method. 

 

Then, I tried other machine learning algorithms, including neural network (NN) and 

random forest (RF). The Relative Mean Error (RME) and Relative Mean Square Error 

(RMSE) were given in Table 3-10. 

  



 

 

118 

 

Table 3-10 Machine Learning Algorithm Comparisons 

Algorithm SVR NN RF 

RME [-] 0.0357 0.0295 0.0237 

RMSE [-] 0.0381 0.0328 0.0267 

 

 
 

Figure 3-18 Compressor Frequency versus Mass Flow Rate 

 

Figure 3-18 shows the relationship between the mass flow rate and compressor 

frequency. All approaches show that the mass flow rate has a nearly linear relationship 

with the compressor frequency. I could find that ’20-c’ had abysmal performance when 

the compressor frequency was lower than 20 Hz. It predicted the mass flow rate below 
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0. For other methods, NN and RF methods would predict the slope of the value decrease 

first and increase later. The slope values were not continuous. These results did not 

follow the physics. 

 

I also compared all these methods in the startup period in Figure 3-19. 

 
Figure 3-19 Transient Validation (Six Methods) 

 

The performance of ‘eff’, SVR, NN, and RF were all acceptable. 

Table 3-11 Summary of Different Modeling Methods 

Modeling method eff eff-20c 20-c SVR NN RF 

Reflect the physics Highly Medium No Lowly No No 

Accuracy 

Relatively 

low Normal Normal Normal High High 

Complexity Simple Medium Medium Medium Complicated Complicated 

Uncertainty Medium Small Small Medium Large Large 

Recommend Yes Yes No Yes No No 
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Uncertainty Analysis 

The uncertainty of the data from the manufacture was not accessible. In this part, I 

would focus on the field test uncertainty and uncertainty analysis of every model I built. 

 

For the field test, I also used the method introduced by Lecompte et al. (2018) to do 

uncertainty analysis: 

𝑈𝑦 = √∑ (
𝜕𝑦

𝜕𝑥𝑖
)
2

𝑈𝑥𝑖
2

𝑖   (67) 

The accuracy of the measurement equipment used was given in the methodology part 

of the thesis. 

Table 3-12 Uncertainty Experiment part 

 High pressure [kPa] 

Low pressure 

[kPa] 

Suction 

Temperature [°C] 

Mass flow rate 

(Exp) [g·s-1] 

 Test Uncertainty Test Uncertainty Test Uncertainty Test Uncertainty 

1 2867 6 901 6 10.2 0.5 18 1 

2 2951 8 525 5 6.4 0.5 25 1 

 

Table 3-13 Uncertainty Analysis Modeling part 

 20-c [g·s-1] eff-20c [g·s-1] eff [g·s-1] 

 Predicted Uncertainty Predicted Uncertainty Predicted Uncertainty 

1 18.3 0.1 19.2 0.1 20.0 0.1 

2 27.4 0.1 25.4 0.1 23.4 0.2 

 SVR [g·s-1] NN [g·s-1] RF [g·s-1] 

 Predicted Uncertainty Predicted Uncertainty Predicted Uncertainty 

1 18.2 0.1 19.0 0.1 19.3 0.1 

2 23.9 0.2 24.6 0.2 24.5 0.3 

 

For the modeling work, the value of the partial derivative was derived by numerical 

differentiation. The uncertainty of compressor frequency was considered as zeros. The 

uncertainty of the mass flow rate varied when the input point varied. I gave the absolute 
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uncertainty of the mass flow rate at two points. The frequency of each is 15 Hz and 30 

Hz, respectively. Table 3-12 shows the experiment part of uncertainty analysis. Table 

3-13 shows the modeling part of uncertainty analysis. From this table, I could find that 

when the frequency increased, the mass flow rate increased, and the uncertainty of the 

value predicted also increased. Though the value predicted for the NN and RF methods 

were close to the experiment values, the uncertainty was also large. The uncertainty of 

the ‘20-c’ method was small, but the value predicted was far from the experiment data 

point. 

 

Summary 

In this study, I built compressor models by both manufactures’ data and field test data. 

I compared different methods to build the models. First, ‘20-c’ method has the best 

accuracy within the range of the training database, but when the frequency was low, 

this method failed to predict the MFR. In addition, ‘eff’ method reflects the physics 

best. Finally, ML methods have excellent performance if the prediction data point is 

within the training data set range. As for the uncertainty, the ‘20-c’ and ‘eff-20c’ 

methods had lower uncertainty but sometimes failed to predict the accurate value. The 

NN and RF methods had higher accuracy but also higher uncertainty. In conclusion, I 

recommended the ‘eff’ method and SVR method for ductless VRF system compressor 

mass flow rate prediction. For future work, people may apply the Bayesian-Neural-

Network algorithm since this algorithm was reported for excellent performance on high 

uncertainty data. People may also build a knowledge-based heat exchanger model. 

Then people need to test the full cycle performance. 



 

 

122 

 

3.2.3. Transient Compressor Model 

Methodologies 

The compressor model in the transient state was different from that in steady-state. If I 

used the steady-state compressor model to predict transient field test data, some gaps 

between the experiment values and simulation values would exist. The mass flow rate 

I tested might not reflect the value everywhere in the system since, in the transient case, 

the mass flow rate might not be consent in the system. 

 

In order to simplify the case, I only consider the situation in which only one indoor unit 

was used. EEV opening degree, compressor suction pressure, compressor discharge 

pressure, condenser outlet temperature, condenser outlet density, evaporator inlet 

temperature, and compressor frequency were used as the input parameters. The outlet 

parameter was the mass flow rate through the system. The input data also had another 

dimension, which was the time. I considered 80 s (40 test data points) in this study. 

Each input data slot was an 8-by-40 matrix. The x-dimension was the eight parameters 

I studied. The y-dimension was the time. An example was shown in Figure 3-20. It was 

an image generated by MATLAB. Columns from left to right meant EEV opening 

degree, condenser outlet temperature, compressor discharge pressure, evaporator inlet 

temperature, compressor suction pressure, subcooling of the condenser, condenser 

outlet density, and compressor frequency, respectively. There were 40 rows. The first 

row was the time 80 s ago. The last row was the current time. All the values were 

normalized to 0-1. In the example (Figure 3-20), the last figure was in QSS. Thus, the 

top side color was very closed to the downside color. 
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Figure 3-20 Input Example 

 

 

I had a set of images, as shown in the example. For each image, I also had a matching 

value, which was the mass flow rate at the current time, the output of my model. CNN 

was a common method for image recognition. I used the ‘trainNetwork’ toolbox in 

MATLAB to build the CNN model. In my model, I set 6 hidden layers. I had 57,456 

input data images. 30,000 were used as the training data set. 10,000 were used as the 

testing data set. The remaining images were used as the validation data set. 

 

The parameters of the model setting were listing below: (ReLU was Rectified Linear 

Unit, and Table 3-14 was a set format of MATLAB toolbox) 
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Table 3-14 Parameters of Model Setting 

No. Layer Note 

1 Image Input 12x6x1 images with 'zerocenter' normalization 

2 Convolution 8 3x3 convolutions with stride [1  1] and padding 

'same' 

3 Batch Normalization - 

4 ReLU - 

5 Average Pooling 2x2 average pooling with stride [2  2] and padding 

[0  0  0  0] 

6 Convolution 16 3x3 convolutions with stride [1  1] and padding 

'same' 

7 Batch Normalization - 

8 ReLU - 

9 Average Pooling 2x2 average pooling with stride [2  2] and padding 

[0  0  0  0] 

10 Convolution 32 2x2 convolutions with stride [1  1] and padding 

'same' 

11 Batch Normalization - 

12 ReLU - 

13 Convolution 32 2x2 convolutions with stride [1  1] and padding 

'same' 

14 Batch Normalization  

15 ReLU  

16 Dropout 20% dropout 

17 Fully Connected 1 fully connected layer 

18 Regression Output Mean-Squared-Error 

 

 

Discussions 

Figure 3-21 shows the startup period of the VRF system when only one indoor unit was 

working. This test data was generated at 9:16 am on July 11th, 2019. The x-axis for all 

the subfigures is the time. This lasts for 500 s, which also means there are 250 data 

points in each subfigure. The first subfigure shows the condensing temperature and 

evaporating temperature. The condensing pressure increased at first and then decreased, 

and then increased again, and kept at a constant value. The evaporating pressure 

decreased and then kept at a constant value. The reason was the high pressure was 
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controlled by the frequency of the compressor. As I could see in the second subfigure, 

the compressor frequency also increased at first and then decreased and increased again. 

The third subfigure shows the EEV opening degree of the target IU. The trending for 

that was similar to the high pressure and the compressor frequency. In this example, 

there were 500 seconds. At the end of this period, I could find that the system went into 

QSS. In this figure, the pressure changes and mass flow rate change had some delay 

compared with the control parameters like compressor frequency and EEV opening 

degree. This was the truth in the field test since the system needed some time to reflect 

control and operation by the users. Another main reason could be the thermal mass of 

the refrigerant and heat exchangers. 

 
Figure 3-21 VRF System Startup 
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I used the compressor map from the manufacture to predict the mass flow rate of the 

system and compared the result with my experiment data. The compressor map I used 

was a 20-coefficients compressor map. This method was widely used to evaluate the 

compressor mass flow rate for VRF systems. This method was also a knowledge-based 

method since no physics rules were used in this approach. This method could only be 

used for steady-state data or quasi-steady-state data. My following result also proved 

this. Figure 3-22 shows the experiment mass flow rate value and predicted value from 

the compressor map. The blue line is the experiment result, and the red line is the 

modeling result. This 500-second period was the same period as I showed in Figure 

3-22. The y-axis is the mass flow rate. The x-axis is the time. The experiment mass 

flow rate trend is in accordance with the compressor frequency trend and the EEV 

opening pulse trend. The mass flow rate increased sharply at first and then decreased, 

and then increased, and kept at a constant value. From Figure 3-21, I could find that 

the liquid mass flow rate and the mass flow rate showed different behaviors. For those 

parts where the mass flow rate varied a lot, the gaps were obvious between the 

experiment value and the predicted value.  
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Figure 3-22 Mass Flow Rate Comparisons 

 (Compressor Map versus Experiment) 

 

I applied the CNN-based modeling method introduced in the methodology part to 

predict the mass flow rate at the same time. Figure 3-23 was the result. Similar to Figure 

3-23, the y-axis is the mass flow rate. The x-axis is the time. The blue line is the 

experiment result, and the red line is the modeling result. As shown in Figure 3-23, the 

CNN-based model could solve the mismatch problem. However, in the very first part 

of this period, the mass flow rate predicted was larger than the experiment value. At 

the peak point, the predicted value was smaller than that experiment value. The current 

Mean Relative Error (MRE) of this model was 2%. In my study, I didn’t optimize the 

structure of the network. I also didn’t study which activation functions were the best in 

this case. Thus, there would still be some space for this model to be improved. Another 

drawback of this method was the 0-value shifting. As shown in Figure 3-23, in the first 
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several seconds before the system startup, the predicted mass flow rate value was not 

exactly 0. The training time for building the model was 5 min 44 seconds using one 

single CPU, but after one-time training, the prediction work could be complete 

immediately. The uncertainty analysis of the CNN model was complicated since the 

input parameters had two dimensions. Traditional uncertainty analysis was not 

approvable for this approach. This could be my future work. 

