
ABSTRACT

Title of Dissertation: ADVERSARIAL MACHINE LEARNING
IN THE WILD

Parsa Saadatpanah
Doctor of Philosophy, 2021

Dissertation Directed by: Professor Tom Goldstein
Computer Science Department

Deep neural networks are making their way into our everyday lives at an increasing

rate. While the adoption of these models has greatly improved our everyday lives, it

has also opened the door to new vulnerabilities in real-world systems. More specifically,

in the scope of this work we are interested in one class of vulnerabilities: adversarial

attacks. Given the high importance and the sensitivity of some of the tasks these models

are responsible for, it is crucial to study such vulnerabilities in real-world systems. In this

work, we look at examples of deep neural network-based real-world systems, vulnerabilities

of such systems, and approaches for making such systems more robust.

First, we study an example of leveraging a deep neural network in a business-

critical real-world system. We discuss how deep neural networks improve the quality of

smart voice assistants. More specifically, we introduce how collaborative filtering models

can automatically detect and resolve the errors of a voice assistant. We then discuss the

success of this approach in improving the quality of a real-world voice assistant.

Second, we demonstrate a proof of concept for an adversarial attack against content-

based recommendation systems which are commonly used in real-world settings. We

discuss how malicious actors can add unnoticeable perturbations to the content they

upload to the website to achieve their preferred outcomes. We also show how adversarial

training can render such attacks useless.

Third, we discuss another example of how adversarial attacks can be leveraged

to manipulate a real-world system. We study how adversarial attacks can successfully

manipulate YouTube’s copyright detection model and the financial implications of this

vulnerability. In particular, we show how adversarial examples created for a copyright

detection model that we implemented transfer to another black-box model.

Finally, we study the problem of transfer learning in an adversarially robust setting.

We discuss how robust models contain robust feature extractors and how we can leverage

them to train new classifiers that preserve the robustness of the original model. We then

study the case of fine-tuning in the target domain while preserving the robustness. We

show the success of our proposed solutions in preserving the robustness in the target

domain.

ADVERSARIAL MACHINE LEARNING IN THE WILD

by

Parsa Saadatpanah

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:
Professor Tom Goldstein, Chair/Advisor
Professor Wojciech Czaja
Professor John Dickerson
Professor Furong Huang
Professor Christopher Metzler

c© Copyright by
Parsa Saadatpanah

2021

Dedication

To my beloved wife, loving parents, and supportive brother.

ii

Acknowledgments

First and foremost, I owe my gratitude to my advisor Professor Tom Goldstein

for guiding me through my Ph.D. journey. Above everything else, I appreciate that he

patiently allowed me to follow my interests and pursue my own goals. I am also incredibly

thankful for his continuous support, constructive feedback, and great ideas. Whenever I

felt stuck, he was there to help me find my next step and make progress. Not only I have

learned a lot in his class as a student, but also I learned how to be a good researcher and

think like a researcher from him. Tom made this journey feel exciting and fun rather than

like the massive endeavor it is.

Many Thanks to Wojciech Czaja, John Dickerson, Tom Goldstein, Furong Huang,

and Christopher Metzler for devoting their time and serving on my thesis committee, and

for their invaluable advice and suggestions.

I am thankful to all my fellow collaborators and co-authors who made all of this

work possible. It was a privilege to be able to work with so many bright researchers

throughout my Ph.D. journey.

I would also like to express my heartfelt gratitude for the unconditional support

of my friends throughout this journey, Saba Ahmadi, Soheil Behnezhad, Sina Dehghani,

Mahsa Derakhashan, Soheil Ehsani, Hossein Esfandiari, Alireza Farhadi, Amin Ghiasi,

Mahyar Najibi, Kiana Roshanzamir, Hamed Saleh, Saeed Seddighin, Ali Shafahi, and

iii

Hadi Yami.

Last but not least, I owe my deepest thanks to my family. First and foremost, my

beloved wife Madeline for being there for me no matter what and always believing in me.

And my loving parents Mahboubeh and Alireza, and my brother Pooya, without whom

this journey would not have been possible.

iv

Table of Contents

Dedication ii

Acknowledgements iii

Table of Contents v

List of Tables vii

List of Figures viii

Chapter 1: Introduction 1
1.1 Adversarial Attacks . 2
1.2 Adversarial Robustness . 3
1.3 Adversarial Attacks in Real-World Settings 4
1.4 outline . 6

Chapter 2: Voice Assistant Error Resolution via Collaborative Filtering 8
2.1 Introduction . 8
2.2 Voice Assistant Platform . 12
2.3 Error Detection . 14
2.4 Error Resolution via Collaborative Filtering 16

2.4.1 Collaborative Filtering Model 18
2.4.2 Training . 19
2.4.3 Collaborative Error Resolution 20

2.5 Results: real-world errors resolved . 21
2.6 Conclusion and Future Work . 27

Chapter 3: Adversarially Robust Cold-Start Recommendations 29
3.1 Introduction . 29
3.2 Cold-Start Model . 32

3.2.1 Collaborative Filtering model . 33
3.2.2 Content based model . 36

3.3 Adversarial Attacks on Cold-Start Recommendation Models 38
3.3.1 Real-world attacks . 40

3.4 Adversarilly Robust Model . 42
3.5 Experiments . 45

3.5.1 Dataset . 45

v

3.5.2 Naturally trained model . 45
3.5.3 Attacking the naturally trained model 46
3.5.4 Adversarially trained models are robust 50

3.6 Conclusion . 51

Chapter 4: Adversarial Attacks on Copyright Detection Systems 53
4.1 Introduction . 53
4.2 What makes copyright detection systems vulnerable to attacks? 54
4.3 Types of copyright detection systems . 56
4.4 Case study: evading audio fingerprinting 58

4.4.1 Audio fingerprinting models . 58
4.4.2 Interpreting the fingerprint extractor as a CNN 59
4.4.3 Formulating the adversarial loss function 62
4.4.4 Crafting the evasion attack . 64
4.4.5 Remix adversarial examples . 64

4.5 Evaluating transfer attacks on industrial systems 66
4.5.1 White-box attack results . 66
4.5.2 Transfer attacks on AudioTag . 67
4.5.3 YouTube . 69

4.6 Conclusion . 71

Chapter 5: Adversarially robust transfer learning 72
5.1 Introduction . 72
5.2 Background . 74
5.3 The robustness of deep features . 76
5.4 Transfer learning: Recycling feature extractors 78

5.4.1 Transfer Learning with ImageNet models 80
5.4.2 Low-data regime . 82

5.5 Analysis: Robust feature extractors are filters 85
5.6 End-to-end training without forgetting 86
5.7 Conclusion . 90
5.8 Experiment details . 91

5.8.1 LWF-based experiments . 91
5.8.2 ImageNet to CIFAR experiments 91
5.8.3 Free training experiments . 91

5.9 The distance between feature representations of natural images and augmented
images . 92

5.10 LwF-based robust transfer learning for similar source and target datasets . 93
5.11 Improving generalization of the CIFAR-10 adversarially trained model . . 94

Chapter 6: Conclusion 95

Bibliography 98

vi

List of Tables

2.1 Most frequent errors along with their resolution and the error resolution
probability. 22

2.2 Most impactful errors along with the voice commands they are affecting. . 23
2.3 Errors most likely to be detected correctly, along with their resolutions. . . 25
2.4 Errors with the highest resolution probability, along with their resolutions. 25
2.5 Top clusters of errors and their resolution 26

3.1 Success rate of adversarial attacks against naturally trained model 47
3.2 Robustness of naturally trained model in comparison to adversarially trained

models. 48

4.1 Norms of the perturbations for white-box attacks. Before computing the
norms, we have normalized the signals to have samples that lie in [0, 1]. . 67

4.2 Norms of the perturbations in adversarial examples that can evade each
real-world system. Before computing the norms, we have normalized the
signals to [0, 1]. 69

5.1 Accuracy and robustness of natural and adversarially trained models on
CIFAR-10+ and CIFAR-100+. The “+” sign denotes standard data augmentation. 76

5.2 Transfer learning by freezing the feature extractor layers. 79
5.3 Transfer learning from ImageNet. 81
5.4 Distilling robust features using learning without forgetting. The bottom

rows show results from transfer learning with a frozen feature extractor.
The ‘+’ sign refers to using augmentation. 89

5.5 Decreasing generalization gap by transferring with LwF. For reference,
last row shows results from adversarial training CIFAR-100. The ‘+’ sign
refers to using augmentation. 90

5.6 Distilling robust features using LwF for the split CIFAR-100 task. For
reference, we have included the results from transfer learning by freezing
the features at the bottom of the table. 93

5.7 Decreasing generalization gap by transferring with LwF. For reference,
last row shows results from adversarial training CIFAR-10. The ‘+’ sign
refers to using augmentation. 94

vii

List of Figures

2.1 The long tail distribution of top families of action 12
2.2 Four voice session examples. 15

3.1 The Collaborative Filtering model trained on historical user-item interaction
data . 34

3.2 Convolutional encoder to project movie posters into their embedding. . . 37
3.3 Most similar items to two examples of in-vocabulary and out of vocabulary

items . 44
3.4 Clean vs. adversrially perturbed posters of a cold item. The adversarial

perturbations are not noticeable to humans. 49
3.5 Item-item similarity results after an adversarial attack 49
3.6 Adversarial attack’s success rate for N=1 and N=5 at different attack ε

values. 51

4.1 An audio fingerprinting model with two convolution layers and a max
pooling layer. This model produces binary fingerprints by finding local
maxima of the spectrogram of the input signal. 61

4.2 AudioTag can identify the benign audio signals, but fails to detect adversarial
examples. 67

4.3 YouTube can successfully identify the benign/original audio signal while
it fails to detect the adversarial examples. 68

4.4 YouTube’s copyright detection recall against the magnitude of noise on
top Billboard songs dataset . 70

5.1 Robustness is preserved when we retrain only the deepest block(s) of
robust CIFAR-10 and CIFAR-100 models using natural examples. The
vertical axis is the accuracy on PGD-20 generated adversarial examples
(i.elet@tokeneonedotrobustness) after re-training deep layers. The robustness
of the adversarially trained models if all layers are frozen are shown with
dashed lines. 77

5.2 Wide Resnet 32-10 and the blocks used for freezing/retraining 78

viii

5.3 When the number of training data per-class is very limited (right bars),
adversarially robust transfer learning [Transferred] is better in all metrics.
However, as the number of training data increases (left bars), fine-tuning
with adversarial examples of the target domain [Fine-tuned with AT] results
in more robustness. Adversarially robust transfer learning always results
in models that work better on natural examples and is 3× faster than fine-
tuning with adversarial examples of the target domain. Using a pre-trained
robust ImageNet improves both robustness and generalization. 83

5.4 Training an MLP for CIFAR-100 on top of the robust feature extractors
from ImageNet. The x-axis corresponds to the number of hidden layers
(0 is a linear classifier and corresponds to experiments in section 5.4.1.1).
Robustness stems from robust feature extractors. Adding more layers on
top of this extractor does not hurt robustness. Interestingly, simply adding
more layers does not improve the validation accuracy and just results in
more overfitting (i.elet@tokeneonedottraining accuracy becomes 100%).
We can slightly improve generalization using batch norm (BN) and dropout
(DO). 85

5.5 Gradients of the loss w.r.t to input images for the CIFAR-100 transfer
learning experiments of sections 5.4.1.1 & 5.4.2.1. The top row contains
sample CIFAR-100 images. Other rows contain image gradients of the
model loss. The second row is for a model transferred from a naturally
trained ImageNet source. Rows 3-5 are for models transferred from a
robust ImageNet source. These rows correspond to an MLP with 0 (row
3), 1 (row 4), and 2 (row 5) hidden layers on top of the robust feature
extractor. The gradients in the last three rows all show interpretable generative
behavior. 86

5.6 Our LwF loss has a term that enforces the similarity of feature representations
(i.elet@tokeneonedotpenultimate layer activations) between the source
model and the fine-tuned model. 87

5.7 Figures 5.7a and 5.7b both show that the values of ‖z(x, θ∗r), z(xa, θ∗r)‖2
are high most of the time, consequently, LwF is better done without data
augmentation. 92

ix

Chapter 1: Introduction

In recent years, Deep Neural Networks (DNNs) have been making their way into

our everyday lives at an increasing rate. Voice assistants, autonomous cars, smart home

security cameras, and recommendation systems are a few examples of widely used real-

world systems that are highly dependent on DNNs for their functionality. In many cases,

such systems are considered business-critical, and their malfunction can result in significant

financial loss, legal loss, or even human casualties. For example, a malfunction in the

object detection model of an autonomous car can result in the car not detecting a pedestrian

is on the road. Or, a malfunction in the Automatic Speech Recognition model or the

Natural Language Processing model of a Voice Assistant can result in a message (possibly

containing sensitive information) being sent to the wrong recipient. Furthermore, the

business-critical nature of these systems creates a real incentive for malicious actors to try

to attack these systems. For example, a business rival might try to decrease the revenue

of an online store by causing poor product recommendations.

The rapid adoption of DNNs can be attributed to their significantly high performance

on many benchmarks and in real-world tasks. By automatically extracting meaningful

features out of large, complex datasets, these models have become the obvious choice for

many real-world use cases. However, there are situations in which these models perform

1

very poorly. The most common cause of a model’s performance degradation in real-world

settings is distribution shifts. DNNs are very sensitive to the distribution of the data they

have been trained on, and the general working assumption for them is that the test data

is from the same distribution as the training data. However, in a real-world setting, the

distribution of the data is constantly changing. For example, the distribution of what

people buy on an online store during December is very different than what they would

buy in January. So a recommendation system trained on the data from December, would

not perform well on January 1st. However, distribution shifts are not the only scenario in

which models perform poorly in real-world settings. Adversarial attacks can also cause

these real-world models to have a degraded performance.

1.1 Adversarial Attacks

Adversarial attacks refer to a family of attacks against machine models in which a

malicious actor makes small changes to the input of the model to cause large changes to

the output. For example, in the computer vision domain, an adversary can slightly change

an image to cause it to be misclassified by the machine learning model while keeping

the change unnoticeable to human eyes. These attacks have been demonstrated on some

potentially sensitive systems, largely in an idealized academic context, and occasionally

in the real-world [1, 2, 3, 4, 5, 6].

There are two major types of adversarial attacks: targeted and non-targeted. In a

non-targeted attack, the adversary only tries to make sure that the output of the perturbed

input is as different as possible from the true output. The optimization problem in equation 1.1

2

describes the non-targeted adversarial attacks. In this equation, δ refers to the perturbation,

x is the input to the model, y is the true output, θ is the set of parameters that define the

model, L is the loss function, and ε defines an upper bound for how big the perturbations

can be.

max
δ
L (x+ δ, y; θ) s.t. ‖δ‖p ≤ ε (1.1)

On the other hand, in targeted attacks, the adversary tries to make the output of the

model as similar as possible to a particular target. Similar to non-targeted attacks, we

can formulate targeted adversarial attacks with an optimization problem as described in

equation 1.2. Here, yt refers to the target output for the attack.

min
δ
L (x+ δ, yt; θ) s.t. ‖δ‖p ≤ ε (1.2)

1.2 Adversarial Robustness

A machine learning model is considered robust if it can maintain its accuracy

against adversarial attacks. Although naturally trained DNNs often completely fail under

adversarial inputs [7, 8], there are different approaches to train DNNs that are more robust

to such attacks. The problem of training models that are robust to adversarial attacks has

been studied for different types of adversarial attacks [9, 10]. Generally speaking, these

approaches train the model by not just trying to minimize the loss function, but rather

trying to minimize the loss function in the presence of deliberately chosen adversarial

perturbations.

One of the most common approaches for achieving this goal is to use adversarial

3

training, in which adversarial examples are crafted on the fly during network training

and injected into the training set. While this approach greatly improves the robustness

of DNNs against adversarial examples, it significantly increases the training time of

the model. To create strong adversarial examples, we need to run multiple iterations

of projected gradient descent for each training example where each iteration requires a

forward and a backward pass. So training an adversarially robust model would need

k-times more computation where k is the number of PGD iterations. The substantial

difference in the training time of a robust model compared to a naturally trained model

complicates the adaption of robust models in real-world settings.

Furthermore, it is known that a relatively large dataset is required to train a robust

model [11]. The data-hungry nature of these robust models makes them a poor fit for

settings where we don’t have access to a large amount of data to train on. Specifically, in

many real-world settings, the cost associated with collecting and labeling large volumes

of data can be prohibitive. Therefore, for integrating robust models in real-world settings,

we need an alternative approach that can work with small datasets.

1.3 Adversarial Attacks in Real-World Settings

Adversarial attacks have been widely studied in idealized academic contexts and

on benchmark datasets. While there are a few works that look into the vulnerability

of real-world systems such as self-driving cars [1], and high-frequency trading systems

[12] to adversarial attacks, the problem of adversarial attacks against real-world systems

is generally unexplored. Given the significant role that machine learning models play in

4

real-world systems and the financial and legal consequences of a failure for these systems,

the problem of building adversarially robust machine learning models for real-world use

cases needs to be studied more extensively.

It can be argued that more research contributions on demonstrating the effectiveness

of adversarial attacks against the real-world system can incentivize and justify the future

work for building adversarially robust models. By demonstrating successful adversarial

attacks against major real-world systems as a proof of concept, we can encourage the

community to address the vulnerability of these systems to adversarial attacks. In particular,

by targeting real-world systems that influence billions of dollars in revenue we can emphasize

the urgency of this problem.

A copyright detection system is an example of a real-world system the heavily

relies on machine learning models and is responsible for ensuring billions of dollars are

revenue are not lost by content creators and copyright holders. In this setting, a malicious

actor is incentivized to use an adversarial example to circumvent these systems to upload

copyright-protected content and benefit from the ad or subscription revenue generated by

that content.

A recommendation system is another example of the application of machine learning

in a real-world system. Online stores heavily rely on recommendation systems to show

the most relevant items to the users and maximize their revenue which, can be hundreds

of billions of dollars. In this setting, a seller can leverage adversarial examples to force

the system to recommend their product more frequently and to more users to increase

their sales revenue.

5

1.4 outline

In Chapter 2, we discuss an example of a critical real-world system that heavily

relies on a machine learning model. In particular, we address the problem of error

detection and error resolution for smart voice assistants, and how a machine learning

collaborative filtering model can be utilized to solve the problem. Despite all the advancements

in Automated Speech Recognition (ASR) and Natural Language Processing (NLP) systems,

voice assistants are still not perfectly accurate. Many times a voice assistant error either

fails to do anything or does something unrelated in response to a voice command. In this

chapter, we introduce a novel approach for error detection and resolving such errors by

using a collaborative filtering model.

We then discuss a proof of concept for a real attack against a recommendation

system in chapter 3. Specifically, we propose a new attack model that targets cold-start

recommendations — i.e the situation where we don’t have access to the historical user-

item interaction data for a newly added item or a newly joined user. In this setting, we

look at content-based methods where metadata and the content information of a new item

are used for generating recommendations. In our proposed attack, a malicious actor can

achieve their desired outcome by making small perturbations to the content information

of a new item while making sure the perturbations are not noticeable by a human. We

then discuss a defense mechanism against this attack. Particularly, we show that by using

adversarial training we can render such attacks useless.

In chapter 4, we explore another adversarial attack against a real-world system.

In this chapter, we discuss a novel mechanism for crafting adversarial examples that can

6

evade copyright detection systems. By using a gradient-based attack we create adversarial

music that is easily recognizable to a human while evading detection by a machine. The

adversarial examples created by our approach have a very good transferability to black-

box models. In particular, we show that the adversarial examples created by our approach

can successfully fool proprietary industrial systems.

