
ABSTRACT

Title of Dissertation: ALGORITHMS FOR MARKETS:
MATCHING AND PRICING

Mahsa Derakhshan
Doctor of Philosophy, 2021

Dissertation Directed by: Professor MohammadTaghi Hajiaghayi
Department of Computer Science

In their most basic form markets consist of a collection of resources (goods or

services) and a set of agents interested in obtaining them. This thesis is a stepping stone

toward answering the most central question in the Econ/CS literature surrounding

markets: How should the resources be allocated to the interested parties? The first

contribution of this thesis is designing pricing algorithms for modern monetary markets

(such as advertising markets) in which resources are sold via auctions. The second

contribution is designing matching algorithms for markets in which money often plays

little to no role (i.e., matching markets).

Auctions have become the standard method of allocating resources in monetary

markets, and when it comes to multi-unit auctions Vickrey–Clarke–Groves (VCG) with

reserve prices is one of the most well-known and widely used auctions. A reserve price

is a minimum price with which the auctioneer is willing to sell the item. In this thesis,

we consider optimizing personalized reserve prices which are crucial for obtaining a high

revenue. To that end, we take a data-driven approach where given the buyers’ bids in

a set of auctions, the goal is to find a single vector of reserve prices (one for each buyer)

that maximizes the total revenue across all these auctions. This problem is shown to

be NP-hard, and the best-known algorithm for that achieves a 1
2

fraction of the optimal

revenue. We first present an LP-based algorithm with a 0.68 approximation factor for

single-item environments. We then show that this approach can be generalized to get

a 0.63-approximation for general multi-unit environments. To achieve these results we

develop novel LP-rounding procedures which may be of independent interest.

Matching markets have long held a central place in the mechanism design litera-

ture. Examples include kidney exchange, labor markets, and dating platforms. When

it comes to designing algorithms for these markets, the presence of uncertainty is a

common challenge. This uncertainty is often due to the stochastic nature of the data

or restrictions that result in limited access to information. In this thesis, we study the

stochastic matching problem in which the goal is to find a large matching of a graph

whose edges are uncertain but can be accessed via queries. Particularly, we only know

the existence probability of each edge but to verify their existence, we need to perform

costly queries. Since these queries are costly, our goal is to find a large matching with

only a few (a constant number of) queries. For instance, in labor markets, the existence

of an edge between a freelancer and an employer represents their compatibility to work

with one another, and a query translates to an interview between them which is often

a time-consuming process. While this problem has been studied extensively, before

our work, the best-known approximation ratio for unweighted graphs was almost 2
3
,

and slightly better than 1
2

for weighted graphs. In this thesis, we present algorithms

that find almost optimal matchings despite the uncertainty in the graph (weighted and

unweighted) by conducting only a constant number of queries per vertex.

ALGORITHMS FOR MARKETS:
MATCHING AND PRICING

by

Mahsa Derakhshan

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:
Professor MohammadTaghi Hajiaghayi, Chair/Advisor
Professor Lawrence M. Ausubel
Professor Avrim Blum
Professor David Mount
Professor Dana S. Nau
Professor Christos Papadimitriou
Professor David Pennock

© Copyright by
Mahsa Derakhshan

2021

Dedication

To my parents.

ii

Acknowledgments

To start, I would like to thank my advisor MohammadTaghi Hajiaghayi. This

thesis could not happen without his dedication, advice, and support. I was very fortu-

nate to have such an understanding, supportive and wonderful advisor for my Ph.D.

He helped me to grow not only as a researcher but also as a person. I cannot thank

him enough.

Thank you as well to everyone else who has mentored me through this jour-

ney: Avrim Blum, Negin Golrezaei, Vahab Mirrokni, Christos Papadimitriou, David

Pennock, and Alex Slivkins. Also, a special thanks to my dissertation committee for

making the time and providing helpful suggestions: Lawrence Ausubel, Avrim Blum,

David Mount, Dana S. Nau, Christos Papadimitriou, and David Pennock.

I would also like to thank my collaborators and coauthors for all the things I have

learned from them, the brainstorming in meetings, and their support: Mohammad

Hossein Bateni, Soheil Behnezhad, Avrim Blum, Sina Dehghani, Hossein Esfandiari,

Alireza Farhadi, Negin Golrezaei, Richard Karp, Raimondas Kiveris, Marina Knittel,

Silvio Lattanzi, Mohammad Mahdian, Vahideh Manshadi, Vahab Mirrokni, Renato

Paes Leme, Christos Papadimitriou, David Pennock, Ronald L. Rivest, Hamed Saleh,

Saeed Seddighin, Alex Slivkins, Philip B. Stark, Cliff Stein, Madhu Sudan, Elif Tan,

and Hadi Yami.

iii

Thanks as well to my friends for making the complications of the experience

of living abroad and the hardships of a Ph.D. much easier: Saba Ahmadi, Nazanin

Alipourfard, Alireza Farhadi, Amin Ghiasi, Maryam Negahbani, Kiana Roshanzamir,

Ali Shafahi, and Hadi Yami. I could not do this without their emotional support. I

would like to thank them all for the many great memories.

I cannot express my gratitude towards my family in words. I want to thank my

parents for their dedication to helping me grow and follow my dreams. I could not be

where I am without their sacrifices. I am eternally grateful for their unconditional love

and support. I also want to thank my sister and brother for their emotional support

and encouragement.

Last but not least, I want to thank the person who has been my best friend as

far as I remember, my husband (and high school sweetheart) Soheil Behnezhad. He

also happens to be the person I have the most academic collaborations with (half of

this thesis is the result of such collaborations). His support and unconditional love

have helped me to be the person and the researcher that I am today. This thesis would

certainly have not been possible without him by my side.

iv

Table of Contents

Dedication ii

Acknowledgements iii

Table of Contents v

Chapter 1: Introduction 1
1.1 Auctions . 1
1.2 Matchings . 4

Chapter 2: Personalized Reserve Prices in Second Price Auctions 7
2.1 Results and Techniques . 8
2.2 Linear Program . 9
2.3 Profile-based LP-rounding (Pro-LPR) Algorithm 13

2.3.1 Bounding the Constant in the Second Condition 18
2.3.2 Proof of Lemma 2.3.3 . 22
2.3.3 Approximation Factor . 27

2.4 Tightness of the Analysis . 32
2.5 Integrality Gap . 35

Chapter 3: Personalized Reserve Prices in VCG Auctions 38
3.1 Results and Techniques . 39
3.2 The Algorithm . 42

3.2.1 An Alternative Solution Space 43
3.2.2 The Linear Program . 46
3.2.3 The LP-Rounding Algorithm 49

3.3 Approximation Factor . 50
3.4 Proof of Lemma 3.3.3 . 55

3.4.1 lower bounds for E[Pτ] and E[Qτ] 58
3.4.2 Revenue of the discounted vector 62

3.5 Upper Bound for the “Simple Rounding” Approach 74
3.6 Omitted Proofs of Section 3.4.1 . 78
3.7 Proof of Lemma 3.2.3 . 94
3.8 Useful Facts about Bernoulli Random Variables 98

Chapter 4: Stochastic Matching 108
4.1 Technical Overview . 113

v

4.2 Preliminaries . 116
4.3 Basic Definitions and The Algorithm 118

4.3.1 A Crucial/Non-crucial Decomposition 119
4.3.2 Setting the Thresholds τ− and τ+ 120
4.3.3 The Vertex-Independent Matching Lemma 122

4.4 The Analysis via the Vertex-Independent Matching Lemma 123
4.4.1 Construction of an Expected Fractional Matching x on Q 124
4.4.2 Validity of x . 126
4.4.3 The Expected Size of x . 130
4.4.4 From the Expected Fractional Matching to an Actual Fractional

Matching . 136
4.5 Proof of the Vertex-Independent Matching Lemma 143

4.5.1 Overview of the Algorithm . 144
4.5.2 The Formal Algorithm . 147
4.5.3 Lemma 4.3.8 Property 1: The Matching’s Size 149
4.5.4 Lemma 4.3.8 Property 2: Matching Probabilities 161
4.5.5 Lemma 4.3.8 Property 4: Matching Independence 164

4.6 Concentration of the Maximum Realized Matching’s Size 169
4.7 On Generality of Assumption 4.3.1 . 171
4.8 Approximate MIS . 176
4.9 Deferred Proofs . 177

Chapter 5: Stochastic Weighted Matching 183
5.1 Technical Overview and the Challenge with Weighted Graphs 186
5.2 Basic Definitions and The Algorithm 189

5.2.1 General Notation . 189
5.2.2 Basic Stochastic Matching Notation/Definitions 189
5.2.3 The Algorithm . 191

5.3 The Analysis . 194
5.3.1 Toward Constructing x: A Partitioning of E 196
5.3.2 Construction of the Fractional Matching x on P 197
5.3.3 Construction of the Fractional Matching x on N 200
5.3.4 Putting Everything Together . 222

5.4 The Weighted Vertex-Independent Matching Lemma 224
5.4.1 Overview of the Algorithm . 226
5.4.2 Algorithm B(G) . 228
5.4.3 Lemma 5.3.4 Property 1: Matching Probabilities 232
5.4.4 Lemma 5.3.4 Property 2: Expected Weight of the Matching . . 234
5.4.5 Lemma 5.3.4 Property 3: Independence 253

Bibliography 258

vi

Chapter 1: Introduction

In their most basic form markets consist of a collection of resources (goods or

services) and a set of agents interested in obtaining them. This thesis is a stepping stone

toward answering the most central question in the Econ/CS literature surrounding

markets: How should the resources be allocated to the interested parties? The first

contribution of this thesis is designing pricing algorithms for modern monetary markets

(such as advertising markets) in which resources are sold via auctions. The second

contribution is designing matching algorithms for markets in which money often plays

little to no role (i.e., matching markets).

1.1 Auctions

Auctions have become the standard method of allocating resources in monetary

markets (e.g., advertising markets). In this thesis, we focus on multi-unit environments

in which a set of identical items are sold to a set of unit-demand buyers. First, buyers

submit their bids (the amount they are willing to pay for the item), and then the auc-

tioneer determines the allocation of the items and the payments. In such environments,

one of the most well-known auctions is the Vickrey-Clarke-Groves (VCG) auction. In

the case of a single-item, this auction translates into the second price auction in which

1

the item is allocated to the buyer which the highest bid and the payment equals to the

second highest bid.

The VCG mechanism, while “lovely” in theory [7], is often criticized for not

having a good performance guarantee when it comes to revenue maximization. Hartline

and Roughgarden [31] approach this shortcoming by optimizing reserve prices, the

minimum prices that the seller is willing to sell each item to each buyer. According

to a number of theoretical and empirical studies [14, 24, 31, 37], personalized reserve

prices (i.e., one custom reserve price for each buyer) can significantly improve revenue.

In particular, personalized reserves can lead to approximately optimal revenue in quite

general settings [31]. This has led to several studies computing an optimal vector

of reserve prices [14, 21, 33, 38]. The study of VCG-like mechanisms for revenue

optimization is closely aligned with a broader agenda of simple vs. optimal mechanisms

[1, 14, 15, 20, 23, 29, 33], and in fact has been one of the starting points for this

agenda [31].

In this thesis, we focus on the eager version of VCG auctions. 1 Consider a multi-

unit auction with unit-demand buyers: that is, k identical units are available, and each

buyer is interested in obtaining only one unit. The auctioneer announces a reserve price

rb for each buyer b and then buyers place their bids. We run a VCG auction among

the buyers that clear their reserve price (i.e., their bid equals or exceeds their reserve

price), and the winners pay the maximum of their own reserve price and their VCG

payment. That is, let S be the set of buyers who clear their reserve prices. The first

1An alternative, called lazy VCG [23], first forms a set of potential winners using a VCG auction,
then removes buyers whose bids don’t clear their reserve. The eager version is often superior both in
theory and in practice [33].

2

k buyers in S with the highest bids win. Each winning buyer pays the maximum of

his/her reserve price and the (k + 1)-th highest bid.

We adopt a standard data-driven model for computing reserve prices [33, 38]:

given a history of buyers’ bids over multiple runs of the auction, we compute a reserve

price for each buyer to maximize the total revenue attained over the same dataset. An

important property of this model is that it does not impose essentially any restrictions

on the bid distributions. In particular, buyers’ private values can be correlated, in

contrast with other models [14, 20, 23, 31] that assume independence. Moreover, any

approximation for the data-driven model can also be used in a black-box reduction

of Morgenstern and Roughgarden [36] to approximate the Bayesian Optimization and

Batch Learning versions of the problem with (almost) the same approximation-factor.2

In the data driven model, this problem was first studied by Roughgarden and

Wang [38], who showed that it is APX-hard3 and gave a 1/2 approximate greedy so-

lution. Furthermore, they prove that their analysis is tight. I.e., their algorithm does

not get better than 1/2 approximation for some instances of the problem. This then

raises the natural question that whether there is an approximation algorithm with ap-

proximation ratio better than 1/2 for a single-item case or more generally? In this

thesis, we answer this question in the affirmative and in fact achieve a significantly

better approximation ratio of 0.63 for any k (not necessarily constant) [22], and a ap-

proximation ratio of 0.68 for the case of a single item [21] (the second price auctions).

2In Bayesian Optimization, the buyers’ private value distributions are independent and known
to the algorithm. In Batch Learning, these distributions are unknown, and we only have access to
samples drawn from them.

3NP-hard to approximate better a fixed constant factor.

3

Main Result 1. Consider the data-driven model for eager VCG auctions. There

exists a polynomial-time algorithm for computing personalized reserve prices which

achieves a 0.63-approximation in expected revenue. Furthermore, this approximation

ratio can be improved to 0.68 for the special case of a single item (i.e., the second

price auction).

In Chapter 2, we discuss our result for the special case of the second price auctions,

and in Chapter 3, we discuss our result for the general case.

1.2 Matchings

Matching markets have long held a central place in the mechanism design liter-

ature. Examples include labor markets, dating apps, the school choice program, and

most importantly, the life-saving kidney exchange program. Kidney exchange provides

a market for patients with end-stage renal failure to swap willing but incompatible

donors. Basic information about donors and patients (e.g., blood types) can be used

as an early indicator of compatibility. However, they are not conclusive, and extra

medical laboratory tests are needed to estimate the odds of a successful transplant

more accurately. These medical tests are both time-consuming and expensive; thus,

each patient can afford only a limited number of them. As such, a fundamental prob-

lem here is to design an algorithm for determining which pairs of patient donors should

be tested in order to find a large matching (maximize the number of transplants) given

that only a constant number of tests can be performed for any patient.

The problem above was first formalized in the pioneering work of Blum et al. [17],

4

as the stochastic matching problem, in which the goal is to find a large matching of

a graph whose edges are uncertain but can be accessed via queries. Particularly, we

only know the existence probability of each edge but to verify their existence, we need

to perform costly queries. For instance, in kidney exchange, the existence of an edge

between two pairs of donor patients represents their compatibility, and queries are

equivalent to the expensive medical tests needed to determine these compatibilities.

For this problem, Blum et al. give an algorithm that finds a 1/2-approximate match-

ing and leave it as an open problem to decide the best achievable approximation ratio.

In a long line of work [4, 5, 6, 9, 11, 12, 17, 41], the approximation was improved to

up to 2/3 for unweighted graphs [4] and slightly above 0.5 for weighted graphs. The

best achievable approximation ratio, however, remained a mystery until our work [10],

where we prove that the problem admits an (1 − ε)-approximation for any desirably

small constant ε > 0. Pleasingly, while having an intricate analysis, the construction of

our subgraph is through a simple sampling algorithm. We then, generalize our result

to the weighted version of the problem [8], and prove that augmenting the same algo-

rithm with a greedy one that favors picking high-weight edges surprisingly guarantees a

(1− ε)-approximation of the maximum weight matching using only a constant number

of queries per vertex.

Main Result 2. For any (weighted) graph G, any p ∈ (0, 1], and any ε > 0, there is

a subgraph Q of G with maximum degree Oε,p(1) that achieves a (1−ε)-approximation

for the stochastic weighted matching problem.

5

We discuss our results for the unweighted and weighted versions of the problem

in Chapter 4 and Chapter 5 respectively.

6

Chapter 2: Personalized Reserve Prices in Second Price Auctions

In this chapter, we focus on data-driven optimization of personalized reserve

prices in the eager second price auction (i.e., single-unit VCG auction). We have

a single item and n unit-demand buyers participating in a set of eager second price

auctions. Let A and B respectively be the set of auctions and buyers. We are given a

dataset of bids β where for any auction a ∈ A and buyer b ∈ B, βa,b represents bid of

buyer b in auction a. Let rb be the personalized reserve price of buyer b ∈ B. Then,

given the bids {βa,b}b∈B in auction a ∈ A and reserve prices r = {rb}b∈B, the eager

second price (ESP) auction works as follows:

1. First, any buyer b with βa,b < rb is eliminated. Let Sa = {b : βa,b ≥ rb} be the

set of buyers who clear their reserve prices in auction a.

2. When set Sa is nonempty, the item is allocated to buyer b?a = arg maxb∈Sa {βa,b}

who has the highest bid among all the buyers in set Sa and is charged

Reva(r) := max

{
rb?a , max

b∈Sa,b6=b?a
{βa,b}

}
.

Note that Sa and b?a implicitly depend on reserve prices r. Any other buyer b ∈ B,

b 6= b?a is not charged. Further, when set Sa is empty, the item is not allocated

7

and Reva(r) = 0.

Given the dataset of bids β, our goal is to find a vector of personalized reserve

prices that maximize revenue of the auctioneer. Note that the reserve prices are the

same across all the auctions a ∈ A. However, each buyer b is assigned a personalized

reserve price rb. Formally, we would like to solve the following optimization problem:

ESP? = max
r∈Rn

Rev(r) :=
∑
a∈A

Reva(r) . (ESP-OPT)

Note that, without loss of generality, we assume that the optimal reserve price for

buyer b is equal to one of his submitted bids {βa,b}a∈A. Let R = {0,∞}∪{βa,b}a∈A,b∈B.

Then, Problem ESP-OPT can be rewritten as maxr∈Rn
∑

a∈A Reva(r), which leads to a

search space of size |R|n.

2.1 Results and Techniques

The main contribution of this chapter is a randomized algorithm that returns an

0.684-approximation solution for Problem ESP-OPT.

Theorem 1 (Main Theorem). There exists a randomized polynomial time algorithm

that given a data-set {βa,b}a∈A,b∈B, outputs a vector of eager reserve prices whose ex-

pected revenue is a 0.684-approximation of that of the optimal value of Problem ESP-

OPT, denoted by ESP?.

To find an approximate solution, the overall idea is to construct an LP whose

objective function at its optimal solution provides an upper bound for ESP?. The LP

8

that takes advantage of a concise representation of the solution space, has a polynomial

number of variables and constraints. Then, we use a rounding technique to transform

the optimal solution of the LP to a vector of reserve prices. We show that if we

consider the reserve prices obtained from the rounding technique and the vector of

all-zero reserve prices and choose the one with the maximum revenue, we obtain the

desired approximation factor. In Theorem 3, we further show that our analysis of our

approximation factor is tight. That is, we provide an example for which our algorithm

obtains exactly 0.684 fraction of the optimal value of the LP, i.e., the upper bound

on for ESP?. Finally, in Theorem 2, we bound the integrality gap of the LP. This

characterization shows that no algorithm can obtain more than 0.828 fraction of the

LP.

2.2 Linear Program

The main challenge in designing an LP formulation for this problem is to find a

concise representation of the solution space. Instead of considering all possible assign-

ments of reserves to buyers, we will consider only partial assignments in which we only

specify the reserve prices of two buyers. We will call such partial assignment a profile.

Formally, a profile is a tuple p = (b1, b2, r1, r2) ∈ B × B × R × R, which represents

an assignment of reserve r1 to buyer b1 and reserve r2 to buyer b2. If it is the case

that the reserves are below the corresponding bids in an auction a, i.e. r1 ≤ βa,b1 and

r2 ≤ βa,b2 , then no matter how the assignment of the remaining reserves, the revenue

of this partial assignment is at least max{r1, βa,b2} for βa,b1 ≥ βa,b2 . We also note that

9

given any vector of reserve prices r, the revenue that can be obtained from r only

depends on the reserve price of the highest and second highest bidders that clear the

reserve prices.

Next, we formally define the notion of valid profile and show that the Problem

(ESP-OPT) can be relaxed to find the best consistent distribution over valid profiles

in each auction. To define valid profiles, we assume that in each auction a, we have

two auxiliary buyers b0 and b00 who always bid zero. That is, b00, b0 ∈ B, and βa,b0 =

βa,b00 = 0 for any a ∈ A.

Definition 2.2.1 (Valid Profiles). We define the set of valid profiles for auction a as

the set Pa consisting of all tuples (b1, b2, r1, r2) ∈ B× B× R× R satisfies the following

conditions:

1. Bid of buyer b1 is greater than or equal to that of buyer b2; that is, βa,b1 ≥ βa,b2.

2. Buyer b1 clears his reserve; that is, βa,b1 ≥ r1.

3. Buyer b2 clears his reserve; that is, βa,b2 ≥ r2.

For any given profile p ∈ Pa, we define Reva(p) := max(βa,b2 , r1).

We note that any valid profile corresponds to at least one vector of reserve prices.

To see why, observe that we can always obtain p = (b1, b2, r1, r2) by setting rb1 = r1,

rb2 = r2, and rb = ∞ for any b 6= b1, b2. Of course, there may exist other vectors of

reserve prices that lead to the same profile. We note that by adding buyers b0 and b00

to B, we can define valid profiles to represent the cases in which less than two buyers

cleared their reserve prices. We present the cases with one (respectively zero) cleared

10

buyer with valid profile of (b1, b0, r1, 0) (respectively (b0, b00, 0, 0)).

Definition 2.2.2 (Profiles Associated with Reserve Prices). Given a vector of reserve

prices r we say a valid profile p = (b1, b2, r1, r2) is the unique profile associated with

r in an auction a ∈ A if and only if the following condition hold. After applying the

reserve prices r, buyer b1 with reserve r1 and buyer b2 with reserve r2 have the highest

and second highest cleared bids in auction a, respectively.

Given a vector of reserve prices r and an auction a, let p be the profile associated

with r in a. Then, with a slight abuse of notation, we define Reva(r) = Reva(p).

We are now ready to describe our LP. The LP will have two sets of variables:

1. For any auction a ∈ A and any valid profile p ∈ Pa, define a variable sa,p ≥ 0

such that
∑

p∈Pa
sa,p ≤ 1. This variable represents a probability distribution over

valid profiles in auction a. We refer to {sa,p|a ∈ A, p ∈ Pa} as a profile-weight.

2. For any buyer b ∈ B and reserve price r ∈ R, define a variable qb,r ≥ 0 such

that
∑

r∈R qb,r = 1. This variable represents be the probability that buyer b is

assigned a reserve price of r.

We now discuss the LP constraints. We add constraints relating sa,p and qb,r

which will ensure the consistency of probability distributions across all profiles. To

define this set of constraints, for every b ∈ B, a ∈ A, and r ∈ R, we define set

Qb,r,a := {p = (b1, b, r1, r) : p ∈ Pa} ∪ {p = (b, b2, r, r2) : p ∈ Pa} , (2.1)

which corresponds to all valid profiles of auction a that assign reserve r to buyer b. A

11

natural constraint to add is that the total probability assigned to profiles in Qb,r,a is

at most the probability that buyer b is assigned to reserve price r. That is,

∑
p∈Qb,r,a

sa,p ≤ qb,r .

Finally, we can put it all together in the following LP:

max
q,s

∑
a∈A

∑
p∈Pa

sa,p · Reva(p)

s.t.
∑
p∈Pa

sa,p ≤ 1 ∀a : a ∈ A

∑
p∈Qb,r,a

sa,p ≤ qb,r ∀a, b, r : b ∈ B, r ∈ R, a ∈ A

∑
r∈R

qb,r=1 ∀b : b ∈ B

sa,p ≥ 0 ∀a, p : a ∈ A, p ∈ Pa (Profile-LP)

We start by noting that the LP is a relaxation of the Problem (ESP-OPT):

Lemma 2.2.3 (Upper bound on Revenue). The solution of Profile-LP is an upper bound

to ESP?, i.e., the optimal value of Problem ESP-OPT. That is,

ESP? ≤ Profile-LP .

Proof. Given reserve prices r? such that ESP? =
∑

a Reva(r
?), we construct a feasible so-

lution to the LP as follows. For each a ∈ A, we let sa,p = 1 for the profile p corresponding

to r? (according to Definition 2.2.2) and sa,p = 0 for all remaining profiles. Further, we

12

let qb,r?b = 1 and qb,r = 0 for all remaining reserves. It is straightforward to verify that

it is a feasible solution to the Profile-LP and that
∑

a∈A
∑

p∈Pa
sa,p ·Reva(p) = ESP?.

Theorem 2 (Integrality Gap of Profile-LP). There exists a data-set of bids {βa,b}a∈A,b∈B

for which the integrality gap of the LP is at least 0.828. That is,

ESP? ≤ 0.828 · (Profile-LP) .

The proof of Theorem 2 is given in Section 2.5.

2.3 Profile-based LP-rounding (Pro-LPR) Algorithm

In this section, we present an algorithm, called Profile-based LP-rounding (Pro-

LPR), that uses the optimal solution of (Profile-LP), s?, to devise reserve prices. The

algorithm is presented below.

Profile-based LP-rounding (Pro-LPR) Algorithm:

Let s? and q? be the optimal solution of (Profile-LP). Then,

• Rounding procedure: For each buyer b ∈ B, independently sample re-

serve price r ∈ R with probability proportional to q?b,r.

• Let z be the vector of all zero reserves. Output the best of rR and z,

i.e.,

rout = arg max
r∈{z,rR}

Rev(r) .

13

In the Pro-LPR algorithm, we first round the optimal solution of the (Profile-LP) to

construct reserve prices rR. To do so, for each buyer b ∈ B, we independently sample

reserve price r ∈ R with probability q?b,r, where q? (and s?) is the optimal solution of

the (Profile-LP). We then compare revenue under rR with that under the zero reserve

prices, and return the one that obtains higher revenue. The retuned vector of reserve

prices is denoted by rout.

We now proceed to analyze our algorithm. We show that E[Rev(rout)] is at least

a 0.684 fraction of the solution of the Profile-LP and hence at most 0.684 · ESP?, where

the expectation is with respect to the randomness in the Pro-LPR algorithm. As we

show in Lemma 2.3.1, one of the biggest strengths of our LP formulation is that it

allows the analysis to decouple the effect of rounding for each individual auction. In

this lemma, roughly speaking, we present two conditions under which the Pro-LPR

algorithm has a good performance. In these conditions, for each auction a ∈ A and

t ≥ 0, we compare the probability that Reva(r
R) is at least t, i.e., Pr[Reva(r

R) ≥ t],

with
∑
{p:p∈Pa,Rev(p)≥t} s

?
a,p, which is the sum of the optimal weight of (valid) profiles in

auction a that obtains a revenue of at least t. Here, Reva(r
R) is the revenue in auction a

under reserve prices rR. Intuitively, the smaller the gap between Pr[Reva(r
R) ≥ t] and

the aforementioned summation, the better the Pro-LPR algorithm performs. Lemma

2.3.1 makes this statement formal by considering the high revenue case of t ≥ β
(2)
a (first

condition) and the low revenue case of t < β
(2)
a (second condition), where β

(2)
a is the

second highest bid in auction a. Note that when the reserve price for the buyer with

the highest bid in auction a is set too high, revenue of this auction can be indeed less

than the second highest submitted bid β
(2)
a .

14

Lemma 2.3.1 (Two Conditions). Let s? and q? be the optimal solution of (Profile-LP)

and rR be a random reserve price obtained from the rounding procedure. If there exists

a constant c > 0 such that for any t ≥ 0 and any auctions a ∈ A, we have

∑
{p:p∈Pa,Rev(p)≥t}

s?a,p − Pr[Reva(r
R) ≥ t] ≤ 0 for t > β(2)

a (2.2)

∑
{p:p∈Pa,Rev(p)≥t}

s?a,p − Pr[Reva(r
R) ≥ t] ≤ c for t ≤ β(2)

a , (2.3)

then Pro-LPR algorithm is a (1+c)−1-approximation. That is, it obtains at least (1+c)−1

fraction of the optimal value of Problem ESP-OPT. Here, β
(2)
a is the second highest bid

in auction a and Reva(r
R) is the revenue in auction a under reserve prices rR.

Proof. By integrating over t in Equations (2.2) and (3.5) and adding them up, we get

∫ ∞
β
(2)
a

(∑
{p:p∈Pa Rev(p)≥t}

s?a,p − Pr[Reva(r
R) ≥ t]

)
dt

+

∫ β
(2)
a

0

(∑
{p:p∈Pa Rev(p)≥t}

s?a,p − Pr[Reva(r
R) ≥ t]

)
dt ≤ c · β(2)

a .

This is simplified as follows

∑
p∈Pa

s?a,p Reva(p)− E[Reva(r
R)] ≤ c · β(2)

a . (2.4)

Note that by Lemma 2.2.3, the optimal value of Problem ESP-OPT, denoted by ESP?,

15

is upper bounded by Rev(s?). That is,

ESP? ≤ Rev(s?) =
∑
a∈A

∑
p∈Pa

s?a,p Rev(p) . (2.5)

Further, the revenue of Pro-LPR algorithm, i.e., E[Rev(rout)], is lower bounded by

E[Rev(rout)] ≥ max
(∑

a∈A

β(2)
a ,E[Rev(rR)]

)
. (2.6)

To see why this holds note that Pro-LPR algorithm returns the best of reserve price rR

and all zero prices, where the revenue under all zero prices is the sum of the second

highest highest bids
∑

a∈A β
(2)
a . By using Equations (2.4), (2.5), and (2.6), we have

ESP? − E[Rev(rout)] ≤ c
∑
a∈A

β(2)
a

≤ cE[Rev(rout)] . (2.7)

Putting these together, we have

E[Rev(rout)] ≥ 1

1 + c
· ESP? ,

which is the desired result.

In the next lemma, we show that the first condition holds. We then dedicate

the next section to identifying constant c in the second condition. The proof of the

lemma is based on the observations that (i) revenue of any valid profile (b1, b2, r1, r2)

16

is greater than β
(2)
a if buyer b1 = b

(1)
a and his reserve r1 > β

(2)
a , and (ii) revenue of

auction a under reserve prices rR is greater than β
(2)
a if the reserve price of buyer b

(1)
a is

less than or equal to his bid and greater than the second highest bid β
(2)
a . Here, buyer

b
(1)
a is the buyer with the highest bid in auction a.

Lemma 2.3.2 (First Condition Holds). Let s? denote an optimal solution of Profile-LP

and rR be a random reserve price obtained from the rounding procedure in the Pro-LPR

algorithm. For any auction a ∈ A, we have

∑
{p:p∈Pa,Rev(p)≥t}

s?a,p − Pr[Reva(r
R) ≥ t] ≤ 0 for t > β(2)

a . (2.8)

Proof. The first term in the l.h.s. of (2.8) can be written as

∑
{p:p∈Pa,Rev(p)≥t}

s?a,p =
∑

{p:p∈Pa,p=(b
(1)
a ,b2,r,r2), r≥t}

s?a,p ≤
∑
r≥t

q
b
(1)
a ,r

= Pr[Reva(r
R) ≥ t] ,

(2.9)

where the first equation holds because revenue of a profile p ∈ Pa is t > β
(2)
a if and

only if the bidder with the highest bid in auction a, i.e., b
(1)
a , is assigned a reserve

price t > β
(2)
a and the bid of this bidder is greater than t. The second equation

holds because of the second set of constraints of (Profile-LP). The last equation follows

from the construction of reserve prices rR. Note that Equation (2.9) verifies condition

(2.8).

17

2.3.1 Bounding the Constant in the Second Condition

We start by noting that the second condition in Lemma 2.3.1 holds trivially for

c = 1, which recovers the same approximation factor of 1/2 of [38]. For the rest of the

section, we will improve past 1/2 by constructing a non-linear mathematical program

to optimize c and then applying the first order conditions in non-linear programming

to bound the optimal solution. In Lemma 2.3.3, we show that

c = max
θ∈[0,1]

OPT(θ) ,

where for any real number θ ∈ [0, 1], OPT(θ) is defined as follows

OPT(θ) = max
x≥0

eθ−1

∏
i∈[n]

(1− xi) +
∑
i∈[n]

xi
∏

j∈[n],j 6=i

(1− xj)


s.t.

1

2

∑
i∈[n]

xi = θ

xi ≤ θ, ∀i ∈ [n] . (2.10)

Here, n is the number of buyers. Characterizing OPT(θ) is technically involved and

because of that its details is postponed to Section 2.3.3. There, we show that for any

number of buyers n ≥ 2 and any real number θ ∈ [0, 1],

OPT(θ) ≤ 2
(√

2− 1
)
e
√

2−2 ≈ 0.4612.

Then, invoking Lemmas 2.3.1 and 2.3.2, this leads to the approximation factor of

18

1
1+0.4612

≈ 0.6844, which is the desired result.

In the next lemma, we formally state the relationship between OPT(θ) and the

approximation factor of our algorithm.

Lemma 2.3.3 (Second Condition). Let s? denote an optimal solution of Profile-LP

and rR be a random reserve price obtained from the rounding procedure in the Pro-LPR

algorithm. Let

c = max
θ∈[0,1]

OPT(θ) .

Then, for any auction a ∈ A, the following equation holds.

∑
{p:p∈Pa,Rev(p)≥t}

s?a,p − Pr[Reva(r
R) ≥ t] ≤ c for t ≤ β(2)

a .

The formal proof of Lemma 2.3.3 due to being lengthy is deferred to Subsec-

tion 2.3.2, however we provide some intuition here. For each buyer b, we consider two

disjoint subsets of valid profiles (b1, b2, r1, r2) such that (i) revenue of any profile in

these subsets is greater than or equal to t, where t ≤ β
(2)
a , and (ii) either b1 or b2 is

equal to buyer b. The factor 1/2 in the constraint of Problem (2.10) is the artifact

of the definition of the subsets and how the summation
∑
{p:p∈Pa,Rev(p)≥t} s

?
a,p can be

written as a function of the optimal weight of the profiles in these subsets; see Equation

(2.12) in the proof. We then express Pr[Reva(r
R) ≥ t] as the probability of the union

of two events, where the first event happens if there is at least one cleared buyer with

reserve price greater than t, and the second event happens if there are at least two

buyers with cleared bids of at least t. We then write this probability as a function of

19

the profile weights in the subsets by taking advantage of the fact that in our rounding

procedure, reserve prices are independent across buyers. In particular, we show that

this probability is at least one minus the left hand side of the equation in Lemma

2.3.4, stated below. We invoke Lemma 2.3.4 to complete the proof. Observe that the

objective function of Problem (2.10) bears significant resemblance to that of the right

hand of the equation in Lemma 2.3.4.

Lemma 2.3.4. Consider a set B̂ ⊆ B with |B̂| ≥ 2.1 Given fixed x1,b, x2,b with b ∈ B̂

and x1,b + x2,b ≤ 1, the following inequality holds:

∏
b∈B̂

(1− x1,b − x2,b) +
∑
b∈B̂

x2,b

∏
b′ 6=b

(1− x1,b′ − x2,b′) ≤

∏
b∈B̂

(1− x1,b)

∏
b∈B̂

(1− x2,b) +
∑
b∈B̂

x2,b

∏
b′ 6=b

(1− x2,b′)

. (2.11)

Proof. Given a partition of B̂ in two sets B1,B2, define the following function:

Φ(B1,B2) =
∏
b∈B1

(1− x1,b)(1− x2,b)
∏
b∈B2

(1− x1,b − x2,b)+

∑
b∈B1∪B2

x2,b

[∏
b′∈B1,b′ 6=b

(1− x1,b)(1− x2,b)
∏

b′∈B2,b′ 6=b

(1− x1,b − x2,b)

]
.

The main claim in the lemma is that Φ(B, ∅) ≥ Φ(∅,B). We will show that for any

B1,B2 and b̂ ∈ B2, we have

Φ(B1,B2) ≤ Φ(B1 ∪ {b̂},B2 \ {b̂})
1Note that because of the auxiliary buyers, |B| ≥ 2.

20

and the claim will follow by moving the elements from B2 to B1 one by one. To simplify

notation, define

w =
∏
b∈B1

(1− x1,b)(1− x2,b)
∏

b∈B2\{b̂}

(1− x1,b − x2,b) .

Now we can write:

Φ(B1,B2) =w · (1− x1,b̂ − x2,b̂) + w · x2,b̂

+
∑

b∈B2;b 6=b̂

w ·
1− x1,b̂ − x2,b̂

1− x1,b − x2,b
· x2,b +

∑
b∈B1

w ·
1− x1,b̂ − x2,b̂

(1− x1,b)(1− x2,b)
· x2,b,

and

Φ(B1 ∪ {b̂},B2 \ {b̂}) = w · (1− x1,b̂)(1− x2,b̂) + w · x2,b̂

+
∑

b∈B2;b 6=b̂

w ·
(1− x1,b̂)(1− x2,b̂)

1− x1,b − x2,b
· x2,b

+
∑
b∈B1

w ·
(1− x1,b̂)(1− x2,b̂)

(1− x1,b)(1− x2,b)
· x2,b.

Our goal here is to show Φ(B1,B2) ≤ Φ(B1 ∪ {b̂},B2 \ {b̂}). We start with comparing

the first two terms of Φ(B1,B2) and Φ(B1 ∪ {b̂},B2 \ {b̂}):

w · (1− x1,b̂ − x2,b̂) + w · x2,b̂ = w · (1− x1,b̂) ≤ w · (1− x1,b̂ + x1,b̂x2,b̂)

= w · (1− x1,b̂)(1− x2,b̂) + w · x2,b̂ .

21

We can compare the remaining terms one by one using the fact that:

1− x1,b̂ − x2,b̂ ≤ (1− x1,b̂)(1− x2,b̂) .

This concludes that Φ(B1,B2) ≤ Φ(B1 ∪ {b̂},B2 \ {b̂}) as desired.

2.3.2 Proof of Lemma 2.3.3

We start with a few definitions. Consider a certain auction a ∈ A and all of

its valid profiles p ∈ Pa. Fix some threshold t ≤ β
(2)
a and an optimal solution of

(Profile-LP), denoted by s?. Let set Ba,t be the set of buyers whose bid in auction a is

at least t:

Ba,t := {b ∈ B; βa,b ≥ t} .

Note that this set is not empty because t ≤ β
(2)
a . In fact, |Ba,t| ≥ 2, as buyers with

the highest and second-highest bids belong to this set. (Recall that because of the

auxiliary buyers, |B| ≥ 2.) A crucial observation is that the reserve assigned to any

buyer b /∈ Ba,t does not affect the event Reva(r
R) ≥ t since such buyers can be neither

the winner nor the price setter in an auction with revenue of at least t. Consider a

buyer b ∈ Ba,t. Then, define

X ′1,b = {p = (b, b2, r1, r2) : p ∈ Pa, r1 ≥ t},

X ′′1,b = {p = (b1, b, r1, r2) : p ∈ Pa, r1 < t and r2 ≥ t},

22

X2,b = {p = (b1, b2, r1, r2) : p ∈ Pa, b ∈ {b1, b2}, r1, r2 < t and βa,b2 ≥ t},

and set

x1,b =
∑

p∈X ′1,b∪X
′′
1,b

s?a,p and x2,b =
∑
p∈X2,b

s?a,p .

We note that X ′1,b is the set of all valid profiles p = (b, b2, r1, r2) in which reserve of

buyer b is at least t. X ′′1,b is the set of all valid profiles p = (b1, b, r1, r2) in which reserve

of buyer b1 is less than t and reserve of buyer b is greater than or equal to t. Observe

that for all the profiles p in X ′1,b∪X ′′1,b, reserve of buyer b is at least t. This implies that

for all of these profiles, Rev(p) ≥ t. We also note that X2,b is the set of all valid profiles

p = (b1, b2, r1, r2) such that buyer b ∈ {b1, b2} and bid of buyer b2 is at least t. Again,

it is easy to see that for any valid profile p ∈ X2,b, we have Rev(p) ≥ t. Finally, we

point that while any profile p in X2,b and X ′1,b ∪ X ′′1,b has Rev(p) ≥ t, by construction,

X2,b and X ′1,b ∪ X ′′1,b are disjoint. Therefore, we have

∑
{p: p∈Pa, Rev(p)≥t}

s?a,p =
∑
b∈Ba,t

x1,b +
1

2

∑
b∈Ba,t

x2,b , (2.12)

where the coefficient 1
2

accounts for double-counting. Define y1,b as the probability that

the sampled reserve of buyer b, i.e., rRb , is in [t, βa,b] and y2,b as the probability that

the sampled reserve rRb is in [0, t). By the sampling procedure we know that:

y1,b ≥ x1,b and y2,b ≥ x2,b . (2.13)

Observe that Reva(r
R) ≥ t iff at least one of the two following events happen.

23

Event E1: There exists a buyer b ∈ Ba,t with a reserve of at least t whose bid is

cleared.

Event E2: There are at least two buyers b1, b2 ∈ Ba,t with cleared bids of at least

t.

Precisely,

Pr[Reva(r
R) ≥ t] = Pr[E1 or E2] = Pr[E1]+Pr[E2 and Ē1] = Pr[E1]+Pr[Ē1] Pr[E2|Ē1] ,

(2.14)

where

Pr[E1] = 1−
∏

b∈Ba,t

(1− y1,b),

and

Pr[E2|Ē1] = 1−
∏

b∈Ba,t

(1− ỹ2,b)−
∑
b∈Ba,t

ỹ2,b

∏
b′ 6=b

(1− ỹ2,b′) with ỹ2,b =
y2,b

1− y1,b
.

This gives us

Pr[E2 and Ē1] = Pr[Ē1] Pr[E2|Ē1]

= Pr[Ē1]−
∏

b∈Ba,t

(1− y1,b − y2,b)−
∑
b∈Ba,t

y2,b

∏
b′ 6=b

(1− y1,b′ − y2,b′) .

Thus, by Equation (2.14), we get

Pr[E2 or E1] = 1−
∏

b∈Ba,t

(1− y1,b − y2,b)−
∑
b∈Ba,t

y2,b

∏
b′ 6=b

(1− y1,b′ − y2,b′) .

24

Now observe that the expression above, i.e., Pr[E2 or E1], is increasing in both y1,b and

y2,b, b ∈ Ba,t. To see why Pr[E2 or E1] is increasing in y2,b, note that

∂(Pr[E2 or E1])

∂y2,b
=

∑
b′∈Ba,t,b′ 6=b

y2,b′

∏
b′′ 6=b,b′

(1− y1,b′′ − y2,b′′) ≥ 0 .

This and Equation (2.13) imply that:

Pr[E2 or E1] ≥ 1−
∏

b∈Ba,t

(1− x1,b − x2,b)−
∑
b∈Ba,t

x2,b

∏
b′ 6=b

(1− x1,b′ − x2,b′) .

We now invoke Lemma 2.3.4, stated earlier, to get

Pr[E2 or E1] ≥ 1−
∏

b∈Ba,t

(1− x1,b)

 ∏
b∈Ba,t

(1− x2,b) +
∑
b∈Ba,t

x2,b

∏
b′ 6=b

(1− x2,b′)

. (2.15)

Using Equations (2.12), (2.15), and (2.14), we have

∑
{p:p∈Pa,Rev(p)≥t}

s?a,p − Pr[Reva(r
R) ≥ t] ≤

∑
b∈Ba,t

x1,b +
1

2

∑
b∈Ba,t

x2,b−1−
∏

b∈Ba,t

(1− x1,b)

 ∏
b∈Ba,t

(1− x2,b) +
∑
b∈Ba,t

x2,b

∏
b′ 6=b

(1− x2,b′)

. (2.16)

We claim that for any b ∈ Ba,t, the above expression is non-decreasing in x1,b. To

get this, we need to show that the derivative of the above expression w.r.t. x1,b̂ is

non-negative. In the other words, we need to show the following equation holds:

1−
∏

b∈Ba,t,b6=b̂

(1− x1,b)

 ∏
b∈Ba,t

(1− x2,b) +
∑
b∈Ba,t

x2,b

∏
b′ 6=b

(1− x2,b′)

 ≥ 0. (2.17)

25

Since 0 ≤ (1−x1,b) ≤ 1 for any b, it only remains to show that the value of the term in

the brackets, i.e.,
∏

b∈Ba,t
(1−x2,b) +

∑
b∈Ba,t

x2,b

∏
b′ 6=b(1−x2,b′), is always in the range

of [0, 1]. To get this, it suffices to show that there exists an event whose probability

can be written as
∏

b∈Ba,t
(1 − x2,b) +

∑
b∈Ba,t

x2,b

∏
b′ 6=b(1 − x2,b′). For any b define a

Bernoulli random variable with mean x2,b. Observe that the aforementioned term is

equal to the probability of the event in which at most one of these variables is equal

to one, assuming that they are independent. Thus, we obtain Equation (2.17), which

allows us to assume without loss of generality that
∑

b∈Ba,t
x1,b + 1

2

∑
b∈Ba,t

x2,b= 1. As

a result, we have

∑
{p:p∈Pa,Rev(p)≥t}

s?a,p − Pr[Reva(r
R) ≥ t] ≤

∏
b∈Ba,t

(1− x1,b)

 ∏
b∈Ba,t

(1− x2,b) +
∑
b∈Ba,t

x2,b

∏
b′ 6=b

(1− x2,b′)

,
where

∑
b∈Ba,t

x2,b = 2θ,
∑

b∈Ba,t
x1,b = 1 − θ. Here, θ ∈ [0, 1]. To complete the proof,

we simply use that:
∏

b∈Ba,t
(1− x1,b) ≤ e

−
∑
b∈Ba,t

x1,b = eθ−1. Given how we constructed

the variables x2,b, we also need x2,b ≤ θ. Hence,

∑
{p:p∈Pa,Rev(p)≥t}

s?a,p − Pr[Reva(r
R) ≥ t] ≤ eθ−1

 ∏
b∈Ba,t

(1− x2,b) +
∑
b∈Ba,t

x2,b

∏
b′ 6=b

(1− x2,b′)

,
where

∑
b∈Ba,t

x2,b = 2θ and x2,b ≤ θ for any b ∈ Ba,t.

26

2.3.3 Approximation Factor

In this section, we will show that for any given θ ∈ [0, 1], we have

OPT(θ) ≤ 2
(√

2− 1
)
e
√

2−2 ,

where OPT(θ) is defined in Equation (2.10). Since the constraints of Program (2.10)

are linear in xi’s, the first order conditions of Karush-Kuhn-Tucker (KKT) are a nec-

essary condition for optimality [13]. Let

F (x, θ) = eθ−1

∏
i∈[n]

(1− xi) +
∑
i∈[n]

xi
∏

j∈[n],j 6=i

(1− xj)

.
Observe that F (x, θ) is the objective function of OPT(θ). Then, according to the KKT

conditions, the optimal solution must satisfy the following constraints for some λ ∈ R,

µ, η ∈ Rn
+:

∇xF (x, θ) +
λ

2
1− µ+ η = 0 (2.18)∑
i∈[n]

xi =
1

2
θ (2.19)

µi(xi − θ) = 0, ∀i ∈ [n] (2.20)

ηixi = 0, ∀i ∈ [n] (2.21)

0 ≤ xi ≤ θ, ∀i ∈ [n] . (2.22)

where 1 ∈ Rn is the vector of all one.

27

It is enough to show that F (x, θ) ≤ 2
(√

2− 1
)
e
√

2−2 for any tuple (x, θ, λ, µ, η)

satisfying the KKT conditions. A simple consequence of the KKT condition is the

following:

Lemma 2.3.5 (KKT Condition). If (x, θ, λ, µ, η) satisfies the KKT conditions for

Problem (2.10), then if xk and xt are such that 0 < xk < θ and 0 < xt < θ, then

xk = xt.

Proof. By conditions (2.20) and (2.21), we must have µk = ηk = 0. Plugging that into

condition (2.18), we get that

∂F/∂xk + λ/2 = 0 .

This implies that

∑
i 6=k

xi
∏
j 6=i,k

(1− xj) +
λ

2
= 0 .

Let Q =
∏

i∈[n](1− xi) and S =
∑

i∈[n]
xi

1−xi . Then, the above condition can be written

as

Q

1− xk

∑
i 6=k

xi
1− xi

+
λ

2
= 0 ⇒ Q

1− xk
(S − xk

1− xk
) +

λ

2
= 0 .

This is further simplified as follows

(
SQ+

λ

2

)
−
(
SQ+Q+ λ

)
xk +

λ

2
x2
k = 0 .

28

The polynomial p(y) :=
(
SQ + λ

2

)
−
(
SQ + Q + λ

)
y + λ

2
y2 is quadratic with d2p

d2y
≥ 0

and p(1) = −Q < 0. Thus, p(y) = 0 has an unique solution with y < 1. This implies

xk is uniquely determined as a function of S, Q, and λ. By the same argument, xt is

also a solution to the same equation and hence xk = xt.

Lemma 2.3.5 leads to the following corollary.

Corollary 2.3.6. We can bound OPT(θ) ≤ maxk∈Z,k≥2 max[OPT1(θ, k),OPT2(θ, k)],

where

OPT1(θ, k) = eθ−1

(
1− 2θ

k

)k−1(
1− 2θ

k
+ 2θ

)

OPT2(θ, k) = eθ−1

[(
1− θ

k

)k
+ θ(1− θ)

(
1− θ

k

)k−1
]
.

Proof. As stated earlier, in order to maximize the objective function OPT(θ), it is

enough to consider feasible solutions x satisfying the KKT conditions. To do so, we

use Lemma 2.3.5 to narrow down such solutions.

Since for any i ∈ [n], xi ≤ θ and
∑

i∈[n] xi = 2θ, we an only have the following

three cases:

• Case 1: Two variables in the support have value θ and by constraint
∑

i∈[n] xi =

2θ, the rest of them are zero. In that case, OPT(θ) = OPT1(θ, 2).

• Case 2: One variable has value θ and by Lemma 2.3.5, the rest n−1 ≥ 2 variables

in the support have value θ/(n− 1). In that case, OPT(θ) = OPT2(θ, n− 1).

• Case 3: All variables in the support are strictly below θ. In this case, by Lemma

2.3.5, xi = θ/n for n ≥ 3, and the solution is OPT(θ) = OPT1(θ, n).

29

Lemma 2.3.7. For any θ ∈ [0, 1] and k ≥ 2, we have OPT1(θ, k) ≤ 2
(√

2− 1
)
e
√

2−2.

Proof. For each k ≥ 0, define θ∗(k) = arg maxθ∈[0,1] OPT1(θ, k). By solving

∂OPT1(θ, k)/∂θ = 0

we obtain the following expression for θ∗(k):

k2(2θ∗(k)− 1) + 4(k − 1)(θ∗(k))2 = 0 .