 
Figure 3-23 Mass Flow Rate Comparisons 

 (CNN-based Model versus Experiment) 

 

 

3.3. Summary 

In this chapter, the authors introduced a large number of modeling methods and 

compared them in HP system performance prediction. These models could be used to 

predict the overall performance of the system, like power consumption or pressures. 

They can also be used to predict the performance of the subcomponents in the system 
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like the EEV and compressor. Table 3-15 summarized these methods and compared the 

characteristics of these methods. 

 

Choosing an appropriate method and setting the parameters in the model are important. 

Figure 3-24 shows a general process to select models and set the parameters in the 

model. Like field test data analysis, goals (the purpose of the modeling) and computer 

performance need to be considered when choosing the method.  

 

 

Table 3-15 Comparisons of Different Data-driven Modeling Methods 

Modeling 

Methods 

Physics Statistic Machine learning 
Deep 

learning 

Physics-

based 

Power-

law/Polynomi

al Correlation 

SVR 

(SVM) 

RF 

(decision 

tree) 

NN (SNN) 

CNN 

(Multiple-

time-step 

NN) 

Example 

Compressor 

efficiency-

based 

model 

EEV MFR 

correlation, 

compressor 

map 

Power 

model, 

compressor 

model 

Compressor 

model 

EEV 

model, 

compressor 

model 

Compress

or model 

Risk of 

overfitting 
Very low Very high Low Normal Normal Normal 

Uncertainty Medium Small Small Large Large - 

Accuracy Low Low Normal Normal Normal High 

Complex 

setting 
- Simple Medium Medium Medium Complex 

Training 

time 
Very short Short Short Medium Medium Very long 

Dealing 

Large Data 
Yes Yes PCA PCA PCA Yes 

Continuous Yes Yes Yes No Yes Yes 
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Figure 3-24 Flow Chart to Select and Set Data-driven Models 
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4. Enhanced Life Cycle Climate Performance Evaluation 

 

4.1. LCCP in Different Regions for Different Refrigerants 

Long-term usage of halogenated refrigerants in refrigeration and air conditioning 

systems has caused severe environmental damages. With the phasing down of high-

GWP refrigerants, the replacement of currently used refrigerants requires safe, energy-

efficient, and environmentally friendly characteristics. Nevertheless, no perfect 

alternative refrigerant exists, satisfying all these requirements (Venkatarathnam and 

Murthy, 2012). Many target parameters are involved, including flammability, GWP, 

compressor efficiency, compressor and system cost, heat transfer, and pressure drop. 

A trade-off map among these can be drawn, as shown in Figure 4-1 (Gilmour and 

McNally, 2010).   

 

Figure 4-1 An Example of the Target Parameter Trade-offs 

 Involved in Choosing the Ideal Refrigerant 
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Therefore, how to choose an appropriate refrigerant is significant. I need some metrics 

to combine these criteria. LCCP is a reasonable way to evaluate the performance, 

including system efficiency and environmental impact at the same time.  Table 1-3 

summarizes the refrigerants evaluated in the LCCP calculation. Till now, the 

manufacturing emissions of R-466A and R-454B have not been reported. In the results 

part, I discuss R-466A and R-454B manufacturing emissions' effects on the LCCP with 

different assumption values. In this chapter, the tested VRF system was not evaluated 

since the material usage data was confidential. A unitary system was used as a 

substitution. The process to analyze the two systems would be the same. 

 

4.1.1. System Annual Energy Consumption 

The Annual Energy Consumption (AEC) consists of the cooling power consumption 

and heating power consumption of the target system throughout the year. In real-life 

applications, field tests and energy surveys can help determine the HVAC system's 

annual energy consumption. However, the field test is not always available. To estimate 

power consumption, I need to know the cooling and heating loads and the system 

performance at a given ambient temperature. In this study, to compare the LCCP in 

different countries for different refrigerants, I used the simulation method to estimate 

the AEC.  

 

System Performance 

I simulated the HP systems of a 10.55 kW and 115 kg-weight system (Alabdulkarem 

et al., 2014, 2015) using an in-house component-based steady-state vapor compression 
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cycle modeling tool, VapCyc (Winkler et al., 2008). The models were validated by 

experiments using R-410A and R-32.  

 
Figure 4-2 Cooling Experiments Validation Results (Alabdulkarem et al., 2014) 

 

The validation results of cooling experiments are shown in Figure 4-2. All the results 

agree with the experimental test data within 5% deviations.  I used this model to predict 

the system performance in different ambient environments. In the model, an 

assumption of 2.1 K superheat at suction was assumed for these tests. An assumption 

of 2.8 K subcooling was used to predict the charge level. A constant isentropic and 

volumetric efficiency compressor model was used. The volumetric efficiency, 

isentropic efficiency, and mechanical efficiency were assumed to be 0.8, 0.75, and 0.95, 
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respectively. The assumptions were based on my previous experiments (Alabdulkarem 

et al., 2015).  

Table 4-1 Design Compressor Displacement Volume and Predicted Charge Level 

 

Capacity Refrigerant 
Compressor 

RPM 

Compressor Displacement 

Volume (cm3) 

Charge 

(kg) 

10.5 kW 

R-410A 4,700 34 4 

R-290 7,300 43 1.2 

R-32 4,000 34 3.5 

R-452B 4,700 34 3.8 

R-454B 4,700 34 3.8 

R-466A 4,800 34 4.2 

12.3 kW 

R-410A 4,700 47 4.1 

R-290 7,300 61 1.8 

R-32 4,000 47 3.6 

R-452B 4,700 47 3.9 

R-454B 4,700 47 3.9 

R-466A 4,800 34 4.3 

 

Table 4-1 shows the compressor’s Revolutions Per Minute (RPM) and displacement 

volume for different refrigerants and the predicted charge level. The charge level was 

consistent with the density of each refrigerant. The RPM and displacement volume 

were set to optimize the system performance with the capacity constraints. I also 

designed the system for the 12.3 kW system since for cities in hot climate regions like 

Miami and Phoenix, the 10.5 kW system could not match the load requirement for a 

similar size room in other areas. My study focused on office buildings with relatively 

higher occupants' density and equipment loads than residential buildings. Thus, for cold 

countries in winter like Switzerland and Sweden, the systems could also be designed 

for the cooling season. 
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Figure 4-3 Cooling COP Comparisons for Different Refrigerants 

 

Figure 4-3 shows the simulation results of 10.5 kW capacity systems’ COP for five 

refrigerants with different ambient temperatures in the range of 25 °C to 45 °C. R-290 

has the best performance, while R-410A has the worst performance. R-32, R-466A, 

and R-452B have similar performances. R-454B has the same performance as R-452B 

and is not drawn on the figure. From my modeling results, R-32 has a better 

performance than R-466A, while R-466A has a better performance than R-452B. When 

the ambient temperature increases, the performance of the three refrigerants gets even 

closer. 

 

Some researchers studied different refrigerants' performances with different ambient 

temperatures. Kujak (2019) reported that R-32 had a lower COP than R-452B when the 

ambient temperature was lower than 47 °C and higher COP when the ambient 

temperature was higher than 47 °C. Binbin et al. (2020) studied tens of alternatives for 

R-410A and concluded that the COPs for R-290, R-32, R-466A, and R-452B were 5%, 
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1%, 1%, and 1%, respectively, higher than the R-410A. My results are consistent with 

the literature.   

 

Since my study only considered a cooling-season-based design (high-density occupants 

and equipment), the system performances would be very close (within 1% differences) 

for different refrigerants at the same ambient temperature. The reason was that the 

heating loads were from 3 kW to 6 kW for different cities, which were less than half of 

the design capacity. 

 

Load Prediction  

AHRI standard 210/240 (2017) provides an approach to estimate the air conditioning 

load. This approach is called the temperature bin method. However, this approach is 

applicable to a fixed speed system. If the system had a variable speed compressor, the 

compressor frequency's control logic would also affect the result. With the 

development of data-driven methods, some researchers used machine-learning-based 

models for load forecasting (Madonna and Bazzocchi, 2013). The data-driven approach 

requires a large amount of test power data. When the weather data is available, I could 

use a physics-based method to simulate the target building's load or a room by 

following the ASHRAE standard (ANSI/ASHRAE Standard 34-2019). In this study, I 

chose the physics-based method to estimate the load since this method controls the 

variables, which are the regions and refrigerants. I considered a 10 m × 10 m room 

facing south in the Northern Hemisphere. Two windows were installed facing south 

and north. The ceiling and floor were assumed to be adiabatic. Other parameters can 

be found in Table 4-2. I also made the following assumptions to eliminate other factors' 
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impact on LCCP calculation: the optical depth parameters for the location were 

assumed to be constants through the year; windows had no shading. I used the model 

introduced by Wijeysundera (2015) to estimate the cooling and heating load of the 

target room. 

