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This dissertation addresses the challenge of optimizing the motion trajectory

of a tethered marine hydrokinetic energy harvesting kite in order to maximize its

average electric power output. The dissertation focuses specifically on the “pump-

ing” kite configuration, where the kite is periodically reeled out from a floating base

station at high tension, then reeled in at low tension. This work is motivated by

the significant potential for sustainable electricity generation from marine currents

such as the Gulf Stream. Tethered systems can increase their energy harvesting

potential significantly through cross-current motion. Such motion increases appar-

ent flow speed, which is valuable because the instantaneous maximum power that

can be harvested is proportional to the cube of this apparent speed. This makes it

possible for tethered systems to achieve potentially very attractive power densities

and levelized costs of electricity compared to stationary turbines. However, this also

necessitates the use of trajectory optimization and active control in order to eke out

the maximum energy harvesting capabilities of these systems.



The problem of optimizing the trajectories of these kites is highly non-linear

and thus challenging to solve. In this dissertation we make key simplifications to

both the modeling and the structure of the optimal solution which allows us to learn

valuable insights in the nature of the power maximizing trajectory. We first do this

analysis to maximize the average mechanical power of the kite, then we expand it

to take into account system losses. Finally, we design and fabricate an experimental

setup to both parametrize our model and validate our trajectories.

In summary, the goal of this research is to furnish model-based algorithms for

the online optimal flight control of a tethered marine hydrokinetic system. The intel-

lectual merit of this work stems from the degree to which it will tackle the difficulty

of solving this co-optimization problem taking into account overall system efficiency

and the full range of possible system motion trajectories. From a broader societal

perspective, this work represents a step towards experimentally validating the po-

tential of pumped underwater kite systems to serve as renewable energy harvesters

in promising environments such as the Gulf Stream.
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Chapter 1: Introduction

1.1 Vision and Motivation

This dissertation examines the problem of optimizing the periodic flight trajec-

tory of a tethered marine hydrokinetic (MHK) kite in order to maximize the average

electric power it is able to harvest. Broadly speaking, therefore, this work represents

a contribution to the domain of the optimal control of renewable energy harvesting

systems. Renewable energy sources like solar and wind have made significant gains

in generation, increasing by 190% and 57% respectively from 2015 to 2020 in the

United States [1] shown in Figure 1.1. While this progress is significant, it is still

far from reducing our dependency on fossil fuels, as shown in Figure 1.2.

Figure 1.1: Energy consumption from major renewable sources in quad BTU. Source:
Department of Energy [1]
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Figure 1.2: Total energy consumption by type [quad BTU]. Source: Department of
Energy [1]

One potential source of energy that remains relatively unexploited is that of

the ocean currents. This includes western boundary currents (WBC), which flow

in the western regions of oceans along continental shores. These WBCs have a

typical width of 100 km and height of 1000 m with speeds that can reach 3 m s−1 [3].

One example of these currents is the Gulf Stream that flows along the continental

United States as can be seen in Figure 1.3. For instance, measurements near the

North Carolina shore at a depth of 75 m yielded a mean current speed of 1.07 m s−1

for an entire year of measurements [3]. We can estimate the power density of the

water as:

P =
1

2
ρv3 (1.1)

where, P, ρ and v are the power density in W m−2, the density of water, and the

speed of the fluid respectively. This suggests that the Gulf Stream at that location

has an average power density of 1000 W m−2.
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Figure 1.3: Visualization of the Gulf Stream WBC. Source: windy.com

1.2 Literature Review

Multiple types of marine hydrokinetic systems have been proposed to extract

energy from the above currents, including marine hydrokinetic kites. The evolu-

tion of these kites was initially inspired by tethered airborne wind energy systems

(AWES) [4], largely motivated by seminal research by Loyd in 1980 [5]. Both of these

types of systems rely on flying cross-current to amplify the apparent kite speed rel-

ative to the surrounding fluid. They generate electricity either with an on-board

generator (e.g., Figure 1.4), or by reeling out a tether attached to a generator in a

stationary platform as shown in Figure 1.5. The latter ”pumping” configuration is

the focus of this work.

1.2.1 Modeling of tethered kite systems

The problem of maximizing the energy tethered underwater kites harvest is

challenging because it involves the optimization of a trajectory in a large configura-
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Figure 1.4: Underwater kite prototype with on-board turbine. Source: Minesto
AB [2]

tion space. This motivates the need for simple models, amenable to optimization,

that capture the relevant dynamics of the system. In general there is a trade-off

between model accuracy and model simplicity. A simplified control-oriented model

is more useful to design a controller, while a more accurate model is more useful for

evaluating the controller performance.

Control-oriented models of energy-harvesting kites do not typically include

the tether dynamics, but only focus on modeling the dynamics of the given kite

with different levels of complexity. For instance, in the AWES literature, some

models assume the kite is massless and produce a static relationship that is useful

for approximating the power generated by the system when moving at a constant

speed [5–8]. While this assumption is very useful for the design of simple controllers

for lightweight flexible AWES, neglecting the kite dynamics is not valid for the
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Floating Platform

Motor/Generator

Mooring Lines

Kite
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Figure 1.5: Underwater kite tethered to floating platform

heavier rigid-wing kites. To address that fact, other work treats the kite as a point

mass, which makes it possible to include the translational kite dynamics in their

model. This can be done in 2 dimensions, like the sailboat model used in [9], or

in 3 dimensions [10–14]. Treating the kite as a point mass neglects its rotational

dynamics. That is why higher-order—airplane-like—kite models are also used in

the literature. These kite models are inspired by the typical 6DOF airplane flight

dynamic models [4, 15–20].

Higher-order models include 6DOF kite models and a tether model. One way

the tether is modeled is by treating it as a chain of discrete lumped masses. These

can be connected elastically (with spring-dampers) or inelastically [12, 20–23]. An

alternative, more accurate way of modeling the tether is to use partial differential

equations to describe the dynamics of every infinitesimal element along the tether.

This approach is not common in either the AWES or marine hydrokinetic literature,

but has been explored in other contexts, for example: (i) the study of instrumented
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marine cables in surveying boats [24] and, (ii) the study of tethers of underwater

remotely operated vehicles [23].

1.2.2 Controlling tethered kite systems

Tethered kite systems rely on being actively controlled to generate energy.

Typically, the kite trajectory will consist of a high tension regime as the kite is

reeled out, and a low tension regime as the kite is reeled in. Given the importance

of control in the energy generation potential of MHK systems, significant research

focuses on the design of these controllers.

The first challenge the literature addresses is the trajectory optimization of

these systems. Naturally the overall objective is maximizing the net power genera-

tion of the system. Because of the complexity of the optimization problem, this is

typically done by separating the problem into a power generating phase, and a power

consuming phase. Moreover, the objective is simplified by maximizing a proxy to

the generated power, such as tension force [25,26]. Other work in the AWES litera-

ture simplifies the optimization problem by pre-imposing a topological constraint to

the kite path, forcing it to navigate in figure-8 shapes. Optimization then proceeds

using direct transcription [27,28].

The other challenge the literature addresses is how the kite trajectory adapts

to the changing nature of wind currents (for AWES) or ocean currents (for MHK).