Finally, in chapter 5 we discuss a new approach for training machine learning

models that are robust against adversarial attacks. In particular, we address the problem

of training adversarially robust models when we have a limited amount of training data

available to us, or the computational resources available to us at training time are limited.

We start by observing that robust networks contain robust feature extractors. By training

classifiers on top of these feature extractors, we produce new models that inherit the

robustness of their parent networks. We then consider the case of “fine-tuning” a network

by re-training in the target domain. By using this approach, it is possible to produce

accurate and robust models with little data, and without the cost of adversarial training.

Additionally, we can improve the generalization of adversarially trained models, while

maintaining their robustness.

7

Chapter 2: Voice Assistant Error Resolution via Collaborative Filtering

2.1 Introduction

The rapid advancements of Machine Learning in recent years have drastically changed

our everyday lives. As a part of this change, speech-driven smart agents (also known as

Voice Assistants) such as Amazon Alexa, Google Assistant, or Apple Siri have become

an integral part of our lives. The simplicity and convenience of interacting with voice

assistants have made us accustomed to using our voice assistants for many everyday tasks

such as controlling our smart homes, making phone calls, setting reminders, and making

general inquiries. This convenience is a result of voice assistants’ ability to understand

our spoken language.

Any voice assistant consists of two main components: 1) an Automatic Speech

Recognition (ASR) system, and 2) a Natural Language Processing (NLP) system. When

a user directs a spoken command at a voice assistant, the recorded audio signal is sent to

the ASR system to get the command transcription. Then, the transcription is sent to the

NLP system to understand the user’s command and then choose an action accordingly.

Voice assistants owe their impressive accuracy and quality to recent advancements in

both ASR and NLP. Novel ASR models [13, 14, 15, 16] have enabled the voice assistants

to accurately transcribe the user commands in the noisiest environments. Furthermore,

8

advancements in NLP and voice search in particular [17, 18, 19, 20, 21] have made it

possible for the users to have the most natural speech-based interactions with their voice

assistants.

Voice assistant errors: Despite all the advancements in ASR and NLP, voice

assistants are still not perfectly accurate. Many of us have experienced hearing “Sorry, I

didn’t quite get that” from a voice assistant in response to a voice command we had issued.

Or even worse, voice assistants sometimes misunderstand us and do something entirely

unrelated. In this work, we define a voice assistant error as the voice assistant either

failing to do anything or doing something unrelated in response to a voice command.

While these errors are sometimes unavoidable because the user wants something beyond

the system capabilities, many of the errors are in response to voice commands that are

well within the capabilities of the voice assistant. Generally speaking, such voice assistant

errors can be caused by one of the two following reasons: 1) the ASR system produces a

wrong transcription from the audio signal, or 2) the NLP system is not able to correctly

understand or respond to the voice command.

Voice assistant errors negatively impact the user experience and therefore need to

be addressed. Previous works have approached this problem as a predictive task: given

a command, predict the correct response. This requires a significant amount of labeled

training data which would need to be collected by first identifying all voice assistant

errors, and then finding the correct labels for them. Shokouhi et al. [22] use heuristics

based on click-through logs to guess the correct transcription label (for ASR) whereas

Rao et al. [18] use similar heuristics based on viewing patterns to guess the appropriate

NLP response.

9

While prior work has focused on holistically replacing the existing voice assistant

with a predictive ML model, this approach can sometimes be too disruptive in an existing

real-world voice assistant product. Business considerations often warrant a more tactful

approach — separating the errors out of a potentially very large number of user commands

and then providing a resolution to fix each error. For the rest of this chapter, we will refer

to the first part of this process as Error Detection and the second part as Error Resolution.

Error Detection is straightforward if the voice assistant simply did not understand

the command and failed to take any action (resulting in a message such as “Sorry, I

didn’t quite get that”). These cases can be automatically extracted from voice command

logs. However, it can be very challenging to detect cases where the voice assistant

misunderstands a command and takes the wrong action. In this scenario, everything

looks normal from the voice assistant’s perspective, making it hard to distinguish from

correctly handled cases. Even humans would require to spend a significant amount of

effort to identify these errors. For example, if an annotator were to only look at the

transcriptions and not to listen to the audio, she would think the transcription “CVS” (a

pharmacy) is correct while the user had said “CBS” (a TV channel). Among the millions

of voice commands issued by users every day, error detection becomes an impossible task

for human annotators.

Error Resolution, on the other hand, requires knowledge of the system as well as

the domain. Following the previous example, even if we knew that the response “CVS”

was a voice assistant error, finding a resolution would require the knowledge that there

is a TV channel called “CBS” which sounds similar to “CVS”, making it a likely ASR

error. Going through errors every day and making this judgment requires time and effort

10

from skilled annotators.

In this work, we propose automated processes for error detection and error resolution,

as well as an optional manual verification step. We use the “wisdom of the crowd” in

an unsupervised fashion to solve both problems. We combine explicit signals (e.g., user

repeating the same command in the same session) with a collaborative filtering model [23]

trained directly on voice command logs to predict the likelihood of a voice assistant error.

The model is also used to extract item-item similarities and suggest other commands as a

resolution. To the best of our knowledge, this work is the first time collaborative filtering

is being used to directly identify and resolve voice assistant errors. While utilizing voice

command logs as a source of ground truth has been previously explored [18, 22], it has

never been used in the context of collaborative filtering.

The main contributions of this work are the following:

• We introduce a novel approach for error detection in a voice assistant through the

utilization of voice command logs.

• We introduce a novel approach for error resolution based on collaborative filtering.

To the best of our knowledge, we are the first to use collaborative filtering for such

a task or in the context of voice assistants and voice search.

• We demonstrate the effectiveness of our proposed approach by evaluating it against

one of the most popular voice assistants used in the United States with tens of

millions of users.

11

C
h
a
n
n
el

A
p
p
s

S
er
ie
s

M
ov
ie
s

B
ro
w
se

C
M
D

D
V
R

P
er
so
n

M
u
si
c
V
id
eo

O
th
er

0

0.1

0.2

0.3

0.4
P
ro
b
a
b
il
it
y

Figure 2.1: The long tail distribution of top families of action

2.2 Voice Assistant Platform

Our voice assistant platform has reinvented the way that customers can discover

and access content on an entertainment platform. The voice remote delivers a simple and

fast access to live, recorded, and on-demand entertainment, sports, and news content.

This voice remote allows the users to find what they are looking for with spoken

12

language as input. The voice command issued by the user is first transcribed to text

by an Automatic Speech Recognition (ASR) system and then is processed by a Natural

Language Processing (NLP) system to map the user’s voice command to an appropriate

action (e.g. “tune to a TV channel”) to be executed on TV.

Each year, several billion voice commands are received by this voice remote. The

voice commands are mapped into more than a hundred different categories of user intents

and executable actions (such as “tune to a TV channel”, “open third-party applications”,

“find a movie/show title”, “browse a collection of movies/shows by genre” etc.). A

taxonomy for user intents to categorize different types of commands has been created

and a combination of hand-crafted rules and machine-learning models are detecting the

user intent for a given voice command [24].

Although users issue hundreds of thousands of unique voice commands, those

commands have a very long tail distribution. The top 10 unique voice commands issued

by the users consist of approximately 30% of the total voice command logs. This observation

also holds across families of actions (intents). The top action (“tune to a TV channel”)

alone consists of almost 40% of the total voice command logs. Figure 2.1 shows the

distribution of top intents.

Error detection and resolution of our entertainment platform voice assistant is a

cumbersome task and with the very large amount of voice command logs that are generated

every day it is impossible to manually verify the response of the ASR and NLP systems.

In this work we share the techniques and data-driven approaches that we use for error

detection and error resolution.

13

2.3 Error Detection

As described earlier, voice assistant errors can be caused by either the ASR system

producing a wrong transcription from the audio signal or the NLP system not being able

to understand the voice command or respond to it correctly. We categorize voice assistant

errors into two types: 1) voice assistant’s failure to take any action in response to voice

command and 2) voice assistant executing an action unrelated to a voice command. In

what follows we describe how we aim at detecting these errors.

Failure-based error detection: Error detection is straightforward if the voice assistant

simply was not able to respond to a voice command (resulting in a message such as “Sorry,

I didn’t quite get that”). Whether ASR failed at transcribing the audio signal correctly or

NLP failed at understanding and responding to a voice command, these errors can be

easily extracted from the voice command logs.

Voice session-based error detection: Generally speaking, most user interactions

with the voice assistant consist of issuing one voice command followed by a long period

of silence. This happens because the users will get their desired content or outcome after

issuing the first voice command and do not need to interact with the voice assistant any

further. However, a user sometimes issues a sequence of back-to-back voice commands in

a relatively short amount of time. This pattern of short bursts of multiple voice commands

(aka voice session) appears across other voice assistant and voice search platforms as well

[18, 21, 22]. The definition of a “voice session” varies but in this work we borrow the

definition of Rao et al. [24] for a “voice session”: a sequence of consecutive commands

with a maximum gap of less than 45 seconds between commands. Figure 2.2 shows

14

Game of
Thrones

Fox News

CNN

MSNBC
Khlu

Civi

CVS
CB

CBS

Movie / Series

Channel

Error
Session 1 Session 2 Session 3 Session 4

Khlu KhluPS

Figure 2.2: Four voice session examples.

several examples for a voice session. As shown in this figure, a voice session can either

contain only a single voice command (session 1 - this is the case for most of the voice

sessions) or it can contain multiple voice commands (sessions 2, 3, and 4). There are

several cases in which a voice suggestion would have multiple voice commands. In some

of the long sessions, the user may be simply exploring several channels, movies, and

shows. Session 2 in figure 2.2 represents such a case where the user appears to be in an

exploratory mood. Most importantly, a voice assistant error can result in a voice session

where the user repeats the same or a similar voice command over and over within a short

period. Sessions 3 and 4 in figure 2.2 represent two of such cases where the user appears

to be having an unsatisfactory experience and is repeating the same voice command over

and over in the hope of averting the voice assistant error.

Based on the observation that users tend to repeat their voice command in one voice

session when they face an error, we can conclude that whether or not the same voice

command gets repeated in a single voice session can be a strong signal for detecting the

errors of the voice assistant. Therefore, we propose the following approach to automatically

identify the problematic voice commands that are impacting a lot of voice sessions.

For each voice command we compute these two values: 1) sessionr(c) = number of

voice sessions in which the voice command c has been repeated more than once, and 2)

15

sessiont(c) = total number voice sessions in which the voice command c has appeared at

least once. We then compute the following metric as a measure of how likely the voice

command c is an error:

m(c) =
sessionr(c)
sessiont(c)

(2.1)

This measure can then be used to identify the errors which we would have otherwise

missed using the failure-based detection method described earlier. Given this measure,

we can come up with a threshold θ for which we can say with high confidence that the

voice commands that have m(c) > θ are errors. Furthermore, this measure will allow the

QA engineers to focus their efforts on the voice commands that have a higher probability

of being an error (the voice commands with higher m(c)), rather than randomly looking

for errors among millions of voice commands.

Although the techniques described in this section will allow us to identify the voice

assistant errors, we still have no way of knowing what is the correct resolution for those

errors. For example, we need a mechanism to identify that the correct resolution for the

voice command “CVS” is “CBS” (refer to the examples in figure 2.2). In the following

section, we describe how collaborative filtering can be applied to voice assistant usage

logs to identify the correct resolution of the errors in an unsupervised fashion (without

the need for any annotated data).

2.4 Error Resolution via Collaborative Filtering

Collaborative filtering models are frequently used for training and building recommender

systems in various domains. In short, a recommendation system’s task is to provide a

16

ranked list of the most relevant items (products, movies, etc.) to a user based on the user’s

past interactions with other items. The past interactions of a user can be either in the

form of ratings given to different items by the user (explicit feedback), or it can be just

the history of all the items the user has consumed (implicit feedback). Implicit feedback

recommendation can be viewed as predicting the probability of how relevant an item is

to a user, given the history of all items the user has consumed. In other words, in implicit

feedback recommendation we are interested in predicting the value of P (c|Hu) where c

is an item, u is a user, and Hu = [cu,1, cu,2, · · · , cu,k] is the history of all the items user

u has previously consumed. This setting makes implicit feedback collaborative filtering

models the perfect candidate for our case since we don’t want to use any annotated data

and we only have access to the list of voice commands each user has issued.

In this work, we train a collaborative filtering model on the voice command logs of

a voice assistant. Training such a model will allow us to estimate how interchangeable

two voice commands are for the purpose of computing the probability P (c|Hu). This

similarity notion is referred to as item-item similarity in the recommendation systems

domain and using it allows us to find a resolution for an error by finding the most suitable

replacement for that error. To train this model, we treat each voice command as a single

item (e.g. “show me NBC” is treated as one item), and the voice assistant usage logs

(all the voice commands issued by a given user u) are treated as the history Hu. Note

that in this work we do not train the model at the word level, but rather at the voice

command level. In other words, the voice commands “NBC” and “show me NBC” are

treated as completely different items and we do not use the information about what words

each command contains at all. Furthermore, it’s worth mentioning that for training such a

17

collaborative filtering model we only use the usage logs of the voice assistant and we do

not need any form of annotated data.

Recently, a number of novel neural network-based collaborative filtering methods

are emerging [25, 26, 27, 28]. We believe the model we propose in this work is most

similar to [27] with some modifications to the training process and loss function.

2.4.1 Collaborative Filtering Model

The first step is to transform every voice command in Hu to their corresponding

latent vector representation. To do so, we use matrix Y|C|×d where C is the set of all voice

commands issued by all users and d is the embedding dimension. In order to transform

a voice command c to its latent vector representation, we will multiply its one-hot vector

representation ec (a |C| dimensional vector that has value 1 in the c-th dimension and 0

everywhere else) by matrix Y . We apply this transformation to all voice commands in list

Hu to get a list of d-dimensional vector representations [ecu,1Y, ecu,2Y, · · · , ecu,kY]. As

described in equation 2.2, we define the user’s vector representation Xu as the average of

vector representations of voice commands in Hu:

Xu =
1

|Hu|
∑
c∈Hu

Vector(c) =
1

|Hu|
∑
c∈Hu

(ecY) =

(
1

|Hu|
∑
c∈Hu

ec

)
Y (2.2)

After Computing the user vector, we need to project it into the decision space. To

do so, the user vector is passed through multiple layers of feed-forward fully connected

neural networks. It has been shown that doing so helps with the recommendation accuracy

of the model. We have also noticed a slight improvement in the embedding quality

18

because of the projection step. We refer to the output of the last feed-forward layer as

the projected user vector Xp
u. After computing this vector, we compute a score for all

voice commands in the set C based on how similar they are to Xp
u. To do so, we multiply

Xp
u with another matrix Y ′|C|×d. Similar to Y , each row of this matrix is a d dimensional

vector representation for a voice command. Using the Softmax function, we define the

probability of recommending voice command c to the user as

P (c|Hu) =
eX

p
uY

′
c
T∑

c′∈C
eX

p
uY

′
c′

T (2.3)

2.4.2 Training

First, we describe how training examples are generated from voice assistant usage

logs. We create the training examples from the last two weeks of the voice assistant usage

logs. Using only the recent portion of the logs ensures that the resolutions suggested

by the model are fresh and relevant to new errors, and it will ensure that the amount of

training data is small enough that the model can be trained in a reasonable amount of time.

We will also filter out the usage logs from the users that issued too little or too many voice

commands during that period. Doing so will improve the quality of the training data by

removing the parts that are more likely to contain noise.

Given the filtered data, we create one training sample for each pair of user u and

voice command c in voice assistant usage logs. Each training sample has a training history

H t which contains every voice command inHu except c, and a training true label ct which

is the voice command omitted from user history (c). This process has been explained in

19

Algorithm 1: Create Training Samples
Samples = [];
for u ∈ U do

for c ∈ Hu do
H t = Hu − c;
ct = c;
Samples.add([H t, ct]);

end
end

algorithm 1. Training samples created by this process are randomly shuffled and batched

together for the model optimization.

To train our proposed model, we first need to propose a loss function. In this

work, we use the cross-entropy loss of P (·|H t) against ct to optimize our model. For

a training batch B, the loss function can be computed from equation 2.4 which can be

used alongside a stochastic optimizer to train the model.

1

|B|
∑

Ht,ct∈B

−log

 P (ct|H t)∑
c′∈C

P (c′|H t)

=

1

|B|
∑

Ht,ct∈B

−XutY
′
ct
T
+ log

(∑
c′∈C

eXutY
′
c′

T

)
(2.4)

2.4.3 Collaborative Error Resolution

As we discussed earlier, the item-item similarity measure extracted from this model

is the basis of our proposed error resolution method. To compute this measure, we use

the latent space representations (matrix Y to be exact) of the voice commands. Since the

model we used here is based on Word2Vec model [29], two voice commands will have

similar representations if they either appear frequently together or they appear interchangeably

20

in a similar context. This characteristic is particularly useful for error resolution because

1) an error and its resolution frequently appear together in the usage logs data when a

user manages to successfully avert that error, and 2) an error and its resolution appear

frequently in a similar context since the context only depends on the taste and preferences

of the user.

To compute the item-item similarity [23], we use embedding vectors from matrix

Y|C|×d. Given the latent space projections extracted from matrix Y , we define the similarity

of two voice commands as the cosine of their corresponding vectors:

sim(c1, c2) = cos(Yc1 , Yc2) =
Yc1 · Yc2
|Yc1| · |Yc2|

(2.5)

For a given error e, we define its resolution as the voice command c with the highest

similarity score to e that is not an error itself. Note that we can identify whether a voice

command is an error or not based on methods described in section 2.3 and we do not need

any annotated data. Furthermore, we define the resolution probability of error e as the

cosine similarity between its latent vector representation and the vector representation of

its resolution.

2.5 Results: real-world errors resolved

In this section, we report the results of running our model on the real-world voice

command logs gathered from two weeks in 2019. First, a set of potential voice assistant

errors were identified based on methods described in Section 2.3. Then, an error resolution

model was trained as described in Section 2.4. Afterward, we tried to derive valid resolutions

21

Row Error Resolution Resolution prob.

1 Pham Fam 0.964

2 Mickey Mouse Club Mickey Mouse Clubhouse 0.96

3 Oh Old 0.92

4 Cing Scene 0.938

5 Boat Bolt 0.948

Table 2.1: Most frequent errors along with their resolution and the error resolution
probability.

for the identified errors (following Section 2.4.3). Although we have introduced an

approach to automatically detect and resolve voice assistant errors, we still need to rely

on human annotators to verify the output of our model and prevent new errors from being

introduced to the system. However, the number of errors identified by our proposed

approach can sometimes be more than what human annotators can review in a reasonable

amount of time. Therefore, we need a mechanism to prioritize the errors for human

annotators. In this section, we described the different methods of prioritizing the errors

and some examples of real-world, high-impact errors that were prioritized by each method.

All the errors reported in this section have been automatically detected and resolved from

the voice assistant production environment. As can be seen in the results in this section,

most of the errors reported by our model have been identified and resolved correctly.

Therefore, the utilization of our proposed model has allowed QA annotators to fix more

errors in a shorter amount of time.