 

Table 4-2 Parameters for Simulation 

Item Value 

Height 3 [m] 

Window to Wall Ratio 0.6 [-] 

Ground Reflectivity 0.25 [-] 

Solar Absorptivity of Wall 0.8 [-] 

Wall Brick and a layer of insulation board 

U-value of Wall 0.58 [Wm-2K-1] 

Window Double-glazed 

Occupant 75 W for sensible heat, 55 W for latent heat 

Occupant per unit floor area 0.1 [m-2] 

Equipment per unit floor area 13.5 [m-2] 

Light per unit floor area 4.5 [Wm-2] 

Working Hours 9:00-19:00 

 
 

Grid Electricity Emission Factor and Material Embodied Carbon Coefficients 

The emissions due to energy consumption are a dominant factor in the LCCP 

calculation. Different countries and regions have different power plant emission factors 

due to the resource portion difference (Choi et al., 2017). Carbon Footprint (2019) 

summarizes the country-specific electricity grid carbon emission factor in June 2019. 

The data for Asian countries is from G20 Green Report 2018 (Transparency, 2018), for 

European countries is from the Association of Issuing Bodies (European Residual Mix 

| AIB, 2012), and for the U.S. is from the Environment Protect Agency database (U.S. 

EPA, 2020). The second column of Table 4-3 shows the Grid Emission Factors (GEFs) 

used in this study. 
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Table 4-3 GEEF, Material Usage, and ECCs 

 

Weight: 115 [kg] GEEF 

[kg CO2e/kWh] 

ECCs [kg CO2e/kg] 

Material (% usage) 

Aluminum 

(12%) 

Copper 

(19%) 

Plastic 

(23%) 

Steel 

(46%) 

Average around world 0.623 13.1 2.71 3.31 3.02 

EU 

UK 0.277 

6.58 2.71 - 1.80-2.89 Sweden (SE) 0.012 

Switzerland (CH) 0.014 

NA 

US FL 0.467 

5.65 3.00 2.80 1.80 US AZ 0.425 

US GA 0.457 

AS 

JP 0.492 10.60 - - 1.64 

KR 0.517 11.90 - - - 

CN 0.623 14.60 - - 3.50-4.50 

 

The carbon emission during the system's manufacturing phase is another factor that 

affects the LCCP calculation. Some previous studies used the same emissions values 

for the material in every country. For example, Choi et al. (2017) used the IIR’s LCCP 

guideline (Life Cycle Climate Performance Working Group, 2015) to estimate the 

LCCP in Korea. However, IIR’s LCCP guideline only provides the recommended 

values in the U.S. Some researchers, especially those working on Life Cycle 

Assessment of buildings, have developed a database for different material's Embodied 

Carbon Coefficients (ECC) in different countries (De Wolf et al., 2016). For this study, 

I used the Inventory of Carbon and Energy database developed by Hammond et al. 

(2011). For plastic and steel, I used the general values for these two materials. Some 

ECCs were not found in the literature for some countries. The average value around 

the work was used as a substitute in this study. As shown in Table 4-3, the ECC for 

aluminum in the U.S. is around one-third of China's value. Thus, ECCs could be a 

crucial factor in the LCCP calculation for different countries. 
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4.1.2. Weather Station Data and On-site Weather Data 

Most building simulation studies utilize data collected from weather stations. The most 

commonly used database includes the EnergyPlus built-in weather data, NOAA 

weather data, and TMY3 weather data. The first two datasets are the Actual Multi-Year 

(AMY) dataset, while the last one is a Typical Meteorological Year (TMY) dataset. 

Some researchers studied the difference between the AMY dataset and the TMY 

dataset (Kamel and Sheikh, 2020). They concluded that the dry-bulb ambient 

temperature had a significant impact on the simulation results. Most of the weather 

station data were collected around the airports.  Some studies pointed out the 

temperature gaps between a city and an airport. Such a temperature gap in an urban 

area or metropolitan area due to human activities is called urban heat islands (UHI) 

effect (Kotharkar et al., 2018). This effect's leading cause is from modifying land 

surfaces (Solecki et al., 2005) and waste heat generated (Li and Zhao, 2012). 

Santamouris et al. (2017) studied the UHI effect from 220 projects and found that 31% 

of the analyzed projects resulted in a peak temperature drop below 1 °C, 62% below 

2 °C, 82 % below 3 °C, and 90 % below 4 °C. Munck et al. (2013) found that the 

increase in temperature was 0.5 °C in the situation with current heat releases, 1 °C with 

recent releases converted to only sensible heat, and 2 °C for the future doubling of air 

conditioning waste heat released to air in Paris. This temperature gap could bring some 

differences in LCCP calculation. Thus, I would compare the LCCP results using both 

weather station data and weather data corrected by Santamouris's statistics (2017). 



 

 

140 

 

 
(a) January 15th Ambient Temperature 

 
(b) July 1st Ambient Temperature 

 

Figure 4-4 Comparison of Ambient Temperatures in 2019 

 

 
Figure 4-5 Histogram of the Year 2019 Ambient Air Temperature  

in College Park, MD, U.S. 

 

I also measured the local ambient temperature. Thermocouples were installed next to 

the outdoor unit in the campus building at UMD, College Park, U.S. introduced in 

chapter 2.1. The thermocouples were exposed in the air facing north and had no 

shadings. The ambient temperature tested was compared with the temperature data 

from Airport, College Park, U.S. The distance between the two places is 1.8 km. Figure 

4-4 shows the comparisons between the two data. Figure 4-4 (a) shows the daily 

temperature measured on January 15th, 2019. Figure 4-4 (b) shows the daily 
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temperature tested on July 1st, 2019. The blue line is the temperature tested in the 

campus reading through LabView, marked as UMCP. The red line is the temperature 

tested in the airport from the NOAA database. I could find that in winter, the UMCP 

campus temperature was 10-20 °C higher than the airport's temperature. Since the 

campus building sensors had no shading, solar radiation would have a significant effect 

on them. As a comparison, the weather stations' temperature sensors were usually 

stored in a shaded structure, which had less impact on the radiation. In the field test, 

the built-in sensors of the outdoor units are usually exposed to the air directly. Thus, 

the UMCP campus case should be closer to the field test case. This temperature gap 

could also be caused by human activity and other HP outdoor unit outlet waste heat. 

However, during the summer, the UMCP campus temperature had a higher peak but 

lower valley than the airport's temperature. Figure 4-5 shows a histogram of the two 

temperatures in the year 2019. 118-hour data points in the campus testing dataset and 

43-hour data points in the airport dataset were not validated due to the power outage or 

broken database. I excluded these data points when I drew Figure 4-5. Thus, 8,599 data 

points exist in this figure. I used these two datasets separately to calculate the LCCP 

and discussed the differences. The finding is that the gap between the on-site data and 

the weather station data is much larger than what previous researchers assumed. 

 

4.1.3. Different Countries and Regions 

Figure 4-6 shows the LCCP results in different areas for R-410A as an example. 

"CollegePark1" and "CollegePark2" show the calculation results using UMCP campus 

weather data and College Park airport weather data, respectively. From Figure 4-6, I 
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can find that the LCCP results for Basel and Kallax are very small. The reason is that 

the GEFs of Sweden and Switzerland are very small. Only for the two countries, the 

annual leakage is the primary factor of the LCCP. For all other countries, annual energy 

consumption is the main factor affecting the LCCP. Li (2015b) concluded that the 

SEER rating had a far more significant impact on lowering CO2e. Nevertheless, based 

on my study, this conclusion is only valid in the countries with a high GEEF. 

 
Figure 4-6 LCCP Results for R-410A at Various Cities 

 

 

4.1.4. Different Refrigerants 

Figure 4-7 shows the LCCP in four different cities for six different refrigerants (The 

RFM values for R-466A and R-454B were assumed to be 31 and 9 kg CO2e/kg). The 

readers can see that R-290, R-32, R-452B, R-454B, and R-466A are good alternatives 

for R-410A with lower LCCP. R-454B has a bit better performance than R-452B due 

to a smaller GWP value. For Kallax, the annual leakage is the major contributor to 
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emissions since its GEEF is low. Thus, the LCCP could be decreased by 60% for this 

city if R-290 substituted R-410A. As for the previous studies, Choi et al. (2017) 

compared the LCCP of R-290, R-410A, and R-32 for five different cities in Korea. 

They found that the LCCP of R-410A was 9% higher than that of R-32 and 21% higher 

than that of R-290 in Seoul, Korea. Lee et al. (2016) calculated the LCCPs for R-410A, 

R-32, R-290, and R-452B, and the results were 126, 119, 111, and 120 MT of CO2e, 

respectively. The LCCP order of different refrigerants was consistent with the current 

study. 

 

Figure 4-7 Different Refrigerant LCCP Results for Four Selected Cities 

 

As for R-466A and R-454B, the emission from the refrigerant manufacturing process 

had not been reported until now. Thus, I made three assumptions for the values and 

studied whether different emissions in the refrigerant manufacture phase would bring 

some differences in the LCCP calculation. According to the IIR guideline (Life Cycle 

Climate Performance Working Group, 2015), the emissions from the refrigerant 

manufacturing process for HFC refrigerants range from 5 to 20 kg of CO2e per kg. I 

assumed the value to be 5, 10, and 20 kg of CO2e per kg for assumptions 1, 2, and 3, 

respectively. The LCCP calculation results are shown in Table 4-4. The three columns 

for each assumption are the emissions during the refrigerant manufacturing process, 
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the total LCCP result, and the percentage of the emissions from the refrigerant 

manufacturing process in the total LCCP. I can find that even for low emission cities 

like Basel and Kallax, the emissions from the refrigerant manufacturing process are 

only 3% of the total LCCP. Thus, I concluded that the refrigerant manufacturing phase's 

effect is insignificant in the LCCP calculation. Furthermore, when I compare the LCCP 

calculation results for R-466A (assumption 1) with other refrigerants' results in Figure 

4-7, I can find that the LCCP of R-466A is 1.6% higher than that of R-452B but 8% 

lower than that of R-410A for College Park, U.S. as an example. Thus, R-466A is also 

a good substitute for R-410A from the LCCP perspective. R-454B can be analyzed 

using the same approach. 