That is why a big part of the literature focuses on developing adaptive controllers.

This includes: robust and passivity-based control [7, 17], extremum-seeking [11],

6



Bayesian optimization [9, 29], iterative learning [30, 31], and maximum power point

tracking [32].

1.3 Open Challenges and Contributions

From the literature reviewed in the previous section, we have identified a set

of open challenges that we propose to address:

1. First, it is not clear from the literature whether an integrated model of the dy-

namics of a marine hydrokinetic kite system plus its flexible tether is needed for

optimal control. There is work in the literature on kite modeling, tether mod-

eling, and the integrated modeling of kite systems plus their tethers. However,

there is a shortage of studies examining the interplay between kite and tether

dynamics and elucidating the degree to which this interplay affects overall

system behavior. The research addresses this problem by developing a 3-DOF

kite model plus a partial differential equation (PDE) tether model. Integrat-

ing these models together makes it possible to examine the above interplay,

and determine its impact on overall system behavior, for different values of

the tether parameters. One conclusion from this study is that the importance

of incorporating tether dynamics in the overall kite system model depends

critically on factors such as the tether material’s buoyancy.

2. Second, the existing literature on trajectory optimization for tethered ma-

rine hydrokinetic systems suffers from multiple deficiencies. Moreover, the

literature typically simplifies the kite trajectory optimization problem by ei-
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ther pre-imposing a specific flight path and optimizing its parameters or op-

timizing the reel-in/reel-out and cross-current motions independently. Such a

divide-and-conquer approach, while appealing from a numerical perspective,

has the potential to lead to sub-optimal trajectories. The proposed research

addresses these deficiencies by formulating a co-optimization problem that at-

tempts to optimize both the reel-in/reel-out and cross-current motion trajec-

tories simultaneously. The above co-optimization problem is computationally

challenging because it involves trajectory optimization over a large configura-

tion space. Given this computational complexity, we use a 3DOF model of

the kite in spherical coordinates and linearize it around a zero-power circular

cross-current equilibrium trajectory. This makes it possible to formulate power

maximization as a simple indefinite quadratic optimal control problem with

linear dynamic constraints. By imposing sinusoidal inputs it is possible to

analytically obtain trajectories that generate power with a good Loyd factor.

3. Third, in the literature, trajectory optimization for these systems often at-

tempts to maximize the average mechanical power output over one reel-in/reel-

out period, without accounting for electrical conversion efficiency. In chapter

4 using the techniques developed in chapter 3 we modify our model to take

into account these losses and re-optimize our trajectories.

4. Fourth, there is a growing need for laboratory-scale studies validating trajec-

tory optimization solutions for tethered marine hydrokinetic energy harvesters.

In chapter 5 we design and and fabricate a prototype power takeoff system

8



capable of demonstrating the reel-in behavior of the kite. Experimental pool

tests were performed in close collaboration with North Carolina State Univer-

sity. Additionally, we design and fabricate another prototype capable of both

reel-in and reel-out in preparation for tests in Lake Norman, North Carolina.

In the laboratory this setup is used to evaluate the potential of our optimized

trajectories to generate electrical power, and identify the parameters of the

electrical system.
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Chapter 2: Development of a simplified model of the dynamics of

a marine hydrokinetic energy harvesting system and its

tether

2.1 Chapter introduction

This chapter begins by modeling a simplified 3DOF kite that assumes a straight,

mass-less tether. Then we derive a flexible tether model using partial differential

equations. At the end of the chapter we explore the importance of modeling the

curvature and inertia of the kite tether. This work was published and presented at

the Proceedings of the 2021 European Control Conference (ECC).

2.2 3DOF Kite Model

We need a simplified model of the system that is amenable to optimization.

We propose to model a neutrally buoyant kite with three degrees of freedom (3DOF)

constrained by a straight mass-less tether. We make the following assumptions:

1. The desired kite attitude trajectory (i.e., roll, pitch, and yaw angles vs. time)

can be tracked through a lower-level control system, thereby allowing this

modeling effort to focus on translational kite dynamics.
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2. The kite is neutrally buoyant, so its weight is cancelled by the buoyancy force.

3. The kite weather-cocks, so we can neglect side forces.

The forces that act on the kite are: the tether tension, the hydrodynamic lift, and

the hydrodynamic drag. These forces are shown in Figure 2.1. The tether force

is externally imposed by a tether model that can represent either a rigid or elastic

tether. If the tether is assumed rigid, then the tether force is assumed to be aligned

with the unit vector from the kite mass to the tether release point. Moreover, a

kinematic constraint on the tether’s length makes it possible to compute the tether

force. In contrast, if the tether is assumed to be elastic, then the tether force is

dictated by the corresponding tether dynamics.

ı̂

̂k̂

êr

ẑw

x̂w

ŷw

−→
V ∞

−→
V

−→
V rel

−→
D

−→
L

−→
T

φ

Figure 2.1: Diagram of 3DOF kite, w−frame, and external forces

We define the position and velocity of the kite with the respect to the inertial
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frame defined by the unit vectors
{
ı̂, ̂, k̂

}

~r = xı̂+ ŷ+ zk̂ (2.1)

~V = ẋı̂+ ẏ̂+ żk̂. (2.2)

We further define the position unit vector

êr =
~r

‖~r‖
(2.3)

and define the relative velocity vector as

~Vrel = ~V − ~V∞ (2.4)

where ~V∞ is the water current velocity. We now define the so-called ”wind frame”,

or w-frame, with the unit vectors {x̂w, ŷw, ẑw} defined as

x̂w =
~Vrel

‖~Vrel‖
(2.5)

ẑw =
x̂w × êr
‖x̂w × êr‖

(2.6)

ŷw =
ẑw × x̂w
‖ẑw × x̂w‖

(2.7)
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We can now define the lift and drag forces the kite experiences

~L =
1

2
ρCL(α)S‖~Vrel‖2(cosφŷw + sinφẑw) (2.8)

~D = −1

2
ρCD(α)S‖~Vrel‖2x̂w (2.9)

where ρ, CL, CD, α, S, and φ are respectively, the water density, the lift coefficient,

the drag coefficient, the angle of attack, the wing surface area, and the kite angle

with respect to the ŷw unit vector.

The hydrodynamic coefficients CL and CD depend on the kite’s angle of attack,

α. We use curve fitting to approximate this dependency for angles of attack below

the stall point of a particular kite of interest. As shown below, we use a linear

approximation for the lift coefficient and a quadratic approximation for the drag

coefficient.

CL(α) = c1α + c2 (2.10)

CD(α) = b1α
2 + b2α + b3 (2.11)

The sum of external forces is

~Fext = ~L+ ~D + ~T (2.12)

where ~T is the tether tension force. If the tether is assumed to be rigid, this force

13



points to the tether platform, in the opposite direction to the êr unit vector:

~T = −T êr (2.13)

We can now write a state-space model for the kite

d

dt



x

y

z

u

v

w



=



u

v

w

1
m
~Fext · ı̂

1
m
~Fext · ̂

1
m
~Fext · k̂



(2.14)

where the inputs are:

U =


T

α

φ

 (2.15)

The mechanical power Pmech this kite generates is the product of the tension

force T and the tether release rate ur, where we calculate ur as follows:

ur =
ux+ vy + wz√
(x2 + y2 + z2)

(2.16)
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2.3 Tether Model

While the assumption of the tether being straight is useful in the context of

optimal control, we do not know the effect of modeling a flexible tether on the kite

dynamics. That is in fact the question we were set to answer in [33]. We model the

tether dynamics with a system of partial differential equations that capture both

the effect of tether buoyancy on the tether and its inertial properties. In this section

we describe this tether model and then discuss the conclusions of that paper.

s = 0
s = Q(t)

s = L
η = 1

η = 0

ı̂

̂k̂

(xt(t, s), yt(t, s), zt(t, s))

Figure 2.2: Elastic tether coordinates

We define the following coordinates for the tether:

1. s: Distance along undeflected tether.

