
ON NUMERICAL ANALYSIS

IN

RESIDUE NUMBER SYSTEMS

by

George Edward .~~ndamood

Thesis submitted to the Faculty of the Graduate School

of the University of Maryland in partial fulfillment

of the requirements for the degree of
Master of Arts

1964

APPROVAL SHEET

Title of Thesis: On Numerical Analysis in Residue Number
Systems

Name of Candidate: George Edward Lindamood
Master of Arts, 1964

Thesis and Abstract Approved:

Date approve d:

Werner C. Rheinboldt
Research Professor
Computer Scie nce Center

Title of thesis:

ABSTRACT

On Numerical Analysis in Residue Number
Systems

George Edward Lindamood, Master of Arts, 1964

Thesis directed by: Professor Werner C. Rheinboldt

Recent attempts to utilize residue number systems

in digital computers have raised numerous questions about

adapting the techniques of numerical analysis to residue

number systems. Among these questions are the fundamental

problems of how to compare the magnitudes of two numbers, how

to detect additive and multiplicative overflow, and how to

divide in r e sidue number systems. These three problems are

treated in separate chapters of this thesis and methods are

developed thereinwhereby magnitude c omparison, overflow

detection_, , and division can be performe d in residue number

systems. In an additional chapter, the division method is

extended to provide an algorithm for the direct approxi-

mation of square roots in residue number systems. Numerous

examples are provided illustrating the nature of the problems

considered and showing the use of the solutions presented in

practical computations. In a final chapter are presented the

results of extensive trial calculations for which a conven-

tional digital computer was programmed to simulate the use

of the division and square root algorithms in approximating

These quotients and square roots in residue number systems.

results indicate that, in practice, these division and

square root algorithms usually converge to the quotient or

square root somewhat faster than is suggested by the theory.

Positions held: Associate Engineer
Westinghouse Electric Corporation
Baltimore, Maryland

Research Programmer
Computer Science Center
University of Maryland
College Park, Maryland

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude

to his advisor, Dr. Werner C. Rheinboldt, Director

of the Computer Science Center, University of Maryland,

and to Mr. George Shapiro, Computer Technology Group,

Westinghouse Electric Corporation, for their encourage

ment, patience, and guidance during the preparation of

this thesis.

A portion of the results presented in this thesis

were obtained under the sponsorship of the Electronic

Technology Laboratory, Aeronautical Systems Division,

United States Air Force, under Contract Number

AF 33(657)7899. The computational results obtained

at the Computer Science Center, University of Maryland,

were supported in part by the National Aeronautics and

Space Administration under NASA Research Grant NsG 398.

ii

TABLE OF CONTENTS

Chapter Page

INTRODUCTION · l

A. Residue Number Sys terns 1

B. Modular Arithmetic Computers 2

c. Problems in Modular Arithmetic

Computer Design 4

I. MAGNITUDE COMPARISON 9

A. Ordering in Residue Number Systerns 9

B. Mixed-Radix Notation 14

c. Conversion to Mixed-Radix Notation 30

I I. OVERFLOW DETECTION 5 O

A. Overflow in Residue Number Systerns 50

B. Additive Overflow 53

c. Multiplicative Overflow 60

D. Multiplicative Overflow (continued) 71

iii

Chapter Page

III. DIVISION .. 80

A. Division in Residue Number Systems 80

B. Division Algorithms for Residue
Number Sy stems 84

C. Floating-Point Arithmetic 105

IV. SQUARE ROOTS 116

A. Square Root Calculations in
Digital Computers 116

B. A Square Root Algorithm for
Residue Number Systems 118

C. Floating-Point Operations in a
Residue Number System 139

V. COMPUTER SIMULATION 143

A. Simulation Programs 143

B. Simulation Results 148

CONCLUSION ... 152

BIBLIOGRAPI-IY ... 156

iv

LIST OF TABLES

Table
Page

I. Ordinary Mixed-Radix Notation 38

II. Two-Sided Mixed-Radix Notation 42

III. Mixed-Radix Conversion by Stored Table 47

IV. Application of Theorem 3.2:

Sample Division Problem 103

v. Application of Theorem 4.1:

Sample Square Root Calculation 137

VI. Division Simulation Program Results 145

VII. Square Root Simulation Program Results 147

V

LIST OF FIGURES

Figure Page

I. Multiplicative Overflow Detection -
Method I 67

II. Division Algorithm 92

III. Square Root Algorithm 122

vi

INTRODUCTION

A. Residue Number Systems. Residue number systems,

in which an integer x is represented by its residues

with respect to one or more mutually prime moduli

were known to the ancient Chinese. In

fact, the so-called "Chinese Remainder Theorem" was stated

in a restricted form by Sun-Tsu in the First Century A.D.

(See Dickson [3], pp. 57-64.) In modern terminology, the

Chinese Remainder Theorem can be stated in the following

form:

If m ,m , ... ,m
0 1 n

are mutually prime (positive) integers,

the congruences

X a.
l

(mod m .) , i = 0, 1 , ... , n,
l

(0.1)

have a unique simultaneous solution modulo M = m
0

m1 ... mn.

If M . = M/ m.
l l

and

such that

x.M. = 1
l l

X.
l

is the unique integer modulo

(mod m.) , i = 0, 1, ... , n,
l

m .
l

then x satisfies the congruences (0. 1) simultaneously

is of the form

1

where k is an integer.

The proof of this theorem can be found in most books on

elementary number theory. (For example, see Hardy and

Wright [10], pp. 94-95 , or Griffin [8] , pp. 79-80.)

If

ously ,

x satisfies the congruences (0 .1)

and y satisfies the congruences

y = b.
i

(mod m .) , i = 0 , 1 , ... , n ,
i

simultane-

simultaneously, then it follows from the above theorem

that

if and only if

z - c. - a +
i l -

and that

if and only if

w = d. =a .,b .
i l i

z

b.
i

w

- X ± y (mod M)

(mod m .), i = 0,1, ... , n,
i

xiy (mod M)

(mod m.) ,
i

i = 0,1, ... ,n.

B. Modular Arithmetic Computers. It was the above

property of multiplication in residue number systems

which first prompted Miroslav Valach , Professor in the

Institute of Mathematical Machines , Prague , Czechoslovakia,

2

I
I
I

3

to suggest a digital computer based on a residue number system.

(See Valach [28] .) In all digital computers then existing

(1955), multiplication was performed by a technique of

r epe a tea addition and "shifting" which took several times as

long as one addition. Valach and his colleague, Antonin

Svoboda, recognize d that, if a residue number system were used

in a "modular arithmetic" computer, multiplication could

be performed as fast as addition, so that the speed of

computation would be increased appreciably for most problems.

At a confe rence in Darmstadt in 1955, Howard Aiken

and Warren Semon, then Director and Assistant Directo~ respec

tively, of the Harvard Computation Laboratory, were introduced

to the concept of modular arithmetic computers by Svoboda.

Upon their return to the United States, Aiken and Semon began

their own invest igation of the application of residue number

systems to digital computers, and in 1956 they submitted a

report on their work to the Wright Air Develoµnent Center,
I

Wright-Patterson Air Force Base, Ohio. (See Reference [l],

a revised version of that report.) As a result, the United

States Air Force became sufficiently interested in modular

arithmetic computers to support considerable research into

their design and use. Among those funded by the Air Force

for such studies were: Aiken and Semon and their staff at

the Harvard Computation Laboratory (see References [4] and

[11]); Harvey Garner and his associates at the University

of Michigan (see References [SJ - [7], [13], and [18];

Lockheed Missiles and Space Company, Sunnyvale, California

(see References [2], [15], [17], and [27]); Scope, In-

corporated, Falls Church, Virginia (see Reference [19]);

and Westinghouse Electric Corporation, Baltimore, Maryl a nd

(see References [16], [20], and [32]) • It was at Westing-

house in 1962 that the author became interes ted in the

problems involved in adapting residue number systems for

use in modular arithmetic computers and it was there that

he began the investigation which eventually let to this

thesis.

c. Problems in Modular Arithmetic Computer Design.

The problems encountered by the investigators of modular

arithmetic computers are of two types: first, those con-

cerned with the "logical" organization of such computers

a nd the development of the attendant circuitry; and second ,

those concerned with the theoretical difficulties in perform-

ing numerical analysis in residue number systems . The prob-

lems of the first type are the usual probl ems associated with

4

5

the design of any new computer, except that using residue

number systems promises several interesting possibilities

for more economical logical design than that in conventiona l

computers. (An exploration of some of these possibilities

will be the subject of a thesis by Robert L. Beadles which

will be submitted to the University of Pittsburgh in partial

fulfillment of the requirements for the degree of Master of

Science in Electrical Engineering.) The theoretical problems,

on the other hand, are more acute in that, if they are not

solved, modular arithmetic computers will be unable to per

form several very fundamental operations and therefore will

be incapable of handling a large class of computational

problems.

The purpose of this thesis is to present solutions to

some of these theoretical problems in modular arithmetic

computer design. In particular, this thesis treats the

problems of how to compare the magnitudes of two numbers,

how to detect overflow resulting from addition and multi-

plication, how to divide, and how to take square roots i n

residue number systems. In Chapters I - IV below, each of

these problems is discussed in turn. Solutions are give n,

along with appropriate proofs, and examples are includ e d

dAlso, specific mention should be made of those men whose

ideas directly influenced the form of the results contained

in th.is thesis. First, credit for suggesting various facets

of the magn itude comparison methods described in Chapter I

should be given to Garner [7], H. S. Shapiro [22), and

Valach [30] . By using their ideas, it remained only for

the author to combine their methods into a single, systematic

approach and to provide the necessary proofs. Next,

recognition should be given to the author's former super

visor at Westinghouse Electric Corporation, Mr . George

Shapiro, who suggested using a tabl e of powers of two

(stored within the computer) in performing multipl icative

overflow detection, division, and square root extraction

and who also suggested that quotients and square roots in

residue number systems be approximated by the quotient

of an integer and an integral power of two. By following

these suggestions , it was not too difficult for the author

to work out the overflow detection, division, and square

root procedures given in Chapters II, III, and IV, respec -

tively. Last, credit is due to the author's thesis

advisor , Dr. We:r:n&n ,Rheinboldt , for encouraging the author

to investigate the practical behavior of the division and

square root algorithms by programming the University of

7

Maryland 's IBM 7090 computer to simulate modular arithmetic

computers in performing divisions and square root extractions

by these methods. By using these simulation programs,

several thousand "sample" divis ions and square root ex

tractions were completed in a matte r of minutes.

Finally , it should be added that, while the algorithms

given i n this thesis are rather long an d complicated , they

are, to the bes t of the author 's knowledge, the most effi

cient solutions yet obtained for the problems consid ered .

That is, Judging from estimates of the number of operations

required, these algori thms seem to use less computer time

for their execution than the other existing solutions and

- what is more important when one is designing a computer_

they appear to re uire no special circuitry for their

implementa .ion, since they rely h eavily on "standard"

computer operat ions such as addit ion a nd "bi t testing. "

Thus, it. is the author ' s hope that thes e meth ods for

comparing magnitude, detecting overflow, dividing, ex -•

tracting square roots will compris e a contribution to the

adaptation of residue number systems for u se in d igital

computers and that this thesis will help remove a barrier

in making modular arithmetic computers usable for general

types of computation.

8

CHAPTER I

MAGNITUDE COMPARISON

A. Ordering in Residue Number Systems. Since most

computer applications involve some use of the order proper-

ties of the real numbers, magnitude comparison is an essential

operation in all digital computers. In conventional digital

computers, magnitude comparison is performed simply by a

sequence of "bit tests" which is the logical equivalent of

the usual method of comparing two integers. (See Theorem 1.2

below.) In modular arithmetic computers, however, magnitude

comparison must be performed in a residue number system

where such operations are not so simple. To show that this

is the case, let us consider several examples.

Given a residue number system with moduli m
3

= 7,

m = 3 t

l
and m

0
= 2, suppose we wish to find the

smallest of the three "numbers"

{3, 4, 2, 1} (1, 3, o, o} ; [s, 3, 1, 1 }

in this system. (Here the "number"

{3, 4, 2, 1~

9

represents the integer x such that

x - 3 (mod 7) ;

x - 2 (mod 3) ;

x - 4 (mod 5) ;

x _ l (mod 2) .