Table 4-4 R-466A Refrigerant Manufacturing Process Emission Effect 

 
(kg CO2e) Assumption 1 Assumption 2 Assumption 3 

City RFM LCCP Percentage RFM LCCP Percentage RFM LCCP Percentage 

Beijing, 

CN 

31 94164 0.03% 62 94195 0.07% 124 94257 0.13% 

Shanghai, 

CN 

31 69482 0.04% 62 69513 0.09% 124 69575 0.18% 

Tokyo, JP 31 61524 0.05% 62 61555 0.10% 124 61617 0.20% 

Kallax, 

SE 

31 4246 0.73% 62 4277 1.45% 124 4339 2.85% 

Basel, CH 31 4314 0.72% 62 4345 1.42% 124 4407 2.81% 

London, 

UK 

31 61524 0.05% 62 61555 0.10% 124 61617 0.20% 

Atlanta, 

US 

31 61518 0.05% 62 61549 0.10% 124 61610 0.20% 

College 

Park, US 

31 70087 0.04% 62 70118 0.09% 124 70180 0.18% 

Miami, 

US 

34 98865 0.03% 69 98899 0.07% 138 98968 0.14% 

Phoenix, 

US 

34 91276 0.04% 69 91311 0.08% 138 91379 0.15% 

 
 

4.1.5. Weather Data Source and LCCP 

I compared the LCCP results using weather data from the UMCP campus field tests 

and the local airport weather station. Figure 4-8 shows the results. From Figure 4-8, the 

UMCP campus ambient temperature was always higher than that from the College Park 
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airport due to the UHI effect. This brings a higher emission in the summer but a lower 

emission in the winter. Figure 4-8 shows that the decrease in heating is smaller than the 

increase in cooling. This brings a total increase in the final LCCP result. Compared 

with the airport data, the LCCP results using the campus data are up 8.1%, 2.4%, 2.8%, 

and 0.6% for R-454B, R-32, R-410A, and R-290, respectively. This result means that 

using local airport weather data can result in an up to 8% decrease for LCCP calculation. 

If onsite ambient data is not available, a correction on the ambient temperature is 

recommended. 

 
Figure 4-8 Comparison of LCCPs based on Weather Data from UMCP Campus 

and College Park Airport 

 

 

4.1.6. Summary 

A comprehensive LCCP assessment was conducted for a 10.5 kW capacity unitary heat 

pump working in cooling mode with five refrigerants using various influencing 

parameters in 11 cities. The conclusions from the study are as follows: 

1) The system efficiency has a 10 to 100 times greater impact on HVAC system’s 

emissions than refrigerant leakage only in higher GEEF countries. For lower 
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GEEF countries like Sweden and Switzerland, annual leakage is the major 

factor. 

2) The refrigerant manufacturing process, which takes up to 3% in LCCP 

emissions, is a minor factor compared with emissions from annual energy 

consumption and annual leakage. While no data was reported on the emissions 

from the R-466A manufacturing phase, the LCCP can still be estimated by 

assuming equivalent values to typical HFC value. 

3) R-290, R-32, R-452B, R-454B, and R-466A are all excellent alternatives for R-

410A. The LCCPs of R-32, R-452B, R-454B, and R-466A are close to each 

other. The LCCP of R-410A is the highest, while the LCCP of R-290 is the 

lowest.  In the low-GEEF countries, the LCCP can be decreased by 60% by 

substituting R-410A with R-290. 

4) The ambient temperature weather data from the UMCP campus field test and 

College Park airport weather station are different up to 5 °C, possibly due to the 

UHI effect. This effect can cause up to an 8% difference in LCCP calculation. 

Thus, researchers are suggested to carefully consider the ambient temperature 

when conducting LCCP calculations for high-population-density regions. Some 

correction factors could be needed if the weather station database and local 

ambient temperature show measurable differences. 

 

4.2. Enhanced LCCP Evaluation 

The environmental performance of HP systems has been widely studied. Several hot 

topics exist. First, several studies discussed the breakdown of total LCCP (Lee et al., 

2016; Li, 2015b; Yang et al., 2021). Second, some scholars pointed out the current 
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challenge of LCCP calculation (Andersen et al., 2018; Li, 2017). Finally, different 

studies may also use LCCP for different purposes (Fricke et al., 2017; Troch, 2016). In 

Figure 1-11, I summarized several factors for LCCP evaluation, including refrigerant 

effects, energy consumption, and material embodied emissions. This chapter discusses 

how to consider these factors in LCCP calculation using realistic assumptions. In 

addition, green power impact and data limitation will also be discussed. 

 

 

4.2.1. Refrigerants Effects 

The refrigerants used in ACs have evolved over several decades from ozone-depleting 

R-22 GHG to chlorine-free/ozone-safe hydrofluorocarbon (HFC) R-410A GHG and 

now to lower GWP R-32. The U.S. Environmental Protection Agency (EPA) reported 

that current HP systems using HFC-410A still contribute 36.7 million metric tons of 

carbon dioxide equivalent (EPA, 2015). Selecting an appropriate refrigerant for the HP 

system is a trade-off involving heat transfer characteristics, compressor efficiency, 

flammability, and cost (Gilmour and McNally, 2010). LCCP provides a tool for 

selecting alternative working fluids that reduce GHG emissions from HP systems.  

 

Since limited nations use R-22 nowadays, this review used R-410A as the baseline. I 

discussed several replacements for R-410A  based on ASHARE Standard 34 (2019) for 

refrigerant safety, namely A1, A2L, A3, and B groups. Table 4-5 shows some common 

refrigerants and their properties. The refrigerant leakage, emissions associated with the 

refrigerant manufacture phase, and emissions due to disposal of the refrigerant can 

affect LCCP calculation.  
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Table 4-5 Refrigerants of Interests 
ASHRAE 

safety 

classification 

Refrigerant 
GWP 

(kg CO2e/kg) 

Adp.GWP 

(kg CO2e/kg) 
Concerns Introduced Year Reference 

A1 R-410A 2,088 - High GWP Honeywell, 1991 
Goto et al., 2001;  

Wang et al., 2009 

A1 R-466A 730 - 
High cost 

 
Honeywell, 2018 

Cooling Post, 

2018a, 2018b; 

Devecioğlu and 

Oruç, 2020 

A1 R-1234yf < 1 3.3 Low pressure DuPont, 2011 
Baral et al., 2013; 

Myhre et al., 2014 

A1 R-134a 1,300 1.6 High GWP DuPont, 1930 
Baral et al., 2013; 

Myhre et al., 2014 

A1 R-404A 3,943 - High GWP - 
ASHRAE 

Standards, 2019 

A1 R-22 1,760 - 
High GWP 

Mild ODP 
General Motors, 1928 

ASHRAE 

Standards, 2019 

A2L R-32 675 - 
Mildly 

Flammable 

Japan Ministry of 

Economy, Trade, and 

Industry (METI), 2011 

Mota-Babiloni et 

al., 2017; Pham and 

Rajendran, 2012; 

Xu et al., 2013 

A2L R-452B 676 - 
Mildly 

Flammable 
Ingersoll Rand, 2015 

Kedzierski and 

Kang, 2016; Kujak 

et al., 2014 

A2L R-454B 466 - 
Mildly 

Flammable 
Carrier, 2018 

Devecioğlu and 

Oruç, 2020 

A3 R-290 <1 - 
Highly 

Flammable 
- Wu et al., 2012 

 
 

Refrigerants Leakage 

The main factors that affect direct emissions are the annual leakage rate (ALR) of the 

refrigerant, the GWP of the refrigerant, and the GWP of the Atmospheric Degradation 

Product of the Refrigerant. Direct emissions are the refrigerant emissions during the 

usage phase and End Of Life (EOL) phase. By expanding the terms in eq. (3), direct 

emissions can be calculated by eq. (68): 

 

𝐸𝑑𝑖𝑟𝑒𝑐𝑡 = 𝐶 × (𝐿 × 𝐴𝐿𝑅 + 𝐸𝑂𝐿) × (𝐺𝑊𝑃 + 𝐴𝑑𝑝. 𝐺𝑊𝑃) (68) 

 

where C means refrigerant charge (kg); L means average life of the equipment (yr); 

ALR means annual leakage rate (percentage of refrigerant charge); EOL means End of 

Life refrigerant leakage (percentage of refrigerant charge); GWP means Global 

Warming Potential (kg CO2e/kg); Adp.GWP means GWP of Atmospheric Degradation 

Products of the Refrigerant (kg CO2e/kg). GWP and Adp.GWP were widely reported 
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in the literature (Bobbo et al., 2018). C is usually marked on the HP system’s label. C 

could also be reached directly by using simulation methods. 

 

Global Warming Potential 

Global Warming Potential (GWP) of a refrigerant is an index to compare the relative 

radiative forcing of different gases relative to the reference gas CO2, which is set equal 

to 1. A significant number of researchers studied the refrigerants’ GWP (Bobbo et al., 

2018; Lin and Kedzierski, 2019). However, Adp.GWP was rarely mentioned. Though 

previous research all pointed out Adp.GWP needed to be considered in LCCP 

calculation (Yang et al., 2021; Andersen et al., 2018; Choi et al., 2017), only Baral et 

al. reported the Adp.GWP values for R1234yf and R134a (Baral et al., 2013). Yang et 

al. (Yang et al., 2021) used 0 for R-410A and R-32 but didn’t mention the reference or 

reason. Thus, more work is needed to perfect Adp.GWP values. 

 

Unit Lifespans, Annual Leakage Rate, and EOL Leakage Rate 

The most accurate values for L, EOL, and ALR in stationary applications can often be 

obtained from the manufactures. Average unit lifetimes could be taken from AR4, AR5 

reports, or from the United Nation, Environmental Program (UNEP) Montreal Protocol 

Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee (RTOC) 

2002 report (Troch, 2016). The U.S. limits the amount of refrigerant released from an 

appliance to 15% for units with a charge of 22.7 kg (Troch, 2016). Troch summarized 

the recommended value for ALR, EOL, and L for different types of HP systems (Troch, 

2016). Table 4-6 shows these values for stationary applications. It is worth noting that 

SAE International Standard J-2727 prescribes a method to estimate the leak rate based 

on a standard configuration and taking into account fittings, seals, and refrigeration 
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permeation of flexible hoses for mobile air conditioning systems (SAE International, 

2012). 