The aforementioned equation has two solutions, only one of which is in [0, 1]. Thus,

θ∗(k) =
k
(
k −
√
k2 + 4k − 4

)
4− 4k

. (2.23)

We need to show that for any k ≥ 2, we have OPT1(θ∗(k), k) ≤ 2
(√

2− 1
)
e
√

2−2 ≈

0.461. For k = 2, we have OPT1(θ∗(k), k) = 2
(√

2− 1
)
e
√

2−2. For k < 40, we can

verify this inequality numerically. For k ≥ 40, we define and upper bound:

U(θ, k) =
2θ + 1

eθ+1(1− 2θ
k

)
.

and show that for any θ ∈ [0, 1] and k ≥ 40,

OPT1(θ, k) ≤ U(θ, k) ≤ U(θ, 40) ≤ 0.459 < 2
(√

2− 1
)
e
√

2−2 .

30

For the first inequality note that:

OPT1(θ, k) = eθ−1

[(
1− 2θ

k

)k−1(
1 + (k − 1)

2θ

k

)]
(2.24)

< eθ−1

[(
1− 2θ

k

)k(
1− 2θ

k

)−1

(1 + 2θ)

]
≤ U(θ, k). (2.25)

For the second inequality, we use the fact that for any θ, U(θ, k) is decreasing in k.

To find an upper-bound for value of U(θ, 40) = (2θ+1)

eθ+1(1− θ
20

)
, we take derivative of that

which is

∂U(θ, 40)

∂θ
=

20(2θ2 − 39θ + 21)

eθ+1(θ − 20)2
.

By solving ∂U(θ,40)
∂θ

= 0, we obtain that maximum of U(θ, 40) is at θ = 1
4

(
39−

√
1353

)
and

U

(
1

4

(
39−

√
1353

)
, 40

)
< 0.459 .

This completes the proof.

Lemma 2.3.8. For any θ ∈ [0, 1] and k ≥ 2, we have OPT2(θ, k) ≤ 0.46 <

2
(√

2− 1
)
e
√

2−2.

Proof. Observe that

e1−θOPT2(θ, k) =

(
1− θ

k

)k
+ θ(1− θ)

(
1− θ

k

)k−1

(2.26)

≤
(

1− θ

k

)k
+

1

4

(
1− θ

k

)k
=

5

4

(
1− θ

k

)k
, (2.27)

where the first inequality holds because maxθ∈[0,1] θ(1− θ) = 1
4

and 1− θ
k
≤ 1. Finally,

31

note that eθ−1 · 5
4
(1 − θ

k
)k is decreasing for θ ∈ [0, 1], Thus, we can bound OPT2(θ, k)

by the value of eθ−1 · 5
4
(1− θ

k
)k at θ = 0 which is 5/(4e) < 0.46.

2.4 Tightness of the Analysis

In this section, we show that the analysis of our algorithm is tight, i.e., we

construct an example for which the performance of the algorithm matches the 0.684

approximation factor.

To make the construction cleaner, we can define the weighted version of our

problem in which each auction a ∈ A has an associated weight wa > 0, and the

objective is to maximize
∑

a∈Awa · Reva(r). Note that if the weights are integers, this

is exactly the same as the original problem, replacing each weighted auction by wa

(unweighted) copies. Even if wa’s are not integers, it is easy to see that the algorithm

and the analysis generalize with essentially no change to the weighted case (the only

modification involves adding weighs to the objective function in the LP). In other words,

if the objective were the weighted revenue, we would still get 0.684 approximation

factor by applying a similar algorithm. Furthermore, any lower bound to the weighted

case translates to the unweighted case by replacing a weighted auction a by bNwac

unweighted copies for some large N .

Theorem 3 (Tightness of the Analysis). There exist a weighted instance {wa}a∈A,

{βa,b}a∈A,b∈B and an optimal LP solution s,q such that

max

(
E

[∑
a

wa Reva(r
R)

]
,
∑
a

wa Reva(0)

)
≤ 0.684 · Rev(s).

32

Proof. Fix θ =
√

2− 1 and c = (1− θ2)eθ−1. Consider an instance with three weighted

auctions and n = k + 3 buyers described by the following table:

H
HHH

HHH
HHH

HH
Weights wa

Bids
βa,1 . . . βa,k βa,k+1 βa,k+2 βa,k+3

1/(c+ 1) 1 . . . 1 1 1 0

c/(c+ 1) 0 . . . 0 0 0 1 + ε

ε 1 + ε . . . 1 + ε 1 + ε 1 + ε 0

Now, consider the following solution to the Profile-LP. For the first auction,

• the profile p = (i, b0, 1, 0) has sa,p = (1− θ)/k for i ∈ [k]. In this profile, the i-th

buyer is reserve priced at 1 and the second buyer is the dummy buyer;

• the profile p = (k+ 1, k+ 2, 0, 0) has weight sa,p = θ. In this profile, both buyers

k + 1 and k + 2 have zero reserve prices. Observe that the revenue under this

profile is 1 due to the highest second price.

For the second auction, we consider only one profile:

• the profile p = (k + 3, b0, 1 + ε, 0) has sa,p = 1. In this profile, the (k + 3)-th

buyer is reserve prices at 1 and the second buyer is the dummy buyer.

And for the third auction, we have:

• the profile p = (i, b0, 1 + ε, 0) has sa,p = θ/k for i ∈ [k]. In this profile, the i-th

buyer is reserve priced at 1 + ε and the second buyer is the dummy buyer.

33

• the profile p = (k + 1, k + 2, 1 + ε, 1 + ε) has weight sa,p = 1− θ. In this profile,

both buyers k+1 and k+2 have reserve price 1+ε and thus the revenue is 1+ε.

For this solution, we define the q variables as follows.

• For buyers i ∈ [k], we set qi,1 = (1− θ)/k and qi,1+ε = 1− qi,1.

• For buyers i = k + 1, k + 2, we set qi,0 = θ and qi,1+ε = 1− qi,1.

• For buyer k + 3, we set qk+3,1+ε = 1.

It is easy to see that this solution is feasible and that it is the optimal solution to

Problem (Profile-LP). This is so because for any auction, any profile that has a positive

weight yield the maximum revenue for that auction. Note that for simplicity in the

formulation of revenue, we can remove the terms that are a factor of ε since they can

be arbitrary small and are negligible. We argue that the rounding procedure produces

a 1/(c+1) approximation. First notice that the vector of zero reserves obtains revenue

of 1/(c+ 1).

Now, we compute the expected revenue from rounding. After rounding, the

reserve of any buyer i ∈ [k] is either 1 or 1 + ε, the reserve of buyers k+ 1 and k+ 2 is

either zero or 1 + ε, and reserve of buyer k + 3 is always 1 + ε. Thus, by letting ε go

to zero, the expected revenue from rounding is given by

1

c+ 1

[
1−

(
1− 1− θ

k

)k
· (1− θ2)

]
+

c

c+ 1
,

where the first term is the revenue of first auction and the second term, i.e., c
c+1

, is

34

the revenue of the second auction.2 To see why the latter holds note that in the first

auction, we always get a revenue of one unless none of the first k buyers have a reserve

of one and neither buyers k + 1 nor buyer k + 2 have a reserve of zero. As k → ∞,

the expected revenue after rounding becomes:

1

c+ 1

[
1− eθ−1 · (1− θ2)

]
+

c

c+ 1
=

1− c
c+ 1

+
c

c+ 1
=

1

c+ 1
,

where the first equation holds because c = (1 − θ2)eθ−1. The above equation is the

desired result because the optimal revenue is at most 1 and 1/(c + 1) = 0.684. The

latter follows from c = (1− θ2)eθ−1 and θ =
√

2.

2.5 Integrality Gap

In this section, we give an upper-bound of 0.828 for the integrality gap of the LP.

This implies that any rounding procedure for our LP formulation will obtain at most

0.828 fraction of the optimal value of the LP. In particular, we show Theorem 2, which

we restate here for convenience.

Theorem 2 (Integrality Gap of Profile-LP). There exists a data-set of bids {βa,b}a∈A,b∈B

for which the integrality gap of Profile-LP is at least 2(
√

2− 1) ≈ 0.828. That is,

ESP? ≤ 2(
√

2− 1) · LP?,

where LP? is the optimal fraction solution of the Profile-LP and ESP? is its optimal

2We do not include the revenue of the third auction because we would like to take ε to zero and
in that case, the revenue of the third auction approaches zero.

35

integral solution.

Proof. Given n buyers, an integer k > 0, δ = 1/k and a constant λ ∈ (0, 1) to be

determined later, consider an instance built as follows:

• Type one Auctions: For any buyer, b ∈ [n], we have an auction in which all

the bids are zero except the bid of buyer b. Precisely, buyer b has a bid of λn.

• Type two Auctions: For any pair of buyers b1 and b2, there are k copies of

an auction in which b1 and b2 bid δ = 1/k and the rest of the buyers bid 0. We

assume that λn > δ.

For this instance, consider the fractional solution that assigns sa,p = 1/2 for any

auction a of type two and profiles (b1, b0, δ, 0) and (b2, b0, δ, 0). For the rest of the

valid profiles of auction a, we set sa,p to zero. Note that b1 and b2 are the buyers with

nonzero bids in auction a and b0 is a dummy buyer. Moreover, for any auction a of type

one, in which buyer b has a nonzero bid, we have sa,p = 1/2 for profile p = (b, b0, λn, 0).

For the rest of the valid profiles of this auction, we set sa,p to zero. In this solution

for any buyer b, we have qb,δ = 1/2 and qb,λn = 1/2. One can simply verify that this

solution satisfies all the constraints of the LP and as a result, it is a valid fractional

solution. The optimal value of the LP is therefore bounded by:

LP? ≥
∑
a

Reva(s) = n · λ
2
n+

(
n

2

)
· k · δ =

1 + λ

2
· n2 + o(n2) ,

where the first term corresponds to the revenue from auctions of type one and the

second term corresponds to the revenue of auctions of type two. To bound ESP?, we

36

note that in the optimal solution of Problem (ESP-OPT), the reserve of each buyer is

either δ or λn. Given that the buyers are symmetric, the value of the optimal solution

depends only on the number of buyers with each reserve. Let t be the number of buyers

with reserve λn. Then, we can write:

ESP? = max
0≤t≤n

[
t · λn+ (n− t) · δ +

(
n

2

)
−
(
t

2

)]
.

By taking δ → 0, we obtain,

ESP? = max
0≤t≤n

[
t · λn+

(
n

2

)
−
(
t

2

)]
.

Since the term inside the maximum is a quadratic function of t, the optimal integral

solution should be t = λn + o(n). This is so because the optimal integral solution

t deviates from the optimal fractional solution (which is λn + 1/2) by at most 1.

Substituting that in the expression of ESP?, we get

ESP? =
1 + λ2

2
· n2 + o(n2) .

Taking n→∞, we get

ESP?

LP?
≤ (1 + λ2)n2 + o(n2)

(1 + λ)n2 + o(n2)
→ 1 + λ2

1 + λ
.

We can choose the parameter λ =
√

2 − 1 to minimize the above expression, which

leads to a ratio of 2(
√

2− 1) ≈ 0.828.

37

Chapter 3: Personalized Reserve Prices in VCG Auctions

In this chapter we focus on data-driven optimization of personalized reserve prices

in the eager VCG auction. We have k identical items and n unit-demand buyers

participating in a set of eager VCG auctions. Let A and B respectively be the set of

auctions and buyers. We are given a dataset of bids β where for any auction a ∈ A

and buyer b ∈ B, βa,b represents bid of buyer b in auction a. Let rb be the personalized

reserve price of buyer b. Then, given the bid vector βa for auction a and reserve price

vector r, the eager VCG auction (EVCG) works as follows.

1. Any buyer b with βa,b < rb is eliminated. Let Sa = {b : βa,b ≥ rb} be the set of

buyers who clear their reserve prices in auction a.

2. An item is allocated to a buyer b if there are at most k − 1 buyers in Sa whose

bid is greater than βa,b.

3. Pick the supporting buyer bs to be a buyer in set Sa such that there are exactly

k buyers in Sa whose bid in auction a is greater than βa,bs .
1 (βa,bs is the VCG

payment of any winner.)

4. Any buyer b who receives an item is charged max (rb, βa,bs), otherwise they are

1As usual, we assume that no two buyers have the same bids, or we can break ties based on their
IDs.

38

not charged.

Given the dataset of bids β, our goal is to find a vector of personalized reserve

prices that maximize revenue of the auctioneer. Note that the reserve prices are the

same across all the auctions a ∈ A. However, each buyer b is assigned a personalized

reserve price rb. We assume, w.l.o.g. that the optimal reserve price for any buyer is

equal to one of their submitted bids. Let R = {βa,b : a ∈ A, b ∈ B}. Formally, we

would like to solve the following optimization problem:

EVCG? = max
r∈Rn

Rev(r), where Rev(r) :=
∑

a∈A Reva(r)

and Reva(r) is the total payment in action a given the vector of reserve prices r. Note

that to solve this problem we face a search space of size |R|n which is exponential in

the input size.

3.1 Results and Techniques

Our algorithm consists of two main parts. First, we design a polynomial-size

Integer Linear Program (ILP) to describe the optimal solution. By removing the

integrality constraints, we obtain a polynomial-size LP, which gives us a fractional

solution. The second part is LP-rounding. Using the optimal solution of the LP, we

construct two different integral solutions. We then show that the best of three vectors:

these two solutions and the all-zero vector of reserve prices, is a 0.63-approximation.

To write the LP, we first need a polynomial-size representation of the solution

39

space in which the revenue can be computed using a linear function. The natural

representations (e.g., a vector of reserve prices, or a reserve price per buyer) fail as they

result in either an exponential-size solution space or a nonlinear revenue function. We

come up with an alternative concise representation, based on the following observation:

to compute the revenue of an auction, we do not need to know the reserve prices of all

the buyers. Rather, it suffices to only know the reserve prices of the winners and the

VCG payment, which is the (k + 1)-th highest cleared bid. The buyer who has this

bid is called the supporting buyer. We represent a solution based on its outcomes in

different auctions, where the “outcome” specifies who are the winners and who is the

supporting buyer, and what are their respective reserve prices. The revenue from each

auction can be computed using a linear function based on its outcome; therefore, the

overall revenue can also be written as a linear function which is sum of the revenue

across all of these auctions.

In the previous chapter, we use a similar approach for the single item case, which

falls short in the general case. There, we capture all pertinent information about an

auction in a single “profile” which is then used to compute the revenue of the auction,

and use these profiles to write an ILP. However, we need exponentially many profiles

to extend this approach to the general case, essentially because we need information

about all the winners in order to compute the auction’s revenue.

We proceed as follows. Instead of capturing all information about the winners in

a single profile, we partition this information into several sub-profiles, each containing

only a single winner and the supporting buyer. One complication is that these sub-

profiles should not contradict each other (e.g., having different supporting buyers).

40

This issue gets even more complicated when we relax the integrality constraint of the

ILP. We resolve this by introducing new variables and constraints to our LP.

Next, we use the optimal solution to the LP to construct two vectors of reserve

prices which we refer to as inflated reserves and discounted reserves. For each buyer b,

we use the LP solution to choose a threshold tb to determine if a reserve price is too

high or too low. We construct two probability distributions: one over reserve prices

above tb, and another over reserve prices below tb. We use these distributions to draw,

resp., the inflated and discounted reserve prices.

Let us provide some intuition for why we choose these two different vectors of

reserve prices. Recall that each buyer pays the maximum of its reserve price and

the VCG payment. Let us partition the winners’ payments into two types: one is

from winners who pay their reserve prices, and another is from those paying the VCG

payment. Note that setting smaller reserve prices results in clearing more bids, and thus

a larger VCG payment. Roughly speaking, second-type revenue from the discounted

reserves should be larger than that of the inflated reserves, while the opposite might

hold for the first-type revenue. Intuitively, if most of the optimal revenue is from type-

one payments and high reserve prices (at least tb for each buyer b), then we expect

the inflated reserves to give us a high revenue. Otherwise, if the optimal revenue is a

combination of type-one and type-two payments from small reserve prices, we expect

a high revenue from the discounted reserves. But what if the type-two payments form

a substantial portion of the revenue? This is where the vector of all-zero reserve prices

comes into play. The all-zero reserve prices obtain the maximum possible revenue one

can get from the type-two payments as all the bids are cleared in this case.

41

We analyze these three solutions simultaneously to lower bound the revenue of

each solution as a function of the other two. By exploiting structural properties of

our problem and the LP, we reduce the problem of finding the approximation fac-

tor to a complex non-linear optimization problem. This reduction, and solving this

optimization problem, are the most technically challenging parts of the analysis (see

Section 3.4).

To further highlight the significance of rounding our fractional solutions in two

different ways, we investigate the performance of the simple rounding procedure used in

the previous chapter which only outputs a single integral solution. Roughly speaking,

that simple rounding directly use the fractional solution of the LP as a probability

distribution over the reserve prices, and for each buyer independently draw a reserve

price from that. We show that for a large number of items, this approach fails to beat

the greedy algorithm. More precisely, for any given constant 0 < ε, we construct an

example for which the solution obtained using this rounding procedure gets at most

0.5 + ε fractional of the optimal revenue. We describe this example in Section 3.5.

3.2 The Algorithm

In this section we provide an LP-based algorithm for finding a vector of person-

alized reserve prices given a dataset of bids. We observe that to be able to describe

the optimal solution of the problem using polynomially many linear constraints, we

need a concise representation of the solution space. In Section 3.2.1, we explain this

representation. In Section 3.2.2, we use this representation to design an LP and prove

42

that its objective function in its optimal solution is an upper bound for the revenue of

the optimal solution of the problem. Finally, in Section 3.2.3, we provide our rounding

procedure that uses the optimal solution of the LP and outputs a vector of reserve

prices.

3.2.1 An Alternative Solution Space

In this section, our goal is to give a concise representation of the solution space

which will help us to write our linear program. We need this representation to have a

polynomial size and it should be possible to compute its revenue using a linear function.

As mentioned before, we base our design on the observation that to compute the revenue

of an auction we do not need to have the reserve price of all the buyers. Rather, it only

suffices to know the reserve prices of the winners and bid of the supporting buyer. The

main idea here is to have variables that capture the outcome of auctions (i.e., who the

winners and the supporting buyer are and their reserve prices.) instead of just having

variables for reserve price of buyers. We will define valid profiles and valid sub-profiles

of an auction to capture its outcome. Roughly speaking, the revenue obtained from

each auction can be computed in a linear way based on its outcome; thus the overall

revenue can also be written as a linear function which is sum of the revenue across all

these auction.

Definition 3.2.1 (Valid Profiles). We define the set of valid profiles of an auction a as

the set Pa consisting of all tuples (b1, . . . , bk+1, r1, . . . , rk+1) ∈ Bk+1 × Rk+1 that satisfy

the following conditions:

43

1. For any i, j ∈ [k + 1] where i < j, bid of buyer bi is greater than or equal to that

of buyer bj in auction a; that is, βa,bi ≥ βa,bj .

2. For any i ∈ [k+ 1] buyer bi clears his reserve, ri, in auction a; that is, βa,bi ≥ ri.

Valid profiles are defined to capture the outcome of an auction given a set of

reserve prices. However, note that each profile consists of at least k + 1 buyers; thus,

to be able to capture all the possible scenarios (for example when fewer than k + 1

buyers clear their reserves in an auction), we add k + 1 auxiliary buyers b̂1 . . . b̂k+1 to

B who bid zero in all the auctions. Also, w.l.o.g., we assume that their reserves are

always set to zero as well.

As mentioned previously, in the previous chapter we use a concept similar to

valid profiles to write our linear program for k = 1. In that LP, we have a variable for

any pair of auction and valid profile. However, it does not work here since it results

in having exponentially many variables. To overcome this, we define valid sub-profiles

of an auction that only contains information about a single winner and the supporting

buyer as defined below.

Definition 3.2.2 (Sub-profiles). We define the set of valid Sub-profiles of an auction

a as the set Sa consisting of all tuples (b1, b2, r1, r2) ∈ B2×R2 that satisfy the following

conditions:

1. Bid of buyer b1 is greater than or equal to that of buyer b2 in auction a; that is,

βa,b1 ≥ βa,b2.

2. Buyers b1 and b2 clear their reserves in auction a if reserve prices r1 and r2 are

44

set for them respectively; that is, βa,b1 ≥ r1 and βa,b2 ≥ r2.

For any given p = (b1, b2, r1, r2) ∈ Sa, we have Reva(p) := max(βa,b2 , r1).

Given a vector of reserve prices r′, we say a sub-profile (b1, b2, r1, r2) ∈ Sa happens

in auction a after applying r′, iff r′b1 = r1, r′b2 = r2, buyer b1 is a winner in auction

a and buyer b2 is the supporting buyer in this auction. Moreover, we say two sub-

profiles (b1, b2, r1, r2) and (b′1, b
′
2, r
′
1, r
′
2) are compatible iff b′2 = b2 and r′2 = r2 which

means that they have the same information about the supporting buyer. Moreover, we

say a set P of valid sub-profiles are compatible iff they are pairwise compatible and

|P | = k. Since we have added k + 1 auxiliary buyers whose bid is always cleared in all

the auction, we can assume that we always have exactly k winners and a supporting

buyer.

To explain how a solution is represented using these sub-profiles, we consider a

vector of reserve prices r and construct its representation in this new solution space. For

any auction a and any sub-profile p ∈ Sa, we have a variable sa,p which is equal to one iff

sub-profile p happens in auction a after applying vector of reserve prices r. Otherwise

we have sa,p = 0. We say vector s constructed in this way is the representation of r

in the profile space. As mentioned above, this representation allows us to compute

the revenue of each auction using a linear function. Recall that for any sub-profile

p = (b1, b2, r1, r2) we have Reva(p) := max(βa,b2 , r1), thus we can write

Reva(r) =
∑

p∈Sa sa,p · Reva(p).

This function is linear since we have polynomially many valid sub-profiles; thus, for

45

any valid sub-profile p we can simply compute Reva(p) in advance and treat it as a

constant in the LP.

3.2.2 The Linear Program

In this section we first design an integer linear program (ILP) then remove its

integrality constraints to get an LP. We start by introducing the variables of our ILP.

We have four vectors of random variables s, x, y and y′ as defined below.

1. For any auction a ∈ A and any sub-profile p ∈ Sa, we have a variable sa,p ∈ {0, 1}

which is equal to one iff sub-profile p happens in auction a. This set of variables

should satisfy constraint
∑

p∈Sa sa,p ≤ k as at most k sub-profiles can happen in

an auction.

2. For any buyer b ∈ B and any reserve price r ∈ R we have a variable xb,r ∈ {0, 1}.

Reserve price r is assigned to buyer b iff xb,r = 1. For this type of variables we

enforce the necessary constraint
∑

r∈R xb,r = 1 in our LP since each buyer has

exactly one reserve price.

3. For any buyer b ∈ B, any auction a and any reserve price r ∈ R, we have a

variable yb,r,a ∈ {0, 1} that is equal to one iff buyer b is assigned a reserve price

of r as a winner in auction a.

4. For any buyer b ∈ B, any auction a and any reserve price r ∈ R, we have a

variable y′b,r,a ∈ {0, 1} that is equal to one iff buyer b is assigned a reserve price

of r as the supporting buyer in auction a.

46

Roughly speaking, the vector of variables x is used in the LP to ensure that

in different auctions, solution s does not assign different reserve prices to the same

buyer. Moreover variables y and y′ are to ensure that the sub-profiles in an auction

are compatible with each other.

To be able to write the constraints of our LP, we first need the following defini-

tions. Let Qb,a := {(b, b2, r1, r2) ∈ Sa |b2 ∈ B, r1 ∈ R, r2 ∈ R} denote the set of valid

sub-profiles of auction a in which buyer b is the winner and Q′b,a = {(b1, b, r1, r2) ∈

Sa |b1 ∈ B, r1 ∈ R, r2 ∈ R} is the set of valid sub-profiles of auction a in which buyer

b is the supporting buyer. Moreover, let us define Qb,r,a := {(b, b2, r, r2) ∈ Qb,a|b2 ∈

B, r2 ∈ R} and Q′b,r,a := {(b1, b, r1, r) ∈ Q′b,a|b1 ∈ B, r1 ∈ R}. We are now ready to

write our LP (ILP without the integrality constraints) which we present in Figure 1.

max
x,s

∑
a∈A

∑
p∈Sa

sa,p · Reva(p)

s.t. yb,r,a =
∑

p∈Qb,r,a

sa,p ∀a, b, r : b ∈ B, a ∈ A, r ∈ R (1)

y′b,r,a =
∑

p∈Q′b,r,a

sa,p
k

∀a, b, r : b ∈ B, a ∈ A, r ∈ R (2)

yb,r,a + y′b,r,a ≤ xb,r ∀a, b, r : b ∈ B, a ∈ A, r ∈ R, (3)∑
p∈Qb2,a

∩Q′b1,a

sa,p ≤
∑
r∈R

y′b1,r,a ∀a, b1, b2 : b, b2 ∈ B, a ∈ A (4)

∑
p∈Sa

sa,p ≤ k ∀a : a ∈ A (5)∑
r∈R

xb,r = 1 ∀b : b ∈ B (6)

sa,p ≥ 0 ∀a, p : a ∈ A, p ∈ Sa (7)

Figure 3.1: The Linear Program

In the rest of this chapter we use s? to refer to s from an optimal solution of

47

the LP. To be able to use the optimal solution of the LP as a benchmark in analyzing

the approximation-factor of our algorithm, we need to show that it is indeed an upper

bound for the optimal integral solution.

Lemma 3.2.3. The optimal revenue is upper bounded by
∑

a∈A
∑

p∈Sa s
?
a,p · Reva(p).

We have Section 3.7 designated to the formal proof of this lemma, and also give

an informal overview of that here. Roughly speaking, to prove this lemma, it suffices to

show that the constraints of the LP are all necessary for the consistency of the variables

that we have defined. Below we give some intuition about each constraint and why it

is necessary.

Constraint (1) is due to the fact that for any auction a, buyer b, and reserve price

r, variable yb,r,a indicates whether or not buyer b has a reserve r and is a winner in

auction a. This constraint ensures that value of yb,r,a is consistent with whether or not

there is a profile happening in auction a in which buyer b is a winner as is assigned a

reserve price of r. Constraint (2) is similar to the previous one but for the supporting

buyers. Constraint (3) is because the reserve prices assigned to a buyer in different

auctions should be consistent. Moreover, imposing constraint (4), on the sub-profiles

is to make sure that the sub-profiles that happen in an auction can form valid profiles.

Consider an auction a and buyers b1 and b2. The right-hand-side of this constraint

is the probability with which buyer b1 is the supporting buyer in auction a, and the

left-hand-side is the probability with which buyer b2 is a winner while buyer b1 is the

supporting buyer which should obviously be smaller than the probability that buyer

b2 is a supporting buyer. Finally, constraints (5), (6), and (7) are by definition of

48

variables. This LP upper bounds the optimal solution (the proof is deferred to the

appendix).

3.2.3 The LP-Rounding Algorithm

In this section, given an optimal solution of the LP we generate an integral

solution for the problem. The input of the algorithm is the vector x from an optimal

solution of the LP and a parameter β ∈ [0, 1], which we fix later.

1. For any buyer b let tb be the maximum number in R that satisfies
∑

r<tb
xb,r ≤ β.

2. Define vectors f and f ′ as follows: For any r ∈ R where r < tb set fb,r := xb,r/β and

f ′b,r := 0. For any r > tb, set fb,r := 0 and f ′b,r := xb,r/(1 − β). Finally for r = tb,

set fb,r := 1−
∑

r′<tb
fb,r′ and f ′b,r := 1−

∑
r′>tb

f ′b,r′ .

3. Construct r the vector of discounted reserve prices as follows: For any buyer b

independently choose a random reserve price rb ∈ R such that for any ρ ∈ R, we

have Pr[rb = ρ] = fb,ρ.

4. Construct r′ the vector of inflated reserve prices as follows: For any buyer b inde-

pendently choose a random reserve price r′b ∈ R such that for any ρ ∈ R we have

Pr[r′b = ρ] = f ′b,ρ.

5. Let z be the vector of all zero reserve prices.

6. Between z, r and r′ return the one with higher revenue which is as follows:

arg max
ν∈{z,r,r′}

Rev(ν).

49

We will use r and r′ to respectively refer to the vector of discounted and inflated reserve

prices constructed in this algorithm.

Remark 3.2.4. For the sake of simplicity in the analysis, we assume w.l.o.g., that

for any auction a, tb satisfies
∑

r<tb
xb,r = β. This implies that for any r ∈ R, if

r < tb we have Pr[rb = r] = xb,r/β and Pr[r′b = r] = 0. Otherwise, if r ≥ tb, we have

Pr[rb = r] = 0 and Pr[r′b = r] = xb,r/(1− β).

In the next section we show how we can use specific features of the three solutions

z, r and r′ to get our desired approximation-factor.

3.3 Approximation Factor

In this section, we prove our main theorem by giving a lower bound for the revenue

obtained from the vector of reserve prices outputted by the rounding algorithm.

Let us start by giving some definitions that will be used throughout this section.

Define β
(k+1)
a to be the (k + 1)-th highest bid in any auction a. Note that this is

different from the bid of the supporting buyer in auction a as the supporting buyer has

the (k+1)-th highest bid after removing the buyers whose bid is not cleared. Moreover,

given a threshold τ , let us denote by Wa(r, τ) the number of winners in auction a whose

payment is greater than or equal to τ using the vector of reserve prices r. Similarly,

Wa(r
′, τ) is the number of winners who pay at least τ using vector of reserve prices r′

in auction a. Note that Wa(r, τ) and Wa(r
′, τ) are both random variables.

The following lemma establishes sufficient conditions for the algorithm to output

an approximate solution. For any given auction a ∈ A and a real number τ ≥ 0, we

50

define

Φa(τ) :=
∑
p:p∈Sa,
Reva(p)≥τ

s?a,p − (1− β)E[Wa(r
′, τ)]− βE[Wa(r, τ)].

Lemma 3.3.1. Suppose there exist absolute constants β ∈ (0, 1) and c ∈ (0, 1) such

that,

Φa(τ) ≤ 0 if τ > β(k+1)
a , and (3.1)

Φa(τ) ≤ kc if τ ≤ β(k+1)
a (3.2)

for any auction a ∈ A. Then, the algorithm with parameter β outputs a 1
1+c

-approximate

solution.

Proof. Consider an arbitrary auction a. By integrating over τ in Φa(τ), we obtain:

∫
(β

(k+1)
a ,∞)

Φa(τ) dτ +

∫
(0,β

(k+1)
a]

Φa(τ) dτ ≤ kcβ(k+1)
a .

By simplifying this we get

∑
p∈Sa

sa,p · Reva(p)− (1− β)E[Reva(r
′)]− βE[Reva(r)] ≤ kcβ(k+1)

a . (3.3)

Recall that the output of our algorithm is the best of r, r′, and z where z is the vector

of all-zero reserve prices and its revenue is kβ
(k+1)
a since by applying that, the players

in the k first positions win the k items and pay bid of the buyer in the (k + 1)-th

51

position. Therefore, the expected revenue achieved from the output of our algorithm

is at least

µ := max

(
E[Rev(r)],E[Rev(r′)], k ·

∑
a∈A

β(k+1)
a

)
.

Based on Equation 3.3 we have

Rev(s?)− (1− β)µ− βµ− cµ ≤ 0.

where Rev(s?) :=
∑

a∈A
∑

p∈Sa s
?
a,p · Reva(p). This implies Rev(s?) − (1 + c)µ ≤ 0, and

as a result

Rev(s?)

1 + c
≤ max

(
E[Rev(r)],E[Rev(r′)], kβ(k+1)

a

)
.

Further by Lemma 3.2.3, we know that Rev(s?) is an upper bound for the revenue of

the optimal solution; thus by setting β = β′ in the rounding algorithm its output is at

least a 1
1+c

-approximate solution.

Having, Lemma 3.3.1, it suffices to prove that Equation 3.1 always holds and find

values for parameters β and c that satisfy Equation 3.2. We address the former in the

following lemma, and the latter in Lemma 3.3.3.

Lemma 3.3.2. For auction a and any τ > β
(k+1)
a we have

∑
p:p∈Sa

Reva(p)≥τ

s?a,p − (1− β)E[Wa(r
′, τ)]− βE[Wa(r, τ)] ≤ 0.

52

Proof. By definition of Wa(r
′, τ) and Wa(r, τ) for any τ > β

(k+1)
a , we have

(1− β)E[Wa(r
′, τ)] + βE[Wa(r, τ)] = (1− β)E

[
min

(∑
b∈B

1r′b>τ , k

)]

+ βE

[
min

(∑
b∈B

1rb>τ , k

)]
.

Recall that β
(k+1)
a is defined in a way that there are exactly k buyers with bids greater

than β
(k+1)
a in auction a. As a result, there are at most k buyers for whom Pr[r′b > τ]

or Pr[rb > τ] is nonzero. This means that we can rewrite the inequality as

(1− β)E[Wa(r
′, τ)] + βE[Wa(r, τ)] = (1− β)E

[∑
b∈B

1r′b>τ

]
+ βE

[∑
b∈B

1rb>τ

]

= E

[∑
b∈B

1rb>τ

]
.

Observe that by construction of r and r′ we have

E[1rb>τ] = Pr[rb > τ] =
1

β

∑
r∈(τ,tb)

xb,r and

E[1r′b>τ] = Pr[r′b > τ] =
1

1− β
∑

r:r≥tb,r>τ

xb,r. (3.4)

Moreover, by putting the first and third constraints of the LP together, for any buyer

b and any reserve price r > τ , we get
∑

p∈Qb,r,a
s?a,p ≤ xb,r. Note that for any p =

(b1, b2, r1, r2) ∈ Sa, by definition, we have β
(k+1)
a ≥ βa,b2 , which means that if we have

53

Reva(p) > τ , then Reva(p) = r1 and p ∈ Qb1,r1,a. This results in the following equations.

∑
b∈B

∑
r∈(τ,tb)

xb,r ≥
∑
p:p∈Sa,

Reva(p)<tb,
Reva(p)>τ

s?a,p, and
∑
b∈B

∑
r:r≥tb,
r>τ

xb,r ≥
∑
p:p∈Sa,

Reva(p)≥tb,
Reva(p)>τ

s?a,p.

Combining these with the equations in (3.4) gives us the following equation and con-

cludes the proof.

(1− β)E[Wa(r
′, τ)] + βE[Wa(r, τ)] ≥

∑
p:p∈Sa

Reva(p)>τ

s?a,p.

The following lemma is the most technically challenging part of the analysis.

Therefore, we have Section 3.4 assigned to its proof.

Lemma 3.3.3. Setting β = 0.55 and c = 0.58, the following inequality holds for any

auction a ∈ A and any 0 < τ ≤ β
(k+1)
a .

∑
p:p∈Sa,

Reva(p)≥τ

s?a,p − (1− β)E[Wa(r
′, τ)]− βE[Wa(r, τ)] ≤ kc. (3.5)

We are now ready to prove our main result. Below we restate the main theorem

and prove it using the lemmas in this section.

Theorem 4. There exists an algorithm with running time polynomial in the input size

that outputs a vector of reserve prices ro such that Rev(ro) is at least a 0.63 fraction

of the revenue achieved from the optimal vector of reserve prices.

54

Proof. First, note that the LP designed in Section 3.2.2 has polynomially many vari-

ables and constraints. To design our algorithm, we first solve the LP, then given an

optimal solution of that use the LP-rounding procedure to output a vector of reserve

prices. Since the LP rounding procedure has a polynomial running time, the total

running time of the algorithm is polynomial as well.

To analyze the approximation factor of the algorithm we use Lemma 3.3.1,

Lemma 3.3.3 and Lemma 3.3.2. The first lemma states that if there exists a constant

c ≥ 0 and a valuation for parameter β that satisfies Equation 3.1 for any τ > β
(k+1)
a ,

and satisfies Equation 3.2 for any τ ≤ β
(k+1)
a , then our rounding algorithm is a 1

1+c
-

approximation. In Lemma 3.3.3, we prove that Equation 3.1 holds for any β ∈ (0, 1)

and any τ > β
(k+1)
a . Moreover, based on Lemma 3.3.2 we have that by setting β = 0.55,

Equation 3.2 holds for any τ ≤ β
(k+1)
a and c = 0.58. This implies that by setting

β = 0.55 in the rounding algorithm, its output is a 0.63-approximation of the optimal

solution since 1
1+0.58

> 0.63.

3.4 Proof of Lemma 3.3.3

In this section, we will consider an arbitrary auction a ∈ A and any constant

0 < τ ≤ β
(k+1)
a , and focus on finding a constant c and a valuation for β that satisfy

∑
p:p∈Sa,

Reva(p)≥τ

s?a,p − (1− β)E[Wa(r
′, τ)]− kc ≤ βE[Wa(r, τ)].

55

Denote by Ba,τ the set of buyers whose bid in auction a is greater than or equal to

τ . Formally, we have Ba,τ := {b ∈ B : βa,b ≥ τ}. Throughout this section, since we

assume that a can be any arbitrary auction from A, we will abbreviate all notations by

dropping a for simplicity when clear from the context. Let us define function F (s?, τ)

as follows.

F (s?, τ) =
∑
p:p∈Sa,

Reva(p)≥τ

s?a,p − (1− β)E[Wa(r
′, τ)] (3.6)

We will consider different values of F (s?, τ) as a function of β and give a lower bound

for E[Wa(r, τ)] based on that. Consider a buyer b ∈ Ba,τ . Let us define Bernoulli

random variables pb,τ and qb to be respectively equal to one iff rb ∈ [τ, βa,b] and equal

to one iff rb ∈ [0, βa,b]. Moreover, let Pτ =
∑

b∈Bτ pb,τ and Qτ =
∑

b∈Bτ qb.

Claim 3.4.1. The expected revenue obtained from the vector of reserve prices r is as

follows.

E[Wa(r, τ)] ≥ max
(
k.Pr[Qτ > k],E[min(Pτ , k)]

)

Proof. Note that Qτ is a random variable representing the number of buyers whose bid

is cleared and is greater than or equal to τ ; therefore, Qτ > k is the event in which at

least k + 1 buyers have cleared their bid of at least τ which results in k items being

sold with a price of at least τ . Moreover, Pτ denotes the number of buyers whose bid is

cleared with a reserve of at least τ ; thus, we sell at least min(Pτ , k) of our items with

a price of at least τ . This means that the expected number of items that are sold with

56

a price of at least τ is lower bounded by max(k.Pr[Qτ > k],E[min(Pτ , k)]).

Let Ta,τ be the set of sub-profiles in Sa whose revenue is at least τ . In the other

words,

Ta,τ := {p ∈ Sa|Reva(p) ≥ τ}.

We partition Ta,τ to three disjoint subsets denoted by J +
τ ,J −τ , and Lτ as follows. Set

J +
τ is the set of sub-profiles in Tτ that capture the scenarios in which the supporting

buyer has a bid smaller than τ and the winner’s reserve price is greater than or equal

to its threshold tb (defined in the algorithm).

J +
τ := {p = (b′, b, r′, r) ∈ Tτ | b /∈ Bτ and r′ ≥ tb′}.

We similarly define J −b,τ to be the set of sub-profiles in Tτ in which the supporting buyer

has a bid smaller than τ and the reserve price of the winner is below its threshold tb.

J −τ := {p = (b′, b, r′, r) ∈ Tτ | b /∈ Bτ and r′ < tb′}.

Moreover, Lτ defined below denotes the set of sub-profiles in Sa that capture the

scenarios in which the supporting buyer has a bid greater than or equal to τ .

Lτ := {p = (b′, b, r′, r) ∈ Tτ | b ∈ Bτ}.

57

Further, based on this set, we define

δτ :=
∑
b∈Bτ

∑
p∈Lτ∩Q′b

s?a,p/k. (3.7)

Observe that the defined subsets of Tτ satisfy Tτ = J +
τ ∪ J −τ ∪ Lτ .

Given Claim 3.4.1, we now need to find a lower bound for max
(
k.Pr[Qτ >

k],E[min(Pτ , k)]
)

as a function of F (s?, τ) and δτ . To get this, we start by giving lower

bounds for E[Qτ] and E[Pτ] in the following section, then use the expected value of these

random variables to bound the value of the functions k.Pr[Qτ > k] and E[min(Pτ , k)]

in Section 3.4.2. Note that all these bound will be functions of F (s?, τ) and δτ .

3.4.1 lower bounds for E[Pτ] and E[Qτ]

In this section, we start by investigating useful facts about set Tτ , random vari-

ables p and q and the relation between them which finally leads to lower bounds for

E[Pτ] and E[Qτ]. Let us mention that to prevent interruptions to the flow of the

chapter, proofs of some of the lemmas in this section are deferred to Section 3.6.

We start by obtaining a lower bound for E[Pτ], for which we make the three

claims below.

Claim 3.4.2. The following holds:
∑

p∈Lτ s
?
a,p = kδτ .

Proof. Recalling definition (3.7), it suffices to show
⋃

b∈Bτ (Lτ ∩Q
′
b) = Lτ , as it results

in

δτ =
∑
b∈Lτ

s?a,p/k.

58

A valid sub-profile p = (b1, b2, r1, r2) is in
⋃

b∈Bτ Q
′
b iff b2 ∈ Bτ which also means

Reva(p) = max(r1, βa,b) ≥ τ and p ∈ Tτ . To complete the proof observe that this is

indeed the definition of set Lτ which is Lτ := {(b′, b, r′, r) ∈ Tτ | b ∈ Bτ}.

Claim 3.4.3. For any buyer b ∈ B we have

E[pb,τ] ≥
1

β
(
∑

p∈J−τ ∩Qb

s?a,p).

Proof. By construction, for vector of reserve prices r and any buyer b we have

E[pb,τ] = Pr[rb ∈ [τ, βa,b]] =
∑

r∈[τ,βa,b]

fb,r,

where fb,r = xb,r/β for any r < tb as defined in the algorithm. This yields that

E[pb,τ] ≥
∑
r:r<tb,
r∈[τ,βa,b]

xb,r
β
≥
∑
r:r<tb,
r∈[τ,βa,b]

∑
p∈Qb,r,a

sa,p
β
,

where the second inequality is by the first and third constraints of the LP. To complete

the proof it suffices to show that

(J −τ ∩Qb) ⊂
⋃

r:r<tb,
r∈[τ,βa,b]

Qb,r,a.

Observe that we have

(J −τ ∩Qb) = {(b, b2, r, r2) ∈ Tτ | r ∈ R, r2 ∈ R, b2 ∈ Bτ and r < tb}.

59

Moroever, note that for any sub-profile p = (b, b2, r, r2) ∈ Tτ we have Reva(p) =

max(r, βa,b2) ≥ τ , thus if βa,b2 < τ then r ≥ τ . As a result we have

(J −τ ∩Qb) ⊂ {(b, b2, r, r2) ∈ Sa| r ∈ R, r2 ∈ R, b2 ∈ Bτ and r < tb}.

Further, since Qb,r,a := {(b, b2, r, r2) ∈ Sa|b2 ∈ B, r2 ∈ R}, then

⋃
r:r<tb,
r∈[τ,βa,b]

Qb,r,a = {(b, b2, r, r2) ∈ Sa| r ∈ R, r2 ∈ R, b2 ∈ B, r ≥ τ, r ≥ βa,b, r < tb}.

Note that any (b, b2, r, r2) ∈ Sa satisfies r ≥ βa,b, therefore we get

(J −τ ∩Qb) ⊂
⋃

r:r<tb,
r∈[τ,βa,b]

Qb,r,a.

The following lemma is the last piece that we need to get the desired lower bound

for E[Pτ] in Lemma 3.4.5. The proof of this lemma due to being lengthy is deferred to

Section 3.6.

Lemma 3.4.4. The following inequality holds.

F (s?, τ) ≤
∑
p∈J−τ

s?a,p +
∑
p∈Lτ

s?a,p.

Lemma 3.4.5. We have the following lower bound for E[Pτ] :

E[Pτ] ≥
F (s?, τ)− kδτ

β
.

60

Proof. Based on Lemma 3.4.4 we have

F (s?, τ)−
∑
p∈Lτ

s?a,p ≤
∑
p∈J−τ

s?a,p.

Combining this by
∑

p∈Lτ s
?
a,p = kδτ from Claim 3.4.2 and diving both sides by β gives

us:

F (s?, τ)− kδτ
β

≤ 1

β

∑
p∈J−τ

s?a,p

We conclude the proof by noting that as a result of Claim 3.4.3, we have E[Pτ] ≥

1
β

∑
p∈J−τ

s?a,p.

Getting the desired lower bound for E[Qτ] is however more complicated than

that of E[Pτ]. In Lemma 3.4.6 and Lemma 3.4.7 we give two different lower bounds for

E[Qτ] which we then merge in Lemma 3.4.8 to obtain an stronger one. The proof of

both these lemmas are based on careful analysis of the relations between q and subsets

of Tτ , and are deferred to Section 3.6 due to being very complicated.

Lemma 3.4.6. For B1 = {b ∈ B : E[qb] = 1}, we have

E[Qτ − |B1|] ≥ (k − |B1|+ 1)δ/β.

Lemma 3.4.7. For B1 = {b ∈ B : E[qb] = 1} and m = |B1| we have

E[Qτ −m] ≥ F (s?, τ)−mδ
β

+ δ/β.

61

Lemma 3.4.8. For B1 = {b ∈ B : qb,τ = 1}| and m = |B1|, we have

E[Qτ −m] ≥ k.max(F (s?, τ)/k, δτ)− (m− 1)δτ
β

.

Proof. This is a direct result of the lower bounds given in Lemma 3.4.6 and Lemma 3.4.7,

which are respectively as follows.

E[Qτ −m] ≥ (k −m+ 1)δτ/β.

E[Qτ −m] ≥ F (s?, τ)−mδτ
β

+ δτ/β.

By combining these lower bounds we get

β ·E[Qτ−m] ≥ max(F (s?, τ), kδτ)−(m−1)δτ ≥ k ·max(F (s?, τ)/k, δτ)−(m−1)δτ .

3.4.2 Revenue of the discounted vector

In this section, we continue our effort to give a lower bound for E[Wa(r, τ)] as a

function of δτ and F (s?, τ). Recall that by Claim 3.4.1 we have

E[Wa(r, τ)] ≥ max(k.Pr[Qτ > k],E[min(Pτ , k)]).

In Lemma 3.4.8 and Lemma 3.4.5 in the previous section, we have obtained lower

bounds for both E[Qτ] and E[Pτ] as functions of δτ and F (s?, τ). Thus, we proceed to

find numeric lower bounds for k ·Pr[Qτ > k] and E[min(Pτ , k)] by all possible values of

62

these parameters. To be able to do so, we use the fact that both Qτ and Pτ are sums

of Bernoulli random variables. Based on a sequence of observations about Bernoulli

random variables that are mostly presented in Section 3.8 we approximate Pr[Qτ > k]

by a function on a set of Bernoulli random variables whose expectation is related to

E[Qτ]. Later, we use the relation between Binomial and Poisson distributions to get a

lower bound that can be computed numerically given fixed values of δτ and F (s?, τ).

We take a similar but simpler approach to find a lower bound for E[min(Pτ , k)].

Let us define function G(x, λ) for a real number τ > 0 and any integer x ≥ 0, as

follows:

G(x, λ) = 1−
x∑
i=0

λie−λ

i!
. (3.8)

Note that G(x, λ) is the probability with which a random variable drawn from Pois(λ)

is greater than x. This function later arises in the lower bound for Pr[Qτ > k] due

to the special relation between Poisson and Binomial distribution when the number of

trials goes to infinity.

We start by the following lemma about Bernoulli random variables (proved in

Section 3.8).

Lemma 3.4.9. Given m ∈ N and a random variable X that is sum of a set of inde-

pendent Bernoulli random variables with E[X] = µ, if m+ 1 < µ, then we have

Pr[X > m] ≥ min
0≤i≤m

G(m− i, µ− i).

63

For any 0 ≤ i ≤ k, let us define λi as follows. We have

λ0 = min

(
2F (s?, τ)

kβ
+ δτ/β − 2,

F (s?, τ)

kβ

)
,

λ1 = min

(
2F (s?, τ)

kβ
+ δτ/β − 1,

2F (s?, τ)

kβ

)
,

and for any any i ≥ 2,

λi =
iF (s?, τ)

kβ
+ δτ/β.

We are not ready to state our lemma about a lower bound for F (s?,τ)
kβ

.

Lemma 3.4.10. If we have F (s?,τ)
kβ

> 1 and λi ≥ i+ 1 for any i ≥ 0, then

Pr[Qτ > k] ≥ min
0≤m≤k

G(m,λm).

Proof. Let us define B1 = {b ∈ B : qb = 1}, m = |B1|, and Qτ,2 =
∑

b∈B\B1
qb. We have

E[Qτ] = E[Qτ,2]+m which implies Pr[Qτ > k] = Pr[Qτ,2 > k−m]. Using Lemma 3.4.8,

we have the following lower bound for the expected value of random variable Qτ,2:

E[Qτ,2] ≥ k.max(F (s?, τ)/k, δτ)− (m− 1)δτ
β

. (3.9)

Further, since Qτ,2 is sum of a set of independent Bernoulli random variables, if

E[Qτ,2] ≥ k −m+ 1 holds, as an application of Lemma 3.4.9, we get

Pr[Qτ,2 > (k −m)] ≥ min
0≤i≤k1

G(k1 − i,E[Qτ,2]− i),

64

where k1 = k − m. We will later prove that E[Qτ,2] ≥ k − m + 1 holds. Given this

equation, to complete the proof it suffices to show that for any 0 ≤ i ≤ k1, we have

G(k1 − i, E[Qτ,2] − i) ≥ G(k1 − i, λk1−i) since 0 ≤ k1 − i ≤ k. We do this by proving

that the following equation holds for any 0 ≤ i ≤ k1:

E[Qτ,2]− i ≥ λk1−i.

Note that proving this also gives us E[Qτ,2] ≥ k−m+1 since we get E[Qτ,2] ≥ λk−m and

by the statement of the lemma, we have λk−m ≥ k −m+ 1. Recall that by definition,

for any i with k1 − i ≥ 1 we have

λk1−i =
(k1 − i)F (s?, τ)

kβ
+ δτ/β.

Moreover, using the lower bound provided for E[Qτ,2] in Equation 3.9, we get

E[Qτ,2] ≥ k.max(F (s?, τ)/k, δτ)− (m− 1)δτ
β

≥ (k −m).F (s?, τ)/k + δτ
β

≥ k1F (s?, τ)

kβ
+ δτ/β.