From the Chinese Remainder Theorem we know there is exactly

one solution, namely

X = 59,

which satisfies these congruences and the condition

Hence, we write

{3, 4, 2, 1} ~ 59.

Since each of the residue s in the number

(1, 3, o, o}

is less than or equal to the corresponding residues in

the other t wo numbers , we might expect that

{1, 3, o, o}

is the smallest o f the three. Our expectations are wrong,

however, since

{1, 3 I 0 , o} "V 78 "---

is smaller than

{s, 3 I l, 1} ~ 103,

but not smaller than

{ 3 I 4, 2, 1} "-' 59. -,_.,

10

Next, we might try ordering these three numbers "lex

icographically;" that is, we might order the numbers by

ordering their "first" residues (those with respect to m
3

),

then their "second" residues (those with respect to m
2

),

and so forth. But this ordering would give the result

{1, 3, o, o} < {3, 4, 2, 1} < (5, 3, 1, 1}

or equivalently,

78 < 59 < 103,

which is obviously wrong. Similarly, "reverse lexico

graphic" ordering, in which the "last" residues (those

with respect to m
0

) are ordered first, would give

{1, 3, o, o] < {5, 3, 1, 1} < (3, 4, 2, 1}

or

78 < 103 < 59.

More counter-examples can be found to show that other

ordering schemes on the residues are equally unsuccessful.

To examine another aspect of this problem, let us

consider the numbers

{2, 3, l, o} {4, o, o, o} {3, 4, 2, 1}

in the same residue number system as before. Upon observ-

i ng that each of the residues in the first number are ex

actly one less than the corresponding res i dues in the

11

last, we might conclude (correctly) that

{ 2, 3, 1, o} ~ 58

represents the "next smaller" integer than

{ 3 t 4 t 2 t 1} ~ 5 9 o

(By definition, all numbers in a residue number system

represent integers.)

residues that

But it is not so obvious from their

{ 4 / 0 t O t O} ~ 60

is the "next numbe r greater" than

{3, 4, 2, 11 ~ 5 9

in this system. Furthermore, this problem b ecome s even

more difficult whe n we consider the "second number greater"

and so forth.

In ·our th i r d a nd final example, suppose we provi d e

for negative numbers in the above r es i due number system

by decreeing t hat all integers x suc h that

be regarded as representing the negat ive integers -104

through -1. The rule of correspond e nce is

X<-~X-M

(That is, we restrict our residue number system to the M

consecutive integers -104 through 105 instead of the

12

integers 0 through 209 used in the two preceding ex-

amples.) Suppose we now wish to determine the signs of the

numbers

{4, 1, 1, 1} and {4, 3, 2, 1}

in this system; that is, we wish to determine whether these

numbers are greater or less than

{o, o, o, 1l 105

in the "old" residue number system. It is not at all clear

from the residues in these numbers that

{4, 1, 1, 11 ~ 151 ~ -59

is negative, while

{4, 3, 2, 1) ~ 53

is positive. Hence, it seems that the residues in a num-

ber cannot even be trusted to tell us whether or not that

number is positive. In fact, about all they can be

trusted to tell us is whether or not the number is zero
'

since a number is zero if and only if all its residues are

zero.

As these examples clearly show, there is no obvious

ordering scheme for the residues in these numbers which

agrees with the "natural" ordering of the integers repre

sented or which gives any significant information about

13

14

the signs of those integers. Therefore, our first probl em

is to devise some other method for using the residues in two

numbers in a residue number system to determine wh ich number

represents the larger or smaller integer. The solution we

shall give is based upon a generalization of the ''positional

notation" commonly used for the integers themselves.

B. Mixed-Radix Notation. As is well known in ma hema-

tics, we may represent any non-negat ive integer x in the

form

n
x == a r

n
n-1

+ a r
n-1

by using any integer r > l

{ 1 .1)

as a " radix ." In referring

to this representation for x, we usually indic te the radix

by using an appropriate adjective, such as ''decimal" or

"octal", and me,1 tion only the coefficients a.
l

in a given

order, say, a , 1 . .. a 1a 0 . Moreover, if we require those
n -· .

coefficients to be integers satisfy ing

a .
. 1

< r, i = 0, l, . . . , n,

then the above representation .is unique. (That is, there

is exactly one such representation for every non-negative

integer x.) Clearly, this repres entation may be extend

to negative integers by prefixing the entire representation

with a minus sign.

I f y is another non-negative integer satisfying

n n - 1
y = bnr + bn_1r + . . . + b

1
r + b

0
, (l. 2)

the coeff i cients b , again being integers such that
l

0~b . <r,
l

i = 0, 1, ... , n ,

then we ma y compare the magnitudes of x and y by c om-

paring their coefficients a. and b.,
l l

respectively , i n

"lexicograph i c" order. That is, we first compare a and
n

b .
I

n
if a = b

n n'

forth unti l e ither

we compare

we reach ao

a
n-1

= b

and

0
or we

b l; n-

find

such t hat a. =/ b . . In the former case, X and
J J

obviously

e qua l , and

a . =/b, ,
l l

equal. In the latter case,

i f j is the largest index

t hen x > y if and only if

X and y

i such

a . > b . .
J J

and so

an index

y are

a re un -

that

j

Let u s n ow f ormally summarize these properties of this

notation - commonly called "positional notation" - by

stat i ng two theo rems:

'rheorem 1.1 (Uniqueness of Repr esenta t i on) - I f the

coefficients a. in expression
l

satisfying

(l. l) are integer s

O ~a.< r,
l

i = 0, 1, ... , n,

~ they are uniquely determined !2y_ x.

* * *

15

16

It follows from this theorem that a. t- b
l i for some

index a a 1· .. a a
n n- 1 0 i implies that x I- y, since otherwise

and b b b b would be distinct representations of the
· n n-1 · · · l 0

same integer. Hence, x I- y if and only if a . I- b. for
l l

at l east one index i.

* * *

Theorem 1.2 (Magnitude Comparison) - If x _and y

~ u n equal non-negative integers satisfying (l. l) .fill9.

(1. 2) respectively, if all

negative integers less than

index i such that

a. > b .•
J] f

a. I- b. ,
l l

a, IS
l

and b. 's
l

r, and if j

then x > y

* * *

are non-• ---
is the largest,

if and only if

The proofs of these theorems can be obtained qu i te

easily with the aid of the following lemma:

Lemma 1.1 - If the coefficients ai in expressiQQ

(1.1) are .integers satisfying

0 ~a.< r,
l

i = 0, 1 , . .. , n.

j j-1 · j-2
r > a . r + a . 2 r + . . . + a

1
r + a

J-1 J- 0

holds for. (l. l) whenever j is any integer such that.

0 < J ~ n+l .

* * *

Since both these theorems and this lemma are widely

known to be true and since their proofs can be found in

numerous books on real analysis, we state them here witho u t

proof. However, we shall soon give these proofs for a more

general notation when we state and prove Lemma 1.2 and

Theorems 1.3 and 1.4.

Let us now broaden somewhat the scope of these theorems

by extending them to apply to a more general notation. In

particular, let us replace the radix r in (1.1) with

17

several radices r I r l' ... , ro, n n-
all of which are integers

greater than one, and let us rewrite (1.1) in the form

X =

where the coefficients a. are integers such that
l

0 ~a . < r., i = 0, 1, ... , n.
l l

(l. 3)

The representation of the integer x by the coefficients

a. obtained in this manner is called
l

"mixed-radix notation"

in contrast with the "fixed-radix notation " associated with

(l. l) above. This notation has essentially the same pro -

fixed-radix notation. Indeed, Lemma 1.1 and Theorems 1 . 1

and 1.2 are but restricted versions - for the special case

in which ali the r. 's
1 are equal tor - of t6e following

lernma and theorems.

* * *

Lemma 1.2 - If the coefficients

(1.3) are intege rs satisfying

a.
1

in expression

then -
O ~a. <r .,

1 1
i = 0, 1, ... , n,

r _. 1
r. 2

•.. r 0
> a .

1
r.

2
r. -:, ... r

0
J- J- J- J- J-~ + •..

+ alrO + ao

hold~ for (1.3) whenever j is any integer~ that

o < j ~ n+l .

Proof: If O < j ~ n+l, it fol lows f rom the condi

that
tions on the coefficients a .

l

. r >
Lr . 2··· 0

I - - J-

=

This is the desired result.

r .
1
r. 2

.. . r - l
J- J- 0

(r. 1 -l)r. 2r. 3
•.. r + ...

J- J- J- G

+ (r. -l)r + (r
0

-1)
.l 0

a . 1 r . 2 r .
3
•.. r + ...

J- J - J - 0

* * *

Theorem 1.3 (Uniqueness of Mixed-Radix Representation}

- Under the conditions given in Lemma 1.2, ~ coefficients

ai in expression (1.3) ~ uniquely determined E.Y. x.

18

Proof: Assume that both (1. 3) and

X = c r
1

r 2 ... r 0
+ c

1
r

2
r

3
. . . r

0
+ ...

n n- n- n- n- n-

are expressions for x such that the same r a d ices

used in both expressions and such that the a , IS
l

r

a nd

19

l

C 's
i

are non-negative integers less than r.
l

for i= 0, 1, . . . , n .

Assume also that a./ c. for some index i and l e t J be
l l

the largest such index. Then,

(c . - a .) r .
1

r .
2
... r

0
+ (c .

1
- a .

1
) r .

2
r .

3
. . . r 0 J J J- J- J- J- J- J-

+ ... + (cl - al)rO + (co - aO)

= X - X

= 0.

Let us now assume without loss of generali ty t h at

a . < C . •
J J

Then, it follows from the above equation tha t

(c . - a .) r.
1

r .
2
•.. r

0 J J J- J-

= (a . l - c . 1) r . 2r . 3 ... ro
J- J- . J - J -

+ + (al - cl)ro + (ao - c o)

a . lr . 2r . 3 ... ro +
J- J- J-

since the a. 's and c. 's are non-negative integers .
l l

But this contradicts Lemma 1.2. Therefore, a. = c. must
l l

hold for i = o, l, ... , n, which is the desire d resul t .

* * *

Theorem 1 . 4 (Magnitude Comparison in Mi~ed-Radix

Notation) - Let x anQ y be dist inct non-negative

integers ~~ch ~htl x satisfies (1 . 3) and y satisfies

y = b r
1

r
2

. .. r
0

+ b 1 r 2 r 3 . . . r 0 +
n n- n- n- n- n-

a .' s
l

r ' s are the §.ill!!§. in
i

(1. 3) and

(1. 4)

(1 . 4)

b . ' s
l.

are non - negative integers le§.§_ than

r f i _Q£ i-= 0 , 1 , . .. , n o If j i s the largest index i

~uch that --- --- a . / b . ,
l .l

if ang_ .Q!!lY. if a . > b . .
J J

Proof : In the light of Theorem 1.3 , it is obvious

from the assumpt i on that x :/, Y that j ex i sts and that

it will be suff i c i ent to show that a . < b .
J J

i mpl ies

x < y and a . > b
J J

.implies x > y.

If we assume that then it follows from

Lemma 1.2 that

(b . -· a .) r . 1 r . 2 . . . r 0 ~ r J. 1 r J. 2 ... r 0
J J J-· J- . . - - ·

> aj - lrJ-2rj_3· · ·ro + ...

+ alrO + ao

20

~ (a . 1
J-

-b .)r . r
J-1 J-2 j-3 " · .ro

+ + (al - bl)ro

+ (ao - bo) '

s i nce the a . ' s and b . ' s are non-negat i ve i ntegers .
l. 1

Therefore,

y - X =

(b . - a .) r . 1 r . 2 . . . r O + (b . 1
- a .

1
) r .

2
r r

J J J- J- J- J - J - J -3 0

+ + (bl - al)rO + (bO - aO)

> 0,

which is equivalent to x < y.

Similarly, if a . > b.,
J J

we need only interchange the

a. 's and b. 's in the above expression to obtain x _ y

i i

Hence, the proof is complete .

