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Current search engines are designed to find what we want. But many collec-

tions can not be made available for search engines because they contain sensitive

content that needs to be protected. Before release, such content needs to be exam-

ined through a sensitivity review process, which can be difficult and time-consuming.

To address this challenge, search technology should be capable of providing access

to relevant content while protecting sensitive content.

In this dissertation, we present an approach that leverages evaluation-driven

information retrieval (IR) techniques. These techniques optimize an objective func-

tion that balances the value of finding relevant content with the imperative to protect

sensitive content. This requires evaluation measures that balance between relevance

and sensitivity. Baselines are introduced for addressing the problem, and a proposed

approach that is based on building a listwise learning to rank model is described.

The model is trained with a modified loss function to optimize for the evaluation

measure. Initial experiments re-purpose a LETOR benchmark dataset, OHSUMED,



by using Medical Subject Heading (MeSH) labels to represent the sensitivity. A sec-

ond test collection is based on the Avocado Research Email Collection. Search topics

were developed as a basis for assessing relevance, and two personas describing the

sensitivities of representative (but fictional) content creators were created as a basis

for assessing sensitivity. These personas were based on interviews with potential

donors of historically significant email collections and with archivists who currently

manage access to such collections. Two annotators then created relevance and sen-

sitivity judgments for 65 topics for one or both personas. Experiment results show

the efficacy of the learning to rank approach.

The dissertation also includes four extensions to increase the quality of re-

trieved results with respect to relevance and sensitivity. First, the use of alter-

native optimization measures is explored. Second, transformer-based rankers are

compared with rankers based on hand-crafted features. Third, a cluster-based re-

placement strategy that can further improve the score of our evaluation measures is

introduced. Fourth, a policy that truncates the ranked list according to the query’s

expected difficulty is investigated. Results show improvements in each case.
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Chapter 1: Introduction

Currently, we live in the era of big data where people generate a huge amount

of digital content through different sources, e.g., mobile devices, tablets, laptops, and

IoT (Internet of Things) devices. Generated content could belong to a wide range of

topics, e.g., telecommunications, media, health, and finance. From a data analytics

perspective, digital content is a great source from which to draw new insights. How-

ever, a major problem with this kind of content is that it is usually intermixed with

sensitive information such as personal information and private conversations. As a

result, sensitive information should be removed before making content available for

search.

The fundamental issue is that today’s search engines are designed with a single

fundamental goal: to help us find that which we want to see. Paradoxically, the

very fact that they do this well means that there are many collections that we

are not allowed to search. Citizens are not allowed to search some government

records because there may be intermixed information that needs to be protected.

Scholars are not yet allowed to see much of the growing backlog of unprocessed

archival collections for similar reasons. These limitations, and many more, are direct

consequences of the fact that today’s search engines are not designed to protect

1



sensitive information.

From the content provider perspective, they need to be careful to exclude sen-

sitive content that should not be found from the content being searched. As content

volumes increase, this segregation of sensitive content becomes more expensive. One

obvious approach is to ask content producers to mark sensitive content when it is

first produced, but that approach suffers from at least two major problems. First,

the content producer’s interests may differ from the interests of future searchers, so

content producers may not be incentivized to label sensitivity in ways that would

facilitate future access to content that is not actually sensitive. As a simple example

of this, some lawyers add a note at the bottom of every email message that they send

indicating that the message may contain privileged content. Doing so can serve the

lawyer’s general interest in protecting privileged content, but there is no incentive

for the lawyer to actually decide in each case whether such a note should be added to

a specific message. Second, sensitivity can change over time, so something marked

as sensitive today may no longer be sensitive a decade from now.

From the searcher’s perspective, some searchers do not actually want to find

everything that is relevant to their query, preferring instead that some content (e.g.,

content depicting violence) be filtered out. One example is Google’s SafeSearch

feature, which seeks to hide results containing sexually explicit content.

The problem of deciding what information can be shown in response to a

request arises in many settings. It can be seen in the case of two candidates running

for president: Hillary Clinton and Jeb Bush. Hillary Clinton had been using a

private email server for official public communications rather than using official State

2



Figure 1.1: A tweet by Hillary Clinton asking the state department to release all of
her work-related emails.

Department email accounts maintained on secure federal servers. While running for

president, she sent 30,490 work-related email messages to the State Department and

asked that they be reviewed and released as quickly as possible, as shown in Figure

1.1. These emails were being handled by 20 permanent, and 30 part-time, workers.

Due to the vast backlog of Freedom of Information Act (FOIA) requests for Clinton’s

emails, the State Department had to add more staff members to the review team for

assistance. Nearly a year later, the review team was able to finish the review process.

Jeb Bush chose a different approach, releasing all the approximately 280,000 email

messages from his time as Governor of Florida. These email messages were posted to

the Internet and then removed two days later after independent sources identified

the presence of sensitive content. Neither approach is able to provide responsive

access at reasonable cost while protecting sensitive information.

Another example is e-Discovery, which involves identifying, collecting, review-

ing, and producing electronically stored information (ESI) that can be used as ev-

idence in a civil legal case. All types of content can serve as evidence, including

text, images, emails, and audio files. Figure 1.2 shows the process workflow of e-

3



Figure 1.2: Phases of an e-Discovery process.

Discovery. In a typical e-Discovery process, review represents the most expensive

phase, estimated to be around 80% for the average case [9]. In this phase, the re-

view team, comprised of attorneys and legal professionals, assess ESI for relevance

(“responsiveness” in e-Discovery). Additionally, the review team has to identify

privileged documents which should be protected and can not be used for the legal

case even if they contain relevant information. Privileged documents are protected

under attorney/client privilege, which keeps any communication between a client

and his attorney confidential among other privileges. Typically, documents are first

assessed for relevance, and then relevant documents are filtered out if they are priv-

ileged.

From the previous examples, we can observe that the review process is time-

consuming. For example, an e-Discovery process may take several months. Addi-

tionally, the review process requires money to pay lawyers for their reviewing effort.

To reduce the time and cost of the review process, Technology Assisted Review
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Figure 1.3: Workflow for search and protection engines.

(TAR) seeks to have computer software electronically classify documents based on

input from expert reviewers. The main objective of TAR is to find as nearly all the

relevant documents in a collection as possible, with reasonable effort. This can be

achieved by reducing effort spent in reviewing non-relevant documents. In a similar

sense, for some other types of sensitivity review, Technology Assisted Sensitivity

Review (TASR) identifies sensitive documents which should not be released to the

public. Both TAR and TASR can significantly reduce the time and cost of review.

Although technology helps reviewers reduce time spent judging for relevance

and privilege, neither review process is fast enough that the requesting party can

access content through interactive search. In this dissertation, we propose to create

Search and Protection (S&P) engines that are designed to accomplish that task as

depicted in Figure 1.3. We adopt the term S&P engines to refer inclusively to all

such systems, regardless of who it is (the content provider, the user, or a third party)

that wishes the sensitive content to be protected.

The central question of this dissertation asks how we can build the search

technology to effectively search among sensitive content. The principal properties

of search and protection engines are listed below.
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1. They protect sensitive information from disclosure.

2. They retrieve relevant documents. Of course, it is expected to have some

information loss as a result of hiding sensitive information that could be rele-

vant [81].

3. They are fast, in order to provide efficient access to information through in-

teractive search. As a result, searchers will be able to learn to create better

queries for their information needs.

4. They are more affordable than exhaustive manual review.

To address the first two properties, we need to look at how search engines are

built. They are built by first quantifying what we wish them to do (i.e., designing

the evaluation measure that will characterize their effectiveness) and then by auto-

matically tailoring search algorithms to produce the best possible results according

to that evaluation measure. This process, generically referred to as Learning to

Rank (LtR), produces better results than any other known technique. We therefore

begin by designing a class of evaluation measures that balance relevance (the abil-

ity to find what we want) with sensitivity (the ability to identify that which needs

protecting). We then instantiate evaluation measures for the type of tasks we are

interested in, and develop new machine learning techniques to maximize the abil-

ity of a search engine to optimize those specific measures. To address the last two

properties, we propose to use automatic sensitivity classification, which is similar to

TASR. We adapt TASR models to different domains, because our test collections

are different from the government records for which TASR was developed.
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The first two goals of an S&P engine are increasing the quantity of relevant

content shown while decreasing the quantity of sensitive content shown. These

two goals are conflicting in that optimizing only towards relevance risks showing

sensitive information, and optimizing only towards sensitivity only may suffer from

information loss.

1.1 Thesis Statement

Search and protection engines can provide a useful degree of access to un-

segregated collections, while providing a useful degree of protection for sensitive

content.

1.2 Questions

We support the thesis statement, stated above, by addressing the following

broad questions:

Q1. How to build a search and protection engine? What are the main components

that assemble such an engine?

Q2. How do we evaluate the performance of search and protection engines?

Q3. What are the desired properties of evaluation measures for search among sen-

sitive content?

Q4. How well can a sensitivity classifier detect sensitive information?
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Q5. How well can we learn search cutoffs to handle search topics of different sen-

sitivity distributions?

We address the first question by exploring a new class of ranking approaches

designed to effectively search among secrets. We inferred the common components

that assemble these ranking approaches (Q1). Our goal is to balance the user’s

interest in finding relevant content with the provider’s interest in protecting sen-

sitive content (Q3). To answer Q2, we need access to sensitive content, which is

challenging. So we create a novel test collection that has realistic sensitive content

coupled with relevance information with respect to some information needs. The

new test collection helps us build a sensitivity classifier that can effectively classify

sensitive information (Q4). Then finally, we develop two search cutoff policies as

we noticed that search topics are of different difficulties based on the number of

sensitive documents that can appear in the result (Q5).

1.3 Contributions

This dissertation introduces a new retrieval task that does not just aim at

retrieving relevant content, but it aims at protecting sensitive content even if it is

relevant. The contributions of this work can be divided into three main categories:

System contributions (S), Test collection contributions (T), and Evaluation measure

contributions (E).
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1.3.1 Evaluation Measure Contributions

E1 We propose a set of potentially desirable properties for evaluation measures

that balance for relevance and sensitivity. We express these as axioms, draw-

ing inspiration from prior axiomatic analysis of relevance measures and of

measures that balance relevance with other desiderata (e.g., credibility [67])

(Section 4.5).

E2 We propose the TERN and SENS evaluation measures that support human

interpretation of the relevance and sensitivity contributions for a given query

(Sections 4.1 and 4.2).

E3 We introduce Cost Sensitive Discounted Cumulative Gain (CS-DCG), a vari-

ant of the Discounted Cumulative Gain (DCG) that balances between rele-

vance and sensitivity. Unlike DCG, CS-DCG can become negative, and hence

we need to compute its lower and upper bounds to use the normalized form

(nCS-DCG) to compare different search systems across several queries (Sec-

tion 4.3).

E4 We propose a variant of CS-DCG that penalizes each sensitive document def-

erentially, called γCS-DCG, with the largest penalties for the sensitive doc-

uments most highly ranked. Normalizing γCS-DCG produces nγCS-DCG,

which we empirically show it can be used for training ranking models that

outperform other models trained using TERN or SENS measures (Section 4.4).
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E5 We determine which of the properties in E1 are satisfied by each of the eval-

uation measures we propose (Section 4.6).

1.3.2 Test Collection Contributions

T1 We build two test collection built from Avocado email collection [87] that are

now annotated for relevance and sensitivity [56,103]. We plan to submit these

test collections to the Linguistic Data Consortium (Sections 3.2, 3.3, and 3.4).

T2 We repurposed the LETOR OHSUMED test collection for our retrieval task

by selecting two topical categories as surrogates for sensitivity (Section 3.1).

1.3.3 System Contributions

S1 We propose three baselines that are based on filtering out sensitive content

(either before or after retrieval) or downgrading relevance labels for sensitive

documents (Section 5.3.1).

S2 We propose a novel usage of listwise learning to rank algorithms to optimize

for new evaluation measure, from Chapter 4, by modifying the loss function

(Section 5.3.2).

S3 We evaluate the effectiveness of our proposed LtR approach along with several

baselines using the OHSUMED and Avocado test collections (Section 5.4).

S4 We build a learning model to predict the sensitivity of emails (Section 5.1.2).

10



S5 We apply LtR, combining signals from both traditional features and the output

of neural models, to balance relevance and sensitivity objectives. Results show

increased effectiveness over traditional LtR techniques by using transformer-

based features instead of hand-crafted features (Section 6.2).

S6 We propose a cluster-based replacement strategy, and show that such a strat-

egy can sometimes substantially reduce the number of queries that have at

least one sensitive result among the top ranks (Section 6.3).

S7 We compare two rank cutoff policies to improve results over that can be

achieved with a fixed rank cutoff. These policies aim at limiting the risk

of showing sensitive results by displaying a few results for topics that are

expected to have a high number of sensitive documents (Section 6.4.2).

S8 We study the effect of sensitivity classifier effectiveness on search and protec-

tion engines. Specially, we seek to explore whether optimizing for an intrinsic

measure (e.g., F1 or F2), also results in improvements when evaluated using

an extrinsic measure (Section 5.5).

1.4 Dissertation Outline

The remainder of this dissertation is structured as follows. We survey related

work in Chapter 2. In Chapter 3, we describe the test collections and their creation

process. In Chapter 4, we study different measures that can be used for optimizing

and evaluating search and protection engines based on a set of desired properties for
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evaluation measures that balance between relevance and sensitivity. In Chapter 5,

we describe our modeling of relevance and sensitivity, and different approaches to

using those models for search among sensitive content. Then in Chapter 6, we

present extensions to improve the quality of retrieved results with respect to our

evaluation measures. We conclude in Chapter 7, scoping our contributions in the

context of experimental limitations, looking to future directions, and articulating

some broader impacts of our work.

12



Chapter 2: Background

This chapter outlines different research work that our thesis dissertation relies

on. Examples include evaluation measures for information retrieval systems, learn-

ing to rank, sensitivity classification, etc. Also, since our objective is to balance

between relevance and sensitivity, we describe some related work in the scope of

ranking with multiple objectives.

2.1 Evaluation Measures for Information Retrieval Systems

The aim of evaluation is to measure how well a system achieves its intended

goal. In the scope of information retrieval, systems are evaluated by measuring how

well results satisfy a user’s information need, e.g. finding what the user wants. In

an abstract way, an information retrieval system can be seen purely as a classifier,

which classifies each document in the search result list as relevant or not. Classi-

fication evaluation measures, such as precision or recall, can be used to assess the

effectiveness of a retrieval system. Precision is the proportion of retrieved docu-

ments that are relevant, and recall is the proportion of documents that are relevant

that are retrieved.

Deciding which evaluation measure to use is a crucial task, because the eval-
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uation measure should correlate with user’s satisfaction criteria and discriminate

between different retrieval results. In this section, we discuss different evaluation

measures for two different environments: 1) Binary vs or graded relevance assess-

ments, and 2) Complete vs incomplete relevance judgments.

First, measures based on binary relevance are numerous and widely used.

Examples include Precision@k (P@k) [52], R-precision (R-prec) [54], Mean Average

Precision (MAP) [114], and Mean Reciprocal Rank (MRR) [115]. Mean average

precision is one of the most commonly used measures of retrieval effectiveness. It

is known to be a stable [15] and informative measure [7]. On the other hand,

relevance assessments can have more than 2 levels (e.g., highly relevant, somewhat

relevant, and non-relevant). Evaluation measures that use graded relevance include

Normalized Discounted Cumulative Gain (nDCG) [61], and Expected Reciprocal

Rank (ERR) [23].

Second, all previous measures assume that relevance judgments are complete,

i.e. each document is judged whether it is relevant or not with respect to all search

topics. This requirement is hard to meet in practice and is often approximated by

assuming all documents that were not retrieved as non-relevant. However, with the

rapid growth of content and with improved search technology making it possible

to find new content, some relevant documents may be missed during the retrieval

process of building test collections, and hence the relevance judgments become less

useful as a basis for evaluation [6,14,86]. It is mandatory to address this setup envi-

ronment as in Binary Preference (bPref) which how frequently relevant documents

are retrieved before non-relevant documents [14]. When comparing systems over
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test collections with complete judgments, MAP and bpref are reported to be equiv-

alent. With incomplete judgments, bpref is shown to be more stable. Measures, e.g.

induced AP, subcollection AP, and inferred AP have been shown robustness to ran-

dom deletions of relevance judgments [125] although missing relevance judgements

in practice are not random.

Axiomatic analysis has been used to understand the properties of evaluation

measures for specific information retrieval tasks. The analysis starts by defining

a set of potentially desirable properties, then evaluation measures under test are

checked in terms of whether they satisfy these properties or not [3, 42, 78]. Amigó

et al. [4] proposed a set of ten axioms relating to relevance and diversity. Lioma et

al. [67] proposed 8 potentially desirable properties for evaluation measures that bal-

ance relevance and credibility, and proposed different ways for combining standard

relevance measures and credibility measures. In this work, we propose a set of de-

sired properties for search among sensitive content. Then, we check which properties

are captured by our proposed evaluation measures for relevance and sensitivity.

Another way to study evaluation measures is to use statistical tests such as

Sakai’s intuitiveness test [101] and Amigo et al.’s Metric Unanimity [4]. Such tests

quantitatively characterize the degree to which aggregate measures capture specific

properties that are well captured by a suite of simpler measures. As we presently

lack suitable test collections for search and protection engines, this approach is not

yet possible for our application.
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2.2 Multi-Criteria Evaluation Measures

In Section 2.1, we describe some work done in developing evaluation measures

based only on relevance. In this section, we discuss some of the evaluation measures

that incorporate additional objectives.

Relevance labels from different sources. Svore et al. [109] introduce the notion

of a graded measure, which is composed of multiple IR measures, each of which maps

a given ordering of documents for a given query to a score, e.g. nDCG as a top-tier

measure and relevance measure derived from click data as a second-tier measure.

This is an important when search engines needed to be optimized for several evalua-

tion measures simultaneously. The authors extend LambdaMART to optimize those

graded measures. Results show the second-tier measure is significantly improved,

while leaving the top-tier measure largely unchanged.

Credibility vs Relevance. Lioma et al. [67] present two types of evaluation mea-

sures that are designed to measure the effectiveness of both relevance and credibility

in ranked lists of retrieval results. Type I measures define different ways of mea-

suring the effectiveness of both relevance and credibility based on differences in the

rank position of the retrieved documents with respect to their ideal rank position

(when ranked only by relevance or credibility). Unlike Type I, Type II measures

operate directly on document scores of relevance and credibility, instead of rank

positions. In our work, balancing between sensitivity and relevance, we found out

that our proposed evaluation measure is similar to the Type II measure “Normalized

Weighted Cumulative Score” (NWCS), except that we do not discount the cost of
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sensitive documents.

Fairness vs Relevance. Fairness of search has attracted recent attention. Das

et al. [35] propose an evaluation measure that is based on distributional fairness.

Distributional fairness is defined as the difference between ranked result distribution

compared with target distribution (either uniform or a priori known distribution)

using KL divergence.1 To integrate between relevance and fairness, there could be

different ways, e.g. arithmetic mean, geometric mean, or harmonic mean.

In our work, we are interested to balance between relevance and a new crite-

rion, which is sensitivity. We propose a class of measures that incorporate gains for

showing relevant documents and costs of showing sensitive results.

2.3 Learning to Rank

Learning to rank is an extensively studied research field, and there are many

optimization algorithms that are flexible and are able to learn from large amount

of training data. LtR approaches can be broadly divided into 3 groups [65, 68]: 1)

Pointwise, 2) Pairwise, and 3) Listwise approaches.

In the pointwise approach, the ranking problem is transformed into classifi-

cation or regression, and existing methods for classification or regression can be

applied. In this approach, each document is treated independently. Therefore, the

group structure of ranking is ignored in this approach. Each sample of training data

contains features of the query-document pair, and the label represents the relevance

score for that pair. The loss function in learning is pointwise in the sense that it is

1https://en.wikipedia.org/wiki/Kullback\OT1\textendashLeibler_divergence
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defined on a single object (feature vector). For ranking documents, assuming the

learned model outputs real numbers, we can use the model to rank documents (i.e.,

sort documents according to the scores given by the model) for a given query. In

our work, we used linear regression [27] with a squared loss function as an example

from a pointwise approach.

In the pairwise approach, the ranking is transformed into a binary classifica-

tion to decide which document is more relevant given a pair of documents. The

preference pairs can be viewed as instances and labels in a new classification prob-

lem. Each sample of training data contains features for two documents, and the

label represents the relative order between that pair of documents. In the pairwise

approach, the group structure of ranking is also ignored. The loss function in learn-

ing is pairwise because it is defined on a pair of feature vectors (documents). For

ranking documents, assuming the learned model outputs real numbers, we can use

the model to rank documents (i.e., sort documents according to the scores given by

the model) for a given query. The pairwise approach includes Ranking SVM [62,70],

RankBoost [45], RankNet [16], GBRank [128], IR SVM [21], Lambda Rank [17], and

LambdaMART [121]. In our work, we use LambdaMART [18,121] with a cross en-

tropy loss function multiplied by the change in the IR measure (e.g. nDCG) as an

example of a pairwise approach.

The listwise approach addresses the ranking problem in a more natural way.

Specifically, it takes ranked lists as instances in both learning and prediction. The

group structure of ranking is maintained, and ranking evaluation measures can be

more directly incorporated into the loss functions in learning. Each sample of train-
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ing data contains the labeled documents for a given query. For ranking documents,

assuming the learned model outputs real numbers, we can use the model to rank doc-

uments (i.e., sort documents according to the scores given by the model) for a given

query. The listwise approach includes ListNet [22], ListMLE [122], AdaRank [124],

SVM MAP [127], Coordinate Ascent [75], Soft Rank [111], and others [60,63,76]. In

our work, we use AdaRank and Coordinate Ascent as two examples from that cat-

egory. We selected more than one approach because we want to show that training

a listwise approach with a modified loss function works well with different ranking

algorithms.

With the hype of adapting BERT models to text ranking, it can be seen that

the resulting model belongs to the pointwise category as each document is treated

independently as in monoBERT [83]. Same authors developed a pairwise version

called “duoBERT” which takes a query and two documents formulated in one input

sequence, and then it predicts which document should come first [85]. Han et

al. [53] build a LtR model, using TF-Ranking [94], on top of BERT representations

to the [CLS] token. The LtR model can be optimized towards minimizing pointwise,

pairwise, and listwise losses.