2. η: Normalized coordinate along undeflected tether.

3. L: Total tether length.

4. Q(t): Unreleased tether length.

15



(xt + x′tds, yt + y′tds, zt + z′tds)

(xt, yt, zt)

A

z′tds

y′tds

x′tds

Figure 2.3: Infinitesimal tether element

We also define the absolute position of a point in the tether with respect to the

inertial frame {ı̂, ̂, k̂} as: {xt(t, s), yt(t, s), zt(t, s)}.

Now let us consider the infinitesimal element of the tether in Figure 2.3. We

define ds as an infinitesimal change along the s−coordinate, and define x′t = ∂xt
∂s
, y′t =

∂yt
∂s
, z′t = ∂zt

∂s
.

The strain the element experiences is thus

ε =

√
x′2t + y′2t + z′2t ds− ds

ds
(2.17)

which simplifies to

ε =
√
x′2t + y′2t + z′2t − 1. (2.18)

In the linear deformation region the stress the element experiences is

σ = Eε = E(
√
x′2t + y′2t + z′2t − 1) (2.19)
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where E is Young’s modulus of elasticity. Given a cross-sectional area A, the tension

this element experiences is

T = σA = EA(
√
x′2t + y′2t + z′2t − 1) (2.20)

This tension acts along the tether element, with components

Tx = Tξx (2.21)

Ty = Tξy (2.22)

Tz = Tξz (2.23)

where the directional cosines are:

ξx =
x′t√

x′2t + y′2t + z′2t
(2.24)

ξy =
y′t√

x′2t + y′2t + z′2t
(2.25)

ξz =
z′t√

x′2t + y′2t + z′2t
(2.26)

Summing forces and applying Newton’s second law to a tether element we

obtain the following system of partial differential equations which describe the tether

dynamics.
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ẍt =
E

ρt

∂

∂s
εξx +

qx
ρt

(2.27)

ÿt =
E

ρt

∂

∂s
εξy +

qy
ρt

(2.28)

z̈t =
E

ρt

∂

∂s
εξz +

qz
ρt

(2.29)

where ρt is the density of the tether, and qxt,yt,zt denote additional external forces per

unit volume to capture, for example, tether buoyancy effects, gravitational effects,

and hydrodynamic effects.

To handle the changing released tether length, we can perform a coordinate

transformation to the η-coordinate

ẍt =
E

ρt(L−Q)

∂

∂η
(εξx) +

qx
ρt

(2.30)

ÿt =
E

ρt(L−Q)

∂

∂η
(εξy) +

qy
ρt

(2.31)

z̈t =
E

ρt(L−Q)

∂

∂η
(εξz) +

qz
ρt

(2.32)

Q̇ = u(t) (2.33)

Equations (2.30)-(2.33) constitute the full set of equations necessary to capture

the dynamics of tether.
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2.4 Model Comparison

The above work makes it possible to build two different MHK system models:

one with a rigid tether and one with a flexible tether. We can compare the two

models by imposing a trajectory the kite has to follow. We achieve tracking of this

trajectory by solving an inverse dynamics model where the trajectory of the kite is

given in spherical coordinates by the following algebraic equations:

ψ = a1 sin (w1t) (2.34)

θ = a1 sin (w1t) cos (w1t) + θ0 (2.35)

as well as the following differential equation:

ṙ = a2 sinw2t (2.36)

where ψ and θ are the azimuth and zenith angles of the kite with respect to the

floating platform. This figure-8 trajectory, while not a power maximizing trajectory,

shares the shape of the typical path tethered energy systems follow.

In Figure 2.4 we show the imposed trajectory the kite follows during the reel-

out portion of the cycle.

We can, for instance, explore the effect of the tether mass, which we decouple

from buoyancy effects by varying the radius of the tether. Figures 2.5a and 2.5b
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show deviations from the nominal input trajectories for three different radii.
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Figure 2.5: Deviations due to increasing mass for a neutrally buoyant tether

We can also explore the effect the buoyancy of the tether has on the kite. In

Figures 2.6a and 2.6b we show the deviations from nominal input trajectories for

different tether densities. To avoid confounding the buoyancy effect with inertial

effects, we ensure the total mass of the tether is maintained constant by adjusting
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the radius of the tether as we change the density.
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Figure 2.6: Deviations due to buoyancy effects

We summarize the results by looking at the root mean squared deviations of

these inputs normalized by the root mean squared nominal values, in Table 2.1. Both

Normalized RMSE in α Normalized RMSE in φ

ρ [kg m−3]
800 0.0507 0.1601
1000 0.0304 0.067
1200 0.0324 0.0836

r [m]:
0.005 0.0304 0.0670
0.01 0.0735 0.1586
0.03 0.3207 0.4736

E [Pa]:
100e9 0.0304 0.0670
200e9 0.0304 0.0670

Table 2.1: Normalized deviations from nominal inputs for different tether parameters

the buoyancy of the tether and the mass of the tether require noticeable corrections

of the kite inputs to track the pre-imposed trajectory. On the other hand, the
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longitudinal stiffness of the tether had a negligible effect. The effect of buoyancy

increases for non-neutrally buoyant tethers. Particularly, the more buoyant tether

with a density of 800 kg m−3 presents a larger normalized root mean deviation of

16 % from the nominal roll angle trajectory. The effect of mass is however the

most significant of the parameters we explore. For instance a 5 mm radius tether

has average deviations of 7% from the nominal roll trajectory, while a 3 cm radius

tether has average deviations of 47% from the nominal roll trajectory, meaning

that it requires considerably more control authority to achieve the desired figure-8

trajectory, than the kite with a mass-less tether. Note that in this work, we vary

the tether mass without changing buoyancy by changing the radius of the tether

while keeping its density constant.

2.5 Chapter conclusion

At the beginning of this chapter we developed a simplified 3DOF kite model

for an underwater kite system. Then we introduced a PDE-based flexible tether

model. We explored the effect both the buoyancy of the tether and the inertia of

the tether have on the dynamics of the kite. For our specific set of assumptions we

conclude it is possible to neglect the tether dynamics for a neutrally buoyant and

light tether. A simplified kite model with straight and mass-less tether is used in

later chapters.