Table 4-6 Recommended ALR, EOL, and L Values (Troch, 2016) 

System Type ALR (%) EOL (%) L (yr) 

Residential Packaged HP Units 2.5 15 15 

Residential Split HP Units 4 15 15 

Packaged Refrigeration System 2 15 15 

Supermarket Direct HP System 18 10 7-10 

Supermarket Indirect HP System 12 10 7-10 

Commercial Refrigeration System 5 15 15 

Commercial Packaged HP Units 5 15 10 

Commercial Split HP Units 5 15 10 

Chillers 5 15 15 

Marine 20 15 15 
 

 

Refrigerants Manufacturing 

Refrigerant leakage contributes to direct emissions, while the refrigerant manufacturing 

phase and refrigerant disposal phase is related to indirect emissions from the energy 

used to recover, transport, and recycle or destroy the refrigerant. The leakage in these 

two phases is counted in the leakage calculation in chapter 3.2. The emissions I 

discussed here are from the energy usage in these two phases. The 𝐸𝑟𝑒𝑓,𝑚𝑎𝑛 can be 

calculated by: 

 

𝐸𝑟𝑒𝑓,𝑚𝑎𝑛 = 𝐶 × (1 + 𝐿 × 𝐴𝐿𝑅) × (1 − 𝑅) × 𝑅𝐹𝑀 (69) 

 

where RFM means refrigerant manufacturing emission (kg CO2e/kg); R means the 

fraction of the refrigerant in the system, which is reclaimed refrigerant. Refrigerant 

manufacturing emissions rates are shown in Table 4-7 for selected refrigerants. They 

will be updated as more efficient methods of manufacturing are developed. So far, the 
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manufacturing emissions for R-466A and R-454B have not been reported. As we 

proved in chapter 4.1.4, appropriate assumptions could be used as substitutions. 

Table 4-7 Refrigerant Manufacturing Emission of Refrigerants of Interests 

Refrigerant RFM (kg CO2e/kg) Reference 

R-410A 10.7 Spatz and Motta, 2004 

R-466A n/a n/a 

R-32 7.2 Spatz and Motta, 2004 

R-452B 8.9 Troch, 2016 

R-454B n/a n/a 

R-290 0.05 Hill and Papasavva, 2005 

R-1234yf 13.7 Hill and Papasavva, 2005 

R-134a 5 Banks and Sharratt, 1996 

R-404A 16.7 Papasavva et al., 2010 

R-22 390 Chen, 2008 
 

Refrigerant Disposal 

Similar to chapter 3.3, 𝐸𝑟𝑒𝑓,𝐸𝑂𝐿 can be calculated by eq. (70): 

 

𝐸𝑟𝑒𝑓,𝐸𝑂𝐿 = 𝐶 × (1 − 𝐸𝑂𝐿) × 𝑅𝐹𝐷 (70) 

 

where RFD means refrigerant disposal emissions (kg CO2e/kg). This process also 

includes the recovery of the refrigerant. Though RFM values were widely reported, 

nearly no study reported RFD values. This may explain why almost all the literature 

mentioned emissions from the refrigerant disposal phase but not counted in their 

calculation.  

 

Summary 

The refrigerant environmental impact has been widely studied. The current challenge 

is data limitation. First, the Adp.GWP values were rarely mentioned. Second, for the 

emissions caused by the refrigerant manufacture, the RFM values for novel refrigerants 

like R-466A were seldom reported. Third, many researchers noted the emissions during 
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the refrigerant disposal or recycling process. However, only GREEN-MAC-LCCP 

adds the refrigerant disposal emissions in the LCCP calculation (Rhoads, 2020). 

 

4.2.2.  Energy Consumption 

Eq. (71) shows a commonly used approach to estimate emissions from energy 

consumption: 

 

𝐸𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐿 × 𝐴𝐸𝐶 × 𝐸𝑀 (71) 

 

where AEC means Annual Energy Consumption. EM means CO2 produced/kWh (kg 

CO2e/kWh), which is the grid electricity emission factor (GEEF) if electricity is the 

only energy source. The central part of AEC consists of the cooling power consumption 

and heating power consumption of the target system throughout the year. Field tests 

and energy surveys could help determine the HP system's annual energy consumption 

in real-life applications. However, the field test would not always be available. One 

need to know the room's load and the system performance at a given ambient 

temperature to estimate power consumption. As for indirect emissions, AEC would 

show large differences in different climate regions for the same system (Choi et al., 

2017). This was reported to be the most significant part of the LCCP calculation (Li, 

2015b). AEC was usually estimated from the simulation result using EnergyPlus or 

other software (Hong et al., 2016b; Li, 2015b). AHRI 210/240 2017 also provided a 

method to estimate the AEC of UAC (Alabdulkarem et al., 2014). Furthermore, the 

energy consumption and emissions depend on the time-of-day incremental carbon 

intensity of electricity as delivered to the equipment after taking into account the effects 
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of ambient temperature and grid capacity on electricity generation, transmission and 

distribution (Andersen et al., 2018).  

 

 

Load Prediction  

As we mentioned in chapter 4.1.1, AHRI Standard 210/240 (2017) provides the 

“temperature bin method” to estimate the load, power consumption, and energy 

efficiency. However, this approach is only applicable to a fixed-speed system. If the 

system had a variable speed compressor, the compressor frequency's control logic 

would affect the result. ASHRAE Handbook (2001), chapter 28, provides a detailed 

process to calculate the load using a physics-based method. With the development of 

data-driven approaches, some researchers also use machine-learning-based methods 

for load forecasting. 

 

Temperature Bin Method 

To calculate the thermal load using the temperature bin method, Troch et al. (2016) and 

Lee et al. (2016) gave a clear description in their papers. Engaging readers can also use 

AHRI 210/240 (Standards, 2017) as references. The temperature bin definition is 

different in different regions. China (GB 21455-2019), Japan (JIS C 9612:2013), and 

EU (NO 206/2012) use an interval of 1 °C for each temperature bin. However, U.S. 

(AHRI Standard 210/240-2017) uses an interval of around 2.7 °C (5 °F). Figure 4-9 

shows a comparison of the bin temperature used in different countries. The weather 

data was from the NOAA Integrated Surface Database (ISD) (Smith et al., 2011). Many 

countries in Europe and elsewhere have relatively lower temperatures in the cooling 

season. Thus, the lowest bin temperature for Europe (17 °C) is 5 °C lower than that for 
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China and Japan (24 °C). Similarly, very hot climates require consideration of even 

higher bin temperatures and consideration of global warming from rapidly increasing 

greenhouse gas concentrations in the atmosphere. When conducting the LCCP 

calculation, using different temperature bins will bring different results. 

  
(a) US     (b) China, Japan, and EU 

 

Figure 4-9 Bin Hours Distributions 

 

Different countries use different standards, which define different temperature bins. 

The energy efficiency metrics are also different. Seasonal Energy Efficiency Ratio 

(SEER) and Cooling Seasonal Performance Factor (CSPF) are used for cooling, while 

the Heating Seasonal Performance Factor (HSPF) and Seasonal COP (SCOP) are used 

for heating. Annual Performance Factor (APF) is used for the whole year. These 

metrics are summarized in Table 1-1. 

 

Simulation-based Method 

As the weather data is available, I can use a physics-based method to simulate the target 

building's load of a room that follows the ASHRAE Standard 34 (2019). This method 

is able to control the variables, like the regions and refrigerants. As the application, 

Wijeysundera (2015) developed models in MATLAB to estimate the cooling and 
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heating load of the target room. The new challenge is to accurately adjust ambient 

weather data collected at locations unaffected by human activity to account for urban 

heat islands and clustering and stacking of the outside heat exchangers that can 

drastically impact both heating and cooling efficiency. 

 

Data-driven Method 

As NN-based techniques develop, a data-driven method is widely used to predict the 

building load. Zhao and Magoules (2012) reviewed the papers using Neural Networks 

and Support Vector Machines in building energy prediction. Kadir and Nora (2018) 

studied 78 different prediction models for different types of buildings and summarized 

eight other metrics to evaluate the models' performance. The benefit of the data-driven 

method is that the process is straightforward and requires fewer labor efforts. However, 

the data-driven approach requires a large amount of data to guarantee the quality of the 

model results. Plus, the model built for one building design is usually unable to predict 

the performance for other, significantly different building designs.  

 

Grid Effect 

In the previous studies (Choi et al., 2017; Lee et al., 2016; Yang et al., 2021), the AEC 

was only calculated from HP systems, and EM was considered as a constant. With this 

assumption, the emissions due to electricity generation are a dominant factor in the 

LCCP calculation. Different regions have various power plant emission factors due to 

the resource portion difference (Choi et al., 2017). Carbon Footprint summarizes the 

country-specific GEEF in June 2019 (Carbon Footprint, 2019). Table 4-3 shows the 

grid electricity emission factors. The data for Asian countries is from G20 Green Report 
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2018 (Transparency, 2018), for European countries is from the Association of Issuing 

Bodies (AIB, 2019), and for the U.S. is from the Environment Protect Agency database 

(U.S. EPA, 2020).  

 

However, more realistic assumptions related to the grid are required, including local 

seasonal and time-of-day carbon intensity of electricity sources (Khan, 2018), 

electricity transmission and distribution losses (Sadovskaia et al., 2019), energy 

embodied in water used for power plant cooling (Torcellini et al., 2003), and black-

and-brown carbon power plant emissions (Jacobson, 2014). It is vital to use incremental 

carbon intensity of electricity, mindful that dispatching is usually based on cost 

considerations that can ignore the carbon footprint implications. Plus, promoting the 

development and utilization of renewable energy is the current trend globally (Xu et 

al., 2019). LCCP could be different depending on the power mix ratio.  

 

Time-variation Carbon Intensity 

Though previous research treated EM as a constant, this value was reported to have a 

15% deviation throughout a year in Bangladesh (Khan, 2018). The reason is that each 

energy source can have different greenhouse gas emissions and with variation from 

ambient temperature, capacity factor, and availability of thermal power plant cooling. 

If the data from the local power supplier is available, using this data is the first choice. 

Khan et al. (2017) proposed a method to calculate a time-vary carbon intensity. This 

approach was based on each country’s GHG inventory. However, this approach was 

very complicated since hundreds of categories were involved in the GHG inventory 

(Eggleston et al., 2006).  Coskun et al. (2019) used a simpler method, only considering 
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14 major categories like natural gas and coal. This is a more practical method for HP 

LCCP evaluation. Besides the impact of energy source components, ambient conditions 

were reported to affect the power plant carbon emissions as well (Arrieta and Lora, 

2005; Kehlhofer et al., 2009). González-Díaz et al. (2017) summarized correction 

curves for power plant carbon emissions prediction under different ambient 

temperatures. 