2.4 Multi-Criteria Ranking

Multi-criteria learning to rank is becoming more prevalent because search re-

sults are not just evaluated on relevance, but on other aspects (e.g., freshness, nov-

elty, diversity, fairness, and cost [93,110,120]).
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Freshness vs Relevance. Dai et al. [32, 33] show that different query types re-

quire different ranking optimization, e.g. temporal queries such as breaking news,

relevance and freshness are highly correlated. Therefore, a ranker optimized for

returning fresh documents may produce satisfactory results. However, for queries

that are not usually time-sensitive, paying too much attention to freshness may sig-

nificantly hurt ranking effectiveness in terms of relevance. As a result, Dai et al. [32]

develop a different ranker for each type of queries. This approach is known as “di-

vide and conquer” (DAC) [11]. In DAC, queries are clustered based on their feature

representations, and separate rankers are trained with each for one cluster simulta-

neously. At test time, the query is compared against the generated cluster centroids

and is ranked under all rankers with the weights depending on query-cluster similar-

ity values. Results show that DAC outperform other approaches relying on building

one ranking model.

Dong et al. [39,40] propose a retrieval system which automatically detects and

responds to recency sensitive queries. The system detects recency sensitive queries

using a high precision classifier. The system adjusts the relevance labels based on

the freshness of the web page. So for stale pages, they demote the relevance label

by one grade (e.g., from highly relevant to somewhat relevant). We use the same

approach in one of our proposed baselines, by demoting the relevance labels for

sensitive documents. But unlike this work, we have a balanced amount of training

for both relevance and sensitivity.

Efficiency vs Effectiveness. Wang et al. [116] propose a framework for auto-

matically learning ranking functions that optimize the trade off between efficiency
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and effectiveness. They focus on a class of linear feature-based ranking functions,

e.g. linear regression. In this setup, dropping weights of some features improves the

ranking efficiency. Results show a linear ranking function optimized in this man-

ner is capable of balancing between retrieval effectiveness and efficiency, as desired.

Learned ranking functions achieved similar strong effectiveness as a state-of-the-art

learning to rank model, but with significantly decreased average query execution

times; the variance of query execution times was reduced as well, which makes them

desirable from a practical point of view.

To the best of our knowledge, this is the first attempt to study how to build

search engines so that they find what we want while protecting sensitive content. In

the scope of relevance and sensitivity, they are competing each other, i.e. optimizing

for relevance only may disclose sensitive content and paying too much attention to

sensitivity may hide some relevant content.

2.5 Email Classification

There has been work on classifying emails for different tasks [79]. An auto-

matic email classifier is a system that automatically classifies emails into one or

more of a discrete set of predefined categories. Examples include folder catego-

rization [10], spam filtering [126], separating private from official email [2, 58, 118],

detecting gossip [77], complaint email classification [28], inquiry email classifica-

tion [57], extracting email threads [59], and recipient recommendation [50].

The problem of email classification is different from the standard problem
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of text classification due to the nature of email. An email message consists of

structured fields, e.g. from and to fields, and unstructured fields, e.g. subject and

body [10]. Additionally, messages have relationship data, e.g. which emails belong

to the same thread [117]. As a result, different set of features can be used to

successfully discriminate email messages according to the task [31,100].

For research use, there are two large public real email datasets. First, the

Enron corpus contains over 600,000 emails generated by 158 employees collected

by the Federal Energy Regulatory Commission (FERC) during its investigation

of the company [64]. Second, the Avocado Research Email Collection consists of

emails and attachments taken from 279 accounts of a defunct information technology

company referred to as “Avocado” [87]. In our work, we focus on the Avocado email

collection as its license better protects sensitive content, and it did not go under

several redactions which could possibly remove substantial information that could

help in our analysis.

Alkhereyf [2] et al. present an empirical study on email classification into two

categories: Business and Personal. The authors use lexical features as well as social

network features extracted from the email exchange network of both Enron and

Avocado. Their experiments show that when the social network features combined

with lexical features outperforms the lexical features alone. In this dissertation,

we study a different classification task which is predicting email sensitivity that is

defined based on a persona description. The specification of sensitive content does

not necessarily relate to whether an email is business or personal.
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2.6 Technology Assisted (Sensitivity) Review

The Freedom of Information Act (FOIA) generally provides that any person

has the right to request access to federal agency records or information, except to

the extent the records are protected from disclosure by specific exemptions [44].

Before release to the public, documents must therefore first be manually reviewed

to identify and protect any sensitive information [8]. Exhaustive review is becoming

infeasible, however, given the huge amounts of digital information we generate.

Automatic classification for sensitivity is thus an important part of the review

process that is designed to cope with the rapid growth of information [1,112]. As in

e-discovery [89, 90, 113], technology-assisted review is a combination of input from

expert human reviewers and computer software to partially automate the classifica-

tion of records.

The objective of technology-assisted review (TAR) in electronic discovery (e-

discovery) is to find as nearly all the relevant documents in a collection with reason-

able effort [88,91]. Grossman et al. [51] show that TAR can be more efficient than an

exhaustive manual review to identify the responsive documents. Cormack et al. [25]

provide an overview of machine learning approaches for TAR in the context of e-

discovery. Each of the approaches, first, identifies an initial seed set of documents

that are then used to train a document classifier to identify the k documents to be

reviewed. The reviewed documents are then used to re-train the classifier, and the

process continues in an iterative cycle until a decision is made that close to all the

relevant documents have been discovered. Gain is the number of relevant documents
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presented to the human during training and review, while cost is the total number

of relevant and non-relevant documents presented to the human during training and

review.

In review for relevance, there is a request that represents the information

need, and the target is to find all documents relevant to that need. However, in

sensitivity review, there is no equivalent to the request for production (i.e., there

is no text description of the sensitivities in the collection) that can be used as a

query to generate an initial pool of documents for training a classifier. In theory,

it is possible to manually construct queries with keywords that a reviewer might

expect to be related to a specific sensitivity. However, in practice, due to the range

of potential sensitivities, manually constructing separate queries for each type of

sensitivity could result in an unmanageably large number of result sets. Moreover,

identifying sensitivity by manually generating queries is limited to searching for the

sensitivities that a reviewer expects to be in a collection. However, since the actual

sensitivities are unknown, this approach is likely to result in low recall of sensitive

information.

McDonald et al. [73] work on automatically classifying 2 FOIA exemptions: 1)

International Relations, and 2) Personal Information using text classification [108].

Improvements had been found by incorporating semantic features using word em-

beddings to text classification [71]. Overall, when the sensitivity classifier is more

accurate, this will result in less number of documents a reviewer would need to

review.

In our work, we have learned a lot from best practices in sensitivity review.
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We get useful insights from McDonald et al. [73] for learning how to build a sen-

sitivity classifier, especially in the context of personal information. One difference

between our work and theirs is how the sensitivity classifier fits in the whole system.

Previously, sensitivity review is used in e-discovery to help in filtering out privileged

documents. So in that case, the objective is to find almost all privileged documents

in a collection. In our work, a sensitivity classifier is used along with a ranking

model to answer queries and produce a ranked list of documents of a certain length

(e.g., 10) for each of submitted queries. This difference results in the process of

training the sensitivity classifier through active learning. In our work, if deployed

online (Section 7.2.3), submitted queries can guide which documents that need hu-

man review and then added to train the sensitivity classifier. In this way, search

and protection engines are capable of knowing what searchers are interested in and

adapt with new sensitivities in the collection. On the other hand, in previous work,

active learning relies on labeling documents that the classifier is most uncertain

about or those getting high scores of sensitivity.

The next chapter describes the test collections we used for our experiments.
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Chapter 3: Test Collections1

Test collections enable controlled experiments to characterize retrieval effec-

tiveness. Typically, a test collection is thought of as having 3 components: docu-

ments, topics (i.e., information need statements), and relevance judgements (which

record the degree of relevance of some document to some topic). Our work adds

a fourth component: annotations that indicate not just which relevant documents

should be found, but also which documents should be protected because they con-

tain content that someone—the content provider or the searcher—would consider

inappropriate to show. We refer to what should not be shown—even if relevant—

as sensitive. Thus, in addition to relevance judgments, we also need sensitivity

judgments.

In different applications, e.g. e-discovery [51], TREC Legal Track developed

similar test collections, where documents are judged for responsiveness (i.e., being

relevant to the legal and factual issues that are the focus of the litigation), and

privileged (i.e., withheld from production because of attorney-client privilege or

work-product protection) [26]. Unfortunately, there were different topics used for

identifying relevant documents and privileged ones. As a result, documents for each

1Some parts of this chapter were taken from two publications by Sayed, Iqbal, Cox, Rivera,
Christian-Lamb, Oard, and Shilton [56,103]

26



topic are retrieved from different samples of the whole dataset. As a result, we

can not use such test collection, because not the same documents were assessed for

relevance and privilege.

It was a challenge for us to find a public test collection that is annotated for

both relevance and sensitivity. This challenge motivated us to choose a collection

that has been labeled for multi-level “graded” relevance and for topical categories.

By selecting one or more topical categories as surrogates for sensitivity, we can then

simulate the task that we ultimately wish to perform (Section 3.1). Also, we de-

scribe the process of creating a test collection out of Avocado Email Collection which

resulted into two sub-test collections (Section 3.2). Apart from the description of

our test collections, we describe the relevance features extracted for query-document

pairs for building different ranking models (Section 3.3). Also, we describe the sen-

sitivity features extracted from documents for building different sensitivity models

(Section 3.4).

3.1 Topical Sensitivity: OHSUMED

Of course, experimenting on sensitive content ultimately requires access to

sensitive content. Initially, however, it would be useful to have some reasonable

surrogate for the problem that can be widely shared. We therefore experiment in

this work on a collection of medical documents. We chose to use one of the LETOR

benchmark datasets that has these characteristics, OHSUMED [97] which is used

in many research studies [21, 123, 124]. OHSUMED is a collection of articles from
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270 medical journals in the period 1987-1991. The collection consists of 348,566

records each having a title, abstract, Medical Subject Heading (MeSH) indexing

terms,2 author, source, and publication type. The collection is distributed by the

National Library of Medicine and is restricted to the data not being used for any

non-experimental clinical, library, or other setting, and any human users of the data

will be explicitly told that the data is incomplete and out-of-date.

3.1.1 Relevance Judgments

There are 106 topics, each consisting of patient information and a brief state-

ment of the information need. In each case, we use only the information need

statement as the query. For each topic, a subset of the documents were judged for

relevance. In total, there are 16,140 judged query-document pairs, each of which

has a relevance judgment that indicates whether the document is highly, moder-

ately, or not relevant to the query. It was the goal of the developers of the collection

to span as many of the relevant documents as possible within this set, although of

course there may be additional unjudged documents that are relevant. In keeping

with common practice when using this collection, we treat documents that were

not judged with respect to a query as not relevant. Because some documents were

judged for relevance to more than one query, there are a total of 14,430 unique

documents for which relevance to one or more queries has been judged. Table 3.1

shows the numbers of relevant documents (to any degree) and those documents that

are not relevant.

2A full list of MeSH terms can be found at ftp://nlmpubs.nlm.nih.gov/online/mesh/
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Highly relevant Moderately relevant Not relevant
Sum 2,252 2,585 11,303
Avg. 22.30 24.61 106.63
Std. 23.15 20.24 46.54

Median 14 18 106

Table 3.1: Relevance statistics about judged OHSUMED documents.

3.1.2 Sensitivity Judgments

As a surrogate for sensitivity, we selected from among the MeSH labels used

in our test collection. In OHSUMED, one document can have more than one MeSH

label. We selected a set of labels, S, to represent the sensitive content to be protected.

If any document has at least one of the labels belonging to S, then the document is

considered sensitive; otherwise it is considered non-sensitive. For our experiments,

we selected 2 MeSH labels for S : C12 (Male Urogenital Diseases) and C13 (Female

Urogenital Diseases and Pregnancy Complications). We initially chose these labels

simply because we felt they were topics that some people might actually consider to

be sensitive, but before settling on them, we also checked their prevalence among the

full set of OHSUMED documents (8.4%) and among the documents that have been

judged for relevance (12.2%). These seem to us to reflect a sensitivity prevalence

representative that we might see in some real application for search among sensitive

content. Table 3.2 shows the number of sensitive documents and some of their

statistics over search topics.
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Sensitive Not sensitive
Sum 1,961 14,179
Avg. 19.81 133.76
Std. 29.35 57.16

Median 8 132

Table 3.2: Sensitivity statistics about judged OHSUMED documents.

Statistic OHSUMED
Mean Relevant 29.37%
Median Relevant 25.51%
Mean Sensitive 12.0%
Median Sensitive 5.22%

Table 3.3: Per query relevance and sensitivity statistics.

3.1.3 Empirical Analysis

As Figure 3.1 shows, some queries have many relevant documents that are

sensitive, whereas others do not. This means that the challenges posed by sensi-

tivity are topic-dependent, which also reflects what we would expect to see in real

applications. As will be explained later in Section 6.4.2, this observation suggests

that queries with different sensitivity distributions should be handled differently by

varying the search cutoffs.

In a typical case, a topic with no relevant documents should be removed from

the test collection, as it can not be used to compare different retrieval systems. In

our case, however, topics containing at least one relevant or sensitive document

are useful, since a search and protection engine should protect sensitive documents

even when no relevant documents exist. Every topic in our test collections has at

least one relevant or sensitive document. Table 3.3 shows relevance and sensitivity

statistics for the OHSUMED test collection.
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Figure 3.1: Number of relevant documents (to any degree) per topic in the
OHSUMED test collection, with documents that are both relevant and sensitive
shown in black at the top of each bar.

3.2 Realistic Sensitivity: Avocado Email Collection

In this section, we describe such a test collection for email, in which the sensi-

tivities to be protected are those of the (modeled) content provider. This is not the

first information retrieval test collection to contain sensitivity judgments. Hearst re-

ports on the creation of annotations for about 1,700 messages from the (then newly

released) Enron email collection [55]. The messages were annotated as part of a class

project for categories such as secrecy, shame, and purely personal.3 These might be

considered sensitivity annotations, which were added in addition to annotations for

topics such as political influence, the California energy crisis, or government actions.

3http://bailando.berkeley.edu/enron/enron_categories.txt
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However, the small scale of the annotated collection limits its utility for evaluation

of information retrieval systems. Jabbari et al. took up the challenge at larger scale

a couple of years later, annotating about 14,000 Enron email messages as one of

six categories of business messages, or as one of three categories of personal mes-

sages [58]. Although we might reasonably treat their “close personal” category as

sensitive (as, for example, Hillary Clinton did when removing personal emails before

turning over her professional email while serving as Secretary of State to the State

Department), the six business categories are considerably broader than is typical

of topics in an information retrieval test collection (e.g., core business, or routine

admin). One promising result in that paper was that a classifier trained to detect

close personal messages achieved 80% F1, suggesting that sensitivity classification

may be a tractable problem. Jabbari et al. also reminded us of the issues at stake

in this line of work with the title of their paper.

Perhaps the most ambitious effort to date involving sensitivity annotation for

email has been the TREC 2010 Legal Track, which annotated of the Enron email

collection for both relevance (to specific requests for ”production” of documents

on some topic germane to a lawsuit), and sensitivity (in that case, for the legal

concept broadly referred to as “privilege” in which documents can be withheld from

production because of, for example, attorney-client privilege or the attorney work-

product doctrine) [26]. One limitation of the TREC Legal Track test collection,

however, is that because the relevance detection and sensitivity detection tasks

were modeled separately, different documents were annotated for relevance and for

sensitivity. It is not straightforward, therefore, to use that collection to measure
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the ability of a system to find relevant documents while simultaneously withholding

sensitive documents, even if those sensitive documents are relevant. For that, we

need a test collection of the type we introduce in this dissertation, in which every

annotated document is annotated both for relevance and for sensitivity.

Annotating a widely distributed test collection for sensitivity is actually a

somewhat contradictory task. Since our goal is to protect the sensitive information

in the collection, then the last thing we would want to do is to highlight where to

find that sensitive content. Doing so in a public test collection such as Enron thus

raises some ethical concerns that do not seem to us to have yet been adequately

commented upon. We have therefore chosen to annotate the Avocado Research

Email Collection, which is distributed by the Linguistic Data Consortium on a re-

stricted research license that includes content nondisclosure provisions [87]. This

license effectively precludes crowdsourcing, so all annotations were performed lo-

cally. The Avocado Research Email Collection consists of emails and attachments

taken from 279 accounts of a defunct information technology company referred to

as “Avocado”. The collection includes messages, attachments, contacts, and tasks,

of which we use only the messages and the attachments (concatenating the text in

each message and all of its attachments). There are in total of 938,035 messages

and 325,506 attachments.

An email collection should be carefully selected so that it has possibly sensitive

content. As a result, Avocado Research Email Collection was selected to represent

the source of emails. The collection consists of emails and attachments taken from

279 accounts of a defunct information technology company referred to as “Avocado”.
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The collection is broken up into emails, attachments, contacts, tasks, etc. There are

in total of 938,035 emails and 325,506 attachments. The collection is distributed by

the Linguistic Data Consortium on a restricted research license that includes content

nondisclosure provisions [87]. Unlike Enron email collection [64], Avocado email

collection has attachments and did not go under various redactions due to requests

from affected employees. There are only 77 emails removed from the Avocado email

collection. Those emails have the sensitivity metadata explicitly set, by the sender,

to either “private” or “personal”. This observation indicates that it is not common

that the sensitivity level is set when an email is created. As a result, there is a need

for automatic classification to predict for sensitivity.

To further protect specific individuals, a social science team (1 professor and

1 master’s student) from the iSchool department at UMD created representative

personas for two fictional individuals, and we used those personas as a basis for

sensitivity annotations [56]. The persona represents the sender if the email was sent

from an Avocado employee, or the recipient if the email was sent from outside the

company network. The sensitivity of an email was annotated based on the persona’s

expected decision whether to allow the email to appear in search results. Relevance

judgments were created for 65 topics. This section describes the process by which the

topics were designed and the relevance judgments performed. The annotations will

be distributed by the Linguistic Data Consortium as an addendum to the Avocado

Research Email Collection.

To summarize, our target test collection consists of the following components.
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1. Avocado email collection is used as a source of documents, where an email

represents a unit of retrieval.

2. A set of search topics. We have 65 topics that range from conversations on

finance and company related issues to health and personal conversations.

3. Set of relevance judgments for each of the search topics. By following the

pooling method, these emails are returned from the top results by a number

of different IR systems, and by searchers using an interactive keyword search.

We have 100 different emails, on average, assessed for relevance with respect

to each topic. So there are 65000 relevance judgments in total.

4. Sensitivity labels are given for the union of pooled emails across all search

topics. Each email will be assessed whether it is sensitive or not.

3.2.1 Topic Creation

To test systems on relevance, a number of topics had to be created. These

topics would later be used to query the email test collection, where users would be

able to examine the query results to see if individual emails were relevant to the

topic. To test systems on sensitivity, some topics must find sensitive content. With

these goals in mind, four people (1 PhD student and 3 undergraduates at UMD)

created 137 topics that were designed to explore many parts of an individual’s

life, from business matters like promotions and shareholders, to current events like

the Olympics and Columbine, to personal matters, like drug use and vacations, to

attitudinal topics like selfish and tired.
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While creating the topics, the creator searched the test collection to verify

that at least some emails were possibly relevant to those topics; the emails noted

as possibly relevant were recorded for future use. Searching was done using terms

from the topics themselves, and also other related terms. For each topic the creator

created title, description, and narrative fields, as is often done in TREC topics. The

descriptions are a few sentences that give more context to the topic than just the

topic name, and the narrations are explicit instructions on which types of documents

are relevant to the topic, and which ones are not.

3.2.2 Collecting Pooled Documents

In practice, it is not feasible to judge each document in the collection for rel-

evance with respect to a given search topic. As a result, we followed the pooling

method, which aims at sampling all documents that are predicted to be relevant and

judge only these sampled documents. The pool of documents returned by all the

systems for a given query should provide a good representation of all documents rel-

evant to that query in the corpus. The end result is a much smaller set of documents

to annotate, with a much higher proportion of relevant documents.

So in addition to interactive search results, described in the section above, we

have implemented different automatic search systems and ran the same set of topics.

We collected the top 25 results from each system and added them to the interactive

search results. As a result, we have 100 documents, on average, to be judged for

relevance and sensitivity for each search topic. We built 18 different search systems
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by varying the following specs.

• Search keywords: topic title, title+description, or title+description+narrative.

• Query expansion: yes or no.

• Retrieval weighting models: DPH (derived from the Divergence From Ran-

domness (DFR)), Okapi BM25, or TF IDF. All these models are implemented

in Terrier search engine.

3.2.3 Personas

’Sensitivity’ is an ambiguous concept [80], with both personal [69] and social

components [82]. Ideally, individuals would code their own content as sensitive to

account for both individual preferences and social norms. But approaching individ-

ual Avocado employees would be intrusive, and is not allowed by the license terms.

To understand consistent components of sensitivity in professional emails, the social

science team therefore conducted interviews with 10 archivists who had worked with

email collections and 9 distinguished academics whose email collections are of po-

tential interest to future scholars. Interviews focused on identifying types of content

that creators deem sensitive. The team developed a set of types as follows.

• Legally-protected information, e.g. personally identifiable information (PII),

banking information, health information, student records, information relating

to pending litigation.

• Business secrets, e.g. trade and strategy secrets, internal security information,
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contracts, nondisclosure agreements

• Reputational risk which represents information that, if revealed, might risk a

donor’s reputation or even people mentioned in the conversation.

• Memberships and beliefs, e.g. religious groups.

• Evidence of stigmatized activity, e.g. drug use.

• Using offensive language in work emails, e.g. battles.

• Gossiping, making unfiltered or very very frank remarks.

• Expressing emotional content in professional situations.

Next, the team translated the qualitative interview data into a form that coders

could use to annotate the test collection by using personas, a concept drawn from

the human-centered design literature [24, 95]. Personas are archetypal representa-

tions of users that include their goals, attitudes and other relevant design details.

The team found that respondents differed on both the diversity of information they

found sensitive (from very few kinds of information to quite a lot), and how careful

they felt they had been in their professional email practices (from uninhibited to

circumspect). The team grouped our respondents into three types: 1) the cautious

writer: circumspect and very sensitive; 2) careful without cause: circumspect de-

spite the fact that they found fewer types of information to be sensitive; and 3)

the diarist: uninhibited in their email habits despite finding many kinds of content

sensitive. Each category was informed by at least two interview respondents. Fi-

nally, the team created personas as composite characters for the two categories that
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Figure 3.2: Persona of John Snibert

together reflected the broadest range of sensitivities, giving the characters names,

and backstories loosely based on our interviews. The two personas are described in

Figures 3.2 and 3.3.