22



Chapter 3: Outcomes and Insights from Simplified Analytic Trajec-

tory Optimization for a Tethered Underwater Kite

3.1 Chapter introduction

In this chapter we formulate and solve a periodic trajectory optimization prob-

lem for a tethered underwater kite. The goal is to maximize the average mechanical

power harvested by the kite. As we explained in the introductory chapter, the prob-

lem of optimizing this kite’s trajectory is challenging due to the high dimensionality

and nonlinearity of its dynamics. To tackle this challenge, the literature often sep-

arates the problem into two subproblems focusing on optimizing the cross-current

and the reel-in/reel-out components of the trajectory, respectively, which may be

sub-optimal. In contrast, this work solves for the combined cross-current and reel-

in/reel-out trajectory by linearizing the dynamics of the kite around a zero-power

reference equilibrium trajectory in spherical coordinates. This allows the trajectory

optimization problem to be solved analytically for simple sinusoidal input perturba-

tions from equilibrium. We use linear quadratic regulation to enable the nonlinear

kite model to track the optimized trajectory. The result is a computationally ef-

ficient approach that achieves an attractive Loyd factor of 19.9%, while providing
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important insights into the nature of the optimal trajectory.

The main goal in this chapter is to simultaneously optimize the reel-in/reel-

out and cross-current trajectories of an energy-harvesting kite. The novelty of the

contribution in this chapter stems from the use of a new simplification approach to

both achieve attractive net power generation levels and yield important insights into

the underlying optimization problem. Specifically, we use a 3DOF model of the kite

in spherical coordinates and linearize it around a zero-power circular cross-current

equilibrium trajectory. This makes it possible to formulate power maximization as a

simple indefinite quadratic optimal control problem with linear dynamic constraints.

Expressing the kite’s input trajectory in terms of sinusoidal perturbations from

equilibrium makes it possible to translate this problem into an even simpler static

indefinite quadratic program. We use traditional linear quadratic regulation to

force the nonlinear kite dynamics to track the solution to this linearized problem.

This approach furnishes a very attractive net power generation level, considering

its simplicity, with a Loyd factor approaching 20%. Moreover, the approach yields

important insights into the nature of the optimal trajectory, one example being the

degree to which reel-out and reel-in are achieved in the plane perpendicular to the

free-stream flow. The remainder of the chapter: presents the kite model; formulates

and solves the kite trajectory optimization problem; then finally simulates the non-

linear kite model and examines its performance as it tracks the trajectory generated

by the simplified linear analysis. This contribution was submitted to the IEEE

Control Systems Letters and to to the American Control Conference and is currently

in review. [34].
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3.2 Kite Model

In this section we use the model we derived in Chapter 2 but with some

modifications needed for our analysis. Similar to Chapter 2 the model assumes that

the kite’s attitude dynamics (roll, pitch, and yaw) can be controlled by lower-level

controllers to track a desired attitude trajectory accurately. This allows the higher-

level optimization work in this chapter to focus on the translational dynamics of the

kite, represented as a point mass. In solving this optimization problem, we treat

the kite’s angle of attack, induced roll (or banking) angle, and tether tension as

control inputs that can be manipulated to achieve a desired translation trajectory.

Additionally, we assume that the kite is neutrally buoyant, meaning that its weight

cancels with the buoyancy force. In this chapter, however, we examine the special

case where the kite’s anchor point is immersed underwater at a sufficient depth to

allow the kite to fly in a circular, zero-power cross-current equilibrium trajectory

centered directly downstream of this anchor point. We use this reference trajectory

as a starting point for linearizing the kite’s dynamics. This assumption places some

limitations on the kite’s anchoring system, but makes it possible to obtain important

analytic insights into the nature of the optimal kite trajectory.

The kite’s underwater motion is governed by the forces acting on it, namely,

the: gravitational, tension, buoyancy, and hydrodynamic surface forces. The hydro-

dynamic surface forces are typically decomposed into lift, drag, and side force. We

define a spherical coordinate frame S with unit vectors: {êr, êθ, êψ}. We can relate

this frame to a Cartesian frame as shown in Figure 3.1. We can write the position
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Figure 3.1: Underwater kite with unit vectors in Cartesian and spherical coordinates

vector and its derivatives:

r = rêr (3.1)

ṙ = ṙêr + rθ̇êθ + rψ̇ sin θêψ (3.2)

r̈ =
(
r̈ − rθ̇2 − rψ̇2 sin θ sin θ

)
êr

+
(
ṙθ̇ + rθ̈ − rψ̇2 sin θ cos θ

)
êθ

+
(
ṙψ̇ sin θ + rψ̈ sin θ + rψ̇θ̇ cos θ

)
êψ (3.3)
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We can now write an expression for the relative velocity of the kite with respect

to the fluid. We define the velocity of the water along the ı̂ direction: Vw = uw ı̂

. In spherical coordinates this becomes Vw = uw cos θêr − uw sin θêθ. The relative

velocity is thus:

Vrel = ṙ − Vw (3.4)

Vrel = (ṙ − uw cos θ) êr +
(
rθ̇ + uw sin θ

)
êθ + rψ̇ sin θêψ (3.5)

Let us define a new frame W with respect to which we will define the external

forces applied to this kite.

x̂w =
Vrel

|Vrel|
, ẑw =

x̂w × r

|x̂w × r|
,ŷw =

ẑw × x̂w
|ẑw × x̂w|

(3.6)

The forces the kite experiences are:

L =
1

2
ρSCL(α)|Vrel|2(cos(φ)ŷw + sin(φ)ẑw) (3.7)

D = −1

2
ρSCD(α)|Vrel|2x̂w (3.8)

T = T
r

|r|
(3.9)

These are illustrated in Figure 3.2. where T, α, φ are the scalar tension force (always
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Figure 3.2: Water frame and external forces

negative), the angle of attack, and the roll angle, respectively. The other param-

eters ρ, CL, CD, and S are, respectively, the water density, the lift coefficient, the

drag coefficient, and the wing area. The hydrodynamic coefficients CL and CD are

modeled in terms of α as follows:

CL(α) = c1α + c2 (3.10)

CD(α) = b1α
2 + b2α + b3 (3.11)

The equations of motion for this kite are thus given by:

mr̈ =
∑

Fext (3.12)
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where
∑

Fext = L + D + T .

We express the above equations of motion in state-space form, with two im-

portant caveats. First, we note that in the absence of flow shear (i.e., if free-stream

water velocity is spatially uniform), we do not need to include ψ as a state variable

in the model. This makes it possible to represent a zero-power circular trajectory

perpendicular to the free-stream flow as a single equilibrium point in the kite’s state

space. Our optimization study utilizes a dynamic model linearized around this equi-

librium. Second, to ensure a smooth trajectory, our optimization problem penalizes

the rates of change of the kite’s angle of attack α, induced roll angle φ, and tension

T . To allow for such a penalty within a standard optimal control problem formula-

tion, we make the rates of change of these three variables control inputs. This leads

to a state-space model of the form below:

d

dt
X = f(X,U) (3.13)

where X =

[
r θ v p q T α φ

]T
, U =

[
u1 u2 u3

]T
, and:
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f(X,U) =



v

p

F
m
· êr + rp2 + rq2 sin θ2

1
r

(
F
m
· êθ − vp+ rq2 sin θ cos θ

)
1

r sin θ

(
F
m
· êψ − vq sin θ − rqp cos θ

)
u1

u2

u3



(3.14)

3.3 Problem Formulation

3.3.1 Optimization Objective

We formulate a periodic kite trajectory optimization problem with the follow-

ing structure:

Minimize J =

∫ T

0

L (X,U) dt (3.15)

Subject to: Ẋ = f (X,U) , X(0) = X(T ) (3.16)

The objective function in this problem is given by L(X,U) = −P + UTRU ,

where P (t) is instantaneous mechanical power given by P = −vT and UTRU is a

positive-definite quadratic penalty on the control input vector. Thus, the optimiza-
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tion objective reflects a desire to maximize cycle-averaged mechanical power with a

penalty on the rates of change of the physical control inputs needed for doing so.