Common Errors: Most frequent errors are the ones users notice the most and

therefore impact the overall system more than others. such errors with the highest frequency

are reported in Table 2.1. The most common error that voice remote users came across

22

Row Error Impacted commands

1 BC NBC, ABC

2 Mickey Mouse Club Mickey Mouse Clubhouse, Mickey Mouse

3 Mark Hallmark

4 CVS CBS

5 Soprano Sopranos

Table 2.2: Most impactful errors along with the voice commands they are affecting.

during this evaluation period was the voice command transcribed as “Pham”. In this

case, the error resolution model correctly predicted “Fam” to be what the user intended

to say (with the confidence of 0.964). At the time of this evaluation, Fam was a newly

released TV show and the ASR system was not trained to produce that word and instead

incorrectly transcribed the audio. Three out of the five errors in Table 2.1 (“Pham”,

“Cing”, and “Boat“) are examples of ASR errors. Once verified by a human annotator,

an action item can be taken based on this table. For example, a short-term solution might

be to automatically override all occurrences of “Pham” with “Fam” in the NLP system.

A longer-term solution might be to retrain the ASR system with sufficient training data

corresponding to positive audio examples of the command ”Fam”.

Errors similar to common voice commands: Although frequent errors are experienced

by users many times, they are not necessarily the ones that impair the user experience the

most. Alternatively, we argue that the errors occurring while using the core capabilities

of the system are the most annoying to the user. In other words, users may care a lot

more not to experience any errors when they are trying to issue one of the most common

commands (such as “tune to MSNBC”) than not experiencing a frequent error. We define

23

a new metric that computes the cosine similarity between vector representations of a given

command and any of the top frequent voice commands (not the frequent errors, but the

frequent voice commands in general). In this work, we consider an error impactful if

it is among the 5 most similar commands (using Equation 2.5) to one of the 100 most

popular voice commands. In contrast with error frequency, which is a metric aggregated

across all users, this metric measures the impact on individual users. Table 2.2 shows a

few examples of such errors. This list highlights the most impactful errors and the voice

commands they are affecting. For example, the command “BC” will result in an error,

and it happens a lot when the user wants to say either “NBC” or “ABC”. Meanwhile,

“BC” is an example of an error that is inherently ambiguous. It is most likely due to

the user speaking before they activate the microphone on the voice remote (resulting in

an incomplete audio signal), so we cannot be sure if the user’s true intention was to say

“NBC” or “ABC”.

While the prioritization methods we have described quantify the impact of errors,

many times there is no resolution due to the ambiguity of the command. For example,

one of the most common errors in voice command logs is the command “Go to” which is

probably caused by users not completing the command. Presenting such errors to human

annotators is a waste of time since there is no resolution. To de-prioritize such cases, we

also describe some prioritization methods that involve the correctness of errors and their

resolutions

Errors likely to be detected correctly: Based on our observations, a voice command’s

repetition frequency (equation 2.1) is highly correlated with its likelihood of being an

error. Therefore, we use equation 2.1 as one of the methods to prioritize the errors for

24

Row Error Repetition prob. Resolution

1 Khlu 0.51 Clue the Movie

2 Hey Dougie 0.413 Hey Duggee

3 Top wings 0.268 Top wing

4 Boat 0.257 Bolt

5 2 1/2 men 0.235 Two and a Half Men

Table 2.3: Errors most likely to be detected correctly, along with their resolutions.

Row Error Resolution Resolution prob.

1 Any back Eddie Mack 0.977

2 PS kids TBS kids 0.976

3 Dsckid TBS kids 0.976

4 Schedule recordings Schedule recording 0.974

5 Free horror movie Free horror movies 0.974

Table 2.4: Errors with the highest resolution probability, along with their resolutions.

human annotators. Table 2.4 lists the five errors with the highest repetition rate (i.e., the

likelihood that the command will be repeated in a user session). For example, 51% of

the time a user issued a voice command that got transcribed as “Khlu”, it was repeated

in the same user session. The error resolution model correctly predicted that the user

intended to say “Clue the Movie”. Errors 1, 2, and 4 are due to incorrect ASR — these

examples highlight the importance of the error resolution since it is quite difficult for a

human annotator to guess what the user intended to say without help from the model. The

third error is a plurality mismatch between the user command and the actual title. The

last error is due to the NLP system being sensitive to how numbers are spelled out.

Errors likely to be resolved correctly: Errors for which we have found a resolution

with a high degree of confidence are essentially the low-hanging fruits. Although these

25

Row Cluster of Errors Resolution

1 FAM Pham, Pham, TV show Pham, Fama Fam

2 Tell outhouse, The lab House, The wild House, The last
house

The Lighthouse

3 BritBox, Board box, Turn box, Redbox Bird box

4 Civi, CS, CVS, CB CBS

5 Our America, American, All-Americans, The All-
American

All American

Table 2.5: Top clusters of errors and their resolution

errors might not be as frequent or as impactful as others, they are usually the ones that are

most likely going to be approved by human annotators and therefore will allow us to better

utilize the time spent by annotators. Table 2.4 lists the five errors with highest resolution

probability (i.e., error resolution model is most confident). The first three errors are all

related to ASR and would require retraining the ASR system with more training data that

correctly labels the audio signals corresponding to these errors. Errors 4 and 5 are caused

by the NLP system being too rigid with how it matches the command to a menu title.

Errors appearing in clusters: One of the most interesting observations we had

during our experiments was that many times multiple errors and one valid voice command

would appear very close to each other in the latent space learned by the collaborative

filtering model. Based on our observations, this happens mostly because of ASR issues.

For example, when users try to say “Bird Box” (name of a movie) to the voice assistant,

the ASR will miss-transcribe in many different ways such as “BritBox”, “Board box”,

“Turn box”, “Redbox”, etc. Such ASR mistakes will cause multiple different formats

of the error to appear in the voice command logs and to be projected very close to each

26

other in the latent space. In this work, we define a valid voice command and a list of

errors as a cluster of errors, when there are more than 3 errors among the 5 most similar

commands to a valid voice command. We also define the frequency of a cluster as the

sum of the frequencies of all the errors in that cluster and sort the clusters based on their

frequencies. The most frequent cluster will be sent to human annotators. Table 2.5 shows

the list of top five error clusters, sorted by the sum of the frequencies of the errors in

each cluster. This table highlights how our framework automatically identifies the same

spoken command being transcribed in different ways. Clusters 1, 2, 3, and 5 are related

to TV shows and movies that have been released relatively recently. The fourth cluster

shows various transcriptions where the intention was likely “CBS”. The solution to all of

these errors would involve retraining the ASR system with data targeting these words.

2.6 Conclusion and Future Work

In this work, we introduced the voice assistant error resolution framework which

is based on a collaborative filtering model. We have explained how voice command logs

can be leveraged to tackle voice assistant errors and we have shown the effectiveness of

our proposed approach against a large-scale, state-of-the-art voice assistant. Although

this work was highly focused on a single voice assistant, all the models, and processes

explained here can be applied to any voice assistant.

Currently, this framework is being used as a supportive tool for Quality Assurance

engineers to identify the existing errors and come up with action items. This allows a very

targeted quality assurance process without the need for annotators going through millions

27

of commands every day. Even better, the output of this framework can be used to directly

generate training data for the voice assistant and potentially fix errors without any human

intervention. Integrating this framework into the training pipeline of the voice assistant

can help reduce the turnaround time even further. We will also explore the possibility of

tightly integrating the collaborative error resolution model directly into the NLP platform

as a fallback mechanism for handling errors. Whenever the NLP system is incapable of

handling a voice command, it can check to see if the error resolution model has a valid

resolution for that command. Without this tight integration, the voice assistant will keep

failing on that command until training data is created by the error resolution framework

and the voice assistant is retrained with that data. However, the tight integration will act

as a temporary fix for the error until the voice assistant is retrained.

28

Chapter 3: Adversarially Robust Cold-Start Recommendations

3.1 Introduction

Recommendation systems are an integral part of our everyday lives. Online stores,

video streaming services, and news platforms are just a few examples of the popular

services that rely on recommendation systems. In these systems, a high-quality recommendation

system increases the number of user engagements, which in turn affects the revenue of

the business. Additionally, the recommendation system determines how often an item

is shown to the users, which in turn affects the content providers’ and sellers’ revenue.

Therefore, recommendation systems are considered business-critical to many companies.

Since recommendation systems directly influence billions of dollars in revenue, malicious

actors have a big incentive to attack those systems. For example, a business rival might

try to decrease the revenue of the platform owner by causing poor recommendations.

Another example is a seller or a content provider that might try to increase their revenue

by manipulating the system to recommend their product more frequently and to more

users.

Adversarial attacks refer to a family of attacks against machine models in which

a malicious actor makes small changes to the input of the model to cause large changes

to the output. For example, in the computer vision domain, an adversary can slightly

29

change an image to cause it to be misclassified by the machine learning model while

keeping the change unnoticeable to human eyes. There have been multiple studies on the

susceptibility of machine learning models to such attacks in both academic and industrial

settings. In particular, some studies have shown that the machine learning models used

in real-world systems such as self-driving cars [1], industrial copyright detection systems

[30], and high-frequency trading systems [12] are susceptible to adversarial attacks.

Given the wide adoption of machine learning models in recommendation systems

in the recent years [27, 31, 32] and the susceptibility of machine learning models to

adversarial attacks, there is a clear need for studying such attacks against recommendation

systems. Christakopoulou and Banerjee [33] studied the susceptibility of recommendation

models to poisoning attacks where adversarially generated user profiles are injected into

the recommendation system’s training data to manipulate its behavior. To evaluate how

realistic a poisoning attack is, one can measure the number of malicious profiles that

must be injected into training data before the attack succeeds. For example, the attacks

described by Christakopoulou and Banerjee [33] require as many as 6.3% of the user

profiles to be generated by the adversary. For a real-world large-scale system with hundreds

of millions of users, that would require creating millions of fake user profiles by the

adversary. Furthermore, in many cases creating a fake user profile for a real-world system

would require paying a subscription fee per user — for example, both Netflix and Amazon

Prime Video required a paid subscription — or it would require purchasing items to create

the user-item interactions for a fake user profile. The financial cost of such attacks would

be significantly greater than the incentives of a typical adversary, and so this threat model

may not be realistic for large scale systems.

30

To address the limitations of user profile poisoning attacks, in this work we propose

a new attack model that targets cold-start recommendations. In particular, we look at

content-based methods [34, 35, 36] where the content information — such as description,

images, tags, etc. — of a new item is used for generating recommendations. In our

proposed attack, a malicious actor can achieve their desired outcome by making small

perturbations to the content information of a new item while making sure the perturbations

are not noticeable by a human. Specifically, we propose an attack model in which a new

item’s content information will be perturbed by a gradient-based method before it is added

to the recommendation system.

In comparison to fake user profile poisoning attacks, this attack model has a few

advantages for the attacker. First, content data such as text or images can be attacked

by gradient-based approaches while the fake user profile attacks rely on zeroth-order

optimization. Generally speaking, gradient-based optimization problems are easier to

solve, which in turn makes the gradient-based attacks more effective compared to zeroth-

order methods. Second, it is relatively easy for a content provider or a seller to perform

this attack on a real-world system. Many of the platforms allow their content providers

or sellers to upload their items’ content information directly into the system which makes

them susceptible to such attacks. Finally, our proposed attack model does not require any

fake profiles or fake purchases, and hence there are no excessive financial costs associated

with them. The effectiveness, simplicity, and the low-cost nature of such attacks make

them particularly harmful to real-world recommendation systems.

Given the significance of recommendation systems to many businesses, it is essential

to train machine learning models that are robust to such attacks. One of the most common

31

defense approaches against adversarial attacks is adversarial training [9]. In this approach,

instead of training the model on the raw training data, the model is trained on the adversarially

perturbed version of the training set. In other words, at each training iteration, the input

training data is adversarially perturbed on-the-fly and the model is trained on perturbed

inputs along with the true labels. Given the success of this approach in training adversarially

robust models in other domains, we propose a defense mechanism against our attack

based on this approach.

The main contributions of this work are: (1) We study a new attack model against

cold-start recommendation systems that can successfully be used in real-world settings.

(2) We also discuss the financial and legal ramifications of such attacks in real-world

systems, and how a malicious actor can achieve their desired outcomes in real-world

systems using this approach. (3) We evaluate this attack model against a large-scale real-

world recommendation dataset and show the effectiveness of such attacks in a real-world

setting. (4) We propose how adversarial training can be used to create models that are

more robust against such attacks and evaluate the effectiveness of this defense approach

on a real-world dataset.

3.2 Cold-Start Model

The cold-start problem refers to the situation where we don’t have access to the

historical user-item interaction data for a newly added item or a newly joined user. Such

situations are common in many real-world systems where new items and new users are

frequently added to the system. For example, new items are added daily to online stores,

32

and new video content is continuously uploaded to video streaming platforms. Since

many recommendation models rely on user-item interaction data, we need other approaches

for handling these newly added items or users.

One of the most common approaches for tackling the cold-start problem is using

content-based methods [34, 35, 36]. In content-based methods, the content information

of a new user — such as age, location, etc. — or a new item — such as description,

image, etc. — is used to generate recommendations. Since the content information does

not depend on the user-items interactions and are usually available from the moment an

item or a user is added to the system, content-based recommendation models are a great

fit for the cold-start problem. In recent years, many machine learning based approaches

[37, 38, 39, 40, 41] have emerged to tackle the cold-start problem by leveraging both

the content data as well as user-item interaction data. These models work by learning a

function that projects the content information of an item — or a user — into the latent

space of a collaborative filtering model. These derived embeddings are then used to

generate recommendations for new users and new items.

In this work, we use a similar approach: we train a collaborative filtering model on

historical user-item interaction data and we train a neural network that projects the content

information of cold items into the collaborative filtering model’s embedding space.

3.2.1 Collaborative Filtering model

First, we train a collaborative filtering model on the historical user-item interaction

data. This model will be responsible for predicting future user-item interactions based

33

Em
be

dd
in

g,
 1

00

... ...

avg

FC
, 1

02
4

FC
, 5

12

FC
, 2

56

Li
ne

ar
 F

C,
 |V

|

So
ft

m
ax

Pr
ed

ic
tio

n

Item
1

Item
2

Item
3

Item
k

U
se

r h
is

to
ry

Item 1
Embedding

Item 2
Embedding

Item 3
Embedding

Item k
Embedding

FC
, 1

00

Figure 3.1: The Collaborative Filtering model trained on historical user-item interaction
data

on the history of previous user-item interactions. In this work, we have adopted an

implicit-feedback model inspired by the models proposed by Barkan and Koenigstein

[26], Covington et al. [27]. Figure 3.1 shows the high-level architecture of this model.

This model tries to predict the probability of a user interacting with an item based

on the previous items that the user has interacted — watched, purchased, etc. — with.

To do so, the first step is to retrieve the history of the items a given user u has previously

interacted with. We call this history H(u) = {item1, item2, · · · , itemk} where k is the

number of items the user has interacted with. Next, we pass the history H(u) though an

embedding lookup layer to get the embeddings of all the items in the user history. For

a given item i, we refer to that item’s embedding as vi ∈ Rd. Note that the embedding

layer is not pre-trained and is randomly initialized and trained with the rest of the model.

Then, we compute the average of the embeddings of items in H(u) to get a single vector

representation for the user history (equation 3.1).

1

|H(u)|
∑
i∈H(u)

vi (3.1)

This vector is then passed through multiple layers of fully connected feed-forward layers

34

with tanh activation function. Next, the output of the last non-linear layer is passed

through a fully connected linear layer with |V | neurons where V refers to the set of all

items in the system — i.e. vocabulary of the items. This layer predicts one score per

item in vocabulary that corresponds to the likelihood of the user u interacting with that

item. The output of this layer is then passed into a Softmax layer to get the probability

distribution of the user u interacting with each of the items in vocabulary. This probability

distribution can then be used for different recommendation tasks. For example, the items

with the highest probability can be used in Top-N recommendations.

Model training. To train this model, we use the held-out watch approach proposed

by Covington et al. [27]. In this approach, for each user with history H(u) =

{item1, item2, · · · , itemk} we create k different training examples: one example per

item in the history. In each example, we remove one of the items from the history and

use it as the prediction label, and use the rest of the k − 1 items as the inputs to the

model. We then shuffle these training examples and do batch training. Using the held-

out item as the true classification label, we train the model by optimizing a cross-entropy

loss function over the output of the Softmax layer. Note that in this work we do not use

negative sampling.

Item-Item similarity. One of the most commonly used recommendation tasks in

real-world systems is recommending things like ”customers who bought this also bought”

or ”because you watched”. In these scenarios, a seed item — such as a product the user is

looking at or a movie the user has just watched — is used to generate recommendations

for other items that are similar to this seed item. One of the most common approaches

to power this experience is recommending the items with the highest cosine similarity

35

score to the seed item [42]. In our model, we can take a similar approach and define

the similarity of two items as the cosine of their corresponding embedding vectors

(equation 3.2).

similarity(i, j) = cos(vi, vj) =
−→vi · −→vj

||−→vi || × ||−→vj ||
(3.2)

Adding a new item to the system. In this model, the only parts that depend on the

item vocabulary are the initial embedding layer — i.e. the green layer in figure 3.1 — and

the final fully connected linear layer — i.e. the dark orange layer in figure 3.1. Since the

last linear layer is essentially a d×|V |matrix of d-dimensional embeddings for the items

in vocabulary, we can consider both layers as embedding layers. Therefore, to add a new

item to the system we just need to append one more embedding vector to each of these

two layers and initialize that vector with a good representation of the new item.

3.2.2 Content based model

To add new items to the system, we must be able to initialize the new item’s

embedding. To do so, we will use another model that projects the content information

of a given item into the collaborative filtering model’s embedding space. There are many

different modalities for the content data of an item such as title, image, description, tags,

price, reviews, etc. Here, we focus on only one modality of the content data: image.

In this work, we use a convolutional encoder for the content-based model. This

model will be responsible for learning a mapping from image space to the collaborative

filtering model’s embedding space. We train the model using the images associated with

the items in the vocabulary and their pre-trained embeddings. Figure 3.2 shows the

36

5x
5

co
nv

, 3
2

5x
5

co
nv

, 3
2

Im
ag

e

2x
2

m
ax

 p
oo

lin
g

2x
2

m
ax

 p
oo

lin
g

5x
5

co
nv

, 3
2

5x
5

co
nv

, 3
2

2x
2

m
ax

 p
oo

lin
g

2x
2

m
ax

 p
oo

lin
g

5x
5

co
nv

, 3
2

5x
5

co
nv

, 3
2

2x
2

m
ax

 p
oo

lin
g

2x
2

m
ax

 p
oo

lin
g

5x
5

co
nv

, 3
2

5x
5

co
nv

, 3
2

2x
2

m
ax

 p
oo

lin
g

2x
2

m
ax

 p
oo

lin
g

5x
5

co
nv

, 3
2

5x
5

co
nv

, 3
2

2x
2

m
ax

 p
oo

lin
g

2x
2

m
ax

 p
oo

lin
g

5x
5

co
nv

, 3
2

5x
5

co
nv

, 3
2

2x
2

m
ax

 p
oo

lin
g

2x
2

m
ax

 p
oo

lin
g

FC
, 1

00
0

FC
, 1

00
0

FC
, 1

00
0

FC
, 1

00
0

FC
, 1

00
0

FC
, 1

00
0

Li
ne

ar
 F

C,
 1

00
Li

ne
ar

 F
C,

 1
00

Em
be

dd
in
g

Figure 3.2: Convolutional encoder to project movie posters into their embedding.

architecture of this model.

First, the image is passed through multiple pairs of a convolution layer followed

by a max-pooling layer. Then, the output of the last max-pooling layers is flattened and

passed through a few fully connected feed-forward layers with relu activation functions.