John Snibert, as depicted in Figure 3.2, was the cautious writer: motivated

to donate his emails to an archive because of their documentation of his career,

and relatively assured of his care in writing emails over the years, but worried that

he may have overlooked some of the many kinds of information about which he

was sensitive. In contrast, Holly Palmer, as depicted in Figure 3.3, was the diarist:

reluctant to donate her emails because she knows how much sensitive information

they contain. The team gave each persona details about the character’s background,
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Figure 3.3: Persona of Holly Palmer
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how they use email, and lastly, their particular concerns about sensitivity and the

email types they consider sensitive. We adapted these personas to a corporate

setting to match the nature of the Avocado collection, and then gave them to our

annotators and asked them to infer sensitivity based on concerns expressed by the

persona.

Our use of personas created a methodological challenge because the Avocado

emails were authored by hundreds of individuals. Because creating hundreds of

personas was untenable, and because the personas were written as composite people

from a creator’s point of view, we decided that the persona should represent the

owner of any email that was being judged for sensitivity.

3.2.4 Collecting Annotation Results

Our target is to have a test collection of documents judged for relevance for at

least 50 search topics. For half of the topics, we aim at judging their documents for

sensitivity with regard to John’s persona as in Figure 3.2, and the rest of documents

(for the other half of topics) will be judged for sensitivity with regard to Holly’s

persona as in Figure 3.3.

During our experiments, we have two undergraduate UMD students who will

be working as annotators. Each annotation task has 3 questions given a query doc-

ument pair and one persona: 1) How relevant is the email to the specified query?,

2) Is the email sensitive according to the specified persona?, and 3) Is the email sen-

sitive according to the annotator’s personal opinion?. We developed an annotation
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Project: Avocado Annotations by John Snibert / Batch: Topic #127: Opium Accept Task Skip Task Stop Preview

Turkle  Logged in as jodoe - Stats - Change Password - Logout

Comments:

Q3: Do you personally consider this email sensitive?
Yes
No
I don't know

Pain Points:

John is aware that there are sensitive emails in his collection that include his conversations with his  
family and romantic partners, opinions about his peers, and collaboration on projects that contain  
proprietary information and trade secrets. 
He worries about the intentions of the people who might access his emails, like journalists looking for  
a story.

Audience: John is aware of the importance of his innovations, and is planning to donate his emails to an archive where  
they would be open to the public.

Why are his 
emails 
useful?

John is a respected senior engineer with a long and important career. He invented several well-known products.

Use of 
email:

John has used email extensively for his work, including coordinating projects, planning presentations, and having  
conversations with other business leaders. He has also used email for sensitive matters like conversing with family  
and romantic partners. He believes he has been careful about what he puts in his email, and he has already done  
some curating and deleting of sensitive information. However, he finds it very difficult to find old emails and is  
worried about missing something.

Background: John Snibert recently retired as a top engineer at AVOCADO, Inc. He was the inventor behind some of AVOCADO’s  
most important products. He now gives numerous talks across the US and the world.

Institution: AVOCADO, Inc.
Occupation: Retired Senior Computer Engineer
Nickname: Expert Engineer

John SnibertName:

Yes
No
I don't know

Q2: According  
to John Snibert 
would he 
consider this 
email sensitive?

Q1: Do you consider this email relevant to this search topic?
Highly Relevant
Somewhat Relevant
Not Relevant

ID: 127 
Title: Opium 
Description: Discussions about opium abuse, treatment, production, etc. 
Narrative: Documents are relevant if they mention opium addicts or treatment. News is not relevant.

Search Topic InformationEmail Information

Atatchment(s):
Filename: 001-1234567890-AT.txt 
The Art of Winning the Wireless War 
 
 
 
The Artof Winning theWirelessWar 
 
 
 
How prepared is your company to 
 
compete and thrive in the wireless age? 
 
John Sample 
T Title of John Sample

From: Milton What <mwhat@etrade.com> 
To: "'Carlos When'" <Carlos.When@avocadoit.com>, 
    Howdy Whatdy 
                <hwhatdy@etrade.com>, Joray Stingray <JStingray@etrade.com> 
Cc: Dumpling Master <dupmling.master@avocadoit.com>, 
 
             Jadelyn Puck <JPuck@avocadoit.com>, 
    Paja Mhes <pMhes@avocadoit.com>, 
    Bert Water <bwater@avocadoit.com> 
Subject: RE: ABC Letters 
Date: Thu, 19 April 2000 08:50:22 -0411 
 
 
 
Milton, Dumpling, 
Please find attached several graphic treatments of the postcard concept for 
the first phase of the Direct Mail campaign. 
The objective of this first phase and of the postcard is to introduce the 
campaign to the target and link the campaign to avocadoit. 
The postcard follows on the conceptual direction that has already been 
shared with you and uses the construct of Sun Tzu's The Art of War, and 
tying it into 'winning the Wireless War'. This theme will be present in all 
three phases of the campaign and will become the thread of consistency that 
runs throughout all three phases. 
In keeping with that theme and ensuring linkage between the front postcard 
copy we have included a quote from Sun Tzu, that is relevant to one of the 
core benefits of avocadoit. 
Also included for each graphic treatment are two variations on handling the

Content:
File: 001-1234567890-EX.txt

You must ACCEPT the Task before you can submit the results.

Figure 3.4: Sample Annotation Task (synthetic message and attachment created for
public dissemination).

interface, as shown in Figure 3.4, by which our annotators used during training and

actual annotations.

We started the training phase by launching two batches of tasks, where each

batch represents the set of tasks related to a query’s pooled documents. This phase

has many benefits that will inspire us for the rest of the process. First, it shows the

time taken in one annotation task, and hence we can plan how much time is needed

for annotating 50 topics. Second, we can get feedback from annotators about the

whole process if there are any aspects that need to be improved. Third, we can

measure the inter-annotator agreement. Our plan is to train the two annotators on

one persona for a set of topics. Then, once they reach a good agreement percentage.

We will shift to the other persona (probably on the same set of topics used before)
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until they reach a good agreement percentage. Then, we will let each annotator

work on a different persona and different set of topics.

Round Topics Rel. κ Sens. κ

1
#14: Bias, discrimination

0.22 0.27
#133: Cubicles

2
#134: Drinking and hangover

0.23 0.15
#51: Shareholder

3
#17: Porn

0.76 0.66
#21: Lawsuit

4
#14: Bias, discrimination

NA 0.53
#134: Drinking and hangover

Table 3.4: Annotator agreement, training phase, 532 observations. Rounds 1-3:
John Snibert, Round 4: Holly Palmer.

Annotators were trained on system use and persona decision-making. There

were two topics used for each of 4 training rounds; 3 for John Snibert and then

1 for Holly Palmer. Annotator agreement was measured per round using Cohen’s

kappa [5], as shown in Table 3.4. The first round tested the annotation system,

and helped to acclimate the annotators to the process. After the second round,

annotator disagreements on relevance and sensitivity were discussed. For example,

one difference involved a joke, leading to a discussion on whether certain kinds of

jokes might be sensitive. The third round tested the level of agreement between

the two annotators on John Snibert’s persona, again followed by a discussion of

disagreements. The last round used the Holly Palmer persona with two recycled

topics, both to acclimate one annotator to that persona and to test the level of

agreement on that persona.

Kappa was computed as follows. We integrated a scale for our nominal vari-

able, relevance, that measured highly relevant, somewhat relevant, and not relevant
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documents. Table 3.4 shows little difference between rounds 1 and 2, but a large

difference on round 3 after the discussion following round 2. Topic 17 is about Porn,

which could indicate ease of agreements due to sensitive topics.

Excluding the 6 training topics, 65 topics were then randomly selected from

the full set of topics and annotated, 35 for John Snibert by one annotator and 35

for Holly Palmer by the other annotator. The last 5 of the 35 topics in each set

were duplicated in the other set, permitting recomputation of annotator agreement

on relevance at the last stage of the annotation process. Table 3.5 shows that kappa

on relevance at the end of the process was fairly high, except for Topic 135: Storage

Space, which may have been more difficult to interpret consistently. Some reasons

for low kappa coefficient could be due to lack of topic discussion between annotators,

or human errors such as difference in knowledge, and topic narrative interpretation.

On the other hand, one reason for a large kappa coefficient could be due to the clear

directions of the topic narrative or the easiness of the topic, as indicated in Round

3. For instance, topic 113 was titled ”Parents” with a narrative of ”Documents are

relevant if they contain discussions about the parents of those who work at Avocado

or those who contact those who work at Avocado. All other emails about parents

are irrelevant” where a variety of discussions about parents are relevant including

meeting them, talking to them, or staying at their house.
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Topics Rel. κ
#13: Vacation 0.52

#84: Fax 0.70
#100: Chechnya 0.64
#113: Parents 0.71

#135: Storage Space 0.42

Table 3.5: Annotator agreement among common topics of both Avocado test col-
lections, test phase, 585 observations.

3.2.5 Relevance Judgments

After collecting annotation results, there are 65 topics, each consisting of title,

description, and narrative following the TREC topic format. There are 5 common

search topics between the two personas. For each topic, a subset of the documents

were judged for relevance. In total, there are 3567 and 3476 judged documents for

Holly Palmer and John Snibert test collections respectively, each of which has a

relevance judgment that indicates whether the document is highly, moderately, or

not relevant to the query. Similarly to OHSUMED test collection, any document

outside the pool of documents is considered not relevant. Because some documents

were judged for relevance to more than one query, there are a total of 3314 and 3223

unique documents, in Holly Palmer and John Snibert test collections respectively,

for which relevance to one or more queries has been judged. Table 3.6 shows the

numbers of relevant documents (to any degree) and those documents that are not

relevant.

45



Holly Palmer
Highly relevant Moderately relevant Not relevant

Sum 998 39 2,530
Avg. 30.24 3.25 72.29
Std. 28.08 3.29 47.83

Median 18 2 64

John Snibert
Highly relevant Moderately relevant Not relevant

Sum 999 37 2,440
Avg. 28.54 2.85 69.71
Std. 28.90 2.18 43.34

Median 26 2 60

Table 3.6: Relevance statistics about judged Avocado documents.

3.2.6 Sensitivity Judgments

After collecting sensitivity annotations, the two test collections have different

distributions of sensitive content. Table 3.7 shows the number of sensitive documents

and some of their statistics over search topics. It is clear to see that there are more

sensitive documents with respect to John Snibert than to Holly Palmer. This may

have occurred because John’s discretion concerns were tailored for business rather

than academic environments, and were therefore a better fit for the Avocado email

collection. Many of Holly’s concerns, such as the sensitive reviews of colleagues

common in academia, would not have appeared as frequently in Avocado collection.

3.2.7 Empirical Analysis

Both the John Snibert and Holly Palmer personas have sensitivity and rel-

evance judgments for 35 topics. The annotator for John Snibert had a median

annotation time of 36 seconds; the annotator for Holly Palmer had a median an-
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Holly Palmer
Sensitive Not sensitive

Sum 579 2,988
Avg. 18.68 85.37
Std. 21.82 40.22

Median 10 78

John Snibert
Sensitive Not sensitive

Sum 1618 1,858
Avg. 46.23 54.65
Std. 34.56 30.13

Median 40 51.5

Table 3.7: Sensitivity statistics about judged Avocado documents.

notation time of 30 seconds. Over 35 topics, the John Snibert annotator found

a mean of 29.8 relevant documents (to any degree) per topic and a mean of 46.2

sensitive documents per topic. Over a different set of 35 topics (5 of which were

common with John Snibert), the Holly Palmer annotator also found a mean of 29.1

relevant documents (to any degree) per topic, but a mean of only 18.6 sensitive

documents per topic. As Figure 3.5 shows, some documents have a high fraction

of relevant documents that are also sensitive, whereas others do not. For example,

it was expected to have many sensitive documents associated with the search topic

“Meetings” in the John Snibert test collection, as these document might belong to

trade secrets.

Like OHSUMED, every topic in both test collections has at least one relevant

or sensitive document. Therefore, we did not remove search topic during our ex-

periments. Table 3.8 shows relevance and sensitivity statistics for the Avocado test

collections.
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(a) Holly Palmer

(b) John Snibert

Figure 3.5: Number of relevant documents (to any degree) per topic, with documents
that are both relevant and sensitive shown in black at the top of each bar. Holly
Palmer (top), John Snibert (bottom).
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Statistic Holly Palmer John Snibert
Mean Relevant 34.39% 33.06%
Median Relevant 25.20% 28.26%
Mean Sensitive 16.06% 46.86%
Median Sensitive 9.26% 45.90%

Table 3.8: Per query relevance and sensitivity statistics.

3.3 Relevance Features

To run Learning to Rank (LtR) algorithms, we need to extract features for

each query-document pair. In OHSUMED, we adopt the features developed by

the collection’s authors which cover many classical features in IR, e.g. BM25 and

language models [97]. Table 3.9 shows the relevance features extracted from query-

document pairs in the OHSUMED test collection.

ID Feature Description
1 sum TFs of query and title
2 sum log(TFs) of query and title
3 sum normalized TFs of query and title
4 sum log(normalized TFs) of query and title
5 sum IDFs of query and title
6 sum log(IDFs) of query and title
7 sum log(inverse prob. of term) of query and title
8 sum log(normalized TF IDFs) of query and title
9 sum TF IDFs of query and title
10 sum log(normalized TF * inverse prob. of term) of query and title
11 BM25 of query and title
12 log(BM25) of query and title
13 LMIR.DIR of query and title
14 LMIR.JM of query and title
15 LMIR.ABS of query and title
16-30 same as 1-15 but between query and abstract
31-45 same as 1-15 but between query and title+abstract

Table 3.9: LtR relevance features for the OHSUMED test collection.

For the two Avocado test collections, we have developed the set of features
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ID Feature Description
1-3 min,max,sum BM25 of title and subject
4-6 min,max,sum LMDIR of title and subject
7 normalized TF-IDF of title and subject
8 prob. sum of title and subject
9-11 min,max,sum DfrGl2 of title and subject
12-14 min,max,sum DfrInExpB2 of title and subject
15-17 min,max,sum Dph of title and subject
18 proximity of title and subject
19 TP score of title and subject
20 TPDist of title and subject
21 title length
22 unique term count of title
23 coverage ratio of title and subject
24 matching term count of title and subject
25 simplified clarity of title and subject
26-28 min,max,sum TFs of title and subject
29-31 min,max,sum TF-IDFs of title and subject
32-34 min,max,sum normalized TFs of title and subject
35-37 min,max,sum IDFs of title and subject
38-40 min,max,sum ICTFs of title and subject
41-80 same as 1-40 between title+desc and subject
81-160 same as previous between query and body
161-240 same as previous between query and attachments
241-320 same as previous between query and whole email

Table 3.10: LtR relevance features for the Avocado test collections.

shown in Table 3.10, which includes features we expect to be associated with rele-

vance.

3.4 Sensitivity Features

In addition to relevance features in the OHSUMED test collection, we added

the probability of document being sensitive (and its complement) as part of the

vector representation, as shown in Table 3.11.

Based on our preliminary analysis, explained in Section 5.1, we added features
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ID Feature Description
46 probability of document being sensitive
47 1 - probability of document being sensitive

Table 3.11: LtR sensitivity features for the OHSUMED test collection.

ID Feature Description
321-323 word length of subject, body, and attachments
324 1 if recipients are external; 0 otherwise
325 1 if recipients are internal; 0 otherwise
326 1 if sender is external; 0 otherwise
327 1 if sender is internal; 0 otherwise
328 1 if email is a reply; 0 otherwise
329 Number of attachments
330 1 if email has attachment(s); 0 otherwise
331 Sender’s in-degree centrality
332 Sender’s out-degree centrality
333 Sender’s betweenness centrality
334 Sender’s pagerank score
335-337 min,max,mean of recipients’ in-degree centralities
338-340 min,max,mean of recipients’ out-degree centralities
341-343 min,max,mean of recipients’ betweenness centralities
344-347 min,max,mean of recipients’ pagerank scores
348 probability of email being sensitive
349 1 - probability of email being sensitive

Table 3.12: LtR sensitivity features for the Avocado test collections.

extracted from email’s content and metadata as shown in Table 3.12, which is a

subset of features used in sensitivity classification.

3.5 Implementation

We have used several software toolkits throughout the process of creating the

test collections.

1. Apache Solr4 is used for building a keyword search engine on the Avocado

email dataset. This tool played an important role in the process of creating

4https://lucene.apache.org/solr/
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search topics and saving relevant documents during interactive search process.

2. Terrier5 is used for building different search systems on the Avocado email

dataset.

3. Turkle6 which clones Amazon’s Mechanical Turk service running in our local

private environment. This tool helped us in creating annotation tasks and

recording workers’ results.

4. Flanker library7 is used for parsing emails in raw format.

5. Networkx library8 is used for constructing the email exchange network and

computing network centralities.

6. Pyserini is used for building an index for the Avocado email collection and

extracting different LtR features.9

3.6 Chapter Summary

In this chapter, we have created three test collections to support experimen-

tation with a search and protection engine, and we have illustrated the use of that

collection both for building a ranking model by constructing features that are pos-

sibly good indicators for both relevance and sensitivity. The first test collection is

OHSUMED, and we used two MeSH labels to represent the sensitive content. Also,

5http://terrier.org/
6https://github.com/hltcoe/turkle
7https://github.com/mailgun/flanker
8https://networkx.github.io/
9https://github.com/castorini/pyserini
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we have created two test collections based on the Avocado research email collection.

The test collection has two personas that have different views of sensitivity. The

John Snibert persona was motivated to donate his emails to an archive because

of their documentation of his career; he was careful in his used in email, but still

worried that he may have overlooked some of the many kinds of information about

which he was sensitive. The Holly Palmer persona, by contrast, had originally been

reluctant to donate her emails because she knows how much sensitive information

they contain.
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Chapter 4: Cost Sensitive Performance Measures1

In order to compare between different approaches for search and protection

engines as will be explained later in Section 5.3, using an evaluation measure based

on relevance only is not sufficient, as we expect to have lower relevance scores for

those approaches that penalize sensitive documents. When searching among sensi-

tive content, we must consider both the gain that results from showing a relevant

document and the cost that accrues for showing a sensitive document. We introduce

new measures that balance between relevance and sensitivity.

We want to evaluate the quality of a ranked result with respect to relevance

and sensitivity. These two dimensions are conflicting; optimizing towards relevance

possibly shows sensitive information, and optimizing towards sensitivity only may

suffer from information loss. We list our potentially desired properties for evaluation

measures that balance between sensitivity and relevance. During our experiments,

we induced that our target is to maximize relevance of documents while hiding

sensitive ones. When a new evaluation measure is developed, we need to raise to

questions: 1) are there other evaluation measures that better capture the complexity

of the target?, and 2) given an evaluation measure, how well can we build ranking

1Some parts of this chapter were taken from a paper in preparation by Sayed and Oard [105]
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models optimized towards?

4.1 Measure#1: Simple Ternary Measure (TERN)

We start describing the proposed measures by TERN, which is simple to com-

pute and understand. For a given query, It can take one of three possible values as

follows.

TERN@k “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

´M, if at least one sensitive document is shown

1, if no sensitive and at least one relevant document is shown

0, otherwise

(4.1)

where M is a penalty for showing sensitive documents. According to the above

equation, the TERN measure has the range [-M, 1]. So for a given query, if the score

is negative, this indicates there is at least one sensitive document in the top k results.

If the score is positive, this indicates there are relevant documents placed in the top

k results. If the score is 0, this indicates that top k results are neither relevant nor

sensitive.

4.2 Measure#2: SENS Measure

In contrast to TERN, the SENS evaluation measure is designed to behave like

some standard relevance measure as long as there is no sensitive document in the

result list. SENS could be defined using any standard relevance measure (nDCG,

MAP, ERR, etc.); we define it using nDCG in the example below. However, if there
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is at least one sensitive document, the evaluation measure should get the minimum

value, regardless of the position of the sensitive result. It can be defined as follows.

SENS@k “

$

’

’

&

’

’

%

´M, if at least one sensitive document is shown

nDCG@k, otherwise

(4.2)

where M is as defined in TERN measure. It is worth noting that nDCG requires

computing the ideal ranking, which should be based on non-sensitive documents

only, in which case there should be at least k non-sensitive documents.

4.3 Measure#3: Cost Sensitive Discounted Cumulative Gain (CS-

DCG)

This new measure is an extension based on Discounted Cumulative Gain

(DCG), where each document in the ranked list has its gain based on the degree of

relevance (e.g., highly relevant or somewhat relevant) and that gain value is then

discounted based on the document’s rank.

Cost-Sensitive Discounted Cumulative Gain (CS-DCG) incorporates additional

cost based on the document’s sensitivity. In the simplest model, the cost for showing

a sensitive document would be independent of where the document is in the ranked

list. So CS-DCG up until rank position k can be defined as:

CS-DCG@k “
k

ÿ

i“1

pgi ˚ di ´ ciq (4.3)
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where gi is the (relevance) gain of showing the document that is at rank posi-

tion i, di is the discount factor for showing that document at rank position i, and ci is

the (sensitivity) cost of showing the document that is at rank position i. Sensitivity

costs for showing non-sensitive documents are 0.

Because the maximum value of DCG depends on the number of relevant doc-

uments and their degree of relevance, DCG values are usually normalized to the

interval [0, 1] (forming nDCG) when averaging across topics [110]. CS-DCG must

similarly be normalized (forming nCS-DCG) when averaging across topics. Unlike

DCG, however, CS-DCG can be negative or positive, so we need to know both its

upper and lower bounds. As with DCG, these bounds can be computed by the

greedy rule-based algorithm shown in Algorithm 1 and 2 for the case in which

maxpciq ą maxpgiq and assuming binary sensitivity labels (e.g., sensitive or not).

You can refer to Section 4.4 for the general case where there are graded relevance

and graded sensitivity labels.

Algorithm 1: Computing a query-specific lower bound on CS-DCG@k

Start with an empty ranked list of size k and fill from top to bottom with non-
relevant and sensitive documents that are selected in any order.
if ranked list still has less than k documents then

fill in the empty slots from bottom to top with relevant and sensitive doc-
uments by putting less relevant documents on top of higher relevant ones.
end if
if ranked list still has less than k documents then

fill in the empty slots from top to bottom with non-relevant and non-
sensitive documents that are selected in any order.
end if
if ranked list still has less than k documents then

fill from bottom to top with relevant and non-sensitive documents by
putting less relevant documents on top of higher relevant ones.
end if
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Upper bounds are computed similarly as shown in Algorithm 2. An exam-

ple running these algorithms for finding the best and worst ranking given a set of

documents is shown in Figure 4.1.