The mechanical power term is positive when the kite harvests energy and negative

when it is reeled in. Note that this power term can be written in quadratic form as

P = XTQX, where the state vector X contains the kite velocity v and tether ten-

sion T , implying that the matrix Q is negative semi-definite. Therefore, the above

optimization problem has a non-convex quadratic objective.

3.3.2 Model Linearization

Solving the above trajectory optimization problem is difficult due to its nonlin-

earity, non-convexity, and high dimensionality (with 8 state variables). The problem

becomes much simpler if one solves it approximately in the neighborhood of a state-

input pair, Xeq, Ueq, satisfying the definition of an equilibrium point, i.e.,

f(Xeq, Ueq) = 0 (3.17)

The kite has an infinite number of equilibria, corresponding to different cir-

cular trajectories in a plane perpendicular to the free-stream water velocity vector,

with the centers of the circles aligned with the tether anchor point. For any given

equilibrium, the kite’s dynamics can be linearized to furnish:

d

dt
X̃ = AX̃ +BŨ (3.18)

where X̃ and Ũ represent state/input perturbations from equilibrium, A = [∂f/∂X]eq,
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and B = [∂f/∂U ]eq

3.3.3 Simplified Optimization Problem

Linearizing the dynamics of the kite around a reference equilibrium simplifies

the above trajectory optimization problem significantly as follows:

Minimize J =

∫ T

0

L
(
Xeq + X̃, Ueq + Ũ

)
dt (3.19)

Subject to: ˙̃X = AX̃ +BŨ, X̃(0) = X̃(T ) (3.20)

The above problem can be simplified further as follows. First, recall that

the input vector U(t) consists of the rates of change of the kite’s angle of attack,

roll angle, and tether tension. All three of these state variables are constant at

equilibrium, meaning that the equilibrium input Ueq must equal zero. As a result,

U(t) = Ueq+ Ũ(t) must equal Ũ(t) and therefore the control input penalty simplifies

to ŨTRŨ . Second, since the tether release rate v(t) must equal zero at equilibrium,

one can conclude that v(t) = veq + ṽ(t) must equal ṽ(t). By definition, mechanical

power is given by P (t) = v(t)T (t) = (veq + ṽ(t))(Teq + T̃ (t)), a term that simplifies

to ṽ(t)(Teq + T̃ (t)). Furthermore, expressing the optimal periodic trajectory of

ṽ(t) as a Fourier series leads to the conclusion that the cycle average of ṽ(t)Teq is

zero. Combining all of these insights leads to the following simplified trajectory

optimization problem statement:
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Min. J =

∫ T

0

L
(
X̃, Ũ

)
dt =

∫ T

0

X̃TQX̃ + ŨRQŨdt (3.21)

Subject to: ˙̃X = AX̃ +BŨ, X̃(0) = X̃(T ) (3.22)

3.3.4 Analytical Solution

The above simplified trajectory optimization problem has linear dynamics and

a non-convex objective, thanks to the fact that the matrix Q is negative semi-

definite. As a result, this problem’s solution is unbounded in terms of the magnitudes

of the optimal state and input perturbations X̃ and Ũ , respectively. In practice, the

optimal kite trajectory is bounded by space constraints as well as the diminishing

accuracy of the above linearized kite model for larger motion magnitudes. With this

in mind, we analyze the structure of the problem for a sinusoidal input trajectory

of the form:

Ũ(t) = u1 sinωt+ u2 cosωt (3.23)

where ω is the frequency of the sinusoidal trajectory, and the coefficients u1 and u2

are assumed to be small. With a sinusoidal input trajectory and linear dynamics we

can analytically obtain an expression for the state variables as a function of time.

The linear dynamics of the system are represented by the transfer function of the
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system G(s) in the Laplace domain.

G(s) = [sI − A]−1B (3.24)

We can now write an analytical expression for our state variables as a function

of time as follows:

X̃(t) = (Gru1 −Giu2) sinωt+ (Giu1 +Gru2) cosωt (3.25)

where Gr and Gi are the real and imaginary components of G(s)|s=jω. Notice that

the transfer function enforces the dynamic constraint in our linearized optimization

problem. Moreover, the focus on the steady-state response to a sinusoidal input

trajectory ensures periodicity.

We can substitute expressions (3.23) and (3.25) into the objective (3.19) and

obtain a static optimization problem where the optimization variables are the vectors

u1 and u2.We can thus re-write the optimization problem. After linearizing the

dynamics of the system and imposing a sinusoidal input trajectory our optimization

problem becomes an unconstrained static quadratic optimization problem.

Minimize J =
π

2ω

[
u1 u2

]
Φ6×6

u1

u2

 (3.26)
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where

Φ[1:3,1:3] = Φ[3:6,3:6] = R +GT
r QGr +GT

i QGi (3.27)

Φ[1:3,3:6] = Φ[3:6,1:3] = [0]3×3 (3.28)

The matrix Φ is indefinite, suggesting that the solution to this problem is

unbounded. To better understand the structure of this solution, we focus on the

particular direction in the optimization space that yields the fastest decrease in the

minimization objective. In other words, we focus on the eigenvector of the matrix

Φ associated with its most negative eigenvalue. Denoting this eigenvector by v, we

select:

u1

u2

 = λv (3.29)

where λ is a scaling gain. In the linearized optimization problem, increasing this

gain to infinity always yields benefits, at the expense of increasing departure from

the true nonlinear dynamics. This motivates the final step in our analysis, where

we use linear quadratic regulation to enable the nonlinear kite dynamics to track

the above optimal trajectory for different values of λ, thereby gaining insight into

the practical limitations on the magnitude of λ.
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3.4 Results

3.4.1 Performance Metric

To evaluate the performance of our control approach we can compare the

average power the kite generates to the maximum theoretical power it can generate

– namely, Loyd’s limit. We will call the ratio of these quantities the Loyd factor.

The Loyd limit [35] is defined as:

P =
2

27
ρSu3wCL

(
CL

CD

)2

(3.30)

3.4.2 Kite Linear Quadratic Regulator

The state and input trajectories generated in the previous sections assume

that the dynamics of the kite are linear. The further the kite’s trajectory deviates

from equilibrium, the less this assumption is valid. We propose to use the obtained

trajectories as a reference to a linear-quadratic regulator. We then simulate the

non-linear kite model as it attempts to track this reference.

We formulate the LQR problem as follows:

Minimize J =

∫ ∞
0

(XT
errorQLQRX

T
LQR + UTRLQRU)dt (3.31)

Subject to: Ẋerror = AXerror +BU (3.32)
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This problem has a steady-state solution of the form:

U = −KLQRXerror (3.33)

The feedback gain matrix KLQR will depend on QLQR, RLQR, A and B.