* * *

As in the fixed-radix notation associa ted with (1 . 1),

negative integers may be represented in mi xed-rad ix notation

by placing a minus sign before the entire representat ion .

However, another representation, .in which the minus s i gn .i s

replaced by the use of both positive a nd negative coe ffi

cients, suggests .itself. In particular , l e t u s r e qu ire as

before that the rad.ices

and that the coefficients

r . be in tegers grea t er than one
i

a.
i

But now let the a. 's satisfy
i

if r . .is an odd .integer, and
i

in (l. 3)

- r./2 < a. ~ r./2,
1. i i

be i ntegers .

(J • 5)

(l. 5b)

21

> 0.

if r . is an even integer.
l

(There is no reason why we

couldn 't have a . satisfy
l

instead of (1. Sb)

- r ./2 .,,., a < /2
~ . r .

l l l

above , when r . is even.
l

If we did

this , a few " <" and "<" signs would have to be inter-

changed in Lemma 1.3 and Theorems 1.5 and 1.6 below , but

the lemma and theorems themselves would remain essentially

intact . There i s , however , a slight advantage in our using

the restriction (l.Sb) , but we shall postpone our ex-

planation of it until we have proved Lemma 1. 3 below.)

With these new conditions on the coefficients a . , the
i

notation result.inq from (1. 3) is called "two-sided

mixed-radix notation. "

In order that this new notat i on retain the desirable

uniqueness and ordering properties of "ordinary" mixed

radix notation set forth above .in Theorems 1.3 and 1.4,

it i s necessary to require that at !!!,2St _2!}_e of the radices

r . be even.
i

(Since it will soon become necessary for

those radices to be mutually pr i me , the restriction of

at most one even radix i s a natural one and certainly

retains sufficient generality for our purposes.)

Furthermore, to .insure that the numbers representable in

22

23

two-sided mixed-radix notation are distributed "symrnet:r icall i,,"

about zero, it is also necessary to stipulate that, if uny

of the radices is even, it be designated

We shall now show that integers represented in this two

sided mixed-radix notation may be compared exactly as in

their II ordinary II positional notation; i.e . , by comparing

their "coefficients" in lexicographic order.

* * *

Lemma 1.3 - For any integer j such that

0 < j ~ n+l,

the following inequalities hold for (1. 3) / provided that,

and

• • • I

if

a, IS
l

are integers satisfying the conditions (1.5a)

(1.Sb): if r
0

is an even integer (and r
1

, r
2

,

r
n

are odd),

-(r . 1r. 2 ...
 r

0
) / 2 < a . 1 r . 2r. 3 ...

 r
0

+ ...
J- J- J- J- J-

(r .
1

r r
0

) /2 ;
J- J -

is an odd integer (as are ---

a· lr · 2r · 3 · · · ro / + J- J- J-

. . . + < (r . lr . 2··· ·o) /2.
J- J-

Proof: To avoid tedious repetition, we shall prove

this lemma and the two theorems fol l owing it on l y for I l H~

C

..
,I .. . ,

case where is even. For the other case, where

is odd, the proofs are quite similar.

From the conditions (1.5) on the coefficients

it follows that

-(r .
1

r .
2

. .. r 0)/2
J- J-

= [(r .
1

-1) r . 2r . 3 . . . r 0 + ...
J - J- J-

. . . + (r
1

-l)r0
+r0];2

< a . lr . 2r . 3 · · ·ro
+

J- J- J-

< [(r j-1
- l)r . 2r . 3· .. ro

J- J-

=

... + (rl

(r .
1

r .
2
... r O) / 2 ,

J- J-

for any integer j such that

-l)r +
0

0 < j ~ n+l.

This i s the desired result.

* * *

If we required that

+ alrO

+

ro] /2

+ ao

a . ,
l

when ro
i s an even integer, then the conclusion of the

preceding lemma would be that

-(r .
1

r .
2
... r 0)/2

J- J-

~a . lr . 2r . 3 . .. ro + ...
J- J- J-

< (r .
1

r .
2
... r 0)/2

J- J-

24

when ro is even. If this were the case, if j == n+l ,

and if x were the integer

-(r.
1
r.

2
... r

0
)/2,

J- J-

then the radices rn, rn-l' ... , r 0
would be (barely)

sufficient to determine the two-sided mixed-radix repre

sentation of x via (1.3), but they would not be suffi

cient to determine the same representation for / x /.

(That is, an additional radix r
n+l would be needed t o

determine the two-sided mixed-radix representation fo r

However, if we assume that the c ondit i ons (1. 5)

hold, then Lemma 1.3 assures us that whenever the rad i ce s

rn, rn-l' ... , r
0

are sufficient to determine the two -

Sided mixed-radix representation of an inte g er x, t h ey

are also sufficient to determine the same representation

of / x / (but not conversely).

a 0
satisfy

when is even.

* * *

This is why we prefer tha t

Theorem 1.5 (Uniqueness of Two-S ided Mixed-Rad ix

Notation) - Under the conditions (1.5), the t wo -

£ided mixed-radix (integer) coefficients

~~ uniquely determined !?.Y, x.

a .
]

·-
in (1. 3 }

25

26

Proof : Assume that x and its two-sided mixed-radix

coeffic ients ai satisfy (1.3) and (1.5), respectively • .

Assume also t h at x also satisfies

X c r l r 2 . . . ro
n n- n-

+ c
1

r 2
r ... r +

n- n- n-3 O ···

where the same radices r . are used in both the above
]_

e x pression and (1 . 3),

ri's odd, and where the

r
0

being even and all other

c. ' s are integers such that
]_

and

< r ./2,
]_

i = l, 2, •.• , n ,

It then f ollows immediately from these conditions on the

a . ' s and c . ' s that
]_]_

r. -1,
]_

i = 0, 1,. , ., n .

Now assume fur ther that a . I c .
]_]_

for some index

and let j b e the largest such index ~ Then, as in the

proof of Theorem 1 . 3, we have

]_

(c . - a.)r. lr . 2 · ··ro +
J J- J-

(c .
1

- a .
1

) r .
2

r . . . ,, r
J- J - J- J-3 0

J

+ + (cl - al)ro + (co - ao)

= X - X

= o.

►

Assuming (without loss of generality) that a

and combining this with the above results gives

r. lr. 2···ro
J- J-

~ (c. - a.)r. 1
r. 2 ••• r 0

J J J- J-

=

=

<

(a . 1 - c. l)r. 2r. 3···ro +
J- J- J- J-

··· + (al - cl)rO + (aO - co)

(r .
1

-l)r . 2
r. 3 •.. r 0 +

J- J- J-

••• + (r 1
- l)r 0 + (r 0-l}

r. r . 2
... r 0 - 1

J-1 J-

r. lr . 2···ro'
J- J-

. < C.
J J

which is clearly a contradiction. Hence,
a. = c. mu t

1. 1.

hold for i = o, 1, ... , n, which complete s the proof.

* * *

Theorem 1.6 (Magnitude Comparison in Two-Sided Mixed-

Radix Notation) _ g!. x ~ y be dist inct integers

satisfying

same radices

(1.3)

r.
1.

and (1.4) respectively, where the

-
-

are used in both expressions. ----
coefficients a . in (1.3) satisfy ~ conditions (l. ~)

1.

~n1111£ coefficients

.£_onditions:

,2nd

b. _i!l · (1.4)
1.

satisfy the similar

r ./2,
l.

i=l, 2 , ••• , n

2 7

►

i

is ~ ~ integer;

is 9Jl odd integer.

such that a.
l

b ..
l

i=O, 1, ••. , n,

l&1. j ~~largest index

X > y if and onl_y if

a. > b ..
J J

Proof:
As for Theorem 1.4, the existence of j is

guaranteed by the assumption that x I y; and as in the

proof of Theorem ;J.. .4, it is sufficient here :,to show that

implies x < y and that
a. > b.

J J
implies x > y.

As in the proof of Theorem 1.5, it follows from the

conditions on the a, IS
l

and b. 's
1 1

that

r . -1, i = 0, ,1, .•• , ~-

1

Assuming now that a. < b . , we have
J J

(b J. - a .) r . 1. r . 2 ••• r 0
J J - . J-

~ r. lr. 2 •.• ro
J- J-

> r .
1

r .
2

• •• r O - 1
J- J- +

(rj-1 -l)rj-2rj_3···ro

.. . t (rl -l)ro + (ro -1)

~ (aj-1 - bj-l) rj-2rj_3 · · · ro

... + (al - bl)ro + (ao

+ .••

28

Bence,

y - X =

(b . - a .) r . 1 r . 2 . . . r O
+ (b . 1

- a .
1

) r . r :r·

J J J- J- J- J- J-2 · _3· · ·

+ + (bl - al)ro + (bo - ao)

> 0,

Which is equivalent to x < y.

Similarly, if a. > b.,
J J

interchanging the a 's
i

b 's in the above expressions gives x - y> 0. This

i

completes the proof.

* * *

and

At this point, let us pause to reflect upon what we

have established in these theorems, We have shown (in

Theorems 1.4 and 1.6) that, if we can determine the ("or

dinary" or two-sided) mixed-radix coefficients of integers

from their residues in a residue number system, then we

can compare the magnitudes of those integers by comparing

their coefficents in lexicographic order - that is , by

"bit testing" in a computer. Furthermore, we have shown

in Lemma 1.3 and Theorem 1.5 tha t, if we use the two-

Sided mixed-radix coefficients of an integer x, we can

determine the sign of x from the sign of its "leading "

(or highest order) non-zero coefficient, since it f ollows

29

immediately from that lemma that the signs of x and its

leading non-zero coefficient are identical. Therefore, by

introducing the above mixed-radix notations and by showing

that integers may be uniquely represented and readily com

pared in these notations, we have reduced - or at least,

transformed - the problem of magnitude comparison and sign

detection i n residue number systems to one of converting

integers from their residue representation to their mixed

radix representation. We now turn our attention to the

"new" probl em of performing that conversion .

c. Conversion to Mixed-Radix Notation. In order

to obta in some information about the relationship between

the mixed-radix coefficients for an integer x and the

residues of x, let us examine (1.3) more closely.

Since all of the terms except the last on the right side

of that equation contain r 0
as a factor, it is immedi

ately obvious that

X = a
- 0

Therefore , x _ a
0

is exactly divisible by r
0

and

is an integer.

(1 . 3) gives

x
1

= (x - a 0
)/r0

Combining this definition of x 1
with

30

a r 1 r 2 ...
 r 1 + a 1

r 2
r 3

... r 1
+ ...

n n- n- n- n- n-

. . . + a2r 1 + al'

from which it is again obvious that

By continuing in this manner, we may define the integers

x. = (x. 1
- a. 1

)/r. 1
,

l l- l- l-
i=l, 2, ... , n,

where XO= x.

follows that X.
l

From this definition and from (1. 3)

also satisfies

x. = a r r ... r. + a 1 r 2r 3
••• r. + ...

i n n-1 n-2 1 n- n- n- 1

... + a. 1
r. + a.,

1+ l l

for i = 0,1, ... , n, so that 12.Y_ definition

(1. 6)

it

(mod r.),
l

i = 0, 1 , . . . , n. (1. 7)

If we now assume that the radices rl , ... ' r ' n

are the mutually prime moduli for a residue number system,

then we may use the congruences (1. 7) to deduce the

mixed-radix coefficients a.
1

of an i n teger x from the

residue representations of x (= x 0) , xl ' ·· ·, and x in
n

that number system. That is, from the residues d
00

, a
01

,

• • • I d
On

of X

X = X =:
0

such that

(mod r .),
1

We shalL find -th~ coefficients a. by calculating the
1

31

residues of xl' x2,···, and X from the doi's. To do
n

this, we note first that

ao - doo (mod r O) t

since X is congruent to both ao and doo modulo r
0

and since "congruence" is an equivalence relation.

If we now assume slightly more than this, i.e., that

aO == dOO' then it follows immediately from (1. 6) and the

elementary properties of congruences that

(mod r.)
l

(1.8)

where i == O, 1 , ... , n. But since the radices r . are
l

assumed to be relatively prime, we can eliminate r
0

from (1.8) by defining dli to be the uniquely deter-

mined integer modulo r.
l

such that

(mod r .) ,
l

l = 1, 2, ... , n.