Algorithm 2: Computing a query-specific upper bound on CS-DCG@k

Start with an empty ranked list of size k and fill from top to bottom with relevant
and non-sensitive by putting higher relevant documents on top of less relevant
ones.
if ranked list still has less than k documents then

fill in the empty slots from bottom to top with non-relevant and non-
sensitive documents that are selected in any order.
end if
if ranked list still has less than k documents then

fill in the empty slots from top to bottom with relevant and sensitive doc-
uments by putting higher relevant documents on top of less relevant ones.
end if
if ranked list still has less than k documents then

fill from bottom to top with non-relevant and sensitive documents that are
selected in any order.
end if

Once we get the upper (best) and lower (worst) bounds for CS-DCG for a

certain query q, we can normalize it using min-max normalization as follows.

nCS-DCG “
CS-DCG´ CS-DCGworst

CS-DCGbest ´ CS-DCGworst

(4.4)

So nCS-DCG could be equal to 1 when the documents are ranked indistin-

guishably from the best possible ranking, and 0 when documents are ranked indis-

tinguishably from the worst possible ranking. Naturally, the best practical nCS-

DCG is achieved when the documents that are most relevant appear as high as can

be achieved in the ranked list and when sensitive documents almost never anywhere

in the ranked list. Note that we must cut the ranked list off at some point (hence
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Figure 4.1: Example showing the best and worst rankings for a given set of docu-
ments with graded relevance (highly, somewhat, and not relevant) and binary sen-
sitivity labels (sensitive or not).

our specification of k) if we are to have any chance of avoiding showing sensitive

documents, since in a full ranked list every document would appear somewhere in

the list.

4.4 Measure#4: Differential Cost Sensitive Discounted Cumulative

Gain (γCS-DCG)

In CS-DCG, the cost for showing a sensitive document is independent of where

the document is in the ranked list. We propose a more general version of this measure

by incorporating a discount based on how many sensitive documents appeared before

the current one. Therefore, the proposed evaluation measure, named γCS-DCG, can

be defined as follows.
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γCS-DCG@k “
k

ÿ

i“1

pgi ˚ di ´ ci ˚ γ
siq (4.5)

where γ is a geometric decay factor in the range [0, 1] for the cost of showing a

sensitive document and si is the number of sensitive documents found in the ranked

list before rank i. When γ is equal to 0, the measure penalizes only the first sensitive

result. When γ is equal to 1, the measure yields to CS-DCG. Any value between

these boundaries yields to different degrees of discounting the penalty for sensitive

documents.

Unlike normalizing CS-DCG scores, it is hard to compute the best and worst

rankings achieving the highest and lowest γCS-DCG scores respectively as doc-

uments have different penalties based on the number of preceding sensitive ones

which makes the problem hard and our algorithms 1 and 2 do not solve such cases.

As a result, we adopt a simple greedy approach to compute best and worst rankings.

To compute the best ranking, we start from the first rank and select the document

that maximizes the γCS-DCG score till the current rank position, and then do the

same for subsequent positions until reaching rank cutoff (k). To compute the worst

ranking, we follow the same procedure, but in each rank we select the document

which minimizes the γCS-DCG score. This greedy approach does not guarantee

optimal results, but these sub-optimal results should be acceptable in practice. For

example, if we apply this greedy procedure on the example shown in Figure 4.1 while

computing the worst ranking, the only somewhat relevant and sensitive document

will be placed at the 4th rank where it should be placed at the 10th rank for the
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optimal worst ranking.

Like CS-DCG, after computing best and worst rankings, one way of normal-

izing the scores is to use max-min normalization which produces nγCS-DCG that

falls in the range [0,1]. It can be defined as follows.2

nγCS-DCG “
γCS-DCG´ γCS-DCGworst

γCS-DCGbest ´ γCS-DCGworst

(4.6)

4.5 Evaluation Desiderata

Evaluation measures are models, and George Box reminds us that all mod-

els are wrong but some models are useful [12]. There thus can be no one “right”

evaluation measure—the question is whether an evaluation measure has useful char-

acteristics for some purpose. There are many things that we might wish of our

evaluation measures, including that they offer insight into what we want to know,

that they be easily explained or already widely understood, and that they be single-

valued so that they can serve as a basis for optimization.

In this section, our aim is to build an evaluation measure that reflects how

desirable a ranked list of documents is with respect to both the relevance of these

documents to some query and also the sensitivity of these documents (irrespective of

a query). By relying on axiomatic analysis [4,19,78], we list some formal properties

that reflect which quality factors are captured by measures. Our plan is to formalize

our desired properties for evaluation measures that balance between relevance and

2For a given query, if the γCS-DCG score lies outside this range, then the score is changed to
the closest boundary’s score.
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sensitivity. Then we plan to propose several evaluation measures and check what

properties are satisfied in each measure.

We adopt a simple model where any relevant (or sensitive) document has a

relevance (or sensitivity) contribution, which is independent of other documents,

affects the score of evaluation measure. We introduce the following definitions: rpdq

P [0, 1] represents the graded relevance of a document d, and spdq P [0, 1] represents

the graded sensitivity of a document d. We can assume there is a ranking cutoff

(k), whereafter results are hidden, otherwise sensitive documents will be shown in

any ranked result list. We use A to denote a ranking and scorepAq to denote the

evaluation measure score for ranking A. Similarly to [4], we use AdiØdj to denote

the ranking A after replacing documents at positions i and j.

P1. Bounded, Da, b P R : scorepAq P ra, bs. As a result, scores are on the same

scale, which is a necessary condition to compare search systems across different

information needs. If a measure is not bounded, it suffers from bias towards

certain information needs that have many relevant or sensitive documents.

P2. Reference point, Ds, scorepAq “ s such that it is equivalent as if there are no

relevant or sensitive documents in the result list, or possibly the gains, from

relevant documents, and the costs, from sensitive documents, cancelled each

other. When a measure has this property, it becomes easier to understand and

interpret both relevance and sensitivity contributions.

P3. Convergence: given that we have a ranking cuttoff @k, if we swap a more

relevant (less sensitive) document outside the top k with a document inside
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the top k that is less relevant (more sensitive). Then the score should strictly

increase.

• Relevance convergence: d1(outside top k), d(inside top k), and rpd1q ą

rpdq and spd1q “ spdq, then

scorepAdØd1q ą scorepAq.

• Sensitivity convergence: d1(outside top k), d(inside top k), and spd1q ă

spdq and rpd1q “ rpdq, then

scorepAdØd1q ą scorepAq.

P4. Head-weightedness: correctly swapping the order of adjacent documents

inside the top k has more effect at earlier rankings.

• Relevance head-weightedness: rpdiq “ rpdjq ă rpdi`1q “ rpdj`1q,

spdiq “ spdi`1q, and spdjq “ spdj`1q, then

scorepAdiØdi`1
q ą scorepAdjØdj`1

q when i ă j.

• Sensitivity head-weightedness: spdiq “ spdjq ą spdi`1q “ spdj`1q,

rpdiq “ rpdi`1q, and rpdjq “ rpdj`1q, then

scorepAdiØdi`1
q ą scorepAdjØdj`1

q when i ă j.

P5. Localization: score is computed only using the top k results. Perhaps, this

property may have an impact on efficiency while computing scores. When a

measure is not localized, extra processing may be needed to compute the score

that is based on the whole set of documents and not just the top k results.
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P6. Realizability: score for any information need can actually reach the bounds

as long as there is at least one relevant or sensitive document.

4.6 Evaluation Measures Analysis

In this section, we conduct an axiomatic evaluation of the proposed evalu-

ation measures: TERN, SENS, CS-DCG, nCS-DCG, γCS-DCG, and nγCS-DCG.

We study these measures by testing them for the desired properties, explained in

Section 4.5. Table 4.1 shows that there is no one single measure that satisfies all

the desired properties. For example, there is no measure that satisfies P1, P2, and

P6. We did not put CS-DCG and nCS-DCG measures in Table 4.1 as they behave

similarly to γCS-DCG and nγ CS-DCG respectively.3

It is clear that all measures are bounded, except CS-DCG and γCS-DCG.

Unlike TERN and SENS, the lower bound of nCS-DCG and nγCS-DCG is 0, where

it can be negative in the case of TERN or SENS measures.

One interesting consequence of the design of γCS-DCG is that properties P1

and P2 are in tension. In its unnormalized form, γCS-DCG satisfies property P2

but not P1. For example, when the score is equal to 0, γCS-DCG indicates that

the score is as good as no relevant or sensitive documents in the result list or their

contributions cancel each other. We can use min-max normalization, producing

nγCS-DCG, to satisfy property P1, but doing so then violates P2. It is this tension

with interpretation of γCS-DCG that results in the TERN and SENS measures

3Actually, CS-DCG and nCS-DCG can be considered as special cases of their γ variants when
γ=1.
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being more easily interpreted.

Regarding convergence (P3), γ CS-DCG and nγ CS-DCG measures are conver-

gent. The reason is that these measures reward (or penalize) a document according

to its degree of relevance (or sensitivity). On the other hand, both TERN and SENS

measures are not convergent, as it not necessarily true that the score will improve

when one sensitive result becomes hidden or one new relevant result appears among

the top k results. For example, if there are three sensitive results appeared in the

ranked list, then removing one or two sensitive results will not improve the TERN

score (it will still be -M). However, the score will improve when the ranking model

succeeds in removing all 3 sensitive results, in which case the TERN score becomes

non-negative.

Regarding head-weightedness (P4), γ CS-DCG and nγ CS-DCG measures are

not head-weighted with respect to sensitivity as they penalize documents based on

the number of preceding sensitive documents and not based on the rank. However,

both measures are head-weighted with respect to relevance as they discount a doc-

ument based on its rank, so correct swappings in earlier ranks have a bigger impact

that in lower ranks. On the other hand, both SENS and TERN measures are not

head-weighted as the score becomes negative if there is at least one sensitive result

among the top results regardless of its rank.

Since, SENS and nγCS-DCG measure require knowledge of all relevant and/or

sensitive documents for a given search topic, they are not localized (P5). However,

the computation of TERN and γ CS-DCG depends on only the top k results. Be-

cause γ CS-DCG is not bounded, it is not realizable. Furthermore, TERN and
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Property TERN SENS γCS-DCG nγCS-DCG
P1. Bounded 3 3 7 3

P2. Reference Point 3 3 3 7

P3a. Relevance Convergent 7 7 3 3

P3b. Sensitivity Convergent 7 7 3 3

P4a. Relevance Head-weighted 7 7 3 3

P4b. Sensitivity Head-weighted 7 7 7 7

P5. Local 3 7 3 7

P6. Realizable 7 7 7 3

Table 4.1: Comparison between all proposed evaluation measures for relevance and
sensitivity with respect to the desired properties for search among sensitive content.

SENS measures are not realizable, as they can not be negative if a certain search

topic has no sensitive documents. On the other hand, nγCS-DCG can reach both

lower and upper bounds for any search topic as long as there is at least one relevant

or sensitive document, and hence it is realizable.

4.7 Chapter Summary

In this chapter, we ask how would we measure the quality of ranked lists

with respect to relevance and sensitivity? Answering that led us to propose several

evaluation measures for search among sensitive content. Additionally, we have shown

how some standard evaluation measures can be extended to incorporate sensitivity

in addition to relevance. We developed a set of potentially desirable properties for

the task of search among sensitive content. We analyzed the proposed evaluation

measures in terms of whether they satisfy each of the properties. Analysis shows that

there is no measure that satisfies all desired properties. And hence, we found that

some measures are good for evaluating ranked lists, but they contain quantization

noise which is not suitable when used for training ranking models (Section 6.1).
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Chapter 5: Proposed Approaches1

When searching among sensitive content, search and protection engines should

possess the following characteristics.

1. They still retrieve relevant content in responding to information needs.

2. They protect sensitive content which may put the content owner, or possibly

the searcher, under the risk of disclosure.

3. They are fast, which will enable effective access to information without wait-

ing for a long time between search request and its response. As a result,

these engines support interactive query reformulation by the user who has the

information need.

4. They are affordable, which will save manual review costs incurred by hiring

reviewers. Reviewers are often paid on a per-hour basis, which can also make

project budgets hard to predict.

To satisfy the aforementioned characteristics, we propose to use two technolo-

gies for the target retrieval task: 1) Learning to rank (LtR), and 2) Automatic

sensitivity classification. Unlike conventional retrieval functions, e.g. BM25, LtR

1Some parts of this chapter were taken from a publication by Sayed and Oard [106] and a paper
in preparation by Sayed, Mallekav, and Oard [104]
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has transformed the ranking problem into a learning problem in which case each

query-document pair is represented by a feature vector of possible indicators of rel-

evance, and (for training) a target relevance label. Then, learning techniques are

employed to develop a ranker that optimizes some defined loss function. LtR ap-

proaches can be broadly divided into 3 groups [68]: 1) Pointwise, 2) Pairwise, and

3) Listwise approaches. In section 5.2, we describe several LtR algorithms that span

all LtR groups.

Often it is not feasible to give sensitivity labels for all the content that we have,

and hence we need an automatic sensitivity classifier which predicts a document’s

sensitivity. In section 5.1, we describe the process of building different classifiers in

terms of classification models, feature selection, and train/test split.

In Section 5.3, we generally propose different baselines for combining a sensitiv-

ity classifier with a ranking model for the target retrieval task. Then in Section 5.3.2,

we propose an approach that leverages evaluation-driven Learning to Rank (LtR)

techniques. Our work focuses on the listwise approaches, as they try to directly

optimize an objective function that can be matched to the evaluation measure, as

presented in Chapter 4.

Finally, in Section 5.4 shows the efficacy of the proposed approach in compar-

ison with the baselines. These results were validated using all our test collections,

presented in Chapter 3, and using different evaluation measures, presented in Chap-

ter 4. Also, we show it is not a good practice to use the same measure for evaluating

and optimizing search and protection engines. This observation comes as a result

of not having one measure that satisfies all the desired properties as presented in
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Section 4.5.

5.1 Sensitivity Classification Approaches

In this section, we describe the process of building sensitivity classification

models for the OHSUMED and Avocado test collections. Also, we describe the

process of feature engineering and train/test split.

5.1.1 Classifying OHSUMED Documents

To approximate the degree of accuracy that might be seen in an actual ap-

plication for search among sensitive content, we used 2 MeSH labels to represent

the sensitive content which are C12 (Male Urogenital Diseases) and C13 (Female

Urogenital Diseases and Pregnancy Complications), as discussed in Section 3.1. We

used the 14,430 documents that were judged for relevance as our test set, and the

remaining 334,136 documents in the OHSUMED collection for training. We build

different classification models using Logistic Regression (LR) and Support Vector

Machines (SVM). One advantage of LR is that predicted sensitivity probabilities

can be directly obtained without calibration. Each document is represented by a

TF-IDF vector for the words found in the title and abstract. For hyper-parameter

tuning, we run grid search with 5-fold cross validation on the training data and

then pick the set of values that maximizes F1. Table 5.1 lists the ranges of hyper-

parameters for LR and SVM.

From the fact that our classes are unbalanced and that a false negative (mis-
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Model Parameter Parameter Space

LR

use idf {False, True}
stemmer {None, Porter}
C {0.01, 0.1, 1, 5, 10}
probability {0.01, 0.02, ... 0.99, 1}

SVM
kernel {rbf, linear}
γ(rbf only) {1e0, 1e-1, 1e-2, 1e-3, 1e-4}
C {0.01, 0.1, 1, 5, 10}

Table 5.1: Hyper-parameter ranges for LR and SVM classifiers. Note that γis a
kernel coefficient, which has a different meaning from γin γCS-DCG evaluation
measure.

Model Precision Recall F1 F2 Accuracy BAC
LR 78.10 72.44 75.16 73.50 94.14 84.80
SVM 86.35 63.72 73.33 67.25 94.32 81.16

Table 5.2: Sensitivity classification results for OHSUMED (using test hold-out).

takenly predicting sensitive document as non-sensitive) is more important to avoid

that a false positive, we may tune the hyper-parameters to optimize for F2 or even

F4, which gives considerably more weight to recall than precision. However, we

decided to optimize for F1 because later in Section 5.5, we show that improving F1

measure is important to build more effective search and protection engines under

specific design choices.

As shown in Table 5.2, we measure our results using several classification

measures. Due to the nature of sensitivity classification, the error of a false negative

(classifying a sensitive document as non-sensitive) may be more harmful than a false

positive (classifying a non-sensitive document as sensitive). As a result, we report

F2 in addition to F1, as F2 gives more weight to recall over precision. We also report

Balanced Accuracy (BAC) to mitigate the effect of class imbalance (note that in the

OHSUMED test collection, „12% of judged documents are sensitive).
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5.1.2 Classifying Avocado Messages

The Avocado test collection, described in Section 3.2, consists of a set of search

topics or information needs. For each search topic, a number of pooled messages

is judged for relevance and sensitivity. To construct our test collection for message

sensitivity classification, we group all pooled messages along with their sensitivity

decisions, and create a test collection for each persona. We perform some filtering

steps on these messages and their labels. First, we remove all messages that are

judged for relevance with undetermined sensitivity label, which happens when the

annotator can not decide about sensitivity. As a result, there are 4 and 35 removed

messages from Holly Palmer and John Snibert test collections, respectively. Second,

if a message was judged for relevance with respect to different search topics. There

could be a possibility that the same message is given different sensitivity labels due

to annotator’s inconsistency. For such a case, we always consider this message as

sensitive if it is annotated as sensitive in one of the judgments. As a result, there

are 24 and 57 messages with conflicts that are considered to be sensitive. So after

preprocessing, each message represents one sample in the dataset and the label is

the annotator’s opinion of the persona’s decision about the message is sensitive or

not. A summary of the number of sensitive documents for each persona is given in

Table 5.3.

We next study how to classify a message. Different features can be useful for

message classification task (e.g., message headers, message body, and message ex-

change network) [2,58]. We do not have a large number of messages for training. So
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Persona #sensitive #not sensitive %sensitive
Holly Palmer 563 2,751 16.99%
John Snibert 1,531 1,692 47.50%

Table 5.3: Number of sensitive/not sensitive documents for each persona, Avocado.

we propose to use statistical machine learning techniques. However, in Section 5.5,

we fine-tune pre-trained neural network, e.g. BERT [38], for the classification task.

5.1.2.1 Characterizing Message Sensitivity

In this section, we do preliminary analysis of different factors that can help

in recognizing sensitive messages. Results from this section guide us as to which

features we should extract to build classification models to predict message sensi-

tivity. Here, the strategy we adopt is to study different factors to check whether

different feature values can change the prevalence of sensitive documents or not. As

presented in Table 5.3, the base percentages of sensitive documents are „17% and

„48% for the Holly Palmer and John Snibert test collections respectively.

Time-based Factors. We first study the impact of time on message sensi-

tivity. We partition the time of day by hour, i.e. {0-1, 1-2, ..., 23-24}, and then

we aggregate all judged messages in each time range. We do not normalize time in

message’s metadata (e.g., convert time to UTC timezone), as we want to study the

impact of time of day based on message owner’s original timezone.

Figures 5.1(b) and 5.1(a) show both the number of sensitive and not sensitive

messages broken by time of a day and day of a week for John Snibert and Holly

Palmer respectively. It is shown that the number of sensitive messages increases
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later in the day, i.e. after noon or in the evening. For example, on Tuesdays, John

Snibert has even more sensitive messages than not sensitive ones. For Holly Palmer,

we found many messages sent in the evening were related to family conversations.

Address Type Factors. We study the impact of address type (internal or

external) on message sensitivity. We consider an email address as internal if the

domain of the email address is “@avocadoit.com” which is used to replace the name

of the company. Otherwise, the email address is considered as external. We aggre-

gate messages by address type and compute the percentage of sensitive messages

over all messages. First, we analyze the address type of the message sender. We

aggregate messages sent from each address type and compute the percentage of sen-

sitive messages over all judged messages. Then, we repeat the same analysis on

the recipient(s). The only difference in the latter case is that we consider recipients

as internal if any of them has an internal address. Otherwise, the recipients are

considered as external.

Table 5.4 shows that the fraction of sensitive messages is higher when the

message is sent from an internal address. This is because the message is most

likely related to the company and have sensitive information (65.2% for John and

30% for Holly) such as information about company projects, documents, or finance.

However, most of the messages received from an external address are coming from

newsletters, which have a lower rate of sensitive messages. The rate of sensitive

messages increase when one of the recipients is inside the company. Most of the

messages sent to external addresses are sent to mailing lists, and hence there are

few sensitive messages among them (30.8% for John and 14.9% for Holly).
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(b) John Snibert

Figure 5.1: Effect of time during the week on message sensitivity. Red line represents
the base percentage of sensitive documents.
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Persona
Sender Type Recipient(s) Type

Internal External Internal External
Holly Palmer 30.0% 10.0% 17.9% 14.9%
John Snibert 65.2% 30.0% 53.2% 30.8%

Table 5.4: Effect of email address type on message sensitivity.

Number of Message Recipient(s). We study the impact of the number

of message recipients(s) on message sensitivity. We aggregate messages having the

same number of recipients and compute the percentage of sensitive messages over

all judged messages. We do not remove the sender email address if found in the

recipients list, i.e. message is sent to self. This is to avoid cases when messages

might have empty list recipients, e.g. message is only sent to the sender. Most

messages are sent to a maximum of 8 recipients. One caveat is that we treat the

email address for a mailing list as one recipient and not based on the number of

people joined in that list.

Figures 5.2(b) and 5.2(a) show the fraction of sensitive messages with respect

to the number of recipients for John Snibert and Holly Palmer, respectively. In the

John Snibert test collection, we found more sensitive messages when the number

of recipients is (ą2). In these messages, we found many of them are related to

company arrangements which were assessed as trade secrets.

job, department, country, and level Roles Involved. We study the impact of

the sender’s job level as categorized by Byun and Kirsch [20] on message’s sensitivity.

Also, the authors extracted the job title, department, and country. There are five

job levels: L5: CEO, L4: Founder, VP, L3: Director / Sr Mgr, L2: Manager, L1:

ETC. We added another job level (L0) for any email address that does not belong
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(b) John Snibert

Figure 5.2: Effect of number of recipients on message sensitivity. Red line represents
the base percentage of sensitive documents.

to the company. In cases when a message has multiple recipients, we compute these

features only for the recipients with the lowest and highest job levels. As shown in

Figure 5.3(b), when the sender’s job level is ě 1 the prevalence of sensitive content

is increased as seen in the John Snibert test collection. In the Holly Palmer test

collection, the fraction of sensitive content is high when the sender’s job level is 1.

We found out the job levels of the recipients did not help in discriminating sensitive

content.

Message Metadata. These features represent the priority and importance

of the message set by the sender, and is intended for the attention of the recipient.

Priority can be either “nonurgent” („32% in John’s and „29% in Holly’s), “nor-

mal” („66% in John’s and „68% in Holly’s), or “urgent” („2% in both datasets).