We complete the proof for the case of k1 − i > 1 by invoking F (s?,τ)
kβ

> 1 from the

statement of lemma. Therefore, to complete the proof it suffices to show that E[Qτ,2]−

65

i ≥ λk1−i holds for k1− i ≤ 1. Using Equation 3.9 and by the fact that k ≥ 2, we have

E[Qτ,2] ≥k.max(F (s?, τ)/k, δτ)−mδτ + δτ
β

≥

2F (s?, τ)/k + (k − 2−m) max(F (s?, τ)/k, δτ) + δτ
β

.

If m = 0, then we have k1−2 = k−2−m ≥ 0. Moreover, since we have F (s?, τ)/(kβ) >

1, in the case of m = 0, we get

E[Qτ,2]− i ≥ 2F (s?, τ)/k + δτ + (k1 − 2) max(F (s?, τ)/k, δτ)

β
− i

≥ 2F (s?, τ)/k + δτ
β

+ k1 − 2− i.

This implies E[Qτ,2] − i ≥ λk1−i for m = 0 and k1 − i ≤ 1. Now, it remains to show

this for m > 0 and k1 − i ≤ 1 as well. If m > 0 we can write the followings:

E[Qτ,2] ≥ k.max(F (s?, τ)/k, δτ)− (m− 1)δτ
β

≥ (k −m+ 1)F (s?, τ)/k

β

=
(k1 + 1)F (s?, τ)/k

β
,

E[Qτ,2]− i ≥ (k1 − i+ 1)F (s?, τ)/k + i · F (s?, τ)/k

β
− i ≥ (k1 − i+ 1)F (s?, τ)/k

β
.

As a result of this for the cases of (k1 − i) = 0 and (k1 − i) = 1 we respectively

get E[Qτ,2] − i ≥ F (s?, τ)/(kβ) and E[Qτ,2] − i ≥ 2F (s?, τ)/(kβ). Knowing that by

definition, we have λ0 ≤ F (s?, τ)/(kβ) and λ1 ≤ 2F (s?, τ)/(kβ) hold completes the

proof.

66

Based on a simple application of Chernoff bound, we show that for any m ≥ 2000,

we have G(m, 1.05m) ≥ 0.9. (We will prove this as Lemma 3.8.5 in Section 3.8.)

Since λm is an increasing function of F (s?, τ)/(kβ), and that λm ≥ mF (s?, τ) holds

for any m ≥ 2, this implies that for F (s?, τ)/(kβ) ≥ 1.05, and m ≥ 2000 we have

G(m,λm) ≥ 0.9. This gives us

Pr[Qτ > k] ≥ min(0.9, min
0≤m<2000

G(m,λm)). (3.10)

For smaller values of m; however, giving a desired lower bound for G(m,λm) is unnec-

essarily complicated. To avoid the complication of that proof, we instead numerically

compute G(m,λτ) for different values of F (s?, τ)/(kβ) and δτ/β in Table 3.1. Then,

using Lemma 3.4.10 find a lower bound for Pr[Qτ > k] given fixed values for these

variables. Each element of Table 3.1, contains value of min0≤m<2000G(m,λm) for fixed

values of F (s?, τ)/(kβ) and δτ/β. Note that, we ignore an entry of the table by insert-

ing an −, if the values associated to F (s?, τ) and δτ/β in that entry do not satisfy the

necessary conditions of Lemma 3.4.10. We later use this table to complete the proof

of Lemma 3.3.3.

67

HHH
HHH

HHH
HHH

F (s?,τ)
kβ

δτ/β
0.6 0.8 0.9 1

1.05 - - 0.57 0.59

1.1 - 0.57 0.59 0.62

1.2 0.57 0.62 0.64 0.66

1.5 0.697 0.73 0.746 0.76

1.7 0.76 0.789 0.8 0.814

1.8 0.789 0.8 0.826 0.834

Table 3.1: lower bounds for Pr[Qτ > k] given fixed values of F (s?, τ) and δ/β based

on Equation 3.10.

To be able to use the information in this table towards giving a numeric lower

bound for max(Pr[Qτ > k],E[min(Qτ , k)]/k), we need to construct a similar table for

E[min(Pτ , k)]/k. To provide the desired lower bound for E[min(Pτ , k)]/k in Lemma 3.4.13,

we first need some facts about Bernoulli random variables which are stated in Claim 3.4.12

and Lemma 3.4.11 below. To prevent interruptions to the flow of this section, both

proofs are deferred to Section 3.8.

Lemma 3.4.11. For any integer number m > 2 and any real number θ ∈ [0, 2], we

have

min
µ∈M2,θ

H(2,µ) ≤ min
µ∈Mm,θ

H(m,µ),

68

where Mm,θ = {µ = (µ1, . . . , µn) ∈ [0, 1]n|
∑n

i=1 µi = mθ}, and

H(k, (µ1, . . . , µn)) =
E[min(

∑
i∈[n] xi,m)]

m
,

with xi, . . . , xn being independent Bernoulli random variables with means µi, . . . , µn.

Claim 3.4.12. Given a fixed real number θ ∈ (0, 2), and a set of independent Bernoulli

random variables x1, . . . , xn with E[
∑

i∈[n] xi] = 2θ we have

1
2
E[min(

∑
i∈[n]

xi, 2)] ≥ 1− (1 + θ)e−2θ.

Lemma 3.4.13. For any k > 1, we have

E[min(Pτ , k)]/k > 1− (1 + α)e−2α, where α = F (s?, τ)/(kβ)− δ/β. (3.11)

Proof. For any real number θ ∈ [0, 2] we define set

Mk,θ = {µ = (µ1, . . . , µn) ∈ [0, 1]n|
n∑
i=1

µi ≥ kθ},

and function

H(k, (µ1, . . . , µn)) =
E[min(

∑
i∈[n] xi, k)]

k
,

where xi, . . . , xn are independent Bernoulli random variables with means µi, . . . , µn.

69

By Lemma 3.4.11, we know that

min
µ∈M2,θ

H(2,µ) ≤ min
µ∈Mk,θ

H(k,µ).

Note that we have (E[p1], . . .E[pn]) ∈Mk,α since based on Lemma 3.4.5

E[Pτ] ≥
F (s?, τ)− kδ

β
= αk.

Moreover, observe that H(k, (E[p1], . . .E[pn])) = E[min(Pτ , k)]/k, which implies

E[min(Pτ , k)]/k > min
µ∈M2,α

G(2,µ).

We complete the proof using Lemma 3.4.12 that states minµ∈M2,α H(2,µ) ≥ 1 − (1 +

α)e−2α.

We now proceed to construct a similar table for E[min(Pτ , k)]/k based on the

lower bound provided in Lemma 3.4.13. Each element of Table 3.2 contains a lower

bound for E[min(Pτ , k)]/k, given fixed values of m(s?, τ)/(kβ) and δτ/β.

F (s?, τ)/(kβ)− δτ/β 0.15 0.2 0.6 0.7 0.8 0.9 1 1.1 1.2

E[min(Pτ , k)]/k 0.14 0.19 0.51 0.58 0.63 0.68 0.72 0.76 0.8

Table 3.2: lower bounds for E[min(Pτ , k)]/k based on different values of α :=

F (s?, τ)/(βk) − δ/β. We use the lower bound E[min(Pτ , k)]/k > 1 − (1 + α)e−2α

obtained in Lemma 3.4.13.

The following lemma is the final piece that we need to complete the proof of

70

Lemma 3.3.3. In this lemma, we use the constructed tables to show that by setting

β = 0.55 in the rounding algorithm we get

F (s?, τ)− βE[Wa(r, τ)] ≤ 1.05kβ ≤ 0.58.

Lemma 3.4.14. For β = 0.55 we have F (s?, τ)− βE[Wa(r, τ)] ≤ 1.05kβ.

Proof. We start by considering different values of F (s?, τ) and finding a lower bound

for E[Wa(r, τ)] based on that. Recall that by Claim 3.4.1, we have

E[Wa(r, τ)]/k ≥ max
(

Pr[Qτ > k],E[min(Pτ , k)]/k
)

Further, based on Lemma 3.4.10 and Lemma 3.4.13, we have

max
(

Pr[Qτ > k],E[min(Pτ , k)]/k
)
≥ max

(
min

0≤m≤k
G(m,λm), 1− (1 + α)−2α

)
,

where α := F (s?, τ)/(βk) − δτ/β. It is easy to see that min0≤m≤kG(m,λm) is an

increasing function of δτ/β, while 1 − (1 + α)−2α is a decreasing function of δτ/β;

therefore, for any x ∈ (0, 1) we have2

max(Pr[Qτ > k],E[min(Qτ , k)]/k) ≥ min

(
min

0≤m≤k
G(m,λm)| δτ

β
=x, (1− (1 + α)−2α)| δτ

β
=x

)
.

(3.12)

We use this fact to construct Table 3.3 based on Table 3.1 and Table 3.2. To

2To clarify the notation, when we use G(a, b)|b=x, for a function G, we refer to the value of G given
that b = y.

71

do so, for any fixed value of F (s?, τ)/(kβ) = y, we consider four possible values x ∈

{0.6, 0.8, 0.9, 1} for δτ/β and rewrite Equation 3.12 as

max(Pr[Qτ > k],E[min(Qτ , k)]/k)|F (s?,τ)
kβ

=y

≥ max
x∈{0.6,0.8,0.9,1}

min

(
min

0≤m≤k
G(m,λm)|F (s?,τ)

kβ
=y, δτ

β
=x
, (1− (1 + α)−2α)|F (s?,τ)/(kβ)=y, δτ

β
=x

)
.

For any y ∈ {1.05, 1.1, 1.2, 1.5, 1.7, 1.8} and x ∈ {0.6, 0.8, 0.9, 1}, we refer to Ta-

ble 3.1 and Table 3.2 for values of min0≤m≤kG(m,λm)|F (s?,τ)/(kβ)=y,δτ/β=x and (1 −

(1 + α)−2α)|F (s?,τ)/(kβ)=y,δτ/β=x. (For the sake of constructing this table, if for a pair of

x and y, values of these function are not precomputed in Table 3.1 and Table 3.2, we

assume that they are equal to zero.)

F (s?, τ)/(kβ) 1.05 1.1 1.2 1.5 1.7 1.8

max(Pr[Qτ > k],E[min(Qτ , k)]/k) 0.14 0.19 0.51 0.68 0.76 0.789

Table 3.3: lower bounds for E[Wa(r, τ)]/k using Equation 3.12, given fixed values of

F (s?, τ)/(kβ) achieved from combining Table 3.1 and Table 3.2.

As an instance, the first column of the table is obtained as follows. For δτ/β = 0.9,

and F (s?, τ)/(kβ) = 1.05 we have the followings respectively based on Table 3.1 and

Table 3.2:

min
0≤m≤k

G(m,λm)|F (s?,τ)
kβ

=1.05,δτ/β=0.9
= 0.57,

(
1− (1 + α)−2α

)
|F (s?,τ)

kβ
=1.05,δτ/β=0.9

= 0.14.

72

As a result, we have

max(Pr[Qτ > k],E[min(Qτ , k)]/k)|F (s?,τ)
kβ

=1.05

≥ max
x∈{0.8,0.9,1}

min

(
min

0≤m≤k
G(m,λm)|F (s?,τ)

kβ
=1.05, δτ

β
=0.9

, (1− (1 + α)−2α)|F (s?,τ)
kβ

=1.05, δτ
β

=0.9

)
≥ min(0.57, 0.14) = 0.14.

We now proceed to complete the proof using Table 3.3. Observe that the lower

bound in Equation 3.12 is a non-decreasing function of F (s?, τ)/(kβ). This implies that

for any 0 ≤ x < y ≤ 1, we have E[Wa(r, τ)|F (s?,τ)
kβ

= x] ≤ E[Wa(r, τ)|F (s?,τ)
kβ

∈ [x, y]].

Having this, we complete the proof using a case by case analysis and proving that

F (s?, τ)− βE[Wa(r, τ)] ≤ 1.05kβ

holds for all possible values of F (s?, τ)/(kβ).

• For F (s?, τ)/(kβ) ∈ [0, 1.05], it is obvious that F (s?, τ)− βE[Wa(r, τ)] ≤ 1.05kβ

holds.

• If F (s?, τ)/(kβ) ∈ [1.05, 1.1], then we get F (s?, τ) − βE[Wa(r, τ)] ≤ (1.1 −

0.14)kβ = 0.96kβ since in this case we have E[Wa(r, τ)]/k ≥ 0.14 based on

Table 3.3.

• If F (s?, τ)/(kβ) ∈ [1.1, 1.2], then we get F (s?, τ)−βE[Wa(r, τ)] ≤ (1.2−0.19)kβ =

1.01kβ since in this case we have E[Wa(r, τ)]/k ≥ 0.19.

• If F (s?, τ)/(kβ) ∈ [1.2, 1.5], then we get F (s?, τ)−βE[Wa(r, τ)] ≤ (1.5−0.51)kβ =

73

0.99kβ since in this case we have E[Wa(r, τ)]/k ≥ 0.51.

• If F (s?, τ)/(kβ) ∈ [1.5, 1.7], then we get F (s?, τ)−βE[Wa(r, τ)] ≤ (1.7−0.68)kβ =

1.02kβ since in this case we have E[Wa(r, τ)]/k ≥ 0.68.

• If F (s?, τ)/(kβ) ∈ [1.7, 1.8], then we get F (s?, τ)−βE[Wa(r, τ)] ≤ (1.8−0.76)kβ =

1.04kβ since in this case we have E[Wa(r, τ)]/k ≥ 0.76.

• If F (s?, τ)/(kβ) ∈ [1.8, 1/β], then we get F (s?, τ) − βE[Wa(r, τ)] ≤ (1.8 −

0.76)kβ = 1.04kβ since in this case we have E[Wa(r, τ)]/k ≥ 0.76.

The proof is concluded since we know F (s?, τ)/(kβ) ≤ 1/β. This is due to the

definition of F (s?, τ) which is

F (s?, τ) =
∑
p:p∈Sa,

Reva(p)≥τ

s?a,p − (1− β)E[Wa(r
′, τ)],

and the fact that by constraints of the LP, we have
∑

p:p∈Sa s
?
a,p ≤ k.

3.5 Upper Bound for the “Simple Rounding” Approach

The algorithm designed for the single unit case of the problem in the previous

chapter directly uses the fraction solution of the LP as a probability distribution over

reserve prices, and for each buyer independently draws a reserve price from that. This

is equivalent to setting β = 0 in our rounding algorithm. In the rest of the section, we

use simple rounding to refer to this rounding technique. We show using an example

that for a large enough k (number of items) the approximation factor of this algorithm

74

is at most 0.5 + ε for any small constant ε.

Lemma 3.5.1. Given any constant ε > 0, there exists a dataset of bids for which the

simple rounding approach achieves at most 0.5 + ε fraction of the optimal revenue.

Proof. We use Table 3.4 to represent our dataset of auctions. Let k denote the number

of items. In our example, we have 2k + 2 auctions and k + 2 buyers represented by

b1, . . . , bk+2. Each column in the table represents an auction and its weight is the

number of times that this auction is repeated in the dataset. To put it differently, we

can simply assume that there are only four weighted auctions represented by the four

columns and each one has a revenue equal to the total payment of buyers in the auction

multiplied by its weight. Further, note that buyers b3, . . . , bk+2 have similar bids in all

auctions.

HH
HHH

HHHH
HHH

Buyer

Weight
1 1 k k

b1 k3 0 0 0

b2 0 0 k 1

b3, . . . , bk+2 0 k2 k 1

Table 3.4: A Bad Example

We observe that there are two different optimal vectors of reserve prices for this

dataset which are (k3, k, k2, . . . , k2) and (k3, 1, 1, . . . , 1). By applying the first reserves,

the amounts of revenue that we get from our four auctions (the four columns) are

respectively k3, k3, k2, and 0, while the second vector gives us k3, 0, k3, and k2 amounts

75

of revenue respectively. Thus, the optimal revenue adds up to 2k3 + k2. Further, let us

mention that the all-zero vector of reserve prices simply gives us a revenue of k3 + k2,

and as a result the approximation factor of this solution is at most 0.5 + ε for a large

enough k and any constant ε > 0. Given a small constant ε > 0, we construct a

fractional solution of the LP which if rounded using the simple rounding procedure,

results in a less than 0.5+ε approximate solution for large values of k. Let δ = ε/4, and

consider a solution of the LP that assigns δ probability to the first optimal solution and

1 − δ probability to the second one. A formal representation of this solution is given

below. Note that for simplicity, instead of sub-profiles, we use profiles to represent our

solution. (See Definition 5.4.1.) Also, recall that b̂1, . . . , ˆbk+1 are the auxiliary buyers

who bid 0 in all the auctions.

• sa1,p1 = 1 for p1 = (b1, b̂1, . . . , b̂k, k
3, 0, . . . , 0).

• sa2,p2 = δ for p2 = (b3, . . . , bk+2, b̂1, , k
2, . . . , k2, 0).

• sa2,p′2 = 1− δ for p′2 = (b3, . . . , bk+2, b̂1, 1, . . . , 1, 0).

• sa3,p3 = δ for p3 = (b2, b̂1, . . . , b̂k, k, 0, . . . , 0).

• sa3,p′3 = 1− δ for p′3 = (b2, b3, . . . , bk+2, 1, . . . , 1).

• sa4,p4 = 1− δ for p4 = (b2, b3, . . . , bk+2, 1, . . . , 1).

• sa4,p′4 = δ for p′4 = (b̂1, b3, . . . , b̂k+1, 0, . . . , 0).

• xb1,k3 = 1.

• xb2,k = δ, and xb2,1 = 1− δ.

76

• xb,k2 = δ, and xb,1 = 1− δ for any b ∈ {b3, bk+2}.

It is easy to verify that this fractional solution satisfies the constraints of the LP

and is an optimal fractional solution; therefore, it suffices to show that the vector of

reserve prices obtained from the simple rounding algorithm gives us at most (0.5 +

ε)(2k3 + k2) revenue for a large enough k. As mentioned before, the simple rounding

algorithm directly uses the fractional solution of the LP as a probability distribution

to randomly pick the reserve price of any buyer. More precisely, for any buyer b any

reserve price r is chosen with probability xb,r independently from other buyers. Let s

denote the vector of reserve prices obtained from rounding our fractional solution using

this simple rounding technique. Below we investigate the revenue obtained from each

auction by applying s.

1. From the first auction we simply get revenue of k3 as reserve price k3 is chosen

for buyer b1 with probability one.

2. In the second auction there are k buyers with nonzero bids, thus all the buyers

get an item and pay their reserve prices. This implies that the expected revenue

of this auction is k(δk2 + (1 − δ)) since the simple rounding algorithm chooses

reserve prices of k2 and 1 for buyers b3, . . . , bk+2 with probabilities δ and (1− δ)

respectively.

3. In the third auction, however, there are k+1 buyers b2, . . . bk+2 with bid k; there-

fore, we get a revenue of k3 if all the bids are cleared. Otherwise, revenue of

this auction is the sum of reserve prices of the buyers whose bid is cleared multi-

plied by the weight of the auction (which is k). For any buyer b ∈ {b3, . . . bk+2}

77

the simple rounding technique chooses reserve price k2 with probability δ and

reserve price 1 with probability 1 − δ. Moreover, buyer b2 gets reserve prices k

and 1 respectively with probabilities δ and 1− δ. This implies that the revenue

obtained from this auction is k3 with probability (1− δ)k and it is less than 2k2

with probability 1 − (1 − δ)k. Note that for any constant value of δ, we have

limk→∞ (1− δ)k = 0; thus, for a large enough k, the expected revenue obtained

from this auction is at most 2k2 + δ.

4. Since the maximum bid in the fourth auction is one and its weight is k, the total

revenue obtained from this auction is at most k2.

By summing up the revenue obtained from the four auctions, we conclude that for a

large enough k, the expected total revenue is upper bounded by (1 + δ)k3 + 3k2 + k.

Since δ = ε/4, for a large enough k we have (1 + δ)k3 + 3k2 + k < (1 + ε/2)k3. Recall

that the optimal vector of reserve prices in this example gives us a revenue of 2k3 + k2.

This implies that the approximation factor of the simple rounding algorithm is upper

bounded by 0.5 + ε for a large enough k.

3.6 Omitted Proofs of Section 3.4.1

In this section, our goal is to prove Lemma 3.4.4, Lemma 3.4.6, and Lemma 3.4.7

which are stated in Section 3.4.1. Before going into their proofs, however, we start by

a series of claims that are needed for completing the proofs.

78

Claim 3.6.1. If the following inequality holds, then E[Wa(r, τ)] = k.

E[Wa(r
′, τ)] <

∑
b∈B

Pr[βa,b ≥ r′b ≥ τ] (3.13)

Proof. We have

E[Wa(r
′, τ)] = min

(∑
b∈B

Pr[βa,b ≥ r′b ≥ τ], k

)
.

Define B′ = {b ∈ B : Pr[βa,b ≥ r′b ≥ τ] 6= 0}. Observe that if |B′| ≤ k then

∑
b∈B

Pr[βa,b ≥ r′b ≥ τ] ≤ k,

which implies

E[Wa(r
′, τ)] =

∑
b∈B

Pr[βa,b ≥ r′b ≥ τ].

Thus, if Equation 3.13 holds then |B′| > k. By Claim 3.6.5, provided in the appendix,

for any b ∈ B′ we have E[qb] = 1. This gives us Pr[
∑

b∈B′ qb > k] = 1 and as a

result Pr[Qτ > k] = 1. Finally, Claim 3.4.1 gives us E[Wa(r, τ)] ≥ k Pr[Qτ > k], and

concludes the proof.

Assumption 3.6.2. The following equation holds for any auction a ∈ A.

E[Wa(r
′, τ)] =

∑
b∈B

Pr[βa,b ≥ r′b ≥ τ].

79

Proof. As a corollary of Claim 3.6.1, if

E[Wa(r
′, τ)] ≤

∑
b∈B

Pr[βa,b ≥ r′b ≥ τ],

then Equation 3.5 is simply satisfied for β = 0.55 and c = 0.58 since in this case

βE[Wa(r, τ)] = βk. Moreover, based on LP we have

∑
p:p∈Pa

Reva(p)≥τ

s?a,p ≤ k,

which results in

∑
p:p∈Pa

Reva(p)≥τ

s?a,p − (1− β)E[Wa(r
′, τ)]− βE[Wa(r, τ)] ≤ (1− β)k = 0.45k < 0.58k.

Therefore, to complete the proof of Lemma 3.3.3, we make the following assumption

and only focus on proving Equation 3.5 for auctions that do not satisfy the mentioned

condition.

Claim 3.6.3. For any buyer b ∈ Bτ the following holds.

⋃
b1∈Bτ\{b}

(Qb,a ∩Q′b1,a) = Qb,a ∩ Lτ .

Proof. Consider a valid profile a valid sub-profile p = (b′, b′′, r′, r′′) ∈ Sa. By definition,

for any buyer b1 ∈ Bτ we have p ∈ (Qb,a ∩ Q′b1,a) iff b′ = b and b′′ = b1. Moreover,

due to p being a valid sub-profile, it satisfies b′ 6= b′′. As a result we have p ∈

80

⋃
b1∈Bτ\{b}(Qb,a ∩ Q′b1,a) iff b′ = b and b′′ ∈ Bτ . This completes our proof since this is

equal to definition of Qb,a ∩ Lτ .

Claim 3.6.4. For any buyer b ∈ Bτ we have

∑
p∈Lτ∩Qb

s?a,p +
∑

p∈Lτ∩Q′b

s?a,p/k ≤ δτ .

Proof. As a constraint of the LP we have the following for b and any other buyer

b1 ∈ B.

∑
p∈Qb,a∩Q′b1,a

sa,p ≤
∑
r∈R

y′b1,r,a.

By summing both sides over all buyers in Bτ\{b} we get

∑
b1∈Bτ\{b}

∑
p∈Qb,a

∩Q′b1,a

sa,p ≤
∑

b1∈Bτ\{b}

∑
r∈R

y′b1,r,a.

Observe that by Claim 3.6.3 we have

⋃
b1∈Bτ\{b}

(Qb,a ∩Q′b1,a) = Qb,a ∩ Lτ ,

which results in

∑
p∈Lτ∩Qb,a

sa,p ≤
∑

b1∈Bτ\{b}

∑
r∈R

y′b1,r,a. (3.14)

81

Moreover, as the second constraint of the LP we have

y′b,r,a =
∑

p∈Q′b,r,a

sa,p/k.

By summing up both sides of this equation over all reserve prices in R, we have

∑
r∈R

y′b,r,a =
∑
r∈R

∑
p∈Q′b,r,a

sa,p/k −
∑

p∈Q′b,a

sa,p/k. (3.15)

Combining Equation 3.14 and Equation 3.15 yields

∑
p∈Lτ∩Qb,a

sa,p ≤
∑
b1∈Bτ

∑
p∈Q′b1,a

sa,p/k −
∑

p∈Q′b,a

sa,p/k. (3.16)

We further use the fact that for any buyer b2 ∈ Bτ and any sub-profile p = (b′, b2, r
′, r) ∈

Q′b2,a we have p ∈ Lτ . Recall that Lτ is defined as

Lτ := {(b′, b, r′, r) ∈ Tτ | b ∈ Bτ}.

We complete the proof using the definition of δτ which is δτ :=
∑

b∈Bτ
∑

p∈Lτ∩Q′b s
?
a,p/k.

This gives us the followings.

∑
p∈Lτ∩Qb,a

sa,p +
∑

p∈Lτ∩Q′b,a

sa,p/k ≤
∑
b1∈Bτ

∑
p∈Lτ∩Q′b1,a

sa,p/k ≤ δτ . (3.17)

Claim 3.6.5. For any buyer b ∈ Bτ with Pr[r′b ≤ βa,b] 6= 0 we have E[qb] = 1.

82

Proof. By construction of r′ we have

Pr[βa,b ≥ r′b] =
∑

r:r≤βa,b,
r≥tb

xb,r/(1− β).

As a result, if Pr[βa,b ≥ r′b] 6= 0 then tb ≤ βa,b. Recall that by definition of tb, we have

∑
r<tb

xb,r = β.

Further by construction of r we have

E[qb] = Pr[rb ≤ βa,b] =
∑

r:r≤βa,b,
r<tb

xb,r/β.

Given that tb ≤ βa,b we get

E[qb] = Pr[rb ≤ βa,b] =
∑
r<tb

xb,r/β = 1.

This concludes our proof.

Claim 3.6.6.

(1− β)
∑
b∈B

Pr[βa,b ≥ r′b ≥ τ] ≥
∑
p∈J+

τ

s?a,p.

83

Proof. By definition of r′

(1− β)
∑
b∈B

Pr[βa,b ≥ r′b ≥ τ] = (1− β)
∑
b∈B

∑
r:βa,b≤r,
r≤τ

fb,r

= (1− β)
∑
b∈B

∑
r:r≥tb,
r∈[τ,βa,b]

xb,r
1− β

=
∑
b∈B

∑
r:r≥tb,
r∈[τ,βa,b]

xb,r. (3.18)

Recall definition J +
τ := {p = (b, b′, r, r′) ∈ Tτ | b′ /∈ Bτ , r ≥ tb′}, for which we have

J +
τ ⊂ {p = (b, b′, r, r′) ∈ Sa| r ≥ τ , r ≥ tb}.

This is because combination of p ∈ Tτ and b′ /∈ Bτ implies that revenue of the sub-

profile is greater than or equal to τ while bid of the supporting buyer is smaller than

τ which yields r ≥ τ . Moreover, due to validity of any sub-profile in J +
τ we have

βa,b ≥ r. Using the first constraint of the LP, we get

∑
p∈J+

τ

s?a,p =
∑
b∈B

∑
p∈(J+

τ

∩Qb,r)

s?a,p ≤
∑
b∈B

∑
r:r≥tb,
r∈[τ,βa,b]

yb,r,a.

Moreover, by the third constraint, we have

∑
r:r≥tb,
r∈[τ,βa,b]

yb,r,a ≤
∑
r:r≥tb,
r∈[τ,βa,b]

xb,r.

84

Evoking Equation 3.18, we obtain

∑
p∈J+

τ

s?a,p ≤
∑
b∈B

∑
r:r≥tb,
r∈[τ,βa,b]

xb,r = (1− β)
∑
b∈B

Pr[βa,b ≥ r′b ≥ τ];

thus, the proof is completed.

Claim 3.6.7. The following equation holds for any buyer b.

∑
p∈Tτ∩Qb,a

s?a,p +
∑

p∈Lτ∩Q′b,a

s?a,p/k − (1− β) Pr[βa,b ≥ r′b ≥ τ] ≤ max(β, δτ). (3.19)

Proof. We consider two cases of tb ≥ τ and tb < τ and prove the lemma for them

seperately. We show that if tb ≥ τ then the left hand side of Equation 3.19 is uppe

bounded by β, and for the second case we show that it is upper bounded by δτ . We

have

∑
p∈Tτ∩Qb,a

s?a,p +
∑

p∈Lτ∩Q′b,a

s?a,p/k ≤
∑
p∈Qb,a

s?a,p +
∑

p∈Q′b,a

s?a,p/k =
∑
r≤βa,b

∑
p∈Qb,r,a

s?a,p +
∑
r≤βa,b

∑
p∈Q′b,r,a

s?a,p/k.

The right hand side is due to the fact that any sub-profile inQb,a orQ′b,a is a valid profile

of auction a which implies Qb,a =
⋃
r≤βa,b Q

′
b,r,a and Qb,a =

⋃
r≤βa,b Q

′
b,r,a. Moreover,

based on the first three constraints of the LP for any r ≤ βa,b we have

yb,r,a =
∑

p∈Qb,r,a

s?a,p, y′b,r,a =
∑

p∈Q′b,r,a

s?a,p,a/k, and y′b,r,a + yb,r,a ≤ xb,r.

85

which implies

∑
r≤βa,b

∑
p∈Qb,r,a

s?a,p +
∑
r≤βa,b

∑
p∈Q′b,r,a

s?a,p/k ≤
∑
r≤βa,b

yb,r,a +
∑
r≤βa,b

y′b,r,a ≤
∑
r≤βa,b

xb,r. (3.20)

Moreover, based on the construction of r′ we have

(1− β) Pr[βa,b ≥ r′b ≥ τ] = (1− β)
∑

r∈[τ,βa,b]

f ′b,r = (1− β)
∑

r:r∈[τ,βa,b],
r≥tb

xb,r/(1− β). (3.21)

If tb ≥ τ , combining Equation 3.20 and Equation 3.21, gives us

∑
p∈Tτ∩Qb,a

s?a,p +
∑

p∈Lτ∩Q′b,a

s?a,p/k − (1− β) Pr[βa,b ≥ r′b ≥ τ] ≤
∑
r≤βa,b

xb,r −
∑

r∈[tb,βa,b]

xb,r =
∑
r<tb

xb,r.

By definition of tb, we have
∑

r<tb
xb,r = β, therefore our proof for the case of tb ≥ τ

is completed and in the rest of the proof we assume tb < τ . Recall definition

J −τ := {p = (b, b′, r, r′) ∈ Tτ | βa,b′ < τ and r < tb}.

It is easy to verify that if tb < τ then J −τ ∩Qb,a = ∅. Since Tτ is partitioned to disjoint

sets of J +
τ , J −τ , and Lτ we obtain.

∑
p∈Tτ∩Qb

s?a,p =
∑

p∈J+
τ ∩Qb

s?a,p +
∑

p∈Lτ∩Qb

s?a,p.

86

In addition, by Claim 3.6.6, we have

(1− β) Pr[βa,b ≥ r′b ≥ τ] ≥
∑

p∈J+
τ ∩Qb

s?a,p,

which gives us ∑
p∈Tτ∩Qb

s?a,p − (1− β) Pr[βa,b ≥ r′b ≥ τ] ≤
∑

p∈Lτ∩Qb

s?a,p.

The proof is then completed using Claim 3.6.4 that shows

∑
p∈Lτ∩Qb

s?a,p +
∑

p∈Lτ∩Q′b

s?a,p/k ≤ δτ

for any buyer b.

Claim 3.6.8. For any buyer b with βa,b ≥ τ we have

E[qb] ≥ min

 1

β

 ∑
p∈Tτ∩Qb

s?a,p +
∑

p∈Lτ∩Q′b

s?a,p/k − (1− β) Pr[βa,b ≥ r′b ≥ τ]

, 1


Proof. We provide two different proofs for cases of tb ≤ βa,b and tb > βa,b. We claim

that in the first case, we have E[qb] = 1 and in the second case,

E[qb] ≥
1

β

 ∑
p∈Tτ∩Qb

s?a,p +
∑

p∈Lτ∩Q′b

s?a,p/k − Pr[βa,b ≥ r′b ≥ τ]

.
By construction, for vector of reserve prices r and any buyer b we have

E[qb] = Pr
[
rb ≤ βa,b

]
=
∑
r≤βa,b

fb,r,

87

where fb,r = xb,r/β for any r < tb and fb,r = 0 for any r ≥ tb as defined in the

algorithm. Note that tb is chosen in a way that
∑

r<tb
xb,r = β. Thus, if tb ≤ βa,b we

get

E[qb] =
∑
r≤βa,b

fb,r =
∑

r:r≤βa,b,
r<tb

xb,r/β =
∑
r<tb

xb,r/β = 1.

This completes the proof for the first case. Therefore, in the rest of the proof we focus

on the case of tb > βa,b. This gives us

E[qb] =
∑
r≤βa,b

fb,r =
∑

r:r≤βa,b,
r<tb

xb,r/β =
∑
r<βa,b

xb,r/β ≥
∑
r<βa,b

(
yb,r + y′b,r

)
/β,

where the right hand side is by constraint yb,r + y′b,r ≤ xb,r in the LP. Further by the

first two constraints of the LP we obtain

∑
r<βa,b

(
yb,r + y′b,r

)
=
∑
r<βa,b

 ∑
p∈Qb,r,a

sa,p +
∑

p∈Q′b,r,a

sa,p/k

.
Note that we can drop the constraint r < βa,b from the right hand side of the equation

since by definition of valid sub-profiles it holds for any p in Qb,a or Q′b,a. This gives us

∑
r<βa,b

 ∑
p∈Qb,r,a

sa,p +
∑

p∈Q′b,r,a

sa,p/k

 =
∑
p∈Qb,a

sa,p +
∑

p∈Q′b,a

sa,p/k ≥
∑

p∈Tτ∩Qb,a

s?a,p +
∑

p∈Lτ∩Q′b,a

s?a,p/k,

which completes our proof.

88

Lemma 3.4.4. (restated) The following inequality holds.

F (s?, τ) ≤
∑
p∈J−τ

s?a,p +
∑
p∈Lτ

s?a,p.

Proof. Recall that by definition

F (s?, τ) =
∑
p∈Ta,τ

s?a,p − (1− β)E[Wa(r
′, τ)].

Moreover, by Assumption 3.6.2,

E[Wa(r
′, τ)] =

∑
b∈B

Pr[βa,b ≥ r′b ≥ τ].

In addition based on Claim 3.6.6, we know

(1− β)
∑
b∈B

Pr[βa,b ≥ r′b ≥ τ] ≥
∑
p∈J+

τ

s?a,p.

Considering that Tτ is partitioned to three disjoint sets of J +
τ ,J −τ , and Lτ , by putting

the mentioned equations together, we get

F (s?, τ) =
∑
p∈Ta,τ

s?a,p − (1− β)E[Wa(r
′, τ)] ≤

∑
p∈Ta,τ

s?a,p −
∑
p∈J+

τ

s?a,p ≤
∑
p∈J−τ

s?a,p +
∑
p∈Lτ

s?a,p.

89

Lemma 3.4.6. (restated) For B1 = {b ∈ B : E[qb] = 1}, we have

E[Qτ − |B1|] ≥ (k − |B1|+ 1)δ/β.

Proof. By construction of vector of reserve prices r and r′, for any buyer b we have

∑
r≤βa,b

xr,b = β Pr[r ≤ βa,b] + (1− β) Pr[r ≤ βa,b].

Moreover, by the third constraint of the LP for any buyer b and reserve price r ∈ R,

we have yb,r,a + y′b,r,a ≤ xb,r, which implies

∑
r≤βa,b

(
yb,r,a + y′b,r,a

)
= β Pr[r ≤ βa,b] + (1− β) Pr[r ≤ βa,b].

Combining this with the first two constraints of the LP, yb,r,a =
∑

p∈Qb,r,a
sa,p and

y′b,r,a =
∑

p∈Q′b,r,a sa,p we get

∑
r≤βa,b

 ∑
p∈Qb,r,a

s?a,p +
∑

p∈Q′b,r,a

s?a,p/k

 = β Pr[r ≤ βa,b] + (1− β) Pr[r ≤ βa,b].

By definition of Qb,r and Q′b,a we can write

∑
p∈Qb,a

s?a,p +
∑

p∈Q′b,a

s?a,p/k = β Pr[r ≤ βa,b] + (1− β) Pr[r ≤ βa,b]

and ∑
p∈Qb,a∩Lτ

s?a,p +
∑

p∈Q′b,a∩Lτ

s?a,p/k ≤ β Pr[r ≤ βa,b] + (1− β) Pr[r ≤ βa,b].

90

Further, by Claim 3.6.4, for any buyer b we have

∑
p∈Lτ∩Qb

s?a,p +
∑

p∈Lτ∩Q′b

s?a,p/k ≤ δτ .

which means

∑
b∈B

 ∑
p∈Qb,a∩Lτ

sa,p +
∑

p∈Q′b,a∩Lτ

s′a,p/k

− δτ |B1| ≤
∑

b∈B\B1

β Pr[r ≤ βa,b] + (1− β) Pr[r ≤ βa,b].

Further, by 3.6.5, we know Pr[r ≤ βa,b] = 0 holds for any b /∈ B1. This implies

∑
b∈B

 ∑
p∈Qb,a∩Lτ

sa,p +
∑

p∈Q′b,a∩Lτ

s′a,p/k

− δτ |B1| ≤
∑

b∈B\B1

β Pr[r ≤ βa,b] =
∑

b∈B\B1

βE[qb].

To complete the proof, recall that we have defined δτ =
∑

b∈Bτ
∑

p∈Q′b,a∩Lτ s
?
a,p/k, and

by Claim 3.4.2 we have

∑
b∈Bτ

∑
p∈Qb,a∩Lτ

s?a,p =
∑
p∈Lτ

s?a,p = kδτ .

This implies ∑
p∈Qb,a∩Lτ

s?a,p +
∑

p∈Q′b,a∩Lτ

s?a,p/k = (k + 1)δτ ,

(k + 1− |B1|)δτ ≤
∑

b∈B\B1

βE[qb] = β(E[Qτ]− |B1|),

(k + 1− |B1|)δτ/β ≤ (E[Qτ]− |B1|),

and concludes the proof.

91

Lemma 3.4.7. (restated) For B1 = {b ∈ B : E[qb] = 1} and m = |B1| we have

E[Qτ −m] ≥ F (s?, τ)−mδ
β

+ δ/β.

Proof. Recall that by definition

F (s?, τ) =
∑
p∈Ta,τ

s?a,p − (1− β)E[Wa(r
′, τ)].

Combining this with Asspmtion 3.6.2 gives us

F (s?, τ) =
∑
b∈B

(∑
p∈Tτ∩Qb

s?a,p − (1− β) Pr[βa,b ≥ r′b ≥ τ]

)
,

which results in

F (s?, τ) + δ

β
=

1

β

∑
b∈B

 ∑
p∈Tτ∩Qb

s?a,p +
∑

p∈Lτ∩Q′b

s?a,p/k − (1− β) Pr[βa,b ≥ r′b ≥ τ]

. (3.22)

Moreover, by Claim 3.6.8, for any buyer b, we have

E[qb] ≥ min

 1

β

 ∑
p∈Tτ∩Qb

s?a,p +
∑

p∈Lτ∩Q′b

s?a,p/k − (1− β) Pr[βa,b ≥ r′b ≥ τ]

, 1
,

and by Claim 3.6.7 for any buyer b, we have

∑
p∈Tτ∩Qb

s?a,p +
∑

p∈Lτ∩Q′b

s?a,p/k − (1− β) Pr[βa,b ≥ r′b ≥ τ] ≤ max(β, δτ).

92

This implies that if δτ ≤ β, then for any buyer b we have

E[qb] ≥
1

β

 ∑
p∈Tτ∩Qb

s?a,p +
∑

p∈Lτ∩Q′b

s?a,p/k − (1− β) Pr[βa,b ≥ r′b ≥ τ]

,
and

E[Qτ] ≥
F (s?, τ) + δ

β
.

This completes the proof for the case of δτ ≤ β; therefore, in the rest of the proof we

assume δτ > β which means for any buyer b,

∑
p∈Tτ∩Qb

s?a,p +
∑

p∈Lτ∩Q′b

s?a,p/k − (1− β) Pr[βa,b ≥ r′b ≥ τ] ≤ δτ . (3.23)

Note that for any b ∈ B/B1 we have qb < 1 which means

E[qb] =
1

β

 ∑
p∈Tτ∩Qb

s?a,p +
∑

p∈Lτ∩Q′b

s?a,p/k − (1− β) Pr[βa,b ≥ r′b ≥ τ]

.
Combining this with Equation 3.22, we obtain

E[Qτ −m] =
∑

b∈B/B1

E[qt] =
F (s?, τ) + δ

β

− 1

β

∑
b∈B1

 ∑
p∈Tτ∩Qb

s?a,p +
∑

p∈Lτ∩Q′b

s?a,p/k − (1− β) Pr[βa,b ≥ r′b ≥ τ]

.
Using Equation 3.23, we get the following which completes the proof

E[Qτ −m] =
∑

b∈B/B1

E[qt] ≥
F (s?, τ) + δτ

β
− mδτ

β
=
F (s?, τ)−mδτ

β
+ δτ/β.

93

3.7 Proof of Lemma 3.2.3

Lemma 3.2.3. (restated) The optimal revenue is upper bounded by
∑

a∈A
∑

p∈Sa s
?
a,p ·

Reva(p).

Proof. Consider opt, an optimal solution of the problem. To prove this claim, it

suffices to construct vectors so, xo, and yo in a way that setting s = so, y = yo and

x = xo in the LP satisfies all the LP constraints and that the objective function of the

LP equals to the revenue of opt, or in the other words

Rev(opt) = max
x,s

∑
a∈A

∑
p∈Pa

soa,p · Reva(p). (3.24)

Roughly speaking, we construct so to be the representation of opt in the profile space.

For any sub-profile p = (b1, b2, r1, r2) we have so
a,p = 1 iff using opt, in auction a buyer

b1 is one of the winners, buyer b2 is the supporting buyer, and their reserve prices are

respectively r1 and r2.

We first show that Equation 3.24 holds for so. Let r denote the vector of reserve

prices in opt. For any auction a ∈ A, let bs,a be the supporting buyer, and let Ba denote

the set of winners in auction a using vector of reserve prices r. Payment of any winner

b ∈ Ba in auction a is max(rb, βa,bs,a), which means revenue obtained from auction a

using the vector of reserve prices r is
∑

b∈Ba
max(rb, βa,bs,a). To prove Equation 3.24, it

94

suffices to show that for any auction a we have

∑
b∈Ba

max(rb, βa,bs,a) =
∑
p∈Pa

Reva(p).

Note that for any profile p = (b, r′1, b2, r
′
2) ∈ Pa we have sa,p = 1 iff b ∈ Ba, b2 = bs,a,

rb = r′1 and rb2 = r′2. Moreover, by defintion, we have Reva(p) = max(r′1, βa,b2) =

max(rb, βa,bs,a). This implies that

∑
p∈Pa

Reva(p) = max(rb, βa,bs,a),

which results in Equation 3.24.

To complete the proof we construct xo, yo, and y′o in a way that setting x = xo,

y′ = y′o, y = y′o and s = so, satisfied all the constraints of the LP.

• For any buyer b ∈ B and r ∈ R we set xob,r = 1 iff reserve price r is assigned to

buyer b in opt and set xob,r = 0 otherwise.

• For any buyer b ∈ B, auction a ∈ A, and reserve price r ∈ R we set yob,r,a = 1 iff

using solution opt, buyer b is a winner in auction a and he is assigned a reserve

price r. Otherwise we set yob,r,a = 0.

• For any buyer b ∈ B, auction a ∈ A, and reserve price r ∈ R we set y′ob,r,a = 1

if using solution opt, buyer b is the supporting buyer in auction a and he is

assigned a reserve price r. Otherwise we set y′ob,r,a = 0.

We now start investigating the constraints of the LP one by one and verify that all

95

seven constraints hold for x = xo, y′ = y′o, y = y′o and s = so.

1. For the first constraint we need to show yob,r,a =
∑

p∈Qb,r,a
soa,p for any b ∈ B, r ∈ R,

and a ∈ A. It is easy to see that if b is not a winner in auction a then both sides

of this equation are equal to zero. To complete the proof we assume that b is a

winner. Let b2 denote the supporting buyer in auction a. Moreover, let r1 and

r2 respectively denote the reserve prices assigned to buyers b and b2 in opt. We

have yob,r,a = 1 iff r = r1 and b is a winner in auction a. We also show that∑
p∈Qb,r,a

soa,p = 1 iff r = r1. Note that p = (b, r1, b2, r2) is the only sub-profiles

in Sa with soa,p = 1. Further, by definition Qb,r,a is a subset of Sa and contains

the sub-profiles in which buyer b is a winner in auction a, thus it contains p iff

r = r1. This means that both sides of the equation are equal to one if r = r1 and

both are equal to zero otherwise.

2. For the second constraint, we need to show that y′ob,r,a =
∑

p∈Q′b,r,a s
o
a,p/k holds

for any b ∈ B, r ∈ R, and a ∈ A. Let b1 be the supporting buyer in auction

a and let r1 be the reserve price assigned to this buyer. By definition we have

y′ob,r,a = 1 iff b = b1 and r = r1, and we have y′ob,r,a = 1 otherwise. Therefore, for

this constraint to be satisfied we need to show that
∑

p∈Q′b,r,a s
o
a,p = k holds iff

b = b1 and r = r1, and we have
∑

p∈Q′b,r,a s
o
a,p = 0 otherwise. Let b2 denote one

of the winners in auction a and let r2 be the reserve price assigned to this buyer.

By definition, for any profile p = (b2, r2, b1, r1) ∈ Sa we have soa,p = 1 iff b2 is a

winner in auction a and r1 is the reserve price assigned to him. Since we have

assumed that each auction has exactly k winners then we have
∑

p∈Q′b,r,a s
o
a,p = k

96

iff b = b1 and r = r2, and we have
∑

p∈Q′b,r,a s
o
a,p = 0 otherwise.

3. To prove that our constructed solution satisfies the third constraint of the LP,

we need to show yob,r,a + y′ob,r,a ≤ xob,r for any b ∈ B, any reserve price r ∈ R and

any auction a. Consider a buyer b and let r1 be the reserve price assigned to this

buyer in solution opt. For any r 6= r1 both sides of the equation are obviously

zero. However, for r = r1 we have xob,r = 1. Observe that in any auction a, we

also have yob,r,a + y′ob,r,a ≤ 1 since b cannot be both a winner and the supporting

buyer in an auction.

4. For the fourth constraint, we need to show
∑

p∈Qb2,a
∩Q′b1,a

soa,p ≤
∑

r∈R y
′o
b1,r,a

.

For any sub-profile p = (b3, r1, b4, r2) in Qb2,a ∩ Q′b1,a we have b4 = b2 and

b3 = b1. Moreover, we have sa,p = 1 iff r1 and r2 are respectively the reserve

prices assigned to buyers b1 and b2, buyer b1 is a winner in auction a and buyer

b2 is the supporting buyer in this auction. This implies that the left hand side

is equal to one iff b1 and b2 are respectively a winner and the supporting buyer

in auction a. Further, the right hand side is equal to one iff b1 is the supporting

buyer in auction a. This concludes that the fourth constraint is satisfied for so

and y′o.

5. The condition
∑

p∈Pa
soa,p ≤ k is satisfied due to the assumption that we have

k winners in all auctions. Let b′ be the supporting buyer in auction a. For a

sub-profile (b1, r1, b2, r2) ∈ Pa we have sob,r = 1 iff b2 = b′, b1 is a winner in

auction a, and r1 and r2 are respectively the reserve prices assigned to buyers b1

and b2. Given that we have exactly k winner and that each buyer has a unique

97

reserve price then,
∑

p∈Pa
soa,p ≤ k.

6. For this constraint, we need to show
∑

r∈R x
o
b,r = 1. This is true since for a

reserve r we have xob,r = 1 if reserve r is assigned to buyer b, and in opt there is

exactly one reserve price assigned to each buyer.

7. The last constraint is simply satisfied since soa,p is either zero or one.

3.8 Useful Facts about Bernoulli Random Variables

Lemma 3.8.1. If Y ∼ Binomial(n, p), then for any m ≤ n we have Pr(Y ≥ m) =

G(p), where

G(p) =
n!

(m− 1)!(n−m)!

∫ 1

1−p
tn−m(1− t)m−1dt.

Proof. Let us define H(p) := Pr(Y ≥ m). We have

H(p) =
n∑

j=m

(
n

j

)
pj(1− p)n−j.

98

By taking derivative of this function we get:

H ′(p) =
n∑

j=m

(
n

j

)
jpj−1(1− p)n−j −

n∑
j=m

(
n

j

)
(n− j)pj(1− p)n−j−1

= n

n∑
j=m

(
n− 1

j − 1

)
pj−1(1− p)n−j − n

n−1∑
j=m

(
n− 1

j

)
pj(1− p)n−j−1

= n

n−1∑
i=m−1

(
n− 1

i

)
pi(1− p)n−1−i − n

n−1∑
i=m

(
n− 1

i

)
pi(1− q)n−1−i

= n

(
n− 1

m− 1

)
pm−1(1− p)n−m = G′(p).

The proof is completed as we also have G(0) = H(0) = 0.

Lemma 3.8.2. For any α > 1 and m > 0, Pr[X ≥ m] is minimized subject to

X ∼ Binomial(n,mα/n) when n→∞.

Proof. Let us define Xn ∼ Binomial(n,mα/n) and Xn+1 ∼ Binomial(n,mα/(n + 1))

We need to show that Pr[Xn ≥ m] ≤ Pr[Xn+1 ≥ m]. decreasing function of n. Using

Lemma 3.8.1, we have

Pr[Xn ≥ m] = n!
(m−1)!(n−m)!

G(n) where

G(n, α) =
n!

(m− 1)!(n−m)!

∫ 1

1−mα/n
tn−m(1− t)m−1dt.

We have

Pr[Xn+1 ≥ m]

Pr[Xn ≥ m]
=

(n−m+ 1)G(n+ 1)

(n+ 1)G(n, α)
.