It then follows from this definition , the congruences

(1.8), and the elementary properties of congruences that

(mod r.) ,
l

i = 1 , 2 , ... , n.

In particular, we have

since i s congruent to both a 1
and dll modulo

32

Again, if we assume the slightly stronger condition

that

al= all'

we may repeat the above line of reasoning to obtain

r X - d a
1 2 = li - 11

(mod r .) , i = l , 2 , •.. , n,
l

as in (1.8) . Furthermore, if we define d 2
i to be the

Uniquely defined integer modulo r.
l

such that

(mod r .) , i = l , 2 , ••• , n,
l

it follows as before that

X = d
2 - 2i

ana that

(mod r .) , i = 2, 3, ... , n,
l

By again assuming that a 2
= d 22 , a 3 = d

33
, etc.

We can repeat this same procedure again and again to ob-

tain
d ..
Jl

to be the

r.
l

such that
Unique integer modulo

X - X - d
0 - Oi

(mod r.) ,
l

l = 0 , 1, . . . , n,

ana

r d -
j-1 ji = d. 1 .

J- I l
d . 1 . 1

J- I J-
· (mod r.) ,

l
(1. 9)

for i = j ~ j+.l , n • ,and j = 1, 2, ... , n. If we assume

for some j such that O < j ~ n that

X ,
J-1 a . 1 .

J- ,l
(mod r.),

l

i = j-1, j, ... , n ,

33

and that

it follows i mmediately from (1. 6)' (1.9), and the rela-

tive primeness of the moduli

and

r x = x - a
j-1 j j-1 j-1

X' = d"
J J l

(mod r .) ,
l

=

l

that

d. 1 .
J- ' l

r.
1

d . .
J- Jl

d . 1 . 1 J- I J-

(mod r .)
l

j, j+ 1 , ... , n.

Thus , by using induction on j and applying

obtain the proof of

(1. 7) , we

Theorem 1.7 (Residue t o Mixed-Radix Conversion) - If

d . . modulo r. satisfying
Jl l

the residues (1. 9)

chosen in such a way that

d .. = a.
ll l

implies that

d . . = a . ,
l]_]_

(mod r.)
]_

i = 0, 1, ... , n,

are

then the integers d 00 , d
11

, ... , dnn are precisely the

mixed-radix coefficients

a ppearing in (1.3).

Obviously , the key point

congruence of ,d. . . and a.
ii]_

stronger condition that d ..
]_]_

a I
n respectively ,

in this theorem lS that the

(:nod r.)
]_

must imply the

= a• I
l

for i = 0, 1 , • • • I n.

34

.
I

To guarantee that t his is the case, we need only requ i r e

that the residues d .. be subject to the same cond i t i ons

Jl

as the coefficients a . .
1

This gives

Id.. - a./ < r. ,
11 1 1

35

Which when combined with the fact that r .
1

divides (d .. - a .)
11 1.

- Which is equivalent to

d . .
11.

a.
1

(mod r.) -
1

does indeed yield the result that d . . = a . •
11 1

Moreover, i t

is clear from this that whether the mixed-radix coeffic i e nt s

referred to in Theorem 1.7 are the ordinary or two-sid e d

Variety d e pends entirely upon the restrictions place d o n

the residues d . .. In particular, if we require tha t the

Jl

integers a . .
Jl

(which are, by definition , r e sidues modul o

ri) satisfy

0~ d .. < r.,
Jl 1

i = 0, 1, ... , n ,

then the integer s a
00

, a
11

, • • • I
d

nn
1.n Theorem 1.7 are

t h e ordinary mixed-radix coefficie n ts for x.

othe r hand, we require that the d .. 'ssa tis fy
Jl

i = 0,1, . .. , n

if r 1· s
0 even, and

If, on the

(l . l0a)

(l.lOb)

i = 0, 1, ... , n (l. lOc)

When is odd, then the integers are

the two-sided mixed-radix coefficients for x. Thus, by

equating the mur.ually prime moduli for a residue number sys

tem with the radices r. of mixed notation and by subject-

1

ing the residues in that system to the same conditions as

those on the mixed-radix coefficients, we can obtain - via

equations (1.6), (1.7), and (1.9) above - either the

ordinary or the two-sided mixed-radix coefficients of an

integer from its residues.

It is interesting to note that, if all the residues

in the residue number system are made to satisfy the con

ditions (1.10) which give the two-sided mixed-radix co

efficients via Theo rem 1.7, the modular arithmetic com

PUter using these residues requires only about half as

much circuitry as the one using the non-negative residues

Which give the ordinary mixed-radix coefficients. The

reason for this is that the former computer need only

Compute with the integers o thru M/2 plus a "sign bit"

Whereas the latter computer must use all of the integers

0 thru M-1. (Mis the product of the moduli.)

36

To illustrate the conversion algorithm of Theorem 1 • 7

for ordinary mixed-radix notation, let us reconsider the

first example given at the beginning of this chapter.

(See pp. 9-11.) Since the even modulus 2 is used, we

must set r
0

= 2; the other moduli may be indexed arbitrar

ily, say,

and = 7.

Using the residues given previously for

X = 59, y = 78, and z = 103,

We obtain the ordinary mixed-radix coefficients for x ,

Y, and z from their respective sets of residues

Which are given in Table I.

a . .
Jl

The first row in each set of residues J_n Table I con

tains the residues a
00

, a 01
, a02 , d 03 of the correspond-

ing integer r Z modulo
x, y, 0

ly. The second row of each set is c alculated from the

first in accordance with equation (1. 9) and contains the

integers
all' dl2' dl3

modulo rl, r2, r3 respective-

ly, such that

a - a
Oi 00

(mod r .) ,
l

i = l, 2, 3 .

(For instance, for x = 59, the second row in Table r

contains

37

...
r:

Table I - Ordinary Mixed-Rad i x No t at ion

~
0 1 2 3

...

0 1 2 4 3

1 - 2 4 1

~
X = 59 ::i .

2 - - 4 2 ~ ,... , ..
- 1 •

3 - -
,...

~
0 1 2 3

,.,
~ .. ,, ..
d

0 0 0 3 l
, ...

1 - 0 4 4 y = 78

2 - - 3 6

- 2
3 - -

~
0 l 2 3

0 1 1 3 5

1 - 0 1 2 z = 103

2 - - 2 3

- 3
3 - -

38

dll = 2, dl2 = 4, and dl3 = 1,

Which satisfy the congruences

2·dll = 2 l l (mod 3)

2·dl2 - 4 l - 3 (mod 5)

2·dl3 - 3 l = 2 (mod 7) I

respectively.) Similarly, the third row of each set is

calculated from the second and the fourth row is calcu-

lated from the third, again by using equation (1.9).

From the "diagonal" entries for x in Table I, we

obtain the ordinary mixed-radix coefficients for x:

X = a3r2rlr0 + a2rlr0 + alrO + ao

d33r2rlr0 + d22rlr0 + dllrO + dOO

= 1(5·3·2) + 4(3·2) + 2(2) + l
=

= 59

or, by us ing the more concise notation

We have

x "'-' [1, 4, 2, l] .

Similarly, for y and z we have

Y = 2(5·3·2) + 3(3·2) + 0(2) + 0

= 78 /\.J [2, 3, 0, OJ

39

" .

' :, .
' ,;

'
F. ,, .

z == 3(5•3·2) + 2(3·2) + 0(2) + 1

== 103 rv [3 , 2, 0, l].

Now we can compare x, y, and z by applying Theorem

1 •4 : the "leading " coefficients for x, y, and z are all

unequal, so comparing x, y, and z reduces to comparing

their leading coefficients. Since

1 < 2 < 3,

we conclude that

[l, 4, 2, l] < [2, 3, 0, 0] < [3, 2, 0, lJ

or

X < y < Z.

Bence
I X = 59 ~ (3 , 4, 2, 1} is the smallest of the

three number s x, y, and z.

To illustrate the use of two-sid ed mixed-radix

notat·
·

ion, let us now consider the integers given in the

second
h' h t

example at the beginning oft is cap er. (See

PP.ll-12.) For

u == 58 ~ {2, 3, 1, o},

and w = 59 ::: [3,

V = 60 ~ {4, 0, 0, 0},

1}' 4, 2,

we must ' d th t th 11 t
adjust some of the resi ues so a ey a sa -

isf
y the conditions (l.10). This gives

40

u ~ [2, -2, 1, o}, V ~ [-3, 0, 0, 01,

and w ~ [3, -1, -1, it

The residues d .. for u, v, and w are given i n

Jl

Table II. The successive rows of residues for each of

v, and w are obtained exactly as for x, y, and z in

Table I except that the d .. 's
Jl

in Tabl e II satisfy the

conditions (1.10). Thus, we have

u = d33r2rlr0 + d22rlr0 + dllrO +

= 2(5·3·2) + 0(3-2) - 1 (2) + 0

= 58

or, in the more concise notation,

also
I

ana

u -"-' [2, 0, -1, OJ ;

V = 2 (5•3•2) + 0(3•2) + 0(2) + 0

= 6 0 ""' [2, 0, 0, OJ

w = 2(5•3-2) + 0(3·2) - 1(2) + 1

= 59"' [2, O, -1, lJ.

doo

Applying Theorem 1.6 to compare u, v, a nd w, we s ee

that the first three coefficients for u and w are the

same: 2, 0, -1. Hence, we compare u and w by

41

u,

Table II - Two-Sided Mixed-Radix Notation

::: 7
r'.3

~ -
0

1

2

3

0

0

-

-

-

0
~ . -

0 0

1 -

2 -

3 -

~~ 0

0 1

1 -

2 -

3 -

1 2 3

1 -2 2

-1 -1 1 u = 58

- 0 3

- - I 2

1 2 3

0 0 -3

0 0 2 V == 60

- 0 3

- 2 - ----
1 2 3

-1 -1 3

- 1 -1 1 w = 59

- 0 3

- 2 -

42

comparing their last coefficients,

tively, from which we conclude that

0 and 1 re , spec-

[2, 0, -1, OJ < [2, 0, - 1, l]

or

u < w.

Similarly, the first two coefficients of v a nd w a r e

the same, so we compare v and w by comparing their

th ird coefficients, O and -1, respectively. We get

[2, 0, 0, l] > [2, 0, -1, l]

or

V > W .

It might be noted from these examp l e s t hat a fair

amount of computation is needed to obta i n a ll the r esi-

dues d . . n e c es sary to convert an integer from res i due

Jl

notation to mixed-radix notation. Th i s computat i on can

b e Pe rformed most qu i ckly and e f f ic i ently i n a modular

a r·
d

lthmetic computer if a permanently store t able of

res i dues is used to "eliminate " t he modul i r 0
, r

1
, . . . ,

r
n - 1 in the c o ngruences

ive rows of r e sidues d ..
Jl

c o ns i sts of the integers

(1. 9) from wh i ch t h e succ e ss -

a re calculated. Such a tabl e

s . . such t hat
Jl

s .. == o,
J l

i == O, l, . . . , j ,

4 3

ana

r . s ..
J Jl

'Where

l (mod r .),
l

i -· j+l, j+2, •.. , n,

j = 0, 1, ... , n -• l.

The entries s . . in th is table are used to calculate the
J ·1

residues a . . from the congruence
Jl

d J. :i· = (d . l . - d . l . l) s . l . (mod r .) (l . 11)
J-· ,1 J- ,J- J- , :1 1.

'Which is equivalent to (1.9). (Note, however, th.at Lhis

table can be used for only one particular order i ng of the

moduli rol r11• •'I rn•
If the modul l are re-indexed, a

it is
diff erent table is required.

In practice , though,

very a oubtful whether more than one "indexing" would ever

be necessary.)
Since the calculations required in (1.11)

can be performed simultaneously for a fixed j and for

i =:: 0 , 1, ... , n i n a modu lar arithmetic computer, only

one subtraction an d one multiplication are needed to

calculate each row of residues d . . from the preceding
J 1.

on e. Hence, when the n+l moduli r 0 , r 1 , ... , rn are

Usea . in the computer,
the entire conversion process can

be accomplished with n subtract.ions and
n multi-

:Pl.icat·· ions.