Importance can be either “low” (a handful of cases), “normal” („97% in both test

collections), or “high” („3% in both test collections). Our annotators did not check

this metadata during the review process as this metadata are not part of the mes-

sage’s raw text, but they can be found in a separate metadata file. Even though
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(a) Sender’s Job Level - Holly Palmer
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(b) Sender’s Job Level - John Snibert
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(c) Highest Recipient - Holly Palmer
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(d) Highest Recipient - John Snibert

Figure 5.3: Effect of roles ranks on message sensitivity. Red line represents the base
percentage of sensitive documents.
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Persona
Priority

nonurgent normal urgent
Holly Palmer 7.9% 21.0% 14.5%
John Snibert 31.7% 54.8% 82.2%

Persona
Importance

low normal high
Holly Palmer 0% 17.2% 13.4%
John Snibert 0% 47.2% 76.7%

Table 5.5: Effect of message metadata (priority and importance) on message sensi-
tivity.

Persona Has Attachments No Attachments
Holly Palmer 15.37% 17.74%
John Snibert 56.93% 42.60%

Table 5.6: Effect of having attachments on message sensitivity.

these features take the default values for most of the messages in both test collec-

tions, they can still help in discriminating sensitive messages. Table 5.5 shows that

when the priority is urgent or importance is high, the fraction of sensitive messages

is high in the John Snibert test collection. Also, when the message’s priority is

nonurgent, the fraction of sensitive messages is low in both test collections.

Message Attachments. We study the effect of the presence of attachments

on message sensitivity. Table 5.6 shows that the fraction of sensitive messages is

high in the John Snibert test collection when a message has attachments. Figure 5.4

shows the fraction of sensitive messages by the number of attachments.

Message Reply. We study the effect of a message being a reply on message

sensitivity. Table 5.7 shows that there is higher rate of sensitive messages when

the message is a reply. We found some of these messages are between company’s

employees. On the other hand, newsletters do not require replies and hence they

contribute a big portion of the non-sensitive messages.
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(b) John Snibert

Figure 5.4: Effect of number of attachments on message sensitivity. Red line repre-
sents the base percentage of sensitive documents.

Persona Is a Reply Not a Reply
Holly Palmer 29.9% 14.2%
John Snibert 72.0% 42.2%

Table 5.7: Effect of being a reply on message sensitivity.

Message Exchange Network. We analyze the message exchange network

based on all messages in the collection. We construct a directed graph that consists

of nodes, each of which represents an email address, and directed edges, each of

which exists if there is at least one message sent from the source node (i.e., email

address) to the destination node. First, we remove all duplicate messages found in

the collection. A message is considered as duplicate if there is another message has

the same message ID and the same subject line. For example, a message is sent

from employee A to employee B. Now, this message has two versions: 1) one version

in the sent folder of employee A, and 2) another one in the inbox folder of employee

B. For such cases, we keep only the sender’s version of a message and make it the

canonical version in a duplicate set. Second, for each message, we extract the sender

email address from the From field, and all recipients found in the To, Cc, and Bcc
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fields. Then, for each recipient, we add a directed edge between the source node

that represents the sender to the recipient’s node.

Network features are generated by leveraging the message exchange network

of the whole Avocado email collection. We want to capture the importance of

nodes that represent the sender and recipient(s). For each node, we extract that

node’s scores for four network statistics (in-degree centrality, out-degree centrality,

betweenness centrality, and pagerank). Degree centrality is a measure of the number

of edges a particular node has in the network. In the case of directed graphs, we

break it into two measures based on in-degree and out-degree edges, respectively.

Betweenness centrality for a node is a measure that reflects the fraction of the short-

est paths, between any pair of other nodes, that pass through the node. The nodes

with high betweenness act as gateways that play a significant role in the communi-

cation/information flow within the network. Pagerank denotes to the importance of

a node based on the neighbors. In cases when a message has multiple recipients, we

compute the min, max, and mean scores for each of the network statistics for the

recipients. Figure 5.5 shows the fraction of sensitive messages based on the sender’s

node scores. As can be seen in Figure 5.5(b), the fraction of sensitive messages is

high when the sender’s in or out-degree centralities are in the range [0.001,0.009] in

the John Snibert test collection.
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(a) In degree centrality - Holly Palmer
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(b) In degree centrality - John Snibert

0.000 0.005 0.010 0.015 0.020
Outdegree centrality

0%

5%

10%

15%

20%

25%

30%

Pe
rc

en
ta

ge
 o

f S
en

sit
iv

e 
Em

ai
ls

(c) Out degree centrality - Holly Palmer
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(d) Out degree centrality - John Snibert
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(e) Betweenness centrality - Holly Palmer
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(f) Betweenness centrality - John Snibert
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(g) PageRank - Holly Palmer
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(h) PageRank - John Snibert

Figure 5.5: Effect of sender’s node centrality on message sensitivity. Red line rep-
resents the base percentage of sensitive documents.
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5.1.2.2 Predicting Message Sensitivity

Because messages contain metadata in addition to text, and because some of

that metadata defines temporal or graph structures that could be useful for predict-

ing sensitivity, we extract a rich set of features as shown in Table 5.8. Note that

this is a richer set of features than is directly available to our LtR systems, so the

sensitivity classifier fills a feature aggregation role when its output is used as one

basis (among many) for LtR as shown in Table 3.12.

For each test collection, we build 2 different classification models via Logistic

Regression and Support Vector Machines. We tune the hyper-parameters, as pre-

sented in Table 5.1, using grid search with 5-fold cross validation on the training

data and then pick the value that maximizes F1. Results, as shown in Table 5.9,

show that LR and SVM have comparable results, but we used LR for integration

with a ranking model as LR’s probabilities are normally well calibrated.

5.2 Ranking Approaches

For testing our baselines and our approach, we used different algorithms to

build LtR models [68]. We selected a representative algorithm from the pointwise

and pairwise approaches. Additionally, we selected two algorithms from the listwise

approach to show that our proposed approach works with different listwise ranking

algorithms. We also built a BM25 baseline, which is a simple and often quite

effective retrieval model that is not based on learning to rank.

Linear regression is a pointwise approach that learns a linear ranking function
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Feature Description
subjectTFIDF TF-IDF weights of the terms in the subject field.
bodyTFIDF TF-IDF weights for the terms in the message’s body.
attachmentsTFIDF TF-IDF weights for the terms in attachment(s).
dayOfWeek 7 binary features for the day of the week, e.g. Monday.
timeOfDay 4 binary features for the time of day (0-6, ..., 18-24).
isWeekend 1 binary feature if day is a weekend and 0 otherwise.
isSenderExternal 1 binary feature if sender is external and 0 otherwise.
isReceiverExternal 1 binary feature if all recipients are external and 0 otherwise.
numRecipients total number of recipients in ”To”, ”Cc”, and ”Bcc” fields.
subjectLen number of words in the subject field.
bodyLen number of words in the message’s body
attachmentsLen number of words in attachment(s).
senderInDegCent in-degree centrality score for message’s sender.
senderOutDegCent out-degree centrality score for message’s sender.
senderBetweennessCent betweeness centrality score for message’s sender.
senderPageRank pagerank score for message’s sender.
receiverInDegCent 3 features for min/max/mean of in-degree scores for recipient(s).
receiverOutDegCent 3 features for min/max/mean of out-degree scores for recipient(s).
receiverBetweennessCent 3 features for min/max/mean of betweeness scores for recipient(s).
receiverPageRank 3 features for min/max/mean of pagerank scores for recipient(s).
senderJob 1 categorical feature to represent the job title of message’s sender.
senderDepartment 1 categorical feature to represent the department of message’s sender.
senderRank 1 categorical feature to represent the job rank of message’s sender.
senderCountry 1 categorical feature to represent the country of message’s sender.
receiverJob 2 categorical features for min and max job titles of message’s recipient(s).
receiverDepartment 2 categorical features for min and max department of message’s recipient(s).
receiverRank 2 categorical features for min and max ranks of message’s recipient(s).
receiverCountry 2 categorical features for min and max country of message’s recipient(s).
importance 3 binary features for message’s importance (low, medium, high).
priority 3 binary features for message’s priority (nonurgent, normal, urgent).
sensitivity 2 binary features for message’s sensitivity (none, company confidential).
hasAttachment 1 binary feature indicating whether the message has attachments.
numAttachments 1 integer feature indicating the number of attachments in the message.

Table 5.8: Description of features used for training and predicting message’s sensi-
tivity

Persona Model Precision Recall F1 F2 Accuracy BAC

Holly Palmer
LR 78.56 62.66 69.64 65.26 90.77 79.59
SVM 74.90 66.04 70.18 67.62 90.52 80.79

John Snibert
LR 81.92 80.87 81.36 81.06 82.44 82.39
SVM 82.13 81.96 82.02 81.98 82.97 82.93

Table 5.9: Sensitivity classifier results (upper Holly Palmer, lower John Snibert)
using 5-fold cross validation.
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which maps a feature vector to a relevance score. Then, documents are ranked

based on their predicted relevance scores. In this approach each document is treated

independently, and the ranking problem can be seen as a regression problem.

LpF pxq, yq “
m
ÿ

i

pfpxiq ´ yiqq
2 (5.1)

where f is the ranking model, xi is the feature vector of the document i, and

yi is the true relevance label.

LambdaMART [121] is a pairwise approach which is based on Multiple Ad-

ditive Regression Trees (MART) [46] where the output of the model is a linear

combination of the outputs of a set of regression trees. The loss function is defined

on the basis of pairs of documents with different relevance scores.

lpf ;xi, xj, yijq “ ´P ij logPijpfq ´ p1´ P ijq log p1´ Pijpfqq (5.2)

where yij is the true label of whether document i has a higher rank than

document j or not. P ij is the target probability, which is equal to 1 when yij

is 1, and 0 otherwise, and Pijpfq is the model output probability. Then the loss

function is multiplied by the change in some IR measure (e.g., ∆ NDCG) as in

LambdaRank [17]. In our experiments, we have a held-out set of search topics that

serve as a validation set, which is used to determine the ensemble of trees with the

best score on the evaluation measure.

AdaRank [124] is a listwise approach which is based on boosting. In each

iteration, it learns a weak ranker that minimizes a loss function. A common approach
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is to base the loss function on the evaluation measure (in our case, 1 minus nCS-

DCG). Then the final model is a linear combination of the weak rankers. In our

experiments, we use the validation set to determine the number of weak rankers

that collectively achieve the best score on the evaluation measure.

LpF pxq, yq “
m
ÿ

i

expt´Epπpqi, di, fqq, yiu (5.3)

where Epπpqi, di, fqq is any evaluation measure whose values are in the range

[-1, 1]

Coordinate Ascent [75] is another listwise approach which is iteratively opti-

mizing a multivariate objective function by performing a series of one-dimensional

searches while holding other parameters fixed. In our experiments, we use the val-

idation set to determine the set of weights with the best score on the evaluation

measure over 5 restarts.

5.3 Integration of Sensitivity Classifiers and Rankers

When searching among content that is not sensitive, it suffices to learn an

effective ranking function. For searching among sensitive content, we must also

learn to identify which of the documents in that ranking contain sensitive content.

In this section, we describe different approaches to modify a search engine results so

that they take the predicted sensitivity of each document into account. Basically,

our setup is composed of the following components.

1. A ranking model that takes a query and a set of documents as input, and
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outputs a ranked list of the documents based on their relevance to the query.

The ranking model could be as simple as a retrieval function (e.g., BM25) or

a model trained on ranking documents (e.g., LtR).

2. A sensitivity classifier that takes a document as input, and outputs the docu-

ment’s probability of sensitivity.

3. A sensitivity filter that excludes documents if they are predicted to be sensi-

tive.

5.3.1 Baselines

In order to tackle the issue of balancing between relevance and sensitivity, we

suggest different baselines for how to make our three components interact with each

other.

Baseline 1: Relevance Only. In this approach, a ranking model is trained using

all documents without considering their sensitivities, as shown in Figure 5.6(a). Dur-

ing test time, documents are fed to the resulting model along with a test query/topic,

and then the model outputs the top k documents.

Baseline 2: Pre-filtering then Relevance Only. In this approach, during train-

ing time, documents are fed to a filter along with their sensitivity labels, as shown

in Figure 5.6(b). Then the filter omits any document that is truly sensitive. After

that, the filtered documents are used to train the ranking model. During test time,

documents are first filtered based on their predicted sensitivities. Then, they are fed

to the resulting ranking model along with a test query/topic, and then the model
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outputs the top k documents.

Baseline 3: Relevance Only then Post-filtering. Similarly to Baseline 1, the

ranking model is trained using all documents. During test time, documents are fed

to the resulting model along with a test query/topic, and then the model outputs a

ranked list. But before showing the results, documents predicted as sensitive are fil-

tered out and the remaining top k documents are returned, as shown in Figure 5.6(c).

This baseline has more training documents than Baseline 2.

Baseline 4: Demoting relevance scores for sensitive documents. Inspired by

Dong et al. [39,40], we demote the relevance scores of a query-document pair to the

minimum grade (relevance score = 0) when the document is truly sensitive. Then

the modified query-document pairs are used to train the ranking model. This is to

train the ranking model so that it outputs low relevance scores for documents that

are predicted to be sensitive. During test time, documents are fed to the resulting

model along with a test query/topic, and then the model outputs a ranked list.

5.3.2 Jointly Modeling Relevance and Sensitivity

Some LtR algorithms allow us to produce models that optimize customiz-

able loss functions. Those algorithms are called list-wise approaches. A common

approach is to base the loss function on the evaluation measure (e.g., seeking to

minimize 1-nDCG). Since we aim at balancing between relevance and sensitivity,

we propose to use any of our evaluation measures as part of the loss function (e.g., 1

- nCS-DCG) to be minimized. In addition to modifying the loss function, we inject
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the probability of a document being sensitive (and its complement) as part of its vec-

tor representation while building the listwise LtR model, as shown in Figure 5.6(e).

At test time, all documents, augmented with their probabilities of sensitivity, are fed

to the resulting model along with a test query/topic, and then the model outputs a

ranked list. We refer to that approach as “Joint”. An additional optional step is to

apply a post-filter on the results to further hide any result that is predicted to be

sensitive. We refer to that extension as “Joint+Post-filter” (plotted in dotted lines

in Figure 5.6(e)).

5.4 Results

By using the test collections described in Chapter 3, we evaluate the effec-

tiveness of all our baselines and our proposed approach based on our evaluation

measures, described in Chapter 4.

5.4.1 Experiment Design

We start our experiments by verifying the expected results of our baseline

techniques and our proposed approach when with a perfect (oracle) sensitivity clas-

sifier built using the true sensitivity labels in the test collections (accuracy = 100%).

Then we investigate the performance of our baselines and our proposed approach

using nDCG and TERN measures with a ranking cutoff k, after which results are

not evaluated. For all our experiments we report results from 5-fold cross-validation

in which three folds are used for training, one fold is used for validation, and one fold
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(e) Jointly modeling relevance and sensitivity with optional Post-filtering.

Figure 5.6: Alternative approaches for search among sensitive content. For each
approach, we show how it works during training (left) and test (right) times.
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Highly relevant Moderately Not relevant
relevant

Retrieved Gh Gm 0
Not retrieved 0 0 0

Table 5.10: Gain matrix for documents depending on the relevance level

is used for test. So each fold contains „21 and 7 search topics in the OHSUMED

and Avocado test collections, respectively.

Then, we experiment using an imperfect classifier that might be seen in prac-

tice. We use the LR classifier achieving F1 = 73.5, 69.6, and 81.3 for the OHSUMED,

Holly Palmer, and John Snibert test collections, respectively as shown in Tables 5.2

and 5.9. We therefore investigate the performance of our baselines and our proposed

approach using nDCG, TERN, SENS, and nCS-DCG measures with a ranking cutoff

k

We numerically interpret the relevance levels and compute the discount using

the default approach of Ranklib as shown in equation (4.3).

gi “ 2rel
´ 1, di “

1

logpi` 2q
(5.4)

where i is the rank and rel is relevance score. In both OHSUMED and Av-

ocado test collections, rel is equal to 2, 1, or 0 if the document is highly relevant,

moderately relevant, or not relevant, respectively, with respect to the query. So we

set Gh = 3 and Gm = 1 in Table 5.10.

We are interested in cases where showing a sensitive document incurs substan-

tial penalty, but we are not interested in cases in which that penalty is so large as

to be effectively infinite (because returning any documents would not be rational in
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Sensitive Not sensitive
Retrieved Cs 0

Not retrieved 0 0

Table 5.11: Cost matrix for documents depending on the sensitivity level

such cases). We therefore apply different sensitivity penalties (M = 0, 1, 3) for both

TERN and SENS measure to correspond to little, moderate, and severe penalties

for showing sensitive documents. We create these different settings to show the ef-

fectiveness of the proposed approaches under different test scenarios. For CS-DCG

and nCS-DCG, we chose to study cases in which the cost of showing a sensitive

document is a bit less than the maximum discounted cumulative gain we could get

if all documents in the first k positions were relevant. In other words, we are inter-

ested in cases in which the system has the potential to recover from one mistakenly

shown sensitive document by showing many relevant documents that are not sen-

sitive documents. As Tables 3.1 and 3.6 show, on average a query has more than

10 documents that are highly relevant. For a cutoff = 10, the maximum DCG for

the first 10 positions is thus equal to 13.63. We therefore set the cost Cs = 12 in

Table 5.11. Due to the design of the test collections, we illustrate graded relevance

using three levels and graded sensitivity using two levels, but the formalism is easily

extended (or collapsed) to any number of gradations along each dimension.

5.4.2 Oracle Upper Bounds

Under the ideal conditions when we have a perfect sensitivity classifier (accu-

racy = 100%), we expect that no sensitive documents would appear in any ranked

result list. Indeed, that’s what we see.
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(c) John Snibert

Figure 5.7: nDCG@10 of different approaches with a perfect sensitivity classifier for
each test collection. Error bars are the 95% confidence interval.
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Figure 5.8: TERN@10 (M=1) of different approaches with a perfect sensitivity
classifier for each test collection. Error bars are the 95% confidence interval.
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We evaluate our baselines and our proposed system using nDCG@10 and

TERN@10 in order to illustrate the difference between the two measures. Con-

sidering nDCG, we should find that ranking based only on relevance would achieve

the best results, and as Figure 5.7 shows, that’s what we see.

Moreover, as we would expect, Figure 5.8 shows that pre-filtering or post-

filtering outperforms other approaches. This is because with a perfect classifier,

there are no sensitive documents remaining that might be shown. In some ranking

algorithms, post-filtering performs better than pre-filtering, as we might expect from

the larger LtR training folds that are available with post-filtering (in pre-filtering, the

sensitive documents are removed before training; in post-filtering they are removed

after testing).

5.4.3 Integration with Imperfect Sensitivity Classifier

In this part of our experiments, we investigate how different approaches per-

form if the sensitivity classifier results have some misclassifications, as would be

expected in practice. Obviously, as shown in Figure 5.9, we expect lower nDCG@10

scores for those approaches which rely on filtering or penalizing to discourage show-

ing sensitive documents, since some sensitive documents could be relevant. We also

note that training a ranking model on TERN@10 scores should decrease the result-

ing nDCG@10 for the same reason, and also because the training measure is used

to calculate scores on the validation set, which affect when to stop for some ranking

algorithms. As expected, we see a lower nDCG@10 in every case.
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Turning now to evaluation using our new evaluation measure (TERN@10), we

see a quite different picture. As shown in Figure 5.10, we get lower scores for baseline

1 as expected, since it does not take document sensitivity into account in any way.

Additionally, prefiltering and postfiltering no longer have the best scores (as they did

when evaluated using TERN@10 in Figure 5.8) because they rely on an imperfect

classifier. Our proposed approach which takes advantage of sensitivity probabilities

fed to the ranking model does well, by contrast, even when those probabilities come

from an imperfect classifier.

As the comparison between Figures 5.8 and 5.10 shows, TERN@10 results drop

for all approaches as misclassification rates increase. Because the cost of showing a

sensitive document is relatively high (M=1), false negatives are more important than

false positives. Unsurprisingly, it is therefore the false negatives that are responsible

for this drop in absolute scores.

As shown in Figure 5.10, listwise approaches trained with TERN have a higher

TERN@10 scores than other baselines. For AdaRank, our approach is marginally

better than the baselines in the John Snibert test collection, although none of the

differences are statistically significant. For Coordinate Ascent, it consistently out-

performs other baselines in all test collections. Our results are statistically signifi-

cantly better than our baselines by a two-tailed paired sign test (p ă 0.05) in both

Holly Palmer and John Snibert test collections.
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(c) John Snibert

Figure 5.9: nDCG@10 of different approaches with an LR sensitivity classifier
achieving F1 = 73.5, 69.6, and 81.3 in the OHSUMED, Holly Palmer, and John
Snibert test collections, respectively. Error bars are the 95% confidence interval.
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Figure 5.10: TERN@10 (M=1) of different approaches with an LR sensitivity classi-
fier achieving F1 = 73.5, 69.6, and 81.3 in the OHSUMED, Holly Palmer, and John
Snibert test collections, respectively. Error bars are the 95% confidence interval.
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5.4.4 SENS Comparison

In the previous experiments, we used the TERN measure to evaluate the effec-

tiveness of different systems. In this set of experiments, we use the SENSE measure

as another evaluation measure to verify the effectiveness of the joint approach. In

addition to non-trained retrieval function (BM25), we use the Coordinate Ascent

algorithm, as it outperforms AdaRank in several test collections, and it does not

require the optimization measure to be bounded (i.e., [-1,1] as in AdaRank). The

Coordinate Ascent algorithm is used for building listwise LtR ranking models opti-

mized towards a relevance only measure (nDCG@10) and models optimized towards

the SENS@10 scores that jointly model relevance and sensitivity. For each case, the

ranking model’s output is treated in two ways: 1) no post-filtering, or 2) post-

filtering documents which are predicted to be sensitive. By following this structure,

we adopt baselines #1, #3, joint, and joint+post-filter approaches, which showed

promising results in the previous experiments (Section 5.4.3).

After that, we compare the effectiveness of the proposed approaches using the

SENS evaluation measure with ranking cutoff (@10). We apply different sensitivity

penalties (M = 0, 1, 3) to correspond to little, moderate, and severe penalties

for showing sensitive documents. We create these different settings to show the

effectiveness of the proposed approaches under different test scenarios, as shown in

Table 5.12.