Finally, the output of the last fully connected layer is passed through a linear layer with

the same number of neurons as the collaborative filtering model’s embedding dimension.

The output of this layer can be treated as the projection of the item’s image into the

collaborative filtering model’s embedding space. For an item i, we refer to the projected

embedding derived from item i’s image as f (xi; θ) where xi is the item i’s image, f(·)

is the function described by our proposed convolutional encoder model, and θ is the

parameters of the model.

We train this model by maximizing the cosine between an item’s pre-trained

embedding and the projected embedding derived from its image (equation 3.3).

L(V ; θ) =
−1
|V |

∑
x,v∈V

f(x; θ) · v
‖f(x; θ)‖ × ‖v‖ (3.3)

Whenever a new item is introduced to the system, we can compute that item’s

37

projected embedding using this model and set that value for its embedding in the

collaborative filtering model.

3.3 Adversarial Attacks on Cold-Start Recommendation Models

Adversarial attacks against machine learning models have been extensively studied

over the past few years. These attacks try to manipulate the output of a machine

learning model by making very small but deliberately chosen perturbations to the input

data. Because of the small perturbations used in these attacks, the attack usually goes

unnoticed which poses a great threat to many machine learning models. Previous works

have shown that adversarial attacks can be used to successfully attack many sensitive

systems such as self driving cars [1], industrial copyright detection systems [30], facial

recognition systems [43], object detectors [2, 3, 4], speech recognition systems [5], and

high frequency trading systems [12].

There are two major types of adversarial attacks: targeted and non-targeted. In a

non-targeted attack, the adversary only tries to make sure that the output of the perturbed

input is as different as possible from the true output. The optimization problem in

equation 3.4 describes the non-targeted adversarial attacks. In this equation, δ refers

to the perturbation, x is the input to the model, y is the true output, θ is the set of

parameters that define the model, L is the loss function, and ε defines a bound for how

big the perturbations can be.

max
δ
L (x+ δ, y; θ) s.t. ‖δ‖p ≤ ε (3.4)

38

On the other hand, in targeted attacks, the adversary tries to make the output of the

model as similar as possible to a particular target. Similar to non-targeted attacks, we

can formulate targeted adversarial attacks with an optimization problem as described in

equation 3.5. Here, yt refers to the target output for the attack.

min
δ
L (x+ δ, yt; θ) s.t. ‖δ‖p ≤ ε (3.5)

In this work, we assume the adversary controls the image associated with an item

and can adversarially perturb it before uploading it into the system. This is a realistic

assumption given that in many real-world systems the seller or the content provider

directly uploads the content information of their item. Using a targeted adversarial attack,

an adversary can essentially manipulate their item’s embedding however they want while

keeping the perturbations small enough that they would go unnoticed. For example, the

adversary can make sure that their item’s embedding is almost identical to the embedding

of a popular item which would result in their item getting recommended to a majority of

the users.

To this end, we propose a targeted adversarial attack against our content-based

model. Equation 3.6 describes the optimization problem that needs to be solved for this

attack. Using this optimization, the adversary can find a small perturbation δ to their

item’s image x such that the output would be very similar to the target embedding vt.

max
δ

f (x+ δ; θ) · vt
‖f (x+ δ; θ)‖ × ‖vt‖

s.t. ‖δ‖∞ ≤ ε (3.6)

39

There are many different ways to solve this optimization problem. In this work, we use

projected gradient descent (PGD) [9] to solve this optimization problem. In this approach,

we iteratively update δ via a gradient descent step and then project it back into the `∞ ball

with radius ε. Algorithm 2 describes this process. In this process, we first compute the

gradient of function l (cosine of the angle between f(x + δ; θ) and vt) with respect to δ.

We then take a gradient step in the direction of sign(g) with the step size of εs. Finally,

we clip δ back into the `∞ ball with radius ε. We repeat this process for K iterations to

create stronger attacks.

Algorithm 2: Creating targeted adversarial example
δ ← 0;
for k ← 1 to K do

g ← ∇δl(x+ δ, vt; θ);
δ ← δ + εs · sign(g);
δ ← clip(δ,−ε, ε);

end

3.3.1 Real-world attacks

Using our proposed adversarial attack model, there are many different ways that

an adversary can create realistic attacks. In this part, we propose a few of such attacks,

discuss the adversary’s incentives for such attacks in real-world settings, and describe

how our proposed optimization problem can be used for such attacks.

Attacking popular items. In many platforms, the revenue gained by a seller

or a content provider is directly impacted by their item’s sales or user engagement

numbers. Also, it is well-known that the higher an item appears on the list returned

by a recommendation system, the higher the chances are that users will interact with that

40

item. Therefore, there is a strong financial incentive for a malicious actor to try to trick the

recommendation system into ranking their items higher. Given that the popular items are

the ones that are recommended most frequently to the users, the malicious actor can gain a

high recommendation ranking by making their item very similar to a popular item. Using

our proposed targeted attack in equation 3.6, the adversary can target the embedding of a

very popular item (vt) in their attack. By doing so, their item’s embedding is going to be

very similar to the popular item’s embedding which in turn results in the new item getting

recommended anywhere the popular item is recommended.

Attacking sensitive items. Many times, there are sensitive or protected items on

a platform. For example, kids’ contents are always under a lot of scrutiny on video

streaming platforms. To keep a high-quality experience for the kids — and many times

due to legal requirements — it is of vital importance for the streaming services to make

sure that content inappropriate for kids is not recommended to them. Furthermore, many

times there are contractual obligations imposed by the content provider on the streaming

service. For example, some kids’ content providers impose limitations on what other

content can appear next to their content. Therefore, the streaming platform can be in

breach of contract and suffer large financial damages if a content that is inappropriate for

kids appears next to a kids’ content. Consequentially, a malicious actor such as a business

rival can cause great financial damages by attacking one of these protected items. For

example, the malicious actor can upload a horror movie into the system and create an

adversarial example from that horror movie targeting one of the kids’ contents. By doing

so, the horror movie would effectively get recommended anywhere the kids’ content was

recommended.

41

Targeting groups of users. An adversary can also target a group of users. The

incentive behind such an attack can be either causing harm to the platform — e.g., by

targeting the children with horror content — or gaining financial benefit — e.g., by

targeting a specific section of the population with a product. To do so, the adversary

can find a set of items that are popular among that particular group of users and then try

to attack all those items simultaneously. Equation 3.7 describes such an attack where Vt

is the set of items that best represent the preferences of the targeted group.

max
δ

1

|Vt|
∑
v′∈Vt

f (x+ δ; θ) · v′
‖f (x+ δ; θ)‖ × ‖v′‖ s.t. ‖δ‖∞ ≤ ε (3.7)

3.4 Adversarilly Robust Model

A machine learning model is considered adversarially robust if it can maintain a

reasonable amount of its accuracy against adversarial attacks. The problem of training

models that are robust to adversarial attacks has been studied for different types of

adversarial attacks [9, 10]. Generally speaking, these approaches train the model by not

just trying to minimize the loss function, but rather trying to minimize the loss function

in the presence of deliberately chosen adversarial perturbations.

Given the critical nature of recommendation systems, it is important to explore

how we can train models that are robust to such attacks. Adversarial training [9] is one

of the techniques for training a model that is robust to adversarial attacks. Adversarial

training can be viewed as a saddle point optimization problem where we are trying to find

a set of parameters that can minimize the loss value on the training data no matter what

42

perturbations are added by the adversary. Equation 3.8 describes the general form of such

a min-max optimization where D is the training dataset and L is the loss function of the

model. The solution to this saddle point problem is a robust model.

min
θ

E(x,y)∼D

[
max
δ
L (x+ δ, y; θ)

]
s.t. ‖δ‖p ≤ ε (3.8)

Using this framework, we can define the saddle point optimization problem for our

content based model as equation 3.9.

max
θ

1

|V |
∑
x,v∈V

min
δ

f (x+ δ; θ) · v
‖f (x+ δ; θ)‖ × ‖v‖ s.t. ‖δ‖∞ ≤ ε (3.9)

Algorithm 3: Adversarial Training
for epoch← 1 to N do

for batch B ⊂ V do
Badv ← {};
for x, v ∈ B do

δ ← 0;
for k ← 1 to K do

gadv ← ∇δl(x+ δ, v; θ);
δ ← δ + εs · sign(gadv);
δ ← clip(δ,−ε, ε);

end
Badv ← Badv ∪ {(x+ δ, v)};

end
gθ ← E(x,y)∈Badv [∇θl(x, v; θ)];
θ ← θ − τgθ;

end
end

As discussed by Madry et al. [9], one way for solving this optimization problem is

using stochastic gradient descent and computing the ∇θ at the maximizer of the inner

43

(a) Most similar items to the move Shrek 2 — an in-vocabulary item.

(b) Most similar items to the move Jigsaw — an out of vocabulary (cold) item.

Figure 3.3: Most similar items to two examples of in-vocabulary and out of vocabulary
items.1

function. That means at each iteration of the gradient descent we have to find the

maximizer of the inner function, compute the gradient of the loss function with respect to

θ, and take a step in that direction. To find the maximizer of the inner function, we can

use the same approach as we discussed for generating adversarial examples — using an

iterative PGD method. Algorithm 3 describes the K-step PGD adversarial training that

we use in this work. Note that the ε used for training a robust model can be different than

the ε used in creating adversarial examples.

The model resulted from the adversarial training approach is significantly more

robust against adversarial attacks compared to a naturally trained model — i.e. trained on

minimizing the loss function in absence of any adversarial perturbations.

1Figure 3.3: Shrek 2 c©2004 Dreamworks LLC. All Rights Reserved. Monsters, Inc. c©2001
Disney/Pixar. All Rights Reserved. Harry Potter and the Prisoner of Azkaban c©2004 Warner Bros. Ent.
Harry Potter Publishing Rights J.K.R. Finding Nemo c©2003 - Pixar/Disney. All Rights Reserved. The Lion
King 2: Simba’s Pride c©1998 - Walt Disney Studios. All rights reserved. Aladdin c©1992 Walt Disney
Productions. All Rights Reserved. Jigsaw c©2017 Lions Gate Entertainment Inc. All Rights Reserved.
The Stickup c©2002 Promark Entertainment Group. Shivers c©1975 Cinepix. Betrayed c©1988 Metro-

44

3.5 Experiments

To study the effectiveness of our proposed attack, we evaluate our approach against

a large scale real-world dataset.

3.5.1 Dataset

In this work, we evaluate our approach against the Netflix dataset [44]. This

dataset contains more than 100 million ratings for over 17 thousand movies by 480

thousand users. The large size of this dataset makes it a perfect candidate for evaluating

our approach in real-world settings. Furthermore, since in real-world systems implicit

feedback from the users is significantly more frequent than explicit feedback, in this work

we will also train our model on implicit feedback data. Following the same approach as

in previous works [45, 46], we extract positive ratings (rating=4 or 5) from the dataset.

We also use the posters for the movies in the Netflix dataset to create training data

for our content-based model. Given that most neural network architectures that process

image data only work with a fixed-sized input, we crop and down-sample the posters to

300× 300 pixels.

3.5.2 Naturally trained model

Using the Netflix dataset, we first train the collaborative filtering model. While this

model has been trained to predict a user’s behavior and preferences based on their history,

it learns high-quality embeddings for all the movies in the training vocabulary. Using the

Goldwyn-Mayer Studios Inc. All Rights Reserved. Johnny Skidmarks c©1998 Cinepix.

45

method described in section 3.2.1, we can drive item-item similarity scores using these

embeddings. For example, figure 3.3a shows the most similar movies to the movie Shrek

2. All of the 5 most similar movies to Shrek 2 are also kids’ movies, and 4 of them are

animations as well.

Then, we train the content-based model using the posters of the movies in the

Netflix dataset along with their corresponding embeddings learned by the collaborative

filtering model. Using this model we can compute the embedding vector of a new

movie using its poster, and then inserting that movie along with its embedding into

the collaborative filtering model. For example, using this approach we can add the

movie Jigsaw into our system even though it does not exist in the Netflix dataset.

Figure 3.3b shows the most similar movies to Jigsaw based on this approach. Although

the collaborative filtering model was never trained on the Jigsaw movie, the content-based

model has successfully computed an embedding vector for this movie. All of the most

similar movies to Jigsaw share the same genres (crime, horror) with this movie.

3.5.3 Attacking the naturally trained model

We evaluate the robustness of the naturally trained model against the adversarial

attacks proposed in section 3.3 by running a set of experiments with targeted attacks.

In each experiment, we randomly choose a movie and remove that movie form the

collaborative filtering model to create a cold-start situation. We then randomly choose

a second movie from the collaborative filtering model’s vocabulary as the attack target.

Using algorithm 2, we create an adversarial example from the cold-start item against the

46

ε=2 ε=4 ε=6 ε=8

N=1 25.59 74.02 95.51 99.02

N=2 28.13 77.54 95.9 99.22

N=3 29.3 79.1 96.48 99.22

N=4 30.86 80.66 96.88 99.41

N=5 31.84 81.64 97.27 99.41

Table 3.1: Success rate of adversarial attacks against naturally trained model

chosen target. Finally, we evaluate the success of this attack by finding the top-N most

similar items to the targeted item and evaluating whether or not the adversarial example

is among them.

To evaluate the attack, we do a grid-search on the hyperparameters of the proposed

attacks. We run experiments with ε ∈ {2.0, 4.0, 6.0, 8.0} and attack iterations K ∈

{20, 40, 60, 80, 100, 1000}. We also evaluate the success rate of our attacks — i.e. the

percentage of the times that the adversarial example is among the top-N most similar

items to the target — for different values on N ∈ {1, 2, 3, 4, 5}. Furthermore, we repeat

each experiment for 512 randomly chosen pairs of cold-start items and targets.

Based on the evaluation results, it seems like even an attack with 20 steps is

essentially as effective as a 1000 step attack. In essence, this means that there is no

need for computationally expensive attacks to trick the model. Therefore, in this work,

we will only report the highest success rate among attacks with different step counts.

Table 3.1 shows the success rate of adversarial attacks with different ε values and

at different top-N evaluations against the naturally trained model. Based on these results,

an attack with perturbations as small as ε = 6 — which is smaller than most other attacks

in the computer vision domain — can render the model completely useless. Over 99%

47

ε = 2

@1 @2 @3 @4 @5

Natural 25.59 28.13 29.3 30.86 31.84

Adversarial / ε = 1 3.32 3.91 4.69 5.27 5.47

Adversarial / ε = 4 1.95 2.15 2.54 3.13 3.32

Adversarial / ε = 8 1.56 2.15 2.54 3.32 3.91

ε = 4

@1 @2 @3 @4 @5

Natural 74.02 77.54 79.1 80.66 81.64

Adversarial / ε = 1 8.40 8.59 9.18 11.33 11.91

Adversarial / ε = 4 5.08 6.25 7.03 8.20 9.18

Adversarial / ε = 8 4.88 5.86 6.05 6.84 8.01

ε = 6

@1 @2 @3 @4 @5

Natural 95.51 95.90 96.48 96.88 97.27

Adversarial / ε = 1 15.82 18.95 21.48 23.05 23.63

Adversarial / ε = 4 9.96 12.11 13.87 14.26 15.23

Adversarial / ε = 8 11.33 12.89 14.45 15.23 16.02

ε = 8

@1 @2 @3 @4 @5

Natural 99.02 99.22 99.22 99.41 99.41

Adversarial / ε = 1 30.47 33.2 35.35 37.7 38.67

Adversarial / ε = 4 18.75 20.31 22.07 23.83 25.00

Adversarial / ε = 8 19.92 22.07 23.63 25.39 27.34

Table 3.2: Robustness of naturally trained model in comparison to adversarially trained
models.

48

(a) Clean image (b) adversarial
perturbations

(c) Adversarial
example

Figure 3.4: Clean vs. adversrially perturbed posters of a cold item. The adversarial
perturbations are not noticeable to humans.

Figure 3.5: Item-item similarity results after an adversarial attack.2

of the times an adversary can create a successful attack from any item against any other

item.

Furthermore, this attack does not cause any meaningful changes in the images that

would impact the users’ perception of that item or get noticed by editors, annotators,

or quality assurance specialist. Figure 3.4 shows a clean image and an adversarially

perturbed image side by side. Humans can’t notice any difference between these two

images.

2Figure 3.5: Shrek 2 c©2004 Dreamworks LLC. All Rights Reserved. Jigsaw c©2017 Lions Gate
Entertainment Inc. All Rights Reserved. Monsters, Inc. c©2001 Disney/Pixar. All Rights Reserved.

49

As an example, we create an adversarial example from the movie Jigsaw by

targeting the movie Shrek 2. Figure 3.5 shows the most similar movies to these two

movies after the adversarial attack. By using this attack, the adversary has successfully

made the movie Jigsaw (a horror movie) the most similar movie to Shrek 2 (a kids’

movie). The adversarial example itself has also essentially become a kid’s movie since

all of the most similar movies to it are other kids’ movies.

3.5.4 Adversarially trained models are robust

To evaluate the robustness of adversarially trained models against our proposed

attacks, we train 3 new models using the approach described in algorithm 3. We train

models with perturbation magnitudes of ε = 1, ε = 4, and ε = 8. For each model, we then

run the same set of experiments as the ones for the naturally trained model. We randomly

choose two programs as cold-start item and target, we remove the cold-start item from the

collaborative filtering model, and then we create an adversarial example from the cold-

start item against the target item. We evaluate each model against adversarial attacks with

ε ∈ {2.0, 4.0, 6.0, 8.0} and K ∈ {20, 40, 60, 80, 100}. We also evaluate each attack’s

success rate for different values of N ∈ {1, 2, 3, 4, 5} and repeat the experiment for 512

randomly chosen pairs of cold-start items and targets.

Figure 3.6 shows the success rate of attacks with different ε at N = 1 and N = 5

for all the 4 models: naturally trained model and adversarially trained models with ε = 1,

ε = 4, and ε = 8. All adversarially trained models are significantly more robust to the

Harry Potter and the Prisoner of Azkaban c©2004 Warner Bros. Ent. Harry Potter Publishing Rights J.K.R.
Finding Nemo c©2003 - Pixar/Disney. All Rights Reserved. The Lion King 2: Simba’s Pride c©1998 -
Walt Disney Studios. All rights reserved. Aladdin c©1992 Walt Disney Productions. All Rights Reserved.
Scooby-Doo 2: Monsters Unleashed c©2004 Warner Brothers. All rights reserved.

50

2 4 6 8
0

0.2

0.4

0.6

0.8

1

ε

S
u
cc
es
s
R
a
te

Natural
Adv ε = 1
Adv ε = 4
Adv ε = 8

(a) N = 1

2 4 6 8
0

0.2

0.4

0.6

0.8

1

ε

S
u
cc
es
s
R
a
te

Natural
Adv ε = 1
Adv ε = 4
Adv ε = 8

(b) N = 5

Figure 3.6: Adversarial attack’s success rate for N=1 and N=5 at different attack ε values.

adversarial attacks compared to the naturally trained model. It also appears that using

larger perturbations magnitudes during the adversarial training process can improve the

model robustness up to a point.

Table 3.2 contains the success rate of adversarial attacks with different ε values

against all 4 models. While the naturally trained model is effectively rendered useless

against adversarial attacks, the adversarially trained models can maintain a high degree of

accuracy. For example, attacks with ε = 8 were able to successfully target the top-1 most

similar item in 99% of the times for naturally trained model while they only achieved an

18.75% success rate for the best adversarially trained model. In some cases, the successful

adversarial attacks can be 9.5 times more in the naturally trained model in comparison to

the adversarially trained models.