44

To illustrate the use of such a stored table, let

us Use the table of residues s .. given in Table III to

Jl

convert to two-sided mixed-radix notation the numbers

p ~ {-3 I 1, 1, 1) and q ~ {-3, -2, -1, 1]

given in the third example at the beginning of this

chapter. (We are now using residues satisfying (1.10) .)

The resulting sets of residues d ..
Jl

for p and q are

given in Table III. The first rows in those sets are

s· imply the residues of p and q modulo r 0
, r 1

, r
2

, r
3

,

respectively, and the second, third, and fourth rows are

calculated from the first rows by using (1.11).

For q = 53 the calculation of the second row is

Performed as follows: the residue d 00
is subtracted

from each of the residues d
00

, d 01
, d 02 , d 03

in the

f" lrst row, the four subtractions being performed simul -

taneously and independently with respect to the four

r r r respectively .

O' l' r2, 3'

0 l - l
-

l = -1 l

2 - -2 l

3 _ -3 - l

(mod 2)

(mod 3)

(mod 5)

(mod 7) .

This gives

~ext, the residues obtained from these subtractions are

~Ultiplied by the entries s 00
, sol' so2' 5 03' in the

45

first row of the stored table, respectively, the multi

plications being performed simultaneously modulo

r2' r 3 , respectively. This gives the residues a
10

, a
11

,

d1 2 1 d 13
in the second row:

dlO = 0 - 0 (O) (mod 2)

dll = -1 - 1(-1) (mod 3)

d = 1
12

- 2(-2) (mod 5)

dl3 = - 2 - 3 (-3) (mod 7) •

Similarly, the third row of residues for q is calcu

lated from the second row by first subtracting a
11

fr om

each of the elemen ts a
10

, a
11

, a12
, a13

in the second

row and then multiplying the results by the respective

elements slO' sll ' sl2 ' sl3
in the second row of the

stored table. Finally, the last row of residues for q

is calculated from the third row by subtracting a
22

from each of ~ a a a and multiplying the

u20' 21' 22' 23

results by the elements s20' s21' s22' s23' respectively,

in the last row of the stored table of s . . 's.
Jl

The

calculation of the residues

formed in the same manner.

d ..
Jl

for p = -59 is per-

Note that, whereas previously in (1. 9) the residues

d were undefined
ji

f er l < j, we now have a .. = 0
Jl

when i < j I which results from setting s . . = 0 for
Jl

46

.'.table III - Mixed-Radix Conversion by Stored Table

~ 0 1 2 3

0 0 -1 -2 -3
~

1 0 0 2 -2 s ..
Jl

2 0 0 0 3
,_

-

-~
0 1 2 3

0 1 1 1 -3
..__

1 0 0 0 -2
p == -59

'-----

2 0 0 0 -3
~

3 0 0 0 -2
,.___

:R 0 1 2 3

0 1 -1 -2 -3
...._

1 0 -1 1 -2
q == 53

2 0 0 -1 2

-
3 0 0 0 2

.___

47

i ~ .
J. We do this merely for the sake of convenience in

Performing the above calculations in a computer.

The "diagonal" elements - d
00

, d 01
, d 02

, d 03
ob

t .
ained in this way are the two-sided mixed-radix co-

efficients for p and q, respectively. Hence, from Table

I rr

ana

or

we have

p ==

==

d33r2rlr0 + d22rlr0 + dllrO + dOO

-2(5·3·2) + 0(3·2) + 0(2) + l

q = 2(5·3·2) - 1(3·2) - 1(2) + l,

P /\., [-2, 0 , 0, l] and q "'--' [2, -1, -1, l) .

Since the leading non-zero coefficients for p and q

-2 and 2, respectively, we conclude immediately

that p is negative and q is positive.

We have now shown how magnitud e compari son can be

Performed for integers in residue number systems by cal

culat· ing the mixed-radix coefficients from the residues of

the · given integers and then comparing those coefficients

in lex · icographic order. we have also shown how the sign

of an ·
· 1 d ·

integer can be determined from its ea ing non-zero

48

two-sided mixed-radix coefficient . Finally, we have shown

how the calculation of the mixed-radix coefficients from

th e residues of an integer can be performed efficiently

in a modular arithmetic computer by using a stored table

of residues. Thus, we have added magnitude comparison

ana sign detection to the set of operations which can be

Performed readily in a modular arithmetic computer. We

sha11 now make use of these operations in devising methods

to Perform other fundamental operations in these computers.

49

CHAPTER II

OVERFLOW DETECTION

A. Overflow in Residue Number Systems. "Overflow"

is th e term designating the situation which occurs when a

dig ' t 1 al computer generates a number "too large" for it-

that is, when some operation performed by the com

PUter results in a number outside the range of numbers the

computer is designed to handle normally. If overflow

occurs, the computer in some manner "truncates" the num

ber b
eyond its range to produce a number which is within

its
range and which is used in place of the original one

in b
su sequent calculations . But since certain important

arith ·
b

metic properties of the original num er may not be

Preserved in this truncation, erroneous answers may re

sult Unless the overflow is detected and the subsequent

ca1cu1 t ·
d · 1

a ions are modified accor ing Y· Therefore, some

means of detecting overflow under program control must

be p .
rovided in every digital computer.

50

In "conventional" digital computers using, for example,

N-digit binary numbers, one or more "extra" high-order

a·
igits are built into the register (called the accumulator)

where arithmetic operations take place. When some opera-•

t·
ion Produces a number requiring more than N digits for

its b · inary representation, overflow occurs and is detected

immediately by a "carry" into one or more of the extra

a . .
igits in the accumulator. Special "transfer-on-overflow"

instructions are used by the computer programmer to test

these h' igh-order digits to determine if it is necessary

to II ,

shift" the number in the accumulator to compensate

for th e overflow.

In modular arithmetic computers, this situation is

s1·
ightly different. overflow still occurs whenever some

operation produces a number beyond the computer range,

but since all arithmetic operations are performed modulo

the product of the moduli, in these computers, no

" carries" are ever generated. For instance, in a mod -

lllar .
.

arithmetic computer in which the moduli are 2, 3 ,

S, and 7 and the computer range is the set of all in-

tegers from -104 to 105 inclusive, overflow occurs

when
the numbers

51

{l , -2, 0 o, l.
I 'J 78 and {3, -1, -1, 1) 59

are added. The "true" sum, 137, of thes e numbers is out-

s·a 1 e the computer range, so it is "truncated" to give

the · unique integer x modulo M (= 210) within the com-

PUter range and such that

X = 137 (mod 210).

'I'hus
I

X Z {-3, 2, -1, l} ~ -73

is th e "compu tea " sum of 78 and 59 in this computer ,

Which is a most astounding result since we usually expect

th e sum of two positive integers to be positive.

In general, whenever the sum, difference, or product

Oft Wo integers in a modular arithmetic computer lies

0Utsia e the computer's range, the "computed" result will

be the unique integer which is within the computer range

and Which is congruent modulo M to the "true" sum, di£-

ference , or product. While this form of truncation may

Permit
l a

the programmer to ignore all over£ ows an yet ob-

tain th e correct results in many cases, it is still often

nece ssary to know whether or not the computed sum, dif -

ference , or product is exactly equal to the true result.

~herefore
bl fa

, we shall now consider the pro em o etecting

52

overfl .
ow in residue number systems. We shall make no re-

str · •
ictions on the moduli used (other than those neede d

for ma .
gnitude and, where applicable, sign detection) , bu t

we h 8 a11 allow the computer range to be only the in teg ers

0

M - l

through M-1 inclusive, the integers 2
through

+ ~
2 inc lusive (where M is odd), or the intege rs

M
- 2 + l through M

2
inclusive '(where M is even).

'I'he
r eason for restricting ourselves to only three pos-

Sib
le ranges for the computer is that , for a given s e t of

rnoaui ·
i, rhe behavior of overflow varies consider ably with

the r ,,
ange used.

. •

(Also, it is extremely unlike ly whe ther

any range other
ld b fl · ·

than these wou e use u in a p r act i c a l

rnoau1 .
ar arithmetic computer.) Finally, since add i t ion ,

s ubtract· ion, and multiplication are the only a ri thmetic

ope rations whic h can cause overflow in a modular a r ith

metic
computer, we shall treat only the detection of

aadit·
ive overflow (which includes overflow re s ul ting

f:r orn
subtraction) and multiplicative overflow.

~ Additive Overflow. To detect overflow occurring

in aaa. .
ition and subtraction in modula r arithmetic com-

PUters
, we compare the magnitude of the c omputed s um or

a·
~f ference with that of one of the (two) addend s or that

5 3

of the minuend. We determine whether or not overflow has

occurred by checking to see if the computed sum of differ

ence t · .
sa 1sf1es the order relations which normally hold

betw
.

een the true sum or difference and the addends or

minuend. If these relations are not satisfied by the com-

Puted result, we conclude that overflow has occurred.

For the case in which the computer range consists of

the 1· ntegers
d f · d t

0 through M-1, we e ine z an w o

be the computed sum and difference, respectively, 0£ the

integers x and y. we assume that x and y are

With .
in the computer range, as are z and w. Since, by

def · .l.nition

and since
I

I

Z = X + Y

b y the above assumption,

(mod M)

Q < x + y < 2M,

it f 0 llows immediately that whenever overflow occurs in

aaait .
. .

.l.on - that is, x + y ~ M - then z is given by

Z == X + y - M.

Bene
e, When overflow occurs, we have

z < x,

y is less than M by assumption. On the other

hana
' if no overflow occurs, then

54

Z = X + y ~ X.

Clearly, since the above expressions for z are "sym-

metrical" in X and y, the same relations hold betwee n

ana y.

In the same manner, it follows from the assumptions

on X and y that

- M < x - y < M.

Since

w - X - y (mod M) I

it is then
given by

clear that w is

w = X - y + M

Whenever overflow

X - y < 0.

occurs in subtraction

Therefore, since y

t hat i s, when

is less than M,

it f 1 0 lows as before that

W > X

When
ever overflow occurs. on the o ther hand, if no over-

flow
occurs, then we have

w = X - y , X.

'!'his Proves

~orem 2.1 (Additive overflow Detection) - In t h e

~ number system whose range i s the set of integers

0 _t,hrough M-1 inclusive, over flow occurs in

55

~dfil tion if and only if the computed ~ is less th~ either

.2.f ~he addends and overflow occurs in subtraction if and

.2..,n1_y_ .if ~ computed difference is greater than the minuend.

* * *

For example, in the residue number system based on the

moduli 2, J, 5, and 7 and whose range is O through

209 , we detect overflow in the addition and subtraction

Of

X -

and

y =

by noting that t heir sum

z =

91 {o, 1, 1, 1}

127 ~ [1 , 2, 1, lJ

s ~ [1 , 3, 2, oJ

is less than x (and l ess than y) and t hat their dif-

ference

is greater than x.

sons b Y converting

w-= 174 ~ {6, 4, o, o}

As before, we perform these compari

z , w, and x to mixed -radix notation

ana comparing their mixed-radix coefficients as prescribed

in 'lYL
.i.ueorem 1 .4:

z "- [O, l, 1, OJ < [3 , 0, 0, 1) ~ x~

[5, 4, 0, OJ > [3, 0, 0, 1) x.

56

For the case where M is an odd integer and the

computer range is M - l
2

through +
M - l

2
inclusive,

We may consider overflow in addition and subtraction

s·
imultaneously by regarding the subtraction of y f rom

as the addition of (-y) to x, X and y both being

integers · h ·
Th f d ·

wit in the computer range. ere ore, we efine

to be the computed sum of x and y, or equivalently,

the
computed difference of x and y', where y' = -y.

~ow, if
X and y have opposite signs or if either is

Ze:r 0 ' overflow is impossible since x + y must lie between

ana

But 'f
I i

y

X

and therefore must be within the computer range.

and y are both positive, then it follows f rom

the
assumptions on the computer range that

0 < X + y < M11 ,

so that
overflow occurs whenever

M/ 2 < x + y < M.

z is also within the compute r range - that is,

-M/ 2 < z < M/2

q nd since
, by definition,

Z =: X + y (mod M) ,

it
follows that

-M/2 < z = x + y - M < 0 .