Define Dn,α = (n−m+ 1)G(n+ 1)− (n+ 1)G(n). To complete the proof it suffices to

show Dn,α ≤ 1.

99

∂Dn,α

∂α
α(mα)−m(n+ 1)m−1

(
1− mα

n

)m−n
= Dn,α;1 :=

(
1− mα

n

)m−n(
1− mα

n+ 1

)n−m+1

− n−m+ 1

n

(
n+ 1

n

)m−1

.

Moreover, for any α ∈ (1, n/m),

∂Dn,α;1

∂α
=

(α− 1)m2nn−m(n+ 1−mα)n−m

(n+ 1)n−m+1(n−mα)n−m+1
> 0.

As a result, sign of Dn,α;1 can only change from − to + as α increases from 1 to n/m.

So, ∂Dn,α
∂α

has the same sign pattern. To get Dn,α ≤ 1, it suffices to show that Dn,0 ≤ 0

and Dn,n/m ≤ 0.

Since for α = 0, we have G(n, 0) = 0 for all n, we obviously have Dn,0 = 0 ≤ 0.

We conclude the proof by noting the following.

Dn,n/m = (n+ 1)G(n+ 1, n/m)− (n−m+ 1)G(n, n/m)

≤ (n+ 1)G(n+ 1, (n+ 1)/m)− (n−m+ 1)G(n, n/m)

= 1
/(n

m− 1

)
− 1
/(n

m− 1

)
= 0.

Lemma 3.8.3. Let p = (p0, . . . , pn) ∈ [0, 1]n be an extreme point of function Fm(p)

100

defined below subject to
∑

i∈[n] pi = t for a fixed t.

Fm(p) = Pr
[∑
i∈[n]

xi > m
]
,

where x1, . . . , xn are independent Bernoulli random variables with E[xi] = pi for any

i ∈ [n]. The following holds for any i, j ∈ [n]. If pi /∈ {0, 1} and pj /∈ {0, 1}, then

pi = pj.

Proof. We use proof by contradiction. If there does not exist such an extreme point,

then let p be an arbitrary extreme point with maximum up defined as below.

up = min
i∈U

(pi)

where U = {i : pi 6= 0}. W.l.o.g, let pi = up and pick a j ∈ [n] where pi < pj. To

obtain a contradiction, we show that if p is an extreme point, then it is possible to

modify pi and pj without changing other elements of p in a way that the values of

pi + pj and Fm(p) are unchanged but pi is increased. This gives us a contradiction

since by repeating this process one can increase up.

Let X =
∑

l∈n xl and X ′ = X − xi − xj. We have

Fm(p) = Pr[X ′ > m] + Pr[X ′ = m] Pr[xi + xj > 0] + Pr[X ′ = m− 1] Pr[xi + xj = 2].

Define d = (pj − pi)/2 and s = (pi + pj)/2. We have Pr[xi + xj = 2] = (s+ d)(s− d) =

101

s2 − d2 and Pr[xi + xj > 0] = d2 + 2s− s2. Let

G(s, d) = Pr[X ′ = m](d2 + 2s− s2) + Pr[X ′ = m− 1](s2 − d2).

Therefore,

Fm(p) = Pr[X ′ > m] +G(s, d).

Note that ∂G
∂d

= 2d(Pr[X ′ = m] + Pr[X ′ = m − 1]). By the assumption that p is

an extreme point, pi /∈ {0, 1} and pj /∈ {0, 1} we obtain that Pr[X ′ = m] + Pr[X ′ =

m−1] = 0. This gives us the freedom to change values of pi and pj and set pi = pj = s

as it does not change the value of Fm(p). Thus, we obtain a contradiction and the

proof is completed.

Fact 3.8.4. Given n iid Bernoulli random variables x1, . . . , xn with E[xi] = p, if n→

∞, then for any 0 ≤ j ≤ n we have

Pr

[
n∑
i=1

xi = j

]
=
e−np(np)j

j!
.

Proof. This is based on the relation between Poisson and Binomial distribution when

n→∞.

Lemma 3.4.9. (restated) Given m ∈ N and a random variable X that is sum of a set

102

of independent Bernoulli random variables with E[X] = µ, if m+ 1 < µ, then we have

Pr[X > m] ≥ min
0≤i≤m

G(m− i, µ− i).

Proof. Let x1 . . . xn denote a set of independent Bernoulli random that minimize Pr[
∑n

i=1 xi >

m] subject to
∑n

i=1 xi = E[X]. By Lemma 3.8.3, we know that any two variables xi and

xj that are not deterministically zero or one are identical. Let I = {i ∈ [n] : E[xi] = 1}.

Moreover, w.l.o.g., assume none of the variables are deterministically zero. We have

Pr[
∑n

i=1 xi > m] = Pr[
∑

i/∈M xi > m− |I|]. Further by Lemma 3.8.2, Pr[
∑n

i=1 xi > m]

is minimized when n→∞, which using Fact 3.8.4, leads to

Pr

[∑
i/∈M

xi ≤ m− |I|

]
≤

m−|I|∑
j=0

(µ− |I|)je−(µ−|I|)

j!
.

Recall that we have

G(x, λ) = 1−
x∑
i=0

λie−λ

i!
.

Note that if |I| > m, then Pr[
∑n

i=1 xi > m] = 1, thus by considering all possible values

of 0 ≤ |I| ≤ m we get

Pr

[
n∑
i=0

xi ≥ m

]
≥ min

0≤i≤m

(
1−

m−i∑
i=0

(µ− i)je−(µ−i)

j!

)
= min

0≤i≤m
G(m− i, µ− i).

Lemma 3.4.11. (restated) For any integer number m > 2 and any real number

103

θ ∈ [0, 2], we have

min
µ∈M2,θ

H(2,µ) ≤ min
µ∈Mm,θ

H(m,µ),

where Mm,θ = {µ = (µ1, . . . , µn) ∈ [0, 1]n|
∑n

i=1 µi = mθ}, and

H(k, (µ1, . . . , µn)) =
E[min(

∑
i∈[n] xi,m)]

m
,

with xi, . . . , xn being independent Bernoulli random variables with means µi, . . . , µn.

Proof. Given a θ ∈ [0, 1] and an arbitrary m ≥ 2, let x = (x1, . . . xn) be a vector of

independent Bernoulli random variables with means µ1, . . . , µn summing to mθ and let

y = (y1, . . . yn) be a vector of independent Bernoulli random variables with expectations

m−1
m
µ1, . . . ,

m−1
m
µn summing up to (m− 1)θ. We will prove that for any such x and y

we have

E
[

min(
∑n

i=1 xi,m)

m

]
≥ E

[
min(

∑n
i=1 yi,m− 1)

m− 1

]
. (3.25)

This shows that for a given m and θ,

min
p∈Mm,θ

H(m,p)

is an increasing function of m and as a result for any m we have

min
p∈M2,θ

H(2,p) ≤ min
p∈Mm,θ

H(m,p).

To achieve this, for any i, we couple xi with yi so that E[yi|xi = 0] = 0 and E[yi|xi =

104

1] = m−1
m
, and show that

E
[
K(

m− 1

m
xi, . . . ,

m− 1

m
xn)

]
≥ E[K(y1, . . . , yn)], (3.26)

where K(z1, . . . , zn) = min(
∑n

i=1
zi

m−1
, 1). Note that the left hand side of Equation 3.26,

is equal to that of Equation 3.25 and similarly the right hand sides are equal too, thus

proving the correctness of Equation 3.26 would complete the proof. Let x̄ = be an

arbitrary realization of the vector of random variables x. We show that for any value

of x̄ we have

E
[
K(

m− 1

m
xi, . . . ,

m− 1

m
xn)|x = x̄

]
≥ E[K(y1, . . . , yn)|x = x̄]. (3.27)

We know that if at leastm elements of x̄ are equal to one, then the left hand side is equal

to one as well. Also, function K(.) is upper bounded by one thus, if
∑n

i=1 x̄i > m− 1,

the Equation 3.27 holds. Otherwise, if at most m − 1 elements of x̄ are equal to one

then we have

E

[
K(

m− 1

m
xi, . . . ,

m− 1

m
xn)|x = x̄,

n∑
i=1

x̄i ≤ m− 1

]
= min

(
n∑
i=1

x̄i
m
, 1

)
=

∑n
i=1 x̄i
m

.

Recall that for any yi we have Pr[yi|xi = 0] = 0, which results in

Pr

[
n∑
i=1

yi ≤ m− 1|x = x̄,
n∑
i=1

x̄i ≤ m− 1

]
= 1.

105

This implies that

E

[
K(yi, . . . , yn)|x = x̄,

n∑
i=1

x̄i ≤ m− 1

]
= E

[
min

(
n∑
i=1

yi
m− 1

, 1

)]

= E

[
n∑
i=1

yi
m− 1

]
=

∑n
i=1 x̄i
m

,

which completes the proof as we showed that Equation 3.27 holds for all possible

realizations of x.

Claim 3.4.12. (restated) Given a fixed real number θ ∈ (0, 2), and a set of independent

Bernoulli random variables x1, . . . , xn with E[
∑

i∈[n] xi] = 2θ we have

1
2
E[min(

∑
i∈[n]

xi, 2)] ≥ 1− (1 + θ)e−2θ.

Proof. Let X =
∑

i∈[n] xi. We have

E[min(X, 2)] = Pr[X = 1] + 2 Pr[X ≥ 2] = 2− Pr[X = 1]− 2 Pr[X = 0]

It is easy to verify that this function is minimized when variables x1, . . . , xn are iid

and n → ∞ in which case, X is a Poisson random variable with λ = 2θ. For X ∼

Poisson(2θ) we have

Pr[X = 1] + 2 Pr[X = 0] = 2e−2θ + 2θ−2θ = (2 + 2θ)e−2θ,

106

which results in

E[min(X, 2)]

2
= 1− (1 + θ)e−2θ.

Lemma 3.8.5. Given a real number α > 1.05, an integer m ≥ 2000, and a set of

independent Bernoulli random variables xi, . . . , xn with E[X] ≥ αm we have

Pr[X ≥ m+ 1] ≥ 0.9,

where X =
∑n

i=1 xi.

Proof. Note that for any m ≥ 2000, we have 1.05m < 1.049(m + 1); therefore, given

that α ≥ 1.05 and m ≥ 2000 we obtain E[X] ≥ 1.049(m+ 1). By Chernoff bound, for

any δ > 0, we have

Pr(X < (1− δ)E[X]) <

(
e−δ

(1− δ)1−δ

)E[X]

.

In our case, we are interested in giving an upper bound for Pr[X < m+ 1], which is

Pr[X < m+ 1] ≤ Pr

[
X <

1

1.049
E[X]

]
<

(
e−0.047

(1− 0.047)1−0.047

)2000∗1.05

< 0.1.

This gives us Pr[X ≥ m+ 1] > 0.9 and completes the proof.

107

Chapter 4: Stochastic Matching

In this chapter, we consider the following stochastic matching problem. An arbi-

trary graph G = (V,E) is given, then each edge e ∈ E is retained (or to be consistent

with the literature realized) independently with some given probability p ∈ (0, 1]. The

goal is to pick a subgraph Q of G without knowing the edge realizations such that:

1. The expected size of the maximum matching among the realized edges of Q

approximates the expected size of the maximum matching among the realized

edges in G.

2. The maximum degree in Q is bounded by a function that may depend on p−1

but must be independent of the size of G.1

It would be useful to think of p as some constant whereas n := |V | → ∞. Then the

second condition translates to Q having O(1) maximum degree. In other words, the

subgraph Q should provide a good approximation while having O(n) edges, in contrast

to G which may have up to Ω(n2) edges.

Applications. The setting is mainly motivated by applications in which the process

of determining an edge realization (referred to as querying the edge) is considered time

1In this chapter, we solve a generalization of this problem where each edge e has its own realization
probability pe and the degree of Q can be proportional to p = mine pe. See Section 5.2.1 for the formal
setting.

108

consuming or expensive. For such applications, one can instead of querying every edge

of G, only query the edges of its much sparser subgraph Q and still find a large realized

matching in G. Kidney exchange and online labor markets are major examples of such

applications. For more details on the role of the stochastic matching problem in these

applications, see [5, 6, 12, 17, 17] (particularly [17, Section 1.2]) for kidney exchange

and [9, 11, 12] for online labor markets. Another natural application of the model is

that this subgraph Q can be used as a matching sparsifier for G which approximately

preserves its maximum matching size under random edge failures [4].

Related work. The problem has received significant attention [4, 5, 6, 9, 11, 12,

17, 41] after the pioneering work of Blum et al. [17] who proved that it admits a

(1
2
− ε)-approximation. Earlier follow-up works revolved around the prevalent half-

approximation barrier until it was first broken by Assadi et al. [5]. This was followed by

a 0.6568-approximation by Behnezhad et al. [11] and eventually a (2
3
−ε)-approximation

by Assadi and Bernstein [4] which is the state-of-the-art. See also [11, 12, 35, 41] for

various natural generalizations of the problem.

Our result. Below we state the main contribution of this chapter:

Theorem 5. For any ε > 0, there is an algorithm that picks an Oε,p(1)-degree subgraph

Q of G such that the expected size of the maximum realized matching in Q is at least

(1− ε) times the expected size of the maximum realized matching in G.

To get a (1− ε)-approximation, the dependence of the maximum degree of Q on

both ε and p is necessary. Particularly, a simple lower bound shows that even when

G is a clique, to avoid too many singleton vertices in a realization of Q, the maximum

109

degree in Q must be Ω(ln ε−1

p
) [5]. The same lower bound also shows that a (1− o(1))

approximation is not achievable unless the maximum degree of Q is ω(1), meaning that

our approximation-factor is essentially the best one can hope for.

Remark 4.0.1. In Theorem 6, Oε,p(1) is in the order

exp
(
exp
(
exp
(
O
(
ε−1
))
× log log p−1

))
.

We do not believe this dependence is optimal and leave it as an open problem to improve

it. Particularly, we conjecture that the same algorithm that is analyzed in this chapter

(see Algorithm 2) should obtain up to (1 − ε)-approximation even by picking only a

poly(1/εp)-degree subgraph.

The algorithm. Many different constructions of Q have been studied in the litera-

ture. A well-studied algorithm first considered by Blum et al. [17] which was further

analyzed (module minor differences and generalizations) in the subsequent works of

[5, 6, 12, 35, 41] is as follows: Iteratively pick a maximum matching Mi from G, re-

move its edges, and finally let Q = M1 ∪ . . . ∪MR for some parameter R that controls

the maximum degree in Q. Despite the positive results proved for this algorithm, it

was already shown in [17] that its approximation-factor is not better than 5/6. Thus

to obtain (1− ε)-approximation, one has to use a different algorithm.

We focus on an algorithm proposed previously by Behnezhad et al. [11], which

they proved obtains at least a 0.6568-approximation. The algorithm is equally simple,

but subtly different: Draw R independent realizations G1, . . . ,GR of G and let Q =

110

MM(G1) ∪ . . . ∪ MM(GR) where MM(Gi) is a maximum matching of Gi. Our main

result is obtained via providing a different analysis of this algorithm. Within the next

two paragraphs, we discuss how our analysis differs substantially from the previous

approaches and in particular from the analysis of [11].

The analysis and the Ruzsa-Szemerédi barrier. A major barrier to overcome

in order to prove existence of a (1− ε)-approximate subgraph was already discussed in

the work of Assadi, Khanna, and Li [5, Section 6] based on Ruzsa-Szemerédi graphs

[2, 26, 28, 39] which we henceforth call the “RS-barrier”. Consider an extension of the

stochastic matching setting where the realization of edges in a single a-priori known

matching M of G can be correlated while other edges are still realized independently.

An implication of the RS-barrier is that in this extended model, no algorithm can

obtain (1− ε)-approximation (or even beat 2
3
-approximation2) unless Q has maximum

degree nΩ(1/ log logn) = ω(polylog n). Put differently, this proves that in order to beat

2
3
-approximation, the analysis has to use the fact that every edge around a vertex

is realized independently. This explains why the previous arguments were short of

bypassing 2
3
-approximation: They can all (to our knowledge) be adapted to tolerate

adversarial realization of one edge per vertex.

“Vertex-independent matchings” to the rescue. We overview our analysis soon

in Section 5.1. However, here we briefly mention our key analytical tool in bypassing

the RS-barrier. It is an algorithm (Lemma 4.3.8) for constructing a matching Z on the

realized crucial edges (roughly, an edge is crucial if it has a sufficiently high probabil-

2The original proof of [5] rules out > 6
7 -approximation. A similar instance can rule out 2

3 -
approximation using a more efficient construction of RS-graphs [28] and allowing a subset of edges of
G to have realization probability 1.

111

ity of being part of an optimal realized matching). The algorithm constructs Z such

that among some other useful properties, it guarantees that each vertex is matched

independently from all but O(1) other vertices. Here the independence is with regards

to both the randomization of the algorithm in constructing Z, and also importantly

the edge realizations of G. This independence property is the key that separates the

stochastic matching model from the extended model of the RS-barrier: Due to the

added correlations in the edge realizations, such vertex-independent matchings essen-

tially do not exist in the model of the RS-barrier. Using this independence, we show

that Z can be well-augmented by the rest of the realized edges in Q. See Section 5.1

for a more detailed overview of our analysis and how the independence property helps.

Our method of bypassing the RS-barrier via vertex-independent matchings sheds

more light on the limitations imposed by Ruzsa-Szemerédi type graphs. These graphs

are known to be notoriously hard examples in various other areas such as property

testing, streaming algorithms, communication complexity, and additive combinatorics

among others [2, 26, 28, 32, 39]. As such, we believe that this method may find

applications beyond the stochastic matching problem.

Organization of the chapter. In Section 5.1 we provide an informal overview of

our analysis. In Section 5.2.1 we formally state the problem and the notations used

throughout the chapter. In Section 5.2 we describe the algorithm and basic definitions

that we will use throughout the analysis. In Section 4.4 we prove how the vertex-

independent matching lemma leads to a (1− ε)-approximation and in Section 4.5, we

prove the vertex-independent matching lemma. Finally, Section 4.9 contains the proofs

112

of (less important) statements that are deferred.

4.1 Technical Overview

As previously described, we consider the following algorithm for constructing

subgraph Q (see also Algorithm 2): Draw R realizations G1, . . . ,GR of graph G, then

pick a matching MM(Gi) from each realization, and finally set Q = MM(G1) ∪ . . . ∪

MM(GR). In this section, we give an informal overview of our analysis for this algorithm.

Note that these realizations Gi are part of the randomization of the algorithm

and may be very different from the actual realization G of G. In fact, in expectation,

only p fraction of the edges of each matching MM(Gi) are realized in G. Thus, we

have to argue that the realized edges of these matchings can be used to augment each

other and form a large matching in the realized subgraph Q of Q. In order to do

this, we will give a “procedure” to construct a matching in Q. To get a handle on the

dependencies involved, the procedure carefully decides how the realization of edges in

Q are revealed and which are chosen to be in the matching. We emphasize that this

procedure is merely an analytical tool for analyzing the approximation-factor. Thus,

no matter how intricate it is, the algorithm for constructing Q remains to be the simple

Algorithm 2 described above.

A crucial/non-crucial decomposition. Similar to [11] (and also implicitly [6]),

we consider a partitioning of the edges of G into what we call crucial and non-crucial

edges. For each edge e, define qe := Pr[e ∈ MM(G)] where MM(·) is the same matching

algorithm used to construct Q. We further assume that MM(·) is deterministic, so the

113

probability is taken only over the realization G. For two thresholds 0 < τ− < τ+ < 1

that we fix later, we define:

• The crucial edges as C := {e ∈ E | qe ≥ τ+}.

• The non-crucial edges as N := {e ∈ E | qe ≤ τ−}.

Note that in the decomposition above edges e with qe ∈ (τ−, τ+) are neither crucial nor

non-crucial. We will essentially “ignore” these edges in the analysis but ensure that

we choose τ− and τ+ such that there are few ignored edges.

In our procedure to construct a matching on Q, we treat crucial and non-crucial

edges differently. We start with the crucial edges and (in Lemma 4.3.8) construct a

matching Z on them whose expected size is (almost) as large as the expected number of

crucial edges in the optimal maximum realized matching of G. We then show that this

matching Z can be augmented via the non-crucial edges to eventually form a matching

whose expected size is arbitrarily close to opt := E[|MM(G)|].

The procedure for crucial edges. In addition to the lower bound on the expected

size of Z, we make sure that no vertex tends to be “over-matched” in Z. More formally,

the probability of any vertex v being matched in Z should not be larger than the

probability that v is matched via a crucial edge in MM(G). Both of these conditions

can actually be satisfied by a very simple randomized procedure: Reveal the whole

realization C of C, also draw a random realization N ′ of the non-crucial edges, and let

Z be the crucial edges in matching MM(C ∪ N ′).

Unfortunately, the matching constructed via the above-mentioned procedure is

hard to augment via the non-crucial edges as we have no control over the correlations.

114

To get around this, we need an extra “independence” property. Let Xv be the indicator

of the event that vertex v is matched in Z. The independence property requires random

variables Xv1 , Xv2 , . . . , Xvn to be (almost) independent where {v1, . . . , vn} is the vertex-

set of G. Clearly, perfect independence cannot be achieved: Given the event that a

vertex v is matched in Z, we derive that at least one of its neighbors in C is also

matched. What we prove can be achieved, though, is that each Xv is independent from

Xu of vertices u outside a small local neighborhood of v in graph C. (See Lemma 4.3.8

part 4 for the formal statement.)

In order to satisfy the independence property described above, we will not reveal

the whole realization C outright and then construct Z based on it as it was done

in the simple procedure described above. Instead, we present a different algorithm

(Algorithm 2) for constructing this matching Z. To prove the independence property,

we show that this algorithm can be simulated locally. In other words, for each vertex

v, the value of Xv can be determined uniquely by having the realization of edges in a

small local neighborhood of v. Thus, if two vertices u and v are sufficiently far from

each other in graph C, then Xv and Xu would be independent.

Augmenting Z via non-crucial edges. We noted above that E[|Z|] is (almost)

as large as the expected number of crucial edges in MM(G). Therefore, in order to

construct a matching of Q with expected size arbitrarily close to opt, we have to

augment Z via the non-crucial edges. To do this, we only use non-crucial edges {u, v}

in Q such that Xu and Xv are independent. Describing how exactly we construct the

matching on these non-crucial edges requires a number of definitions which we give in

115

Section 4.4.1. However, to convey the key intuition, here we only mention how and why

the independence of Xu and Xv plays an important role in using a non-crucial edge

e = {u, v} to augment Z. Suppose that Pr[Xu] = Pr[Xv] = 1/2. Note that it is only

when both u and v are unmatched in Z that we can use edge e to augment Z. If Xu and

Xv are independent, there is a relatively large probability (1−Pr[Xu])(1−Pr[Xv]) = 1
4

that this occurs. However, if Xu and Xv can be correlated, it may be the case that with

probability half Xu = 1 and Xv = 0, and with probability half Xu = 0 and Xv = 1. In

this case, the probability of both u and v being unmatched in Z would be zero and thus

we would never be able to use e to augment Z. We remark that this is precisely the

type of correlation introduced in the RS-barrier of [5] which the independence property

allows us to bypass.

4.2 Preliminaries

General notations. We denote the maximum matching size of any graph G by µ(G).

For a matching M , we use V (M) to denote the set of vertices matched in M . For any

two nodes u and v in a graph G, we use dG(u, v) to denote their distance, i.e. the

number of edges in their shortest path. Furthermore, the distance dG(u, e) between an

edge e and a node u is the minimum distance between an endpoint of e and u. We

use 1(A) as the indicator of an event A, i.e. 1(A) = 1 if event A occurs and 1(A) = 0

otherwise. Also, we may use [k] := {1, 2, . . . , k} for any integer k ≥ 1.

Throughout the thesis, we define various functions of form x : E → [0, 1] that

map each edge e ∈ E to a real number in [0, 1]. Having such function x, for any vertex

116

v we define xv :=
∑

e3v xe, for any edge subset F we define x(F) :=
∑

e∈F qe, and for

any vertex subset U we define x(U) :=
∑

e={u,v}:u,v∈U xe. We also denote |x| =
∑

e xe.

The setting. We consider a generalized variant of the standard stochastic matching

problem studied in the literature where each edge e has a realization probability pe

that may be different from that of other edges. We then let p = mine pe, which is the

parameter the degree of subgraph Q can depend on. This generalization will actually

help in solving the original model of the literature which coincides with the case where

pe = p for every edge e.

We denote realizations by script font; for instance, we use G = (V, E) to denote

the realized subgraph of the input graph G, which includes each edge e independently

with probability pe. Similarly, we use Q to denote the realized subgraph of Q. The

same notation also naturally extends to denote realization of other subgraphs of G that

we may later define.

As we discussed previously, the goal is to pick a sparse subgraph Q of G such

that the ratio E[µ(Q)]/E[µ(G)], known as the approximation-factor, is large. Here the

expectations are taken over the realizationsQ and G, and possibly the randomization of

the algorithm in constructing subgraph Q. For brevity, we use opt to denote E[µ(G)].

Note that opt is just a number.

We note that the expected approximation-factor defined above can automatically

be turned into high-probability due to a simple concentration bound. See Appendix 4.6.

117

4.3 Basic Definitions and The Algorithm

The algorithm that we analyze is formally stated as Algorithm 2.

Algorithm 1 ([11]). A sampling-based non-adaptive algorithm for stochastic match-

ing.

Parameter: R, which controls the maximum degree of Q.

Take R realizations G1, . . . ,GR of G independently where each realization Gi includes

each edge e independently with probability pe. Return subgraph Q = MM(G1)∪ . . .∪
MM(GR).

In the algorithm above, MM(Gi) returns a maximum matching of Gi. It will be

convenient for the analysis to assume MM(·) is a deterministic maximum matching

algorithm.

In order to analyze Algorithm 2, we will make the following assumption which

will simplify many of our arguments.

Assumption 4.3.1. opt ≥ 0.1εn.

Assumption 4.3.1 comes w.l.o.g. due to a reduction of Assadi et al. [5]. The

reduction is roughly as follows: If n � opt, randomly put nodes of G into O(opt
ε

)

buckets and contract the nodes within each bucket. The resulting graph will have

only O(opt
ε

) nodes but its expected maximum realized matching will be as large as

(1−O(ε))opt. Solving this modified graph will then solve the original graph G as well.

We provide further details in Appendix 4.7 and note that for the reduction to work, it

is important that our algorithm can handle different edge realization probabilities.

118

4.3.1 A Crucial/Non-crucial Decomposition

For each edge e define qe := Pr[e ∈ MM(G)] where MM(·) is the same match-

ing algorithm used in Algorithm 2. Since we assumed MM(·) is deterministic, the

probability is taken only over the randomization of the realization G. Having this def-

inition, for any vertex v we denote qv :=
∑

e3v qe and for any subset E ′ ⊆ E denote

q(E ′) :=
∑

e∈E′ qe. The following statements immediately follow from the definition:

Observation 4.3.2. q(E) = opt.

Observation 4.3.3. For any vertex v, qv denotes the probability that v is matched in

MM(G).

We will fix two thresholds 0 < τ− < τ+ < 1 that both depend only on ε and p.

Next, for any edge e, we say e is crucial if qe ≥ τ+, non-crucial if qe ≤ τ−, and ignored

if qe ∈ (τ−, τ+). We denote the crucial edges by C := {e ∈ E | e is crucial}, and the

non-crucial edges by N := {e ∈ E | e is non-crucial}. Furthermore, we denote their

realizations by C := C ∩E and N := N ∩E . When confusion is impossible, we may use

C to denote graph (V,C) instead of merely the edge-subset. The same also naturally

generalizes to N , C, and N . We will further use ∆C to denote the maximum degree

in graph C. Moreover, for any vertex v we use cv (resp. nv) to denote the probability

that v is matched via a crucial (resp. non-crucial) edge in MM(G).

Observation 4.3.4. ∆C ≤ 1/τ+.

Proof. Each edge e ∈ C has qe ≥ τ+ by definition. Thus, if there is a vertex v of degree

larger than 1/τ+ in C, then it should hold that qv > 1/τ+ × τ+ = 1 which contradicts

119

Observation 4.3.3.

4.3.2 Setting the Thresholds τ− and τ+

To describe how we set the values of τ− and τ+, we state a lemma that we prove

in Section 4.9.

Lemma 4.3.5. Fix any arbitrary function f(x) such that 0 < f(x) < x for any

0 < x < 1. There is a choice of 0 < τ− < τ+ < 1 such that: (1) τ− = f(τ+). (2)

q(N) + q(C) ≥ (1− ε)opt. (3) Both τ− and τ+ depend only on ε and p. And finally,

(4) τ+ ≤ (εp)50.

The lemma above essentially shows that we can have any desirably large gap

between τ+ and τ− and still ensure that q(N) + q(C) ≥ (1 − ε)opt. That is, the

ignored edges in expectation constitute at most εopt edges of MM(G). While this may

sound counter-intuitive, it follows roughly speaking from the fact that by iteratively

reducing the threshold τ+ by a sufficient amount, all the previously ignored edges

become crucial. Thus it cannot continue to hold that there are still a significant mass

of the matching on the ignored edges after sufficiently many iterations. See Section 4.9

for the proof.

Having Lemma 4.3.5, we set our thresholds and the parameter R of Algorithm 2

as follows:

120

Setting τ−, τ+, and R:

Define function f(x) := x10g(x) where g(x) := ε−20 log 1
x
.

We plug this function f into Lemma 4.3.5 and define τ− and τ+ accordingly. We also

set R = 1
2τ−

.

Note that function f as defined above satisfies 0 < f(x) < x for any 0 < x < 1

since clearly g(x) ≥ 1 so long as 0 < x < 1. Therefore, we can indeed plug f into

Lemma 4.3.5. This results in the following properties:

Corollary 4.3.6. It holds that: (1) τ− = (τ+)10g where g = ε−20 log 1
τ+

. (2) q(N) +

q(C) ≥ (1− ε)opt. (3) Both τ− and τ+ depend only on ε and p and thus R = Oε,p(1).

(4) τ− < τ+ ≤ (εp)50.

The next lemma shows that R is set such that Algorithm 2 samples (almost) all

crucial edges.

Observation 4.3.7. For every edge e ∈ C, Pr[e ∈ Q] ≥ 1− ε.

Proof. Note that e ∈ Q if there is at least one i ∈ [R] where e ∈ MM(Gi). The

probability that e ∈ MM(Gi) for any fixed i is precisely qe. Since realizations G1, . . . ,GR

are independent, it holds that Pr[e 6∈ Q] = (1− qe)R. On the other hand qe ≥ τ+ since

e is crucial. Also R = 1
2τ−

> ln ε−1/τ+ where the latter inequality follows easily from

Corrolary 4.3.6 part (1). Combining all of these gives:

Pr[e 6∈ Q] = (1− qe)R < (1− τ+)ln ε−1/τ+ < e− ln ε−1

= ε.

121

Therefore indeed Pr[e ∈ Q] ≥ 1− ε.

4.3.3 The Vertex-Independent Matching Lemma

As discussed before, a key technical contribution of this chapter that allows get-

ting an arbitrary good approximation-factor is a “vertex-independent matching” lemma

that we state here. The proof of this lemma is involved and thus we defer it to Sec-

tion 4.5. In Section 4.4, we show how Lemma 4.3.8 can be used to analyze Algorithm 2

and prove Theorem 6.

Lemma 4.3.8 (Vertex-Independent Matching Lemma). There is a randomized algo-

rithm that constructs an integral matching Z of C (the realized subgraph of C) such

that defining Xv as the indicator random variable for v ∈ V (Z), we get:

1. E[|Z|] ≥ q(C)− 30εopt.

2. For every vertex v, Pr[Xv] ≤ max{cv−ε2, 0}, where recall that cv is the probability

that vertex v is matched via a crucial edge in MM(G).

3. The matching Z is independent of the realization of non-crucial edges in G.

4. Let λ := ε−20 log ∆C. For every k and every {v1, v2, . . . , vk} ⊆ V such that

dC(vi, vj) ≥ λ for all vi 6= vj, random variables Xv1 , . . . , Xvk are independent.

We emphasize that E[|Z|] and Xv are both defined with respect to the randomizations

in both the realization of C, and the randomization of the algorithm in constructing Z.

Observation 4.3.9. Let g be as defined in Corollary 4.3.6 and λ be as defined in

Lemma 4.3.8. Then it holds that g ≥ λ.

122

Proof. Since λ = ε−20 log ∆C by definition and ∆C ≤ 1/τ+ by Observation 4.3.4, we

get that λ ≤ ε−20 log 1
τ+

. On the other hand g = ε−20 log 1
τ+

. Therefore, g ≥ λ.

4.4 The Analysis via the Vertex-Independent Matching Lemma

In this section, given correctness of Lemma 4.3.8, we prove Theorem 6. In what

follows we give the outline of the proof by referring to the needed lemmas that will be

proved in subsequent Sections 4.4.1, 4.4.2, 4.4.3, and 4.4.4.

Proof Outline for Theorem 6. Let Q be the output of by Algorithm 2 where

parameter R is set as described above. We show that one can construct a matching

of expected size at least (1 − 56ε)opt on the realized subgraph Q of Q. This implies

that E[µ(Q)] ≥ (1− 56ε)opt = (1− 56ε)E[µ(G)]. In other words, this proves that the

approximation-factor of the algorithm is at least (1− 56ε). (Note this is equivalent to

(1− ε) approximation since one can choose ε to be any desirably small constant.)

In order to construct a matching of expected size at least (1− 56ε)opt on Q, we

first describe how to construct an “expected fractional matching” (see Definition 4.4.1)

x onQ in Sections 4.4.1, 4.4.2, and 4.4.3. Later on, we show in Section 4.4.4 how to turn

x into a fractional matching y onQ such that E[|y|] ≥ (1−55ε)opt (see Lemma 4.4.11).

Finally, to turn y into an integral matching, we show (Observation 4.4.10) that the so

called “blossom inequalities” of size up to 1/ε also hold for y. That is, we show that

for all vertex subsets U ⊆ V with |U | ≤ 1/ε, we have y(U) ≤ b |U |
2
c. By Edmond’s

celebrated theorem [25, 40] on the matching polytope, this means that there is an

integral matching of size at least 1
1+ε
|y| ≥ (1 − ε)|y| in Q. As described, E[|y|] ≥

123

(1− 55ε)opt, thus indeed E[µ(Q)] ≥ (1− ε)(1− 55ε)opt ≥ (1− 56ε)opt as desired.

4.4.1 Construction of an Expected Fractional Matching x on Q

In this section, we describe an algorithm that constructs an “expected fractional

matching” x on Q as defined below.

Definition 4.4.1. Let A be a random process that assigns a fractional value xe ∈ [0, 1]

to each edge e of a graph G(V,E). We say x is an expected fractional matching if:

1. For each vertex v, defining xv :=
∑

e3v xe we have E[xv] ≤ 1.

2. For all subsets U ⊆ V with |U | ≤ 1/ε, x(U) ≤ b |U |
2
c with probability 1.

We emphasize that the definition only requires E[xv] ≤ 1, thus depending on the

coin tosses of the process, it may occur that xv > 1, violating the constraints of a

normal fractional matching. We will later argue that in our construction, the values of

xv’s are sufficiently concentrated around their mean and thus we can turn our expected

fractional matching to an actual fractional matching of (almost) the same size.

As described before, we construct an expected fractional matching x on the edges

of graph Q. Note that here the graph Q itself is also stochastic. In the construction,

we treat crucial and non-crucial edges completely differently.

Crucial edges. On the crucial edges, we first construct an integral matching Z using

the algorithm of Lemma 4.3.8. Once we have Z, we define x on crucial edges as follows.

124

For every crucial edge e, xe :=


1, if e ∈ Z and e ∈ Q,

0, otherwise.

(4.1)

Note from Observation 4.3.7 that each crucial edges belong to Q with probability

at least 1 − ε. Therefore the construction above (roughly speaking) sets xe = 1 for

most of the edges e in Z.

Non-crucial edges. For defining x on the non-crucial edges, we start with a num-

ber of useful definitions. For any edge e, define te to be the number of matchings

MM(G1), . . . ,MM(GR) that include e. Then based on that, define

fe :=


te
R
, if te

R
≤ 1√

εR
and e is non-crucial,

0, otherwise.

(4.2)

Note that fe is a random variable of only the randomization of Algorithm 2, i.e. it

is independent of the realization. Also note that fe is desirably non-zero only on the

edges that belong to graph Q. Having defined fe, we define xe on the non-crucial edges

as follows.

For every non-crucial edge e, define

xe =


fe

pe(1−Pr[Xv])(1−Pr[Xu])
, if e is realized, u, v 6∈ V (Z), and dC(u, v) ≥ λ,

0, otherwise.

(4.3)

125

We note that λ in the definition above is the number defined in Lemma 4.3.8 and

that Xv is the indicator random variable for the event v ∈ V (Z).

Before concluding this section, let fv :=
∑

e∈N :v∈e fe for each vertex v. We note

the following properties of f , which can be derived directly from the definition above.

The proof is given in Section 4.9.

Claim 4.4.2. It holds that:

1. For every non-crucial edge e, E[fe] ≤ qe.

2. For every non-crucial edge e, E[fe] ≥ (1− ε)qe.

3. For every vertex v, it always holds that
∑

e3v fe ≤ 1.

4. For every vertex v, Pr[fv > nv + 0.1ε] ≤ (εp)10, where recall that nv is the

probability that v is matched via a non-crucial edge in MM(G).

Consider a non-crucial edge {u, v} between two nodes u and v with dC(u, v) ≥ λ.

The probability that xe is non-zero is pe(1−Pr[Xv])(1−Pr[Xu]): Both u and v should be

unmatched in Z and e should be realized, and further all these events are independent.

This intuitively explains why we set xe = fe
pe(1−Pr[Xv])(1−Pr[Xu])

if all these conditions hold:

We want the denominator to cancel out with this probability so that we get E[xe] = fe.

We will formalize this intuition in Section 4.4.3 where we prove the expected size of x

is large.

4.4.2 Validity of x

In this section, we prove that x is indeed an expected fractional matching of Q.

126

First, we prove that x is non-zero only on the edges of Q. This simply follows

from the construction of x.

Claim 4.4.3. Any edge e with xe > 0 belongs to Q. That is, x is only non-zero on the

set of edges queried by Algorithm 2 that are also realized.

Proof. For any crucial edge e, we either have xe = 1 or xe = 0. By definition, if xe = 1

then e ∈ Z ∩Q. By Lemma 4.3.8, Z is a matching of realized crucial edges, i.e. e ∈ Z

implies e ∈ E . Therefore, e ∈ Z ∩Q implies e ∈ E ∩Q = Q as desired.

For any non-crucial edge e, if e 6∈ Q, then fe = 0 by definition of fe. Therefore,

if xe > 0, then fe > 0 which implies e ∈ Q. Moreover, by (4.3), xe > 0 implies e is

realized. Combining these two, we get that if xe > 0 then e ∈ Q.

Next, we prove condition (1) of Definition 4.4.1.

Claim 4.4.4. For every vertex v, E[xv] ≤ 1.

Proof. Suppose at first that there is an edge e incident to v that belongs to matching

Z. Then we either have xe = 1 or xe = 0 (depending on whether e ∈ Q or not). For

all other edges e′ connected to v (crucial or non-crucial) we have xe′ = 0 by (4.1) and

(4.3). Therefore if such edge e exists, we indeed have xv ≤ 1. For the rest of the proof,

we condition on the event that no such edge e exists, i.e. v 6∈ V (Z) and prove the

claim.

Let u1, u2, . . . , ur be neighbors of v in graph G such that for all i ∈ [r]: (1) edge

{v, ui} is non-crucial, (2) dC(v, ui) ≥ λ. Let ei := {v, ui}; we claim that conditioned

127

on v 6∈ V (Z), we have

xv = xe1 + xe2 + . . .+ xer . (4.4)

To see this, fix an edge e = {v, u} for some u 6∈ {u1, . . . , ur}. We show that xe = 0,

which suffices to prove (4.4). First if e is crucial, then e 6∈ Z given that v 6∈ V (Z);

thus according to (4.1) we set xe = 0. Moreover, if e is non-crucial, the assumption

u 6∈ {u1, . . . , ur} implies dC(v, u) < λ by definition of the set. In this case also, we set

xe = 0 according to (4.3); concluding the proof of (4.4).

By linearity of expectation applied to (4.4), we get

E[xv | v 6∈ V (Z)] =
r∑
i=1

E[xei | v 6∈ V (Z)]. (4.5)

Moreover, for any arbitrary i ∈ [r] we have

E[xei | v 6∈ V (Z)] = Pr[ui 6∈ V (Z), ei realized | v 6∈ V (Z)]× E[fei]

pei(1− Pr[Xv])(1− Pr[Xui])

= pei(1− Pr[Xui])×
E[fei]

pei(1− Pr[Xv])(1− Pr[Xui])
=

E[fei]

1− Pr[Xv]
.

(4.6)

The second equality above follows from the fact that the event of ei being realized is

independent of ui or v being in V (Z), as indicated by Lemma 4.3.8 part 3; and also

the fact that ui 6∈ V (Z) and v 6∈ V (Z) are also independent from each other due to

Lemma 4.3.8 part 4 combined with the assumption that dC(ui, v) ≥ λ. We also note

that we have used E[fei] instead of E[fei | v 6∈ V (Z)] in the equation above since fei is

only a random variable of the randomization used in Algorithm 2 whereas the matching

128

Z is constructed in Lemma 4.3.8 independent of the outcome of Algorithm 2.

Combining (4.5) and (4.6) we get

E[xv | v 6∈ V (Z)] =
r∑
i=1

E[fei]

1− Pr[Xv]
=

1

1− Pr[Xv]

r∑
i=1

E[fei]. (4.7)

From Claim 4.4.2 part 1, we know E[fei] ≤ qei . Replacing this into the equality above,

we get

E[xv | v 6∈ V (Z)] ≤ 1

1− Pr[Xv]

r∑
i=1

qei ≤
nv

1− Pr[Xv]
.

Lemma 4.3.8 part (2) guarantees that Pr[Xv] < cv which implies 1 − Pr[Xv] >

1 − cv. On the other hand, cv + nv is upper bounded by the probability that v is

matched in opt, thus cv + nv ≤ 1, implying nv ≤ 1 − cv. These, combined with the

equation above, gives

E[xv | v 6∈ V (Z)] ≤ nv
1− Pr[Xv]

≤ 1− cv
1− cv

= 1.

Recalling also that E[xv | v ∈ V (Z)] ≤ 1 as described at the start of the proof, this

concludes the proof of the claim that E[xv] ≤ 1.

Next, we show that condition (2) of Definition 4.4.1 also holds for our construc-

tion.

Claim 4.4.5. For all subsets U ⊆ V with |U | ≤ 1/ε, x(U) ≤ b |U |
2
c with probability 1.

Proof. By definition of x, the value of xe on crucial edges is either 1 or 0. Moreover,

the definition also implies that if a vertex v is incident to a crucial edge e with xe = 1,

129

for all other edges e′ incident to v we have xe′ = 0. Call all such vertices integrally

matched. Fix a subset U and let U ′ be the subset of U excluding its integrally matched

vertices. One can easily confirm that if x(U) > b|U |/2c, then also x(U ′) > b|U ′|/2c.

Therefore, either the claim holds, or there should exist a subset with no integrally

matched vertices that violates it. Let U be the smallest such subset and observe that

|U | ≤ 1/ε (otherwise U does not contradict the claim’s statement).

Since U has no integrally matched vertex, for every crucial edge e inside U we

have xe = 0 and for every non-crucial edge e inside U by definition (4.3) we have xe ≤

fe
pe(1−Pr[Xu])(1−Pr[Xv])

. By definition of fe, it holds that fe ≤ 1/
√
εR and by Lemma 4.3.8

part 2, Pr[Xu],Pr[Xv] ≤ 1 − ε2. Replacing these into the bound above, we get xe ≤

1
p×ε2×ε2

√
εR
. Noting from Corollary 4.3.6 part 4 that τ− < (εp)50 and that R = 2/τ−,

we get R > 2/(εp)50. Replacing this into the previous upper bound on xe, we get that

xe is much smaller than say ε3.

Now since |U | ≤ 1/ε there are at most
(|U |

2

)
< 1/ε2 edges e inside U that can

have non-zero xe. For each of these, as discussed above xe < ε3. Thus we have x(U) <

ε3 × 1/ε2 < 1 which cannot be larger than b|U |/2c if |U | ≥ 2 (if |U | ≤ 1, then there

are no edges with both endpoints in U and thus clearly x(U) = 0). This contradicts

the assumption that x(U) > b|U |/2c, implying that there is no such subset.

4.4.3 The Expected Size of x

In this section we prove the following.

Lemma 4.4.6. It holds that E[|x|] ≥ (1− 34ε)opt.

130

We start by analyzing the size of x on the crucial edges. This is a simple con-

sequence of Lemma 4.3.8 part 1 which guarantees E[Z] ≥ q(C) − 30εopt and Obser-

vation 4.3.4 which guarantees each crucial edge belongs to Q with probability at least

1− ε.

Claim 4.4.7. It holds that E
[∑

e∈C xe
]
≥ q(C)− 31εopt.

Proof. Denoting x(C) =
∑

e∈C xe, we have

E[x(C)] = E
[∑
e∈C

xe

]
=
∑
e∈C

E[xe] =
∑
e∈C

Pr[e ∈ Q and e ∈ Z].

Observe that Z and Q are picked independently as Lemma 4.3.8 is essentially unaware

of Q. Therefore, for any crucial edge e we get

Pr[e ∈ Q and e ∈ Z] = Pr[e ∈ Q]× Pr[e ∈ Z] ≥ (1− ε) Pr[e ∈ Z],

where the latter inequality comes from Observation 4.3.7. Replacing this to the equality

above gives

E[x(C)] ≥ (1− ε)
∑
e∈C

Pr[e ∈ Z] = (1− ε)E[|Z|]

Lemma 4.3.8 part 1

≥ (1− ε)(q(C)− 30εopt) ≥ q(C)− 31εopt,

completing the proof of the claim.

To analyze the size of x on the non-crucial edges, we first define N ′ to be the

131

subset of non-crucial edges {u, v} such that dC(u, v) ≥ λ and define q(N ′) :=
∑

e∈N ′ qe

and x(N ′) :=
∑

e∈N ′ x(N ′). Definition of N ′ is useful since recall from (4.3) that for

any {u, v} ∈ N with dC(u, v) < λ (i.e. {u, v} 6∈ N ′) we set xe = 0. Therefore only the

edges in N that also belong to N ′ have non-zero xe, implying x(N) = x(N ′).

Claim 4.4.8. It holds that q(N ′) ≥ q(N)− εq(C).

Proof. For any edge e = {u, v} in N \ N ′, we choose an arbitrary shortest path P

between u and v in graph C and charge the edges of this path. Note that by definition

of N ′, such path between u and v exists and has size less than λ. Now, take a crucial

edge f . We denote by Φ(f) the set of edges in N \ N ′ for which we charge a path

containing f . Below, we argue that

|Φ(f)| ≤ 4(1/τ+)2λ ∀f ∈ C. (4.8)

Fix a crucial edge f and an edge {u, v} ∈ Φ(f). As discussed above, there should

be a path of length less than λ between u and v in graph C that passes through f . This

means that dC(u, f) < λ and dC(v, f) < λ. Therefore, both u and v are at distance at

most λ from f in graph C.

Observe that there are at most 2(∆C)λ vertices in the λ-neighborhood of f in

graph C. Thus, there are at most 2(∆C)λ×2(∆C)λ = 4(∆C)2λ pairs of vertices that can

potentially charge f , proving |Φ(f)| ≤ 4(∆C)2λ ≤ 4(1/τ+)2λ where the latter inequality

comes from Observation 4.3.4 that ∆C ≤ 1/τ+. This concludes the proof of (4.8).

As discussed above, each edge e ∈ N \ N ′ charges a path in C, thus belongs to

132

Φ(f) of at least one crucial edge f . Therefore, we get

|N \N ′| ≤
∑
f∈C

Φ(f). (4.9)

Every edge e in N \N ′ is non-crucial, i.e. qe ≤ τ−. Thus:

∑
e∈N\N ′

qe ≤ τ−|N \N ′|
(4.9)

≤ τ−
∑
f∈C

Φ(f)
(4.8)

≤ 4τ−|C|(1/τ+)2λ ≤ 4τ−q(C)(1/τ+)2λ+1,

(4.10)

where the last inequality comes from the fact that q(C) ≥ |C|τ+ as for every edge

e ∈ C, qe ≥ τ+.

From Corollary 4.3.6 we have τ− = (τ+)10g and we have g ≥ λ > 1 by Observa-

tion 4.3.9. Thus:

4τ−(1/τ+)2λ+1 = 4(τ+)10g(1/τ+)2λ+1 = 4(τ+)10g−(2λ−1) < 4τ+ < ε.

Replacing it into inequality (4.10), we get

∑
e∈N\N ′

qe ≤ εq(C).

This concludes the proof since

q(N ′) =
∑
e∈N ′

qe =
∑

e∈N\(N\N ′)

qe ≥
∑
e∈N

qe −
∑

e∈N\N ′
qe ≥ q(N)− εq(C)

as it is desired.

133

Claim 4.4.9. It holds that E[x(N ′)] ≥ (1− ε)q(N ′).

Proof. By linearity of expectation, we have

E[x(N ′)] = E
[∑
e∈N ′

xe

]
=
∑
e∈N ′

E[xe]. (4.11)

We emphasize that the expectation here is taken over the randomization in Algorithm 2,

the randomization in matching Z, and the randomization in realization of non-crucial

edges. Specifically, we write EALG2,Z,N [xe] to emphasize on this.

The randomization of Algorithm 2 determines the value of fe which is used in

defining xe. Let us first condition on fe and compute EZ,N [xe | fe]. We have

EZ,N [xe | fe] = Pr[e ∈ E and u, v 6∈ V (Z) | fe]×
fe

pe(1− Pr[Xu])(1− Pr[Xv])
. (4.12)

We claim that

Pr[e ∈ E and u, v 6∈ V (Z) | fe] = pe(1− Pr[Xu])(1− Pr[Xv]). (4.13)

To see this, first observe that the value of fe is determined solely by the random

realizations taken by Algorithm 2. In particular, the events e ∈ E , and u, v 6∈ V (Z) are

completely independent of the outcome of Algorithm 2. This allows us to remove the

condition on fe from the left hand side of (4.13). Moreover, by Lemma 4.3.8 part 3,

the matching Z is chosen independently from the realization of non-crucial edges, thus

events e ∈ E and u, v 6∈ V (Z) are independent. Finally, the assumption that e ∈ N ′, by

134

definition of N ′, implies that dC(u, v) ≥ λ. Therefore, by Lemma 4.3.8 part 4, events

v ∈ V (Z) and u ∈ V (Z) (and for that matter their complements) are independent.