3.4.3 Numerical Simulation

To evaluate our control strategy we simulate a non-linear kite as it tracks the

reference sinusoidal trajectory obtained in the previous section. To avoid large con-

trol inputs at initialization, we start the kite at equilibrium and gradually increase

the magnitude of the reference trajectory. Table 3.1 contains the parameters used

for the simulation.

Figure 3.3 shows the position trajectory of the kite for the last 3 periods

of simulation. One interesting feature of this result is that the kite reels away

by mostly moving cross-current instead of parallel to the flow. In fact, the kite’s

downstream distance from the tether anchor point experiences relatively modest

changes, with much of the reel-in and reel-out action occurring ”in plane”. One

possible explanation is the degree to which the kite’s fast cross-current motion makes

such an oval in-plane trajectory both feasible and attractive. This is an important

insight, and not necessarily an intuitive one compared to a trajectory where reel-in

and reel-out occur along the free-stream flow direction.

Figures 3.4 and 3.5 show the power, release rate, and tension trajectories for

the linear and non-linear kite models. The average power of the non-linear kite for

37



Kite Parameters

Mass m 2700 kg
Wing reference area S 10 m2

Aerodynamic coefficients c1 6.25e−2 deg−1

c2 1.33e−1 -
b1 2.442e−4 deg−2

b2 1.06e−3 deg−1

b3 2.22e−3 -

Flow Parameters

Water density ρ 1000 kg/m3

Water speed uw 1 m/s

Optimization Parameters

Input quadratic penalties R11 0 -
R22 10e9 -
R33 30e9 -

Controller Parameters

q11 2e12 -
q22 2e12 -
q33 2e12 -
q44 2e14 -
q55 2e13 -
q66 2e2 -
q77 2e2 -
q88 2e−1 -
q99 2e11 -

r11 1e−6 -
r22 1e8 -
r33 2e10 -

Table 3.1: Parameters
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Figure 3.3: Path of the non-linear kite model in the last 3 periods of simulation

this simulation is 16.4kW which corresponds to Loyd factor of 19.9%. This is an

attractive outcome, particularly in light of the simplicity of the approach used for

achieving it.

3.4.4 Sensitivity to eigenvector scaling

Finally we explore how changing the scaling factor λ affects the generated

power in these simulations. For this, we keep all parameters equal and do a sweep

on the scaling factor λ. Figure 3.6 shows the average power generated by the non-
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Figure 3.4: Power generated in the last period of simulation.Orange line: Non-linear
model, Blue line: Linear model.

linear model in the vertical axis and the average power generated by the linear model

in the horizontal axis as the scaling factor λ increases. The increasing scaling factor

corresponds to larger deviations from equilibrium and the power generated by the

non-linear model decreases in comparison to the linear one for increasing deviations.

This places a practical limitation on how far one can “push” the solution of this

trajectory optimization problem, even if the underlying simplified linear analysis

leads to an unbounded solution.
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Figure 3.5: Release rate and tension for the last period of simulation. Orange line:
Non-linear model, Blue line: Linear model.

3.5 Chapter conclusion

In this chapter we proposed to maximize the power generated by an underwater

kite that operates in pumping mode. For this we derive a simplified 3DOF nonlinear

kite model and formulate an optimization problem to maximize the mechanical

power of the kite while minimizing the inputs. By performing simplifications such

as linearizing the kite model and imposing a sinusoidal input trajectory we are able

to transform a dynamic quadratic optimization problem into an unconstrained static

optimization problem. We use the objective of this problem to obtain trajectories
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Figure 3.6: Average power generated by non-linear model vs. average power gener-
ated by linear model as the scaling factor λ increases

along its steepest direction of descent. By introducing a scaling factor we are able

to adjust how much we deviate from the equilibrium of the system. The resulting

trajectories were then tracked by a non-linear kite with a linear quadratic regulator.

For a 1m s−1 flow speed and a kite with a wing area of 10m2 we generated an average

power of 16.4kW corresponding to a Loyd factor of 19.9%. An increase in the scaling

factor increases the generated power with decreasing gains as the trajectories depart

further from equilibrium. One important insight we learned in this chapter is the

degree to which reel-out and reel-in are achieved in the plane perpendicular to the
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free-stream flow. This analysis neglects the electrical efficiencies of the system. In

the next chapter we explored the effect introducing these has in our results.
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Chapter 4: Modeling and Trajectory Generation with Electrical and

Mechanical Losses

4.1 Chapter introduction

In the previous chapter we obtained trajectories optimized for mechanical

power, these trajectories, however do not take into account the losses in the sys-

tem. In this chapter we attempt to model these losses and take them into account

in our trajectory generation strategy. For airborne kite system Stuyts et al. [28]

explored the effect the electrical conversion efficiency has on the optimal cycles. In

this chapter we explore the same effect on our optimization approach for underwater

kites.

4.2 Modeling of the electric machine

There are different modeling approaches for electric motors with different lev-

els of fidelity [36]. In the context of optimization we neglect the high frequency

dynamics of the motor and consider a linear model that bundles iron and copper

losses of the motor into a resistance value, and all the mechanical friction with a

single friction coefficient proportional to the angular speed of the motor shaft.
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We can write the dynamics of a DC motor in state space formulation as follows:

d

dt

ω
i

 =

− b
J

K
J

−K
L

−R
L


ω
i

+

0 1
J

1
L

0

[V τ

]
(4.1)

where ω,i, τ and V are the motor angular speed, the armature current, external

torque, and armature voltage respectively. The parameters b, J , K, L, and R are

the friction coefficient, the motor inertia, the motor constant, the motor inductance

and the armature resistance. We expect the dynamics of the kite to be much slower

than the dynamics of the electric motor. We can thus reduce the order of this model

by evaluating it at steady state.

At steady state:

d

dt

ω
i

 = 0 (4.2)

and we can write an expression for the current i and voltage V as follows:

i =
1

K
(τ + bω) (4.3)

V = Kω +
R

K
(τ + bω) (4.4)

We can re-write these expressions in terms of the tether tension and tether release

rate by accounting for the spool radius
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i =
1

K
(Tr + b

v

r
) (4.5)

V = K
v

r
+
R

K
(Tr + b

v

r
) (4.6)

where T , v and r are the tether tension, tether release rate and spool radius respec-

tively.

4.3 Problem formulation

We can use the expressions obtained in the previous section to write an ex-

pression for the electric power the motor generates as follows:

Pelec = V i (4.7)

Pelec = (K
v

r
+
R

K
(Tr + b

v

r
))

1

K
(Tr + b

v

r
) (4.8)

(4.9)

Notice that T and r are state variables in our model in Chapter 3. Furthermore

they appear quadratically in the expression for electric power. This makes it possible

to re-write our optimization objective from Chapter 3 as follows:
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Minimize J =

∫ T

0

L (X,U) dt (4.10)

Subject to: Ẋ = f (X,U) , X(0) = X(T ) (4.11)

where this time the objective function becomes L(X,U) = −Pelec + UTRU , where

Pelec(t) is the instantaneous electrical power given by 4.9 and UTRU is the same

positive-definite quadratic penalty on the control input vector we introduced in

Chapter 3. Thus, the optimization objective reflects a desire to maximize cycle-

averaged electrical power with a penalty on the rates of change of the physical control

inputs needed for doing so. Again, this power term can be written in quadratic form

as P = XTQelecX, where the state vector X contains the tether release rate v and

tether tension T .