Two main observations stand out from this analysis. First, We note that ap-

proaches relying on listwise LtR optimizing towards SENS@10 score the highest in
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Approach
OHSUMED

M=0 M=1 M=3
(1a) BM25 0.188İ -0.331İ -1.368İ

(1b) BM25 + Filter 0.267İ -0.025İ -0.610İ

(2a) LtR (nDCG@10) 0.284İ -0.096 -0.869
(2b) LtR (nDCG@10) + Filter 0.365 0.148İ -0.286İ

(3a) LtR Joint (SENS@10, M=0) 0.346 0.139İ -0.276İ

(3b) LtR Joint (SENS@10, M=0) + Filter 0.346 0.148İ -0.248İ

(4a) LtR Joint (SENS@10, M=1) 0.312İ 0.133 -0.225
(4b) LtR Joint (SENS@10, M=1) + Filter 0.312İ 0.133 -0.225
(5a) LtR Joint (SENS@10, M=3) 0.297İ 0.183 -0.043
(5b) LtR Joint (SENS@10, M=3) + Filter 0.297İ 0.183 -0.043

Approach
Holly Palmer

M=0 M=1 M=3
(1a) BM25 0.162İ -0.381İ -1.467İ

(1b) BM25 + Filter 0.200 -0.228İ -1.086İ

(2a) LtR (nDCG@10) 0.171İ -0.429İ -1.629İ

(2b) LtR (nDCG@10) + Filter 0.199 -0.315İ -1.344İ

(3a) LtR Joint (SENS@10, M=0) 0.219 -0.124 -0.809
(3b) LtR Joint (SENS@10, M=0) + Filter 0.219 -0.067 -0.638
(4a) LtR Joint (SENS@10, M=1) 0.263 0.121 -0.165
(4b) LtR Joint (SENS@10, M=1) + Filter 0.263 0.121 -0.165
(5a) LtR Joint (SENS@10, M=3) 0.260 0.060 -0.340
(5b) LtR Joint (SENS@10, M=3) + Filter 0.260 0.060 -0.340

Approach
John Snibert

M=0 M=1 M=3
(1a) BM25 0.029İ -0.914İ -2.800İ

(1b) BM25 + Filter 0.047İ -0.781İ -2.439İ

(2a) LtR (nDCG@10) 0.000İ -0.971İ -2.914İ

(2b) LtR (nDCG@10) + Filter 0.000İ -0.918İ -2.804İ

(3a) LtR Joint (SENS@10, M=0) 0.078İ -0.522İ -1.722İ

(3b) LtR Joint (SENS@10, M=0) + Filter 0.078İ -0.522İ -1.722İ

(4a) LtR Joint (SENS@10, M=1) 0.137 -0.377 -1.406
(4b) LtR Joint (SENS@10, M=1) + Filter 0.146 -0.340 -1.311
(5a) LtR Joint (SENS@10, M=3) 0.175 -0.311 -1.282
(5b) LtR Joint (SENS@10, M=3) + Filter 0.184 -0.273 -1.187

Table 5.12: SENS@10 of the proposed approaches. Each row block represents the
performance of one ranking model when a post-filter is not (’a’) or is (’b’) used.
İ denotes a significant difference by a two-tailed Wilcoxon signed rank test [49] (p
ă 0.05) when compared with the best performing approach in the same column
(marked in bold).
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different test scenarios, and they statistically significantly beat the baselines that

rely on filtering, e.g. approaches 1b and 2b. This observation holds except only for

one case (OHSUMED with penalty M = 0; in that case, approach 2b which applies

a filter after a listwise LtR model optimized towards nDCG@10 has the highest

SENS@10 score). This comports with the results from the previous section, show-

ing that listwise LtR models can be optimized towards the optimization measure,

outperforming models that rely on filtering. In these experiments, by contrast, we

used the SENS@10 for both optimization and evaluation.

Second, as expected, any approach that does not rely on filtering (with suffix

’a’) scores less than or equal to the corresponding approach where results are filtered

(with suffix ’b’). This is because the former approach does not take sensitivity into

account. However, it is interesting to notice that filtering does not score higher when

it is deployed after a listwise LtR model optimized towards the SENS@10 measure.

For example, both approaches 4a and 4b score equally on the Holly Palmer test

collection, which illustrates the flexibility of listwise LtR in learning how to jointly

optimize for relevance and sensitivity.2 This observation does not hold when M=1

(during evaluation) in the OHSUMED test collection, when we compare between

approaches 3a and 3b (where M=0 during optimization). This is because when the

SENS@10 score is 0, it is hard for the ranker to determine which action is needed

to improve the score: 1) add more documents that are predicted to be relevant, or

2) hide some documents predicted to be sensitive. When M ą 0, it is clearer which

2We inspected the output ranked lists from these approaches, and they are exactly the same.
In this case, filtering does not hide any additional sensitive results.
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action to learn (e.g., to hide some documents when SENS score = -M). To summarize

this observation, applying a post-filter to our proposed approach (Figure 5.6(e)) does

not degrade the effectiveness measured by SENS@10, but in most cases it has no

effect.

5.4.5 nCS-DCG Comparison

In this section, we show the effectiveness of the joint approach by evaluating

the results using nCS-DCG@10 (Cs=12). This is to provide a complementary view

and verify the superiority of our proposed approach. As seen in Table 5.13, the joint

approach, whether a post-filter is used or not (approaches 6a and 6b), outperforms

other straightforward approaches that rely on filtering. We noticed that the differ-

ence is statistically significant using a two-tailed paired t-test [36] (p ă 0.05) in all

test collections, except only for one case where approach 6a was marginally better

than approach 2b in the OHSUMED test collection.

Also, we noticed that applying a filter on the results of the joint approach

helped in hiding additional sensitive results, and hence the score increased in the

John Snibert test collection. In other test collections, the post-filter had no effect

on the result lists.

101



Approach
OHSUMED

nCS-DCG@10(Cs=12)
(1a) BM25 0.729İ

(1b) BM25 + Filter 0.801İ

(2a) LtR (nDCG@10) 0.773İ

(2b) LtR (nDCG@10) + Filter 0.8284
(6a) LtR Joint (nCS-DCG@10, Cs=12) 0.850
(6b) LtR Joint (nCS-DCG@10, Cs=12) + Filter 0.850

Approach
Holly Palmer

nCS-DCG@10(Cs=12)
(1a) BM25 0.747İ

(1b) BM25 + Filter 0.825İ

(2a) LtR (nDCG@10) 0.682İ

(2b) LtR (nDCG@10) + Filter 0.811İ

(6a) LtR Joint (nCS-DCG@10, Cs=12) 0.892
(6b) LtR Joint (nCS-DCG@10, Cs=12) + Filter 0.892

Approach
John Snibert

nCS-DCG@10(Cs=12)
(1a) BM25 0.540İ

(1b) BM25 + Filter 0.742İ

(2a) LtR (nDCG@10) 0.488İ

(2b) LtR (nDCG@10) + Filter 0.740İ

(6a) LtR Joint (nCS-DCG@10, Cs=12) 0.862
(6b) LtR Joint (nCS-DCG@10, Cs=12) + Filter 0.870

Table 5.13: nCS-DCG@10 (Cs=12) of the proposed approaches. Each row block
represents the performance of one ranking model when a post-filter is not (’a’) or
is (’b’) used. İ denotes a significant difference by a two-tailed t-test [36] (p ă 0.05)
when compared with the best performing approach in the same column (marked in
bold).
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5.5 Effect of Sensitivity Classification on Search and Protection En-

gines

In our initial results, we built a Logistic Regression classifier for each of the

test collections. Then, we showed the effectiveness of the proposed approach at a

given level of misclassification error. The key question we raise in this section is

which approach is best under different classifier accuracies. We build three models

for classifying sensitivity: Logistic Regression, DistilBERT, and an or combination

of the two. Then, we measure the effectiveness of these sensitivity classification

models when integrated inside search and protection engines.

5.5.1 Selection of Sensitivity Classification Models

Our logistic regression classifiers were built with sklearn’s Logistic Regression

library [43]. The logistic regression model was trained on the union of the title and

abstract for each document in the OHSUMED test collection, and on the union of

the subject, body, and attachments for the Avocado collection. Our neural classifier

was built with huggingface’s DistilBERT, a pre-trained classification model trained

on a large collection of English data in a self-supervised fashion [102]. DistilBERT

is a distilled version of BERT large, and we choose it because it runs 60% faster

than BERT large [37] while still retaining over 95% of its effectiveness. For the

OHSUMED collection, fine-tuning of DistilBERT for this classification task was

performed using the training set. Many email messages have more text in the union
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of their subject, body and attachments than DistilBERT’s 512-token limit, so for

Avocado we divided the text of each item into 500-token passages with a 220-token

stride. For fine-tuning each of the 5 Avocado classifiers for this task on the 5

training folds, we considered a passage to be sensitive if the document from which

that passage had been extracted was marked as sensitive; for testing, we considered a

document to be sensitive if any passage in that document was classified as sensitive,

and the probability of sensitivity for a document to be the maximum sensitivity

probability for any passage in that document.

DistilBERT probabilities can benefit from calibration, so we used the valida-

tion sets to perform calibration as follows. We first binned the sensitivity probability

estimates of the classifier on the validation set into 10 uniform partitions (0-10%,

10%-20%, . . . , 90%-100%). The true fraction of truly sensitive documents in each

partition was computed using ground truth validation set annotations. We then

found the best fit line that defined an affine function to transform system estimates

to ground truth values with minimum Mean Square Error (MSE) over those 10

points. At test time, this affine function was then used to transform every Dis-

tilBERT sensitivity probability estimate to better approximate the true sensitivity

probability. To assign a binary (yes/no) value for sensitivity to each test document,

we learned one threshold for each classifier on the probability estimates by using a

grid search in the range [0, 1] with step size 0.01, and then selected the threshold

with the highest F1 on the validation set.

Our third model, a disjunctive combination of our logistic regression and Dis-

tilBERT models, used the or function between the decisions of the DistilBERT and
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logistic regression models. For example, if Logistic Regression identified an Avo-

cado email message as sensitive but DistilBERT classified it as not sensitive, the

combined model would declare it as sensitive. For our extrinsic evaluation below

we require not a decision but a probability; in that case we calculate the combined

probability using an independence assumption (i.e., the probability that a document

is not sensitive is the product of the logistic regression and calibrated DistilBERT

probabilities that the document is not sensitive).

5.5.2 Train/Validation/Test Splits

While building sensitivity classification models, we used the set of OHSUMED

documents judged for relevance for test, while keeping the rest for training. The

training data is further partitioned into training and validation by an 85/15 split.

For the Avocado collection, we first segregated the sensitivity judgments for the

Holly Palmer persona and for the John Snibert persona. For each persona, we

then built and tested classifiers using five-fold cross-validation, iteratively training

on some four folds and testing on the fifth. We took 20% of the data from each

training fold and created a validation subfold for each training fold.

While building search and protection engines, we followed the same train/test

split as describe in Section 5.4.1. Basically, search topics are split into 5 folds, three

of which are used for training, one is used for validation, and one for test.
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5.5.3 Intrinsic Evaluation

Table 5.14 reports four intrinsic measures of classification effectiveness: pre-

cision, recall, F1, and F2. Our experiment showed that the DistilBERT classifier

has the best F1 score on the OHSUMED test collection, logistic regression has the

best F1 for John Snibert, and the combined model has the best F1 for Holly Palmer.

The reason for DistilBERT excelling on OHSUMED for F1 is likely related to the

number of training samples (ą250k). Neural methods tend to perform better with

more data, and the Avocado collection only contains around 2,000 training samples.

Another possible factor is that DistilBERT was fine-tuned on Avocado with weak

supervision by having to segment each email message and assign a weak label to each

segment. So if a message is labeled as sensitive, then all its segments are labeled as

sensitive even if there are some of them are not sensitive. We adopt this approach as

it is often used during fine-tuning BERT models for relevance [34]. This approach

may have led to worse results.

The combined model performed the best by F2 for all three test collections.

F2 emphasizes recall, and as expected, the combined model yielded the best recall

in every case. From the results, it can be seen that choosing the best classifier relies

heavily on the test collection for maximizing F1, but the combined classifier is the

best for maximizing F2 scores.

106



Classifier
OHSUMED

PrecisionÒ RecallÒ F1Ò F2Ò AccuracyÒ
(a) LR 76.72 73.29 74.96 73.95 94.01
(b) DistilBERT 82.75 80.08 81.39 80.60 95.52a,c

(c) Combined 74.61 83.81 78.94 81.8 94.53a

Classifier
Avocado: Holly Palmer

PrecisionÒ RecallÒ F1Ò F2Ò AccuracyÒ
(a) LR 72.29 69.98 71.12 70.43 90.34b,c

(b) DistilBERT 66.20 67.85 67.02 67.52 88.65
(c) Combined 64.15 80.11 71.25 76.31 89.02

Classifier
Avocado: John Snibert

PrecisionÒ RecallÒ F1Ò F2Ò AccuracyÒ
(a) LR 80.53 84.85 82.63 83.95 83.06b,c

(b) DistilBERT 72.87 87.00 79.31 83.75 78.44
(c) Combined 70.86 93.73 80.71 88.05 78.72

Table 5.14: Intrinsic sensitivity classification results (percent). Superscripts indicate
statistically significant improvement over that system by McNemar’s test [74] (p ă
0.05) for comparing accuracy of two models.

5.5.4 Extrinsic Evaluation

In this section, we study the effect of sensitivity classification on search among

sensitive content. In Section 5.3, we proposed several approaches for combining a

ranking model and an automatic sensitivity classifier. Among these approaches,

we have selected two for comparison here. First, The post-filter approach works

by applying the sensitivity classifier on the ranking model’s output as a filter, so

that any result that is predicted to be sensitive is removed the result list. We

build ranking models using the Coordinate Ascent ranking algorithm [75] optimizing

for normalized Discounted Cumulative Gain (nDCG@10). For evaluation, we used

TERN@10 with penalty M=1.

Second, the joint approach works by having the ranking model optimized for
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a measure that balances between relevance and sensitivity. This can be achieved by

leveraging listwise learning to rank (LtR) techniques. In our experiments, we used

the Coordinate Ascent listwise LtR algorithm, which outperforms other alternatives

on these test collections as shown in Section 5.4. We used TERN@10 with penalty

M=1 for both training and evaluating models in this approach.

As shown in Table 5.15, we compare the post-filter and joint approaches using

the classification models described in Section 5.5.3. Additionally, we add a perfect

oracle classifier to show the effect of sensitivity classification on the TERN measure.

Several observations stand out of this experiment. First, there is a significant gap

in effectiveness when a perfect oracle classifier is substituted for our classification

models. This indicates that sensitivity classification plays an important role in the

task.

Second, investigating the effectiveness of the post-filter approach using dif-

ferent classifiers, we see that that on these test collections the TERN@10 score is

positively correlated with F2. Specifically, the combined classifier outperforms other

classifiers by both F2 and TERN@10. We justify this observation because the com-

bined classifier has a higher recall than other models, and hence it is able to detect

more sensitive documents. As a result, the combined classifier is more effective,

when deployed inside a search and protection engines, in filtering out documents

that are predicted to be sensitive. Even though the combined classifier is less pre-

cise than LR and DistilBERT (shown in Table 5.14), it achieved the best TERN@10

score in the post-filter approach.

Third, we see that for all three of our classifiers the joint model yields bet-
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ter results than the postfilter model, which is consistent with our results when we

compare different approaches using nCS-DCG@10 and SENSE@10 measures as pre-

sented in Sections 5.4.3 and 5.4.4, respectively. Furthermore, in two test collections,

the classifier the joint model does best with by TERN@10 is the one that it did

best with by F1. Moreover, with the Holly Palmer test collection where LR has the

highest TERN@10 score, the F1 score (F1=71.12) is very nearly the best. Lastly,

we see that if an oracle classifier were available, nothing could beat the post-filter

approach, since it never reveals a sensitive document, and it never unnecessarily

withholds a document that is not truly sensitive. This result conforms to the results

presented Section 5.4.2 where different approaches were compared using TERN@10.

So although the joint model is our best current design for a search and protection

engine, that conclusion does depend on the effectiveness of the sensitivity classifier.

Classifier
OHSUMED Holly Palmer John Snibert

Post-filter Joint Post-filter Joint Post-filter Joint
(a) LR 0.528 0.613 -0.229İ 0.343 -0.714 0.086
(b) DistilBERT 0.585 0.717 0.057 -0.029İ -0.657 -0.029
(c) Combined 0.642 0.708 0.143 0.2 -0.543 -0.057

Oracle 0.943 0.934 0.629 0.629 0.457 0.457

Table 5.15: TERN@10 (M=1). Results are based on 5-fold cross validation on
search topics. There are 106, 35, and 35 topics for the OHSUMED, Holly Palmer,
and John Snibert test collections respectively. Except for the oracle classifier, the
highest value in each column is marked in bold. İ denotes a significant difference
by a two-tailed paired sign test (p ă 0.05) when compared with the highest value.
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5.6 Implementation

We used several ranking algorithms that are implemented in the Ranklib li-

brary, which is part of the Lemur project.3 We added classes for our new evalua-

tion measures (TERN, SENS, γCS-DCG, and γnCS-DCG) and made some minor

changes to the interface code to handle more command-line parameters. The code

is available at https://github.com/mfayoub/SASC.

5.7 Chapter Summary

In this chapter, we show that at some levels of classifier accuracy that might

be seen in practice (e.g., F1 = 73.5, 69.6, and 81.3 for the OHSUMED, Holly Palmer,

and John Snibert test collections, respectively), training a learning to rank model

could be better than the more straightforward approach of simply filtering out sensi-

tive documents (either before or after retrieval). We showed that when the classifier

accuracy is high, filtering has the best performance among all approaches. This is

because the classifier has an impact on which documents tare used for training and

which of them should be filtered out. In these cases, we also showed that training

listwise models based on our evaluation measures is not as good as perfect filter-

ing. On the other hand, when the classifier accuracy is more realistic, our proposed

approach yields better results than all the baselines.

3https://www.lemurproject.org/
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Chapter 6: Extensions1

In the previous chapter, we compared between different approaches for search

and protection engines. Results showed that the joint approach achieves the best

results according to our evaluation measures. In this chapter, we present four exten-

sions for enhancing the results presented so far. Since LtR transforms the ranking

problem into a learning problem, we study the effect of changing two components

of the learning problem: 1) optimization function, and 2) representation. First, we

study the effect of changing the optimization function the ranking model optimizes

for. As previously described, the joint approach works by setting the optimization

function to the evaluation measure, e.g. 1 - nCS-DCG. In Section 6.1, we sepa-

rate the evaluation measure, and use different measures to optimize for. The key

insight is that some measures are good for evaluation, but not for optimizing rank-

ing models. In Section 6.2, we study the effect of changing the representation of

query-document pairs. This is achieved by using transformer-based rankers instead

of using hand-crafted features.

Our last two extensions can be grouped, as they can be seen as post-processing

steps after a search and protection system produces a result list. First, we introduce

1Some parts of this chapter were taken from a paper in preparation [105] and a publication [106]
by Sayed and Oard
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an extension that relies on clustering results, and swapping documents with others

that are less sensitive but in the same cluster(Section 6.3). Finally, we study the

effect of varying the search depth, and present two cutoff selection policies that learn

how to obtain a cutoff where the score is maximized. (Section 6.4.2).

6.1 Optimization vs. Evaluation Measures

For the results in Tables 5.12 we used the SENS measure for both training

ranking models and evaluating them. In this section, we focus on building ranking

models that are optimized using measures different from the one used for evaluation.

From the evaluation perspective, as seen in Chapter 4, TERN and SENS are

better than nγCS-DCG in terms of understandability, and in particular the ability

to infer the relevance and sensitivity contributions. For instance, we can compare

two systems either by using the mean score across queries, or by using the score per

query for further investigation. Figure 6.1 compares between approach 2b which

is optimized towards nCS-DCG coupled with a sensitivity post-filter against the

best approach for the Holly Palmer test collection (approach 4a). It is obvious that

approach 2b has more topics showing sensitive results (i.e., SENS@10 = -1). For

example, with the Holly Palmer test collection, approach 2b gets a negative score

for 18 topics, while there are only 5 topics with negative scores when approach 4a

is used. The TERN measure shares with SENS the same properties, except that

positive scores are all 1. As a result, the TERN measure can be considered as a

simple statistic for the number of queries with positive, zero, and negative scores.
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Figure 6.1: SENS of the best performing approach (4a, plotted as bars) for Holly
Palmer against a baseline based on filtering (2b, plotted as a line). SENS penalty
M = 1. Topics are sorted by baseline scores.