 

Electricity Transmission, Distribution, and Transformer Losses 

Transmission, distribution, and transformer grid losses typically account for about 4–

15% of grid generation (Saminathan et al., 2016), with higher losses at high ambient 

temperatures when the equipment is operating at maximum capacity (minimum 

efficiency) and more power is required to cool transformers. Thus, these losses are 

unignorable in LCCP calculations. Technical power losses can be divided into two 

main categories: power line losses (Amemiya et al., 2011) and transformer losses 

(Lakervi and Holmes, 1995). Poveda (1999) presented a method to break down, by 

subsystem and cause, power distribution losses in electrical systems.  Nadira et al. 

(2003) proposed an approach to compute distribution losses without the complete set 

of data. Sadovskaia et al. (2019) created a holistic and analytic function for describing 

the transmission and distribution grid power loss for all countries globally based on 

economic, geographical, political, and technical available data.  

 

Energy Embodied in Cooling Water 

Water abstractions from the natural environment often achieve the cooling of 

thermoelectric plants. In industrialized countries, the electricity sector abstractions can 



 

 

158 

 

be 40% from freshwater sources (Pan et al., 2012). Thus, the carbon emission from 

water consumption is unignorable. Byers et al. (2014) built a model and predicted the 

‘carbon dioxide intensity’ (MTCO2/TWh) for water consumption of the six pathways 

averaged over the grid's full capacity in the UK from 2010 to 2050. Lohrmann et al. 

(2019) used satellite imagery to calculate the cooling water consumption around the 

world. Furthermore, consider that in the future, there may not be enough water for 

power plant cooling during high ambient temperatures when people and agricultural 

and urban landscapes also need more water.  

 

Renewable Energy as Power Sources 

Promoting the development and utilization of renewable energy has become a common 

consensus (Xu et al., 2019). This effect outperforms the power mix ratio and brings 

lower EM. Thus, the LCCP would be lower as the source of electricity became 

“greener”. I can achieve several power mix scenarios with current and future power 

mix ratios according to EIA's projections (U.S. EIA, 2021). In Table 4-8, the ratio of 

renewable energy in the residential sector in the U.S. is expected to increase from 20% 

to 41% in the next thirty years.  

Table 4-8 Percentage of Material Use 

Author Systems Steel Aluminum Copper Plastic 

Yang et al., 

2021,  

Troch, 2016 

Residential Heat Pump 46% 12% 19% 23% 

Fricke et al., 

2017 

Supermarket 

Refrigeration System 
10% 55% 30% 5% 

 

The last column of Table 4-8 shows the average EM for each source from the literature 

(Amponsah et al., 2014; Lenzen, 2008; U.S. EPA, 2020). I can simulate the equivalent 
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EM value for each year by calculating the weighted mean using the ratios as weights. 

The last row in Table 4-8 shows the result. Due to the renewable energy ratio increase, 

carbon emissions from energy consumption are expected to decrease by 26% in 2050. 

 

Summary 

Almost all the past studies assumed the energy source was electricity. However, natural 

gas and petroleum fossil fuels are also used in HP systems. Thus, more research on 

non-electric HP system environment performance needs further study. Different 

countries could show more than 100 times the difference for EM (Ryan et al., 2016). 

However, limited studies show a specific dataset for these values. Unique calculation 

methods are also required for district heating and cooling with and without electricity 

co-generation and waste heat utilization. For example, in colder climates where heat is 

rejected from supermarket food, refrigeration is used to heat occupied spaces or 

anywhere both sides of a heat pump are put to a useful purpose or where other co-

benefits are captured. Examples include vending machines with both hot and cold 

drinks, heat pump condensing clothes dryers with water recovery, and air conditioners 

that provide the desired level of comfort at high ambient temperature by intentional 

control of humidity and air movement. 

 

It is well known that energy consumption is the main contributor to the carbon footprint 

of refrigeration and air conditioning equipment, but this can be evaluated very 

differently depending on how "green" the electricity is defined. This effect outperforms 

everything else. I can simulate the power emission factors according to several power 
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mix scenarios like the current power mix ratio and future power mix ratio according to 

EIA's projections. This will be valuable information to HP society. For electric HP 

systems, I recommend an updated approach to calculate emissions caused by energy 

consumption given by eq. (72): 

 

𝐸𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐿 × ∑(𝐸𝐶𝑖 × 𝐸𝑀𝑖)

8760

𝑖=1

= 𝐿 × ∑[(𝐶𝑖 + 𝐶𝑡𝑟𝑎𝑛𝑠 + 𝐶𝑤𝑎𝑡𝑒𝑟) × 𝐸𝑀0 × 𝑝(𝑡𝑖)]

8760

𝑖=1

 (72) 

 

where 𝑖 stands for the hour in one year; 𝐸𝐶𝑖 is the energy consumption in hour 𝑖; 𝐸𝑀𝑖 

is the emission factor in hour 𝑖; 𝐶𝑖 is the electrical energy consumption in hour 𝑖; 𝐶𝑡𝑟𝑎𝑛𝑠 

is the energy loss during transmission and transform process; 𝐶𝑤𝑎𝑡𝑒𝑟  is the energy 

embodied in the power plant cooling water; 𝐸𝑀0 is the local nominal grid emission 

factor; 𝑝 is the penalty factor for time-vary carbon intensity, which is a function of the 

ambient temperature. 

 

4.2.3. Material Embodied Emissions 

The carbon emissions due to the material used in the HP system are another factor that 

may affect the LCCP calculation. Different systems have different percentages of 

material usage. In the previous LCCP studies, most researchers used the detailed 

calculation method. Most LCCP studies calculate the carbon emissions from the system 

manufacture phase and the EOL phase. Another approach is searching the Embodied 

Carbon Coefficients (ECC) database directly. 

 

Percentage of Material Usage 

Four materials, including steel, aluminum, copper, and plastic, were discussed in 

previous research. The percentage of composition data was limited due to confidential 
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reasons. Studies rarely elaborated the data they used. Plus, some researchers applied 

the same composition data for different types of systems (Fricke et al., 2017). Table 

4-3 shows the information in the open literature. According to some studies (Lee et al., 

2016), the material embodied emissions only take 1% of the total LCCP. Thus, it’s 

reasonable to estimate values if the composition data is not available. However, for a 

more accurate calculation, the information still needs to be achieved from the 

manufacture. The emissions embodied in materials may be more important as 

composite plastics replace metal or as battery storage becomes part of equipment 

design (to level peak power).  

 

Detailed Calculation 

The carbon emissions due to the material used can be calculated by adding the 

emissions from the system manufacture phase and EOL phase. These emissions can be 

calculated by eq.73 and eq.74: 

 

𝐸𝑠𝑦𝑠,𝑚𝑎𝑛 =∑(𝑚 ×𝑀𝑀) (73) 

𝐸𝑠𝑦𝑠,𝐸𝑂𝐿 =∑(𝑚𝑟 × 𝑅𝑀) 
(74) 

 

where m means the mass of unit (kg); MM means CO2 Produced/Material (kg CO2e/kg), 

which is also known as ECC; mr means the mass of recycling material (kg); RM means 

CO2 produced/ recycled material (kg CO2e/kg); 

 

In many cases, recycled materials are used for economic and environmental reasons in 

the manufacture of HP units rather than pure virgin materials (Troch, 2016). Most 

recycled materials require considerably less energy to manufacture (Troch, 2016). 
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Many materials today are manufactured with a mixture of virgin and recycled materials. 

The average values of virgin materials and recycled materials were usually used in 

LCCP calculation. Material disposal emissions include all emissions up to the 

production of recycled material. For metals and plastics, this consists of the shredding 

of the material (Zhang et al., 2011). These emissions may be included in the 

manufacturing emissions if the material is produced from recycled materials. A public 

records search was conducted to determine the amounts of emissions were generated 

by shredding metals and plastics.  

 

However, some drawbacks exist. First, this method ignored the emissions from the 

material transportation and installation phase. Second, some previous studies used the 

same emissions values for the material in every country. For example, Choi et al. (2017) 

used the IIR guideline to estimate Korea's LCCP. However, IIR only provides the 

recommended values in the U.S. According to some studies, MM values could show 

50% differences in different regions (Ibn-Mohammed et al., 2013). 

 

Searching Database 

Some researchers working on LCA of buildings have developed a database for different 

material's Embodied Carbon Coefficients (ECC) in different countries (Vilches et al., 

2017). Table 4-3 shows the virgin ECCs for the four material Inventory of Carbon & 

Energy database developed by Hammond et al. (2011). If the recycled material is used, 

the recycled material database needs to be used. The data is missing for some material 

in some regions. The average value around the world can be used for substitution. As I 

can find in Table 4-3, the ECC for Aluminum in the U.S. is around one-third of China's 
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value. Thus, ECCs could be a crucial factor in the LCCP calculation for different 

countries. 

 

Summary 

The biggest challenge to estimate the material embodied emissions is the data limitation. 

Since this part takes 0.1%-1% of the total LCCP (Troch, 2016), some estimation could 

be used if data is not available. Researchers working on buildings or other products 

have developed an ECC database. This is a simple approach to calculate the system 

material embodied emissions. 

 

4.2.4. Green Power Impact 

According to the previous studies, emissions due to energy consumption are a major 

part of an HP system’s total emissions. Many researchers concluded that the emissions 

caused by cooling and heating represent around 70%-80% in the total LCCP calculation 

(Lee et al., 2016; Li, 2015b; Yang et al., 2021). Direct emissions caused by refrigerant 

leakage represent around 1%-10%, depending on what kind of refrigerants are used 

(Lee et al., 2016; Yang et al., 2021). Material-embodied emissions only represent 

around 1%-5% (Choi et al., 2017; Lee et al., 2016; Zhang and Muehlbauer, 2012). 