We can follow the same procedure we followed in Chapter 3 to analytically

obtain sinusoidal trajectories that scaled proportionally to the eigenvector along the

power maximizing direction of our objective.

4.4 Simulation & Results

We parametrize our model with the parameters of our lake-test setup. This

allows us to use real-world parameters that are consistent with the experiments we

performed. The parameters for the simulation are given in Table 4.1.

One challenge in generating trajectories for the scale of our experimental setup
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is that we need to ensure that the tension and release rate trajectories are within

the allowable range of operation of our experimental setup. While our methodology

to generate the trajectories does not explicitly put bounds on the state variables

or input variables, we can scale these by scaling the amplitude of the trajectories

proportionally to the eigenvector along the direction that maximizes power. Addi-

tionally we can select the equilibrium value for some of our state variables– along

which we linearize our system– to be within the range of operation of our machine.

The equilibrium conditions are:

X0 =

[
30 0.15 0 0 −0.547 −200 −0.0205 0.6793

]T
(4.12)

To compare the trajectories we generate optimizing for mechanical power and

the trajectories we generate optimizing for electrical power, we scale the eigenvector

such that the average mechanical power both generate is equal. The release rate and

tension trajectories we obtain for the linear model for a duration of three periods

are shown in Figure 4.1.

The electric power trajectory generated by these is given in Figure 4.2.

Similar to what we did in Chapter 3 we can track these trajectory with an

LQR controller to assess the validity of these results for the non-linear kite model.

Figure 4.3 shows the release rate and tension trajectory a non-linear model of the

kite follows by tracking the trajectory optimized for electric power in Figure 4.1.

The resulting path the kite follows is shown in Figure 4.4.

Table 4.2 summarizes the results in terms of the average mechanical power
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Figure 4.1: Release rate and tension trajectories by optimizing for mechanical and
electrical power — Linearized model
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Figure 4.2: Electric power trajectories by optimizing for mechanical and electrical
power
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Figure 4.3: Release rate and tension trajectories optimized for electrical power and
tracked by LQR controller.
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Figure 4.4: Kite path in Cartesian coordinates
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and electrical power the different trajectories generate.

4.5 Chapter conclusion

In this chapter we derived a simplified dc-motor model and integrated into

the trajectory generation framework we developed in chapter 3. We empirically

parametrized our model and compared the solution to the problem that incorporates

the system losses into the optimization objective with the solution that neglects

them. The average electric power generated by the trajectory that optimizes for

electric power was larger than the trajectory that optimizes for mechanical power

only, the difference however was almost negligible.
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Kite Parameters

Mass m 100 kg
Wing reference area S 1 m2

Aerodynamic coefficients c1 6.25e−2 deg−1

c2 1.33e−1 -
b1 2.442e−4 deg−2

b2 1.06e−3 deg−1

b3 2.22e−3 -

Flow Parameters

Water density ρ 1000 kg/m3

Water speed uw 1 m/s

PTO System Parameters

Motor armature resistance R 0.15 Ω
Motor constant K 83.8 N m A−1

Shaft friction coefficient b 0.0001 N m s rad−1

Spool radius r 0.05 m
Motor gear ratio GR 30 -

Optimization Parameters

Input quadratic penalties R11 0 -
R22 4e7 -
R33 1e7 -

Controller Parameters

q11 2e12 -
q22 2e12 -
q33 2e12 -
q44 2e14 -
q55 2e13 -
q66 2e2 -
q77 2e2 -
q88 2e−1 -
q99 2e11 -

r11 1e−6 -
r22 1e8 -
r33 2e10 -

Table 4.1: Parameters
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Average Mechanical Power [W] Average Electrical Power [W]

Linear Model Optimized for Mechanical Power 34.9 28.7
Linear Model Optimized for Electrical Power 34.9 28.9
LQR Tracking w/ Non-Linear Model 34.2 28.4

Table 4.2: Average power generated by different trajectories
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Chapter 5: Design & Fabrication of Prototype Power Take-Off Sys-

tem for a Lab Scale MHK

5.1 Chapter introduction

This chapter deals with the design and fabrication of a laboratory setup to

test the power take-off (PTO) system for an underwater kite. The work chapter 3

attempts to maximize the mechanical power of the MHK. This neglects both the

mechanical losses and electrical losses that occur in the PTO. The setup discussed

in this chapter allows us to experimentally evaluate our optimization results and

quantify these system losses.

The power take-off (PTO) system converts the mechanical power of the kite

into electrical power when acting as a generator. It also reels the kite in when

acting as a motor. In the context of our collaboration with North Carolina State

University, we designed and fabricated two PTO systems. One to be used as part

of a suite of pool-tests where the kite would constantly reel-in. These test served

as a preparation for a larger scale test to be performed at lake Norman in North

Carolina. The second PTO is intended to perform both reel-in and reel-out in the

lake. We designed and fabricated the PTO with the ability to perform laboratory
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testing by utilizing two electric machines. While in the lake it is possible to use a

single machine to both reel-in and reel-out, having the addition of a second machine

provides the flexibility to test at higher power levels. In the laboratory one machine

is used to simulate the tension generated by the kite, while the other acts as the

PTO system. We are thus able to use this setup to replicate the trajectories we

obtained in Chapter 3 in the lab.

5.2 Pool-test PTO

The first PTO we prototyped was meant to be used in motoring only, that is,

without regeneration. The system consist of a tether spool, an encoder, and DC

electric motor. The spool connects to a marine tether via a slip-ring, so that we can

send power to the kite’s control surface actuators, as well as electric signals such as

actuator commands to the kite. Figure 5.1 describes the main components of the

PTO, and a 3D CAD render is shown in Figure 5.2.Table 5.1 contains the list of

components.

Marine tether spool

Incremental encoder

DC Geared motor

Shaft coupler

Figure 5.1: Description of PTO
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Figure 5.2: 3D CAD of PTO prototype

Supplier Component

Digikey 48V Brushless DC Motor
Blue Robotics Marine tether spool
Blue Robotics Neutrally buoyant marine tether
Applied Motion Products 48V Motor controller
TRC Electronics 48V Power supply
Applied Motion Products Incremental encoder

Table 5.1: Laboratory scale PTO components

The motor of the PTO is controlled by a DC motor controller. Moreover,

we use an Arduino to interface the PTO with a Speedgoat real-time computer that

provides the speed commands to the system. Figure 5.3 describes these connections.

This PTO was tested in an Olympic pool at North Carolina State University

as shown in Figure 5.4 and served as a stepping stone for the development of the

second PTO capable of regeneration.
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Figure 5.3: PTO connections diagram

5.3 Lake test PTO

Building upon the pool PTO we designed and fabricated a PTO system that

was capable of regeneration. The most significant change between the pool and

lake systems was the introduction of an additional shaft connected via a timing

belt to the original shaft, allowing the simultaneous use of two electric machines.