Optimization Measure
OHSUMED

M=0 M=1 M=3
(m1) TERN@10 (M=0) 0.764 0.623 0.340
(m2) TERN@10 (M=1) 0.736 0.613 0.368
(m3) TERN@10 (M=3) 0.755 0.651 0.443
(m4) SENS@10 (M=0) 0.755 0.547 0.132
(m5) SENS@10 (M=1) 0.736 0.557 0.198
(m6) SENS@10 (M=3) 0.745 0.632 0.406
(m7) CS-DCG@10 (c=12) 0.745 0.613 0.349
(m8) nγCS-DCG@10 (c=12, γ=1) 0.764 0.632 0.368
(m9) nγCS-DCG@10 (c=12, γ=0.5) 0.755 0.585 0.245
(m10) nγCS-DCG@10 (c=12, γ=0.1) 0.708 0.472 0.000
(m11) nγCS-DCG@10 (c=12, γ=0) 0.736 0.519 0.085
(m12) nγCS-DCG@10 (c=100, γ=1) 0.792 0.679 0.453
(m13) nγCS-DCG@10 (c=100, γ=0.5) 0.726 0.566 0.245
(m14) nγCS-DCG@10 (c=100, γ=0.1) 0.755 0.585 0.245
(m15) nγCS-DCG@10 (c=100, γ=0) 0.689 0.509 0.151
(m16) nγCS-DCG@10 (c=1000, γ=1) 0.736 0.632 0.425
(m17) nγCS-DCG@10 (c=1000, γ=0.5) 0.774 0.670 0.462
(m18) nγCS-DCG@10 (c=1000, γ=0.1) 0.783 0.670 0.443
(m19) nγCS-DCG@10 (c=1000, γ=0) 0.726 0.566 0.245

Table 6.1: TERN@10 for LtR Joint approach optimized towards different measures
with different penalties. Highest value per column is bold.
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Optimization Measure
Holly Palmer

M=0 M=1 M=3
(m1) TERN@10 (M=0) 0.486 0.257 -0.200
(m2) TERN@10 (M=1) 0.486 0.257 -0.200
(m3) TERN@10 (M=3) 0.514 0.400 0.171
(m4) SENS@10 (M=0) 0.429 0.086 -0.600
(m5) SENS@10 (M=1) 0.543 0.400 0.114
(m6) SENS@10 (M=3) 0.514 0.314 -0.086
(m7) CS-DCG@10 (c=12) 0.486 0.314 -0.029
(m8) nγCS-DCG@10 (c=12, γ=1) 0.600 0.514 0.343
(m9) nγCS-DCG@10 (c=12, γ=0.5) 0.486 0.314 -0.029
(m10) nγCS-DCG@10 (c=12, γ=0.1) 0.514 0.286 -0.171
(m11) nγCS-DCG@10 (c=12, γ=0) 0.514 0.286 -0.171
(m12) nγCS-DCG@10 (c=100, γ=1) 0.543 0.429 0.200
(m13) nγCS-DCG@10 (c=100, γ=0.5) 0.429 0.171 -0.343
(m14) nγCS-DCG@10 (c=100, γ=0.1) 0.571 0.429 0.143
(m15) nγCS-DCG@10 (c=100, γ=0) 0.457 0.229 -0.229
(m16) nγCS-DCG@10 (c=1000, γ=1) 0.543 0.429 0.200
(m17) nγCS-DCG@10 (c=1000, γ=0.5) 0.571 0.400 0.057
(m18) nγCS-DCG@10 (c=1000, γ=0.1) 0.486 0.229 -0.286
(m19) nγCS-DCG@10 (c=1000, γ=0) 0.543 0.429 0.200

Table 6.2: TERN@10 for LtR Joint approach optimized towards different measures
with different penalties. Highest value per column is bold.
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Optimization Measure
John Snibert

M=0 M=1 M=3
(m1) TERN@10 (M=0) 0.371 0.000 -0.743
(m2) TERN@10 (M=1) 0.314 -0.114 -0.971
(m3) TERN@10 (M=3) 0.257 -0.171 -1.029
(m4) SENS@10 (M=0) 0.200 -0.400 -1.600
(m5) SENS@10 (M=1) 0.229 -0.286 -1.314
(m6) SENS@10 (M=3) 0.286 -0.200 -1.171
(m7) CS-DCG@10 (c=12) 0.229 -0.229 -1.143
(m8) nγCS-DCG@10 (c=12, γ=1) 0.314 -0.057 -0.800
(m9) nγCS-DCG@10 (c=12, γ=0.5) 0.200 -0.314 -1.343
(m10) nγCS-DCG@10 (c=12, γ=0.1) 0.229 -0.314 -1.400
(m11) nγCS-DCG@10 (c=12, γ=0) 0.286 -0.257 -1.343
(m12) nγCS-DCG@10 (c=100, γ=1) 0.229 -0.229 -1.143
(m13) nγCS-DCG@10 (c=100, γ=0.5) 0.314 -0.086 -0.886
(m14) nγCS-DCG@10 (c=100, γ=0.1) 0.200 -0.314 -1.343
(m15) nγCS-DCG@10 (c=100, γ=0) 0.314 -0.114 -0.971
(m16) nγCS-DCG@10 (c=1000, γ=1) 0.229 -0.200 -1.057
(m17) nγCS-DCG@10 (c=1000, γ=0.5) 0.229 -0.200 -1.057
(m18) nγCS-DCG@10 (c=1000, γ=0.1) 0.257 -0.171 -1.029
(m19) nγCS-DCG@10 (c=1000, γ=0) 0.314 -0.114 -0.971

Table 6.3: TERN@10 for LtR Joint approach optimized towards different measures
with different penalties. Highest value per column is bold.
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From the optimization perspective, we build different models, where each is

optimized towards a different measure. After that, we compare the effectiveness of

the these models using the TERN measure with different sensitivity penalties (M =

0, 1, 3) and search cutoff equals to 10, as shown in Tables 6.1, 6.2, and 6.3. Similar

patterns are observed when we use the SENS measure for evaluation. Results show

that the optimization measure does not need to be the same as the evaluation mea-

sure. For example, models optimized for nγCS-DCG@10 outperform other models

for the OHSUMED and John Snibert test collections. This is because TERN and

SENS take widely spaced discrete values and thus introduce additional quantization

noise. This observation does not hold for the Holly Palmer test collection, however,

but we can see that model m13 still earns second place after model m1, which has

the highest score. CS-DCG yields poor performance when used for optimization,

probably because it is not bounded and hence will be biased towards queries with

more relevant or sensitive results.

6.2 Transformer-Based Rankers

In our research, while learning to rank, each query-document pair is repre-

sented by a multi-dimensional feature vector, and each dimension of the vector is

a feature that we expect to be information with regard to how relevant the docu-

ment is with respect to the query. For the OHSUMED corpus, there are in total

45 features extracted from the fields of title and abstract, as shown in Table 3.9.

For the Avocado test collections, there are in total 320 features extracted from the
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fields of email’s subject, body, and attachments as shown in Table 3.10. Examples

include many of classical features used in IR, such as BM25 and language models

scores. These features are often extracted by first building an index, and then ex-

tracting retrieval features for query-document pairs. Unfortunately, the diversity of

features are limited to the capabilities the indexing tool offers. Perhaps, more fea-

tures could be added by manual implementation, but that could be time-consuming

and error-prone [48].

In this section, we study using transformer-based models for generating rel-

evance features that could be useful for improving effectiveness. In particular, we

study the use of monoBERT (an adapted version of BERT for text relevance) for

generating relevance features for query-document pairs. As a result, we have a differ-

ent set of relevance features, replacing the features in Tables 3.9 and 3.10. It is worth

noting we still append the sensitivity features to our representation, mentioned in

Tables 3.11 and 3.12.

Our objective is to study the effect of using transformer-based features on the

effectiveness of search and protection engines. Our plan is to build models similar

to those described in Table 5.12 but using transformer-based features. Then, we

compare the effectiveness of the resulting models with models relying on hand-

crafted features, described in Section 5.4.4, using the SENS measure.
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6.2.1 MonoBERT/MonoT5

We used the monoBERT model developed by Nogueira et al. [83] for ranking.

MonoBERT is an adaption of BERT [37] to relevance classification. The input

sequence for monoBERT is structured as follows.

[CLS] q [SEP] d [SEP]

where q represents the query tokens, and d represents the document tokens,

[CLS] marks the beginning of the sequence, and [SEP] marks the end of an input

(query or document). This model is fine-tuned to produce a probability of relevance

by using the MS MARCO passage ranking test collection [29]. The ‘mono’ term

refers to the fact that model is considered as pointwise learning to rank [66].

Additionally, we used the monoT5 model by Nogueira et al. [84] for ranking.

The input sequence for monoT5 is structured as follows.

Query: q Document: d Relevant:

where this model is fine-tuned to produce the tokens “true” or “false” depend-

ing on whether the document is relevant to the query of not. In both the Holly

Palmer and John Snibert test collections, documents were longer than the length

limitation of BERT. As a result, documents are segmented into passages using a

10-sentence sliding window with a stride of 5 sentences. Then, similarly to [34], the
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final document score is determined by taking the maximum passage score.

These two models could be used for ranking documents with respect to a given

query. These models can be seen as examples to pointwise learning to rank models.

As a result, filtering baselines can be used with these ranking models to hide any

documents. In our experiments, we apply the post-filter approach by filtering out

documents, that are predicted to be sensitive from the output of these models. We

used PyGaggle while building monoBERT and monoT5 models.2

6.2.2 Listwise LtR on monoBERT Features

In this model, we extend monoBERT by extracting the embeddings of the

[CLS] token, and then a learning to rank model is trained using these embeddings

instead of the hand-crafted relevance features shown in Table 3.10. For text content

that is longer than monoBERT’s context length limit, we use the representation of

the [CLS] token for the passage achieving the maximum relevance score. To this we

concatenate features from Table 3.12 as potential indicators for sensitivity.

For building search and protection engines, we can leverage listwise learning

to rank algorithms to jointly optimize for relevance and sensitivity. Additionally,

filtering approaches can be applied as well. In our experiments, we train models

optimizing towards a relevance measure (e.g., nDCG@10), and a measure that bal-

ances between relevance and sensitivity (e.g. SENS@10) with different penalties

(M). For all the models, we optionally apply the post-filter approach to remove any

document from the result list when the document is predicted to be sensitive.

2https://github.com/castorini/pygaggle/
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Approach
OHSUMED

M=0 M=1 M=3
Best using hand-crafted features (Table 5.12) 0.365İ 0.183İ -0.043İ

(7a) MonoBERT 0.312İ -0.112İ -0.961İ

(7b) MonoBERT + Filter 0.400 0.155 -0.336
(8a) MonoT5 0.290İ -0.182İ -1.125İ

(8b) MonoT5 + Filter 0.393 0.119 -0.428

(9a) MonoBERT + LtR (nDCG@10) 0.266İ -0.244İ -1.263İ

(9b) MonoBERT + LtR (nDCG@10) + Filter 0.377 0.094 -0.472
(10a) MonoBERT + LtR Joint (M=0) 0.409 0.192 -0.242
(10b) MonoBERT + LtR Joint (M=0) + Filter 0.425 0.236 -0.141İ

(11a) MonoBERT + LtR Joint (M=1) 0.399İ 0.258 -0.025İ

(11b) MonoBERT + LtR Joint (M=1) + Filter 0.399İ 0.258 -0.025İ

(12a) MonoBERT + LtR Joint (M=3) 0.346İ 0.232İ 0.006
(12b) MonoBERT + LtR Joint (M=3) + Filter 0.346İ 0.232İ 0.006

Table 6.4: SENS@10 of the proposed models on the OHSUMED test collection.
Each row block represents the performance of one ranking model when a filter is
not (’a’) or is (’b’) used. İ denotes a significant difference by a two-tailed Wilcoxon
signed rank test [49] (p ă 0.05) when compared with the best performing approach
in the same column (marked in bold).

6.2.3 Results

Following the same experiment design as Section 5.4.4, we build models that

rely on transformer-based features. In all test collections, we note that ranking mod-

els that are based on transformer features (e.g. monoBERT) perform better than

models that are based on hand-crafted features, as shown in Tables 6.4, 6.5, and 6.6.

For example, for the John Snibert test collection, approach 11a outperforms all ap-

proaches that rely on hand-crafted features (e.g., approaches 2a to 5b) in Table 5.12.

This observation does not hold only for one case in the Holly Palmer test collection

when the sensitivity penalty M=3 where approaches 12a and 12b score slightly lower

than approaches 4a and 4b (Table 5.12). This observation suggests that there is no
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Approach
Holly Palmer

M=0 M=1 M=3
Best using hand-crafted features (Table 5.12) 0.263 0.121 -0.165

(7a) MonoBERT 0.334 -0.095 -0.952
(7b) MonoBERT + Filter 0.357 -0.015 -0.758
(8a) MonoT5 0.265 -0.249İ -1.278İ

(8b) MonoT5 + Filter 0.315 -0.114İ -0.971İ

(9a) MonoBERT + LtR (nDCG@10) 0.283 -0.146İ -1.003İ

(9b) MonoBERT + LtR (nDCG@10) + Filter 0.333 0.076 -0.438
(10a) MonoBERT + LtR Joint (M=0) 0.297 -0.074 -0.817
(10b) MonoBERT + LtR Joint (M=0) + Filter 0.297 -0.074 -0.817
(11a) MonoBERT + LtR Joint (M=1) 0.272İ -0.014 -0.585
(11b) MonoBERT + LtR Joint (M=1) + Filter 0.272İ -0.014 -0.585
(12a) MonoBERT + LtR Joint (M=3) 0.325 0.125 -0.275
(12b) MonoBERT + LtR Joint (M=3) + Filter 0.325 0.125 -0.275

Table 6.5: SENS@10 of the proposed models on the Holly Palmer test collection.
Each row block represents the performance of one ranking model when a filter is
not (’a’) or is (’b’) used. İ denotes a significant difference by a two-tailed Wilcoxon
signed rank test [49] (p ă 0.05) when compared with the best performing approach
in the same column (marked in bold).

need to build an index for a collection of documents and manually select features to

be extracted based on query-document pairs. Instead, a monoBERT model can be

used as a feature generator by extracting the embeddings of the [CLS] token.

6.3 Cluster-Based Replacement

Looking at the performance of any approach in terms of TERN@10 (e.g., as

shown in Figure 5.10), it is just one number, and that may not be enough to describe

the performance across each search topic. For example, when applying Coordinate

Ascent for the OHSUMED test collection, we count the number of queries with

negative TERN@10 scores, and there are 41, 25, 23, 48, 13, and 13 queries for no

filter, pre-filter, post-filter, demote, joint, joint+post-filter approaches, respectively.
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Approach
John Snibert

M=0 M=1 M=3
Best using hand-crafted features (Table 5.12) 0.184 -0.273 -1.187

(7a) MonoBERT 0.093 -0.793İ -2.565İ

(7b) MonoBERT + Filter 0.093 -0.736İ -2.393İ

(8a) MonoT5 0.085 -0.772İ -2.486İ

(8b) MonoT5 + Filter 0.128 -0.643İ -2.186İ

(9a) MonoBERT + LtR (nDCG) 0.064İ -0.822İ -2.593İ

(9b) MonoBERT + LtR (nDCG) + Filter 0.104 -0.696İ -2.296İ

(10a) MonoBERT + LtR Joint (M=0) 0.096 -0.618İ -2.047İ

(10b) MonoBERT + LtR Joint (M=0) + Filter 0.123 -0.506İ -1.763İ

(11a) MonoBERT + LtR Joint (M=1) 0.155 -0.245 -1.045
(11b) MonoBERT + LtR Joint (M=1) + Filter 0.155 -0.245 -1.045
(12a) MonoBERT + LtR Joint (M=3) 0.126 -0.446 -1.589
(12b) MonoBERT + LtR Joint (M=3) + Filter 0.126 -0.446 -1.589

Table 6.6: SENS@10 of the proposed models on the John Snibert test collection.
Each row block represents the performance of one ranking model when a filter is
not (’a’) or is (’b’) used. İ denotes a significant difference by a two-tailed Wilcoxon
signed rank test [49] (p ă 0.05) when compared with the best performing approach
in the same column (marked in bold).

It is obvious that the joint approach, or when it is coupled with a post-filter, out-

performs other approaches as it has the least number of queries that have at least

one sensitive result among the top 10 ranks. However, there remains the question

of whether we can further reduce the number of queries with negative TERN@10

scores.

One simple trick that we can use to limit the risk of false negatives (falsely

predicting a sensitive document as not sensitive) is to replace any potentially sensi-

tive document with a similar document that is less sensitive. This idea is inspired

by the usual approach to diversity ranking, in which the documents in a result set

are clustered and then the most relevant document(s) from a cluster are selected for

display. If instead we choose the least sensitive document(s) from the cluster, we
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would get a sensitivity-averse analogue to diversity ranking.

We can apply this idea to any ranked list. Given the result list of a query,

we first cluster all the documents that were judged for relevance in order to group

together sets of documents for which it might suffice to replace one document in

a cluster with another, in the hope that if the first document was relevant, the

second one we select will also be relevant. The process starts by stepping through

the ranked list, replacing each document with the as-yet unchosen document in the

same cluster that has the lowest sensitivity probability (if such a document exists

in the cluster). A selected replacement document is then removed from the cluster

to avoid selecting it more than once, and the process repeats for the next document

in the ranked list (which may be from the same cluster, or a different one). The

process stops after processing the first k documents in the ranked list, where k is

the rank cutoff. Note that this process has no diversity objective – its sole goal is

to minimize the aggregate probability of showing a sensitive document without ever

selecting a document that was not at least in the same cluster as some document in

the ranked list.

We used CLUTO software for clustering documents.3 CLUTO treats each doc-

ument as a vector in a high-dimensional space, and performs repeated bisectioning

until the desired number of clusters is reached. We set the number of clusters to be

20, which was chosen to be higher than our rank cutoff (@10).

As Figure 6.2 shows, this cluster-based replacement strategy helps to limit

the risk of getting a negative CS-DCG@10 score, and it achieves that result for

3http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
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Figure 6.2: CS-DCG@10 for Coordinate Ascent on the OHSUMED test collection
with a sensitivity classifier F1 of 73.5 with (bar) and without (filled area) cluster-
based replacement.
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every one of our approaches. We selected CS-DCG@10 when showing performance

across each query to show the benefits of using cluster-based replacement strategy

in reducing the number of sensitive results. In each case, the (generally) lower line

that dips sharply at the right shows the CS-DCG@10 scores achieved by each query

without cluster-baesd replacement, sorted from best to worst. The superiority of

tuning Coordinate Ascent with a TERN@10 loss function is clearly indicated in

this figure, since fewer queries yield poor CS-DCG@10 results. As the (generally)

upper bars show, it is the hardest queries, those with the lowest CS-DCG@10,

that see the greatest improvement from cluster-based replacement. As Table 6.7

shows, improvements in TERN@10 are evident as well for all approaches and test

collections.

As shown in Table 6.7, we separately count the number of queries with posi-

tive, negative, or zero CS-DCG@10 score. Two main observations stand out from

this analysis. First, It is obvious to notice that the number of queries with negative

CS-DCG@10 scores decreased when the cluster-based replacement policy is applied.

Second, there are more queries with zero score when the cluster-based replacement

policy is applied. One possible scenario that contributes to that is when the re-

placement policy successfully removes all sensitive results of a hard query, and as

a result possible relevant results are also replaced by not relevant documents, in

which case there is no relevant or sensitive document among the top results. In that

case, showing a ranked list with zero utility is better than showing a result list that

has sensitive information. In Section 6.4.2, we try to mitigate this issue by showing

fewer results (or even nothing) if the query is predicted to be hard.
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OHSUMED

Ranking Approach
unclustered clustered

+/0/- TERN@10 +/0/- TERN@10
Relevance only 63/2/41 0.208 73/14/19 0.509
Pre-filter 78/3/25 0.5 76/11/19 0.538
Post-filter 81/2/23 0.547 75/15/16 0.557
Demote 56/2/48 0.075 72/14/20 0.491
Joint 78/15/13 0.613 81/18/7 0.698
Joint+Post-filter 78/15/13 0.613 81/18/7 0.698

Holly Palmer

Ranking Approach
unclustered clustered

+/0/- TERN@10 +/0/- TERN@10
Relevance only 12/2/21 -0.257 12/4/19 -0.200
Pre-filter 15/4/16 -0.029 15/4/16 -0.029
Post-filter 15/2/18 -0.086 16/4/15 0.029
Demote 13/5/17 -0.114 15/7/13 0.057
Joint 17/10/8 0.257 19/11/5 0.400
Joint+Post-filter 17/10/8 0.257 19/11/5 0.400

John Snibert

Ranking Approach
unclustered clustered

+/0/- TERN@10 +/0/- TERN@10
Relevance only 0/1/34 -0.971 1/2/32 -0.886
Pre-filter 3/2/30 -0.771 3/1/31 -0.800
Post-filter 0/1/34 -0.971 4/3/28 -0.686
Demote 5/2/28 -0.657 4/4/27 -0.657
Joint 11/9/15 -0.114 11/9/15 -0.114
Joint+Post-filter 11/9/15 -0.114 11/9/15 -0.114

Table 6.7: TERN@10 (M=1) comparison between different ranking approaches
when Coordinate Ascent algorithm is used for each of our test collections. The
joint approach is optimized towards TERN@10 (M=1). Number of search topics
with positive/0/negative TERN@10 scores (+/0/-) is also displayed. For each pair,
TERN@10 is averaged across five cross-validation folds when cluster-based replace-
ment is not (left) or is (right) used. Symbol (*) denotes statistically significant
difference according to a two-tailed paired sign-test (p ă 0.05) over the correspond-
ing clustered/unclustered score in the same approach.
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To get a better idea of what’s happening with cluster-based replacement, we

tracked the swaps that include at least one sensitive document (either added, re-

moved, or replaced one with another). Such swaps have the largest impact on

TERN@10. We found that the number of sensitive documents added is less than

the number of sensitive documents being removed. That is why there is an improve-

ment when this replacement policy is used in the Relevance Only and Demoting

approaches, as shown in Table 6.7. In approaches where filtering is used, and in the

joint approach, there are fewer sensitive documents used for replacement, and the

TERN@10 score increases as well.

6.4 Query-Specific Cutoffs

Looking at Tables 6.1 to 6.3, when a system has a positive TERN score,

especially when M ą 0, we can infer that this system successfully returns relevant

content and protects sensitive results, on average. On the other hand, for the John

Snibert test collection as shown in Table 6.3, all systems produce negative scores

when the sensitivity penalty M = 3. This observation comes as a result to the higher

number of sensitive documents found in that collection, as shown in Table 3.8. Here,

the question we want to study is the effect of varying the search depth on the system

score. Our intuition is that if a certain topic, or a test collection is known to have

many sensitive results, it might be a good practice to run a strict system that does

not show many results to lower the risk of showing sensitive results. When the

search depth is decreased, the probability of encountering a relevant or sensitive
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(c) John Snibert

Figure 6.3: TERN of the best performing approach for each test collection under
different cutoffs. Each cutoff is applied for all topics.

document is decreased, and vice versa. So it is appropriate to adjust the cutoff to

maximize the value of the target evaluation measure.

In all the previous experiments, we fix the search depth to be 10. In this sec-

tion, we investigate the performance of the best performing model, from Tables Ta-

ble 6.1, 6.2, and 6.3, for each of the test collections separately, under different search

cutoffs. We select models m12 for OHUSMED (M=0, M=1), m17 for OHSUMED

(M=3), m8 for Holly Palmer under all penalties, and m1 for John Snibert under

all penalties. As shown in Figure 6.3, we vary the search depth from 0 to 10 and

report the value of the average TERN measure across topics. As the search depth
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increases, except for the Holly Palmer test collection or when M = 0, we note that

the TERN measure goes up until a certain point and then decreases after that. Our

aim is to detect the cutoff which maximizes the value of the TERN measure. To do

this, we describe two proposed cutoff policies, and then we present the results.

6.4.1 Policy #1: Learning a Single Cutoff

One way to fine-tune the search depth is to exhaustively try all possible cutoffs

and select the one that maximizes the value of the TERN measure on a held-out set

of topics. We call this policy “static cutoff selection” because the search depth is

predetermined and does not vary by topic. In our experiments, we have a validation

set of topics for each of our test collections. We therefore exhaustively try all cutoffs

in the range [0,10] and pick the cutoff that achieves the best TERN score on this

validation set.

6.4.2 Policy #2: Query Specific Cutoff

We propose another policy for cutoff selection that depends on the topic under

test. The idea is that a small cutoff should be applied if a topic is known to have

many sensitive results, and hence is hard to do well at. On the other hand, if a topic

has few sensitive results, then a large enough cutoff should be applied so that at

least one relevant result may appear in the top results. Finding at least one relevant

document is important in interactive search applications, because otherwise there

could be little basis on which a user could reformulate their query. The sensitivity of

129



documents is not known at test time, we need to estimate sensitivity with the help of

the sensitivity classifier we have built. Specifically, we estimate the expected number

of documents that are predicted to be sensitive. We call this policy “dynamic cutoff

selection”, as the best cutoff is determined for each topic separately and different

topics might have different cutoffs.