However, these conclusions cannot be generalized for all regions. Nearly all of the 

LCCP studies were conducted in the U.S., Korea, and China. These regions have a 

relatively high GEEF in Table 4-3. This can lead to the result that energy consumption 

is more important than the other two emission parts. For some European countries like 

Sweden, the GEEF is only 1/40 of the GEEF of the U.S. This will make the emissions 

caused by energy consumption in Sweden decreased by 40 times, with the result that 
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direct emissions become the crucial part of total emissions. Promoting the development 

and utilization of renewable energy has become widely accepted (Xu et al., 2019). 

Clean renewable energy such as hydroelectric, solar, and wind outperforms the power 

mix ratio and brings lower EM for the regions with high GEEF values. The LCCP 

would be lower as the source of electricity becomes “greener.” I can achieve several 

power mix scenarios with current and future power mix ratios according to EIA's 

projections (U.S. EIA, 2021).  

 

In Table 4-9, the ratio of renewable energy in the residential sector in the U.S. is 

expected to increase from 20% to 41% in the next thirty years. 

 

Table 4-9 U.S. Residential Energy Structure and Carbon Intensity Projections  
Projections of Residential Grid Sources in U.S. [-] 

 (U.S. EIA, 2021)  
EM 

 [kg 

CO2e/kWh] Year 2020 2025 2030 2035 2040 2045 2050 

Renewable 

Energy 

(Amponsah et 

al., 2014) 

Hydro 8% 7% 7% 7% 7% 6% 6% 0.004 

Geothermal 0% 0% 1% 1% 1% 1% 1% 0.045 

Waste 

treatment 
0% 1% 1% 1% 1% 1% 1% 0.200 

Dedicated 

biomass 
1% 1% 1% 1% 1% 1% 0% 0.025 

Solar thermal 0% 0% 0% 0% 0% 0% 0% 0.075 

Photovoltaic 2% 6% 10% 12% 14% 15% 17% 0.046 

Wind-onshore 9% 16% 16% 15% 15% 15% 14% 0.020 

Wind-

offshore 
0% 0% 1% 2% 2% 2% 2% 0.010 

Fossil Fuel 

(U.S. EPA, 

2020) 

Coal 20% 17% 17% 15% 14% 13% 12% 0.991 

Petroleum 0% 0% 0% 0% 0% 0% 0% 0.717 

Natural gas 37% 33% 32% 31% 33% 34% 34% 0.405 

Nuclear Power (Lenzen, 2008) 21% 19% 16% 15% 14% 13% 12% 0.065 

Equivalent EM [kg CO2e/kWh] 

Year 2020 2025 2030 2035 2040 2045 2050 
 

Values 0.375 0.327 0.317 0.300 0.291 0.283 0.277 
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The last column of Table 4-9 shows the average EM for each source from the literature 

(Amponsah et al., 2014; Lenzen, 2008; U.S. EPA, 2020). I can simulate the equivalent 

EM value for each year by calculating the weighted mean using the ratios as weights. 

The last row in Table 4-9 shows the result. Due to the renewable energy ratio increase, 

carbon emissions from residential energy consumption in the U.S. are expected to 

decrease by 26% in 2050. 

Table 4-10 Grid Electricity Emission Factor Sensitivity Analysis 

Location Phoenix, AZ 

Year 2020 2025 2030 2035 2040 2045 2050 

GEEF (kg CO2e/kWh) 0.375 0.327 0.317 0.300 0.291 0.283 0.277 

Total Lifetime 

Emission (kg CO2e) 
60,265 53,003 51,490 48,918 47,557 46,346 45,439 

Total Direct Emission 

(kg CO2e) 
3,047 3,047 3,047 3,047 3,047 3,047 3,047 

Annual Refrigerant 

Leakage (kg CO2e) 
2,437 2,437 2,437 2,437 2,437 2,437 2,437 

EOL Refrigerant 

Leakage (kg CO2e) 
609 609 609 609 609 609 609 

Total Indirect 

Emissions (kg CO2e) 
57,219 49,957 48,444 45,872 44,510 43,300 42,392 

Energy Consumption 

(kg CO2e) 
56,735 49,473 47,960 45,388 44,026 42,816 41,908 

Equipment 

Manufacturing (kg 

CO2e) 

409 409 409 409 409 409 409 

Equipment EOL (kg 

CO2e)  
6 6 6 6 6 6 6 

Refrigerant 

Manufacturing (kg 

CO2e) 

69 69 69 69 69 69 69 

 

A sensitivity analysis for these different GEEF values is shown in Table 4-10. The 10-

kW unitary system performance and Phoenix weather data reported in chapter 4.1 were 

used as the baseline. As shown, indirect energy emissions become less important as 

fossil fuels are phased out from power generation, and electricity is supplied entirely 

from low-carbon sources like hydro, nuclear, solar, and wind sources from 2020 to 

2050. The corresponding LCCP value will decrease by 25% for this unitary system in 
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Phoenix till 2050. However, keep in mind that the incremental carbon intensity of 

electricity will be from the fossil fuel and biomass plants whenever they are operating 

in otherwise clean energy electric utilities.  

 

4.2.5. Data Limitation 

Data limitation is the main challenge in LCCP calculations. The data include real, local 

ambient temperature data, local power plant carbon intensity data, and percentage of 

material usage data. Though each of these factors alone wouldn’t affect the LCCP result 

too much, the result could be different if multiple conditions were estimated. One 

possible solution is using the prediction method (Amasyali and El-Gohary, 2018). A 

correlation could be developed using data from monitored buildings to calibrate the 

prediction model. Then, for the case without available data, such correlation can be 

used for prediction. An example is a data-driven method I introduce in chapter 2.3.1. 

Plus, some systems were rarely mentioned in previous publications, which also had the 

data-limitation challenge. For example, the variable speed system applied different 

control logics to the compressor and fan speed (Cheung and Braun, 2014). Nevertheless, 

no study reported how to evaluate this effect in LCCP calculation uniformly.  

 

4.2.6. Summary 

The invention and evolution of LCCP have been reviewed in this study first. Then, I 

discuss the application of LCCP to select replacements of HFC-134a. In addition, I 

compared the conceptual frameworks and the operational estimation methods. Finally, 
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I summarized the drawbacks of current LCCP research and recommended ways to 

improve the calculations. The conclusions are listed below: 

1) Energy consumption caused emissions are a significant part (70%-80%) of total 

LCCP calculation. However, current studies are not perfect on these 

calculations. Non-electric HP system was rarely studied before. Plus, almost all 

the literature discussed only one region. Limited studies compared multiple 

regions with different standards and grid effects. 

2) The emissions from the refrigerant manufacture phase, which takes up to 1%-

5% in LCCP emissions, are a minor factor compared with emissions from 

annual energy consumption and annual leakage. Thus, though no research 

reported the emissions from the R466A manufacturing phase, the LCCP can 

still be estimated with a general HFC value. 

3) The data limitation is the current major challenge in LCCP calculation. Realistic 

assumptions could lead to an accurate result, but the data is usually unavailable. 

Appropriate estimation values could be used when they are reasonable for given 

purposes. 

4) LCCP could be used for multiple purposes. Thus, the assumptions could be 

made depending on the application conditions. For the purpose of selecting 

refrigerants, the percentage of material use values and ECC values could be 

used approximation, but if the purpose is to use LCCP design or optimizing 

system, the percentage of material use values and ECC values need to be careful. 
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4.3. Summary 

The En-LCCP evaluation method is discussed in this chapter. I improved the current 

En-LCCP calculation by proposing a more detailed energy consumption model (as 

shown in eq.72) and providing substitutions for unachievable values (discussed in 

chapter 4.2.1, 4.2.3, and 4.2.5). The improved approach is closer to reality and can be 

used for HP using green power. Moreover, the improved method considering the data 

limitation problem, so it is able to analyze novel systems with limited open-source data 

(like systems using R-466A and R-454B). 

 

Appropriate estimation values could be used when they are reasonable for given 

purposes. Figure 4-10 shows the improved process for the En-LCCP evaluation. Field 

tests and modeling results for the annual energy consumption can be used in the LCCP 

calculation. Emissions from the material and refrigerant manufacturing process only 

take up to 1-5% in LCCP and are a minor factor as compared to those from annual 

energy consumption and annual leakage. Thus, if the data related to the material 

embodied emissions or refrigerant manufacturing emissions is unavailable, the average 

value around the world could be used as a substitution. If the power source structure is 

known, the green power impact could be considered in the calculation. If the power 

source structure is unknown, the emission values from the local power supplier could 

be used as an approximation. 
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Figure 4-10 Flow Chart of En-LCCP Evaluation 
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5. Conclusions and Future Work 

5.1. Conclusions 

An experimental, emulational, and environmental (EEE) evaluation method is 

developed for HP systems in this dissertation. The whole process could be divided into 

three sub-modules: field test, modeling, and LCCP evaluation. The processes for the 

three sub-modules are provided in the summary parts from chapter 2 to chapter 4. By 

combining Figure 1-12, Figure 2-29, Figure 3-24, and Figure 4-10, the process of the 

next generation HP system evaluation method could be explained as shown in Figure 

5-1. 

 
Figure 5-1 Flow Chart of the EEE Evaluation Method 
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The novel evaluation method can reflect the thermodynamic characteristics of the 

system by calculating QSS performance metrics and save time in extensive data 

calculation by calculating time-average performance. In addition, a database was 

developed for a VRF system over four years and the yearly performance was compared. 

Moreover, different modeling approaches were compared, and deep-learning-based 

algorithms were found to have higher accuracy than conventional modeling approaches 

and could be used to analyze the system's dynamic performance. However, the 

complicated structure of the networks, numerous parameters needing to be optimized, 

and longer training time are the main challenges of these methods. Furthermore, the 

new evaluation method improved the current En-LCCP calculation considering 

ambient conditions variation, local grid source structure, and next-generation low-

GWP refrigerants, which led the LCCP results closer to reality and provided alternative 

methods for determining LCCP input parameters with limited-data cases. It was also 

able to analyze novel systems with limited open-source data (like systems using R-

466A). The detailed conclusions are listed below: 

For the field test and data analysis: 

1. The first step for field test data analysis is the direct metrics calculation, 

including part load ratio, usage ratio, cooling combination ratio, operating unit 

ratio, etc. The next step is to decide whether the details could be ignored or not. 