Thus, indeed:

Pr[e ∈ E and u, v 6∈ V (Z) | fe] = Pr[e ∈ E]× Pr[v 6∈ V (Z)]× Pr[u 6∈ V (Z)]

= pe(1− Pr[Xu])(1− Pr[Xv]).

Replacing (4.13) into (4.12) we get

EZ,N [xe | fe] = pe(1− Pr[Xu])(1− Pr[Xv])×
fe

pe(1− Pr[Xu])(1− Pr[Xv])
= fe.

Taking expectation over ALG2 from both sides, we get

EALG2[EZ,N [xe | fe]] = EALG2[fe]. (4.14)

The left hand side equals EALG2,Z,N [xe]. For the right hand side, by Claim 4.4.2 we

have E[fe] ≥ (1− ε)qe. Replacing both the left hand side and right hand side of (4.14)

by these bounds, we get

EALG2,Z,N [xe] ≥ (1− ε)qe. (4.15)

Combining this with (4.11) we get

E[x(N ′)] =
∑
e∈N ′

E[xe] ≥ (1− ε)
∑
e∈N ′

qe = (1− ε)q(N ′),

135

completing the proof.

We are now ready to prove Lemma 4.4.6.

Proof of Lemma 4.4.6. We have

E
[∑

e

xe

]
= E

[∑
e∈C

xe

]
+ E

[∑
e∈N

xe

] Claim 4.4.7

≥ q(C)− 31εopt + E
[∑
e∈N

xe

]
.

Also note that for e ∈ N , xe 6= 0 iff e ∈ N ′ by construction of x. Thus,

E
[∑
e∈N

xe

]
= E

[∑
e∈N ′

xe

]
= E[x(N ′)]

Claim 4.4.9

≥ (1−ε)q(N ′)
Claim 4.4.8

≥ (1−ε)(q(N)−εq(C)).

Combining the two equations above, we get

E
[∑

e

xe

]
≥ q(C)− 31εopt + (1− ε)(q(N)− εq(C)) > q(C) + q(N)− 33εopt

Lemma 4.3.5 part (2)

≥ (1− ε)opt− 33εopt ≥ (1− 34ε)opt,

concluding the proof.

4.4.4 From the Expected Fractional Matching to an Actual Fractional

Matching

We showed that x is an expected fractional matching satisfying E[xv] ≤ 1 for

every vertex v. However, as mentioned before, there is still a possibility that xv > 1

depending on the coin tosses of the algorithms and the realization. This should never

136

occur in a valid fractional matching. Thus, we define the following scaled fractional

matching y based on x which decreases the fractional matching around vertices that

deviate significantly from their expectation to 0.

For any edge e = {u, v}, ye =


xe/(1 + ε) if xv, xu ≤ 1 + ε,

0 otherwise.

(4.16)

Observation 4.4.10. By definition above, y is a valid fractional matching, i.e. yv ≤ 1

for all v ∈ V . In addition, since ye ≤ xe for all edges e, Claim 4.4.5 implies that for all

U ⊆ V with |U | ≤ 1/ε, y(X) ≤ b |U |
2
c. That is, y also satisfies all blossom inequalities

of size up to 1/ε.

It remains to prove that while turning the expected fractional matching x into

an actual fractional matching y, we don’t significantly hurt the matching’s size. We

address this in the lemma below.

Lemma 4.4.11. E[|y|] ≥ (1− 55ε)opt.

The main ingredient in proving Lemma 4.4.11 is the following claim.

Claim 4.4.12. For every vertex v, Pr[xv > 1 + ε] ≤ ε6p.

Let us first see how Claim 4.4.12 suffices to prove Lemma 4.4.11 and then prove

it.

137

Proof of Lemma 4.4.11. By definition of ye in (4.16), we have

∑
e

ye =
∑

e={u,v}

1(xu ≤ 1 + ε and xv ≤ 1 + ε)
xe

1 + ε

≥
∑

e={u,v}

(1− 1(xu > 1 + ε)− 1(xv > 1 + ε))
xe

1 + ε
Union bound.

=
∑
e

xe
1 + ε

− 2
∑

v:xv>1+ε

∑
e3v

xe
1 + ε

=
∑
e

xe
1 + ε

− 2
∑

v:xv>1+ε

xv
1 + ε

.

Taking expectation from both sides, we get

E
[∑

e

ye

]
≥ E

[∑
e

xe
1 + ε

− 2
∑

v:xv>1+ε

xv
1 + ε

]
=

1

1 + ε

(
E
[∑

e

xe

]
− 2E

[∑
v:xv>1+ε

xv

])

≥ 1

1 + ε

(
(1− 34ε)opt− 2E

[∑
v:xv>1+ε

xv

])
By Lemma 4.4.6.

≥ (1− 35ε)opt− 2
∑
v

Pr[xv > 1 + ε]E[xv | xv > 1 + ε]

≥ (1− 35ε)opt− 2
∑
v

ε6pE[xv | xv > 1 + ε] By Claim 4.4.12.

(4.17)

We will soon prove that for every vertex v, it deterministically holds that xv ≤ 1
pε4

.

Replacing this into the last inequality above, gives the desired bound that

E
[∑

e

ye

]
≥ (1− 35ε)opt− 2

∑
v

ε6p
1

pε4

≥ (1− 35ε)opt− 2ε2n
Assumption 4.3.1

≥ (1− 35ε)opt− 20εopt

= (1− 55ε)opt.

138

Now let’s see why xv ≤ 1
pε4

. Observe from the definition of x that if v ∈ V (Z) then

xv ≤ 1 and otherwise

xv =
∑

e={v,u}

xe ≤
∑

e={v,u}

fe
p(1− Pr[Xu])(1− Pr[Xv])

≤ 1

pε4

∑
e={v,u}

fe.

The last inequality above comes from the fact that for every vertex w, Pr[Xw] ≤ 1− ε2

due to Lemma 4.3.8 part 2, which means 1− Pr[Xw] ≥ ε2.

Now recall from Claim 4.4.2 part 3 that
∑

e3v fe ≤ 1. Thus we get our de-

sired upper bound that xv ≤ 1
pε4

. As described above, this completes the proof that

E[
∑

e ye] ≥ (1− 55ε)opt.

We now turn to prove Claim 4.4.12 that Pr[xv > 1 + ε] ≤ ε6p for all v.

Proof of Claim 4.4.12. If an edge incident to v belongs to matching Z, i.e. if Xv = 1

(as defined in Lemma 4.3.8), then one can confirm easily from the definition of x in

(4.1) and (4.3) that either xv = 1 or xv = 0, implying that Pr[xv > 1 + ε | Xv = 1] = 0.

As such, for the rest of the proof, we simply condition on the event that Xv = 0.

Similar to the proof of Claim 4.4.4 let u1, u2, . . . , ur be the neighbors of v such

that for each i ∈ [r], (1) edge ei = {v, ui} is non-crucial, and (2) dC(v, ui) ≥ λ. Recall

from (4.4) that given event Xv = 0, it holds that

xv = xe1 + xe2 + . . .+ xer .

Let f ′v :=
∑r

i=1 fei and note that f ′v ≤ fv since fv is sum of fe of all non-crucial

edges e connected to v. Claim 4.4.2 part 4 proves that Pr[fv ≥ nv + 0.1ε] ≤ (εp)10.

139

Therefore, it also holds that Pr[f ′v ≥ nv + 0.1ε] ≤ (εp)10 since f ′v ≤ fv. For the rest

of the proof, we regard fei ’s as (adversarially) fixed with the only assumption that

f ′v < nv + 0.1ε which happens with probability at least 1 − (εp)10. We denote this

event, as well as the event that Xv = 0, by A and prove

Pr[xv > 1 + ε | A] ≤ 0.5ε6p, (4.18)

which clearly is sufficient for proving the claim.

We do this by proving a concentration bound using the second moment method.

Consider the variance of xv conditioned on A:

Var[xv | A] =
r∑
i=1

r∑
j=1

Cov(xei , xej | A).

Now that fe’s are fixed, xv is only a random variable of (1) the randomization used in

Lemma 4.3.8 for obtaining matching Z, and (2) the realization of non-crucial edges.

In what follows we identify a condition under which covariance of xei and xej

becomes 0. We will use this later to upper bound Var[xv | A].

Observation 4.4.13. Let i, j ∈ [r] be such that dC(ui, uj) ≥ λ. Then Cov(xei , xej |

A) = 0.

Proof. We already had dC(v, ui) ≥ λ and dC(v, uj) ≥ λ by definition of ui, uj. Com-

bined with assumption dC(ui, uj) ≥ λ and using Lemma 4.3.8 part 4, we get that

Xv, Xui , Xuj are independent. Realization of ei and ej are also independent even given

A. This is because these are non-crucial edges and thus are realized independently

140

from Z (according to Lemma 4.3.8 part 3) or the values of f which are derived from

Algorithm 2.

By definition (4.3), the value of xei conditioned on A is fully determined once

we know Xui and whether ei is realized. Similarly, the value of xej conditioned on A

is fully determined once we know Xuj and whether ej is realized. These, as discussed

above, are independent. Hence xei and xej , conditioned on A, are independent and

thus their covariance is 0.

Now consider two vertices ui and uj (possibly ui = uj) where dC(ui, uj) < λ.

Here, the covariance may not be 0. But we still can upper bound it as follows:

Cov(xeixej | A) = E[xeixej | A]− E[xei | A]E[xej | A] ≤ E[xeixej | A]

≤ fei
p(1− Pr[Xv])(1− Pr[Xui])

×
fej

p(1− Pr[Xv])(1− Pr[Xuj])

≤
feifej
p2ε8

, (4.19)

where the last inequality follows from Lemma 4.3.8 part 2 that states for all vertices

w, Pr[Xw] < 1− ε2 and thus 1− Pr[Xw] ≥ ε2.

Now, for each i ∈ [r], let Di := {j : dC(ui, uj) < λ}. Since C is a graph of max

degree ∆C , the λ− 1 neighborhood of each vertex ui in C includes ≤ (∆C)λ−1 vertices.

Thus:

|Di| ≤ (∆C)λ−1 for every i ∈ [r]. (4.20)

141

Having these, we obtain that

Var[xv | A] =
r∑
i=1

r∑
i=1

Cov(xei , xej | A)
Obs 4.4.13

=
r∑
i=1

∑
j∈Di

Cov(xei , xej | A)

(4.19)

≤
r∑
i=1

∑
j∈Di

feifej
p2ε8

=
1

p2ε8

r∑
i=1

(
fei
∑
j∈Di

fej

)
fej≤

1√
εR

by (4.2)

≤ 1

p2ε8

r∑
i=1

(
fei |Di|

1√
εR

) (4.20)

≤ (∆C)λ−1

p2ε8
√
εR

r∑
i=1

fei

Claim 4.4.2 part 3

≤ (∆C)λ−1

p2ε8
√
εR

Obs 4.3.4

≤ (1/τ+)λ−1

p2ε8.5
√
R
.

Replacing R with 1
2τ−

and noting that τ− = τ 10g
+ by Corollary 4.3.6, we get that

Var[xv | A] ≤ (1/τ+)λ−1

p2ε8.5
√

1

2τ10g+

=

√
2 · τ−λ+1

+

p2ε8.5τ−5g
+

=

√
2

p2ε8.5
· τ 5g−λ+1

+

<

√
2τ+

p2ε8.5
By Observation 4.3.9 g ≥ λ > 1 and τ+ < 1.

<

√
2(εp)50

p2ε8.5
Corrolary 4.3.6 part 4.

=
√

2ε41.5p48 < 0.1ε8p For ε sufficiently small.

With this upper bound on the variance, we can use Chebyshev’s inequality to get

Pr
[
|xv − E[xv | A]| > 0.5ε

∣∣∣A] ≤ Var[xv | A]

(0.5ε)2
≤ 0.1ε8p

0.25ε2
< 0.5ε6p. (4.21)

Next, recall from (4.7) in the proof of Claim 4.4.4 that E[xv | v 6∈ V (Z)] ≤
∑r
i=1 E[fei]

1−Pr[Xv]
=

142

f ′v
1−Pr[Xv]

. Event A in addition to v 6∈ V (Z) also fixes the value of f ′v. But recall that

event A (as we defined it) guarantees f ′v ≤ nv + 0.5ε. Therefore, we get

E[xv | A] ≤ nv + 0.5ε

1− Pr[Xv]

Pr[Xv]<cv
≤ nv + 0.5ε

1− cv
nv≤1−cv
≤ 1− cv + 0.5ε

1− cv
≤ 1 + 0.5ε. (4.22)

Combining (4.21) and (4.22) we get the claimed inequality of (4.18) that

Pr[xv > 1 + ε | A] ≤ Pr[|xv − E[xv | A]| > 0.5ε | A] ≤ 0.5ε6p,

which as described before suffices to prove Pr[xv > 1 + ε] ≤ ε6p.

4.5 Proof of the Vertex-Independent Matching Lemma

In this section we turn to prove Lemma 4.3.8 restated below.

Lemma 4.3.8 (restated). There is a randomized algorithm that constructs an integral

matching Z of C (the realized subgraph of C) such that defining Xv as the indicator

random variable for v ∈ V (Z), we get:

1. E[|Z|] ≥ q(C)− 30εopt.

2. For every vertex v, Pr[Xv] ≤ max{cv−ε2, 0}, where recall that cv is the probability

that vertex v is matched via a crucial edge in MM(G).

3. The matching Z is independent of the realization of non-crucial edges in G.

4. Let λ := ε−20 log ∆C. For every k and every {v1, v2, . . . , vk} ⊆ V such that

dC(vi, vj) ≥ λ for all vi 6= vj, random variables Xv1 , . . . , Xvk are independent.

143

We emphasize that E[|Z|] and Xv are both defined with respect to the randomizations

in both the realization of C, and the randomization of the algorithm in constructing

Z.

4.5.1 Overview of the Algorithm

In this section, we give an overview of our algorithm for proving Lemma 4.3.8. We

emphasize that the overview given here is deliberately informal to describe the main

intuitions, with the hope that it makes the algorithm and its analysis more accessible.

Satisfying property 3 required by Lemma 4.3.8 turns out to be easy. Recall that

we are constructing matching Z on the realized crucial edges, thus we can simply ignore

realization of non-crucial edges and automatically satisfy property 3. Among the other

3, let us first focus on property 4. How can we argue that the output matching satisfies

the required independence property? We show that the LOCAL model of computation

can be naturally used for this purpose. We start with the formal definition of the model

and then describe how it can be used in this case.

The LOCAL model [34]. In the LOCAL model, the input is a graph and there is a

processor on each node of this graph. Computation proceeds in synchronous rounds and

in each round, each processor can send a message (of any size) to each of its neighbors.

The goal is to output a property of this communication graph, e.g. a matching of it.

At the end, each node should know its part of the output, e.g. which one of its edges,

if any, is part of the matching.

Why the LOCAL model. A particularly useful property of any r-round LOCAL

144

algorithm is that the output of each node essentially depends only on its r-hop neigh-

borhood. That is, having the r-hop neighborhood of each node v (including the random

tapes of the nodes in the neighborhood), we can uniquely determine the output of v.

Therefore if the shortest path between two nodes is at least 2r + 1, their outputs are

essentially independent of each other after r rounds.

This is how we prove property 4 of Lemma 4.3.8 is satisfied: We give a LOCAL

algorithm operating on graph C where each vertex is initially only aware of the real-

ization of its incident edges. We show that the algorithm within < λ/2 rounds, finds

a matching satisfying the other 3 properties. Then property 4 will be automatically

satisfied. That is, for every subset I of the vertices with pairwise distance at least λ,

their outputs will be independent.

Overview of the algorithm. The challenge is to ensure that the algorithm has

low round-complexity while also satisfying properties 1 and 2. That is, the reported

matching Z should be large in expectation (property 1), and that no vertex v should be

matched with a larger probability than that specified in property 2. If one ignores the

2nd property, then simply finding a (1− ε)-approximate maximum matching in graph

C will satisfy the first property. And we remark that O(log ∆C)-round algorithms (with

no dependence on n) do exist for this purpose. However, bounding at the same time,

the probability that each vertex is matched complicates things.

Our general idea for the algorithm is as follows: We define a recursive algorithm

FindMatchingr(C) (Algorithm 2) which uses FindMatchingr−1(C) as a subroutine. The

base algorithm FindMatching0(C) returns an empty matching. Let us use Zr to denote

145

the matching returned by FindMatchingr(C). It will hold that

0 = E[|Z0|] ≤ E[|Z1|] ≤ E[|Z2|] ≤ . . .

until eventually for large enough t = Oε(1), E[|Zt|] is desirably large, satisfying prop-

erty 1. At the same time, we will ensure that for any vertex v, the probability that it

gets matched in Zr never exceeds the upper bound of property 2 for any r.

Suppose that for a vertex v, we hit this upper bound on the probability that

it is matched for algorithm FindMatchingr(C). At this point, we will mark v as satu-

rated and ensure that we never increase the probability of it being matched. But to

keep increasing the matching’s size, it may be necessary to say remove a matching

edge {v1, v2} between two saturated vertices v1 and v2, so that we can add two edges

{v1, v3} and {v2, v4} to the matching where v3 and v4 are unsaturated. Such struc-

tures are similar to augmenting paths. However, since the graph is stochastic, these

edges {v1, v2}, {v1, v3}, {v2, v4} may not necessarily be part of one realization. We call

these natural generalizations of augmenting paths, “augmenting hyperwalks” (see Sec-

tion 4.5.2) and show that they can be used to increase the matching size while not

increasing probability of saturated vertices getting matched.

In Section 4.5.2 we present a centralized view of the algorithm. In Section 4.5.3

we analyze the expected size of the matching returned by this algorithm and argue that

it satisfies property 1 of Lemma 4.3.8. In Section 4.5.4 we prove the upper bound on the

probability of each vertex getting matched, thereby proving property 2 of Lemma 4.3.8.

Finally, in Section 4.5.5 we show that the algorithm has an efficient LOCAL implemen-

146

tation, satisfying property 4 of Lemma 4.3.8.

4.5.2 The Formal Algorithm

We say P = ((C0,M0), . . . , (Cα,Mα)) is a profile if each Ci is a subgraph of C and

each Mi is a matching of Ci. Furthermore, we call a sequence W = ((e1, s1), . . . , (ek, sk))

a hyperwalk of size k if the following conditions hold:

1. Each si is an integer in {0, . . . , α}.

2. Each ei is an edge in graph C and sequence (e1, e2, . . . , ek) is a walk in graph C.

We say P∆W := ((C0,M
′
0), . . . , (Cα,M ′

α)) is the result of applying W on P if:

M ′
i = Mi∪{ej | j is odd, and sj = i}\{ej | j is even, and sj = i}, ∀i ∈ {0, . . . , α}.

Definition 4.5.1 (Augmenting hyperwalks). For every vertex v, let dP (v) :=
∣∣{i | v ∈

V (Mi)}
∣∣. We say W is an augmenting-hyperwalk of P if it satisfies the three following

conditions.

1. P∆W is a profile, i.e. each M ′
i in P∆W is a matching of graph Ci.

2. For all vertices v in walk (e1, . . . , ek) except its first and last vertex, dP (v) =

dP∆W (v).

3. For the first and last vertices v in walk (e1, . . . , ek), dP (v) + 1 = dP∆W (v).

Having defined augmenting-hyperwalks, we can now formally state the algorithm—

see Algorithm 2. The algorithm is recursive. Given a realization C of C, algorithm

FindMatchingr(C) uses algorithm FindMatchingr−1(C) as a subroutine and then returns

147

Algorithm 2. FindMatchingr(C)

(1) If r = 0, return ∅.

(2) Draw α := 1/ε7−1 realizations C1, . . . , Cα of C where each realization Ci includes

each edge e of C independently with probability pe. Also let C0 := C.

(3) Consider profile P = ((C0,M0), . . . , (Cα,Mα)) where Mi = FindMatchingr−1(Ci).

(4) For every vertex v, define γv,r−1 := Pr[v is matched in FindMatchingr−1(C ′)]
where the probability is taken over a random realization C ′ of C and the ran-

domization of the algorithm.

(5) If γv,r−1 < cv − 2ε2 call vertex v unsaturated and saturated otherwise.

(6) Construct a graph H = (VH , EH) as described next. For every possible

augmenting-hypewalk of size smaller than 2/ε from P , we put a vertex in VH iff

the first and last vertices in the walk are unsaturated. Moreover, we put an edge

in EH between two nodes u, v ∈ VH iff their corresponding walks share at least

a vertex.

(7) I ← ApproximateMIS(H, ε). // This is an algorithm that returns an independent

set of expected size at least 1−ε fraction of some maximal independent set (MIS)

of H.

(8) P ′ ← P .

(9) Iterate over all augmenting-hyperwalks W ∈ I and apply them, i.e. set P ′ ←
P ′∆W .

(10) Let P ′ = ((C0,M
′
0), . . . , (Cα,M ′

α)) be the final profile. Return matching M ′
0.

a matching of C. The base algorithm FindMatching0(C) returns an empty matching.

We will show that for t = 1/ε9, algorithm FindMatchingt(C) satisfies the properties of

Lemma 4.3.8.

We note a useful observation that essentially implies the entries of profile P ′,

which can be thought of as random variables of realization C and randomizations of

the algorithm, are all drawn from the same distribution. The proof is essentially based

on the fact that matchings M0, . . . ,Mα are all drawn from the same distribution and

148

treated symmetrically in algorithm, thus the resulting matchings M ′
0, . . . ,M

′
α all have

the same distribution. See Section 4.9 for a more formal proof.

Observation 4.5.2. Matchings M ′
0, . . . ,M

′
α in profile P ′ of algorithm FindMatchingr(C)

for any r have the same distribution. That is, for any i, j ∈ {0, . . . , α} and any match-

ing M ′ of G, Pr[M ′
i = M ′] = Pr[M ′

j = M ′].

The algorithm operates only on the crucial edges and is thus clearly independent

of the non-crucial edges and their realizations. Therefore, property 3 of Lemma 4.3.8

is automatically satisfied. In what follows, we prove the other 3 properties in Sec-

tions 4.5.3, 4.5.4, and 4.5.5.

4.5.3 Lemma 4.3.8 Property 1: The Matching’s Size

In this section, we prove that algorithm FindMatchingt(C) satisfies the first prop-

erty of Lemma 4.3.8. That is the matching Z returned by this algorithm satisfies

E[|Z|] ≥ q(C)− 30εopt.

Let us denote by Zr the matching returned by FindMatchingr(C). Note that Zr is

a random variable which is a function of both the randomization in realization C of C,

and the internal randomizations used in algorithm FindMatchingr(C). (Observe that

Z = Zt.) Similarly, we define Pr, Hr, Ir, and P ′r as the random variables referring to

the values of P , H, I, and P ′ in algorithm FindMatchingr(C).

Property 1 of Lemma 4.3.8 is a corollary of Lemma 4.5.3 which states that for

any r, if E[|Zr|] ≤ q(C) − 30εopt, then E[|Zr|] − E[|Zr−1|] ≥ ε9opt. Observe that it

149

is sufficient for us as it implies that for any r we have

E
[
|Zt|
]
≥ min{q(C)− 30εopt, rε9opt}.

This gives us the desired result that E
[
|Zt|
]
≥ q(C) − 30εopt for t = 1/ε9, since

q(C) ≤ opt. Below we state Lemma 4.5.3 and prove it.

Lemma 4.5.3. For any r, if E[|Zr|] ≤ q(C)−30εopt, then E[|Zr|]−E[|Zr−1|] ≥ ε9opt.

Proof outline. This lemma is a direct result of Lemma 4.5.4 and Lemma 4.5.6. The

first one states that for any r, we have E[|Zr|] ≥ E[|Zr−1|]+ E[|Ir|]
α+1

and the second one is

that if E[|Zr−1|] ≤ q(C)−30εopt, then E[|Ir|] ≥ 2ε2opt. Combining these two lemmas

gives us E[|Zr|]− E[|Zr−1|] ≥ ε9opt and completes the proof as α = 1/ε7 − 1.

Lemma 4.5.4. For any r, it holds that E[|Zr|] = E[|Zr−1|] + E[|Ir|]
α+1

.

Proof. We start by proving that

∑
v∈V

dPr(v) + 2|Ir| =
∑
v∈V

dP ′r(v). (4.23)

Note that, P ′r is defined to be the result of iteratively applying all the augmenting

hyperwalks of Ir on Pr. Let P
(i)
r be the result of iteratively applying the first i aug-

menting hyperwalks of Ir on Pr and let Wi be the hyperwalk that is to be applied in

iteration i. We use proof by induction and show that for any i we have

∑
v∈V

dPr(v) + 2i =
∑
v∈V

d
P

(i)
r

(v).

150

Note that since hyperwalks in Ir are vertex disjoint, for any two hyperwalksW1,W2 ∈ Ir

it holds that W2 is an augmenting hyperwalk of Pr∆W1 as well. This means that Wi

is indeed an augmenting hyperwalk of P
(i)
r . Moreover, recall that by definition of

augmenting hyperwalks, after applying any augmenting hyperwalk on a profile P there

are only two vertices whose dP (v) increases by one and for the rest of the vertices it is

unchanged. This gives us

∑
v∈V

d
P

(i)
r

(v) + 2 =
∑
v∈V

d
P

(i+1)
r

(v),

with completes the proof of

∑
v∈V

dPr(v) + 2|Ir| =
∑
v∈V

dP ′r(v)

since P ′r = P
|Ir|
r . Recall the definition dP (v) :=

∣∣{i | v ∈ V (Mi)}
∣∣ for any profile P .

Based on this definition, we can rewrite Equation 4.23 as

α∑
i=0

|Mi|+ |Ir| =
α∑
i=0

|M ′
i |. (4.24)

Observe that matchings M0, . . . ,Mα are coming from the same distribution and

we have E
[
|Mi|

]
= E

[
|Zr−1|

]
for any 0 ≤ i ≤ α. The reason is that they are the results

of running the same matching algorithm on random realizations of C. Moreover, by

Observation 4.5.2, matchings M ′
0, . . . ,M

′
α are similarly coming from the same distri-

bution which means for any 0 ≤ i ≤ α we have Zr = E
[
|M ′

0|
]

= E
[
|Mi|

]
. Combining

151

this with Equation 4.24 we get

E
[
(α + 1)|Zr−1|+ |I|

]
= E

[
α∑
i=0

|Mi|+ |I|

]
= E

[
α∑
i=0

|M ′
i |

]
= E

[
(α + 1)|Zr|

]
.

Dividing through by α+ 1 and rearranging the terms gives E
[
|Zr−1|

]
+ E[|I|]

α+1
= E

[
|Zr|

]
.

Before proceeding to Lemma 4.5.6 and its proof we need the following definition.

Definition 4.5.5 (Edge disjoint hyperwalks). Two hyperwalks W = ((e1, s1), . . . , (ek, sk))

and W ′ = ((e′1, s
′
1), . . . , (e′k′ , s

′
k′)) are edge disjoint if there does not exist indices i < k

and j < k′, where ei = e′j and si = s′j.

Lemma 4.5.6. If E[|Zr−1|] ≤ q(C)− 30εopt, then E[|Ir|] ≥ 2ε2opt.

Proof. To give the desired lower-bound for E[|Ir|] we first claim that if E[|Zr−1|] ≤

q(C) − 30εopt, then there exists a set O of edge-disjoint augmenting-hyperwalks of

Pr with length at most 2/ε and unsaturated end-points where E[|O|] ≥ 8(α+ 1)εopt.

We later state this claim more formally in Lemma 4.5.7 and provide a proof for it.

We are interested in set O for its two following properties. First, any hyperwalk in O

represents a node in graph Hr. Second, since the hyperwalks in O are edge disjoint,

any hyperwalk with length smaller than 2/ε from Pr can share vertices with at most

(α + 1)(2/ε) hyperwalks in this set. We note that (α + 1) is the maximum number

of edge disjoint hyperwalks that can pass through a single vertex. Combining these

two properties gives that the expected size of any maximal independent set of Hr is

at least E
[
|O|
]
/(2(α + 1)/ε) = 4ε2opt since there is an edge between two vertices in

152

Hr iff their corresponding hyperwalks share at least a vertex. As stated in Line 7 of

FindMatchingr(C), set Ir is an independent set of Hr with size at least (1− ε) fraction

of a maximal independent set of Hr. Therefore, we have

E
[
|Ir|
]
≥ 4(1− ε)ε2opt.

Assuming that ε ≤ 1/2 we complete the proof of this claim and obtain E
[
|Ir|
]
≥

2ε2opt.

In the rest of this section we focus on proving the following lemma which is

previously used to complete the proof of Lemma 4.5.6. Since the proof is detailed and

consists of independent arguments, it includes two claims that are needed to complete

the proof.

Lemma 4.5.7. For any r ∈ [t], if E
[
|Zr−1|

]
≤ q(C)− 30εopt, then there exists a set

O of edge-disjoint augmenting hyperwalks of profile Pr = ((C0,M0), . . . , (Cα,Mα)) with

length at most 2/ε and unsaturated endpoints where E[|O|] ≥ 8(α + 1)εopt.

We will first construct set O and then give a lower-bound for its expected size.

Draw α+ 1 realizations N0, . . . ,Nα of the non-crucial graph N . For any 0 ≤ i ≤ α, let

M g
i := MM(Ni∪Ci) where M returns a unique maximum matching that was also used in

Algorithm 2. Call an edge of graph Ci green iff it is in matching M g
i but not in matching

Mi. Alternatively, we call an edge red iff it is in Mi but not in M g
i . To construct set O

we give an algorithm to iteratively find hyperwalks that alternate between green and

red edges. Since we need our hyperwalks to be edge-disjoint, after using an edge of a

153

subgraph we mark it as used and ignore it for the rest of the algorithm.

At each iteration of the algorithm, we construct a hyperwalk W as follows until

there is no such a hyperwalk left. Pick an unsaturated vertex v and a subgraph Ci

such that v has an unused green edge in Ci but not a red one. Denote this green edge

by e = (v, v′) and choose (e, i) to be the first element of our hyperwalk. If vertex v′

has a red edge e′ in subgraph Ci we add (e′, i) to our hyperwalk, otherwise we look for

a subgraph Cj in which v′ has an unused red edge e′ but not a green one and choose

(e′, j) as the second element of the hyperwalk. We continue this process by alternating

the colors until it is not possible to continue. If W has length more than 2/ε we add

it to a set T3, otherwise we add it to one of the three sets O, T1 and T2 as follows. Let

u be the vertex in which our hyperwalk ends. If u is saturated we add W to a set T2.

Otherwise, if the last edge of W is green we add it to O and if it is red we add W to

T1. In the following claim we show that the hyperwalks in O have the desired property

and we later prove that |O| is large enough.

Claim 4.5.8. Any W ∈ O is an augmenting-hyperwalks of length at most 2/ε that

begins and ends in unsaturated vertices.

Proof. By construction any hyperwalk in O has length at most 2/ε, begins with an

unsaturated vertex and ends in one. Also, hyperwalks in O are edge disjoint since

after adding an element (e, i) to a hyperwalk we mark e as used in subgraph Ci and

do not add it to other hyperwalks. It only remains to prove that every hyperwalk

W = ((e1, s1), . . . , (ek, sk)) ∈ O is indeed an augmenting-hyperwalk.

Let Pr∆W be the result of applying W on Pr = ((C0,M0), . . . , (Cα,Mα)). By

154

Definition 4.5.1, there are three conditions that Pr∆W should satisfy if W is an

augmenting-hyperwalk. The first condition is that any M ′
i is a matching in Ci where

M ′
i = Mi∪{ej | j is odd, and sj = i}\{ej | j is even, and sj = i}, ∀i ∈ {0, . . . , α}.

Note that W is alternating between green and red edges with green ones being in the

odd positions. Further, for any element (e, i) in an odd position j and any red edge

e′ adjacent to it in Ci, hyperwalk W contains (e′, i) in either position j − 1 or position

j + 1; thus the first condition is satisfied.

As for the second condition, since W is alternating between green and red edges

applying it would satisfy dPr(v) = dPr∆W (v) for any vertex v that is not an end-point.

Moreover, Pr∆W simply satisfies the third condition that is dPr(v) + 1 = dPr∆W (v) iff

v is the first or the last vertex of the hyper-walk since W begins and ends with green

edges.

To complete the proof of Lemma 4.5.7, we need to show that E[|O|] ≥ 8(α +

1)εopt. For any vertex v, let gv,i be the number of subgraphs C0, . . . Cα in which v

has an unused green edge after the i-th iteration of the algorithm and similarly define

rv,i to be the number of subgraphs in which v has an unused red edge after the i-th

iteration. Each iteration here means constructing a hyperwalk and marking its edges

as used. Also, let us respectively denote the set of saturated and unsaturated vertices

by S and U . Consider the hyperwalk Wi constructed in the i-th iteration. Observe

155

that if Wi ∈ O, we have

∑
v∈U

(gv,i−1 − rv,i−1)−
∑
v∈U

(gv,i − rv,i) = 2

since any hyperwalk in O starts from an unsaturated vertex with a green edge and

ends the same way. However, if Wi ∈ T2, we have

∑
v∈U

(gv,i−1 − rv,i−1)−
∑
v∈U

(gv,i − rv,i) = 1,

and if Wi ∈ T1 we have

∑
v∈U

(gv,i−1 − rv,i−1)−
∑
v∈U

(gv,i − rv,i) = 0.

Moreover, for any hyper-walk in T3 we have

∑
v∈U

(gv,i−1 − rv,i−1)−
∑
v∈U

(gv,i − rv,i) ≤ 2,

as it holds for any hyperwalk that alternates between green and red edges. We claim

that when our algorithm stops after j iterations
∑

v∈U(gv,j − rv,j) ≤ 0 holds. This

is because otherwise, we could still find a subgraph Ci and a vertex v where v has a

green edge in Ci but not a red one and start a new hyperwalk. As a result we have the

following lower-bound for |O|, where for brevity, in the rest of the proof we use gv and

rv instead of gv,0 and rv,0:

156

|O| ≥ 1

2

(∑
v∈U

(gv − rv)− |T2| − 2|T3|

)
.

Taking expectations, we have

E
[
|O|
]
≥ 1

2
E

[∑
v∈U

(gv − rv)− |T2| − 2|T3|

]
=

1

2
E

[∑
v∈U

(gv − rv)

]
− 1

2
E
[
|T2|
]
− E

[
|T3|
]
.

(4.25)

First, let us note that since any hyperwalk in T3 contains at least 1/ε green edges and

that the expected number of green edges is obviously upper bounded by opt, we have

|T3| ≤ ε(α + 1)opt. (4.26)

We now focus on bounding E
[∑

v∈U(gv − rv)
]

and prove that it is upper-bounded by

40αεopt.

∑
v∈U

E[gv − rv
]

=
∑
v∈V

E[gv − rv
]
−
∑
v∈S

E[gv − rv
]

Note that cv, by definition, is the probability with which vertex v is matched in any

M g
i . Moreover, γv,r is the probability with which vertex v is matched in any Mi which

means E[gv − rv] = (α + 1)(cv − γv,r) and

E

[∑
v∈V

(gv − rv)

]
= 2(α + 1)(q(C)− E[|Zr|]).

157

Also, since E
[
|Zr|

]
≤ q(C)− 30εopt we obtain

E

[∑
v∈V

gv

]
− E

[∑
v∈V

rv

]
≥ 60(α + 1)εopt.

Moreover, by definition of saturated vertices, we know that cv − γv,r ≤ 2ε2 holds for

any saturated vertex v which results in

∑
v∈S

E[gv − rv
]
≤ 2n(α + 1)ε2 ≤ 20(α + 1)εopt. (4.27)

Note that 2n(α+1)ε2 ≤ 20(α+1)εopt comes from Assumption 4.3.1 that opt ≥ 0.1εn.

Combining these equation, we get

∑
v∈U

E[gv − rv
]
≥ 40(α + 1)εopt. (4.28)

In the next step, we provide an upper-bound for E
[
|T2|
]

and to do so we first prove

the following claim.

Claim 4.5.9. For any vertex v ∈ S the number of hyperwalks in T2 that end in v is

≤ |gv − rv|.

Proof. Consider the hyperwalk W that is the first one to be constructed among the

hyperwalks in set T2 that end in vertex v and let (e, i) be its last element. W.l.o.g.,

assume that the color of edge e in graph Ci is red. The fact that W stops in vertex

v means that at the time of construction of this hyperwalk, there is no subgraph Cj

that has an unused green edge of v but not a red one. Therefore, from this point

of the algorithm, any subgraph Ck that contains an unused green edge eg of vertex v

158

also has an unused red edge er of this vertex. We note that based on our algorithm

if a hyperwalk with last element (e, i) stops at vertex v then subgraph Ci either does

not contain a green edge of v or a red edge of this vertex. Moreover, due to the fact

that W is the first hyperwalk to stop in vertex v we know that previously constructed

hyperwalks contain the same number of green and red edges of vertex v. This means

that there are at most |gv − rv| many possibilities for the last element of a hyperwalk

that stops at v and since our hyperwalks are edge disjoint then for any vertex v ∈ S

the number of hyperwalks in T2 that end in v is upper-bounded by |gv − rv|.

Based on the aforementioned claim, the number of hyperwalks ending in saturated

vertices is at most
∑

v∈S E[gv−rv], which means E
[
|T2|
]
≤
∑

v∈S E
[
|gv−rv|

]
, implying

further that

E[|T2|] ≤
∑
v∈S

E
[
|gv − rv|

]
=
∑
v∈S

E
[
|gv − E[gv]− rv + E[rv] + E[gv]− E[rv]|

]
≤
∑
v∈S

E
[
|gv − E[gv]|+ |rv − E[rv]|+ |E[gv]− E[rv]|

]
≤
∑
v∈S

(
E
[
|gv − E[gv]|] + E[|rv − E[rv]|]

)
+
∑
v∈S

(E[gv]− E[rv]). (4.29)

The last equation is due to the fact that E[gv] ≥ E[rv] for all v.

Using a simple application of Chebyshev’s inequality, we show that for any vertex

v, we have E[|rv − E[rv]|] ≤ 2(α + 1)2/3 and E[|rg − E[rg]|] ≤ 2(α + 1)2/3. Note

that we have Var(gv) ≤ α + 1 and Var(gv) ≤ α + 1. Using Chebyshev’s inequality,

159

we have Pr[|rv − E[rv]| ≥ β(α + 1)1/2] ≤ 1/β2. By setting β = (α + 1)1/6, we get

Pr[|rv −E[rv]| ≥ (α+ 1)2/3] ≤ (α+ 1)−1/3, which gives us E[|rv −E[rv]|] ≤ 2(α+ 1)2/3.

Similarly, we have E[|gv − E[gv]|] ≤ 2(α + 1)2/3. As a result, we get

∑
v∈S

(E[|rv − E[rv]|] + E[|rg − E[rg]|]) ≤ 4n(α + 1)2/3.

Since in FindMatchingr(C) we set α = 1/ε7 − 1 and since n ≤ 10opt/ε we have

∑
v∈S

(E[|rv − E[rv]|] + E[|rg − E[rg]|]) ≤
40opt(1/ε7)2/3

ε
=

40opt

ε14/3 × ε

=
40opt

ε7 × ε−4/3
= 40(α + 1)ε4/3opt.

Moreover, by (4.27) we have

∑
v∈S

(E[gv]− E[rv]) ≤ 20(α + 1)εopt.

Combining these two bounds into (4.29) we get

∑
v∈S

E
[
|T2|
]
≤ (α + 1)εopt(20 + 40ε1/3). (4.30)

160

Incorporating (4.28) and (4.30) into (4.25) and simplifying, gives

E
[
|O|
] (4.25)

≥ 1

2
E
[∑
v∈U

(gv − rv)
]
− 1

2
E
[
|T2|
]
− E

[
|T3|
]

(4.28), (4.30), (4.26)

≥ (α + 1)εopt(9− 20ε1/3).

By letting ε be small enough, we can assume that 20ε1/3 ≤ 1 and get

E[|O|] ≥ 8(α + 1)εopt,

which completes the proof of Lemma 4.5.7. This completes all the components needed

within the proof of Lemma 4.5.3 which as discussed at the start of the section, implies

the needed bound on the expected size of the matching returned.

4.5.4 Lemma 4.3.8 Property 2: Matching Probabilities

In this section, we prove that algorithm FindMatchingt(C) satisfies property 2 of

Lemma 4.3.8 that for each vertex v, Pr[Xv] ≤ max{cv − ε2, 0}. Recall that Xv, as de-

fined in Lemma 4.3.8, is the indicator of the event that v is matched in FindMatchingt(C),

and the probability is taken over both the realization C and the randomization of al-

gorithm FindMatchingt(C).

Let us use Xv,r to denote the event that vertex v gets matched in matching

FindMatchingr(C). It holds that Xv,t = Xv. Therefore, it suffices to show that

Pr[Xv,t] ≤ max{cv − ε2, 0}. We will, however, prove a stronger claim:

Claim 4.5.10. For every integer r and for every vertex v, it holds that Pr[Xv,r] ≤

161

max{cv − ε2, 0}.

We prove this by indiction on r. For the base case r = 0, the algorithm

FindMatching0(C) returns an empty matching ∅. Therefore Pr[Xv,0] = 0 for all ver-

tices v, clearly satisfying the claim. For the induction step, fix any vertex v. We

suppose that Pr[Xv,r−1] ≤ max{cv − ε2, 0} and prove that it continues to hold that

Pr[Xv,r] ≤ max{cv − ε2, 0}. We start with a definition.

Definition 4.5.11. Define ρv to be the fraction of matchings M0, . . . ,Mα in which v is

matched and define ρ′v similarly with respect to matchings M ′
0, . . . ,M

′
α. More precisely,

ρv :=
|{i : v ∈ V (Mi)}|

α + 1
, and ρ′v :=

|{i : v ∈ V (M ′
i)}|

α + 1
.

Observation 4.5.12. E[ρv] = Pr[Xv,r−1] and E[ρ′v] = Pr[Xv,r].

Proof. For any i ∈ {0, . . . , α}, we have Pr[v ∈ V (Mi)] = Pr[Xv,r−1] since Mi =

FindMatchingr−1(Ci) and Ci is picked from the same distribution that the actual re-

alization C is picked from. Thus:

E[ρv] = E
[∑α

i=0 1(v ∈ V (Mi))

α + 1

]
=

1

α + 1

α∑
i=0

Pr[v ∈ V (Mi)]

=
1

α + 1

α∑
i=0

Pr[Xv,r−1] = Pr[Xv,r−1].

For the second equality, first observe that since M ′
0 is the matching returned by

FindMatchingr(C), then Xv,r is by definition exactly the event that v ∈ V (M ′
0) and thus

Pr[Xv,r] = Pr[v ∈ V (M ′
0)]. Moreover, due to symmetry of the algorithm in constructing

162

M ′
0, . . . ,M

′
α, it holds for any i ∈ [α] that Pr[v ∈ V (M ′

i)] = Pr[v ∈ V (M ′
0)] = Pr[Xv,r].

Therefore, we get:

E[ρ′v] = E
[∑α

i=0 1(v ∈ V (M ′
i))

α + 1

]
=

1

α + 1

α∑
i=0

Pr[v ∈ V (M ′
i)]

=
1

α + 1

α∑
i=0

Pr[Xv,r] = Pr[Xv,r],

concluding the proof.

In algorithm FindMatchingr(C), we mark v as either saturated or unsaturated de-

pending on the value of γv,r−1. Note from definition of γv,r−1 that γv,r−1 = Pr[Xv,r−1].

Therefore, v is marked as saturated if Pr[Xv,r−1] ≥ cv − 2ε2 and unsaturated if

Pr[Xv,r−1] < cv − 2ε2. We consider the two cases individually.

If v is saturated. In this case, by definition of graph H, vertex v cannot start or end

any augmenting-hyperwalk with a corresponding vertex in H (and for that matter in

I). By definition of augmenting-hyperwalks, for all vertices (except the endpoints of the

walk) applying the hyperwalk does not change the number of matchings in which the

vertex is part of. Therefore, if v is saturated, ρv = ρ′v and thus Pr[Xv,r] = Pr[Xv,r−1] ≤

max{cv − ε2, 0} where the latter inequality comes from the induction’s hypothesis.

If v is unsaturated. Note that in graph H by definition we have edges between

any pair of augmenting-hyperwalks that share a vertex in the graph. Therefore, the

independent set I of H can include at most one augmenting-hyperwalk W that includes

vertex v. If v is not an end-point of W , then as in the case above, we get ρv = ρ′v.

However, if v is an end-point of W , then by definition of augmenting-hyperwalks, there

163

will be one (and only one) i where v ∈ V (M ′
i) and v 6∈ V (Mi). In this case, we get that

ρ′v =
|{i : v ∈ V (M ′

i)}|
α + 1

=
|{i : v ∈ V (Mi)}|+ 1

α + 1
= ρv +

1

α + 1

α=1/ε7−1
< ρv + ε2.

Since in this case, we had ρv < cv − 2ε2, we get ρ′v < cv − 2ε2 + ε2 = cv − ε2. Therefore

the induction’s hypothesis still holds that Pr[Xv,r] < max{cv − ε2, 0}, completing the

proof of Claim 4.5.10.

4.5.5 Lemma 4.3.8 Property 4: Matching Independence

In this section, we prove that algorithm FindMatchingt(C) satisfies property 4

of Lemma 4.3.8. That is, for every subset I = {v1, . . . , vk} of the vertices such that

dC(vi, vj) ≥ λ for all vi, vj ∈ I, random variables Xv1 , . . . , Xvk are independent. Recall

that Xv for a vertex v is the indicator of the event that v is matched in the matching

returned by FindMatchingt(C). We also, again, emphasize that this “independence” is

with regards to the randomization of realization C of C on which Z is constructed, and

the randomization of algorithm FindMatchingt(C) itself.

In Section 4.5.1 we gave an overview of how we can argue about such independence

via an implementation of the algorithm in the LOCAL model of computation. Here we

give this implementation.

Initialization. The communication network is graph C. Each node v is initially

given the following information: Its incident edges in C and how they are realized, the

maximum degree ∆C of graph C, parameter ε, and the value of cv. Note that to gather

information about realization of edges further away, the nodes need to communicate.

164

Also note that even though the value of cv may reveal some information about graph

G (or C), it crucially reveals no information about the realization C of C, or other

sources of randomization used by the algorithm. Thus, property 4 can still be satisfied

if we manage to show the algorithm can be implemented in few rounds.

The ApproximateMIS(H, ε) algorithm. We start by mentioning that subroutine

ApproximateMIS(H, ε) already has an efficient LOCAL implementation whose round-

complexity depends only on the maximum degree of H and ε, without essentially any

dependence on the number of nodes in H. Any implementation with such round-

complexity can be used in our case. For instance, we use one implied in [27] (see

Appendix 4.8 for details):

Lemma 4.5.13 ([27]). Given a graph H of max degree ∆ and any parameter ε, there

is a LOCAL algorithm ApproximateMIS(H, ε) that returns an independent set I of H

in O(log ∆
ε

) rounds such that the expected size of I is at least (1− ε) fraction of some

maximal independent set of H.

We give a LOCAL implementation of Algorithm 2 which proves the following:

Claim 4.5.14. For any r ≥ 0, algorithm FindMatchingr(·) can be implemented in

O(rε−4 log ∆C) rounds of LOCAL.

Proof. We prove the claim by induction on r. For the base case, observe that algorithm

FindMatching0(·) can be implemented in 0 rounds since the output is always the empty

matching. We assume that algorithm FindMatchingr−1(·) can be implemented in β(r−

1)ε−4 log ∆C rounds where β > 1 is a sufficiently large absolute constant that we fix

165

later, and prove that FindMatchingr(·) can be implemented in βrε−4 log ∆C rounds.

Step 1. First, the algorithm draws α realizations C1, . . . , Cα. Since information

about realization of edges is stored locally on their incident vertices, we can easily

generate these random realizations in O(1) rounds. After that, on each graph Ci for

i ∈ {0, . . . , α}, we recursively run the (β(r − 1)ε−4 log ∆C)-round implementation of

FindMatchingr−1(Ci). Note that all of these can run in parallel. The overall round-

complexity of this step, is thus β(r − 1)ε−4 log ∆C +O(1).

Step 2. Next, we need to compute γv,r−1 for each vertex v, which recall is the

probability that v is matched in FindMatchingr−1(C ′) where C ′ is a random realization of

C. The crucial observation here is that since FindMatchingr−1(·) can, by the induction

hypothesis, be implemented within only β(r − 1)ε−4 log ∆C rounds, γv,r−1 is merely a

function of the topology induced in the (β(r − 1)ε−4 log ∆C)-hop of v. We first gather

this neighborhood of v, which can be done in (β(r−1)ε−4 log ∆C) rounds, then compute

γv,r−1. We note that this gathering part can be done in parallel to the operations of

Step 1. Therefore, overall, Steps 1 and 2 take (β(r − 1)ε−4 log ∆C + O(1)) rounds.

Having γv,r−1 for each vertex v, we can then determine for each vertex whether it is

saturated or unsaturated since we are given the value of cv in the initialization step.

Step 3. The next step is constructing graph H. In graph H, each vertex corre-

sponds to a walk of size at most 2/ε in C. Therefore, each vertex in C can first gather

all such walks around it in O(1/ε) rounds, and then determine which one of them are

augmenting-hyperwalks satisfying the required properties to be considered as a node

of H. Determining the edges of H can also be done locally; once we construct the

vertices, there will be an edge between any two walks that share a vertex. Therefore,

166

overall, graph H can be constructed in O(1/ε) rounds.

Step 4. After constructing H, in this step, we run the LOCAL implementation

of ApproximateMIS(H, ε) mentioned in Lemma 4.5.13 on graph H. We emphasize that

our communication network here is graph C, not H. However, any message between

two nodes of H can be sent over network C within O(1/ε) rounds. This is because

any two incident nodes of H, are walks of size at most O(1/ε) in C that share at least

a vertex. The overall running time of this procedure is thus O(1
ε
× log ∆H

ε
). We note

that ∆H = O(ε−1((α + 1)∆C)2/ε). To see this, fix any walk w with a corresponding

node in H. This walk has at most 2/ε nodes in C. Now each node in C is incident

to O(((α+ 1)∆C)2/ε) hyperwalks: There are O((∆C)2/ε) walks of size ≤ 2/ε branching

out of each of the nodes, and each edge of the walk can take on α + 1 labels from

{0, . . . , α} to be transformed to a hyperwalk. Therefore, overall the number of rounds

required for this part of the algorithm is

O

(
1

ε
× log

∆H

ε

)
= O

(
1

ε
log

ε−1((α + 1)∆C)2/ε

ε

)
= O

(
ε−4 log ∆C

)
,

where the last equality comes from the fact that α = poly(ε−1).