(2 .1)

(2. 2)

X and y are both positive and over f l ow

57

occurs
I z is negative. Similarly, if x and y are both

negative and overflow occurs, z must be positive since

(2.1) , (2) .2 , and

-M < x + y < -M/2

irnp1y that

0 < z = x + y + M < M/2 .

For the case where the computer range is

M

M
2 + l

through -2
, we may reason almost exactly as we have done

immediately above, except that we must provide for the case

where Y' = M/2. We do this simply by regarding the subtrac-

tion of M/2 as the addition of

give the same computed result.

M/2 since both operations

Then, it follows as before

that
overflow is impossible whenever x and y have

0 PPos·t Le signs or whenever either is zero. If x and y

are
Positive , tl1 e n from

0 < X ~ M/2, 0 < y ~ M/ 2, -M/2 < z ~ M/2,

a
nd

<2 .2) it follows that

M/ 2 < X + Y ~ M

z = X + y - M

if
overflow occurs. Hence , if both x and y are pos itive

ana
overflow occurs, z will be negative or zero. Similarly ,

58

if X and y are both negative, then

-M/2 < X < 0

It

and -M/2 < y < 0.

overflow occurs, then

- M < x + y ~ -M/2,

so that

z = X + y + M.

'I'herefore
I if overflow occurs when both X and y are

negative
I z is positive.

Now let us consider what happens if x and y have

the same sign and overflow does not occur. If no overflow

Occurs, then z is simply the true sum of x and y and

hence ... z has the same sign as both x and y, regardless

Of the
computer range. This completes the proof of

Theorem 2.2 (Additive Overflow Detection) - If the

com
~ range is the set of integers

M - 1
2

through

-+-~
2 or M - --

2
+ 1 through

M

2
inclusive, then over-

flow
~ .££curs i.!l addition if and only if both summands are~-

~l:'o ad
~ -!k. have the~ sign while their computed sum is~

o:r- h
-.::.. ~ the

~ opposite sign .

* * *

For example, using the moduli Z, 3, 5, and 7 and the

computer
range

M

2
+ 1 = -104 through

M

2
= 105

59

in
our residue number system, we detect overflow in the

addition of the integers

X = 8 3 ~ [-1 1 - 2 1
-1 I 1]

y = 71 ':::: [l, l , -1, 1]

by noting that both are positive while their computed sum

z = -56 ~ {o, -1, l, 0]

is
negative. w d t · th · f d

e e ermine e signs o x, y , an z from

the s .
igns of their leading two-sided mixed-radix coeffic ients:

x "" [3 , -1, -1, l]; y ""[2, 2, -1, l];

z ~ [-2 , 1 , -1, OJ.

Th i s completes our treatment of addit i ve overflow

cletect ·
ion. We turn now to the problem of detecting over-

flow .
in mult iplication in residue number systems.

L Multiplicative overflow. Detecting multiplicat ive

o"erflo••· ·~ in modular arithmet ic computers is somewhat more

a ·
lfficuit

· · 1

than detecting additive overflow, primari y

bee
ause the numbers generated in mult i plication may be

''f
a:r-ther"

h th t d

outside the computer range tan ose genera e

in aad ·
lt ion. That is, if K is the largest of the abso-

lute
Values of the integers within the computer range, then

60

61

the ab 1
so ute value of the true sum of two numbers in the

comput
er cannot exceed 2K, while the absolute value of their

true Product may be as large as K2 Therefore, the re -

lationshi'p between their true and computed products is, in

general, more complex than that between their true and com

PUtea sums. However, it turns out that the technique of

comparing the sign and magnitude of the computed result with

those
of the operands, as was done above to detect additive

overflow, can still be used in many instances to detect

znu1 t · 1 . 1 P icative overflow.

If z is the computed product of the integers X and

y in some residue number system, then z should be zero

if ana only if at least one of X and y are zero. Hence,

if 2 : 0, multiplicative overflow has occurred if x and

y
are both non - zero. And if

/x I ~ 1
and

and

Shou1a be true, at least so long as no overflow has occurred.

'I'herefore . f
, J. either of

hoias for
X and y non-zero , t h e n mul tiplica t i v e ove rflow

62

must h
ave occurred. Furthermore , if x and y have the same

s · 1.gn , then z

opposite signs,

should be positive; and if x and y have

z should be negative. Hence, overflow is

also indicated by the presence of the "wrong" sign on z.

But wh i le these tests are sufficient to detect multi-

Plicat· 1.ve overflow , they are not necessary. (For a counter-

exam 1
Pe, consider the multiplication of 16 by itself in the

resia
Ue number system with moduli 2, 3 , 5, and 7 and with

either
the range o through 209 or the range -104 through

los.) Therefore, we must find a method for detecting multi-

Plicat·
1.ve overflow when the above sign and magnitude tests

do not indicate that overflow has occurred. That is, we must

ascert .
a1.n whether or not

where K is the maximum absolute value of the integers

Within
the computer range, when z ha s the "proper" sign

ana when both

0 < /x I ~ /z / ~ K
and 0 < I y I ~ I z I ~ K

are
satisfied. we shall compare IX I and I Y I

To do this,

With the
(positive) square root of K.

let

Let k be the unique positive integer such that

a

2
< (k+l) I

be the non-negative integer such that

a = K,

(2. 3)

(2. 4)

ana let us assume f · th t
or convenience a / x / ~ /y /, We may

compare /x/ d an /y/ with k by defining the integers a

ana b by

a= /x/ k and b = /y/

Then
I if a ~ 0 I b must also be

implies a ~ b. In that case, we have

2
(k+a)•(k+b) (k ~ K,

- k. (2 . 5)

since /x/

which means that overflow does not occur. Similarly, if

b > 0, then a > 0 also and we have

(k+a), (k+b) (k+l)
2

> K,

which .
is precisely the condition for overflow. Therefore,

if a ~O , there can be no multiplicative overflow since

both /xj and /YI are less than the square root of K· I

ana if b must be overflow because both /x/ and

> 0, there

h, I are greater than the square root of K.

To determine whether or not overflow occurs when

a > o
and b ~ o (which is the remaining case) , let us

e){amine
the equation

63

64

/x,y/ = /x/ • /y/ = (k + a),(k + b)

= k2 + (a + b)k + ab.

Substituting
2

K - d for k in this equation gives

/x, y/ = K - d + (a + b)k + ab

from Which it follows that overflow occurs that is, -

/x,y/ > K if and only if

(a + b)k + ab > d. (2. 6)

But since we are assuming that a > 0 ~ b, it follows that

(a + b)k + ab ~ (a + b)k,

so that if a ~ /b/, then

(a + b)k + ab ~ (a + b)k ,a ~ d.

Cornbin .

j j
ing this result with (2.6), we conclude that a , b

irnpli es that overflow does not occur.

Finally , if a > /b /, (which is now the only remaining case),

we add b2 to both sides of (2. 6) and apply the definitions

(2. 5) to the left side of the result. This gives

(a + b) k + ab
2

+ b = (a + b)•(k + b)

=

which
'When combined with (2.6), yields the conclusion that

overflow
occurs if and only if

2
l> d + b .

if no overflow occurs in multiplying (a+ b) by

we can readily compare

65

(a+ b)•/ y/ with d + b
2

to determine

conclusively whether or not overflow occurs in calculating xy.

On the other h and, if (a+ b). / y / overflows, then it follows

from (2. 6) that /x • y/ must also overflow (and hence that

xy overflows). These conclusions stem from the inequalities

0 ~ /b / = -b = k - / y / < k

and

(a+b) •/ y j> K = d+k
2
>d+b

2
,

Which follow from our definitions.

Therefore, if all other tests are inconclusive and if

a > /b / and a > o~ b, then the detection of overflow in multi-

Plying X and y depends upon the detect ion of overflow in

multipl . ying (a+ b) by / y /. What we do in that case is

define by

== a + b

and repeat the entire procedure to try to determine whether

=
overflows. If

nee e ssary, we define an x2, an x3, or even an xk+l'

0 bt . aining each X. from the preceding one in exactly the

l

same way as is obtained from x. Eventually, for some

)(

i' some test such as a ~/ b / will halt this procedure

8 ince

... , etc.

This follows from

IX I = a + k > a ~ a + b = xl > 0

Since b ~ 0; similar r e lations hold for xl and etc. x2,

Thus, we h ave obtained an iterative procedure for de

tecting mul tipl i c a tive overflow, a "flow chart" of which

is ·
given in Figure I. Let us now formalize this pro-

cedur
e for overflow detection by stating it as

.Theorem 2.3 (Multiplicative Overflow Detection-

Method
I) - Let K be the largest of the absolute

~ Qf .th.£ i ntegers in a residue number system. Let

k
be integers as defined above in (2. 3) and

and assume for convenieece that fxl ~ /yf. ~

~ let
-------.:::.

xy

z .
i

k , and

be the computed product of

a0 = /x0 / - · le~

X .
i

and y.

overflows if b > 0 or if any of the con-

a·
~ A.- D. holds for i = 0 :

A.

B.

c.

z .
i

Z ,
i

0 <

0 <

= 0 wh i le x . I o I y ;
i

has the wrong_ s i gn (z .
i

~

/zi/ < /xi/

I 2 i / < I y I·
xy ~ not overflow if e i ther

0) ;

of the

66

.f._igure I

Ii frHer \
of x, a.nJ ,

Y ~ ew- o ? /
. - - -· -- ,

Multiplicative Overflow Detection - Method I

- - - _f,~ ~"- - -

5-Lt (, = 0

\'o = ><

b!::/yl-k

Co,., rv+JI...

~i.:::: X(· y

--•--~ y~s : ._ ..-......; ,
----- ,

rs
L= o ?

67

(OWi r ufL

x. 1,_ =- Cl~ + b._

'"' t..-..tA<;R.. t.
' , 1 ti.I.:__

&~ ba.c. k fo *)

cona·t·
~

E.

F .

!f
-.....;. none of ~-
x ,

l + l and -
x .
l+l

E . - F. holds for

a. ~ 0;
l

ai ~1 b/

A. F. holds for a

a . l l +
as follows:

a . + b and
l

a . l 1+
=

i =

given

A. - D . holds for i ~ l,

0:

i, define

k.

xy overflows;

if .
---c:.. ~ of E. - F. holds , xy overflows if and only

it --.;:;,

=

* * *

2
> d + b .

The proof of this theorem is implicit in the

a · .1.scuss · .1.on which preceded it, but two clarifying

statements are needed. First , since the sign and mag-

nitua
e tests related to conditions A. - D. are

Completely independent of those related to conditions

E ana F., s i nce the truth of any of A. - D. is

8Uff ·
.1.cient to guarantee that multipl i cat i ve overflow

Occurs in
calculating Z , I

l

and since the truth of

E . and F. is sufficient to guarantee

that
overflow does not occur in calculating Z , f it

l

follows that none of the condit i ons A. - D. will ever

be true
whenever either E. or F. is true, and vice

68

versa (~ Note that condition E. is actually super

fluous since a . ~ 0
J_

certainly implies a i ~jb j , which

is condition F.)
Second, since the algorithm is de-

pendent upon the assumption that /xi / ~ I Y j , one might

th ink that an interchange of

necessary whenever none of

x ' s

A. - F.

and y's is

is satisfied

for a given

than

i and it happen s that

However, s inc e b ~ 0,

is less

it fo l lows

from the definition of
that, .in that case, con-

dition E . would be satisfied by

of whether or not and y

regardless

are interchanged.

In other words, if for some i we have

while
then xy

2

overf lows if and only if
> d + b , so tha t we

need I n t bother

light of

t o interchange
and y.

i t also fo l lows that condition

(In

D.

this,

superfl uous, since , by
the assumption that Ix I ~

Condit ' 1.on D. implies the weaker cond it ion C .)