3.6 Conclusion

In this work, we showed the vulnerability of cold-start recommendation systems

to adversarial attacks. Using the attack model proposed in this work, a malicious actor

51

can successfully create adversarial examples in 99% of the times. We discussed how

such attacks can happen in real-world systems and also discussed the legal and financial

ramifications of such attacks. We also showed how such attacks cannot be noticed by

any human and can go undetected in real-world systems. To defend against these attacks,

we proposed to train the model by using adversarial training. We showed that using

this approach during model training can immensely improve the robustness of the model

against such attacks. Evaluating our approach against a real-world dataset shows that

adversarially trained models can be up to 9 times more robust compared to naturally

trained models.

52

Chapter 4: Adversarial Attacks on Copyright Detection Systems

4.1 Introduction

Machine learning systems are easily manipulated by adversarial attacks, in which

small perturbations to input data cause large changes to the output of a model. Such

attacks have been demonstrated on a number of potentially sensitive systems, largely in

an idealized academic context, and occasionally in the real-world [1, 2, 3, 4, 5, 6].

Copyright detection systems are among the most widely used machine learning

systems in the industry, and the security of these systems is of foundational importance to

some of the largest companies in the world. Despite their importance, copyright systems

have gone largely unstudied by the ML security community. Common approaches to

copyright detection extract features, called fingerprints, from sampled video or audio,

and then match these features with a library of known fingerprints. Examples include

YouTube’s Content ID, which flags copyrighted material on YouTube and enables

copyright owners to monetize and control their content. At the time of writing this chapter,

more than 100 million dollars have been spent on Content ID, which has resulted in more

than 3 billion dollars in revenue for copyright holders [47]. Closely related tools such as

Google Jigsaw detect and remove videos that promote terrorism or jeopardized national

security. There is also a regulatory push for the use of copyright detection systems; the

53

recent EU Copyright Directive requires any service that allows users to post text, sound,

or video to implement a copyright filter.

A wide range of copyright detection systems exist, most of which are proprietary. It

is not possible to demonstrate attacks against all systems, and this is not our goal. Rather,

the purpose of this work is to discuss why copyright detectors are especially vulnerable

to adversarial attacks and establish how existing attacks in the literature can potentially

exploit audio and video copyright systems.

As proof of concept, we demonstrate an attack against real-world copyright

detection systems for music. To do this, we reinterpret a simple version of the well-

known “Shazam” algorithm for music fingerprinting as a neural network and build

a differentiable implementation of it in TensorFlow [48]. By using a gradient-based

attack and an objective that is designed to achieve good transferability to black-box

models, we create adversarial music that is easily recognizable to a human, while evading

detection by a machine. With sufficient perturbations, our adversarial music successfully

fools industrial systems, 1 including the AudioTag music recognition service [49], and

YouTube’s Content ID system[50]. Sample audio can be found here2.

4.2 What makes copyright detection systems vulnerable to attacks?

Work on adversarial examples has been focused largely on imaging problems,

including image classification, object detection, and semantic segmentation [8, 10, 51,

52, 53, 54, 55]. More recently, adversarial examples have been studied for non-vision

1Affected parties were notified before the publication of this article.
2https://www.cs.umd.edu/ tomg/projects/copyrightattack/

54

https://www.cs.umd.edu/~tomg/projects/copyrightattack/

applications such as speech recognition (i.e., speech-to-text) [5, 56, 57, 58]. Attacks on

copyright detection systems are different from these applications in a number of important

ways that result in increased potential for vulnerability.

First, digital media can be directly uploaded to a server without passing through a

microphone or camera. This is drastically different from physical-world attacks, where

adversarial perturbations must survive a data measurement process. For example, a

perturbation to a stop sign must be effective when viewed through different cameras,

resolutions, lighting conditions, viewing angles, motion blurs, and with different post-

processing and compression algorithms. While attacks exist that are robust to these

nuisance variables [3], this difficulty makes even white-box attacks difficult, leaving some

to believe that physical world attacks are not a realistic threat model [59, 60]. In contrast,

a manipulated audio file can be uploaded directly to the web without passing it through a

microphone that may render perturbations ineffective.

Second, copyright detection is an open-set problem, in which systems process

media that does not fall into any known class (i.e., doesn’t correspond to any protected

audio/video). This is different from the closed-set detection problem in which everything

is assumed to correspond to a class. For example, a mobile phone application for music

identification may solve a closed-set problem; the developers can assume that every

uploaded audio clip corresponds to a known song, and when results are uncertain there

is no harm in guessing. By contrast, when the same algorithm is used for copyright

detection on a server, developers must solve the open-set problem; nearly all uploaded

content is not copyright protected and should be labeled as such. In this case, there is

harm in “guessing” an ID when results are uncertain, as this may bar users from uploading

55

non-protected material. Copyright detection algorithms must be tuned conservatively to

operate in an environment where most content does not get flagged.

Finally, copyright detection systems must handle a deluge of content with different

labels despite strong feature similarities. Adversarial attacks are known to succeed easily

in an environment where two legitimately different audio/video clips may share strong

similarities at the feature level. This has been recognized for the ImageNet classification

task [61], where feature overlap between classes (e.g., numerous classes exist for different

types of cats/dogs/birds) makes systems highly vulnerable to untargeted attacks in which

the attacker perturbs an object from its home class into a different class of high similarity.

As a result, the state of the art defenses for untargeted attacks on ImageNet achieve

far lower robustness than classifiers for simpler tasks [62, 63]. Copyright detection

systems may suffer from a similar problem; they must discern between protected and

non-protected content even when there is a strong feature overlap between the two.

4.3 Types of copyright detection systems

Fingerprinting algorithms typically work by extracting an ensemble of feature

vectors (also called a “hash” in the case of audio tagging) from source content, and

then matching these vectors to a library of known vectors associated with copyrighted

material. If there are enough matches between a source sample and a library sample, then

the two samples are considered identical. Most audio, image, and video fingerprinting

algorithms either train a neural network to extract fingerprint features, or extract hand-

crafted features. In the former case, standard adversarial methods lead to immediate

56

susceptibility. In the latter case, feature extractors can often be re-interpreted and

implemented as shallow neural networks, and then attacked (we will see an example of

this below).

For video fingerprinting, one successful approach by [64] is to use object detectors

to identify objects entering/leaving video frames. An extracted hash then consists of

features describing the entering/leaving objects, in addition to the temporal relationships

between them. While effective at labeling clean video, recent work has shown that object

detectors and segmentation engines are easily manipulated to adversarially place/remove

objects from frames [54, 65].

Works such as [66] build “robust” fingerprints by training networks on commonly

used distortions (such as adding a border, adding noise, or flipping the video), but do not

consider adversarial perturbations. While such networks are robust against pre-defined

distortions, they will not be robust against white-box (or even black-box) adversarial

attacks.

Similarly, recent plagiarism detection systems such as [67] rely on neural networks

to generate a fingerprint for a document. While using the deep feature representations of

a document as a fingerprint might result in higher accuracy for the plagiarism model, it

potentially leaves the system open to adversarial attacks.

Audio fingerprinting might appear to be more secure than the domains described

above because practitioners typically rely on hand-crafted features rather than deep neural

nets. However, we will see below that even hand-crafted feature extractors are susceptible

to attacks.

57

4.4 Case study: evading audio fingerprinting

We now describe a commonly used audio fingerprinting/detection algorithm and

show how one can build a differentiable neural network resembling this algorithm. This

model can then be used to mount black-box attacks on real-world systems.

4.4.1 Audio fingerprinting models

An acoustic fingerprint is a feature vector that is useful for quickly locating a sample

or finding similar samples in an audio database. Audio fingerprinting plays a central

role in detection algorithms such as Content ID. Therefore, in this section, we describe

a generic audio fingerprinting model that will ultimately help us generate adversarial

examples.

4.4.1.1 Important fingerprinting guidelines from Shazam

Due to the financially sensitive nature of copyright detection, there are very few

publicly available fingerprinting models. One of the few widely used publicly known

models is from the Shazam team [68]. Shazam is a popular mobile phone app for

identifying music. According to the Shazam paper, a good audio fingerprint should have

the following properties:

• Temporally localized: every fingerprint hash is calculated using audio samples that

span a short time interval. This enables hashes to be matched to a short sub-sample

of a song.

58

• Translation invariant: fingerprint hashes are (nearly) the same regardless of where

in the song a sample starts and ends.

• Robust: hashes generated from the original clean database track should be

reproducible from a degraded copy of the audio.

4.4.1.2 The handcrafted fingerprinting model

The spectrogram of a signal, also called the short-time Fourier transform, is a plot

that shows the frequency content (Fourier transform) of the waveform over time. After

experimenting with various features for fingerprinting, [68] chose to form hashes from

the locations of spectrogram peaks. Spectrogram peaks have nice properties such as

robustness in the presence of noise and approximate linear superposability.

In the next subsection, we build a shallow neural network that captures the key ideas

of [68], while adding extra layers that help produce transferable adversarial examples. In

particular, we add an extra smoothing layer that makes our model difficult to attack and

helps us craft strong attacks that can transfer to other black-box models.

4.4.2 Interpreting the fingerprint extractor as a CNN

Here we describe the details of the generic neural network model we use for

generating the audio fingerprints. Each layer of the network can be seen as a

transformation that is applied to its input. We treat the output representation of our

network as the fingerprint of the input audio signal. Ideally, we would like to extract

features that can uniquely identify a signal while being independent of the exact start or

59

end time of the sample. Convolutional neural networks maintain the temporally localized

and translation invariant properties mentioned in section 4.4.1.1, and so we model the

fingerprinting procedure using fully convolutional neural networks.

The first network layer convolves with a normalized Hann function, which is a filter

of the form

f1(n) =
sin2

(
πn
N

)∑N
i=0 sin

2
(
πi
N

)
,

(4.1)

where N is the width of the kernel. Convolving with a normalized Hann window

smooths the adversarially perturbed audio waveform and the output of this layer is

a perturbed but smooth audio sample that is then fingerprinted. This layer removes

discontinuities and bad spectral properties that may be introduced into the signal

during adversarial optimization and also makes the black-box attacks more efficient by

preventing perturbations that do not transfer well to other models.

The next convolutional layer computes the spectrogram (aka Short Term Fourier

Transform) of the waveform and converts the audio signal from its original domain to

a representation in the frequency domain. This is accomplished by convolving with an

ensemble of N Fourier kernels of different frequencies, each with N output channels.

This convolution has filters of the form

f2(k, n) = e−i2πkn/N , (4.2)

where k ∈ 0, 1, · · · , N − 1 is an output channel index and n ∈ 0, 1, · · · , N − 1 is the

index of the filter coefficient. After this convolution is computed, we apply |x| on the

60

1x
N

1 C
on

v,
 1

m
xm

 M
ax

 P
oo

l

=

Fi
ng

er
pr

in
t

1x
N

2 C
on

v,
 K

Figure 4.1: An audio fingerprinting model with two convolution layers and a max
pooling layer. This model produces binary fingerprints by finding local maxima of the
spectrogram of the input signal.

output to get the magnitude of the STFT.

After the convolutional layers, we get a feature representation of the audio signal.

We call this feature representation φ(x), where x is the input signal. This representation

is susceptible to noise and a slight perturbation in the audio signal can change it.

Furthermore, this representation is very dense which makes it relatively hard to store

and search against all audio signals in the database. To address these issues, [68] suggests

using the local maxima of the spectrogram as features.

We can find local maxima within our neural net framework by applying a max-

pooling function over the feature representation φ(x). We then find the places where

the output of the maxpool equals the original feature representation (i.e., the locations

where φ(x) = maxpool (φ(x))). The resulting binary map of local maxima locations is

the fingerprint of the signal and can be used to search for a signal against a database of

previously processed signals. We will refer to this binary fingerprint as ψ (x) where x is

the input signal. Figure 4.1 depicts the 2-layer convolutional network we use in this work

for generating signal fingerprints.

61

4.4.3 Formulating the adversarial loss function

To craft an adversarial perturbation, we need a differentiable surrogate loss that

measures how well an extracted fingerprint matches a reference. The CNN described in

section 4.4.2 uses spectrogram peaks to generate fingerprints, but we did not yet specify a

loss for quantifying how close two fingerprints are. Once we have such a loss, we can use

standard gradient methods to find a perturbation δ that can be added to an audio signal to

prevent copyright detection. To ensure the similarity between perturbed and clean audio,

we bound the perturbation δ. That is, we enforce ‖δ‖p ≤ ε. Here ‖.‖p is the `p-norm

of the perturbation and ε is the perturbation budget available to the adversary. In our

experiments, we use the `∞-norm as our measure of perturbation size.

The simplest similarity measure between two binary fingerprints is simply the

Hamming distance. Since the fingerprinting model outputs a binary fingerprint ψ(x),

we can simply measure the number of local maxima that the signals x and y share by

|ψ(x) ·ψ(y)|. To make a differentiable loss function from this similarity measure, we use

J(x, y) = |φ(x) · ψ(x) · ψ(y)|. (4.3)

In the white box case where the fingerprinting system is known, attacks using the loss

(4.3) are extremely effective. However, attacks using this loss are extremely brittle and

do not transfer well; one can minimize this loss by changing the locations of local maxima

in the spectrogram by just one pixel. Such small changes in the spectrogram are unlikely

to transfer reliably to black-box industrial systems.

62

To improve the transferability of our adversarial examples, we propose a robust loss

that promotes large movements in the local maxima of the spectrogram. We do this by

moving the locations of local maxima in φ(x) outside of any neighborhood of the local

maxima of φ(y). To efficiently implement this constraint within a neural net framework,

we use two separate max-pooling layers, one with a bigger width w1 (the same width

used in fingerprint generation), and the other with a smaller width w2. If a location in

the spectrogram yields output of the w1 pooling strictly larger than the output of the

w2 pooling3, we can be sure that there is no spectrogram peak within radius w2 of that

location.

Equation 4.4 describes a loss function that penalizes the local maxima of x that are

in the w2 neighborhood of local maxima of y. This loss function forces the output of the

max pooling layers to be different by at least a margin c.

J(x, y) =
∑
i

(
ReLU

(
c−

(
max
|j|≤w1

φ(i+ j;x)

− max
|j|≤w2

φ(i+ j;x)

))
· ψ(i; y)

)
(4.4)

Finally, we make our loss function differentiable by replacing the maximum

operator with the smoothed max function

Sα (x1, x2, · · · , xn) =
∑n

i=1 xie
αxi∑n

i=1 e
αxi

, (4.5)

where α is a smoothing hyper parameter. As α → ∞, the smoothed max function more

3The first max-pooling layer’s output is always greater than or equal to the output of the second max-
pooling layer.

63

accurately approximates the exact max function. For simplicity, we chose α = 1 for all

experiments.

4.4.4 Crafting the evasion attack

We solve the bounded optimization problem

min
δ
J(x+ δ, x) s.t. ‖δ‖∞ ≤ ε, (4.6)

where x is the benign audio sample, and J is the loss function defined in equation 4.4 with

the smoothed max function. Note that unlike common adversarial example generation

problems from the literature, our formulation is a minimization problem because of how

we defined the objective. We solve (4.6) using projected gradient descent [69] in which

each iteration updates the perturbation using Adam [70], and then clips the perturbation

to ensure that the `∞ constraint is satisfied.

4.4.5 Remix adversarial examples

The optimization problem defined in equation 4.6 tries to create an adversarial

example with a fingerprint that does not look like the original signal’s fingerprint. While

this approach can trick the search algorithm used in copyright detection systems by

lowering its confidence, it can result in unnatural sounding perturbations. Alternatively,

we can try to enforce the perturbed signal’s fingerprint to be similar to a different audio

signal. Due to the approximate linear superposability characteristic of the spectrogram

peaks, this will make the adversarial example sound more natural and like the target signal

64

audio.

To achieve this goal, we will first introduce a loss function that tries to make two

signals look similar rather than different. As described in equation 4.7, such a loss can be

obtained by replacing the order of max over big and small neighborhoods in equation 4.4.

Note that we will still use the smooth maximum from equation 4.5.

Jremix(x, y) =
∑
i

(
ReLU

(
c−

(
max
|j|≤w2

φ(i+ j;x)

− max
|j|≤w1

φ(i+ j;x)

))
· ψ(i; y)

)
(4.7)

Using this loss function, we define the optimization problem in equation 4.8, which not

only tries to make the adversarial example different from the original signal x, but also

forces similarity to another signal y.

min
δ
J(x+ δ, x) + λJremix(x+ δ, y)

s.t. ‖δ‖p ≤ ε. (4.8)

Here λ is a scale parameter that controls how much we enforce the similarity between the

fingerprints of x + δ and y. We call adversarial examples generated using equation 4.8

“remix” adversarial examples as they sound more like a remix, and refer to examples

generated using equation 4.6 as default adversarial examples. While a successful attack’s

adversarial perturbation may be larger in the case of remix adversarial examples (due to

the additional term in the objective function), the perturbation sounds more natural.

65

4.5 Evaluating transfer attacks on industrial systems

We test the effectiveness of our black-box attacks on two real-world audio

search/copyright detection systems. The inner workings of both systems are proprietary,

and therefore it is necessary to attack these systems with black-box transfer attacks. Both

systems claim to be robust against noise and other input signal distortions.

We test our system on a dataset containing the top billboard songs from the past

10 years. We extract a 30-second fragment of these songs and craft both our default

and remix adversarial examples for them. Although both types of adversarial examples

can dodge detection, they have very different characteristics. The default adversarial

examples (equation 4.6) work by removing identifiable frequencies from the original

signal, while the remix adversarial examples (equation 4.8) work by introducing new

frequencies to the signal that will confuse the real-world systems.

Sample audio files can be found here4.

4.5.1 White-box attack results

Before evaluating black-box transfer attacks against real-world systems, we

evaluate the effectiveness of a white-box attack against our own proposed model. Doing

so will allow us to have a baseline of how effective an adversarial example can be if the

details of a model are ever released or leaked.

To create white-box attacks against our model, we use the loss function defined in

equation 4.3. By optimizing this function, we can remove almost all of the fingerprints

4https://www.cs.umd.edu/ tomg/projects/copyrightattack/

66

https://www.cs.umd.edu/~tomg/projects/copyrightattack/

Percentage of removed hashes 90% 95% 99%

Perturbation norm (`∞) 0.012 0.023 0.038

Perturbation norm (`2) 0.004 0.005 0.006

Table 4.1: Norms of the perturbations for white-box attacks. Before computing the norms,
we have normalized the signals to have samples that lie in [0, 1].

Figure 4.2: AudioTag can identify the benign audio signals, but fails to detect adversarial
examples.

identified by our model with perturbations that are unnoticeable by humans. Table 4.1

shows the norms of the perturbations required to remove 90%, 95%, and 99% of the

fingerprint hashes.

4.5.2 Transfer attacks on AudioTag

AudioTag5 is a free music recognition service with millions of songs in its database.

When a user uploads a short audio fragment on this website, AudioTag compares the

audio fragment against a database of songs and identifies what song this audio fragment

belongs to. AudioTag claims to be “robust to sound distortions, noises and even speed

variation, and will therefore recognize songs even in low quality audio recordings”.6

Therefore, one would expect that low-amplitude non-adversarial noise should not affect

5https://audiotag.info/
6https://audiotag.info/faq

67

https://audiotag.info/
https://audiotag.info/faq

Figure 4.3: YouTube can successfully identify the benign/original audio signal while it
fails to detect the adversarial examples.

this system.