In our experiments, we compute the percentage of documents associated with

a specific topic that are predicted to be sensitive, and define a monotonically de-

creasing function to compute the cutoff as follows.

cutoff “ t10 ˚ p1´#sens{#docsqu (6.1)

where #sens is the number of documents predicted to be sensitive, and #docs

is the total number of documents to be (re-)ranked. The resulting cutoff has the

range [0,10]. We set the maximum cutoff to 10 in this setting, which is equal to the

original fixed cutoff in our previous experiments. But, it too could be learned, or

set to any other fixed value.

6.4.3 Results

As Table 6.8 shows, these cutoff selection policies help in improving TERN

scores when compared against TERN@10. Several observations stand out of this

analysis. First, we note that both proposed policies either improve or equalize the

effectiveness when a fixed cutoff at position 10. This observation does not hold in

the case of a static cutoff policy when applied on the John Snibert test collection and
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Cutoff Policy
OHSUMED

M=0 M=1 M=3
Cutoff = 10 0.792 0.679 0.462
Static cutoff 0.802 0.717 0.481
Dynamic cutoff 0.821 0.736 0.481
Oracle 0.821 0.821 0.811

Cutoff Policy
Holly Palmer

M=0 M=1 M=3
Cutoff = 10 0.6 0.514 0.343
Static cutoff 0.6 0.514 0.343
Dynamic cutoff 0.6 0.514 0.343
Oracle 0.6 0.6 0.6

Cutoff Policy
John Snibert

M=0 M=1 M=3
Cutoff = 10 0.371 0.0 -0.743
Static cutoff 0.371 -0.114 -0.114
Dynamic cutoff 0.371 0.229 0.0
Oracle 0.429 0.429 0.429

Table 6.8: TERN of the best performing approach for each test collection under
different cutoff selection policies. We did not find any significant difference according
to a two-tailed paired sign test (p ă 0.05) over the corresponding TERN@10 in the
same column. The highest value other than the oracle cutoff in each column for
each test collection is marked in bold.

sensitivity penalty M = 1. This exception happens because the static cutoff policy

fails in some search topics (1, 3, 5, and 7) by setting small cutoff at position 1 which

unnecessarily hides relevant documents, as shown in Figure 6.4. Second, we find

these policies can adapt to test collections with different sensitivity distributions.

For example, in the Holly Palmer test collection, which does not have many sensitive

documents, we can see that applying cutoff selection policies does not decrease the

effectiveness of our models. This is because the score reaches the highest value and

saturates after cutoff=5, as seen in Figure 6.3(b), in which case any policy that

selects cutoff ě 5 will achieve the same score.

Third, we note that the dynamic cutoff selection policy seems promising be-
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cause our simple implementation (Equation 6.1) outperforms learned fixed cutoffs

despite no reported significant differences. This observation opens the door towards

implementing more advanced formulae to map from a topic’s estimated difficulty

to a good optimal cutoff in order to better close the gap between current proposed

policies and the oracle policy.

To better visualize how the resulting cutoffs from applying the proposed poli-

cies compared with the optimal cutoffs, Figure 6.4 shows the computed cutoffs per

search topic for the John Snibert test collection. Optimal cutoff is defined as the

largest cutoff where the TERN score is maximized and after which the score drops.

This definition breaks ties because the maximum TERN score can be achieved at

multiple cutoffs. No cutoff that is higher than the optimal cutoff can achieve the

maximum TERN score, but smaller cutoffs can. As can be seen from the Figure 6.4,

optimal cutoffs are closer to query specific cutoffs than to static cutoffs on average

across queries. Hence, the dynamic cutoff policy achieves better effectiveness than

the static policy on these test collections and sensitivity penalties.

6.5 Chapter Summary

In this chapter, we investigate enhancing the results presented in the previous

chapter in different ways. First, results show that some measures model the task

with higher fidelity but are not suitable for training. For example, we find that

TERN measure could be a good fit for evaluating ranked lists, but it is not the best

fit to be used for optimization. Actually, we find that training using nγCS-DCG
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yields to better models. Second, we show that changing the representation of query-

document pairs by the help of transformer-based rankers improves the effectiveness

over when hand-crated features are used.

Then, we show that a simple cluster-based replacement strategy can further

improve nCS-DCG, and that such a strategy can reduce the number of queries with

negative CS-DCG results. We also have been able to show that a careful selection to

the ranking cutoff can limit the risk of showing sensitive results while still displaying

some relevant results.
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Chapter 7: Conclusion

Search among sensitive content is a novel retrieval task that aims at retrieving

relevant content while protecting sensitive content. This problem of deciding what

information can be shown in response to a request arises in many settings, including

protection of attorney-client privilege [47], protection of government interests [71],

and protection of personal privacy [56]. The key to our approach is to put the

cart before the horse, first knowing what content the users actually wish to see and

then making sensitivity decisions about that content. The work presented in this

dissertation advances the state of the art in the design and evaluation of information

retrieval systems by structuring and instantiating novel evaluation measures that

will drive the creation of systems that can effectively search among secrets. This

dissertation provides a proof of concept for this general idea (Contribution S1) by

studying some of its key components. Our completed work represents initial steps

towards building effective search and protection engines.

In Chapter 3, we have created two test collections based on the Avocado email

research collection (Contribution T1). Additionally, we repurposed the OHSUMED

test collection by using two MeSH labels to represent the sensitive content (Con-

tribution T2). These test collections support experimentation with a search and
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protection engine, and we have illustrated the use of these test collections both for

training a sensitivity classifier and for building search and protection engines.

In Chapter 4, we have developed a set of potentially desirable properties for

the task of search among sensitive content (Contribution E1). Additionally, we

have shown how some standard evaluation measures can be extended to incorporate

sensitivity in addition to relevance. We have proposed four measures: 1) TERN,

2) SENS, 3) CS-DCG (and its normalized form nCS-DCG), and 4) γCS-DCG (and

its normalized form nγCS-DCG). These measures can be used for evaluating the

effectiveness of search and protection engines (Contributions E2, E3, and E4),

but they differ in how to compute the gains for showing relevant results and costs

for showing sensitive results. We analyzed these measures in terms whether they

satisfy each of several important properties (Contribution E5). Our analysis has

shown that the TERN and SENS measures have advantages for evaluating ranked

lists. This is because these measures contain a reference point around which it is

easy to interpret the relevance and sensitivity contributions. However, the TERN

and SENS measures exhibit quantization noise, which is potentially problematic

when they are used for training ranking models. On the other hand, we found that

nCS-DCG did not correlate well with the number of queries that have at least one

sensitive result, as shown in Section 6.3. However, nCS-DCG or nγCS-DCG can be

used for training ranking models, as they correlate positively with inserting relevant

results and hiding sensitive results.

After describing test collections and evaluation measures, we studied how to

construct a ranked retrieval system that knows what to find and what not to find. In
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Chapter 5, we have shown we can construct search and protection engines by having

three main components: 1) a ranking model, which could be as simple as BM25 or

more advanced such as an LtR model, 2) a sensitivity classifier, and 3) a sensitivity

filter. Then, based on these components, four broad classes of approaches have been

tried (Contribution S1). The simplest approach is prefiltering: decide what can not

be searched, and then simply do not index that content. When that approach

excludes too much, as it often does, an alternative is postfiltering: first perform

the search, and then run some classification process on the results of that search

so that sensitive content can be withheld. This approach is common, for example,

when searching for evidence to exchange among the parties to a lawsuit [91], and

when seeking to foster transparent government using processes such as Freedom

of Information Act requests in the United States [8]. Another alternative would be

training ranking models using demoted relevance labels for truly sensitive documents

so that models output low relevance scores for sensitive documents at test time. As a

result, sensitive documents do not appear among the top results. Finally, we propose

integration of search and protection by developing search engines that balance the

risk of showing sensitive content with the benefit of showing relevant content. This

can be achieved by leveraging the flexibility of listwise LtR models in optimizing

towards an evaluation measure (Contribution S2).

Then, we went on to show that at some levels of classifier accuracy that might

be seen in practice (Contribution S4), training a learning to rank model could be

better than the more straightforward approach of simply filtering out sensitive doc-

uments (either before or after retrieval) (Contribution S3). From the experiments,
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we noticed substanial benefits from using the Coordinate Ascent listwise LtR algo-

rithm. Although it is slower than AdaRank during training, it can be parallelized by

putting random restarts in separate threads (although the library we used did not

have this optimization feature). Furthermore, we have shown that improvements in

classifier effectiveness, as measured by intrinsic measures such as F1 and F2 are pre-

dictive of better results when used as a part of an integrated search and protection

engine [72] (Contribution S8).

The focus of Chapter 6 was to refine the results of the baselines and the joint

approach. We have proposed four ways of improving the quality of results with

respect to relevance and sensitivity. First, we have shown that it is often better

to have the optimization measure be different from the evaluation measure. For

example, we have shown that nCS-DCG is a better choice than TERN for optimiza-

tion, as it correlates positively with actions that insert relevant documents and hide

sensitive documents. Second, we have shown that transformer-based features are

better at representing query-document pairs than relying on hand-crafted features,

which might be challenging to extract. Our results have shown improvements in the

SENS score when transformer-based features were used (Contribution S5).

Third, we have been able to show that a simple cluster-based replacement

strategy can further improve an evaluation measure score by reducing the number of

queries showing at least one sensitive result (Contribution S6). Fourth, we have been

able to show that a careful selection of the ranking cutoff can limit the risk of showing

sensitive results while still displaying some relevant results (Contribution S7).

138



7.1 Limitations

A number of important limitations should be kept in mind when interpreting

the results reported in this dissertation. We note, in particular:

1. While using the OHSUMED test collection, we limited our choice to two MeSH

labels: C12 and C13, to represent the sensitive content. The prevalence of

documents marked with at least one of these labels is 8.4% among the full set

of OHSUMED documents, and 12.2% among the documents that have been

judged for relevance. Perhaps different choices to other MeSH labels could be

made to test the efficacy of our proposed approaches in different settings.

2. For our email experiments, we have trained on sensitivity labels that are avail-

able only for relevant documents, but active learning might be used to extend

the set of labeled documents in ways that could further improve classification

accuracy.

3. Throughout our experiments, we assumed sensitivity judgments are binary.

We might model multiple degrees of sensitivity that might have nonlinear cost

functions.

4. Throughout our experiments, we assumed sensitivity judgments are correct.

We might model some bounds of errors in these judgments, and then we might

develop approaches that take labeling error into consideration.

5. We tested all our approaches using three test collections. More test collections

139



are needed to separate what works well in general from what works well on

these specific test collections. Nonetheless, by moving from no collections to

three, we have gained insights to support a robust evaluation infrastructure

for the critical task of providing privacy-sensitive access to important text

collections.

6. We adopt a simple model for sensitivity by assuming that sensitivity is deter-

mined by the document only. It does not depend on what the question is, who

is asking, or the purpose of the use of the information [82].

7. Search topics for the avocado test collections were made by students. This

could lead to an imperfect sample of information needs where searchers might

have.

8. We did not evaluate our Avocado test collections. One way to do so is to check

the stability of systems ranking when some judgments are removed from the

test collection.

9. Automatic search systems that participated in creating pools for the search

topics of the Avocado test collections were developed by one person (the author

of this dissertation). Systems developed by different people may have been

more diverse to retrieve as many relevant documents as possible.

10. During evaluation, we limited our choice to 3 different penalties for TERN and

SENS measures (M = 0, 1, and 3). For nCS-DCG, we used only one penalty

Cs = 12.
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11. We proposed only one family of single-valued measures in which the user’s

browsing model is position-based [30]. In this model, the effect of retrieving

a document is parameterized by the document’s rank. We could introduce

a second family of single-valued measures based on cascade models [23]. By

following the cascade model, the user examines a ranked result list from top to

bottom. At each rank, the user has a probability of stopping (being satisfied

or disturbed) based on the relevance or sensitivity of the current document.

12. In Section 4.6, none of our proposed measures has satisfied all desired proper-

ties. So additional evaluation measures are needed to be developed that better

satisfy these properties.

13. As seen in Section 6.4.2, there are hard queries that contain many sensitive

results, while other queries are easy to answer. From this fact, we might

conclude that an evaluation measure in which the hard queries receive more

emphasis (e.g., a geometric mean) might yield different results [99].

14. Except for Section 5.5, we used Logistic Regression (LR) and Support Vector

Machines (SVM) for sensitivity classification which are good in general for

text classification. We could try other classification models, e.g. tree-based or

neural models.

15. In our experiments, as mentioned in Section 5.1, we fine-tuned the hyper-

parameters of our sensitivity classifiers optimizing towards F1. We could op-

timize these classifiers for F2 or even F4 to give more weight to recall over
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precision when predicting sensitivity.

16. In the OHSUMED test collection, we have trained a classifier for the categories

we use as surrogates for sensitivity by using very large amounts of training

examples; we could also experiment with classifiers that are built using more

limited training data, as would likely be the case in some practical applications

of this technology.

17. In Section 5.5, our classifiers used only word and word sequence features, but in

applications such as email or social media classification additional features such

as relationship graphs and temporal patterns might help to further improve

classification accuracy.

18. In Section 6.4.2, we implemented a simple formula to estimate the query dif-

ficulty in Equation 6.1. The query difficulty is estimated by computing the

ratio of the documents that are predicted to be sensitive. That computation

lacks other signals that could be beneficial for estimating query difficulty (e.g.,

query terms and the order of the results when the query is run). Furthermore,

the problem can be cast to a regression problem which aims to predict the

best cutoff given a query and a set of documents to rank, and training sam-

ples could be extracted from a held-out set of search queries and their optimal

cutoffs. Despite the simplicity of our current method, using dynamic cutoffs

shows promising results when compared with static learned cutoffs or fixed

cutoffs (@10). Building better estimators for query difficulty could lead to

cutoffs that are even closer to the oracle cutoffs.
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7.2 Future Work

In this section, we describe the next steps that can be done to the problem we

target.

7.2.1 Training Using Query-Specific Cutoffs

Throughout our experiments, we build listwise LtR models optimizing towards

an optimization measure, e.g. TERN, at a fixed cutoff @10. The measure used for

optimization serves as the objective function that drives the learning algorithm to

build effective ranking models that balance between relevance and sensitivity. In

search among sensitive content, we can see that the optimization algorithm learns to

perform two actions to maximize the optimization measure at cutoff @k: 1) inserting

relevant documents among the top k ranks, and 2) hiding sensitive documents from

the top k ranks.

During our experiments, we noticed that there are some queries that are hard

to answer. This is because the query had many sensitive documents. As a result,

most of the ranking models failed in hiding all sensitive documents from the top

ranks that are shown to the searcher. If these hard queries are used for training,

it might be hard for the learning algorithm to build an effective ranking model, as

the optimization measure might not improve where there are still sensitive results

among the top k ranks. For example, if a query has more than one sensitive result,

successfully hiding one sensitive document will not improve the TERN@k score

as it will still be -M. To mitigate this issue, we propose to reduce the cutoff for
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these queries, and hence the optimization problem becomes easier for the learning

algorithm.

Inspired by the idea of query-specific cutoffs, presented in Section 6.4.2, we

would like to introduce query-specific cutoffs during the training, so that the ranking

model can be optimized towards these cutoffs instead of a fixed cutoff (e.g., 10 as

we presently do). This direction has a secondary objective which is mitigating the

drawbacks of both SENS and TERN measures in which they take discrete values,

and hence they are not suitable to be used for optimization (as shown in Section 4.6).

For example, when a small cutoff is applied for a hard query during training, there

is smaller chance that there are many sensitive results initially. As a result, during

optimization, it is easier for the learning model to see improvements in the TERN

and SENS scores (e.g., TERN does not stick being negative and becomes positive).

However, it is not clear the effect of changing the search cutoff during training

when nCS-DCG, or nγCS-DCG, is used for optimization. This is because changing

cutoffs affects both the numerator (discounted gains and costs of documents in the

top ranks) and denominator (ideal and worst ranking scores) for both nCS-DCG

and nγCS-DCG. So experiments are needed to empirically verify the benefits of this

direction across different test collections and different measures.

7.2.2 Directly Optimizing Towards Our Measures

How to directly optimize ranking measures is an interesting but challenging

problem. This problem arises because ranking measures depend on ranks that are
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usually computed by sorting documents by their scores. As a result, ranking mea-

sures are either flat or discontinuous everywhere; they are not differentiable with

respect to the score outputted by the ranking function. There are two categories

of solutions to tackle this problem. First, iterative training by using ranking mea-

sures is used to reweight query-document pairs. For example, AdaRank [124] applies

boosting [107] to the ranking problem, and uses the value of the ranking measure

of each query to compute a weight for it in the next training iteration. In our

work, we adopt this approach by running the AdaRank [124] and Coordinate As-

cent [75] ranking algorithms, which do not require the optimization measure to be

differentiable.

The second approach is to replace the optimization measure with a differ-

entiable surrogate in terms of the ranking parameters. Hence, gradient descent

methods can be utilized to optimize towards the approximated surrogate measures.

ApproxNDCG [96] is one example of approximating nDCG where the ranks are

approximated by the scores outputted from the ranking function. The intuition

behind this is that a document’s rank is determined by the number of documents

whose scores are higher than its score. Hence, ranks can be approximated by the

scores of the ranking output. Because nDCG is a utility, a loss function can be

defined as negative ApproxNDCG, and the loss can be minimized using gradient

descent [13]. We would like to apply the same approximation framework on our

measures, especially nCS-DCG and nγCS-DCG, as they are direct extensions to the

standard nDCG that show better effectiveness than TERN and SENS when used

during training.
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Ultimately, we would like to build neural models that are optimized towards

the resulting surrogate measures. Currently, we used monoBERT for inference only,

without changing BERT parameters, and then run listwise LtR algorithms on top

of the monoBERT’s [CLS] token embeddings. We are interested in studying the

performance if we further fine-tune the BERT parameters based on a cost function

that is defined on a differentiable surrogate measure. TFR-BERT [53] could be an

option to try, as it requires that the optimization measure to be differentiable [96,

119].

7.2.3 Archivist in the Loop

In Chapter 5, we proposed different approaches that hide sensitive content

from being shown to the searcher. But we found that such fully automatic systems

may suffer from mistakes, and thus they should not be working alone in answering

queries in at least some applications. However, since people are far better than

machines at drawing inferences from running text. We therefore propose an active

learning strategy where an archivist intervenes to manually review content which

the sensitivity classifier is most uncertain about.

Previously, we classify documents as sensitive (hidden from user) or non-

sensitive (fine to show). We propose to extend it to ternary states by adding another

state when the sensitivity classifier is uncertain about a document. In this case, the

specified document needs to be reviewed by an archivist. Assuming the archivist

is perfect in deciding the relevance and sensitivity of a document. If the document
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is relevant and non-sensitive, the archivist sends it to the searcher as an additional

result. In any case, the archivist’s feedback will enable the sensitivity classifier

to adapt to the sensitivities within the collection. We therefore plan to adopt an

archivist-in-the-loop process in which on-demand review is focused on documents in

which the searcher is interested, and the classifier is uncertain about.

As depicted in Figure 7.1, the search process begins when the searcher submits

a query. Then the search engine, with help of the sensitivity classifier, produces

a ranked list of documents that is split on two sublists: 1) searcher’s list, and 2)

archivist’s list. The former represents a ranked list of documents which are predicted

as relevant and nonsensitive, and can be shown to the searcher immediately. The

latter sublist is a ranked list of documents which the sensitivity classifier is most

uncertain about. Then the archivist has to review all assigned documents. The

archivist then sends any relevant and non-sensitive documents back to the searcher,

and all feedback is sent back to the search engine to retrain it to the sensitives found

in the reviewed documents.

To measure the goodness of the proposed system, we propose a new evaluation

measure with the following goals.

• As in normal search engines, we need to maximize the number of relevant

documents that can be shown directly to the user.

• We need to minimize the amount of review done by the archivist, and hence

we need to reduce the number of documents to be reviewed.

• We need to minimize the number of mistakes, e.g. showing sensitive documents
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Figure 7.1: Workflow for search and protection engines with an archivist in the loop.

to the user.

For example, we might define the following measure.

O-CS-DCG@k “
ks
ÿ

i“1

pgi ˚ di ´ ci ˚ γ
siq `

ka
ÿ

i“1

pg1i ˚ d
1
i ´ eq (7.1)

where ks and ka represent the number of documents processed by an S&P

engine and archivist, respectively, and ks ` ka “ k. e is the archivist’s effort in

reviewing a document. In this measure, we set different gains (g1) and discounts

(d1) for the list processed by the archivist and the searcher. It can be seen that

O-CS-DCG is composed of two terms: 1) the first term represents the original

γCS-DCG, while 2) the second term represents the extra gain when the archivist

sends additional relevant documents.
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7.3 Implications

The range of applications to which effective and well-characterized techniques

for search among sensitive content could be applied is substantial. Examples in-

clude: 1) archival access to email donated by scholars and 2) responsiveness and

privilege review in e-discovery. These two settings are of substantial current inter-

est, and clear deployment pathways exist for the techniques that we have developed.

Applications to government transparency are also evident. Our research proposes

to make the sensitivity determinations fully automatically, but the techniques that

we have developed would also support the first stage of a process in which very

highly-sensitive content (e.g., classified materials that must be reviewed for declas-

sification) could be sent for manual review only if current users actually wished to

see it, as described in Section 7.2.3. Such techniques could facilitate serving Free-

dom of Information Act requests, as well as review for declassification and public

release of the growing backlog of documents requiring systematic review (e.g., after

25 years). Additionally, in the United States, both national [41] and state [92] inter-

ests have called for improved ways of prioritizing the declassification review task in

order to intelligently manage the huge wave of documents requiring review. Among

other urgent needs for the technology that we propose to develop, the “right to be

forgotten” that has been recognized by the European Court of Justice [98] imposes

requirements on search engine services to prevent serving content deemed sensitive

by individuals. Such requests are already at a staggering volume, and still growing.

For example, in the 18 months between May 2014 and November 2015, more than
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340,000 people requested that more than 1.2 million URLs be removed from the

index of Google search services that are widely used in Europe, and 42% of these

requests were granted.

It may be, however, that the most important applications for search among

sensitive content, will be the ones that emerge after the capability is in hand. At

present, parents do not want their children to search their email, and children do

not want their parents to search their chat logs, because no means exists to assure

that the content there that should be private will remain so. Privacy concerns

evoked when Google Glass, or similar devices still in the lab, become mainstream

are not fundamentally rooted in what might be recorded, but rather in how those

recordings might be used. These concerns will remain salient for at least as long as

we deny ourselves the ability to search among sensitive content in ways that balance

the interests of both the content creators and those who wish to find and use that

content.
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[3] Enrique Amigó, Julio Gonzalo, and Felisa Verdejo. A general evaluation mea-
sure for document organization tasks. In Proceedings of the 36th international
ACM SIGIR conference on Research and development in information retrieval,
pages 643–652, 2013.
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