To illustrate the u s e of this algorithm for

is

detect' d ing multiplicative overflow, let us consi er the

Plication of x = 29 and y = 9 in a residue rnu1ti .

nurnb er system whose r a nge is -104 through 105. Using

the above d efinitions gives

69

70

K == 105 , k = 10, d = 5,

a 0
= 19 , and b = -1.

Since
none of the conditions A . - F. is saiisfied for

these Values of y , and b, we cal-

culate

xl = ao + b = 18

a.na the (computed) product zl = -48 of xl and y.

Since z is negative while both and posi-

1
xl

y are

tive
I we now f i nd that condit i on B. · is satisfied. Thus,

We
conclude that xy overflows.

It should b e noted that when the computer range is

II

symmetric " about zero, as in the preceding example,

it is necessary to use two K ' s and two d ' s -~,

I<::::: las
I K' = 104, d = 5 I

and d' = 4 for the above

One K and the corresponding d are to be

Usea When the product of x and y should be positive -

is , when X and y have the same s i gn - and the

K and d (denoted by K' and d' for the

above
example) when the product should be negative. In

this
way, we may provide for the situation where xy

OV-e.l:'fl ows but does not . (In the above ex-

a.mPle th '
h t d t

' is could happen only when t e rue pro uc xy

is -los.) Clearly, this modification to the procedure

given in h
T eorem 2.3 is not needed whenever the computer

.t'ange i' s "
symmetric" about zero say, the integers

M - l -~
through

M - l
+

2 2
or consists entirely of

non-negative numbers

M - 1

- say, the integers O through

After picking a few "sample" multiplications at ran

dom
a na Using the above algorithm to determine whether

OJ:'
not ffiUlt . l . .

. h

ip icative overflow occurs in eac case, we

beg i n to
feel that instances in which it is nece ssary to

calculate an
x 2' an or even an t o deter-

Inine
conclusively whether or not multiplicative overflow

Occurs
are probably quite rare. Nevertheless, the pos-

Sibil.
ity of s uc h cases does exist and motivates us t o

Seek
a faster me thod of detecting multiplicative over-

flow
when the sign and magnitude tests , i . e., conditions

A. - D.
in Theorem 2.3, are inconclus i ve.

~Multiplicative overflow (continued). Let us

now
assume that the sign and magnitude tests A. - D.

a
e sc r ibe d

d th ·

above have been applied to x, y, an e ~r

71

computed product z with the result that none of the con-

ditions A. - D. is satisfied. Let us also assume that

and that our computer range is either the set

Of · integers M - 1
2

through

through

+

M

M - 1
2

or the set of

integers M
2

+ 1 2 •
Thus, by assumption

we have

0 < /y/ ~ fx/ ~ I 2
/

~ M/2.

Now instead IX I /y/ with
, of comparing and k as be-

fore let postulate the existence of a table of

I us

Powers of

.

two , stored within the computer , from which we

can b 0 tai· n · ·
unique integers p and q such that

2 P-1 < I X I (2 p and
(2 • 7)

!f we define n to be the unique integer such that

n
2 ~ M/ 2

n+l
< 2 ,

(2. 8)

ana if
immediately that

p + q ~ n, then it follows

/xy/ == IX I.- / y I ~
2P . 2q =

2p+q ~ 2n ..._ ~ M/ 2,

'whi ch is , I xy I > M/ 2

means that overflow - that

does
not occur. Similarly , if P + q ~ n + 3 , then we

M/2 =
p-1 q-1

2 • 2

which
i nd icates that xy overflows.

72

If p + q = n + 1, then it follows that

=

So that any overflow can be detected by the pres ence of

II the wrong" sign on z or by the fact that z = 0 whil e

X ::/ 0::/y. Finally, if p + q = n + 2, then we have

2n == p+q-2 </x/ I y I ~ 2p+q 2
n+2

~ 2M,

2
. =

--.:

Wh '
ich means that the wrong sign on z (or z = 0) will

have · indicated any overflow such that

M/2 < I X I . I y I ~ M

or such that

3M/2 < I x / · I y I ~ 2M .

Therefore, if p + q = n + 2, it remains for us to

d. .
i st inguish between two cases:

Case A

Case B

M </ x / I y I ~ 3M/2 :

2n < { x / . / y / ~ M/2.

Clearly, in case A there is overflow and in Case B there

is n 0 overflow.

To distinguish between Cases A and B, let us defin e

z

p-1 I I
1 to be the computed product of 2 and Y · Then,

in Case A, we have

Wh'
ich means that will be n egative or zero. But, in

73

Case B, we have

2n-l= 2~q-3 </x/2 /·/Y/

< I x I· / Y / ~ M/2 ,

p -l I I ~ 2 . y

which indicates that z
1

wil l be positive . Therefore,

when p + q = n + 2 , xy overfl ows if and only if z
l'

the computed product of 2 p -l and / y / , is negative or

zero. This completes the proof of

Theorem 2 . 4 (Multiplicative Overfl ow Detection -

Method II) Le t z be the com puted prod uct of x a nd

y, where / x / ~ / y / , in ~ residue number sys tern i n which

the absolute va lue of a ll integers is no greater than

M/2 . If x IO I y , l et p, q , and n be the positive in-

tegers satisfying (2 . 7) a nd (2.8) , and l e t z
1

be t h e

computed product of
p-l

2 and / y /· x y overflows

if and only ~f ~ _QE. ~ of the fo l lowing conditions is

satisfied:

A. z = O while x IO I y;

B. z has~ wron~ sign

C. O <{z / </ x /:

D. p + q = n + 3;

E. p + q = n + 2 and -
* * *

(z I O) ;

Interestingly e nough , it is also possible to deter

mine whether or not multiplicat ive overflow occurs wh e n

74

-

--- -.-.

n + l ~ P+q (n+2 by using the additive overflow

detect ·
ion procedure. If we define c and d to be in-

tegers
such that

C ::: I X I
then We have

/ x/·/y/ :::

From (2. 7) and

0 < C

2 p
-1

p+q-2
2 +

(2. 9)

p-1
~2

and d = I y I q-1
2 I (2. 9)

C•2
q-1 d . 2P-l

+ .. + ed. (2.10)

if follows that

and

so that each f
. .

o the four terms on the right side of (2.10)

is
not greater than

p+q-2
2

IIence
' it follows that xy overflows if and only if

cl.ddit ·
ive overflow occurs in calculating the sum in the

l:' .
.l.ght Side of equation (2 .10).

While this technique of using additive overflow to de

tect mu1t · lplicative overflow seems simpler than using z
1

as
Prescribed i'n Th 2 4 i' t turns out that one to

eorem . ,

th.:re
e magnitude comparisons (two to six conversions from

l:'esia
Ue to mixed-radix notation) are required to deter-

lnine
Whether or not any additive overflow occurs in (2 . 10),

Wh·
.I.le only

· d d '

one sign test (one residue to mixe -ra ix

conv
ers ion) ·

k d · t ·

is necessary to chec con i ion E . in Theorem

75

Hence , using z 1
as prescribed in Theorem 2.4 is

"faster"
than using equation (2 . 10) .

It should be mentioned that the requirement of a

Sto
red table such as is needed for the overflow detection

Proced
Ure given in Theorem 2.4 is quite reasonable. The

table ·
itself would not be very large since it need contain

only th
ose (positive integer) powers of two within the

cornputer
range . Furthermore , the integers p and q

would be
obtained easily from the table by a simple "look-

Up ••
Procedure in which the mixed-radix coefficients of

and /Y/ would be compared with those of the powers

Oft
wo stored in the table, and the mixed-radix co-

eff ·
lcients of / x / and / y / would already have been com-

PUted ·
in order t o perform the sign and magnitude tests

A . - D .

To illustrate the use of Theorem 2 °4, let us consider

the
rnultiplication of x = -31 and y = 8 in the residue

nurnbe
r system in which M = 210 anq the range is -104

through
105 . First, we note that , since the computed

Product
of x and y in this system is z = -38, none of

the
conditions · Th em 2 4 is satisfied .

A . - c . in eor .

76

we obtain p = 5 and q = 3, from which we find

P + q = 8 + 2 = n ,

Since
n = 6. Next, calculating gives

= 16·8 = 128 -82 (mod 210)

2
1 = -82 . Since condition E. is now satisfied,

rnu1 ti .
Plicative overflow is indicated.

F'or
comparison, we note that using (2.10) to detect

overfl
ow in the above example requires at least

llitua

one mag-

e comparison

canv
ersions)

(meaning two residue to mixed-radix

On1 Y one

ta f·
1.na t

to detect additive overflow in

=
p+q-2

2

6 2 4

= 2 + 15-2 + 4·2 + 15 •4

64 + 60 + 64 + 60.

resia· ' to mixed-radix conversion was required

he sign of

We h
ave now shown how to detect overflow resulting

f:toin
aaait· l.on, subtraction, and multiplication in modular

Ql:"ithnt
etic

t computers_ or, at least, in those having cer-

c\in"
select"

d

two c0mputer ranges. In all cases concerne,

o:r more .
mixed-radix conversions are necessary to

77

78

deter .
mine whether or not overflow has occurred , and i n some

instances
, considerably more computation than that i s

necessary to conf.1.rm the presence or absence of overflow.

'I'h is
· means that overflow detect ion in modular arithmetic

cornp t
u ers will a lways be somewhat slower than i n compar-

able
conven tional digital computers and that , i n general,

rno:i:-e
compl icated circuitry will be needed for overflow

detect ·
1.on i n modular arithmetic computers. However , th i s

handicap .
1.s not as great as it might seem , since over-

flow
detection tests need not be used as often i n mod-

llla:i:- ar .
1.thmetic computers as in conventional computers .

'I'he
l:'eason for this i s that ? unlike the truncation in con-

"ent ·
l.ona1 comp ters , the truncation used in residue number

systems often
permits the correct answers to be obtained

eve
n

th ough overflows may have occurred at ma ny i nter

Inea .
1.ate steps in the calculations For example , i n cal-

cu.lat ·
1.ng the partial sum of an alter nating series , the

P:i:-og
:i:-arnmer of the modular arithmet.Lc c omputer may completely

ignore the

.

fact that the individual terms i n the series

ove:r-f
low 1.f he is certain that the partial sum itself will

be Wi th1· n
the computer range. In fact , this particular

P:tope
rty of residue number sys tems will be used extensively

in
Pe:r-forming some of the i mportant calculations needed ln

I

l

the a
ivision and square root methods described in the next

two
chapter s.

The refor e, although overflow detection in modular

cl.t·. l.thmet ·
l.c computers is somewhat more cumbersome than might

be des ·
J.red, we have shown that it is possible to detect

such
overflow and we have given methods whereby the de-

tecti
on can be accomplished in a reasonable amount of com-

Although we have found it necessary to intro-

duce a
sma11 table of powers of two in order to allow a

lllol:'e
efficient me.thod _ namely, that of Theorem 2.4 - for

detect ·
J.ng multiplicative overflow, we shall find in the

following
two chapters that this same table can also be

Usea to
facilitate other very important operations in

llloaular
arithmetic computers.

79

CHAPTER III

DI VISION

A " Divis ion in Residue Number Systems. Normally ,

when we speak o f the d i vision of , say , x by Y in any

numbe r system, we are referring to the process of obtaining

the s o lut i on z of the linear equation

y z x .

As sumi ng that multiplication is commutative and asso-·

c i at ive · in t h e number system, the existence of such a z

(f or a ll x) i s equivalent to the existence of a multi-

p lica t ive i n ve r s e
-1

y of y

-1
y · y

such that

-1
y · Y l,

whe r e 1 d e no t e s the multiplic ativ e identity, (See

Jacobson [14] I P o 24 0) Clearly, if s uch an inverse

exis t s , t h e n
-1 z ,:: xy

-1
y

I n a c ommutative ring, the existence of . a multiplica-·

t ive i n v erse for any element y is dependent in part upon

wh e the r ~ r not y is a zero divisor - that is, whether

o r no t t h ere exists a w IO in the ring such that

80

yw = 0, where 0 denotes the add't·
1 ive identity in the

ring. In particular,

-1 y

if
we assume there exists a multi-

plicative inverse for the zero d . .
ivisor y, then

we have

w = l ·w = -1 -1
(y ·y)w = Y (yw) = Y-1-o =

0,

which contradicts the definition of
w. Hence , if y

l·s a zero divisor, then it has n l ·
o mu tiplicative inverse,

a nd "division" by y is not possible .