As shown in Figure 4.2, AudioTag can accurately detect the songs corresponding

to the benign signal. However, the system fails to detect both the default and remix

adversarial examples built for them. During our experiments with AudioTag, we realized

that this system is relatively sensitive to our proposed attacks and it can be fooled with

relatively small perturbation budgets. Qualitatively, the magnitude of the noise required

to fool this system is small and it is not easily noticeable by humans. Based on this

observation, we suspect that the architecture of the fingerprinting model used in AudioTag

may have similarities to our surrogate model in section 4.4.2.

Table 4.2 shows the `∞ and `2 norms of the perturbations required to fool AudioTag

on 90% of the songs in our dataset. We also verified AudioTag’s claim of being robust

to input distortions by applying random perturbations to the audio recordings. To fool

AudioTag with random noise, the magnitude (`∞) of the noise must be roughly 4 times

larger than the noise we craft using equation 4.6.

68

Target model AudioTag YouTube

Type of perturbation default remix random default remix random

Perturbation norm (`∞) 0.03 0.03 0.12 0.10 0.10 0.32

Perturbation norm (`2) 0.02 0.02 0.06 0.07 0.08 0.19

Table 4.2: Norms of the perturbations in adversarial examples that can evade each real-
world system. Before computing the norms, we have normalized the signals to [0, 1].

4.5.3 YouTube

YouTube7 is a video sharing website that allows users to upload their video files.

YouTube has developed a system called “Content ID8” to automatically tag user-uploaded

content that contains copyrighted material. Using this system, copyright owners can

submit their content and have YouTube scan uploaded videos against it.

As shown in the screenshot in Figure 4.3, YouTube Content ID can successfully

identify the benign songs we use in our experiment. At the time of writing this chapter

both our default and remix attacks successfully evade Content ID and go undetected.

However, YouTube Content ID is significantly more robust to our attacks than AudioTag.

To fool Content ID, we had to use a larger value for ε. This makes perturbations quite

noticeable, although songs are still immediately recognizable by a human. Furthermore,

a perturbation with non-adversarial random noise must have an `∞ norm 3 times larger

than our adversarial perturbations to successfully avoid being detected.

We repeated our experiments with identical hyper-parameters on the songs from

our dataset. Table 4.2 shows the `∞ norms (i.e., the parameter ε) and `2 norms of the

perturbations required to fool YouTube on 67% of the songs in our dataset. Furthermore,

7https://www.youtube.com/
8https://support.google.com/youtube/answer/2797370?hl=en

69

https://www.youtube.com/
https://support.google.com/youtube/answer/2797370?hl=en

0 5 · 10−2 0.1 0.15 0.2
0

0.25

0.5

0.75

1

`∞ (ε)

R
ec

al
l

Figure 4.4: YouTube’s copyright detection recall against the magnitude of noise on top
Billboard songs dataset

70

figure 4.4 shows the recall of YouTube’s copyright detection tool on our dataset for

different magnitudes of perturbations.

4.6 Conclusion

Copyright detection systems are an important category of machine learning

methods, but the robustness of these systems to adversarial attacks has not been addressed

yet by the machine learning community. We discussed the vulnerability of copyright

detection systems, and explain how different kinds of systems may be vulnerable to

attacks using known methods. As proof of concept, we build a simple song identification

method using neural network primitives and attack it using well-known gradient methods.

Surprisingly, attacks on this model transfer well to online systems.

The implementations used in this study are far from optimal, and we expect that

attacks can be strengthened using sharper technical tools, including perturbation types that

are less perceptible to the human ear. Furthermore, we are doing transfer attacks using

fairly rudimentary surrogate models that rely on hand-crafted features, while commercial

systems likely rely on full trainable neural nets.

Our goal here is not to facilitate copyright evasion, but rather to raise awareness of

the threats posed by adversarial examples in this space, and to highlight the importance

of hardening copyright detection and content control systems to attack. A number of

defenses already exist that can be utilized for this purpose, including adversarial training.

71

Chapter 5: Adversarially robust transfer learning

5.1 Introduction

Deep neural networks achieve human-like accuracy on a range of tasks when

sufficient training data and computing power is available. However, when large datasets

are unavailable for training, or pracitioners require a low-cost training strategy, transfer

learning methods are often used. This process starts with a source network (pre-trained

on a task for which large datasets are available), which is then re-purposed to act on the

target problem, usually with minimal re-training on a small dataset [71, 72].

While transfer learning greatly accelerates the training pipeline and reduces data

requirements in the target domain, it does not address the important issue of model

robustness. It is well-known that naturally trained models often completely fail under

adversarial inputs [7, 8]. As a result, researchers and practitioners often resort to

adversarial training, in which adversarial examples are crafted on-the-fly during network

training and injected into the training set. This process greatly exacerbates the problems

that transfer learning seeks to avoid. The high cost of creating adversarial examples

increases training time (often by an order of magnitude or more). Furthermore, robustness

is known to suffer when training on a small dataset [11]. To make things worse, high-

capacity models are often needed to achieve good robustness [2, 9, 62], but these models

72

may over-fit badly on small datasets.

Contributions

The purpose of this work is to study the adversarial robustness of models produced

by transfer learning. We begin by observing that robust networks contain robust feature

extractors, which are resistant to adversarial perturbations in different domains. Such

robust features can be used as a basis for semi-supervised transfer learning, which only

requires re-training the last layer of a network. To demonstrate the power of robust

transfer learning, we transfer a robust ImageNet source model onto the CIFAR domain,

achieving both high accuracy and robustness in the new domain without adversarial

training. We use visualization methods to explore properties of robust feature extractors.

Then, we consider the case of transfer of learning by “fine-tuning.” In this case, the

source network is re-trained end-to-end using a small number of epochs on the target

domain. Unfortunately, this end-to-end process does not always retain the robustness

of the source domain; the network “forgets” the robust feature representations learned

on the source task. To address this problem, we use recently proposed lifelong learning

methods that prevent the network from forgetting the robustness it once learned. Using

our proposed methods, we construct robust models that generalize well. In particular, we

improve the generalization of a robust CIFAR-100 model by roughly 2% while preserving

its robustness.

73

5.2 Background

Adversarial examples fall within the category of evasion attacks—test-time attacks

in which a perturbation is added to a natural image before inference. Adversarial attacks

are most often crafted using a differentiable loss function that measures the performance

of a classifier on a chosen image. In the case of norm-constrained attacks (which form

the basis of most standard benchmark problems), the adversary solves

max
δ

l(x+ δ, y, θ) s.t. ‖δ‖p ≤ ε, (5.1)

where θ are the (already trained and frozen) parameters of classifier c(x, θ) → ŷ that

maps an image to a class, l is the proxy loss used for classification (often cross-entropy),

δ is the image perturbation, (x, y) is the natural image and its true class, and ||.||p is some

`p-norm1. The optimization problem in Eq. 5.1 aims to find a bounded perturbation that

maximizes the cross-entropy loss given the correct label. There are many variants of this

process, including DeepFool [52], L-BFGS [8], and CW [73].

Many researchers have studied methods for building a robust network which

have been later shown to be ineffective when attacked with stronger adversaries [74].

Adversarial training [8] is one of the defenses that was not broken by [74]. While

adversarial training using a weak adversary such as the FGSM attack [51] can be broken

even by single step attacks which add a simple random step prior to the FGSM step

[75], adversarial training using a strong attack has successfully improved robustness. [9]

1By default we will use the `∞-norm in this chapter.

74

showed that a PGD attack (which is a BIM attack [2] with an initial random step and

projection) is a strong enough attack to achieve promising adversarial training results. We

will refer to this training method as PGD adversarial training. PGD adversarial training

achieves good robustness on bounded attacks for MNIST [76] and acceptable robustness

on CIFAR-10 [77] classifiers.

[78] show that adversarial training with strong PGD adversaries has many benefits

in addition to robustness. They also state that while adversarial training may improve

generalization in regimes where training data is limited (especially on MNIST), it may

be at odds with generalization in regimes where data is available. This trade-off was also

recently studied by [79], [80], and [81].

While, to the best of our knowlegde, the transferability of robustness has not been

studied in depth, [82] studied the case of adversarially training models that were pre-

trained on different domains. Our work is fundamentally different in that we seek to

transfer robustness without resorting to costly and data-hungry adversarial training. We

train the target model on natural examples only, which allows us to directly study how well

robustness transfers. Additionally, this allows us to have better generalization and achieve

higher accuracy on validation examples. While as [82] state, fine-tuning on adversarial

examples built for the target domain can improve robustness of relatively large datasets

such as CIFAR-10 and CIFAR-100 compared to adversarial training from scratch on the

target domain, we show that in the regimes of limited data (where transfer learning is

more common), adversarially robust transfer learning can lead to better results measured

in terms of both robustness and clean validation accuracy.

75

Table 5.1: Accuracy and robustness of natural and adversarially trained models on
CIFAR-10+ and CIFAR-100+. The “+” sign denotes standard data augmentation.

Dataset model validation accuracy accuracy against PGD-20

CIFAR-10+ natural 95.01% 0.00%
robust 87.25% 45.84%

CIFAR-100+ natural 78.84% 0.00%
robust 59.87% 22.76%

5.3 The robustness of deep features

In this section, we explore the robustness of different network layers, and

demonstrate that robust networks rely on robust deep features. To do so, we start from

robust classifiers (c(θr)) for the CIFAR-100 and CIFAR-10 datasets [77], and update θ by

training on natural examples. In each experiment, we re-initialize the last k layers/blocks

of the network, and re-train just those layers. We start by re-initializing just the last layer,

then the last two, and so on until we re-initialize all the layers.

We use the adversarially trained Wide-ResNet 32-10 [83] for CIFAR-10 from [9]

as our robust model for CIFAR-10. We also adversarially train our own robust classifier

for CIFAR-100 using the code from [9]. To keep things consistent, we use the same

hyper-parameters used by [9] for adversarially training CIFAR-10 to adversarially train

the CIFAR-100 model.2 The performance of the CIFAR-10 and CIFAR-100 models on

natural and adversarial examples are summarized in Table 5.1. To measure robustness,

we evaluate the models on adversarial examples built using PGD attacks.

We break the WRN 32-10 model into 17 blocks, which are depicted in Fig. 5.2. In

each experiment, we first re-initialize the k deepest blocks (blocks 1 through k) and then

2We adv. train the WRN 32-10 on CIFAR-100 using a 7-step `∞ PGD attack with step-size=2 and
ε = 8. We train for 80,000 iterations with a batch-size of 128.

76

l=1 l=2 l=3 l=4 l=5 l=6 l=7 l=8 l=9 l=10 l=11 l=12 l=13 l=14 l=15 l=16 l=17

Number of deep blocks retrained

0

10

20

30

40

P
G

D
-2

0
va

lid
at

io
n

ac
cu

ra
cy

(%
)

46.06 46.43

44.56

36.54

30.29

22.28

15.49
14.08

10.63

8.28

6.02

2.05
1.17

0.36 0.04 0.03 0.0

Madry PGD-7 trained

Robustness of CIFAR-10 by retraining last l blocks

(a) CIFAR-10 PGD-20 accuracy

l=1 l=2 l=3 l=4 l=5 l=6 l=7 l=8 l=9 l=10 l=11 l=12 l=13 l=14 l=15 l=16 l=17

Number of deep blocks retrained

0

5

10

15

20

25

P
G

D
-2

0
va

lid
at

io
n

ac
cu

ra
cy

(%
)

24.61 24.72

20.61

15.57

10.7

8.28

6.03

5.14

4.27

3.2

2.28

1.08
0.62

0.28 0.08 0.04 0.01

Madry PGD-7 trained

Robustness of CIFAR-100 by retraining last l blocks

(b) CIFAR-100 PGD-20 accuracy

Figure 5.1: Robustness is preserved when we retrain only the deepest block(s) of robust
CIFAR-10 and CIFAR-100 models using natural examples. The vertical axis is the
accuracy on PGD-20 generated adversarial examples (i.elet@tokeneonedotrobustness)
after re-training deep layers. The robustness of the adversarially trained models if all
layers are frozen are shown with dashed lines.

train the parameters of those blocks on natural images3. We train for 20,000 iterations

using Momentum SGD and a learning rate of 0.001. We then incrementally unfreeze and

train more blocks. For each experiment, we evaluate the newly trained model’s accuracy

on validation adversarial examples built with a 20-step PGD `∞ attack with ε = 8.

Fig. 5.1 shows that robustness does not drop if only the final layers of the networks

are re-trained on natural examples. In fact, there is a slight increase in robustness

compared to the baseline PGD-7 adversarially trained models when we just retrain the

last batch-normalization block and fully connected block. As we unfreeze and train more

blocks, the network’s robustness suddenly drops. This leads us to believe that a hardened

network’s robustness is mainly due to robust deep feature representations and robustness

is preserved if we re-train on top of deep features.

Now that we have identified feature extractors as a source of robustness, it is natural
3In this experiment, we use standard data augmentation techniques.

77

3x
3

co
nv

, 1
6

3x
3

co
nv

, 1
6

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 1
60

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 3
20

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

3x
3

co
nv

, 6
40

av
g

po
ol

av
g

po
ol

FCFC

im
ag

e
im

ag
e

ba
tc

h
no

rm
ba

tc
h

no
rm

bl
oc

k
17

bl
oc

k
16

bl
oc

k
15

bl
oc

k
14

bl
oc

k
13

bl
oc

k
12

bl
oc

k
11

bl
oc

k
10

bl
oc

k
9

bl
oc

k
8

bl
oc

k
7

bl
oc

k
6

bl
oc

k
5

bl
oc

k
4

bl
oc

k
3

bl
oc

k
2

bl
oc

k
1

Figure 5.2: Wide Resnet 32-10 and the blocks used for freezing/retraining

to investigate whether robustness is preserved when transfer learning using robust feature

extractors. We will study two different approaches for transferring robustness across

datasets: one in which only the last layer is re-trained, and one with end-to-end re-training.

5.4 Transfer learning: Recycling feature extractors

We study how robustness transfers when the feature extractor layers of the

source network are frozen, and we retrain only the last fully connected layer

(i.elet@tokeneonedotthe classification layer) for the new task. Formally, the transfer

learning objective is:

min
w

l(z(x, θ∗), y, w) (5.2)

where z is the deep feature extractor function with pre-trained and now “frozen”

parameters θ∗, and w represents the trainable parameters of the last fully connected layer.

To investigate how well robustness transfers, we use two source models: one that is

hardened by adversarial training and another that is naturally trained.

We use models trained on CIFAR-100 as source models and perform transfer

78

Table 5.2: Transfer learning by freezing the feature extractor layers.

Source Dataset Target Dataset Source Model val. PGD-20

CIFAR-100 CIFAR-10 natural 83.05% 0.00%
robust 72.05% 17.70%

CIFAR-100
(50% of classes)

CIFAR-100
(other 50% of classes)

natural 71.44% 0.00%
robust 58.48% 15.86%

CIFAR-100
(50% of classes)

CIFAR-100
(same 50% of classes)

natural 80.20% 0.00%
robust 64.96% 25.16%

learning from CIFAR-100 to CIFAR-10. The results are summarized in Table 5.2.

Compared to adversarial/natural training the target model, transferring from a source

model seems to result in a drop in natural accuracy (compare first row of Table 5.1 to

the first row of Table 5.2). This difference is wider when the source and target data

distributions are dissimilar [71].

To evaluate our method on two datasets with more similar attributes, we randomly

partition CIFAR-100 into two disjoint subsets where each subset contains images

corresponding to 50 classes. Table 5.2 shows the accuracy of transferring from one

of the disjoint sets to the other (second row) and to the same set (third row). We can

compare results of transfer learning with adversarial training on CIFAR-100 by averaging

the results in the second and third rows of Table 5.2 to get the accuracy across all 100

classes of CIFAR-100.4 By doing so, we see that the accuracy of the transferred classifier

matches that of the adversarially trained one, even though no adversarial training took

place in the target domain.

We make the following observations from the transfer-learning results in Table 5.2.

4The robust CIFAR-100 classifier has 59.87% validation accuracy and 22.76% accuracy on PGD-20
adversarial examples. The average validation accuracy of the two half-CIFAR-100 classifiers on validation
examples is 64.96%+58.48%

2 = 61.72% while the average robustness is 25.16%+15.86%
2 = 20.51%.

79

1) robustness transfers: when the source model used for transfer learning is robust, the

target model is also robust (although less so than the source), 2) robustness transfers

between models that are more similar: If the source and target models are trained on

datasets which have similar distributions (and number of classes), robustness transfers

better, and 3) validation accuracy drops if we transfer from robust models in comparison

to naturally trained source models: if the source model is naturally trained, the natural

validation accuracy is better, although the target model is then vulnerable to adversarial

perturbations.

5.4.1 Transfer Learning with ImageNet models

Transfer learning using models trained on ImageNet [61] as the source is a common

practice in industry because ImageNet feature extractors are powerful and expressive. In

this section we evaluate how well robustness transfers from these models.

5.4.1.1 Transfer learning using ImageNet

Starting from both a natural and robust ImageNet model, we perform the same set of

experiments we did in section 5.4. Robust ImageNet models do not withstand untargeted

`∞ attacks using as large an ε as those that can be used for simpler datasets like CIFAR.

Following the method [62], we “free train” a robust ResNet-50 on ImageNet using replay

hyper-parameterm = 4. The hardened ImageNet classifier withstands attacks bounded by

ε = 5. Our robust ImageNet achieves 59.05% top-1 accuracy and roughly 27% accuracy

against PGD-20 `∞ ε = 5 attacks on validation examples. We experiment with using this

80

Table 5.3: Transfer learning from ImageNet.

Architecture and Source Dataset Target Dataset Source Model val. PGD-20

ResNet-50 ImageNet CIFAR-10+
natural 90.49% 0.01%

robust (ε = 5) 88.33% 22.66%

CIFAR-100+
natural 72.84% 0.05%

robust (ε = 5) 68.88% 15.21%

Robust u-ResNet-50 (ε = 5) for CIFAR-10+ 82.00% 53.11%
Robust u-ResNet-50 (ε = 5) for CIFAR-100+ 59.90% 29.54%

robust ImageNet model and a conventionally trained ResNet-50 ImageNet model as the

source models.

Using the ImageNet source models, we train CIFAR classifiers by retraining the last

layer on natural CIFAR examples. We up-sample the 32×32-dimensional CIFAR images

to 224 × 224 before feeding them into the ResNet-50 source models that are trained on

ImageNet. For evaluation purposes, we also train robust ResNet-50 models from scratch

using [62] for the CIFAR models. To ensure that the transfer learning models and the

end-to-end trained robust models have the same capacity and dimensionality, we first

upsample the CIFAR images before feeding them to the ResNet-50 model. To distinguish

between the common case of training ResNet models on CIFAR images that are 32× 32-

dimensional, we call our models that are trained on the upsampled CIFAR datasets the

upsample-first ResNets or “u-ResNets”.

Table 5.3 illustrates that using a robust ImageNet model as a source results in

high validation accuracy for the transferred CIFAR target models. Also, given that the

ImageNet classifier by itself is 27% robust, the CIFAR-10 model maintains the majority

of that 27% robustness. When we compare the end-to-end hardened classifiers (robust

u-ResNets) with the transferred classifier, we can see that while the robustness is less

81

for the transferred case, transferred models result in considerably better performance on

clean validation examples.

5.4.2 Low-data regime

As touched on before, transfer learning is more common in situations where the

number of training points in the target domain is limited. Up until now, as a proof of

concept, we have illustrated the majority of our experiments on the CIFAR target domains

where we have many training points per-class. [82] show that starting from a pre-trained

robust ImageNet model and fine-tuning on adversarial examples of the CIFAR domain can

improve robustness beyond that of simply adversarial training CIFAR. Here, we illustrate

the effect of training data size on robustness and natural performance by running various

experiments on subsets of CIFAR-100 where we vary the number of training points per-

class (N).