Step 5. Finally, applying the augmenting-hyperwalks chosen in I is simple and

can be done in O(1/ε) rounds since these walks are of size ≤ 2/ε.

Round-complexity. Let β2 be a sufficiently large constant by multiplying which

167

we can surpass the O-notations. We get

of rounds ≤ β(r − 1)ε−4 log ∆C + β2︸ ︷︷ ︸
Steps 1 and 2

+ β2(1/ε)︸ ︷︷ ︸
Step 3

+ β2(ε−4 log ∆C)︸ ︷︷ ︸
Step 4

+ β2(1/ε)︸ ︷︷ ︸
Step 5

< β(r − 1)ε−4 log ∆C + 4β2(ε−4 log ∆C)

=
(
β(r − 1) + 4β2

)
ε−4 log ∆C .

Since β2 is an absolute constant that does not depend on β, we can set β to be large

enough with respect to it. Setting β = 4β2 is sufficient since

(
β(r − 1) + 4β2

)
ε−4 log ∆C = βrε−4 log ∆C .

This concludes the proof of the induction step, and consequently the proof of Claim 4.5.14.

We showed in Claim 4.5.14 that algorithm FindMatchingr(C), for any r, can

be implemented within O(rε−4 log ∆C) rounds of LOCAL. Our final algorithm for

Lemma 4.3.8 is FindMatchingt(C) where we set t = 1/ε9. Thus, the output of each ver-

tex can be determined within λ′ = O(ε−13 log ∆C) rounds. This, as described, proves

property 4 of Lemma 4.3.8 since λ = ε−20 log ∆C is larger than λ′/2 given that ε is

small enough to surpass the hidden constants in the O-notation. (Recall that we can

assume ε is smaller than any needed constant.)

168

4.6 Concentration of the Maximum Realized Matching’s Size

In this section, we prove that random variable µ(G), i.e. the size of the maximum

realized matching of G, is highly concentrated around its mean E[µ(G)] = opt. A simi-

lar concentration bound was previously proved also in the works of [3, 16]. Nonetheless,

we provide the full proof in this section for the sake of self-containment.

Lemma 4.6.1. For every 0 < t ≤ opt, Pr[|µ(G) − opt| ≥ t] ≤ exp
(
− t2

2opt+2t/3

)
<

exp
(
− t2

3opt

)
.

Corollary 4.6.2. Let Q be a subgraph of G obtained via a deterministic algorithm

and suppose that opt = ω(1). If E[µ(Q)]/E[µ(G)] ≥ α then with high probability

µ(Q)/µ(G) ≥ (1− o(1))α.

Proof. Lemma 4.6.1 implies that w.h.p. µ(Q) = (1 ± o(1))E[µ(Q)] and µ(G) = (1 ±

o(1))E[µ(G)]. Therefore, w.h.p. µ(Q)/µ(G) = (1 ± o(1))E[µ(Q)]/E[µ(G)] ≥ (1 −

o(1))α.

We note that our construction of subgraph Q in Algorithm 2 is randomized,

thus the corollary above cannot be used as a black-box to imply a high probability

bound. However, we remark that a similar proof to that of Lemma 4.6.1 which we give

below, proves µ(Q) in our algorithm is concentrated around its mean even considering

the randomization of Algorithm 2. Therefore, our algorithm also guarantees a high

probability bound for the approximation-factor.

In order to prove this lemma, we use the concentration of “self-bounding” func-

tions. See Sections 3.3 and 6.7 of book [19] by Boucheron, Lugosi and Massart for a

169

thorough discussion on this concentration inequality and its proof.

Definition 4.6.3 ([19, Section 6.7]). A function f : Xm → R is “self-bounding” if for

every i ∈ [m] there is a function fi : Xm−1 → R such that for all x = (x1, . . . , xm) ∈

Xm,

1. 0 ≤ f(x)− fi(x(i)) ≤ 1 for all i ∈ [m], and

2.
∑m

i=1(f(x)− fi(x(i))) ≤ f(x),

where x(i) = (x1, . . . , xi−1, xi+1, . . . , xn).

Lemma 4.6.4 ([19, Theorem 6.12]). If X1, . . . , Xm are independent random variables

taking values in X and Z = f(X1, . . . , Xm) is self-bounding, then for every 0 < t ≤ EZ,

Pr[|Z − EZ| ≥ t] ≤ exp

(
− t2

2EZ + 2t/3

)
.

Having this inequality, Lemma 4.6.1 follows as follows.

Proof of Lemma 4.6.1. Let Xe for each edge e in graph G be the indicator of the event

that e is realized. We can use vector X = (Xe1 , . . . , Xem) to represent a realization of

G where e1, . . . , em are all edges in G. With a slight abuse of notation, we use µ(X)

to denote the size of the maximum matching in realization X. We first prove that

function µ(X) is self-bounding. For each i ∈ [m], define

µi(X
(i)) = µ(Xe1 , . . . , Xei−1

, 0, Xei+1
, . . . , Xem).

In words, µi(X
(i)) is the maximum matching size in realization X if we regard edge ei

170

as unrealized. We need to show that the two conditions of Definition 4.6.3 hold. First,

we have to show that

0 ≤ µ(X)− µi(X(i)) ≤ 1 for all i ∈ [m] and all realizations X.

Observe that removing a realized edge cannot increase the maximum realized matching

size, thus clearly µ(X) − µ(X(i)) ≥ 0. Moreover, removing each edge decreases the

maximum matching size by at most 1. Thus µ(X) − µ(X(i)) ≤ 1 proving the first

condition. For the second condition, we have to show that

m∑
i=1

(
µ(X)− µi(X(i))

)
≤ µ(X).

To see this, fix a maximum realized matching M in realization X. For any edge ei

outside this matching, we have µ(X) − µi(X(i)) = 0. For the rest, as discussed above

µ(X)− µi(X(i)) ≤ 1. Therefore indeed
∑m

i=1

(
µ(X)− µi(X(i))

)
≤ |M | = µ(X).

We proved that µ(X) is self-bounding. Since the edges are realized independently,

we can plug this into Lemma 4.6.4 and immediately obtain Lemma 4.6.1.

4.7 On Generality of Assumption 4.3.1

In this section, we prove that Assumption 4.3.1 comes without loss of generality.

Precisely, we show that solving the problem for any input graph G can be reduced to

solving it for a graph H with O(opt/ε) vertices and E[µ(H)] ≥ (1 − ε)opt where H

is a realization H. To do this, we use a “vertex sparsification” idea of Assadi et al. [5].

171

Our reduction is slightly different since we do not want parallel edges in the graph, but

the main idea is essentially the same. It is also worth noting that for the reduction to

work, it is crucial that our algorithm works for different edge realization probabilities.

We provide the full proof for completeness.

We note that throughout the proof we may assume that opt is larger than

constant 3ε−3 and remark that the problem otherwise is trivial.

Construction of H from G. We construct graph H = (U, F) as follows. For

k = 8opt
ε

, define k buckets U = {u1, . . . , uk}. Each of these buckets ui will correspond

to a node in H. Assign each vertex v of graph G to a bucket b(v) ∈ {u1, . . . , uk} picked

independently and uniformly at random. Then for any edge {v1, v2} in graph G, we

add an edge {b(v1), b(v2)} to F . Finally, we turn H into a simple graph by removing

self-loops and merging parallel edges.

Now we need to set the realization probability pe of every edge e ∈ F as well.

For any e ∈ F , let us denote by E(e) the set of edges in the original graph G that are

mapped to e. We set

pe := 1−
∏

e′∈E(e)

(1− pe′).

We note that pe is defined such that it precisely equals to the probability that at least

one edge in E(e) is realized.

Claim 4.7.1. Fix any matching M in G satisfying |M | ≤ 2opt. Then E[µ(H)] ≥

(1 − ε)|M | where the expectation is taken over the randomization of the algorithm in

constructing H.

172

Proof. Let V (M) be the vertex-set of matching M in graph G and define

X := {v ∈ V (M) | ∃u ∈ V (M) s.t. v 6= u and b(v) = b(u)},

which is the set of vertices in V (M) whose bucket is not unique with regards to others

in V (M).

We first claim that µ(H) ≥ |M | − |X|. Call an edge {u, v} ∈ M good if u 6∈ X,

v 6∈ X, and bad otherwise. Each bad edge has at least one endpoint in X, thus there are

at least |M |−|X| good edges in M . One can easily confirm that the set of corresponding

edges of all good edges in M forms a matching in H. Thus µ(H) ≥ |M | − |X|.

To conclude, we prove that E[|X|] ≤ ε|M | which proves E[µ(H)] ≥ |M |−ε|M | =

(1− ε)|M |. To see why E[|X|] ≤ ε|M |, fix any vertex v ∈ V (M) and suppose that we

have adversarially fixed the bucket b(u) of all other vertices u ∈ V (M). Since the bucket

of v is picked uniformly at random from 10opt/ε buckets and |V (M)| ≤ 2|M | ≤ 4opt,

the probability of v choosing a bucket already chosen by another vertex in V (M) would

be ≤ 4opt
8opt/ε

≤ ε/2. By linearity of expectation over 2|M | vertices in V (M), we get

E[|X|] ≤ ε|M |, concluding the proof.

Claim 4.7.2. It holds that E[µ(H)] ≥ (1− 3ε)opt. Here the expectation is taken over

both the randomization in construction of H and the randomization in realization H of

H.

Proof. We first map each realization G of G to a realization H of H. To do so, we say

an edge e ∈ F is realized in H if and only if at least one edge e′ ∈ E(e) is realized

173

in G. We argue that this mapping preserves independence of edge realizations in H

and their realization probabilities. First, since for any two edges e1, e2 ∈ F it holds

that E(e1) ∩ E(e2) = ∅, realization of an edge e ∈ F gives no information regarding

realization of other edges. Moreover, observe that each edge e ∈ F will be precisely

realized with probability pe as discussed above in defining pe.

Let M be the maximum realized matching of G. By Lemma 4.6.1, Pr[||M | −

opt| ≥ εopt] < exp(− (εopt)2

3opt
) = exp(− ε2opt

3
) < ε where the last inequality follows

from assumption opt > 3ε−3. This means that with probability at least 1− ε, |M | ∈

[(1 − ε)opt, (1 + ε)opt]. Let us suppose that this event holds and denote it by A.

Note that event A is only with regards to realization of G and reveals no information

about the algorithm to construct H. Now plugging matching M into Claim 4.7.1, we

get that E[µ(H) | A] ≥ (1− ε)|M | ≥ (1− ε)(1− ε)opt ≥ (1− 2ε)opt. Incorporating

also the probability that event A holds, which as described is at least 1 − ε, we get

E[µ(H)] ≥ (1− ε)(1− 2ε)opt ≥ (1− 3ε)opt, concluding the proof.

The reduction. We are now ready to give the full reduction. Suppose we are

given n-vertex graph G with opt = E[µ(G)] and assume that opt < 0.1εn (otherwise

Assumption 4.3.1 holds). We first construct graph H as described. Note that H has

at most n′ = 8opt
ε

nodes by the construction and that E[µ(H)] ≥ (1 − 3ε)opt by

Claim 4.7.2. Replacing opt with εn′/8, we get E[µ(H)] ≥ (1 − 3ε) εn
′

8
. Assuming

ε < 0.05 (recall that we can assume ε to be smaller than any needed constant), this

implies E[µ(H)] ≥ εn′

10
and thus Assumption 4.3.1 holds for graph H.

Let Q be the result of running Algorithm 2 on graph H. Since Assumption 4.3.1

174

holds for H, it leads to a (1 − ε)-approximation. That is, we get E[µ(Q)] ≥ (1 −

Ω(ε))E[µ(H)]. We use this subgraph Q to pick a bounded-degree subgraph Q′ of G that

provides a (1−ε)-approximation: For each edge e ∈ Q, let us pick min{p−1 log ε−1, |E(e)|}

arbitrary edges from E(e) and put them in Q′. We argue that this subgraph Q′ has

maximum degree Oε,p(1) and that E[µ(Q′)] ≥ (1− Ω(ε))opt.

Claim 4.7.3. Q′ has maximum degree Oε,p(1).

Proof. Observe that an edge e′ incident to a vertex v ∈ V is in Q′ only if its corre-

sponding edge e in graph H is in Q. Since e corresponds to e′, it should be incident to

b(v) of v by the construction of H. Moreover, since b(v) has maximum degree Oε,p(1)

in Q and that for each edge incident to b(v) in Q, we put at most O(p−1 log ε−1) edges

in Q′, the degree of v in Q′ is bounded by Oε,p(1) × O(p−1 log ε−1) = Oε,p(1). This

bounds the maximum degree of Q′ by Oε,p(1).

Claim 4.7.4. E[µ(Q′)] ≥ (1− Ω(ε))opt.

Proof. For any edge e ∈ Q, define p′e to be the probability that at least one of the

edges in G picked for e is realized. We first argue that p′e ≥ (1 − ε)pe. To see this,

note that if |E(e)| ≤ p−1 log ε−1, then all the edges in E(e) will be picked. Thus by

definition of pe we have p′e = pe. On the other hand, if |E(e)| > p−1 log ε−1, we pick

exactly p−1 log ε−1 edges for e. Since each of these edges has realization probability at

least p, the probability that at least one of them is realized is at least

1− (1− p)p−1 log ε−1 ≥ 1− ε ≥ (1− ε)pe.

175

Now let M be any matching in Q. For each edge e ∈ M , choose one arbitrary

edge in E(e). From the construction of H from G, one can confirm that the set of

these chosen edges will form a matching of size |M | in G. This concludes the proof:

For each edge e ∈ Q, there is a probability at least (1 − ε)pe that one picked edge

in Q′ is realized, thus E[µ(Q′)] ≥ (1 − ε)E[µ(Q)]. As it was previously shown that

E[µ(Q)] ≥ (1− Ω(ε))opt, we conclude that E[µ(Q′)] ≥ (1− Ω(ε))opt.

4.8 Approximate MIS

In this section we describe how Lemma 4.5.13 can be derived as a corollary of

the algorithm of [27]. Theorem 1.1 of [27] gives a randomized LOCAL independent-set

(IS) algorithm which guarantees that for each node v, the probability that v “has not

made its decision” after O(log deg(v) + log 1
δ
) rounds is at most δ. The decision of v is

finalized if it is in the IS or it has a neighbor that is in the IS (implying that v cannot

be in the IS).

To achieve Lemma 4.5.13 we set δ = ε
10∆

. Let I denote the independent set

returned by the algorithm after O(log deg(v) + log 10∆
ε

) = O(log ∆
ε

) rounds and let U

and D respectively denote the set of undecided and decided vertices. We have

E[|U |] = E
[∑

v

1(v is undecided)
]

=
∑
v

Pr[v is undecided] ≤
∑
v

ε

10∆
=

ε

10∆
n,

and thus E[|D|] = n−E[|U |] ≥ (1− ε
10∆

)n ≥ 0.9n. There is at least one IS node among

the at most ∆ + 1 inclusive neighbors of any decided vertex; thus E[|I|] ≥ E[|D|]
∆+1

≥

0.9n
∆+1
≥ 0.9n

2∆
= 0.45 n

∆
. On the other hand, let I ′ be the MIS obtained by greedily adding

176

the undecided nodes to I until they form an MIS. We have |I ′| ≤ |I|+ |U |. Therefore,

we indeed get that

E[|I|]
E[|I ′|]

≥ E[|I|]
E[|I|] + E[|U |]

≥
0.45 n

∆

0.45 n
∆

+ ε
10∆

n
=

0.45 n
∆

(0.45 + 0.1ε) n
∆

=
0.45

0.45 + 0.1ε
> 1− ε,

concluding the proof.

4.9 Deferred Proofs

Proof of Lemma 4.3.5. Let t0 = (εp)50 and for any i ≥ 1 let ti = f(ti−1). Note that

t0 > t1 > t2 > . . . by the assumption of the lemma that 0 < f(x) < x for all 0 < x < 1.

For any i ≥ 1 define qi =
∑

e∈E:qe∈(ti,ti−1] qe and let j be the smallest number where

qj ≤ εopt. We will soon prove existence of such j and also prove that j = O(1/ε). We

claim that setting τ+ = tj−1 and τ− = tj satisfies the conditions of the lemma.

Condition (1): This condition holds trivially since τ− = tj = f(tj−1) = f(τ+).

Condition (2): Let us define X := {e | τ− < qe < τ+}. Recall that crucial and

non-crucial edges are defined based on τ+ and τ−. That is, an edge e is crucial (i.e.

e ∈ C) if qe ≥ τ+, and is non-crucial (i.e. e ∈ N) if qe ≤ τ−. This implies that the

remaining edges that are neither crucial nor non-crucial belong to X. Therefore,

opt = q(E) = q(C) + q(N) + q(X).

To obtain q(N)+q(C) ≥ (1−ε)opt it thus suffices to show q(X) ≤ εopt. Noting that

τ+ = tj−1 and τ− = tj and also noting the definition of qj above, we get q(X) ≤ qj.

177

Recall that we chose j such that qj ≤ εopt. Therefore we indeed get that q(X) ≤ εopt.

Condition (3): We defined t0 = (εp)50 and recursively defined ti = f(ti−1).

Since f(·) is only a function of its input, we get via a simple induction that both tj

and tj−1 are also functions of only ε and p. (Recall that j = O(1/ε).)

Condition (4): We defined t0 = (εp)50 and recall that we showed t0 > t1 > t2 >

. . .; this implies clearly that τ+ = tj−1 ≤ (εp)50.

Existence of j. It only remains to prove that there exists a choice of j satisfying

qj ≤ εopt and that this j is not too large. Precisely, we show that j = O(1/ε). Since

intervals (t1, t0], (t2, t1], (t3, t2], . . . are disjoint, it holds that for each edge e there is at

most one i for which qe ∈ (ti, ti−1]. This means that
∑∞

i=1 qi ≤
∑

e∈E qe = opt. It thus

has to hold that j ≤ d1/εe+ 1 or otherwise

j−1∑
i=1

qi ≥
d1/εe+1∑
i=1

εopt = (d1/εe+ 1)εopt > opt

contradicting the previous statement. This concludes the proof of the lemma.

Proof of Claim 4.4.2. We prove parts 1-3 one by one.

Part 1. The upper bound E[fe] ≤ qe is simple to prove. Consider random variable

f ′e = te/R and note that f ′e ≥ fe. We have

E[f ′e] = E
[
te
R

]
=

1

R
E[te] =

1

R

(
R∑
i=1

Pr[e ∈ MM(Gi)]

)
=

1

R
(R× Pr[e ∈ MM(G1)]) = qe.

Since fe ≤ f ′e, we get E[fe] ≤ E[f ′e] = qe, concluding the proof of part 1.

Part 2. Next we turn to prove the lower bound E[fe] ≥ (1 − ε)qe. Let Xi be the

178

indicator random variable for e ∈ MM(Gi). We have te = X1 + . . . + XR, E[Xi] = qe,

and E[te] = Rqe. Note also that the Xi’s are independent since graphs G1, . . . ,GR are

drawn independently. Therefore, Var[te] =
∑R

i=1 Var[Xi] = R(qe − q2
e).

Noting that R = 0.5/τ− and that qe < τ− since e is non-crucial, we get Rqe < 1.

This means that if te ≥ a + 1, then |te − Rqe| ≥ a; which implies Pr[te ≥ a + 1] ≤

Pr[|te − Rqe| ≥ a]. Therefore by setting a =
√
R/ε and also using Chebyshev’s

inequality, we get

Pr
[
te ≥

√
R/ε+ 1

]
≤ Pr

[
|te − E[te]| ≥

√
R/ε

]
≤ Var[te]

(
√
R/ε)2

=
R(qe − q2

e)

(
√
R/ε)2

= ε(qe − q2
e) ≤ εqe. (4.31)

Finally, we have

E
[
te
R

]
= Pr

[
te
R
≤ 1√

εR

]
E
[
te
R
| te
R
≤ 1√

εR

]
︸ ︷︷ ︸

=E[fe]

+ Pr

[
te
R
>

1√
εR

]
E
[
te
R
| te
R
>

1√
εR

]
︸ ︷︷ ︸

≤1 since by definition, te ≤ R.

Rearranging the terms and replacing the bounds specified, we get

E[fe] ≥ E
[
te
R

]
− Pr

[
te
R
>

1√
εR

]
=

1

R
E[te]− Pr

[
te ≥

√
R/ε+ 1

] (4.31)

≥ 1

R
×Rqe − εqe = (1− ε)qe,

concluding the proof of part 2.

Part 3. Note that fe ≤ te/R by definition. Thus, we have
∑

e3v fe ≤
∑

e3v te/R =

R−1
∑

e3v te. Since each MM(Gi) includes at most one incident edge of v for being a

179

matching, it holds that
∑

e3v te ≤ R, thus indeed
∑

e3v fe ≤ R−1R = 1.

Part 4. Let Xi be the event that v is matched in MM(Gi) via a non-crucial edge and

define X :=
∑R

i=1 Xi. Furthermore, define for each edge e,

f ′e :=


te
R
, if e is non-crucial,

0, otherwise.

Note that f ′e is very similar to the value of fe except for the case where te/R > 1/
√
εR.

In this case, fe = 0 but f ′e remains to be the ratio te/R. This implies that f ′e ≥ fe.

Now let f ′v =
∑

e3v f
′
e. Since fe ≤ f ′e for all edges, we have fv ≤ f ′v. Therefore, instead

of proving Pr[fv > nv + 0.1ε] ≤ (εp)10, it suffices to prove Pr[f ′v > nv + 0.1ε] ≤ (εp)10.

It holds from the definition that

f ′v =
∑

e:e∈N,v∈e

te
R

=
1

R

∑
e:e∈N,v∈e

te =
1

R
× (X1 + . . .+XR) = X/R.

Replacing this into Pr[f ′v > nv + 0.1ε] ≤ (εp)10, we thus have to prove

Pr[X/R > nv + 0.1ε] ≤ (εp)10,

or equivalently:

Pr[X > Rnv + 0.1Rε] ≤ (εp)10.

To prove this we use a concentration bound on X. Note that the Xi’s are independent

since graphs G1, . . . ,GR are drawn independently. Moreover, for each i ∈ [R], we have

180

E[Xi] = nv since recall Xi = 1 iff v is matched via a non-crucial edge in MM(Gi)

and this has probability
∑

e:e∈N,v∈e qe = nv. Thus E[X] = Rnv. While we can use

Chernoff’s bound here since all Xi’s are independent, even the second-moment method

is enough for our desired inequality. The variance of X can be bounded as follows:

Var[X] =
R∑
i=1

Var[Xi] =
R∑
i=1

E[X2
i]− E[Xi]

2 = R(nv − n2
v).

By Chebyshev’s inequality, we get

Pr[X > Rnv + 0.1Rε] ≤ R(nv − n2
v)

(0.1Rε)2
=

100(nv − n2
v)

Rε2
≤ 100

Rε2
.

Since R = 1/2τ− and τ− < (εp)50 by Corrolary 4.3.6, we get

Pr[X > Rnv +Rε] ≤ 100

Rε2
<

200(εp)50

ε2
< (εp)10,

which as described above concludes the proof.

Proof of Observation 4.5.2. First note that realizations C1, . . . , Cα are all drawn pre-

cisely from the same distribution that realization C = C0 is drawn from. Thus due to

symmetry, matchings M0, . . . ,Mα are all derived from the same distribution. Match-

ings M ′
0, . . . ,M

′
α are then the result of applying the augmenting-hyperwalks I found

by ApproximateMIS(H, ε) on graph H. Construction of graph H is symmetrical w.r.t.

matchings M0, . . . ,Mα. The only remaining component of the algorithm where this

symmetry may break is in algorithm ApproximateMIS(H, ε) that may be biased to-

181

wards picking augmenting-hyperwalks depending on which matching Mi they would

augment. This can be avoided by using an algorithm for ApproximateMIS(H, ε) that

is oblivious to the indices of matchings M0, . . . ,Mα used to construct graph H. That

is, suppose e.g. that we pick the ID of nodes in H randomly before feeding it into

ApproximateMIS(H, ε). This guarantees that the obtained matchings M ′
0, . . . ,M

′
α will

all have the same distribution due to their symmetry.

182

Chapter 5: Stochastic Weighted Matching

In this chapter, we study the stochastic weighted matching problem, the weighted

version of the stochastic matching problem discussed in the previous chapter. The

problem is defined as follows: An arbitrary n-vertex graph G = (V,E) with edge

weights w : E → R≥0 is given. A random subgraph G of G, called the realization, is

then drawn by retaining each edge e ∈ E independently with some fixed probability

p ∈ (0, 1]. The goal is to choose a subgraph Q of G without knowing the realization G

such that:

1. The maximum weight matching (MWM) among the realized edges of Q (i.e.

graph Q∩G) approximates in expectation the MWM of the whole realization G.

Formally, we want the “approximation factor” E[µ(Q ∩ G)]/E[µ(G)] to be large

where µ(·) denotes the MWM’s weight.

2. The subgraph Q has maximum degree O(1). The constant here can (and in fact

must) depend on p, but cannot depend on the structure of G such as the number

of nodes or edge-weights.

Observe that by setting Q = G we get an optimal solution, but the second constraint

would be violated as the maximum degree in G could be very large. On the other hand,

if we choose Q to be a single maximum weight matching of G, the maximum degree

183

in Q would desirably be only one, but it is not possible to guarantee anything better

than a p-approximation for this algorithm1. The stochastic matching problem therefore

essentially asks whether it is possible to interpolate between these two extremes and

pick a subgraph that is both sparse and provides a good approximation.

Applications. As its most straightforward application, the stochastic matching prob-

lem can be used as a matching sparsifier that approximately preserves the maximum

(weight) matching under random edge failures [4]. It also has various applications in

e.g. kidney exchange (see [18] for an extensive discussion) and online labor markets

[11, 12]. For these applications, one is only given the base graph G but is tasked to find

a matching in the realized subgraph G. To do so, an algorithm can query each edge of G

to see whether it is realized. Each of these queries typically maps to a time-consuming

operation such as interviewing a candidate and thus few queries must be conducted.

To do so, one can (non-adaptively) query only the O(n) edges of Q and still expect

to find an approximate MWM in the whole realization G which note may have Ω(n2)

edges.

Known bounds. Both the weighted and unweighted variants of this problem have

been studied extensively [4, 5, 6, 9, 10, 11, 12, 17, 41] since the pioneering work of

Blum et al. [17]. As discussed in the previous chapter, after a series of works on the

unweighted version of the problem, we show that the approximation factor can be

made (1− ε) for any constant ε > 0 [10]. However, all these works rely heavily on the

underlying graph being unweighted.

1To see this, let G be a clique with unit weights. It is easy to prove that a realization of G has
a near-perfect matching with high probability, whereas only p fraction of the edges in the matching
that forms Q are realized.

184

For the weighted case, in contrast, all known results remain close to a half ap-

proximation. The first result of this kind was proved by [41] who showed that by

allowing Q’s maximum degree to depend on the maximum weight W , one can obtain a

0.5-approximation. It was later proved in [12] through a different analysis of the same

construction that dependence on W is not necessary to achieve a 0.5-approximation.

Subsequently, the approximation factor was slightly improved to 0.501 using a different

construction [11].

Our contribution. The main result of this chapter is as follows:

Theorem 6. For any weighted graph G, any p ∈ (0, 1], and any ε > 0, there is a

subgraph Q of G with maximum degree Oε,p(1) that achieves a (1−ε)-approximation

for the stochastic weighted matching problem.

Not only Theorem 6 is the first result showing that a significantly better than

0.5-approximation is achievable for weighted graphs, but it essentially settles the ap-

proximation ratio. The remark below shows also that the dependence of the maximum

degree of Q on both ε and p is necessary:

Remark 5.0.1. For any ε > 0, any (1 − ε)-approximate subgraph Q must have max-

imum degree Ω(log 1/ε
p

) even when G is a unit-weight clique [5]. This also implies that

the approximation ratio cannot be made (1− o(1)) unless Q has ω(1) degree.

For simplicity of presentation, we do not calculate the precise dependence of

the maximum degree of Q on ε and p. Though we remark that the Oε,p(1) term

in Theorem 6 hides an exponential dependence on ε and p. We leave it as an open

185

problem to determine whether a poly(1
εp

) degree subgraph can also achieve a (1 − ε)-

approximation.

5.1 Technical Overview and the Challenge with Weighted Graphs

In the literature of the stochastic matching problem, the subgraph Q typically

has a very simple construction and much of the effort is concentrated on analyzing

its approximation factor. A good starting point is the following Sampling algorithm

proposed in [11]:2 For some parameter R = Oε,p(1), draw R independent realizations

G1, . . . ,GR of G and let Q ← MM(G1) ∪ . . . ∪ MM(GR) where here MM(·) returns a

maximum weight matching. It is clear that the maximum degree of Q is R = Oε,p(1),

but what approximation does it guarantee? Clearly E[µ(Gi)] = E[µ(G)] since each Gi

is drawn from the same distribution as G. However, observe that only p fraction of

the edges of each matching MM(Gi) in expectation appear in the actual realization

G. Hence, the challenge in the analysis is to show that the realized edges of these

matchings can augment each other to construct a matching whose weight approximates

opt := E[µ(G)].

Since the weighted stochastic matching problem is a generalization of the un-

weighted version, all the challenges that occur for the unweighted variant carry over

to the weighted case. Of key importance, is the so called “Ruzsa-Szemerédi barrier”

which was first observed by [5] toward achieving a (1−ε)-approximation. As discussed

in the previous chapter, we break this barrier for unweighted graphs using a notion of

2As we will soon discuss, we do not analyze just the Sampling algorithm in this work, and combine
it with a Greedy algorithm stated formally as Algorithm 1.

186

“vertex independent matchings”. To overcome this challenge for weighted graphs, in

this chapter we generalize this notion to weighted graphs. Below we will discuss two

challenges specific to weighted graphs and how we overcome them.

Challenge 1: Low-probability/high-weight edges. The analysis of the Sampling

algorithm for unweighted graphs typically relies on a partitioning of the edge-set E

into “crucial” and “non-crucial” edges (Similar to what we had in Chapter 4). Define

qe := Pr[e ∈ MM(G)] and let τ = τ(ε, p)� p be a sufficiently small threshold; an edge

e is called “crucial” if qe ≥ τ and “non-crucial” if qe < τ . Observe that if we draw

say R = log 1/ε
τ

= Oε,p(1) realizations in the Sampling algorithm, then nearly all crucial

edges appear in at least one of MM(G1), . . . ,MM(GR) and thus belong to Q. On the

other hand, non-crucial edges can be used very much interchangeably, at least when

the graph is unweighted.

For weighted graphs there is a third class of edges: Edges e with a small proba-

bility qe of appearing in MM(G) but a relatively large weight we. On one hand, there

could be a super-constant number of these edges connected to each vertex, so we cannot

consider them crucial and add all of them to Q. On the other hand, even “ignoring”

few edges of this type can significantly hurt the weight of the matching, so they can-

not be regarded as non-crucial. This is precisely the reason that the analysis of [11]

only guarantees a 0.501-approximation for weighted graphs but achieves up to 0.65-

approximation for unweighted graphs. (See [11, Section 6] and in particular Figure 4

of [11].)

We handle low-probability/high-weight edges in a novel way. Particularly, we

187

complement the Sampling algorithm (stated as Algorithm 2) with a Greedy algorithm

(stated as Algorithm 1) which hand picks some of the low-probability high-weight

edges and adds them to Q. Then in our analysis, any low-probability/high-weight

edge that is picked by the Greedy algorithm is treated as if they are crucial, while the

rest are regarded as non-crucial. Describing how the Greedy algorithm decides which

low-probability/high-weight edges to pick requires a number of careful definitions which

are out of the scope of this section. However, in a rough sense, it picks edges that would

be “ignored” in the analysis if we regarded them as non-crucial.

Challenge 2: Lack of the “sparsification lemma” for weighted graphs. Let

us for now suppose that graph G is unweighted. It is often useful to assume E[µ(G)] =

Ω(n) as for instance even by losing an additive εn factor in the size of the matching

(say because a certain event fails around each vertex with probability ε), we can still

guarantee a multiplicative (1 − O(ε))-approximation. A “sparsification lemma” of

Assadi et al. [5] which was also used in a crucial way in Chapter 4 guarantees that this

assumption comes without loss of generality for unweighted graphs. This is achieved by

modifying the graph and ensuring that each vertex is matched with a large probability.

For weighted graphs, in contrast, the probability with which a vertex is matched is

not a useful indicator of the weight that it contributes to the matching. For this reason,

no equivalent of the sparsification lemma exists for weighted graphs. For another

evidence that the sparsification lemma is not useful for weighted graphs, observe that

by adding zero-weight edges we can assume w.l.o.g. that G is a clique. Therefore,

each vertex v already has a probability 1 − o(1) of being matched (but perhaps via a

188

zero-weight edge) and thus the reduction of [5] does not help.

Due to lack of the sparsification lemma, it is not sufficient to simply bound the

probability of a “bad event” around each vertex by say ε when the graph is weighted.

Rather, it is important to analyze the actual expected loss to the weight conditioned

on that this bad event occurs. For this reason, our analysis turns out to be much

more involved than the unweighted case. This appears both in generalizing the vertex-

independent lemma (Section 5.4) to the weighted case, and in various other places in

the analysis (in particular Claims 5.3.12 and 5.3.18).

5.2 Basic Definitions and The Algorithm

5.2.1 General Notation

For any matching M , we use w(M) :=
∑

e∈M we to denote the weight of M ; and

use v ∈M for any vertex v to indicate that there is an edge incident to v that belongs

to M . We use µ(H) to denote the weight of the maximum weight matching in graph

H. For any two vertices u and v, we use dG(u, v) to denote the size of the shortest

path between u and v in graph G (note that this is not their weighted distance). For

any event A, we use 111(A) as the indicator of the event, i.e. 111(A) = 1 if A occurs and

111(A) = 0 otherwise.

5.2.2 Basic Stochastic Matching Notation/Definitions

We use opt to denote E[µ(G)]. Note that opt is just a number, the expected

weight of the maximum weight matching in the realization G. With this notation, to

189

prove Theorem 6, we should prove that E[µ(Q)] ≥ (1 − ε)opt, where Q := Q ∩ G is

the realized subgraph of Q.

For any graph H, we use MM(H) to denote a maximum weight matching of H.

In case H has multiple maximum weight matchings, MM(H) returns an arbitrary one.

It would be useful to think of MM(·) as a deterministic maximum weight matching

algorithm that always returns the same matching for any specific input graph. Having

this, for each edge e define

qe := PrG[e ∈ MM(G)] and χe = we · qe. (5.1)

Observe that χe is the expected weight that e contributes to matching MM(G). These

definitions also naturally extend to subsets of edges F ⊆ E for which we denote

q(F) :=
∑
e∈F

qe, and χ(F) :=
∑
e∈F

χe.

Observation 5.2.1. χ(E) = opt.

Proof. By definition opt = E[µ(G)]. The proof therefore follows since:

E[µ(G)] = E[w(MM(G))] = E

 ∑
e∈MM(G)

we

 = E

[∑
e∈E

111(e ∈ MM(G)) · we

]

=
∑
e∈E

Pr[e ∈ MM(G)] · we

=
∑
e∈E

qe · we =
∑
e∈E

χe = χ(E),

190

where the fourth equality follows simply from linearity of expectation.

5.2.3 The Algorithm

In what follows we describe two different algorithms that each picks a subgraph

of graph G. The final subgraph Q is the union of the two subgraphs picked by these

algorithms.

To state the first algorithm, let us first define function λ : R× [0, 1]→ R as:

λ(∆, ε) := ε−24(log ∆)(log log ∆)C , (5.2)

where C ≥ 1 is a large enough absolute constants that we fix later. This perhaps

strange-looking function is defined in this way so that it satisfies the various equations

that we will need throughout the analysis. Having it, the first algorithm we use is as

follows:

Algorithm 3. GreedyAlgorithm(G = (V,E), p, ε)

1 P ← ∅.
2 while true do

3 ∆← max{1,maximum degree in subgraph P}. // So in the first iteration,

∆ = 1.

4 Iq ← {(u, v) ∈ E \ P | qe ≥ p2ε10 ·∆−λ(∆,ε)}.
5 Id ← {(u, v) ∈ E \ P | dP (u, v) < λ(∆, ε)}.
6 I ← Id ∪ Iq.
7 if χ(I) ≥ εopt then

8 P ← P ∪ I.

9 else

10 return P .

From now on, when we use ∆ we refer to the final value assigned to it during

191

Algorithm 1, which is equivalent to the maximum degree of P (unless P remains empty,

which in that case ∆ = 1).

Remark 5.2.2. Algorithm 1 uses the value of qe which is not given a priori. Naively, it

can be computed for all edges by enumerating all possible realizations of G in exponential

time. However, it is not hard to see that we only need to check qe > τ where τ is a

constant dependent on ε and p, hence a simple Monte Carlo algorithm can also find all

the edges in Iq in polynomial time with high probability.

The second algorithm which was proposed first in [11] is very simple and natural:

Draw multiple random realizations and pick a maximum weight matching of each;

formally:

Algorithm 4. SamplingAlgorithm(G = (V,E), p, ε)

1 R← dp−2ε−10∆λ(∆,ε)e.
2 for i in 1 . . . R do

3 Draw a realization Gi by retaining each edge e ∈ E independently with

probability p.

4 return S := MM(G1) ∪ . . . ∪MM(GR).

As mentioned earlier, the final subgraph Q is the union of the outputs of Algo-

rithms 1 and 2. That is, Q = S ∪P . We first prove in this section that the algorithms

terminate and the resulting subgraph Q has Oε,p(1) maximum degree. We then turn

to analyze the approximation-factor in the forthcoming sections.

Lemma 5.2.3. Algorithms 1 and 2 terminate and the subgraph Q has maximum degree

Oε,p(1).

Proof. Algorithm 1 has an unconditional while loop, but we argue that it will terminate

within at most 1/ε iterations. To see this, consider the progress of χ(P) after each

192

iteration. Since none of the edges in I are in P due to its definition, in every iteration

that the condition χ(I) ≥ εopt of Line 7 holds, the value of χ(P) increases by at

least εopt. On the other hand, since P ⊆ E and χ(E) = opt (Observation 5.2.1), we

have χ(P) ≤ opt. Hence, after at most 1/ε iterations, the condition of Line 7 cannot

continue to hold and the algorithm returns P . Algorithm 2 also clearly terminates as

it simply runs a for loop finitely many times.

To bound the maximum degree of Q by Oε,p(1) we show that it suffices to bound

the maximum degree ∆ of P by Oε,p(1). To see this, first observe that if ∆ = Oε,p(1)

then also λ(∆, ε) = Oε,p(1) by definition of λ. On the other hand, since S is simply the

union of R = O(p−2ε−10∆λ(∆,ε)) matchings, its maximum degree can also be bounded

by O(p−2ε−10∆λ(∆,ε)) = Oε,p(1). It thus only remains to prove ∆ = Oε,p(1).

To bound ∆, let ∆i be the maximum degree of P by the end of iteration i of

the while loop in Algorithm 1. We prove via induction that for any i ≤ 1/ε we have

∆i = Oε,p(1). This is sufficient for our purpose since we already showed above that the

algorithm terminates within 1/ε iterations.

For the base case with i = 0 (i.e. before the start of the while loop) P is empty,

hence indeed ∆0 = Oε,p(1). Now consider any iteration i. Take any vertex v and let

e = (u, v) be an edge that belongs to I at iteration i. By definition of I in Line 7,

e ∈ Id ∪ Iq so it remains to bound the maximum degree of Id and Iq. If e ∈ Id, there

should be a path between u and v consisting of only the edges already in P that has

length less than ` := λ(∆i−1, ε). Since the maximum degree in P at this point is ∆i−1,

there are at most ∆`
i−1 such paths ending at v. This is a simple upper bound on the

number of edges in Id connected to v at iteration i. On the other hand, if e ∈ Iq,

193

then by definition qe ≥ p2ε10 ·∆−`i−1. Combined with
∑

e3v qe ≤ 1, this means there are

at most p−2ε−10 · ∆`
i−1 edges in Iq connected to v. Thus the degree of any vertex v

increases by at most ∆`
i−1 + p−2ε−10∆`

i−1 and as a result:

∆i ≤ ∆i−1 + ∆`
i−1 + p−2ε−10∆`

i−1.

By the induction hypothesis, ∆i−1 = Oε,p(1) which also consequently implies ` =

Oε,p(1) since ` is a function of only ∆i−1 and ε. Therefore, ∆i ≤ Oε,p(1)Oε,p(1) = Oε,p(1).

Observe that since i ≤ 1/ε, this use of the asymptotic notation over the steps of the

inductive argument does not lead to any undesirable blow-up and the final maximum

degree is indeed Oε,p(1) as desired.

5.3 The Analysis

In this section, we analyze the approximation factor of the construction of Q

described in the previous section.

Analysis via fractional matchings. Recall that our goal is to show graph Q :=

Q ∩ G has a matching of weight (1−O(ε))opt in expectation. Since Q is constructed

independently from the realization G, one can think of Q as a subgraph of Q that

includes each edge of Q independently with probability p. To show this subgraph Q

has a matching of weight close to opt, we follow the by now standard recipe [10, 11]

194

of constructing a fractional matching x on Q, such that:

xv :=
∑
e3v

xe ≤ 1 ∀v ∈ V (5.3)

xe ≥ 0 ∀e ∈ Q (5.4)

x(U) :=
∑

e=(u,v):u,v∈U

xe ≤
|U | − 1

2
∀U ⊆ V such that |U | is odd and ≤ 1/ε. (5.5)

Here (5.3) and (5.4) are simply fractional matching constraints. The last set of con-

straints (5.5), known as “blossom” [25] constraints, are needed to ensure that our

fractional matching x can be turned into an integral matching of weight at least (1−ε)

times that of x. (See [40, Section 25.2] for more context on the matching polytope and

blossom constraints. See also [11, Section 2.2] for a simple proof of this folklore lemma

that blossom inequalities over subsets of size up to 1/ε are sufficient for a (1 − ε)-

approximation.) In addition to the constraints above, we want fractional matching x

to have weight close to opt so that we can argue Q has an integral matching of size

(1−O(ε))opt. Formally, our goal is to construct x such that in addition to constraints

(5.3–5.5), it satisfies:

E

[∑
e∈Q

xewe

]
≥ (1−O(ε))opt. (5.6)

If x satisfies all these constraints, then we have E[µ(Q)] ≥ (1−O(ε))opt, proving

Theorem 6.

Observation 5.3.1. To prove Theorem 6, it suffices to give a construction x : Q →

[0, 1] satisfying constraints (5.3-5.5) and (5.6).

195

5.3.1 Toward Constructing x: A Partitioning of E

To construct fractional matching x, we first partition the edge set E into P∪I ′∪N ,

where P is simply the output of Algorithm 1, I ′ is the set of edges in set I defined in

the last iteration of Algorithm 1 (for which the condition χ(I) ≥ εopt of Line 7 fails),

and N is the rest of edges, i.e. N = E − P − I ′. On all edges e ∈ I ′ we simply set

xe = 0, i.e., we do not use them in the fractional matching x. For other edges e 6∈ I ′, we

use different constructions for x depending on whether e ∈ P or e ∈ N . We describe

the construction of x on P in Section 5.3.2 and the construction on N in Section 5.3.3.

Before that, let us state a number of simple observations regarding this partitioning.

Observation 5.3.2. χ(P) + χ(N) ≥ (1− ε)opt.

Proof. Recall that χ(E) = opt by Observation 5.2.1. Combined with E = P ∪ I ′ ∪N ,

this implies χ(P) + χ(N) + χ(I ′) ≥ opt. To complete the proof, we argue that

χ(I ′) ≤ εopt. To see this, recall that I ′ is defined as the set I in the last iteration of

Algorithm 1. In the last iteration, the condition χ(I) ≥ εopt of Line 7 in Algorithm 1

must fail (otherwise there would be another iteration), and thus χ(I ′) < εopt.

Observation 5.3.3. For any edge e = (u, v) ∈ N , qe < p2ε10∆−λ(∆,ε) and dP (u, v) ≥

λ(∆, ε).

Proof. In the last iteration of Algorithm 1, all edges e = (u, v) with qe ≥ p2ε10∆−λ(∆,ε)

or dP (u, v) < λ(∆, ε) are either already in P or are added to I = I ′; thus e 6∈ N since

N = E − P − I ′.

196

5.3.2 Construction of the Fractional Matching x on P

To describe the construction, let us first state a “vertex-independent matching

lemma” which we will prove in Section 5.4.

Lemma 5.3.4. Let G′ = (V ′, E ′, w′) be an edge-weighted base graph with maximum de-

gree ∆′. Let G ′ be a random subgraph of G′ that includes each edge e ∈ E ′ independently

with some probability p ∈ (0, 1]. Let A(H) be any (possibly randomized) algorithm that

given any subgraph H of G′, returns a (not necessarily maximum weight) matching of

H. For any ε > 0 there is a randomized algorithm B to construct a matching Z = B(G ′)

of G ′ such that

1. For any vertex v, PrG′∼G′,B[v ∈ Z] ≤ PrG′∼G′,A[v ∈ A(G ′)] + ε3.

2. E[w(Z)] ≥ (1− ε)E[w(A(G ′))].

3. For any vertex-subset {v1, v2, . . .} ⊆ V ′ such that for all i, j, dG′(vi, vj) ≥ λ where

λ = O(ε−24 log ∆′ poly(log log ∆′)), events {v1 ∈ Z}, {v2 ∈ Z}, {v3 ∈ Z}, . . . are

all independent with respect to both the randomizations used in algorithm B and

in drawing G ′.

We use this lemma in the following way: The graph G′ = (V ′, E ′, w′) of the

lemma, is simply the subgraph P picked by Algorithm 1 and thus ∆′ is simply the

maximum degree of P which recall we denote by ∆. We let the random subgraph G ′

be the subset of edges in P that are realized, which we denote by P . As discussed

before, since P is chosen independently from how the edges are realized, conditioned

on P each edge is still realized independently from the others, so the assumption that

197

P is a random subgraph of P with edges realized independently is valid. Finally, we

define the algorithm A(H) of the lemma for any subgraph H ⊆ P as follows:

Algorithm 5. A(H)

1 H ′ ← H.

2 Add any edge e ∈ E \ P independently with probability p to H ′.

3 return MM(H ′) ∩H.

Observe that with definition above, A(P) can be interpreted in the following

useful way: The input subgraph H = P already includes each edge of P independently

with probability p. Since initially H ′ ← H, and every edge e ∈ E \ P is then added

to H ′ independently with probability p, by the end of Line 2, H ′ will have the same

distribution as the realization G of G. This means:

Observation 5.3.5. The output of A(P) has the same distribution as MM(G) ∩ P .

Finally, once we obtain a matching using the algorithm above, we remove each

edge from the matching independently with probability ε. Doing so, we only lose ε

fraction of the weight of the matching in expectation, but we ensure that each vertex

is matched with probability at most 1− ε which will be useful later.

Let us for each vertex v define qPv :=
∑

e:v∈e,e∈P qe to be the probability that v is

matched in MM(G) via an edge in P . Using Lemma 5.3.4 as discussed above, we get:

Claim 5.3.6. There is an algorithm B to construct a matching Z on the realized edges

P of P s.t.:

1. For any vertex v, PrP,B[v ∈ Z] ≤ min{qPv + ε3, 1− ε}.

2. E[w(Z)] ≥ (1− 2ε)χ(P).

198

3. For any vertex-subset {v1, v2, . . .} ⊆ V such that for all i, j, dP (vi, vj) ≥ λ(∆, ε),

events {v1 ∈ Z}, {v2 ∈ Z}, {v3 ∈ Z}, . . . are all independent with respect to both

the randomizations used in algorithm B and the randomization in drawing P.

4. Matching Z is independent of the realization of edges in E \ P .

Proof. For property 1, Lemma 5.3.4 guarantees

PrP,B[v ∈ Z] ≤ PrP,A[v ∈ A(P)] + ε3.

Moreover,

PrP,A[v ∈ A(P)] =
∑
e3v

Pr[e ∈ A(P)]
Obs 5.3.5

=
∑
e3v

Pr[e ∈ MM(G) ∩ P]

=
∑

e:v∈e,e∈P

Pr[e ∈ MM(G)] = qPv .

Therefore, Pr[v ∈ Z] ≤ qPv + ε3. On the other hand, since as discussed above, at the

end we drop each edge from the matching independently with probability ε, Pr[v ∈

Z] ≤ 1− ε. Combination of these two bounds proves property 1.

For property 2, Lemma 5.3.4 already guarantees that the reported matching

has weight at least (1 − ε)E[w(A(P))]. Since on top of that we retain each edge of

the final matching with probability 1 − ε, we lose another (1 − ε) factor and have

E[w(Z)] ≥ (1 − 2ε)E[w(A(P))]. To see why this is the claimed bound of property 2,

199

observe that:

E[w(A(P))]
Obs 5.3.5

= E[w(MM(G) ∩ P)] =
∑
e∈P

Pr[e ∈ MM(G)]we =
∑
e∈P

χe = χ(P).

For property 3, it just suffices to make sure λ(∆, ε) ≥ λ where recall λ(∆, ε)

was defined in (5.2) whereas λ is defined in Lemma 5.3.4. By definition (5.2), we

already have λ(∆, ε) = Ω(λ). On the other hand, in definition (5.2) of λ(∆, ε) there

is a constant C that we can tune. Picking this constant to be large enough, we can

guarantee that λ(∆, ε) ≥ λ and satisfy this property.

Finally, property 4 holds since in construction of Z the algorithm is essentially

unaware of the actual realization of edges in E \ P and is thus independent of it.

Once we construct matching Z on the realized edges of P using the algorithm

above, for any edge e ∈ P we set xe = 1 if e ∈ Z and xe = 0 otherwise. Therefore, x is

in fact integral on all edges of P . The properties of Z highlighted in Claim 5.3.6 will

be later used in augmenting x via the realized edges among the edges in N .

5.3.3 Construction of the Fractional Matching x on N

We first formally describe construction of x on the edges in N , then discuss the

main intuitions behind the construction, and finally prove that it satisfies the needed

properties.

200

5.3.3.1 The Construction

We first define an “assignment” f : E → [0, 1], then based on f define an assign-

ment g : E → [0, 1], then based on g define an assignment h : E → [0, 1], and finally

construct x from h. For any assignment a ∈ {f ,g,h,x} we may use the following nota-

tion: For an edge e, ae denotes the value of a on edge e. For a vertex v, av :=
∑

e3v ae

denotes the sum of assignments adjacent to v. The weight w(a) denotes
∑

e∈E aewe.