If the study doesn’t care about the system performance details, the time-average 

performance metrics are recommended to be used. If the study needs some 

details of the system, for example, showing the cycle on the P-h diagram, then 

the QSS performance method is recommended to be used. The final step is to 
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check whether transient data analysis is needed. If the transient performance 

needs to be studied, some modeling tools might be needed for prediction. 

2. QSS performance is compared with time-average performance. The moving 

window size, target function, and target threshold are the most important 

parameters for QSS performance. The ∆t is the most significant parameter for 

time-average performance. The benefits of using the QSS metric include 

reflecting the heist performance of the system and reflecting the relationship 

among different tested parameters. In contrast, the benefits of using time-

average performance are saving time when ∆t is large and reflecting the 

transient phase performance to some extent. 

3. Parameters setting could be made depending on the specific purpose and cost 

constraints. Choosing an appropriate method also needs to consider a lot of 

similar factors. Thus, the rule is not invariable. Changes could be made based 

on the accidental event in the field tests. 

For the data-driven modeling: 

4. Classification model of two controls was developed using PCA. First three 

dimensions can explain 98.7% of the data. Thus, only the first three dimensions 

need to be considered in the classification. The two groups of data for the two 

control modes are at different sides in the new space. 

5. The total uncertainty of power consumption prediction was 0.7%. The 

condensing temperature, which also meant the high-side pressure, had the most 

critical impact on the outdoor power consumption when the frequency and 

outdoor fan speed were fixed. 
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6. The PCA-based NN regression method proposed is more practical and accurate 

for EEV correlation development than the conventional method when a number 

of data is available. Since no certain criteria in NN model parameter 

optimization exist, my work provides the following strategies in utilization NN 

modeling in EEV model development, which has not been discussed in previous 

NN EEV model works. 

7. Compressor models were built by both manufactures’ data and field test data. I 

compared different methods to build the models. First, ‘20-c’ method has the 

best accuracy within the range of the training database, but when the frequency 

was low, this method fails to predict the MFR. In addition, ‘eff’ method reflects 

the physics best. Finally, ML methods have excellent performance if the 

prediction data point is within the training data set range. As for the uncertainty, 

the ‘20-c’ and ‘eff-20c’ methods had lower uncertainty but sometimes failed to 

predict the accurate value. The NN and RF methods had higher accuracy but 

also higher uncertainty. As conclusion, I recommend the ‘eff’ method and SVR 

method for predicting the compressor mass flow rate of ductless VRF systems.  

8. A CNN-based model for dynamic compressor model was developed. The 

current MRE for MFR prediction is 2%.  

9. Overall, for the MFR prediction, physics-based and SVR-based methods are 

recommended with low uncertainty and high accuracy. 

10. As for deep learning methods, CNN can be used to reduce input dimensions, 

while RNN has very high accuracy in predicting time-series data. 

For the Enhanced-LCCP evaluation: 
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11. The system efficiency has a 10 to 100 times greater impact on HVAC system’s 

emissions than the refrigerant leakage only in higher GEEF countries. For lower 

GEEF countries like Sweden and Switzerland, annual leakage is the major 

factor. 

12. R-290, R-32, R-452B, R-454B, and R-466A are all excellent alternatives for R-

410A. The LCCPs of R-32, R-452B, R-454B, and R-466A are close to each 

other. The LCCP of R-410A is the highest, while the LCCP of R-290 is the 

lowest.  In the low-GEEF countries, the LCCP can be decreased by 60% by 

substituting R-410A with R-290. 

13. The ambient temperature weather data from the UMCP campus field test and 

College Park airport weather station are different up to 5 °C, possibly due to the 

UHI effect. This effect can cause up to an 8% difference in LCCP calculation. 

Thus, researchers are suggested to carefully consider the ambient temperature 

when conducting the LCCP calculation for high-population-density regions. 

Some correction factors could be needed if the weather station database and 

local ambient temperature show measurable differences. 

14. Energy consumption caused emissions are a significant part (70%-80%) of total 

LCCP calculation. However, current studies are not perfect on these 

calculations. Non-electric HP system was rarely studied before. Plus, almost all 

the literature discussed only one region. Limited studies compared multiple 

regions with different standards and grid effects. 

15. The emissions from the refrigerant manufacturing phase, which takes up to 1%-

5% in LCCP emissions, are a minor factor compared with emissions from 
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annual energy consumption and annual leakage. Thus, though no research 

reported the emissions from the R-466A and R-454B manufacturing phase, the 

LCCP can still be estimated with a general HFC value. 

16. The data limitation is the current major challenge in LCCP calculation. Realistic 

assumptions could lead to an accurate result, but the data is usually unavailable. 

Appropriate estimation values could be used when they are reasonable for given 

purposes. 

17. LCCP could be used for multiple purposes. Thus, the assumptions could be 

made depending on the application conditions. For the purpose of selecting 

refrigerants, the percentage of material use values and ECC values could be 

used approximation, but if the purpose is to use LCCP design or optimizing 

system, the percentage of material use values and ECC values need to be careful. 

 

5.2. Future Work 

As for possible future works, people can study the uncertainty within the deep learning 

networks and finding a general process for modeling settings. Since the uncertainty 

within the deep learning networks is still unknown, people can link the weights, bias, 

and activation functions with the physics background and try to explain the settings. 

People may apply the Bayesian-Neural-Network algorithm since this algorithm was 

reported for excellent performance on data with high uncertainty. For the 

environmental impact, people can develop a multi-objective optimization model for HP 

system design while considering both the LCCP and cost. 
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5.3. Contributions 

5.3.1. List of Contributions 

Contributions 
Chapter in 

Dissertation 
Publication 

• Review current HP systems field tests, data 

analysis, and modeling methods 
1.3.1-1.3.3 J2, C5 

• Review Life Cycle Climate Performance works 1.3.4 J5 

• Develop a ten-year field test database and dig 

information for large data sets 
2.1.2 J7 

• Compare time-average performance metrics with 

QSS performance metrics 

• Develop a general data analysis method for field 

tests data 

2.1.3-2.1.5 J7 

• Develop an online data monitoring system with 

low capital cost 

• Compare RACs performance with different 

installation and refrigerants 

- J6, C6 

• Compare SNN, Multiple-time-step NN, and RNN 

in temperature data recovery 
- J6 

• Develop a NN-based IDU MFR model 

• Develop an IDU MFR test method with one MFR 

meter installation 

• Compare NN model with polynomial regression 

3.2.1 J1 

• Develop machine-learning-based and deep-

learning-based compressor models 

• Compare NN, RF, SVR, CNN, and polynomial 

regression methods 

3.2.2, 3.2.3 C1, J3 

• Develop an SVR-based energy model for VRF 

system 
3.1.2 C2 

• Compare LCCP of a UAC in different regions for 

different refrigerants 
4.1 J4 

• Improve current LCCP evaluation method with 

more realistic assumptions 
4.2 J5 

• Design and simulate a novel UAC using 

flammable refrigerants 
- C3, C4 
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5.3.2. List of Publications 

Journal Publications 

1. Wan H, Cao T, Hwang Y, et al. Machine-Learning-Based Compressor 

Models: A Case Study for Variable Refrigerant Flow Systems International 

Journal of Refrigeration [J]. International Journal of Refrigeration, 2021, 123: 

23-33 https://doi.org/10.1016/j.ijrefrig.2020.12.003 (J1) 

2. Wan H, Cao T, Hwang Y, et al. A review of recent advancements of variable 

refrigerant flow air-conditioning systems[J]. Applied Thermal Engineering, 

2020, 169: 114893. https://doi.org/10.1016/j.ijrefrig.2019.08.018 (J2) 

3. Wan H, Cao T, Hwang Y, et al. An electronic expansion valve modeling 

framework development using artificial neural network: A case study on VRF 

systems[J]. International Journal of Refrigeration, 2019, 107: 114-127. 

https://doi.org/10.1016/j.applthermaleng.2019.114893 (J3) 

4. Wan H, Cao T, Hwang Y, et al. Comprehensive Investigations on Life Cycle 

Climate Performance of Unitary Air-Conditioners International Journal of 

Refrigeration [J]. https://doi.org/10.1016/j.ijrefrig.2021.04.033 (J4) 

5. Wan H, Cao T, Hwang Y, et al. Life Cycle Climate Performance Analysis in 

Different Regions: A Review; International Journal of Refrigeration [J]. 

https://doi.org/10.1016/j.ijrefrig.2021.06.026 (J5) 

6. Wan H, Cao T, Hwang Y, et al. Field Test and Life Cycle Climate 

Performance Comparisons in Marrakech; International Journal of 

Refrigeration [J]. (99%) (J6) 
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7. Wan H, Cao T, Hwang Y, et al. Variable Refrigerant Flow Systems Field Test 

Database Development; International Journal of Refrigeration [J]. (70%) (J7) 

 

Conference Publications 

1. Wan H, Cao T, Hwang Y, et al. Development of Dynamic Modeling 

Framework Using Convolution Neuron Network for Variable Refrigerant 

Flow Systems; Purdue Conference 2020, May 2021 (C1) 

2. Wan H, Cao T, Hwang Y, et al. “Investigation of VRF System under Cooling 

Mode through Field Testing and Machine Learning-based Modeling.” 13th 

IEA Heat Pump Conference, Jeju, April 2021 (C2) 

3. Wan H, Cao T, Hwang Y, et al. Dynamic performance comparison of three 

refrigerants in a novel unitary air condition system; 14th IIR-Gustav 

Lorentzen Conference, December 2020, 

http://dx.doi.org/10.18462/iir.gl.2020.1079 (C3) 

4. Wan H, Cao T, Hwang Y, et al. "A Novel Unitary Air Condition System 

Design for Flammable Refrigerants and Building Ventilation." ICR 2019. 

Montreal, Canada. August 2019, https://doi.org/10.18462/iir.icr.2019.0565 

(C4) 

5. Wan H, Cao T, Hwang Y, et al. "A Review of Electronic Expansion Valve 

Correlations for Air-conditioning and Heat Pump Systems." Purdue 

Conference 2018. Illinois, U.S. July 2018 

https://docs.lib.purdue.edu/iracc/1984/ (C5) 
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6. Hwang Y, Wan H. "R-32 Super-Efficient Room ACs Replacement Field 

Tests." ASHRAE Conference 2022 (99%) (C6) 
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