We compare three different hardening methods: (1) Free-training/adversarial

training the target domain [62]; (2) fine-tuning using adversarial examples of the target

task starting from the Free-4 robust ImageNet model similar to [82]; and (3) training a

fully connected layer on top of the frozen feature extractors of the Free-4 robust ImageNet

model using natural examples from the target task. For comparing the three different

approaches, we look at three metrics: (a) clean validation accuracy; (b) robustness

against PGD-20 validation adversarial examples; and (c) average of robustness and clean

performance (((a)+(b))/2.) The results are summarized in Fig. 5.3. In the regimes

where transfer learning is more common, adversarially robust transfer learning results

82

N=250 N=125 N=60 N=30 N=15 N=10 N=5

Number of training data points per class

0

10

20

30

40

50

60

C
le

an
va

lid
at

io
n

ac
cu

ra
cy

Conventional performance in different data regimes for CIFAR-100

Transferred

Free trained

Fine-tuned with AT

(a) Clean validation

N=250 N=125 N=60 N=30 N=15 N=10 N=5

Number of training data points per class

0

5

10

15

20

25

30

P
G

D
-2

0
va

lid
at

io
n

ac
cu

ra
cy

Robustness in different data regimes for CIFAR-100

Transferred

Free trained

Fine-tuned with AT

(b) Adversarial validation

N=250 N=125 N=60 N=30 N=15 N=10 N=5

Number of training data points per class

0

10

20

30

40

50

A
vg

.
P

G
D

-2
0

an
d

C
le

an
va

lid
at

io
n

ac
cu

ra
cy

Avg robust and nat performance in different data regimes for CIFAR-100

Transferred

Free trained

Fine-tuned with AT

(c) Average validation

Figure 5.3: When the number of training data per-class is very limited (right bars),
adversarially robust transfer learning [Transferred] is better in all metrics. However, as
the number of training data increases (left bars), fine-tuning with adversarial examples of
the target domain [Fine-tuned with AT] results in more robustness. Adversarially robust
transfer learning always results in models that work better on natural examples and is 3×
faster than fine-tuning with adversarial examples of the target domain. Using a pre-trained
robust ImageNet improves both robustness and generalization.

in the best overall performance. Adversarially/Free training the target domain results

in less robustness and validation accuracy compared to fine-tuning which highlights the

importance of pre-training [82]. Note that in terms of computational resources required,

the cost of fine-tuning on adversarial examples of the target domain is about k× our

method since it requires generation of adversarial examples using k-step PGD attacks

(we set k = 3).

5.4.2.1 Training deeper networks on top of robust feature extractors

The basic transfer learning setting of section 5.4.1.1 only re-trains one layer for the

new task. In section 5.4.1.1, when we transferred from the robust ImageNet to CIFAR-

100, the natural training accuracy was 88.84%. Given the small number of trainable

parameters left for the network (≈ 2048×100) and the fixed feature extractor, the network

was not capable of completely fitting the training data. This means that there is potential

to improve natural accuracy by learning more complex non-linear features and increasing

83

the number of trainable parameters.

To increase representation capacity and the number of trainable parameters, instead

of training a 1-layer network on top of the feature extractor, we train a multi-layer

perceptron (MLP) network on top of the robust feature extractor. To keep things

simple and prevent bottle-necking, every hidden layer we add has 2048 neurons. We

plot the training and validation accuracies on the natural examples and the robustness

(i.elet@tokeneonedotPGD-20 validation accuracy) in Fig. 5.4 for various numbers of

hidden layers. As can be seen, adding one layer is enough to achieve 100% training

accuracy. However, doing so does not result in an increase in validation accuracy. To

the contrary, adding more layers can result in a slight drop in validation accuracy due

to overfitting. As illustrated, we can improve generalization using simple but effective

methods such as dropout [84] (with probability 0.25) and batch-normalization [85].

However, the most interesting behavior we observe in this experiment is that, as

we increase the number of hidden layers, the robustness to PGD-20 attacks improves.

Note, this seems to happen even when we transfer from a naturally trained ImageNet

model, which leads us to suspect that this behavior may be an artifact of vanishing

gradients for adversary as the softmax loss saturates when the data is fit perfectly [74].

Therefore, for this case we change our robustness measure and use the CW attack [73]

which will encounter fewer numerical issues because its loss function does not have a

softmax component and does not saturate. Attacking the model from the natural source

with CW-20 completely breaks the model and achieves 0% robustness. Most interestingly,

attacking the model transferred from a robust source using the CW objective maintains

robustness even when the number of hidden layers increases.

84

Figure 5.4: Training an MLP for CIFAR-100 on
top of the robust feature extractors from ImageNet.
The x-axis corresponds to the number of hidden
layers (0 is a linear classifier and corresponds to
experiments in section 5.4.1.1). Robustness stems
from robust feature extractors. Adding more layers
on top of this extractor does not hurt robustness.
Interestingly, simply adding more layers does not
improve the validation accuracy and just results
in more overfitting (i.elet@tokeneonedottraining
accuracy becomes 100%). We can slightly improve
generalization using batch norm (BN) and dropout
(DO).

0 1 2 3 4 5 6

Number of hidden MLP layers

15

20

30

60

80

90

100

A
cc

u
ra

cy
%

Train

Val

PGD-20

CW-20

Train DO

Val DO

PGD-20 DO

CW-20 DO

Train BN

Val BN

PGD-20 BN

CW-20 BN

5.5 Analysis: Robust feature extractors are filters

Our experiments suggest that the robustness of neural networks arises in large

part from the presence of robust feature extractors. We have used this observation to

transfer both robustness and accuracy between domains using transfer-learning. However,

we have not yet fully delved into what it means to have a robust feature extractor.

Through visualizations, [78] studied how adversarial training causes the image gradients

of neural networks to exhibit meaningful generative behavior. In other words, adversarial

perturbations on hardened networks “look like” the class into which the image is

perturbed. Given that optimization-based attacks build adversarial examples using the

image gradient, we also visualize the image gradients of our transferred models to see if

they exhibit the same generative behavior as adversarially trained nets.

Fig. 5.5 plots the gradient of the loss w.r.t. the input image for models obtained by

re-training only the last layer, and also for the case where we train MLPs on top of a robust

feature extractor. The gradients for the transfer-learned models with a robust source are

85

Figure 5.5: Gradients of the loss w.r.t to input images
for the CIFAR-100 transfer learning experiments of
sections 5.4.1.1 & 5.4.2.1. The top row contains sample
CIFAR-100 images. Other rows contain image gradients
of the model loss. The second row is for a model
transferred from a naturally trained ImageNet source.
Rows 3-5 are for models transferred from a robust
ImageNet source. These rows correspond to an MLP with
0 (row 3), 1 (row 4), and 2 (row 5) hidden layers on top
of the robust feature extractor. The gradients in the last
three rows all show interpretable generative behavior.

interpretable and “look like” the adversarial object class, while the gradients of models

transferred from a natural source do not. This interpretatbility comes despite the fact that

the source model was hardened against attacks on one dataset, and the transferred model

is being tested on object classes from another. Also, we see that adding more layers on

top of the feature extractor, which often leads to over-fitting, does not make gradients less

interpretable. This latter observation is consistent with our observation that added layers

preserve robustness(Fig. 5.4).

These observations, together with the success of robust transfer learning, leads us

to speculate that a robust model’s feature extractors act as a “filter” that ignores irrelevant

parts of the image.

5.6 End-to-end training without forgetting

As discussed in section 5.4, transfer learning can preserve robustness of the source

model. However, it comes at the cost of decreased validation accuracy on natural

examples. The trade-off between generalization and robustness is the subject of recent

research [78, 79, 81]. In this section, we intend to decrease the performance gap (on

86

O
ld

 F
C

O
ld

 F
C...

N
ew

 F
C

(w
)

N
ew

 F
C

(w
)

...

Initialize θ <— θ*

No backprop

Distillation
lossImage

x

Classi�cation
loss

True label
y

+ LwF loss

Figure 5.6: Our LwF loss has a term that enforces the similarity of feature representations
(i.elet@tokeneonedotpenultimate layer activations) between the source model and the
fine-tuned model.

natural images) between target models that are trained using natural and robust feature

extractors. To do so, we need to fine tune the feature extractor parameters θ. Ideally, we

should learn to perform well on the target dataset without catastrophically forgetting the

robustness of the source model. To achieve this, we utilize lifelong learning methods.

Learning without Forgetting (LwF) [86] is a method for overcoming catastrophic

forgetting. The method is based on distillation. In this framework, we train the target

model with a loss that includes a distillation term from the previous model.

min
w,θ

l(z(x, θ), y, w) + λd · d(z(x, θ), z0(x, θ∗r)) (5.3)

where λd is the feature representation similarity penalty, and d is some distance

metric between the robust model’s feature representations z0(x, θ
∗
r) and the current

model’s feature representations z(x, θ). Unlike the original LwF paper that used a distilled

loss from [87], we simply choose d to be the `2-norm. Our loss is designed to make

87

the feature representations of the source and target network similar, thus preserving

the robust feature representations (Fig. 5.6). Ideally, z(x, θ) ≈ z(x, θ∗r). To speed up

training, given robust feature extractor parameters θ∗r , we store z0(x, θ∗r) for the images

of the target task and load this from memory (i.elet@tokeneonedotoffline) instead of

performing a forward pass through the robust source network online. Therefore, in the

experiments related to LwF, we do not train with data augmentation because we have not

pre-computed z(xa, θ∗r), where xa is the augmented image. Empirically we verified that

d(z(x, θ∗r), z(xa, θ
∗
r)) was not negligible5.

To improve performance, we follow a warm-start scheme and only train the fully

connected parameters w early in training. We then cut the learning rate and continue fine

tuning both feature extractors (θ) and w. In our experiments, we use a learning rate of

0.001, and the warm-start makes up half of the total training iterations. Starting from the

pre-trained source model, we train for a total of 20,000 iterations with batch-size 128.

The results with an adversarially trained CIFAR-100 model as source and CIFAR-10 as

target are summarized in Table 5.4.

As can be seen, having a LwF-type regularizer helps in maintaining robustness

and also results in a considerable increase in validation accuracy. The trade-off between

robustness and generalization can be controlled by the choice of λd. It seems that for

some choices of λd such as 0.1, robustness also increases. However, in hindsight, the

increase in accuracy on PGD-20 adversarial examples is not solely due to improvement

in robustness. It is due to the fact that the validation accuracy has increased and we have

a better classifier overall. For easier comparisons, we have provided the transfer results

5The analysis is in the supplementary.

88

Table 5.4: Distilling robust features using learning without forgetting. The bottom rows
show results from transfer learning with a frozen feature extractor. The ‘+’ sign refers to
using augmentation.

Source→ Target Dataset Source Model λd val. PGD-20

CIFAR-100+→ CIFAR-10 robust

1e-7 89.07% 0.61%
0.001 86.15% 4.70%

0.0025 81.90% 15.42%
0.005 79.35% 17.61%
0.01 77.73% 17.55%
0.1 73.39% 18.62%

CIFAR-100+→ CIFAR-10+ natural NA 83.05% 0.00%
robust NA 72.05% 17.70%

without LwF at the bottom of Table 5.4. Note that using LwF, we can keep the robustness

of the source model and also achieve clean validation accuracy comparable to a model

that uses naturally trained feature extractors. In the supplementary, we show that similar

conclusions can be drawn for the split CIFAR-100 task.

Decreasing generalization gap of adversarially trained networks

We demonstrated in our transfer experiments that using our LwF-type loss, can help

decrease the generalization gap while preserving robustness. In this section, we assume

that the source domain is the adversarial example domain of a dataset and the target

domain is the clean example domain of the same dataset. This experiment can be seen

as applying transfer learning from the adversarial example domain to the natural example

domain while preventing forgetting the adversarial domain.

In the case where the source and target datasets are the same (Transferring from a

robust CIFAR-100 model to CIFAR-100), by applying our LwF-type loss, we can improve

the generalization of robust models. Our results are summarized in Table 5.5.

89

Table 5.5: Decreasing generalization gap by transferring with LwF. For reference, last
row shows results from adversarial training CIFAR-100. The ‘+’ sign refers to using
augmentation.

Source→ Target Dataset Source Model λd val. PGD-20

CIFAR-100+→ CIFAR-100 robust

1e-5 61.53% 21.83%
5e-5 61.71% 23.44%
1e-4 61.38% 23.95%
0.001 60.17% 24.31%
0.01 59.87% 24.10%

CIFAR-100+ robust NA 59.87% 22.76%

5.7 Conclusion

We identified the feature extractors of adversarially trained models as a source

of robustness, and use this observation to transfer robustness to new problems domains

without adversarial training. While transferring from a natural model can achieve higher

validation accuracy in comparison to transferring from a robust model, we can close the

gap and maintain the initial transferred robustness by borrowing ideas from the lifelong

learning literature. The success of this methods suggests that a robust feature extractor is

effectively a filter that sifts out relevant components of an image that are needed to assign

class labels. We hope that the insights from this study enable practitioners to build robust

models in situations with limited labeled training data, or when the cost and complexity

of adversarial training from scratch is untenable.

90

5.8 Experiment details

5.8.1 LWF-based experiments

In our LWF-based experiments, we use a batch-size of 128, a fixed learning-rate

of 1e-2m, and fine-tune for an additional 20,000 iterations. The first 10,000 iterations

are used for warm-start; during which we only update the final fully connected layer’s

weights. During the remaining 10,000 iterations, we update all of the weights but do not

update the batch-normalization parameters.

5.8.2 ImageNet to CIFAR experiments

When freezing the feature extractor and fine-tuning on adversarial examples, we

train the last fully connected layer’s weights for 50 epochs using batch-size=128. We

start with an initial learning rate of 0.01 and drop the learning rate to 0.001 at epoch 30.

In the case of fine-tuning on adversarial examples, we generate the adversarial examples

using a 3 step PGD attack with step-size 3 and a perturbation bound ε = 5.

5.8.3 Free training experiments

In all of our free-training experiments where we train the u-ResNet-50, we train for

90 epochs using a batch-size of 128. The initial learning rate used is 0.1 and we drop it

by a factor of 10 at epochs 30 and 60. We use a replay parameter m = 4 and perturbation

bound ε = 5.

91

0.0 2.5 5.0 7.5 10.0 12.5 15.0
‖z(x, θ∗r)− z(xa, θ

∗
r)‖2

0.00

0.05

0.10

0.15

0.20

F
re

q
u

en
cy

‖z(x, θ∗r)− z(xa, θ
∗
r)‖2 : x ∈ CIFAR10

train

test

(a) Histogram of ‖z(x, θ∗r), z(xa, θ∗r)‖2 for
CIFAR-10 dataset, given θ∗r for CIFAR-100
dataset. The mean for both training and test
examples is ' 5.53

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
‖z(x, θ∗r)− z(xa, θ

∗
r)‖2

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

F
re

q
u

en
cy

‖z(x, θ∗r)− z(xa, θ
∗
r)‖2 : x ∈ CIFAR100

train

test

(b) Histogram of ‖z(x, θ∗r), z(xa, θ∗r)‖2 for
CIFAR-100 dataset, given θ∗r for CIFAR-100
dataset. The mean for both training and test
examples is ' 5.57

Figure 5.7: Figures 5.7a and 5.7b both show that the values of ‖z(x, θ∗r), z(xa, θ∗r)‖2 are
high most of the time, consequently, LwF is better done without data augmentation.

5.9 The distance between feature representations of natural images and

augmented images

To speed up the LwF experiments, we did not use data augmentation during

training. Instead of computing the robust feature representations on the fly, before starting

training on the new target task, we passed the entire training data of the target task through

the robust network and stored the feature representation vector. If we were doing data

augmentation, we would have to pass the entire augmented training data through the

network, which would be slow and memory intensive. Alternatively, we could use the

robust feature representation of the non-augmented images instead. The latter would

have been feasible if the distance between the robust feature representations of the non-

augmented and augmented images were very small. However, as shown in fig 5.7, this

quantity is not often negligible.

92

Table 5.6: Distilling robust features using LwF for the split CIFAR-100 task. For
reference, we have included the results from transfer learning by freezing the features
at the bottom of the table.

Source→ Target Dataset Source Model λd val. PGD-20

CIFAR-100+ (1/2)→ CIFAR-100 (other 1/2) robust

0.001 73.30% 1.92%
0.005 66.96% 10.52%
0.01 63.32% 15.68%
0.1 55.14% 17.26%

CIFAR-100+ (1/2)→ CIFAR-100+ (other 1/2) natural NA 71.44% 0.00%
robust NA 58.48% 15.86%

5.10 LwF-based robust transfer learning for similar source and target

datasets

In Table 5.6 we conduct LwF experiments on the split CIFAR-100 task which is

more suited for transfer learning due to the similarities between the source and target

datasets. In these situations, the LwF regularizer on the feature representations still works

and can improve generalization without becoming vulnerable to adversarial examples.

If we take the average performance of the robust classifiers on the split tasks (average

of robust half CIFAR-100 and the LwF setting model for λd = 0.01) we get (63.32 +

64.96)/2 = 64.14% average validation accuracy and 20.42% average robustness which is

comparable with the case that we had adversarially trained the entire CIFAR-100 dataset

(Table 5.1).

93

Table 5.7: Decreasing generalization gap by transferring with LwF. For reference, last
row shows results from adversarial training CIFAR-10. The ‘+’ sign refers to using
augmentation.

Source→ Target Dataset Source Model λd val. PGD-20

CIFAR-10+→ CIFAR-10 robust

1e-5 88.16% 45.31%
5e-5 88.08% 46.24%
1e-4 87.81% 46.54%
5e-4 87.44% 46.36%
0.001 87.31% 46.27%
0.01 87.27% 46.09%
0.1 87.49% 46.11%

CIFAR-10+ robust NA 87.25% 45.84%

5.11 Improving generalization of the CIFAR-10 adversarially trained

model

Similar to the case of improving the generalization for CIFAR-100, we use our

LwF-based loss function to transfer from the robust CIFAR-10 domain to the natural

CIFAR-10 domain. We summarize the results in Table 5.7.

94

Chapter 6: Conclusion

In this work, we discussed adversarial attacks in real-world settings. We discussed

the pervasiveness of machine learning models in our everyday lives and the financial and

legal implications of a malfunction in those systems. We explored some examples of

such business-critical systems and their reliance on machine learning models. We also

explained why malicious actors have financial incentives to attack these systems. We

presented realistic attack models against machine learning models in real-world industrial

systems. Finally, we proposed a novel approach for building robust models given realistic

constraints.

We presented an example of a critical real-world system that relies on machine

learning models: a voice assistant error resolver. Many times voice assistant systems

misinterpret or misunderstand the intentions of a user. Since voice assistants are widely

used by billions of users, ensuring and certifying the accuracy of these systems is crucial.

However, the massive volume of data generated by these systems makes it impossible

to manually detect such errors and fix them. To address that issue, we explained

how a collaborative filtering model tackles voice assistant errors, and we showed the

effectiveness of this approach against a large-scale, state-of-the-art voice assistant.

As a proof of concept, we demonstrated a realistic attack model against real-

95

world recommendation systems. In most online stores, a recommendation system is

responsible for deciding which items are presented to a user. Therefore, the sales revenue

of an item is determined by these systems, which creates an incentive for malicious

actors to try to fool the system to show their item to more users. To demonstrate a

realistic attack by a malicious actor, we proposed a novel attack model that targets cold-

start recommendations in a content-based model. In this approach, the bad actor can

successfully fool the system without being detected by a human. We also addressed how

such attacks can be avoided by leveraging adversarial training.