As outlined above, we first define f : E → [0, 1] on each edge e as follows:

fe :=


1
R

∑R
i=1 111(e ∈ MM(Gi)) if e ∈ N,

0 otherwise,

(5.7)

where recall that Gi is the ith drawn realization in Algorithm 2 and R is the total

number of realizations drawn in Algorithm 2. In words, for any e ∈ N , the value of fe

denotes the fraction of matchings MM(G1), . . . ,MM(GR) that include e.

Based on f , we define g on each e = (u, v) as:

ge :=


fe if fe ≤ p2ε7∆−λ(∆,ε), fu ≤ 1− qPu + ε3, and fv ≤ 1− qPv + ε3,

0 otherwise.

(5.8)

Next, based on g, we define h on each edge e = (u, v) as:

he :=


ge

pPr[v 6∈Z] Pr[u6∈Z]
if u 6∈ Z, v 6∈ Z, and e is realized

0 otherwise.

(5.9)

201

Here, as defined in the previous section, the value of qPv for a vertex v denotes the

probability that v is matched in MM(G) via an edge in P .

We are finally ready to define the construction of x on N . On each edge e =

(u, v) ∈ N , we set:

xe ←


he

1+3ε
if hv ≤ 1 + 3ε and hu ≤ 1 + 3ε,

0 otherwise.

(5.10)

5.3.3.2 Intuitions and Proof Outline

Here we discuss the main intuitions behind the construction above for x on N in

a slightly informal way. The rigorous proof that the final fractional matching x satisfies

properties (5.3-5.6) is given in the forthcoming sections.

As mentioned above, for every edge e ∈ N , fe simply denotes the fraction of

matchings MM(G1), . . . ,MM(GR) that include e. Therefore f is a linear combination

of these integral matchings, and thus is a valid fractional matching. Another key

observation here is that since each Gi has the same distribution as G, the probability of

each edge e appearing in each matching MM(Gi) is exactly equal to the probability qe

that it appears in MM(G). This can be used to prove E[fe] = qe (see Observation 5.3.8)

which also implies E[w(f)] = χ(N) (see Observation 5.3.9). Thus, fractional matching

f has precisely the weight χ(N) we need x to have on N . In addition (unlike qe)

the value of fe is only non-zero on edges e ∈ N that also belong to the output S of

Algorithm 2. This is desirable since recall that if an edge e ∈ N does not belong to S,

202

then e 6∈ Q and as a result e 6∈ Q. Thus, we should ensure xe = 0 since we want x to

be a fractional matching of subgraph Q.

In the next step of the construction, we define g based on f . The key idea behind

this definition is to get rid of possible “deviations” in f and ensure that g satisfies

certain deterministic inequalities for ge on all edges e, and gv for all vertices v. It turns

out that by carefully bounding the probability of these deviations, we can still argue

that g has weight close to χ(N) (see Claim 5.3.12) just like f .

Despite the desirable properties mentioned above, g is still far from the values

we would like to assign to edges N in x, for the following two reasons. First, we want

x to be non-zero only on Q, i.e. the realized edges in Q. However, in defining g we

never look at edge realizations. Hence, it could be that ge > 0 for an edge e that is

not realized. The second problem is that we need to augment the matching Z already

constructed in Section 5.3.2. More specifically, recall from Section 5.3.2 that we have

already assigned xe = 1 to any edge e ∈ Z. Therefore, if we want x to be a valid

fractional matching, all edges e that are incident to a matched vertex of Z should have

xe = 0. In defining h, we address both issues at the same time. That is, for any

edge e, if e is not realized or at least one of its endpoints is matched in Z, we set

he = 0. Though note that we still want E[w(h)] to be close to E[w(g)] and χ(N). To

compensate for the loss to the weight due to edges e for which ge > 0 but he = 0, on

each edge e that is eligible to be assigned he > 0, we multiply ge by an appropriate

amount that cancels out the probability of assigning he = 0. Doing so, we can ensure

that E[w(h)] remains sufficiently close to w(g) and thus χ(N) (Claim 5.3.16).

Finally, recall from above that f is a valid fractional matching and thus so is g

203

since ge ≤ fe on all edges. A next challenge is to make sure that once we obtain h

by multiplying g on some edges, we still have a valid fractional matching. That, e.g.

hv ≤ 1 for all vertices v. Toward achieving this, we first show in Claim 5.3.19 that for

each vertex v, the probability that hv > 1 + 3ε is very small. But these deviations do

occur. Thus, in our final construction of x, on any edge e = (u, v) for which at least

one of hu and hv exceeds 1+3ε, we set xe = 0 and set xe = he/(1+3ε) on the rest of the

edges. This way, we guarantee that for any vertex v, xv ≤ 1. Moreover, due to the low

probability of violations in h, there is a small probability for any edge e to have xe = 0

but he > 0. Therefore, x as defined, will have weight close to χ(N) in expectation on

the edges in Q∩N (Claim 5.3.18). Combined with the construction of x on the edges in

P which guarantees a weight of ≈ χ(P) there, we obtain that overall x will have weight

close to χ(P)+χ(N) which is ≈ opt as guaranteed by Observation 5.3.2. Therefore, x

can be shown to satisfy all the needed properties required by Observation 5.3.1 thereby

proving Theorem 6 (see Section 5.3.4).

5.3.3.3 Properties of f and g.

We start with a few simple observations.

Observation 5.3.7. For any i ∈ [R] and any edge e, Pr[e ∈ MM(Gi)] = qe.

Proof. Since each realization Gi in Algorithm 2 has the same distribution as G, we have

Pr[e ∈ MM(Gi)] = Pr[e ∈ MM(G)]. The claim follows from the definition (5.1) that

Pr[e ∈ MM(G)] = qe.

Observation 5.3.8. For each edge e ∈ N , E[fe] = qe.

204

Proof. For any e ∈ N , it holds by definition (5.7) that

E[fe] =
1

R

R∑
i=1

Pr[e ∈ MM(Gi)]
Obs 5.3.7

=
1

R

R∑
i=1

qe = qe,

which is the desired bound.

Observation 5.3.9. E[w(f)] = χ(N).

Proof. We have w(f) =
∑

e∈E fewe =
∑

e∈N fewe since fe = 0 for all e 6∈ N . Thus by

linearity of expectation,

E[w(f)] =
∑
e∈N

E[fe]we =
∑
e∈N

qewe = χ(N),

where the second equality holds by Observation 5.3.8.

Observation 5.3.10. For any edge e, ge ≤ p2ε7∆−λ(∆,ε).

Proof. By construction of g, if ge is non-zero, then ge = fe and fe ≤ p2ε7∆−λ(∆,ε).

Observation 5.3.11. For any vertex v, gv ≤ 1− qPu + ε3.

Proof. By construction of g, if gv 6= 0, then fv ≤ 1 − qPu + ε3, and thus so is gv since

g ≤ f .

The main takeaway of this section is the following claim, which guarantees

E[w(g)] is large enough for our purpose.

Claim 5.3.12. E[w(g)] ≥ (1− ε)χ(N).

205

The proof of Claim 5.3.12 is rather involved. The main difficulty is the lack of an

equivalent of a sparsification lemma for weighted graphs (as discussed in Section 5.1).

The rest of this section is devoted to proving Claim 5.3.12 for which we need a number

of other auxiliary claims.

For simplicity, let us for each edge e use Fe as a shorthand for event fe ≤

p2ε7∆−λ(∆,ε) and for each vertex v use Fv as a shorthand for event fv ≤ 1 − qPv + ε3.

These are precisely the events used in definition (5.8) of g. In particular, for any

e = (u, v) ∈ E, ge = fe if event Fe ∧ Fu ∧ Fv holds.

Claim 5.3.13. For any edge e ∈ N ,

E[ge] ≥ qe(1− Pr[Fe | G1]− Pr[Fu | G1]− Pr[Fv | G1]),

where here as usual, Fe, Fv, and Fu denote the complement of events Fe, Fv, and Fu

respectively.

206

Proof. We have

E[ge] = E[fe | Fe ∧ Fu ∧ Fv]

= E

[
1

R

R∑
i=1

111(e ∈ MM(Gi))
∣∣∣Fe ∧ Fu ∧ Fv] By definition (5.7).

=
1

R

R∑
i=1

Pr[e ∈ MM(Gi) | Fe ∧ Fu ∧ Fv] Linearity of expectation.

=
1

R

R∑
i=1

Pr[e ∈ MM(G1) | Fe ∧ Fu ∧ Fv] By symmetry.

= Pr[e ∈ MM(G1) | Fe ∧ Fu ∧ Fv]

= Pr[e ∈ MM(G1)] · Pr[Fe ∧ Fu ∧ Fv | G1]

Pr[Fe ∧ Fv ∧ Fu]
Bayes’ rule.

≥ Pr[e ∈ MM(G1)] · Pr[Fe ∧ Fu ∧ Fv | G1] Since Pr[Fe ∧ Fv ∧ Fu] ≤ 1.

= qe Pr[Fe ∧ Fu ∧ Fv | G1] By Observation 5.3.7.

≥ qe(1− Pr[Fe | G1]− Pr[Fu | G1]− Pr[Fv | G1]). By union bound.

The last inequality matches the one stated in the claim and the proof is complete.

Claim 5.3.14. For any edge e ∈ N , it holds that Pr[Fe | G1] ≤ 2ε3.

Proof. We have

E[fe | G1] = E

[
1

R

R∑
i=1

111(e ∈ MM(Gi))
∣∣∣G1

]

≤ 1

R
+

1

R

R∑
i=2

Pr[e ∈ MM(Gi)]
Obs 5.3.7

≤ 1

R
+ qe.

We have R ≥ p−2ε−10∆λ(∆,ε) by its definition in Algorithm 2 and also qe ≤ p2ε10∆−λ(∆,ε)

207

by Observation 5.3.3. Hence, E[fe | G1] < 2p2ε10∆−λ(∆,ε). Applying Markov’s inequal-

ity, we thus get

Pr
[
fe > p2ε7∆−λ(∆,ε) | G1

]
= Pr[Fe | G1] ≤ 2ε3,

which is the desired bound.

Claim 5.3.15. For any vertex v, Pr[Fv | G1] ≤ 4ε4.

Proof. Let us for any i ∈ [R] define Xi = 1 if vertex v is matched in MM(Gi) via an

edge e ∈ N and Xi = 0 otherwise. Also let X :=
∑R

i=2 Xi (note that the sum index

starts from 2). We have:

fv =
∑
e3v

fe =
∑

e:v∈e,e∈N

fe By (5.7), fe = 0 if e 6∈ N .

=
∑

e:v∈e,e∈N

(
1

R

R∑
i=1

111(e ∈ MM(Gi))

)
=

1

R

R∑
i=1

∑
e:v∈e,e∈N

111(e ∈ MM(Gi))

=
1

R

R∑
i=1

Xi ≤
1

R
+

1

R

R∑
i=2

Xi ≤
X + 1

R
. (5.11)

Furthermore,

Pr[Fv | G1] = Pr[fv > 1− qPv + ε3 | G1] Definition of Fv.

≤ Pr

[
X + 1

R
> 1− qPv + ε3 | G1

]
By (5.11), fv ≤

X + 1

R
.

= Pr
[
X > R(1− qPv + ε3)− 1 | G1

]
= Pr

[
X > R(1− qPv + ε3)− 1

]
, (5.12)

208

where the last inequality follows from the fact that X =
∑R

i=2Xi depends only on

realizations G2, . . . ,GR and is independent of realization G1.

Therefore to bound Pr[Fv | G1] we should analyze the behavior of random variable

X. Let us start with its expected value:

E[X] =
R∑
i=2

Pr[Xi = 1] =
R∑
i=2

Pr[X2 = 1] As Pr[X2 = 1] = . . . = Pr[XR = 1].

= (R− 1) Pr[X2 = 1] ≤ RPr[X2 = 1]

≤ R(1− qPv). (5.13)

The last inequality holds for the following reason: By definition qPv =
∑

e:v∈e,e∈P qe;

since each edge e belongs to MM(G2) with probability qe by Observation 5.3.7, we get

that with probability qPv , vertex v is matched in MM(G2) via an edge e ∈ P ; in this

case, event X2 = 1 which requires v to be matched via an edge in N cannot hold since

N ∩ P = ∅; hence Pr[X2 = 1] ≤ 1− qPv .

We also need a concentration bound on X which we prove via Chebyshev’s in-

equality3 using the independence of events X2, . . . , XR. For any t ≥ 0 we have

Pr[X > E[X] + t] ≤ Var[X]

t2
=

∑R
i=2 Var[Xi]

t2

≤ RVar[X2]

t2
=
R(E[X2

2]− E[X2]2)

t2
≤ R

t2
. (5.14)

3One can also attempt to get a stronger concentration bound via Chernoff-type bounds, but the
second moment method suffices for our purpose here.

209

As a result,

Pr[X > R(1−qPv +ε3)−1] = Pr[X > R(1−qPv)+(ε3R−1)]
(5.13), (5.14)

≤ R

(ε3R− 1)2
≤ 4ε4,

(5.15)

where the last inequality follows from

R

(ε3R− 1)2
≤ R

(ε3R/2)2
≤ 4

ε6R

R≥p−2ε−10

≤ 4ε10p2

ε6
≤ 4ε4.

Replacing (5.15) into (5.12) gives the desired bound that Pr[Fv | G1] ≤ 4ε4.

We finally have the tools needed to prove Claim 5.3.12.

Proof of Claim 5.3.12. We have

E[w(g)] = E

[∑
e∈E

gewe

]
≥ E

[∑
e∈N

gewe

]
=
∑
e∈N

E[ge]we. (5.16)

Furthermore, by Claim 5.3.13, for any e ∈ N we have

E[ge] ≥ qe(1− Pr[Fe | G1]− Pr[Fu | G1]− Pr[Fv | G1]).

Incorporating the bounds of Claims 5.3.14 and 5.3.15, we get for any e ∈ N that

E[ge] ≥ qe(1− 2ε3 − 4ε4 − 4ε4) > (1− 10ε3)qe.

210

Therefore, from (5.16) we get

E[w(g)] ≥
∑
e∈N

(1− 10ε3)qewe = (1− 10ε3)
∑
e∈N

qewe = (1− 10ε3)χ(N) ≥ (1− ε)χ(N),

concluding the proof.

5.3.3.4 Properties of h, and x on N .

In this section we turn to prove a number of useful properties of h. We em-

phasize that in the previous section all expectations and probabilities are taken only

over the randomization inherent in Algorithm 2. In contrast, in this section, all the

probabilistic statements are with regards to the randomization of realization G, and

the randomization used in drawing matching Z in Section 5.3.2.

Claim 5.3.16. E[w(h)] ≥ w(g).

Proof. Take any edge e = (u, v) ∈ N . By definition of h we have he = ge
pPr[v 6∈Z] Pr[u6∈Z]

if e is realized and both u and v are unmatched in Z, and he = 0 otherwise. Since

dP (u, v) ≥ λ(∆, ε) by Observation 5.3.3, the condition of Claim 5.3.6 part 3 is satisfied

and events u ∈ Z and v ∈ Z are independent. Moreover, since e 6∈ P , its realization is

also independent of Z by Claim 5.3.6 property 4. Hence,

E[he] = Pr[e realized] Pr[v 6∈ Z] Pr[u 6∈ Z]
ge

pPr[v 6∈ Z] Pr[u 6∈ Z]
= ge.

211

This means that

E[w(h)] =
∑
e∈N

E[he]we =
∑
e∈N

gewe = w(g),

completing the proof.

Observation 5.3.17. For any edge e, he ≤ ge
pε2
≤ pε5∆−λ(∆,ε).

Proof. By construction of h for any e = (u, v) we have

he ≤
ge

pPr[v 6∈ Z] Pr[u 6∈ Z]

?

≤ ge
pε2

Observation 5.3.10

≤ p2ε7∆−λ(∆,ε)

pε2
= pε5∆−λ(∆,ε),

where the inequality marked by ? follows from the fact that Pr[v ∈ Z] ≤ 1 − ε by

property 1 of Claim 5.3.6 and thus Pr[v 6∈ Z] ≥ ε and similarly Pr[u 6∈ Z] ≥ ε.

Claim 5.3.18 below is one of the key components towards achieving our main

result in Theorem 6. We present the proof in multiple steps, by proving a number of

properties of h.

Claim 5.3.18. It holds that E[
∑

e∈N xewe] ≥ (1− 15ε)w(g).

Proof. We already know from Claim 5.3.16 that E[w(h)] ≥ w(g). Thus, if we show

E[
∑

e∈N xewe] ≥ (1− 3ε)E[w(h)] we are done. For brevity, for any edge e = (u, v) we

use He to indicate the event (u 6∈ Z, v 6∈ Z, e realized). Also we use Xe to indicate

event (hv ≤ 1 + 3ε and hu ≤ 1 + ε). Observe that He is the event used in construction

(5.9) of he and Xe is the event used in construction (5.10) of x on N . Putting together

212

(5.9) and (5.10), for any e = (u, v) ∈ N , we have

xe =


1

1+3ε
· ge
pPr[u6∈Z] Pr[v 6∈Z]

He ∧Xe,

0 otherwise.

This means that

E

[∑
e∈N

xewe

]
=
∑
e∈N

E[xe]we

=
∑
e∈N

Pr[He ∧Xe]
1

1 + 3ε
· ge
pPr[u 6∈ Z] Pr[v 6∈ Z]

we

=
1

1 + 3ε

∑
e∈N

Pr[Xe | He] Pr[He]
ge

pPr[u 6∈ Z] Pr[v 6∈ Z]
we

=
1

1 + 3ε

∑
e∈N

Pr[Xe | He]E[he]we

=
1

1 + 3ε

∑
e=(u,v)∈N

Pr[hv ≤ 1 + 3ε ∧ hu ≤ 1 + 3ε | He]E[he]we

=
1

1 + 3ε

∑
e=(u,v)∈N

(1− Pr[hv > 1 + 3ε | He]− Pr[hu > 1 + 3ε | He])E[he]we.

Therefore it only remains to bound Pr[hv > 1 + 3ε | He]. The following claim, whose

proof we present after the proof of the current Claim 5.3.18, gives us the desired bound

for it.

Claim 5.3.19. Let edge e = (u, v) ∈ N be the one fixed above, then

PrG,Z [hv > 1 + 3ε | Fe] ≤ 6ε.

213

Plugging Claim 5.3.19 this into the equation above, we thus get

E

[∑
e∈N

xewe

]
≥ 1− 12ε

1 + 3ε

∑
e∈N

E[he]we =
1− 12ε

1 + 3ε
E[w(h)]

> (1− 15ε)E[w(h)]
Claim 5.3.16

≥ (1− 15ε)w(g),

which is our desired bound.

For the rest of this section, we fix e = (u, v) ∈ N and focus on proving Claim 5.3.19.

To do so, we first bound the expected value of hv conditioned on He in Claim 5.3.20

and then finish the proof via a concentration bound.

Note from constructions (5.7), (5.8), and (5.9) of respectively f , g, and h, that

he′ = ge′ = fe′ = 0 for any e′ 6∈ N . Hence, we have hv =
∑

e′3v he′ =
∑

e′:e′∈N,v∈e′ he′ .

Now let e1 = (v, u1), e2 = (v, u2), . . . , ek = (v, uk) be all edges connected to vertex v

that belong to N and assume that e1 = e = (v, u). We thus have

hv =
k∑
i=1

hei . (5.17)

Claim 5.3.20. Let edge e = (u, v) ∈ N be the one fixed above, then E[hv | He] ≤ 1+2ε.

Proof. We have

E[hv | He] = E

[
k∑
i=1

hei

∣∣∣He

]
=

k∑
i=1

E[hei | He]. (5.18)

To bound this, consider the following partitioning of {e1, . . . , ek} into two subsets A

214

and B:

A = {ei | dP (ui, u) < λ(∆, ε)}, B = {ei | dP (ui, u) ≥ λ(∆, ε)}.

In particular, observe that e1 ∈ A since u1 = u which implies dP (u1, u) = 0. Separating

A and B in the sum of (5.18) we get

E[hv | He] =
∑
ei∈A

E[hei | He] +
∑
ei∈B

E[hei | He]. (5.19)

We bound the two sums over A and B in the inequality above separately.

Bounding the sum over A. For each hei ∈ A, we use the pessimistic upper bound

of Observation 5.3.17 for hei . But instead we bound the size of A by

|A| ≤ ∆λ(∆,ε) + 1 ≤ 2∆λ(∆,ε). (5.20)

This first inequality follows from the fact that the maximum degree in P is bounded by

∆, and hence there are at most ∆λ(∆,ε) nodes (other than u itself) that have distance

less than λ(∆, ε) to u in graph P . The second inequality simply follows from the fact

that both ∆ and λ(∆, ε) are ≥ 1 (see Algorithm 1). We thus have

∑
ei∈A

hei ≤ pε5∆−λ(∆,ε)|A| By Observation 5.3.17

≤ 2pε5. By (5.20). (5.21)

215

Bounding the sum over B. Recall that He = (e realized, v 6∈ Z, u 6∈ Z) and

Hei = (ei realized, v 6∈ Z, ui 6∈ Z). Therefore for any edge ei ∈ B, we have

Pr[Hei | He] = Pr[ei realized, v 6∈ Z, ui 6∈ Z | e realized, v 6∈ Z, u 6∈ Z]

= Pr[ei realized, ui 6∈ Z | e realized, v 6∈ Z, u 6∈ Z]

= pPr[ui 6∈ Z | e realized, v 6∈ Z, u 6∈ Z]

= pPr[ui 6∈ Z | v 6∈ Z, u 6∈ Z],

where the last two equalities follow from property 4 of Claim 5.3.6 regarding inde-

pendence of matching Z from realization of edges in N (such as ei and e), and not-

ing that ei 6= e since ei ∈ B. On the other hand, since dP (ui, u) ≥ λ(∆, ε) based

on definition of B, and dP (ui, v) ≥ λ(∆, ε) by Observation 5.3.3, we get that event

ui ∈ Z is independent of v ∈ Z, u ∈ Z due to property 3 of Claim 5.3.6. Therefore

Pr[ui 6∈ Z | v 6∈ Z, u 6∈ Z] = Pr[ui 6∈ Z] and thus

Pr[Hei | He] = pPr[ui 6∈ Z] for any ei ∈ B. (5.22)

216

We can therefore bound the sum in (5.19) over B as follows:

∑
ei∈B

E[hei | He] =
∑
ei∈B

gei Pr[Hei | He]

pPr[v 6∈ Z] Pr[ui 6∈ Z]

=
∑
ei∈B

gei
Pr[v 6∈ Z]

By (5.22).

≤ gv
Pr[v 6∈ Z]

≤ 1− qPv + ε3

Pr[v 6∈ Z]
Observation 5.3.11.

≤ 1− qPv + ε3

1−min{qPv + ε3, 1− ε}
.

Since Pr[v ∈ Z] ≤ min{qPv +ε3, 1−ε}

by Claim 5.3.6.

Since both the nominator and the denominator are ≈ 1−qPv , the sum is upper bounded

by ≈ 1. To formalize this, consider two scenarios: (i) qPv − ε3 ≥ 1 − ε, and (ii)

qPv − ε3 < 1− ε. In the former, we have

1− qPv + ε3

1−min{qPv + ε3, 1− ε}
(i)
=

1− qPv + ε3

1− (1− ε)
(i)

≤ 1− (1− ε+ ε3) + ε3

ε
=
ε

ε
= 1.

In the latter case,

1− qPv + ε3

1−min{qPv + ε3, 1− ε}
(ii)
=

1− qPv + ε3

1− qPv − ε3
≤ 1− (1− ε+ ε3) + ε3

1− (1− ε+ ε3)− ε3

=
ε

ε(1− 2ε2)
≤ 1 + ε,

where the last inequality holds for any ε < 0.36. Therefore overall, we get

∑
ei∈B

E[hei | He] ≤ 1 + ε. (5.23)

217

Incorporating the bounds (5.21) and (5.23) into (5.19) we get that E[hv | He] ≤

1 + ε+ pε5 ≤ 1 + 2ε.

We are now ready to prove Claim 5.3.19 via a concentration bound.

Proof of Claim 5.3.19. By Chebyshev’s inequality, and the bound E[hv | He] ≤ 1 + 2ε

of Claim 5.3.20, we get that

PrG,Z [hv > (1 + 2ε) + ε | He] ≤
VarG,Z [hv | He]

ε2
. (5.24)

For brevity, we do not write the subscript G, Z for our probabilistic statements for the

rest of the proof when it is clear. Since hv =
∑k

i=1 hei , by definition of variance we

have

Var[hv | He] =
k∑
i=1

k∑
j=1

Cov[hei , hej | He].

By definition, if hei and hej are independent with respect to the randomization of G

and Z, and conditioned on He, then CovG,Z [hei , hej | He] = 0. But this does not hold

for all hei and hej . As in the proof of Claim 5.3.20 consider the following partitioning

of {e1, . . . , ek}:

A = {ei | dP (ui, u) < λ(∆, ε)}, B = {ei | dP (ui, u) ≥ λ(∆, ε)}.

218

With this partitioning, we can rewrite the equation above for variance as:

Var[hv | He] =
∑
ei∈A

k∑
j=1

Cov[heihej | He] +
∑
ei∈B

∑
ej∈A

Cov[heihej | He]

+
∑
ei∈B

∑
ej∈B

Cov[heihej | He]

≤ 2
∑
ei∈A

k∑
j=1

|Cov[heihej | He]|+
∑
ei∈B

∑
ej∈B

Cov[heihej | He]. (5.25)

We will bound the two sums over A differently. Before that, let us prove a simple upper

bound on the covariance of any two edges ei, ej:

Cov[heihej | He] = EG,Z [heihej | He]− EG,Z [hei | He]E[hej | He]

≤ EG,Z [heihej | He]

≤ gei
pε2
·
gej
pε2

By (5.3.17). (5.26)

219

Bounding the sums over A. We have

2
∑
ei∈A

k∑
j=1

|Cov[heihej | He]| ≤ 2
∑
ei∈A

k∑
j=1

gei
pε2
·
gej
pε2

By (5.26).

≤ 2
∑
ei∈A

k∑
j=1

ε3∆−λ(∆,ε)gej gei ≤ p2ε7∆−λ(∆,ε) by (5.3.10).

= 2ε3∆−λ(∆,ε)
∑
ei∈A

k∑
j=1

gej

= 2ε3∆−λ(∆,ε)|A|gv

≤ 2ε3∆−λ(∆,ε)|A|

≤ 4ε3. Since |A| ≤ 2∆λ(∆,ε) by (5.20).

(5.27)

Bounding the sum over B. Let us for each ei ∈ B use Di to denote the set

of edges ej ∈ B where Cov[hei , hej | He] 6= 0. We claim that for each ei ∈ B,

|Di| ≤ ∆λ(∆,ε). To prove this, observe that for all ei, ej ∈ B, we have dP (ui, u) ≥ λ(∆, ε)

and dP (uj, u) ≥ λ(∆, ε) by definition of B. Moreover, since (u, v), (v, ui), (v, uj) ∈ N ,

we have dP (u, v) ≥ λ(∆, ε), dP (ui, v) ≥ λ(∆, ε), and dP (uj, v) ≥ λ(∆, ε) by Observa-

tion 5.3.3. Therefore among {v, u, ui, uj} only the pair ui, uj may have dP (ui, uj) <

λ(∆, ε). If this is not the case and dP (ui, uj) ≥ λ(∆, ε), then based on Claim 5.3.6

events Hei and Hej , and consequently, hei and hej would be independent conditioned

on He and thus Cov(hei , hej | He) = 0. This means that indeed for any ei and any

ej ∈ Di, dP (ui, uj) ≤ λ(∆, ε). Since the maximum degree of P is ∆, there are at most

220

∆λ(∆,ε) such vertices, implying indeed that

|Di| ≤ ∆λ(∆,ε) + 1
(5.20)

≤ 2∆λ(∆,ε) for any ei ∈ B. (5.28)

We therefore have:

∑
ei∈B

∑
ej∈B

Cov[heihej | He] =
∑
ei∈B

∑
ej∈Di

Cov[heihej | He]

≤
∑
ei∈B

∑
ej∈Di

gei
pε2

gej
pε2

By (5.26).

≤ 1

p2ε4

∑
ei∈B

gei

(∑
ej∈Di

gej

)

≤ 1

p2ε4

∑
ei∈B

gei

(∑
ej∈Di

p2ε7∆−λ(∆,ε)

)
By Observation 5.3.10.

≤ p2ε7∆−λ(∆,ε)

p2ε4

∑
ei∈B

gei |Di|

≤ 2ε3
∑
ei∈B

gei By (5.28) |Di| ≤ 2∆λ(∆,ε).

≤ 2ε3gv ≤ 2ε3.
Since g is a valid frac-

tional matching.

(5.29)

Incorporating (5.27) and (5.29) into (5.25) we get that Var[hv | He] ≤ 4ε3 + 2ε3 = 6ε3.

Replacing back to equation (5.24) we get that Pr[hv > 1 + 3ε | He] ≤ 6ε3/ε2 = 6ε.

221

5.3.4 Putting Everything Together

In this section we prove using the stated bounds above that x as constructed

satisfies the fractional matching constraints (5.3-5.5), satisfies (5.6), i.e. has expected

weight at least (1−O(ε))opt, and that it is non-zero only on the edges of Q. This as

already described in Observation 5.3.1 completes the proof of Theorem 6 that subgraph

Q guarantees a (1− ε)-approximation.

Fractional matching constraints (5.3) and (5.4). For constraint (5.3) that

xv ≤ 1 for any vertex v, consider two scenarios: If v is matched via a matching edge

of Z (the matching constructed in Section 5.3.2 on P), then on all edges e ∈ N we

set xe = 0 by construction of h (5.9) and thus xv = 1. On the other hand, if v is

unmatched in Z, then we still have xv ≤ 1 due to construction (5.10) of x based on h

which guarantees x ≤ 1
1+3ε

h and in addition xv = 0 if hv ≥ 1 + 3ε.

The constraint (5.4) that xe ≥ 0 for all edges e is easy to confirm. For edges in

P , the value of xe is either 0 or 1. For edges in N , since f is non-negative, so are g, h,

and x.

Blossom inequalities (5.5). The blossom constraint (5.5) that x(U) ≤ |U |−1
2

for all

odd size U ⊆ V with |U | ≤ 1/ε follows for the following reason. There are two types

of edges that form x by construction: Those in set P , and those in N . For any edge

e ∈ P , the value of xe is simply integral. For any e ∈ N , we have

xe
(5.10)
< he

Observation 5.3.17

≤ pε5∆−λ(∆,ε) ≤ pε5 ≤ ε5. (5.30)

222

Now suppose for contradiction that there is a subset of size ≤ 1/ε for which the blossom

constraint (5.5) is violated, and let U be the smallest such subset. If there is an edge

e = (u, v) ∈ P whose both endpoints are in U and xe = 1, then one can confirm that

subset U \ {u, v} should also violate the blossom inequality contradicting that U is

the smallest. On the other hand, for all edges e with both endpoints in U we have

xe ≤ ε5 by (5.30). Since there are at most |U |2 edges inside U and |U | ≤ 1/ε, we

have x(U) ≤ |U |2ε5 ≤ ε−2ε5 = ε3 < 1 < |U |−1
2

, contradicting the fact that the blossom

inequality is violated. So all blossom inequalities of size up to 1/ε must be satisfied.

Fractional matching x is non-zero only on Q. For any edge e ∈ P , if xe > 0 then

e ∈ Z and by Claim 5.3.6, e ∈ P i.e. e is realized. Since P ⊆ Q, then e ∈ Q. On the

other hand, for any edge e ∈ N , if xe > 0 then we should have he > 0 by construction

of x and to have he > 0 we should have ge > 0 and fe > 0. By construction of h, if

he > 0 then e must be realized, and by construction of f , if fe > 0 then e ∈ S ⊆ Q.

Combination of these imply e ∈ Q. Therefore overall, if for any edge e, xe > 0 then

e ∈ Q and so x is a fractional matching of only the edges in Q.

Expected weight of x. By Claim 5.3.6 part 2, we have E[w(Z)] ≥ (1−2ε)χ(P) and

thus E[
∑

e∈P xewe] ≥ (1−2ε)χ(P). On the other hand, by Claim 5.3.18 E[
∑

e∈N xewe] ≥

(1− 15ε)w(g) and E[w(g)] ≥ (1− ε)χ(N) by Claim 5.3.12. Combining all of these, we

223

get

E[w(x)] = E

[∑
e∈E

xewe

]
= E

[∑
e∈P

xewe

]
+ E

[∑
e∈N

xewe

]

≥ (1− 2ε)χ(P) + (1− 15ε)(1− ε)χ(N)

≥ (1− 16ε)(χ(P) + χ(N))
Obs 5.3.2

≥ (1− 16ε)(1− ε)opt ≥ (1− 17ε)opt.

And thus our construction of x satisfies E[w(x)] ≥ (1−O(ε))opt required by (5.6).

Combination of the properties above as shown before in Observation 5.3.1 proves

Theorem 6, which is our main result.

5.4 The Weighted Vertex-Independent Matching Lemma

In this section, we turn to prove Lemma 5.3.4 which was used in Section 5.3. We

restate the lemma below and for simplicity of notation, drop the primes in symbols

such as G′,G ′,∆′ as stated in Section 5.3 and use G,G,∆ instead.

Lemma 5.3.4. (restated). Let G = (V,E,w) be an edge-weighted base graph with

maximum degree ∆. Let G be a random subgraph of G that includes each edge e ∈

E independently with some fixed probability p ∈ (0, 1]. Let A(H) be any (possibly

randomized) algorithm that given any subgraph H of G, returns a (not necessarily

maximum weight) matching of H. For any ε > 0 there is a randomized algorithm B to

construct a matching Z = B(G) of G such that

1. For any vertex v, PrG∼G,B[v ∈ Z] ≤ PrG∼G,A[v ∈ A(G)] + ε3.

2. E[w(Z)] ≥ (1− ε)E[w(A(G))].

224

3. For any vertex-subset {v1, v2, . . .} ⊆ V such that for all i, j, dG(vi, vj) ≥ λ where

λ = O(ε−24 log ∆ · poly(log log ∆)), events {v1 ∈ Z}, {v2 ∈ Z}, {v3 ∈ Z}, . . . are

all independent with respect to both the randomizations used in algorithm B and

in drawing G.

Outline of the proof. To prove this lemma, we need to design an algorithm B(G)

that satisfies all three properties. If we only had the first two properties to satisfy, we

could simply use algorithm A. The problem however, becomes challenging when we

need to, in addition, satisfy the third property regarding the independence between

the events {v1 ∈ Z}, {v2 ∈ Z}, {v3 ∈ Z}, . . . for vertices v1, v2, . . ., that are pair-wise

far enough from each other. To ensure that our algorithm meets this condition, similar

to what we did in Chapter 4 for the unweighted variant of the lemma, we show that

it can be implemented efficiently in the LOCAL model of computation (whose formal

description follows).

The LOCAL model is a standard distributed computing model which consists of

a network (graph) of processors with each processor having its own tape of random

bits. Computation proceeds in synchronous rounds and in each round, processors can

send unlimited size messages to each of their neighbors. Thus, to transmit a message

from a node u to node v, we require at least d(u, v) rounds. For the same reason, if

an algorithm terminates within r-rounds of LOCAL, the output of any two nodes that

have distance at least 2r from each other would be independent, which is essentially

how we guarantee our independence property.

For simplicity, we explain our algorithm in a sequential setting in Algorithm 4,

225

and later describe how it can be simulated in the LOCAL model. We define a recursive

algorithm Br(G) that given a parameter r, as the depth of recursion, and a subgraph

of G, denoted by G outputs a matching of this graph. We give an informal overview of

the algorithm in Section 5.4.1, and formally state it Section 5.4.2.

5.4.1 Overview of the Algorithm

We define a recursive algorithm Br(G) that given a parameter r, as the depth of

recursion, and a subgraph of G, denoted by G outputs a matching of this graph. We

then set our algorithm B(G) := Bt(G) for a number t = O(ε−20). For r = 0, algorithm

B0(G) simply returns an empty matching. For any r > 0, the idea is to use the

matching constructed in Br−1(G) and transform it to a one that is sufficiently heavier

in expectation. However, this transformation needs to be in a way that the probability

of a vertex being matched in Br(G) is not significantly higher than PrG∼G,A[v ∈ A(G)].

A useful observation here is that we do not need to ensure that for any given subgraph

G algorithm B(G) gives a large enough matching while the probability of a vertex being

matched in the algorithm is not greater than PrG′∼G,A[v ∈ A(G ′)] + ε3, rather we need

this to hold in expectation over realization of G. We strongly use this observation

in the design of our algorithm by drawing several (ε−12) other random realization of

G and simultaneously constructing a matching for each one. This way, we have the

freedom of matching a vertex with a high probability in an instance, in the expense

of the vertex being matched with a lower probability in another instance. Similarly,

we might construct a relatively low-weight matching for an instance but compensate

226

it by finding a relatively heavier matching in another one. More precisely, in B(G), we

have α = ε−12 + 1 random realizations of G, denoted by G1, . . . ,Gα, where G1 = G,

and our goal is to construct matchings M ′
1, . . . ,M

′
α for them simultaneously. Roughly

speaking, since our input subgraph G is itself a random realization of G and that

all these subgraphs are drawn from the same distribution, we achieve our goal if our

algorithm performs as desired in average over these α realizations.

Below we provide a definition which we will use to refer to our subgraphs and

their corresponding matching.

Definition 5.4.1 (profiles). We say ((G1,M1), . . . , (Gk,Mk)) is a profile of size k, iff

for any i ∈ [k], Gi is a subgraph of G and Mi is a matching on Gi.

To construct matchings M ′
1, . . . ,M

′
α for subgraphs G1, . . . ,Gα in algorithm Br(G),

we start by running Br(Gi) for any i ∈ [α], and obtain matchings M1, . . . ,Mα as a

result. In the other words, we start from profile ((G1,M1), . . . , (Gα,Mα)) and want

to transform it to ((G1,M
′
1), . . . , (Gα,M ′

α)) such that E[w(M ′
i)] is sufficiently greater

than E[w(Mi)] for a random i ∈ [α], while the constraints in the second and third

properties of Lemma 5.3.4 are not violated. To get this, we use an idea similar to finding

augmenting paths in the classic weighted matching algorithms. However, ours rather

than being a path, is a structure that consists of multiple paths in graphs G1, . . . ,Gα.

We call this structure a multi-walk and formally define it in Definition 5.4.2. Similar

to how augmenting paths are used, we will use this structure to flip the membership of

some edges in their corresponding matchings with the goal of increasing the expected

size of the matchings. However, note that if we naively choose the multi-walks with

227

the sole purpose of increasing the average size of the matchings, we might violate the

second property of lemma, as it might lead to some vertices being matched with an

undesirably large probability. Further, these multi-walks should not include vertices

that are further than a threshold since otherwise we might violate the third property of

the lemma. To overcome the first issue, after probability of a vertex v being matched

in our algorithm reaches a threshold, we mark it as saturated. When a vertex is

saturated, our algorithm ensures that while augmenting the matchings (using multi-

walks), it does not increase the number of matchings in which this vertex is matched.

Having these constrains narrows down our choices of augmenting structures (multi-

walks) significantly. However, we give a constructive proof (using Algorithm 5), and

show that this narrow set includes a subset that can be used to increase the average

size of our matchings sufficiently.

5.4.2 Algorithm B(G)

We start by providing some definitions that will be used in the Algorithm.

Definition 5.4.2 (multi-walks). We define W = ((s1, e1), . . . , (sl, el)) to be a multi-

walk of length l of profile P = ((G1,M1), . . . , (Gk,Mk)) iff it satisfies the following

conditions.

• For any i ∈ [l], we have si ∈ [k], and ei is an edge in subgraph Gsi.

• (e1, . . . , ek) is a walk in graph G.

• W contains distinct elements, e.g., for any i and j, we have (si, ei) 6= (sj, ej).

228

Given a profile P = ((G1,M1), . . . , (Gj,Mk)) and a multi-walk W = ((s1, e1), . . . , (sl, el)),

we say P ⊕W = ((G1,M
′
1), . . . , (Gj,M ′

k)) is the result of applying W on P iff for any

i ∈ [k], M ′
i is constructed as follows:

M ′
i = Mi ∪ {ej | i = sj and ej /∈Mi}\{ej | i = sj and ej ∈Mi}.

Definition 5.4.3 (alternating multi-walks). A multi-walk W = ((s1, e1), . . . , (sk, ek))

of profile P = ((G1,M1), . . . , (Gα,Mα)) is an alternating multi-walk iff it satisfies the

two following conditions. First, for any i ∈ [k − 1] we have 111(ei ∈ Msi) + 111(ei+1 ∈

Msi+1
) = 1, and second, P ⊕W is a profile. We further define g(W,P), the gain of

applying alternating multi-walk W on P , as

g(W,P) =
∑

(i,e′)∈W

(111(e′ /∈Mi)− 111(e′ ∈Mi))w(e′).

Given a vertex v ∈ V and an alternating multi-walk W = ((s1, e1), . . . , (sl, el)) of

profile P = ((G1,M1), . . . , (Gk,Mk)), we define dW,v and d̄W,v as follows:

dW,v = |{i : v ∈ ei, and ei ∈Msi}| and d̄W,v = |{i : v ∈ ei, and ei /∈Msi}|. (5.31)

Definition 5.4.4 (applicable multi-walks). Given a multi-walk W = ((s1, e1), . . . , (sl, el))

of profile P , and a subset of vertices Vs, we say W is applicable with respect to a set

of vertices Vs iff it is alternating and for any v ∈ Vs it satisfies dW,v ≥ d̄W,v.

To prove Lemma 5.3.4, we design an algorithm B that given a random realization

229

of G outputs a matching Z and show that it satisfies the desired properties of the

lemma. In 4, we provide a recursive algorithm Br(G) that given an integer number r

and a realization G of G outputs a matching of G. We set B(G) = Bt(G) for t = ctε
−20

where ct is a constant number. (We fix the value of ct later.)

Algorithm 6. Br(G)

1 If r = 0, return an empty matching.

2 Set α← ε−12 + 1, l← 3ε−3.

3 For any i ∈ [α], construct Gi as follows. We set G1 := G, and for any 1 < r subgraph

Gi includes any edge e ∈ G independently with probability p.

4 Define profile P := ((G1,M1), . . . , (Gα,Mα)) where Mi := Br−1(Gi).
5 Call a vertex v saturated iff PrG′∼G,B[v ∈ Zr−1] ≤ PrG∼G,A[v ∈ A(G′)] + ε3 − 1/α,

and unsaturated otherwise.

6 Let Wa be the set of alternating multi-walks of P that are applicable with respect

to the set of saturated vertices.

7 Construct the weighted hyper-graph H = (V,EH) as follows. For any multi-walk W

in set Wa with length at most l, H contains a hyper-edge between vertices in W

with weight g(W,P).

8 MH ← ApproxMatching(H). // See Proposition 5.4.18 for the ApproxMatching()

algorithm.

9 Iterate over all hyper-edges in MH , apply their corresponding multi-walks on P ,

and let P ′ := ((G1,M
′
1), . . . , (Gα,M ′α)) be the final profile.

10 Return matching M ′1.

Observation 5.4.5. For any r, matchings M ′
1, . . . ,M

′
α in Algorithm Br(G) are random

variables that are drawn from the same distribution.

Proof. This is due to the fact that matchings M1, . . . ,Mα are independent random

variables from the same distribution, and that to obtain M ′
1, . . . ,M

′
α, based on these

matchings, algorithm does not treat them differently.

Before proceeding to the proof of the three properties let us prove the following

230

lemma about alternating multi-walks.

Lemma 5.4.6. Consider profile P = ((G1,M1), . . . , (Gj,Mα)) and a multi-walk of this

profile W = ((s1, e1), . . . , (sk, ek)) with ei = (ui, ui+1) for any i ∈ [k]. If W is an

alternating multi-walk, then it satisfies the following properties:

1. For any v ∈ V , if v /∈ {u1, uk+1}, then we have dW,v = d̄W,v.

2. If e1 ∈Ms1, then we have dW,u1 ≥ d̄W,u1. Also, if e1 /∈Ms1
, we have dW,u1 ≤ d̄W,u1.

3. If e1 ∈Ms1 and ek ∈Msk , then W is applicable with respect to any subset of V .

Proof. Observe that for any i > 1, we have ui ∈ ei and ui ∈ ei−1. Consider an arbitrary

vertex v ∈ V . Since W is alternating, for any 1 < j ≤ k that v = uj, we either have

ej−1 ∈Msj−1
and ej /∈Msj or ej−1 /∈Msj−1

and ej ∈Msj . This implies:

dW,u1 = |{i : 1 < i ≤ k, v = ui}|+ 111(v = u1, e1 ∈Ms1) + 111(v = uk+1, ek ∈Msk),

and

d̄W,u1 = |{i : 1 < i ≤ k, v = ui}|+ 111(v = u1, e1 /∈Ms1) + 111(v = uk+1, ek /∈Msk).

Note that if v /∈ {u1, uk+1}, then we have

dW,v = |{i : v ∈ ei, and ei ∈Msi}| = |{i : 1 < i ≤ k, v = ui}|

= |{i : v ∈ ei, and ei /∈Msi}| = d̄W,v,

231

which completes the proof of the first item. To prove the second item, note that if

e1 ∈ Ms1 , then we have 111(u1 = u1, e1 ∈ Ms1) = 1 and 111(u1 = u1, e1 /∈ Ms1) = 0, which

gives us

111(u1 = u1, e1 ∈Ms1) + 111(u1 = uk+1, ek ∈Msk) ≥ 111(u1 = u1, e1 /∈Ms1)

+ 111(u1 = uk+1, ek /∈Msk),

and results in dW,u1 ≥ d̄W,u1 . A similar argument shows that if e1 /∈Ms1 , then dW,u1 ≤

d̄W,u1 holds.

Since multi-walks are not directed the second claim of the lemma can also be

interpreted as follows. If ek ∈ Msk then, dW,uk+1
≥ d̄W,uk+1

. Combining this with the

first claim of the lemma, we obtain that if e1 ∈ Ms1 , and ek ∈ Msk , then for any

v ∈ V , we have dW,v ≥ d̄W,v. By definition of applicable multi-walks, this means that

if e1 ∈Ms1 , and ek ∈Msk then multi-walk W is applicable with respect to any subset

of V . This completes the proof the lemma.

5.4.3 Lemma 5.3.4 Property 1: Matching Probabilities

In this section our goal is to prove that Algorithm B(G) satisfies the first property

of Lemma 5.3.4 as follows.

Lemma 5.4.7. For any vertex v ∈ V , we have PrG∼G,B[v ∈ Z] ≤ PrG∼G,A[v ∈ A(G)] +

ε3.

Proof. We will prove a stronger claim which is for any v ∈ V, and any r ≤ t, we have

232

qr,v ≤ qAv + ε3, where

qr,v := PrG∼G,B[v ∈ Br(G)], and qAv := PrG∼G,B[v ∈ A(G)].

We use proof by induction. The claim obviously holds for r = 0. For any r > 0, we

assume that qr−1,v ≤ qAv + ε3 holds and obtain qr,v ≤ qAv . Draw a random realization of

G and denote it by G (i.e. G ∼ G). Consider matchings Mi, . . . ,Mα, and M ′
i , . . . ,M

′
α

from algorithm Br(G), and let us define

ρr,v := |{i : v ∈Mi}|/α, and ρ′r,v = |{i : v ∈M ′
i}|/α.

We claim that qr−1,v = ρr,v and qr,v = ρ′r,v hold. The former is due to the fact that

any i ∈ [α], Mi is the result of running algorithm Br−1 on a random realization of G

which by definition is equal to qr−1,v. For the latter, note that we have M ′
i = Br(G)

and by Observation 5.4.5, we know that matchings M ′
i , . . . ,M

′
α are drawn from the

same distribution. As a result, we get

|{i : v ∈M ′
i}| = αPr[v ∈ Br(G)],

which implies qr,v = ρ′r,v.

We prove our induction step for the cases of qr−1,v ≤ qAv + ε3− 1/α, and qr−1,v >

qAv + ε3 − 1/α separately. We first show that if qr−1,v ≤ qAv + ε3 − 1/α, (i.e., v is not

233

saturated), then ρr,v ≥ ρ′r,v − 1/α holds, which can be interpreted as

qAv + ε3 − 1/α ≥ qr−1,v ≥ qr,v − 1/α,

and as a result qAv + ε3 ≥ qr,v. Let WH denote the set of multi-walks corresponding to

edges in MH constructed in Br(G). Since MH is a matching, for any vertex v, there

exists at most one multi-walk W ∈ WH that contains vertex v. In addition, since W

is alternating, we have |dW,v − d̄W,v| ≤ 1, where dW,v and d̄W,v are defined as

dW,v = |{i : v ∈ ei, and ei ∈Msi}| and d̄W,v = |{i : v ∈ ei, and ei /∈Msi}|.

Since after applying a multi-walk W on a profile, membership of the edges in W flips

in their corresponding matchings, we get |{i : v ∈ Mi}| ≥ |{i : v ∈ M ′
i}| − 1 which

means ρr,v ≥ ρ′r,v − 1/α. We now consider the case of qr−1,v ≥ qAv + ε3 − 1/α, (i.e., v

is saturated) and show that in this case, ρr,v ≥ ρ′r,v holds. Due to W being applicable

with respect to the set of saturated vertices, by Definition 5.4.4, it satisfies dW,v ≥ d̄W,v.

This directly yields ρr,v ≥ ρ′r,v, and as a result qr−1,v ≥ qr,v. Based on the induction

hypothesis, we have qr−1,v ≤ qAv + ε3 which implies qr,v ≤ qAv + ε3 and completes the

proof.

5.4.4 Lemma 5.3.4 Property 2: Expected Weight of the Matching

In this section, our goal is to prove E[w(Z)] ≥ (1 − ε), where Z = Bt(G) for

t = ctε
−20. We will fix the value of the constant ct later in this section.

234

We start by Lemma 5.4.8 concerning the relation between the expected weight

of the matching and the weight of matching MH on hyper-graph H in the algorithm.

For any r, let MH,r denote the matching MH in algorithm Br(G).

Lemma 5.4.8. For any 0 < r ≤ t, we have

EG∼G[Br(G)] = EG∼G[Br−1(G)] + E[w(MH,r)]/α.

Proof. Consider algorithm Br(G) where G is a random realization of G. To prove this

lemma, we will show

∑
i∈α

w(M ′
i)−

∑
i∈α

w(Mi) = w(MH,r). (5.32)

By Algorithm 4, we have Br(G) = M ′
1. Moreover, Observation 5.4.5 states that match-

ings M ′
1, . . . ,M

′
α are all drawn from the same distribution which implies

E

[∑
i∈α

w(M ′
i)

]
= αEG∼G[Br(G)].