Having two electric machines instead of a single machine allows us to test at higher

tension levels if necessary, but also allows for laboratory testing of the regeneration

capabilities of the setup.

The lake test PTO used two of the 48V geared BLDC motors from the pool

tests, controlled by a Roboteq HBL2360A motor controller. When used with a single

electric machine the system is able to motor at a continuous tension of 400N at a

speed of 0.5m s−1. Figure 5.5 shows a diagram of the setup, and Figure 5.6 shows a

57



Figure 5.4: Picture of PTO pulling raft during pool testing

picture of the fabricated setup.

5.4 Laboratory Experiments

The capability for adding a second motor on the bottom shaft allows for testing

in the laboratory before actual lake testing. This makes possible to assess the

electrical power that it is expected to be generated by the trajectories we optimized.

To test the trajectories that we obtained in chapter 3 we scale down the ten-

sion trajectory so that it is within the allowable range of operation of the electric

machines. The release-rate trajectory, however is left unchanged. To experimentally

test our trajectories we command two different open-loop speed commands to the

mechanically interconnected motors. Since the two motors are forced to spin at the

same speed by the timing belt, one motor will be applying a torque on the other, if

the speed commands differ. By increasing the difference in commanded speeds we

can increase the torque one motor exerts on the other. We can relate torque and
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Figure 5.5: Diagram of PTO for lake test and its sensors.

angular speed to tension and release rate by taking into account the spool radius.

Figure 5.7 shows the measured release rate and tension trajectories of the PTO. By

measuring the torque at the output shaft of the motor, as well as its speed we can

measure the mechanical power the top motor consumes when reeling-in and gener-

ates when reeling-out. By measuring the current going from the motor controller to

the battery and the voltage of the battery we can measure the electrical power that

is consumed or generated. We compare these power trajectories in Figure 5.8.

As expected the mechanical power is higher than the electrical power when

reeling-out as our motor generates electricity, and the opposite occurs when reeling-

in and the motor consumes electricity. This difference is caused by both the me-

chanical and electrical losses of the setup. We can integrate these trajectories to

59



Figure 5.6: Picture of PTO for lake test that supports an additional motor on the
bottom shaft.

see how much energy is produced, as shown in Figure 5.9. This figure illustrate

how drastic is the difference in energy generated: An average mechanical power of

15.33W compared to an average electrical power of 0.16W.

5.5 Parameter identification

We use the experimental results presented in this chapter to estimate unknown

parameters of the PTO system. Namely, we can estimate the armature resistance

R, the damping coefficient b, and the motor constant K.

We estimate R and b using the loss in power after the electrical conversion as

our measured variable. We can write an expression for the power loss assuming all

the electric losses are captured by a linear function of current squared, and all the

mechanical losses are captured by a linear function of the rotor speed squared:

Ploss = ‖Pmech − Pelec‖ = Ri2 + bω2 (5.1)
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Figure 5.7: Measured release rate and tension during three periods.

Parameter Estimate
Armature Resistance 4.939Ω
Damping Coefficient 5.741e−4N m rad−1 s
Motor Constant 0.256N m A−1

Table 5.2: Parameter estimates

We can use this expression taking the current squared i2 and the rotor speed

squared ω2 as regressors in a linear regression problem that we can solve using linear

least squares.

We can perform the same technique to estimate the motor constant K by using

as measured variable the motor torque τ and current as a regressor as torque and

current are related linearly as:

τ = Ki (5.2)

The estimated parameters are shown in Table 5.2.
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Figure 5.8: Measured mechanical power and electrical power of PTO during three
periods.

Figure 5.10 shows the measured power loss and the predicted power loss using

the above estimates for armature resistance and damping coefficient.

We can use our estimates to predict the electrical power consumed using the

expression we derived in 4.9 and using our measurements of speed and torque. In

Figure 5.11 we compare this predicted electrical power to the electrical power we

obtain by multiplying measured current and measured voltage.

5.6 Chapter conclusion

In this chapter we described the design and fabrication of two PTO systems.

One capable only of reel-in intended for pool testing of a prototype kite, and the

other capable of both reel-in and reel-out intended for lake-testing. The second

PTO system was designed and fabricated with the ability to integrate an additional
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Figure 5.9: Generated mechanical and electrical energy during three periods.

electric motor that was used to evaluate how much electrical power is generated

by running open-loop trajectories optimized for mechanical power. We found that

the losses in power, that is the difference between mechanical power and reel-in

power are significant and greater than what we simulated in the previous chapter.

Finally, we used the data from these experiments to estimate the parameters of

the electric machine, that is: the armature resistance, the motor constant, and

the rotor damping ratio. The identified parameters differed significantly from the

assume parameters used in our optimization study in chapter 4 offering a potential

explanation to the optimistic results obtained in that chapter. More specifically,

the parameters assumed in chapter 4 unrealistically underestimate the losses in the

system, and thus also diminish the potential of the optimized trajectories to reduce

the power loss to inefficiencies. Future work must include re-optimization of these

trajectories using more the more realistic parameters estimated in this chapter.
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Figure 5.10: Measured power loss and predicted loss using estimated parameters
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Figure 5.11: Measured mechanical power, measured electrical power, and electrical
power prediction w/ estimated parameters
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Chapter 6: Summary and Conclusions

6.1 Summary

The goal of this dissertation is to provide the scientific community with model-

based algorithms for online optimal trajectory control of a marine hydrokinetic

system. We made four research contributions along this overarching goal:

1. An integrated model of the flight and tether dynamics of a marine hydrokinetic

energy harvesting system.

2. The trajectory optimization of a marine hydrokinetic kite.

3. The trajectory optimization of a marine hydrokinetic kite accounting for the

electrical efficiencies of the power take-off system.

4. The design and fabrication of the power take-off system of a lab-scale marine

hydrokinetic energy harverster.

In chapter 2 we derived a simplified 3DOF model and a flexible tether model.

For a neutrally buoyant tether with a sufficiently low mass, it is possible to neglect

the dynamics of the tether. This allowed us to use this simplified model for optimiza-

tion. In chapter 3 we used this simplified 3DOF to analytically obtain trajectories
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that maximize the mechanical power generated by the system by linearizing our dy-

namics around a zero-power equilibrium and imposing sinusoidal input trajectories.

One important discovery made in this chapter was the degree to which reel-out and

reel-in are achieved in the plane perpendicular to the free-stream flow. In chapter

4 we re-formulated our problem to account for the electrical efficiencies. Finally, in

chapter 5 we design and fabricated two PTO systems for pool, laboratory, and lake

tests. In laboratory tests we evaluated the electric power that is generated by the

trajectories optimized for mechanical power. We also used the experimental data to

identify the electric parameter of the system.

6.2 Future work

Our parameter identification in chapter 5 yielded results that differ signifi-

cantly with the empirically obtained parameters used in our optimization work that

accounts for the electrical efficiency of the system in chapter 4. Our study suggests

that we underestimated the magnitude of the electrical losses in the system, which

could explain the small gains obtained by optimizing for accounting these losses. Fu-

ture work should re-optimize these trajectories using the experimentally identified

parameters.

In addition to that, the work presented in chapter 3 assumes the period of the

reel-in/reel-out motion is the same as the cross-current motion. Future work should

explore the effect of relaxing this restriction makes.
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