To further demonstrate the vulnerability of the real-world systems to adversarial

attacks, we explored an attack against copyright detection systems. Given that copyright

detection systems ensure that billions of dollars in revenue are distributed to the true

copyright owners, there is a real incentive for malicious actors to attack these systems.

We proposed a novel approach for crafting adversarial examples that can evade detection

by real-world copyright detection systems. By using a gradient-based attack against a

hand-crafted fingerprinting model that we proposed, we created adversarial music that

is easily recognizable to a human while evading detection by a machine. We showed the

effectiveness of adversarial examples crafted by our proposed approach against black-box

models. Our examples successfully evaded detection by proprietary industrial systems.

Finally, we discussed how transfer learning can be used to train adversarially robust

models. Given the data-hungry and computationally expensive nature of training robust

models, we need a solution for real-world scenarios where we have access to little training

data or we have a limited amount of computational resources. Transfer learning, in

which a model is pre-trained on one dataset and is then re-trained on another dataset,

96

is a widely used method to train complex models on small datasets. In this work, we

showed how transfer learning can also be used to train robust models. We identified the

feature extractors of adversarially trained models as a source of robustness, and use this

observation to transfer robustness to new problems domains without adversarial training.

The success of this method suggests that a robust feature extractor is effectively a filter

that sifts out relevant components of an image that are needed to assign class labels.

97

Bibliography

[1] Tencent. Experimental security research of tesla autopilot. Technical report, Tencent
Keen Security Lab, 2019.

[2] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning
at scale. arXiv preprint arXiv:1611.01236, 2016.

[3] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing
robust adversarial examples. arXiv preprint arXiv:1707.07397, 2017.

[4] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world
attacks on deep learning models. arXiv preprint arXiv:1707.08945, 2017.

[5] Hiromu Yakura and Jun Sakuma. Robust audio adversarial example for a physical
attack. arXiv preprint arXiv:1810.11793, 2018.

[6] Yao Qin, Nicholas Carlini, Ian Goodfellow, Garrison Cottrell, and Colin Raffel.
Imperceptible, robust, and targeted adversarial examples for automatic speech
recognition. arXiv preprint arXiv:1903.10346, 2019.

[7] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel
Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning
at test time. In Joint European conference on machine learning and knowledge
discovery in databases, pages 387–402. Springer, 2013.

[8] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[9] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. arXiv
preprint arXiv:1706.06083, 2017.

[10] Ali Shafahi, Mahyar Najibi, Zheng Xu, John Dickerson, Larry S Davis, and Tom
Goldstein. Universal adversarial training. arXiv preprint arXiv:1811.11304, 2018.

98

[11] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and
Aleksander Madry. Adversarially robust generalization requires more data. In
Advances in Neural Information Processing Systems, pages 5014–5026, 2018.

[12] Micah Goldblum, Avi Schwarzschild, Naftali Cohen, Tucker Balch, Ankit B Patel,
and Tom Goldstein. Adversarial attacks on machine learning systems for high-
frequency trading. arXiv preprint arXiv:2002.09565, 2020.

[13] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and
Yoshua Bengio. Attention-based models for speech recognition. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages 577–585. Curran Associates,
Inc., 2015. URL http://papers.nips.cc/paper/5847-attention-
based-models-for-speech-recognition.pdf.

[14] Alex Graves. Sequence transduction with recurrent neural networks, 2012.

[15] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, May 2013. doi:
10.1109/icassp.2013.6638947. URL http://dx.doi.org/10.1109/
ICASSP.2013.6638947.

[16] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition
with recurrent neural networks. In Proceedings of the 31st International
Conference on International Conference on Machine Learning - Volume 32,
ICML’14, pages II–1764–II–1772. JMLR.org, 2014. URL http://dl.acm.org/
citation.cfm?id=3044805.3045089.

[17] Jinfeng Rao, Ferhan Ture, and Jimmy Lin. Multi-task learning with neural networks
for voice query understanding on an entertainment platform. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’18, pages 636–645, New York, NY, USA, 2018. ACM. ISBN 978-
1-4503-5552-0. doi: 10.1145/3219819.3219870. URL http://doi.acm.org/
10.1145/3219819.3219870.

[18] Jinfeng Rao, Ferhan Ture, Hua He, Oliver Jojic, and Jimmy Lin. Talking to your
tv. Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management - CIKM ’17, 2017. doi: 10.1145/3132847.3132893. URL http:
//dx.doi.org/10.1145/3132847.3132893.

[19] Ciprian Chelba and Johan Schalkwyk. Empirical Exploration of Language
Modeling for the google.com Query Stream as Applied to Mobile Voice Search,
pages 197–229. New York, 2013. URL http://www.springer.com/
engineering/signals/book/978-1-4614-6017-6.

[20] Ido Guy. Searching by talking: Analysis of voice queries on mobile web search.
In Proceedings of the 39th International ACM SIGIR Conference on Research and

99

http://papers.nips.cc/paper/5847-attention-based-models-for-speech-recognition.pdf
http://papers.nips.cc/paper/5847-attention-based-models-for-speech-recognition.pdf
http://dx.doi.org/10.1109/ICASSP.2013.6638947
http://dx.doi.org/10.1109/ICASSP.2013.6638947
http://dl.acm.org/citation.cfm?id=3044805.3045089
http://dl.acm.org/citation.cfm?id=3044805.3045089
http://doi.acm.org/10.1145/3219819.3219870
http://doi.acm.org/10.1145/3219819.3219870
http://dx.doi.org/10.1145/3132847.3132893
http://dx.doi.org/10.1145/3132847.3132893
http://www.springer.com/engineering/signals/book/978-1-4614-6017-6
http://www.springer.com/engineering/signals/book/978-1-4614-6017-6

Development in Information Retrieval, SIGIR ’16, pages 35–44, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-4069-4. doi: 10.1145/2911451.2911525.
URL http://doi.acm.org/10.1145/2911451.2911525.

[21] Ahmed Hassan Awadallah, Ranjitha Gurunath Kulkarni, Umut Ozertem, and Rosie
Jones. Characterizing and predicting voice query reformulation. In Proceedings
of the 24th ACM International on Conference on Information and Knowledge
Management, CIKM ’15, pages 543–552, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-3794-6. doi: 10.1145/2806416.2806491. URL http://
doi.acm.org/10.1145/2806416.2806491.

[22] Milad Shokouhi, Umut Ozertem, and Nick Craswell. Did you say u2 or youtube?:
Inferring implicit transcripts from voice search logs. In Proceedings of the 25th
International Conference on World Wide Web, WWW ’16, pages 1215–1224,
Republic and Canton of Geneva, Switzerland, 2016. International World Wide
Web Conferences Steering Committee. ISBN 978-1-4503-4143-1. doi: 10.1145/
2872427.2882994. URL https://doi.org/10.1145/2872427.2882994.

[23] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web, pages 285–295. ACM, 2001.

[24] Jinfeng Rao, Ferhan Türe, and Jimmy Lin. What do viewers say to their tvs?: An
analysis of voice queries to entertainment systems. In SIGIR, pages 1213–1216,
2018.

[25] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati,
Jaikit Savla, Varun Bhagwan, and Doug Sharp. E-commerce in your inbox:
Product recommendations at scale. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’15,
pages 1809–1818, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3664-
2. doi: 10.1145/2783258.2788627. URL http://doi.acm.org/10.1145/
2783258.2788627.

[26] O. Barkan and N. Koenigstein. Item2vec: Neural item embedding for
collaborative filtering. In 2016 IEEE 26th International Workshop on Machine
Learning for Signal Processing (MLSP), pages 1–6, Sept 2016. doi: 10.1109/
MLSP.2016.7738886.

[27] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube
recommendations. In Proceedings of the 10th ACM Conference on Recommender
Systems, New York, NY, USA, 2016.

[28] David C. Liu, Stephanie Rogers, Raymond Shiau, Dmitry Kislyuk, Kevin C. Ma,
Zhigang Zhong, Jenny Liu, and Yushi Jing. Related pins at pinterest: The evolution
of a real-world recommender system. In Proceedings of the 26th International
Conference on World Wide Web Companion, WWW ’17 Companion, pages 583–
592, Republic and Canton of Geneva, Switzerland, 2017. International World Wide

100

http://doi.acm.org/10.1145/2911451.2911525
http://doi.acm.org/10.1145/2806416.2806491
http://doi.acm.org/10.1145/2806416.2806491
https://doi.org/10.1145/2872427.2882994
http://doi.acm.org/10.1145/2783258.2788627
http://doi.acm.org/10.1145/2783258.2788627

Web Conferences Steering Committee. ISBN 978-1-4503-4914-7. doi: 10.1145/
3041021.3054202. URL https://doi.org/10.1145/3041021.3054202.

[29] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[30] Parsa Saadatpanah, Ali Shafahi, and Tom Goldstein. Adversarial attacks on
copyright detection systems. In International Conference on Machine Learning,
pages 8307–8315. PMLR, 2020.

[31] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide
& deep learning for recommender systems. In Proceedings of the 1st workshop on
deep learning for recommender systems, pages 7–10, 2016.

[32] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua.
Neural collaborative filtering. In Proceedings of the 26th international conference
on world wide web, pages 173–182, 2017.

[33] Konstantina Christakopoulou and Arindam Banerjee. Adversarial attacks on
an oblivious recommender. In Proceedings of the 13th ACM Conference on
Recommender Systems, pages 322–330, 2019.

[34] Robin Van Meteren and Maarten Van Someren. Using content-based filtering for
recommendation. In Proceedings of the Machine Learning in the New Information
Age: MLnet/ECML2000 Workshop, volume 30, pages 47–56, 2000.

[35] Michael J Pazzani and Daniel Billsus. Content-based recommendation systems. In
The adaptive web, pages 325–341. Springer, 2007.

[36] Michal Kompan and Mária Bieliková. Content-based news recommendation. In
International conference on electronic commerce and web technologies, pages 61–
72. Springer, 2010.

[37] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Steffen Rendle, and
Lars Schmidt-Thieme. Learning attribute-to-feature mappings for cold-start
recommendations. In 2010 IEEE International Conference on Data Mining, pages
176–185. IEEE, 2010.

[38] Jingjing Li, Mengmeng Jing, Ke Lu, Lei Zhu, Yang Yang, and Zi Huang. From zero-
shot learning to cold-start recommendation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 4189–4196, 2019.

[39] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, Lexing Xie, and Darius
Braziunas. Low-rank linear cold-start recommendation from social data. In Thirty-
first AAAI conference on artificial intelligence, 2017.

101

https://doi.org/10.1145/3041021.3054202

[40] Manasi Vartak, Arvind Thiagarajan, Conrado Miranda, Jeshua Bratman, and Hugo
Larochelle. A meta-learning perspective on cold-start recommendations for items.
In Advances in neural information processing systems, pages 6904–6914, 2017.

[41] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. Dropoutnet: Addressing
cold start in recommender systems. In Advances in Neural Information Processing
Systems, pages 4957–4966, 2017.

[42] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommendations:
Item-to-item collaborative filtering. IEEE Internet computing, 7(1):76–80, 2003.

[43] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Accessorize
to a crime: Real and stealthy attacks on state-of-the-art face recognition. In
Proceedings of the 2016 acm sigsac conference on computer and communications
security, pages 1528–1540, 2016.

[44] James Bennett, Stan Lanning, and Netflix Netflix. The netflix prize. In In KDD Cup
and Workshop in conjunction with KDD, 2007.

[45] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for
recommender systems. In Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1235–1244, 2015.

[46] Ke Zhou and Hongyuan Zha. Learning binary codes for collaborative filtering.
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 498–506, 2012.

[47] Cedric Manara. Protecting what we love about the internet: our efforts to stop online
piracy, 2018. https://www.blog.google/outreach-initiatives/
public-policy/protecting-what-we-love-about-internet-
our-efforts-stop-online-piracy/ [Accessed: 05/21/2019].

[48] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16), pages
265–283, 2016.

[49] AudioTag. Audiotag – free music recognition robot, 2009. URL https://
audiotag.info/.

[50] Google. How content id works – youtube help, 2019. URL https://
support.google.com/youtube/answer/2797370?hl=en.

[51] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. International Conference on Learning
Representation, 2015.

102

https://www.blog.google/outreach-initiatives/public-policy/protecting-what-we-love-about-internet-our-efforts-stop-online-piracy/
https://www.blog.google/outreach-initiatives/public-policy/protecting-what-we-love-about-internet-our-efforts-stop-online-piracy/
https://www.blog.google/outreach-initiatives/public-policy/protecting-what-we-love-about-internet-our-efforts-stop-online-piracy/
https://audiotag.info/
https://audiotag.info/
https://support.google.com/youtube/answer/2797370?hl=en
https://support.google.com/youtube/answer/2797370?hl=en

[52] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool:
a simple and accurate method to fool deep neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 2574–2582,
2016.

[53] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal
Frossard. Universal adversarial perturbations. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1765–1773, 2017.

[54] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan
Yuille. Adversarial examples for semantic segmentation and object detection.
In Proceedings of the IEEE International Conference on Computer Vision, pages
1369–1378, 2017.

[55] Volker Fischer, Mummadi Chaithanya Kumar, Jan Hendrik Metzen, and Thomas
Brox. Adversarial examples for semantic image segmentation. arXiv preprint
arXiv:1703.01101, 2017.

[56] Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted attacks
on speech-to-text. In 2018 IEEE Security and Privacy Workshops (SPW), pages 1–7.
IEEE, 2018.

[57] Moustafa Alzantot, Bharathan Balaji, and Mani Srivastava. Did you hear
that? adversarial examples against automatic speech recognition. arXiv preprint
arXiv:1801.00554, 2018.

[58] Rohan Taori, Amog Kamsetty, Brenton Chu, and Nikita Vemuri. Targeted
adversarial examples for black box audio systems. arXiv preprint arXiv:1805.07820,
2018.

[59] Jiajun Lu, Hussein Sibai, Evan Fabry, and David Forsyth. No need to worry about
adversarial examples in object detection in autonomous vehicles. arXiv preprint
arXiv:1707.03501, 2017.

[60] Jiajun Lu, Hussein Sibai, Evan Fabry, and David Forsyth. Standard detectors
aren’t (currently) fooled by physical adversarial stop signs. arXiv preprint
arXiv:1710.03337, 2017.

[61] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International journal of computer
vision, 115(3):211–252, 2015.

[62] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for
free! arXiv preprint arXiv:1904.12843, 2019.

[63] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certified adversarial
robustness via randomized smoothing. arXiv preprint arXiv:1902.02918, 2019.

103

[64] Claudia Saviaga and Carlos Toxtli. Deepiracy: Video piracy detection
system by using longest common subsequence and deep learning, 2018.
https://www.blog.google/outreach-initiatives/public-
policy/protecting-what-we-love-about-internet-our-
efforts-stop-online-piracy/ [Accessed: 05/21/2019].

[65] Derui Wang, Chaoran Li, Sheng Wen, Surya Nepal, and Yang Xiang. Daedalus:
Breaking non-maximum suppression in object detection via adversarial examples.
arXiv preprint arXiv:1902.02067, 2019.

[66] Y. Li, D. Wang, and L. Tang. Robust and secure image fingerprinting learned by
neural network. IEEE Transactions on Circuits and Systems for Video Technology,
pages 1–1, 2019. ISSN 1051-8215. doi: 10.1109/TCSVT.2019.2890966.

[67] J. Yasaswi, S. Purini, and C. V. Jawahar. Plagiarism detection in programming
assignments using deep features. In 2017 4th IAPR Asian Conference on Pattern
Recognition (ACPR), pages 652–657, Nov 2017. doi: 10.1109/ACPR.2017.146.

[68] Avery Wang et al. An industrial strength audio search algorithm. In Ismir, volume
2003, pages 7–13. Washington, DC, 2003.

[69] Tom Goldstein, Christoph Studer, and Richard Baraniuk. A field guide to forward-
backward splitting with a fasta implementation. arXiv preprint arXiv:1411.3406,
2014.

[70] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[71] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In Advances in neural information processing
systems, pages 3320–3328, 2014.

[72] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10):1345–1359, 2009.

[73] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages 39–57.
IEEE, 2017.

[74] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial examples. arXiv
preprint arXiv:1802.00420, 2018.

[75] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. arXiv
preprint arXiv:1705.07204, 2017.

104

https://www.blog.google/outreach-initiatives/public-policy/protecting-what-we-love-about-internet-our-efforts-stop-online-piracy/
https://www.blog.google/outreach-initiatives/public-policy/protecting-what-we-love-about-internet-our-efforts-stop-online-piracy/
https://www.blog.google/outreach-initiatives/public-policy/protecting-what-we-love-about-internet-our-efforts-stop-online-piracy/

[76] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[77] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from
tiny images. Technical report, Citeseer, 2009.

[78] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and
Aleksander Madry. Robustness may be at odds with accuracy. stat, 1050:11, 2018.

[79] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui,
and Michael I Jordan. Theoretically principled trade-off between robustness and
accuracy. arXiv preprint arXiv:1901.08573, 2019.

[80] Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao.
Is robustness the cost of accuracy?–a comprehensive study on the robustness of 18
deep image classification models. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 631–648, 2018.

[81] Ali Shafahi, W Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein.
Are adversarial examples inevitable? ICLR, 2019.

[82] Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve
model robustness and uncertainty. arXiv preprint arXiv:1901.09960, 2019.

[83] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[84] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[85] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[86] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on
pattern analysis and machine intelligence, 40(12):2935–2947, 2018.

[87] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

105

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Adversarial Attacks
	Adversarial Robustness
	Adversarial Attacks in Real-World Settings
	outline

	Voice Assistant Error Resolution via Collaborative Filtering
	Introduction
	Voice Assistant Platform
	Error Detection
	Error Resolution via Collaborative Filtering
	Collaborative Filtering Model
	Training
	Collaborative Error Resolution

	Results: real-world errors resolved
	Conclusion and Future Work

	Adversarially Robust Cold-Start Recommendations
	Introduction
	Cold-Start Model
	Collaborative Filtering model
	Content based model

	Adversarial Attacks on Cold-Start Recommendation Models
	Real-world attacks

	Adversarilly Robust Model
	Experiments
	Dataset
	Naturally trained model
	Attacking the naturally trained model
	Adversarially trained models are robust

	Conclusion

	Adversarial Attacks on Copyright Detection Systems
	Introduction
	What makes copyright detection systems vulnerable to attacks?
	Types of copyright detection systems
	Case study: evading audio fingerprinting
	Audio fingerprinting models
	Interpreting the fingerprint extractor as a CNN
	Formulating the adversarial loss function
	Crafting the evasion attack
	Remix adversarial examples

	Evaluating transfer attacks on industrial systems
	White-box attack results
	Transfer attacks on AudioTag
	YouTube

	Conclusion

	Adversarially robust transfer learning
	Introduction
	Background
	The robustness of deep features
	Transfer learning: Recycling feature extractors
	Transfer Learning with ImageNet models
	Low-data regime

	Analysis: Robust feature extractors are filters
	End-to-end training without forgetting
	Conclusion
	Experiment details
	LWF-based experiments
	ImageNet to CIFAR experiments
	Free training experiments

	The distance between feature representations of natural images and augmented images
	LwF-based robust transfer learning for similar source and target datasets
	Improving generalization of the CIFAR-10 adversarially trained model

	Conclusion
	Bibliography