Similarly, since matchings M1, . . . ,Mα are all drawn from the same distribution as

Br−1(G) we have

E

[∑
i∈α

w(Mi)

]
= αEG∼G[Br−1(G)].

Consequently, to prove the lemma, it suffices to prove Equation 5.32 holds. Let WH

denote the set of multi-walks corresponding to edges in MH constructed in Br(G). Since

the weight of each edge in H is equal to the gain of its corresponding multi-walk, we

235

can write

w(MH) =
∑

W∈WH

g(W,P) =
∑

W∈WH

∑
(i,e)∈W

(111(e /∈Mi)− 111(e ∈Mi))w(e). (5.33)

Note that profile P ′ is the result of iteratively applying the set of multi-walks WH on

profile P . However, since MH is a matching, and as a result multi-walks in WH are

vertex disjoint, gain of a multi-walk is not affected by the multi-walks applied before

that. Moreover, since different multi-walks concern different vertices of the graph, we

can assume w.l.o.g, that we apply all of them at the same time. Let us define for any

i ∈ [α],

Ei,1 =
⋃

W∈WH

{e | (i, e) ∈ W and e /∈Mi}, and Ei,2 =
⋃

W∈WH

{e | (i, e) ∈ W and e ∈Mi}.

By Definition 5.4.1, for any i ∈ [α], we have M ′
i = Mi ∪ Ei,1\Ei,2. This implies

w(M ′
i)−w(Mi) =

∑
e∈Ei,1

we−
∑
e∈Ei,2

we =
∑

W∈WH

∑
(j,e)∈W,j=i

(111(e′ /∈Mj)−111(e′ ∈Mj))w(e′),

and as a result

∑
i∈[α]

w(M ′
i)− w(Mi) =

∑
W∈WH

∑
(j,e)∈W

(111(e′ /∈Mj)− 111(e′ ∈Mj))w(e′).

Combining this with Equation 5.33 results in Equation 5.32 and completes the proof.

236

For any r ≤ t, let Zr := Br(G). Given Lemma 5.4.8, to prove the second property,

it suffices to show that for any r having E[w(Zr)] < (1 − ε)E[w(A(G))] results in

E[w(MH,r)] ≥ αE[w(A(G))]/t. Based on Lemma 5.4.8, this implies

E[w(Zt)] ≥
∑
r<t

E[w(MH,r)]/α ≥ min(tαE[w(A(G))]/(tα), (1− ε)E[w(A(G))])

= (1− ε)E[w(A(G)),

which is equivalent to the second property of Lemma 5.3.4. To achieve this, in

Lemma 5.4.9 (stated below), we prove that having E[w(Z)] < (1 − ε)E[w(A(G))] re-

sults in E[w(MH,r)] = Ω(ε8E[w(A(G))]), which can be interpreted as E[w(MH,r)] ≥

cε8E[w(A(G))] for a constant number c. By setting

ct =
ε−12 + 1

cε−12
,

we get

E[w(MH,r)] = cε8E[w(A(G))] =
(ε−12 + 1)E[w(A(G))]

ctε−20
.

Recall that we have t = ctε
−20, and α = ε−12 + 1, which gives us E[w(MH,r)] ≥

αE[w(A(G))]/t. Therefore, to prove the second property of Lemma 5.3.4, it only suffices

to prove the following lemma.

Lemma 5.4.9. For any r ≤ t, if E[w(Z)] < (1 − ε)E[w(A(G))] holds, then we have

E[w(MH,r)] = Ω(ε8E[w(A(G))]).

Proof. To prove this, we will construct a subgraph H ′ of H which max-degree 2α such

237

that

E

[∑
e∈H′

w(e)

]
≥ αε2E[w(A(G))].

First, note that H is a hyper-graph of rank l = 3ε−3 since each edge is between the

vertices of a path of length at most l in G. Using Lemma 5.4.15, we know that sub-

graph H ′ (and as a result hyper-graph H) has a matching of weight
∑

e∈H′ w(e)/(2lα)

which is in expectation equal to ε5E[w(A(G))]/6. Moreover, MH,r is constructed by

ApproxMatching(H) which by Proposition 5.4.18 returns an O(l)-approximation of the

maximum weight matching of H. Thus, we get

E[w(MH,r)] = Ω(ε8E[w(A(G))]).

Before proceeding to the construction of H ′ in Algorithm 5, let us provide some

definitions. Given a profile P = ((G1,M1), . . . , (Gj,Mk)), we sayW = ((s1, e1), . . . , (sa, ea)),

an alternating multi-walk of P , is expandable by W ′ = ((s′1, e
′
1), . . . , (s′b, e

′
b)) iff either

W1 or W2, defined below, is an alternating multi-walk:

W1 = ((s1, e1), . . . , (sa, ea), (s
′
1, e
′
1), . . . , (s′b, e

′
b)),

W2 = ((s′1, e
′
1), . . . , (s′b, e

′
b), (s1, e1), . . . , (sa, ea)).

If W is expandable by W ′ either one of W1 and W2 that is an alternating multi-walk

is the result of expanding W by W ′. (If both are alternating multi-walks, we pick one

arbitrarily.) Similarly, we say W is expandable by a path or a cycle p = (e′1, . . . , e
′
b) in

238

graph Gi iff W is expandable by ((i, e′1), . . . , (i, e′b)), and the result of expanding W by

p is similar to expanding W by ((i, e′1), . . . , (i, e′b)).

Below we state Algorithm 5 which given profile P and the set of saturated vertices

Vs outputs hyper-graph H ′. Note that both P and Vs are from algorithm Br(G) by

which MH,r is constructed.

Algorithm 7. Constructing subgraph H ′ given profile P := ((G1,M1), . . . , (Gα,Mα))

and Vs.

1 Define H ′ to be a hyper-graph with vertex set V that initially does not have any

edges.

2 For any i ∈ [α], let MAi := A(Gi), and E′i := {e ∈ Gi |111(e ∈Mi) + 111(e ∈MAi) = 1}
// E′i contains an edge if it is in exactly one of Mi and MAi .

3 Let Vr := {v ∈ Vs : |{i : v ∈MAi }| > |{i : v ∈Mi}|}.
4 Remove an edge e from E′i iff e ∈MAi and at least one of its end-points is in Vr.

5 Let G′i := (V,E′i).

6 while there exists an i ∈ α,where E′i 6= ∅, do

7 Let W be an empty multi-walk.

8 Pick a maximal path or a cycle p from G′i.
9 If W is expandable by p, expand W by p, and and remove all the edges of p

from E′j .

10 while there exists a subgraph G′j that contains a maximal path or a cycle p by

which W is expandable, do

11 Expand W by p and remove all the edges of p from E′j .

12 Add W to W.

13 for any W ∈ W, do

14 Pick an integer number x between 0 and l/4− 1 uniformly at random.

15 Decompose W = ((s1, e1), . . . , (sk, ek)) to smaller multi-walks W1, . . . ,Wa by

removing any element (si, ei) from the multi-walk iff ei /∈Msi and either

i mod (l/4) = x or i mod (l/4) = x+ 1 hold.

16 If W1 is expandable by Wa, expand W1 by Wa, and set Wa to be an empty

multi-walk.

17 For any multi-walk W ′ ∈ {W1, . . .Wa}, add an edge to hyper-graph H ′ between

the vertices in W ′ with weight g(W ′).

18 Return H ′.

239

To complete the proof of Lemma 5.4.9, we need to show that hyper-graph H ′

outputted by Algorithm 5, has the three following properties.

1. The maximum degree of hyper-graph H ′ is upper-bounded by 2α.

2. hyper-graph H ′ is a subgraph of hyper-graph H.

3. We have E[
∑

e∈H′ w(e)] ≥ αε2E[w(A(G))].

For the first property of H ′ first observe that any hyper-edge e ∈ H ′ represents a

multi-walk We in P . For any vertex v, if v ∈ e, then We contains an element (i, e′)

where v ∈ e′ and e′ ∈ G ′i. Moreover, in the algorithm, after using (i, e′) in construction

of a multi-walk, we remove e′ from subgraph G ′i. (see Line 11 of Algorithm 5.) We also

know that degree of each vertex in G ′i is at most two. This gives us an upper-bound of

2α for degree of each vertex in H ′.

To prove the second property, let us first recall that based on Line 7 of Algo-

rithm 4, hyper-graph H has a hyper-edge for any multi-walk of length at most l in set

Wa (which is defined as the set of multi-walks of P that are applicable with respect to

the set of saturated vertices). To prove this property, it suffices to show that any hyper-

edge in H ′ also represent a multi-walk of length at most l in Wa. Since in both graphs

H and H ′, weight of each edge is set to be the gain of its corresponding multi-walk,

we do not need to consider the edge-weights in our proof. Consider a multi-walk W ′

from Line 17 of Algorithm 5. Since any edge in H ′ represents a multi-walk described

in this line of the algorithm, to complete the proof we only need to show that W ′ is

a multi-walk of lenght at most l in Wa. Clearly, the length of this multi-walk is at

most l due to Line 15 of Algorithm 5. Moreover, Lemma 5.4.14 states that W ′ is an

240

alternating multi-walk and is applicable with respect to the saturated vertices, which

implies W ′ ∈ Wa, and completes the proof of this property.

To give a lower-bound for E[
∑

e∈H′ w(e)] we will prove that

E

[∑
e∈H′

w(e)

]
≥ α((1− 3ε3)E[w(A(G))]− E[w(Z)]),

which considering E[w(Z)] < (1− ε)E[w(A(G))] in the statement of lemma results in:

E

[∑
e∈H′

w(e)

]
≥ α(ε− 3ε3)E[w(A(G))].

For a small enough ε that satisfies ε2 > ε− 3ε3 we can write this as

E

[∑
e∈H′

w(e)

]
≥ αε2E[w(A(G))],

which is equivalent to the third property of H ′. For any e ∈ H ′ ,let We be the multi-

walk in Line 17 of Algorithm 5 represented by e. By definition of g(We, P), and the

fact that for any (i, e′) ∈ We, if e′ /∈Mi, then e′ ∈MA
i we get:

w(e) = g(We, P) =
∑

(i,e′)∈Wp

(111(e′ /∈Mi)− 111(e′ ∈Mi))w(e′)

=
∑

(i,e′)∈Wp

(111(e′ ∈MA
i)− 111(e′ ∈Mi))w(e′).

Observe that based on Algorithm 5, for any i ∈ [α] and any edge e′ ∈Mi, there exists

an edge e ∈ H ′ such that (i, e′) ∈ We. Similarly, for any i ∈ [α] and any edge e′ ∈MA
i ,

there exists an edge e ∈ H ′ such that (i, e′) ∈ We unless e′ is removed in Line 4 of the

241

algorithm or (i, e′) is removed in Line 15 of the algorithm. Based on Lemma 5.4.16 we

know that probability of e′ being removed in Line 4 is upper-bounded by ε3. Moreover,

it is easy to see that probability of (i, e′) being removed in Line 15 is upper-bounded

by 4/l = 4ε3/3. This means that with probability of at least 1 − 3ε3, for any i ∈ [α]

and any edge e′ ∈MA
i , there exists an edge e ∈ H ′ such that (i, e′) ∈ We. This implies

E

[∑
e∈H′

w(e)

]
=
∑
i∈α

 ∑
e′∈MAi

(1− 3ε3)w(e′)−
∑
e′∈Mi

w(e′)


=
∑
i∈α

(
(1− 3ε3)w(MA

i)− w(Mi)
)
.

Since matchings M1, . . . ,Mα are drawn from the same distribution, and similarly,

matchings MA
1 , . . . ,M

A
α are drawn from the same distribution, for any i ∈ [α] we

have E[w(Mi)] = E[w(Zr)] and E[w(MA
i)] = E[w(A(G))]. This gives us

E

[∑
e∈H′

w(e)

]
= α

(
(1− 3ε3)E[w(A(G))]− E[w(Zr)]

)
,

and concludes the proof of this Lemma.

Lemma 5.4.10. Consider multi-walks {W1, . . . ,Wa} in Line 17 of Algorithm 5. If

there exists an i ∈ [a], where Wi is not applicable with respect to set Vs, then W is not

applicable with respect to this set either.

Proof. We use proof by contradiction. We assume that W = ((s1, e1), . . . , (sk, ek)) is

an alternating multi-walk applicable with respect to set Vs while there exists an i ∈ [a]

where Wi is not applicable with respect to this set. We then show that this leads

242

to a contradiction. If Wi is not applicable with respect to Vs, then either it is not

alternating, or there exists a vertex v ∈ Vs for which dWi,v < d̄Wi,v. By Lemma 5.4.6,

if W is alternating then any v ∈ V that satisfies dWi,v < d̄Wi,v is an end-point of Wi.

Therefore, to obtain a contradiction, it suffices to prove that W is alternating, and

that if v ∈ Vs is an end-point of W , then dWi,v ≥ d̄Wi,v.

We first prove our claim for the case of 1 < i < a. By construction, in this case,

Wi is a subsequence of W , i.e., Wi = ((sx, ex), . . . , (sy, ey)) for 1 < x < y < k, and as

a result it is an alternating multi-walk. We will show that in this case, multi-walk W

is applicable with respect to any subset of V . Based on Lemma 5.4.6, to get this, it

suffices to show that ex ∈Msx and ey ∈Msy hold. Since Wi is a result of decomposing

W , we know that elements (sx−1, ex−1) and (sy+1, ey+1) are removed in Line 15 of the

algorithm. As a result we have ex−1 /∈ Msx−1 and ey−1 /∈ Msy−1 . Combining this with

the fact that W in alternating, we get ex ∈Msx−1 and ey ∈Msy .

To complete the proof, it remains to show that for any i ∈ {1, a}, multi-walk Wi

is alternating, and that any vertex v which is an end-point of Wi satisfies dWi,v ≥ d̄Wi,v.

For any i ∈ [k], let ei = (ui, ui+1) which means that for any i > 1, we have ui ∈

ei−1 and ui ∈ ei. Consider the multi-walks W1 and Wa in Line 15 of the algorithm.

We assume w.l.o.g. that during the decomposing of W to shorter multi-walks, it is

decomposed to at least two multi-walks and as a result 1 < a. At this point of the

algorithm, we have W1 = ((s1, e1), . . . , (sx, ex)) and Wa = ((sy, ey), . . . , (sk, ek)) for

some 1 ≤ x < y ≤ k. Note that both W1 and Wk are alternating multi-walks due to

being subsequences of W . Moreover, similar to the previous case, we can argue that

ex ∈ Msx and ey ∈ Msy due to the fact that elements (sx+1, ex+1) and (sy+1, ey+1) are

243

removed during the decomposition process. If we also have e1 ∈Msx and ek ∈Msx then

W1 is not expandable by Wa and both these multi-walks are applicable with respect

to any set of vertices due to the third item of Lemma 5.4.6. Therefore, we focus on

the case that either ek /∈ Msx or e1 /∈ Msx holds. Let us assume w.l.o.g. that we have

ek /∈Msx . It is easy to see that if u1 /∈ Vs then W1 is applicable with respect to Vs. We

claim that in this case of ek /∈ Msx , if u1 ∈ Vs, then we have u1 = uk+1 and e1 ∈ Msx

as otherwise W does meet the condition dWi,v ≥ d̄Wi,v which is necessary for W being

applicable with respect to set Vs. This implies that W1 is expandable by Wa since

((s1, e1), . . . , (sx, ex), (sy, ey), . . . , (sk, ek)) is an alternating multi-walk. As a result to

complete the proof we only need to show that the result of expanding W1 by Wa is

applicable with respect to Vs. Indeed in this case, this multi-walk is applicable with

respect to any set of vertices due to ex ∈ Msx and ey ∈ Msy and the third item of

Lemma 5.4.6. Thus, the proof of the this lemma is concluded.

Lemma 5.4.11. The while loop in Line 6 of Algorithm 5 terminates andW constructed

by that is a set of alternating multi-walks.

Proof. It is easy to see that if the loop terminates W only contains alternating multi-

walks since any multi-walk W added to this set is the result of iteratively expanding

an empty multi-walk by a set of paths and cycles. Recall that by definition, an empty

multi-walk is alternating and the result of expanding an alternating multi-walk by a

path or a cycle is also an alternating multi-walk. The while loop terminates when for

any i ∈ [α], we have E ′i = ∅, thus to complete the proof, it suffices to show that each

iteration of the loop terminates and that in each one, we remove at least one edge from

244

one of the subgraphs G ′1, . . . ,G ′α. We consider an arbitrary iteration of the loop, and

show that in Line 9, edges of p are removed from G ′i. This happens iff W is expandable

by p. Multi-walk W is empty at this point of the algorithm (and as a result is an

alternating multi-walk) and p = (e1, . . . , ek) is a maximal (nonempty) path or a cycle

chosen from an arbitrary G ′i in Line 8. As an application of Lemma 5.4.12, we get that

W is expandable by p. As a result of this, in Line 9 of the algorithm edges of p are

removed from E ′i. To conclude that the while loop terminates we also have to show

that each of its iterations terminate. It is easy to see since the loop nesting in this

while loop obviously terminates as well.

Lemma 5.4.12. Let p = (e′1, . . . , e
′
b) be a a maximal connected-component (a path or

a cycle) in graph G ′i (defined in Algorithm 5), and let W = ((s1, e1), . . . , (sa, ea)) be

an alternating multi-walk of profile P ′ = ((G1,M1), . . . , (Gα,Mα)), such that for any

j ∈ [b], we have (i, e′j) /∈ W and for any j ∈ [a], we have ej ∈ E ′sj . If the first vertex

of W is the same as the last vertex of p and 111(e1 ∈Ms1) + 111(e′b ∈Mi) = 1, then W is

expandable by p.

Proof. First, let us note that any maximal connected-component in graph G ′i is a path

or a cycle since we have E ′i ⊂ (Mi∪MA
i), and as a result the degree of each vertex in G ′i is

at most two. (Recall that, Mi and MA
i are both matchings of graph Gi.) To prove that

W is expandable by p we will show that Wp = ((i, e′1), . . . , (i, e′b), (s1, e1), . . . , (sa, ea))

is an alternating multi-walk. First, Wp is a multi-walk since (e′1, . . . , e
′
b, e1, . . . , ea) is a

walk in G and it also contains distinct elements as for any j ∈ [b], (i, e′j) /∈ W holds.

By Definition 5.4.3, to prove that Wp is alternating, we first need to show that

245

for any two consecutive elements in Wp, e.g., (s′′1, e
′′
1) and (s′′2, e

′′
2), we have 111(e′′1 ∈

Ms′′1
) + 111(e′′2 ∈ Ms′′2

) = 1. If both these elements are in W this simply holds due

to W being an alternating multi-walk itself. Moreover, if exactly one of them is in

W , we get this as a result of 111(e1 ∈ Ms1) + 111(e′b ∈ Mi) = 1 (in the statement of

lemma). Therefore, we need to focus on showing that for any j ∈ [b − 1], we have

111(ej ∈ Mi) + 111(ej+1 ∈ Mi) = 1. Since E ′i ⊂ (Mi ∪MA
i) and by the fact that Mi and

MA
i are matchings of graph Gi, if ei ∈ Mi then ei+1 /∈ Mi. Similarly, if ei /∈ Mi then

ei ∈MA
i which gives us ei+1 /∈MA

i and ei+1 ∈Mi.

As the second condition in Definition 5.4.3, we need to show that P∆Wp =

((G1,M
′
1), . . . , (Gk,M ′

k)) is a profile, where for any j ∈ [α] we have

M ′
j = Mj ∪ {e | (j, e) ∈ Wp and e /∈Mj}\{e | (j, e) ∈ Wp and e ∈Mj}. (5.34)

By Definition 5.4.1, to prove that P∆Wp is a profile, it only suffices to show that for

any j ∈ [α], M ′
j is a matching in Gj. This simply holds for any j 6= i due to W being

an alternating multi-walk itself, thus we only need to show that Mi is a matching in

Gi. To achieve this, we consider any two edges {e, e′} ⊂M ′
i and show that e and e′ are

not adjacent in Gi. If neither one of these edges is in p, then for W to be an alternating

multi-walk these edges cannot be adjacent. Moreover, it is easy to see that if both edges

are in p, they are not adjacent either. Thus, we assume that exactly one of the edges

is in p. W.l.o.g., we assume e ∈ p and e′ /∈ p. We consider two cases of e′ ∈ G′i and

e′ /∈ G′i. In the first case, e and e′ are not adjacent since p is a maximal component of

G′i and as a result is not connected to edges that are not in p (including e′). In the case

246

of e′ /∈ G′i, we claim that e′ is in both Mi and MA
i which means it cannot be adjacent

to any edge in G′i including e. To prove this claim, note that by Equation 5.34, we have

M ′
i ⊂ (Mi ∪ {e′′ | (i, e′′) ∈ Wp}) and by the statement of lemma for any (i, e′′) ∈ Wp we

have e′′ ∈ E ′i. Moreover, by definition of G ′i, we know E ′i ⊂ (Mi ∪MA
i). Putting these

facts together results in the following equation:

M ′
i ⊂ (Mi ∪ {e′′ | (i, e′′) ∈ Wp}) ⊂ (Mi ∪ E ′i) ⊂ (Mi ∪MA

i).

Recall that G ′i contains an edge iff it is in (Ms ∪MA
a) but not in (Ms ∩MA

a). As a

result since e is in M ′
i but it is not in G ′i, then it is in (Ms ∩MA

a). This completes the

proof of our lemma since we obtained that Wp is an alternating multi-walk.

Claim 5.4.13. In Line 5 of Agorithm 5, for any v ∈ Vs, we have rv ≥ gv where

gv = |{i : v ∈ (MA
i ∩ E ′i)}| and rv = |{i : v ∈ (Mi ∩ E ′i)}|.

Proof. We use proof by contradiction. Let v ∈ Vs be a vertex with rv < gv. It is easy

to see that we have v /∈ Vr since in Line 4, for any i ∈ [α], we remove any edge in E ′i

which has at least one end-point in Vr. As a result, in Line 5, for any u ∈ Vr we have

dv,g = 0. Due to v /∈ Vr, we get |{i : v ∈ MA
i }| ≤ |{i : v ∈ Mi}|. Observe that for any

v /∈ Vr, we have

|{i : v ∈ (MA
i ∩ E ′i)}| = |{i : v ∈MA

i }| − |{i : v ∈ (MA
i ∩Mi)}|, and

|{i : v ∈ (Mi ∩ E ′i)}| = |{i : v ∈Mi}| − |{i : v ∈ (MA
i ∩Mi)}|.

247

This gives us rv − gv = |{i : v ∈ Mi}| − |{i : v ∈ MA
i }|, which implies rv ≥ gv and

completes our proof.

Lemma 5.4.14. Any multi-walk in line 17 of Algorithm 5 which is represented by an

edge in hyper-graph H ′ is applicable with respect to the vertices in Vs.

Proof. By Lemma 5.4.10, to prove this, it suffices to show that any W ∈ W constructed

in the algorithm is applicable with respect to Vs. Recall that, by Definition 5.4.4, a

multi-walk W of profile P is applicable with respect to Vs iff it is alternating and it

satisfies dW,v ≥ d̄W,v for any v ∈ Vs. Based on Lemma 5.4.11, W is an alternating

multi-walk thus it remains to show that for any v ∈ Vs, we have dW,v ≥ d̄W,v.

We use proof by contradiction. We start by assuming that there exists a vertex

v ∈ Vs and a multi-walk W ′ ∈ W where dW ′,v < d̄W ′,v and then show that it results

in a contradiction. Let W = ((s1, e1), . . . , (sk, ek)) be the first multi-walk for which

we have dW,v 6= d̄W,v. By Lemma 5.4.6, this implies that vertex v is an endpoint of

this multi-walk. W.l.o.g., let us assume that we have e1 = (v, u2). Consider subgraphs

G ′1, . . . ,G ′α in the algorithm when W is added toW . Due to the condition of the while

loop in Line 6 of the algorithm the following holds at this point of the algorithm. There

does not exist a G ′i that contains a maximal path p with which W is expandable. By

Lemma 5.4.12, this implies that any maximal path p = (e′1, . . . , e
′
a) in any subgraph

G ′i that ends in vertex v (i.e., e′a = (u′a, v)) satisfies 111(e1 ∈ Ms1) = 111(e′a ∈ Mi). We

consider both cases of e1 ∈Ms1 and e1 ∈Ms1 and prove prove the lemma for each one

independently.

Let us assume that e1 ∈ Ms1 . In this case, by Item 2 of Lemma 5.4.6, we have

248

dW,v ≥ d̄W,v which means W 6= W ′. We will show that in this case, any multi-walk

W ′′ added to set W in the next iterations satisfies dW ′′,v ≥ d̄W ′′,v which contradicts

the existence of W ′. Consider a maximal connected component (a path or a cycle)

p = (e′1, . . . , e
′
a) in Gi for an arbitrary i ∈ [α], and define Wp = ((i, e′1), . . . , (i, e′a)). By

Lemma 5.4.12 Wp is an alternating multi-walk. Moreover, by Item 1 of Lemma 5.4.6

if v is not an end-point of p (which also includes the case that p is a cycle) then

we have dW,v = d̄Wp,v. Further, if p is a path and v is one of its end-points, i.e.,

e′a = (u′a, v), as mentioned above we have 111(e1 ∈ Ms1) = 111(e′a ∈ Mi), which means

e′a ∈ Mi. As a result of this and by invoking the second item of Lemma 5.4.6, we get

that dWp,v ≥ d̄Wp,v. Note that any multi-walk W ′′ constructed in the next iterations

consists of a set of maximal connected components. Since all the remaining connected

components satisfy dWp,v ≥ d̄Wp,v, we also have dW ′′,v ≥ d̄W ′′,v. This contradicts the

existence of multi-walk W ′ with dW ′,v < d̄W ′,v.

Now we consider the case of e1 /∈Ms1 . We will show that this assumption results

in equation |{i : v ∈ (MA
i ∩E ′i)}| < |{i : v ∈ (Mi∩E ′i)}| for vertex v, which contradicts

the statement of Claim 5.4.13. First, we show that if e1 /∈ Ms1 then any multi-walk

W ′′ ∈ W satisfies dW ′′,v ≤ d̄W ′′,v. Let us consider a path or cycle p = (e′1, . . . , e
′
a) in

graph Gi for an arbitrary i ∈ [α], and define Wp = ((i, e′1), . . . , (i, e′a)). Similar to what

we used in the proof of the previous case, if v is not an end-point of Wp (which also

includes the case of p being a cycle), then by Lemma 5.4.6, we have dWp,v ≥ d̄Wp,v.

Moreover, if p is a path and v is an end-point in this path, i.e., e′a = (u′a, v), we have

111(e1 ∈ Ms1) = 111(e′a ∈ Mi). Since in this case we have e1 /∈ Ms1 , we get e′a /∈ Mi. As

a result of this, Item 2 in Lemma 5.4.6 gives us dWp,v ≤ d̄Wp,v. Based on an argument

249

that we used for the previous case, this implies that any mutli-walk W ′′ that we add

to W in the next iterations satisfies dW ′′,v ≥ d̄W ′′,v. Moreover, due to the assumption

that W is the first multi-walk that for any W ′′ that is added to this set before W we

have dW ′′,v = d̄W ′′,v. We also have dW,v < d̄W,v as a result of assumption e1 /∈ Ms1 and

the second item of Lemma 5.4.6. This gives us the following equation:

∑
W∈W

(d̄W,v−dW,v) =
∑
W∈W

(|{(i, e) ∈ W : v ∈ e, e /∈Mi}|−|{(i, e) : v ∈ e, e ∈Mi}|) > 0.

(5.35)

where the first equality is due to the definition of d̄W,v and dW,v. Further, based on

Lemma 5.4.11, we know that the while loop in Line 6 of Algorithm 5 terminates. When

this loop terminates, there is no j ∈ [α] where G ′j contains at least one edge. This means

that for any e ∈ E ′j element (e, i) is in exactly one of the multi-walks in W . Also, note

that by construction, E ′j ⊂ (MA
j ∪Mj). As a results we get the following equations for

vertex v:

|{i : v ∈ (Mi ∩ E ′i)}| =
∑
W∈W

|{(i, e) ∈ W : v ∈ e, e ∈Mi}|, and

|{i : v ∈ (MA
i ∩ E ′i)}| =

∑
W∈W

|{(i, e) ∈ W : v ∈ e, e /∈Mi}|.

Combining this with Equation 5.35, we get:

|{i : v ∈ (MA
i ∩ E ′i)}| − |{i : v ∈ (Mi ∩ E ′i)}| > 0

250

which is in contradiction with the following equation by Claim 5.4.13 for any v ∈ Vs:

|{i : v ∈ (MA
i ∩ E ′i)}| ≤ |{i : v ∈ (Mi ∩ E ′i)}|.

Lemma 5.4.15. Any weighted hyper-graph K = (G,EK) of max-degree ∆ and rank r

has a matching with weight at least 1
r∆

∑
e∈EK w(e).

Proof. We construct a matching MK using an iterative greedy algorithm and show that

its weight is at least 1
2∆

∑
e∈EK w(e). At the beginning all the edges are alive. In each

iteration, we add an edge e to MK which has the maximum weight among the alive

edges and kill all its neighboring edges (that are not already killed by another vertex).

Note that each edge e in MK kills at most r∆−1 other edges with weight smaller than

w(e), which means
∑

e∈MK
w(e) ≥ 1

r∆

∑
e∈EK w(e).

Lemma 5.4.16. Given that an edge e = (u1, u2) exists in MA
i defined in Algorithm 5,

probability of this edge being removed in Line 4 of the algorithm is upper-bounded by

ε3.

Proof. Note that e = (u1, u2) is removed in Line 4 of the algorithm iff e ∈ MA
i and

there exists a vertex v ∈ {u1, u2} which is saturated and satisfies |{j : v ∈ MA
j }| <

|{j : v ∈Mj}|. Let Ie be an indicator random variable for the event of e being removed

from G ′i in Line 4 of the algorithm. Moreover, let us define gv := |{j : v ∈ MA
j }| and

251

rv := |{j : v ∈Mj}|. We have

Pr[Ie] ≤Pr[gu1 > ru1 |u1 ∈MA
i] + Pr[gu2 > ru2 |u2 ∈MA

i]. (5.36)

Thus, it suffices to show that, Pr[gv > rv | v ∈ MA
i] ≤ ε3/2 holds for any vertex

v ∈ {u1, u2}. We have

Pr[gv > rv| v ∈MA
i] ≤ Pr[gv,−i + 1 > rv,−i] ≤ Pr[gv,−i ≥ rv,−i] (5.37)

where gv,−i := |{j : j 6= i and v ∈ MA
j }| and rv,−i := |{j : j 6= i and v ∈ Mj}|. Recall

that by definition of saturated vertices in Line 5 of Algorithm 4, for any saturated

vertex v and i ∈ [α], we have Pr[v ∈ Mi] − Pr[v ∈ MA
i] ≥ ε3 − 1/α and as a result

E[rv,−i]− E[gv,−i] ≥ (α− 1)(ε3 − 1/α). To complete the proof, we show

Pr[|gv,−i − E[gv,−i]| > (α− 1)ε4] ≤ ε−4, and Pr[|rv − E[rv]| > (α− 1)ε4] ≤ ε−4.

Note that gv,−i and rv,−i are both sum of independent Bernoulli random variables as

for any a and b, G ′a and G ′b are independent random variables. Therefore, to bound

Pr[|gv,−i − E[gv,−i]| > (α − 1)ε4] and Pr[|rv,−i − E[rv,−i]| > (α − 1)ε4] we can use

Chebyshev’s inequality which states for any k, Pr[|rv,−i−E[rv,−i]| > Var(rv)
1/2k] ≤ k−2.

Observe that Var(rv,−i) < (α− 1) and Var(gv,−i) < (α− 1). Based on Algorithm 4, we

252

have α− 1 = ε−12. This implies that

Pr[|rv,−i − E[rv,−i]| > (α− 1)ε4] = Pr[|rv,−i − E[rv,−i]| > ε−8]

= Pr[|rv,−i − E[rv,−i]| > (α− 1)1/2ε−2]]

≤ Pr[|rv,−i − E[rv,−i]| ≥ Var (rv)
−1/2ε−2]]

≤ ε4.

We can similarly show that Pr[|gv,−i − E[gv,−i]| > (α − 1)ε4] ≤ ε4. Moreover, since

E[rv,−i] − E[gv,−i] ≥ (α − 1)(ε3 − 1/α), if gv,−i ≥ rv,−i then, we either have gv,−i ≥

E[gv,−i] + (α − 1)(ε3 − 1/α)/2 or rv,−i ≤ E[rv,−i] − (α − 1)(ε3 − 1/α)/2. For a small

enough ε, we have (ε3 − 1/α)/2 ≥ ε4, and

Pr[gv,−i ≥ rv,−i] ≤ Pr[|rv,−i−E[rv,−i]| > (α−1)ε4]+Pr[|gv,−i−E[gv,−i]| > (α−1)ε4] ≤ 2ε4.

Combining this with Equation 5.37 and Equation 5.36 results in Pr[Ie] ≤ 4ε4 which for

a small enough ε, gives us Pr[Ie] ≤ ε3.

5.4.5 Lemma 5.3.4 Property 3: Independence

In this section our goal is to prove the following lemma.

Lemma 5.4.17. For any 0 ≤ r ≤ t, it is possible to simulate algorithm Br(G) in

O(ε−24 log ∆ poly(log log ∆)) rounds of LOCAL.

253

Proof. We will show that for any r ≤ t, algorithm Br(G) can be implemented in

xr := crε−4 log ∆ poly(log log ∆)

rounds of LOCAL for a large enough constant c. Since we have t = ctε
−20 for a constant

ct, this implies that B(G) = Bt(G) can be simulated in O(ε−24 log ∆ poly(log log ∆))

rounds. To prove this claim, we use proof by induction. As the base case, B0(G) can

be simply implemented in O(1) rounds as it only returns an empty matching. As the

induction step, for any r > 1, we assume that our claim holds for Br−1(G), and prove

that it holds for Br(G) too.

Graph G is the underlying graph in our LOCAL simulation of Br(G), and there is

a processor on each v ∈ V . The initial information that each node v holds is as follows.

Its incident neighbors in graphsG and G, PrG∼G,A[v ∈ A(G)], and parameters ε, r and ∆

(maximum degree of G). Observe that other than G, the rest of the initial information

is independent of the realization of G and the randomization of the algorithm. Thus,

if two vertices are not adjacent in G, they initially do not share any information that

is correlated with the randomization of the algorithm or the realization of G. As a

result, to prove our lemma, we only need to show that using this initialization, we can

implement our algorithm in the desired number of rounds. To prove our claim, we go

over Algorithm 4 line by line, and investigate the number of rounds that we need to

simulate each one in the LOCAL model. The first two lines obviously take O(1) round

since no communication is needed for initializing the variables.

In Line 3 and Line 4 of the algorithm, the goal is to construct profile P . First,

254

to construct subgraphs G2, . . . ,Gα, for any edge e ∈ G, we only need its end-points to

communicate and hold the information about realization of e in these subgraphs. This

can be done in O(1). Moreover, by the induction step for any i, algorithm Br−1(G〉)

can be simulated in xr−1 rounds. Further, Br−1(G1) . . . ,Br−1(Gα), can be constructed

in parallel. As a result this line of the algorithm takes xr−1 +O(1) rounds.

To simulate Line 5 of the algorithm, we show that any vertex v can compute

PrG′∼G,A[v ∈ Br−1(G ′)] and determine whether it is saturated or not after xr−1 rounds of

the algorithm. First, note that PrG′∼G,A[v ∈ Br−1(G ′)] is just a function of G. Moreover,

by the induction step, Br−1(G ′) can be implemented in xr−1 rounds of LOCAL, which

implies that PrG′∼G,A[v ∈ Br−1(G ′)] is a function of xr−1-hop of vertex v in graph

G. This is a piece of information that vertex v can gather in xr−1 rounds. Therefore,

considering that initially each vertex holds the value of PrG∼G,A[v ∈ A(G)] and ε, vertex

v can determine whether it is saturated or not by evaluating the following inequality.

PrG∼G,B[v ∈ Zr−1] ≤ PrG∼G,A[v ∈ A(G)] + ε3 − 1/α.

This only adds an extra O(1) to the round complexity of the LOCAL algorithm since

each vertex can gather the necessary information during the xr−1 + O(1) that our

algorithm has already run from the beginning of the algorithm.

In Line 6 and Line 7, the goal is to construct the hyper-graph H, which has a

hyper-edge between the vertices of any multi-walk of length at most l = 3ε−3 of P in

set Wa. Recall that Wa is the set of alternating multi-walks of P that are applicable

with respect to the set of saturated vertices. To achieve this, first, each vertex gathers

255

all the information about the vertices in its l-hop and finds the alternating multi-walks

of length at most l that contain this vertex. In this way, each vertex knows all the

edges of H to which it belongs. This can obviously be done in O(l) rounds.

Line 8 of the algorithm is about ApproxMatching(H) which as mentioned before

uses an algorithm by Harris [30] stated below.

Proposition 5.4.18 ([30, Theorem 1.2]). Given a hyper-graph of rank r and a constant

δ ∈ (0, 1/2), there is an Õ(log ∆ + r)-round algorithm in the LOCAL model to get an

O(r)-approximation to maximum weight matching with probability at least 1 − 1/δ.

Here the Õ notation hides poly log log ∆ and poly log r factors.

Based on this proposition, to analyze the round complexity of ApproxMatching(H),

we first need to give an upper-bound for the maximum degree of H which is the max-

imum number of hyper-edges in H that any single vertex v can belong to. In hyper-

graph H, we have a hyper-edge between the vertices of any alternating hyper-walk

w = ((s1, e1), . . . , (sk, ek)) of length at most l in profile P . By definition of multi-

walks, p = (e1, . . . , ek) should be a walk in graph G. In a graph of maximum degree ∆,

there are at most l∆l distinct walks of length at most l that contain vertex v. Further,

for any i ∈ [k], we have si ∈ [α] which means that there are at most α possible choices

for any si. Thus, in graph H, there are at most l(∆α)l edges that contain any arbitrary

vertex v, and as a result maximum degree of H is upper-bounded by l(∆α)l. Moreover,

rank of hyper-graph H is simply upper-bounded by l since the rank of a hyper-graph is

the maximum number of vertices that any edge contains. In the case of graph H this is

bounded by l since each edge is between vertices of a walk of length at most l. Putting

256

these together, and plugging in the value of variables l = 3ε−3 and α = ε−12 + 1, we

obtain the following upper-bound for the round complexity of ApproxMatching(H):

Õ(log (∆α)2l + l) = O(l log (∆α) polylog (l) poly log log (l(∆α)l))

= O(ε−4 log (∆) poly log log (∆)).

We can set the constant c in a way that the number of rounds needed here is upper-

bounded by cε−4 log (∆) poly log log (∆)/2.

Finally, in Line 11 we need to apply a set of multi-walks of length at most l

(constructed in previous rounds) on profile P . This can be easily done in O(ε−3)-

rounds since we have l = 3ε−3. To sum up, The overall round complexity of the

algorithm which we denote by Rr is as follows:

Rr =O(1) + xr−1 +O(l) +O(1) +O(l) + cε−4 log (∆) poly log log (∆)/2

=c(r − 1)ε−4 log ∆ poly(log log ∆) +O(ε−4) + cε−4 log ∆ poly(log log ∆)

=xr +O(ε−4)− cε−4 log ∆ poly(log log ∆)/2.

Let c0ε
−4 be an upper-bound for what we denote in our round complexity as O(ε−4)

where c0 is constant. We can set the constant c to be large enough to satisfy

c0ε
−4 − cε−4 log ∆ poly(log log ∆)/2 ≤ 0.

This gives us Rr ≤ xr, and concludes our proof.

257

Bibliography

[1] Amine Allouah and Omar Besbes. Prior-independent optimal auctions. In Pro-
ceedings of the 2018 ACM Conference on Economics and Computation, Ithaca,
NY, USA, June 18-22, 2018, page 503, 2018.

[2] Noga Alon, Ankur Moitra, and Benny Sudakov. Nearly Complete Graphs Decom-
posable into Large Induced Matchings and Their Applications. In Proceedings of
the 44th Symposium on Theory of Computing Conference, STOC 2012, New York,
NY, USA, May 19 - 22, 2012, pages 1079–1090, 2012.

[3] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni,
and Cliff Stein. Coresets meet EDCS: algorithms for matching and vertex cover on
massive graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 1616–1635, 2019.

[4] Sepehr Assadi and Aaron Bernstein. Towards a Unified Theory of Sparsifica-
tion for Matching Problems. In 2nd Symposium on Simplicity in Algorithms,
SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA, USA, pages 11:1–11:20,
2019.

[5] Sepehr Assadi, Sanjeev Khanna, and Yang Li. The Stochastic Matching Prob-
lem with (Very) Few Queries. In Proceedings of the 2016 ACM Conference on
Economics and Computation, EC ’16, Maastricht, The Netherlands, July 24-28,
2016, pages 43–60, 2016.

[6] Sepehr Assadi, Sanjeev Khanna, and Yang Li. The Stochastic Matching Problem:
Beating Half with a Non-Adaptive Algorithm. In Proceedings of the 2017 ACM
Conference on Economics and Computation, EC ’17, Cambridge, MA, USA, June
26-30, 2017, pages 99–116, 2017.

[7] Lawrence M Ausubel, Paul Milgrom, et al. The lovely but lonely vickrey auction.
Combinatorial auctions, 17:22–26, 2006.

[8] Soheil Behnezhad and Mahsa Derakhshan. Stochastic Weighted Matching: (1−ε)
Approximation. In 61st IEEE Annual Symposium on Foundations of Computer

258

Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1392–
1403. IEEE, 2020.

[9] Soheil Behnezhad, Mahsa Derakhshan, Alireza Farhadi, MohammadTaghi Haji-
aghayi, and Nima Reyhani. Stochastic Matching on Uniformly Sparse Graphs. In
Algorithmic Game Theory - 12th International Symposium, SAGT 2019, Athens,
Greece, September 30 - October 3, 2019, Proceedings, pages 357–373, 2019.

[10] Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi.
Stochastic Matching with Few Queries: (1 − ε) Approximation. In Proccedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, Chicago, IL, USA, June 22-26, 2020, pages 1111–1124. ACM, 2020.

[11] Soheil Behnezhad, Alireza Farhadi, MohammadTaghi Hajiaghayi, and Nima Rey-
hani. Stochastic Matching with Few Queries: New Algorithms and Tools. In Pro-
ceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2855–2874,
2019.

[12] Soheil Behnezhad and Nima Reyhani. Almost Optimal Stochastic Weighted
Matching with Few Queries. In Proceedings of the 2018 ACM Conference on Eco-
nomics and Computation, Ithaca, NY, USA, June 18-22, 2018, pages 235–249,
2018.

[13] Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

[14] Hedyeh Beyhaghi, Negin Golrezaei, Renato Paes Leme, Martin Pal, and Balasub-
ramanian Siva. Improved approximations for free-order prophets and second-price
auctions. arXiv preprint arXiv:1807.03435, 2018.

[15] Anand Bhalgat, Jon Feldman, and Vahab S. Mirrokni. Online allocation of display
ads with smooth delivery. In The 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’12, Beijing, China, August 12-16,
2012, pages 1213–1221. ACM, 2012.

[16] Avrim Blum, Ioannis Caragiannis, Nika Haghtalab, Ariel D. Procaccia, Eviatar B.
Procaccia, and Rohit Vaish. Opting into optimal matchings. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2351–2363, 2017.

[17] Avrim Blum, John P. Dickerson, Nika Haghtalab, Ariel D. Procaccia, Tuomas
Sandholm, and Ankit Sharma. Ignorance is Almost Bliss: Near-Optimal Stochastic
Matching With Few Queries. In Proceedings of the Sixteenth ACM Conference on
Economics and Computation, EC ’15, Portland, OR, USA, June 15-19, 2015,
pages 325–342, 2015.

[18] Avrim Blum, John P. Dickerson, Nika Haghtalab, Ariel D. Procaccia, Tuomas
Sandholm, and Ankit Sharma. Ignorance Is Almost Bliss: Near-Optimal Stochas-
tic Matching with Few Queries. Operations Research, 68(1):16–34, 2020.

259

[19] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequal-
ities - A Nonasymptotic Theory of Independence. Oxford University Press, 2013.

[20] L. Elisa Celis, Gregory Lewis, Markus M. Mobius, and Hamid Nazerzadeh. Buy-it-
now or take-a-chance: Price discrimination through randomized auctions. Manag.
Sci., 60(12):2927–2948, 2014.

[21] Mahsa Derakhshan, Negin Golrezaei, and Renato Paes Leme. LP-based Approxi-
mation for Personalized Reserve Prices. In Proceedings of the 2019 ACM Confer-
ence on Economics and Computation, EC 2019, Phoenix, AZ, USA, June 24-28,
2019, page 589. ACM, 2019.

[22] Mahsa Derakhshan, David M. Pennock, and Aleksandrs Slivkins. Beating greedy
for approximating reserve prices in multi-unit VCG auctions. In Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual
Conference, January 10 - 13, 2021, pages 1099–1118. SIAM, 2021.

[23] Peerapong Dhangwatnotai, Tim Roughgarden, and Qiqi Yan. Revenue maximiza-
tion with a single sample. Games Econ. Behav., 91:318–333, 2015.

[24] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertis-
ing and the generalized second-price auction: Selling billions of dollars worth of
keywords. American economic review, 97(1):242–259, 2007.

[25] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal
of research of the National Bureau of Standards B, 69(125-130):55–56, 1965.

[26] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubin-
feld, and Alex Samorodnitsky. Monotonicity testing over general poset domains.
In Proceedings on 34th Annual ACM Symposium on Theory of Computing, May
19-21, 2002, Montréal, Québec, Canada, pages 474–483, 2002.

[27] Mohsen Ghaffari. Distributed Maximal Independent Set using Small Messages.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
805–820, 2019.

[28] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication
and streaming complexity of maximum bipartite matching. In Proceedings of
the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2012, Kyoto, Japan, January 17-19, 2012, pages 468–485, 2012.

[29] Negin Golrezaei, Max Lin, Vahab Mirrokni, and Hamid Nazerzadeh. Boosted
second price auctions: Revenue optimization for heterogeneous bidders. 2017.

[30] David G. Harris. Distributed local approximation algorithms for maximum match-
ing in graphs and hypergraphs. In 60th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12,
2019, pages 700–724. IEEE Computer Society, 2019.

260

[31] Jason D. Hartline and Tim Roughgarden. Simple versus optimal mechanisms.
SIGecom Exch., 8(1), 2009.

[32] Michael Kapralov. Better bounds for matchings in the streaming model. In Pro-
ceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages
1679–1697, 2013.

[33] Renato Paes Leme, Martin Pál, and Sergei Vassilvitskii. A field guide to per-
sonalized reserve prices. In Proceedings of the 25th International Conference on
World Wide Web, WWW 2016, Montreal, Canada, April 11 - 15, 2016, pages
1093–1102. ACM, 2016.

[34] Nathan Linial. Locality in Distributed Graph Algorithms. SIAM J. Comput.,
21(1):193–201, 1992.

[35] Takanori Maehara and Yutaro Yamaguchi. Stochastic Monotone Submodular
Maximization with Queries. CoRR, abs/1907.04083, 2019.

[36] Jamie Morgenstern and Tim Roughgarden. On the pseudo-dimension of nearly
optimal auctions. In Advances in Neural Information Processing Systems 28: An-
nual Conference on Neural Information Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 136–144, 2015.

[37] Michael Ostrovsky and Michael Schwarz. Reserve prices in internet advertising
auctions: a field experiment. In Proceedings 12th ACM Conference on Electronic
Commerce (EC-2011), San Jose, CA, USA, June 5-9, 2011, pages 59–60. ACM,
2011.

[38] Tim Roughgarden and Joshua R. Wang. Minimizing regret with multiple reserves.
ACM Trans. Economics and Comput., 7(3):17:1–17:18, 2019.

[39] Imre Z Ruzsa and Endre Szemerédi. Triple Systems With No Six Points Carrying
Three Triangles. Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai,
18:939–945, 1978.

[40] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, vol-
ume 24. Springer Science & Business Media, 2003.

[41] Yutaro Yamaguchi and Takanori Maehara. Stochastic Packing Integer Programs
with Few Queries. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018, pages 293–310, 2018.

261

	Dedication
	Acknowledgements
	Table of Contents
	Introduction
	Auctions
	Matchings

	Personalized Reserve Prices in Second Price Auctions
	Results and Techniques
	Linear Program
	Profile-based LP-rounding (Pro-LPR) Algorithm
	Bounding the Constant in the Second Condition
	Proof of Lemma 2.3.3
	Approximation Factor

	Tightness of the Analysis
	Integrality Gap

	Personalized Reserve Prices in VCG Auctions
	Results and Techniques
	The Algorithm
	An Alternative Solution Space
	The Linear Program
	The LP-Rounding Algorithm

	Approximation Factor
	Proof of Lemma 3.3.3
	lower bounds for E[P] and E[Q]
	Revenue of the discounted vector

	Upper Bound for the ``Simple Rounding'' Approach
	Omitted Proofs of Section 3.4.1
	Proof of Lemma 3.2.3
	Useful Facts about Bernoulli Random Variables

	Stochastic Matching
	Technical Overview
	Preliminaries
	Basic Definitions and The Algorithm
	A Crucial/Non-crucial Decomposition
	Setting the Thresholds - and +
	The Vertex-Independent Matching Lemma

	The Analysis via the Vertex-Independent Matching Lemma
	Construction of an Expected Fractional Matching x on Q
	Validity of x
	The Expected Size of x
	From the Expected Fractional Matching to an Actual Fractional Matching

	Proof of the Vertex-Independent Matching Lemma
	Overview of the Algorithm
	The Formal Algorithm
	Lemma 4.3.8 Property 1: The Matching's Size
	Lemma 4.3.8 Property 2: Matching Probabilities
	Lemma 4.3.8 Property 4: Matching Independence

	Concentration of the Maximum Realized Matching's Size
	On Generality of Assumption 4.3.1
	Approximate MIS
	Deferred Proofs

	Stochastic Weighted Matching
	Technical Overview and the Challenge with Weighted Graphs
	Basic Definitions and The Algorithm
	General Notation
	Basic Stochastic Matching Notation/Definitions
	The Algorithm

	The Analysis
	Toward Constructing x: A Partitioning of E
	Construction of the Fractional Matching x on P
	Construction of the Fractional Matching x on N
	Putting Everything Together

	The Weighted Vertex-Independent Matching Lemma
	Overview of the Algorithm
	Algorithm B(G)
	Lemma 5.3.4 Property 1: Matching Probabilities
	Lemma 5.3.4 Property 2: Expected Weight of the Matching
	Lemma 5.3.4 Property 3: Independence

	Bibliography