It is not hard to verify that, under addition and

multiplication modulo M, the product of the moduli,

res idue number systems are always commutative rings . How-

ever, unless M is a prime , in which case it is the only

modulus, all residue number systems contain non-zero ele-

ments which are zero divisors.

66-68.) In particular, if y

(See Jacobson [14], pp.

is any non-zero integer

i n a residue number system and if y is not relatively

prime to all the moduli for the system, then y is a zero

divisor and has no multiplicative inverse. Hence, unless

y is relatively prime to all the moduli, division by Y

h · f each x ;n the res;due number is impossible - tat is , or ~ ~

system,

yz = X (mod M) (3. l)

81

either has no solution z or has several different

solutions. (For example , in the residue number s ystem

based on the moduli 2 , 3, 5, and 7, there exists no

integer z such that

36 • z = 59 {mod M) ,

but there are five solutions to

-95°2 = 20 (mod M):

z = 2 , z = 44 , z = 86 , z = - 82, and z - -40.) Further-

more, even i f the multiplicative inverse of an integer y

does exist in a residue number system , the solution z

to (3.1) is not the quotient one would expect from most

computers unless x is an exact (integer) multiple of y .

The reason f or this is that the multiplication in (3.1)

i s performed modulo M. {For example, in the residue

number sys tem used above , the solution z to (3 . 1) for

x = 78 and y = 37 is z = -66.) Hence, even when

division i s possible in a residue number system, the q uo-

tient obtained in many cases in fact , in most cases - is

not suitable for use in most computer applications .

There are also zero divisors in the number systems

used in conventional digital computers , but there the

problem discussed above is avoided by using a different

82

definit ' ion of division.
In particular, when a number x

is a , ivided by a non-zero number y in a conventional

digital computer, the "quotient" which results is usually

the , a portion" of the true quotient - that is, 'integr 1 .

the s integer not exceeding greate t .
lx!YI, preceded by

the Proper si gn . To obtain this
"quotient" in conventional

a· l.gita1 computers I

"division" is usually performed by a

Seq Uence of subtractions and "shifts" which amounts to

ing the quotient by counting the number of times generat ·

the a . . ivisor can be subtracted from the dividend before

as · ign change occurs.

There · • is no reason why we cannot carry over this new

def ·
l.nition of quotient for use in residue number systems

O:t ' for . that matter, why we cannot uses-• other defin-

quotient such as, say, the "nearest" integer 1ti0 n of

to
X/y o However, we do encounter considerable difficulty

in carrying h d f over to residue number systems the met o o

a · l.Vis ' l.on by

s· 1 nce sign

cl:t .
l.thrnet · le

subtracting and "shifting . "
In particular,

determination is more difficult in modular

computers than in other digital computers (the

:tesu1 ts of Chapter I

repeated subtraction of the divisor from the dividend

notwithstanding), the method of

s · 1.rn!>le

83

i s Prohibitively time consuming and inefficient. Further-

more , if we try to speed up this procedure by using the

t e chnique of "shifting" used in conventional computers,

w e find that performing a "shift" in residue number sys

tems is equivalent to performing the division itself.

There fore , we shall now seek some other procedure

WG reby we can conveniently calculate some reasonable

app roximation to the quotient of the (non-zero) integers

X and y in a residue number system . We shall present

a new method for finding the nearest integer to (or the

i ntegral p ortion of) the quotient x / y, and then show how

hi s method can be extended to give a much better approxi-

ma ion to that quotient . Fina lly , we shall apply these

new "divis ion" methods to enable modular arithmetic com-

pu t ers to perform "floating- point" arithmetic - a capa

bility heretofore possessed only by conventional digital

computers .

Division Algorithms for Residue Number Systems .

Let u s now assume that x and y are non - zero integers in

a residue number system whose range consists of the integers

M 1
2

through +
M

2
1

(if M is odd) or
M

2
+ 1

84

85

(if M is even). Let us assume further that

there 2
1

exists a table of powers of two from through

2n
Where, as in (2.8), n is the integer such that

(3. 2)

As we
explained in Chapter II, we may obtain from this

table
the non-negative integers p and q such that

P-1 I
2 < X I ~ 2P and (3. 3)

Frorn
these inequalities it then follows that

(3. 4)

s o that it seems reasonable to choose

=

as a first approximation to / x / y /. However, if / x / < / y /,

then the
nearest integer z to /x/ y / mus t be either zero

or one.
In that case, we may ignore z

1
and choose

between the two possible values for z by calculating

and comparing it with / y /· If

O < 2/x/ </y/,

then

/ x / y / < 1/2 ,

so that we should set z = O. But if 2/x / ~ /y / , then

1 / 2 ~ / x / y / < l,

I

I
I
I

....

So 'w

e Should set z = 1. Moreover, since

I X I < I y I ~ M/2 I

we have /
2 X I < M,

be
so that the computed product 2/x/ will

negative
if multiplicative overflow occurs . Hence,

th:e
'
00111PUted pr0duct 2/x/ < O, then the true product

satisf. J.es

and ..,,
e should again set z = 1.

On the other hand, if the nearest

is greater than or equal to one . Also,

p-q ~ 0 so that is an integer . If

we def .
ine the · .1.nteger by

and

/y/ •z1 . (3.5)

comb .
.1.n e thi s definition with (3.3) and with the

def · lnit ·
lon of

I X I

z 1
, we have

< e
l

I I
< 2p-l

el .

~ M/ 2, it follows that p ~ n+l.

p-1 .,,- n
< 2 ~ 2 ~ M/ 2,

is within the computer range .

(3 . 6)

Hence,

if

86

Now, if

that

el= 0, it then follows from y i O and

e 1 = I X I - I y I .
I y I

zl = (Jx/yJ
z) .

1

z is l exactly equal I x/yJ , to so that we may set

to obtain the nearest integer to /x/yJ
- namely,

itself

tab1 e of powers

If, however I

e
1

i O, we then turn to the

of two to obtain the non-negative integer

t
l such that

.:.. 1 (3. 7)

s· l.nce

it fo11 ows from this definition of
that

(3. 8)

r 1 ~ q, then

Jx/y J.
since

z
l is surely not the nearest integer to

t
l ~ q also i· 1 . 2r1-q . . t t mp ies that is an integer, i seems

eas
(3 8) t Us

e this quantity as a
onable .

,, , in view of
Co:r tect · ion" to is ~•gat · z

1
. Furthermore, inasmuch as e

1

l.Ve if j j lttay zl > I x/y I and positive if z 1 < x/Y ' we

Use this . . correction to obtain a second approximation

• I 0

to jx/yJ by defining the integer z 2

e) 2
r1,-,q_

z2 = zl + (sign 1

by

87

As we did for z
1

, we calculate
from by

tak . l.ng i ==: 2 in
(3 0 9)

lf
e2 I o, we define

to be the non-negative integer

sau J.Sfy · ing

Rer-.

r · -1
2 l

we define
J:'eati

t he ng th is procedure for i =

next approximation to /x/y/ whenever e . -1- 0 and
l

t
i ~ q by

Z ,
i+l

z . +
l.

r • - q
(sign e .) • 2

1
o

1.

(3 . 11)

'.!.'hen i f e . > 0
l

for any i, we have
(z . + 2r i-q)

1. e
i+ l ==: I X I - I y I O 2 i+l =

=

Cornb1.· n . · ing this with

S:i_l"t\ .
J.la:r1 y I if

IX I - I y I .
ei - I y I ·

gives

r •- 1
2 1. •

ri-q
2 •

(3.12)

88

or

Hence, either

that

I. e j < 2r i -1
i+l

e. l = 0 1.+ or else it follows from (3.10)

r. - l. 1.

Thus, eventually . for some · 'th 1., e1. er e. = O, in
1.

which case z = z. is exactly 1. lx/y [, or else we have

r. < q. If, in the latter case, r. ~ q-2, then it 1. 1.

follows from (3. 9) that

I fx1y 1 -
2 i I = lei[!l y I < 2r1/2 q-1

= r--q+l 2 1. ~
-1

2 = 1/2 ,

so that setting z = z makes
i z the nearest integer

to

(3. 9) gives

On the other hand, if r. = q - l, then
1.

1 / 4 = 2-
2

= 2ri-
1

; 29 < jei]l!Yj

= j[x/y [- zij < 2ri/2q-l = 2° = 1,

in which case z. differs from the nearest integer 1.

z to [x/y[by at most one. In this case, we calcu-

late 2e . and compare it to e. and I y 1· If 2e .
1. 1. 1.

and e. have
1.

opposite signs, then multiplicative over-

flow must have occur~ed in calculating

is clearly greater than [y [.

2e., so that
1.

(Overflow occurs

89

<~
.i. ~

2e
l i f and only if 2e

if 2e .
l

i and ei have opposite signs

and e .
l

have the same sign,

over-fl

a
ow has occurred,

tld / y I
so we may compare 2e .

l

d:i..r·ec tly O
If

z =: z.
l

(If

< 2e .
l

again makes z

/x/y/ ::: k + l / 2

the nearest

for some non -

k, we round the 1 / 2 "upward " to ob-

2e
i

If e .
1

i s negative and

a nd e . are negativ e ,md

z . - 1
l.

l

to get

~l/2 < / x/y/ - z < 1. / 2 0

2e .
1.

2e . <
l

ov erflows

(3 . 14)

is Pos i t ive and either 2e .
l

overflows or

~lls
We then set

2 = z . ~ l to arrive at

l

(3 . 14) 0

, We ha

QQa Ve obtained a division algor ithm, a '·flow

-1:'t ,,

Of Which
appears in Figure II, and we have estab-

'l'h e

~ ~ (
Division Algorithm) - Let x and y be

~eqe,-.c- ·

· h . h th

---..::.::....: :in a residue number system . .1:-.!l w ic ~

- - ---- =.;,; __

90

absolute values of all integers~ not greater than M/2 .

~ p and q be the non-negative integers defined £Y.

(3.3) .and let z be the integer determined~ follows:

1.

2.

3 •

If / x / </ y /, set z = 0 if 0 <2/x/</y/,

and set z = l if 2 /x / <o or 2/x/~/y/.

If / x / ~ / y / , set z = 2p-q

l
and calculate el

RY (3.9). If e.
1.

0 for any i, set z = z ..
1.

If e. IO for any i, let
1.

r.
1.

be the non--- --

negative integer satisfying (3.10). If r. ;;►, q,
1.

calculate z. l EY
1.+

2 above to calculate

(3.11)

e. 1 ·
1.+

and 3.£ back to step

If r. = q - 1,
1.

calculate 2e . .
1.

If 2e . and e. have opposite
1. 1.

signs or if

either of

is~' set

2e.
1.

and e.
1.

have the~ sign and

z - z. + (sign e .) · 1.
l 1.

Otherwise, set z = z .•
1.

z satisfies

-1/2 ~ /x/y/ - z <l/2 ;

z is the nearest integer to

* * *

Once having obtained the nearest integer z to

by the procedure given in the above theore m, we

91

Figure II - Division Algorithm

---®-~ Fi'n ..{ p,i,
S-Lt- L=- 1,

~I= l f'-1,

Ts
f--',....--< ze, " - I y I

ly !~2tt 7

92

Coi..rv-l-..t
h+-1;

i11 0-.,.aft, <,,

b (9 11..1...

I s
e.: ==- 0

?

Dr..vr s :coN

can ea . sily obtain the nearest integer to
x/y by changing

y have opposite the sign of z to minus whenever X and

s · 1.gns and leaving it plus otherwise. The signs themselves

can be determined from the mixed-radix coefficients of

and q from the
and y which are used to obtain p

table of Note that,
if we wish, we may use

powers of two.

the above algorithm to obtain

Of th e quotient b y setting z'

Ix I - IY I •Z is negative and

the "integral portion "
z'

whenever

Z I ::: Z
otherwise.

Note also that the above algorithm is independent of

moduli used in the residue number system and assumes the

M - 1 through
only that the compute r range is from 2

or from _ ~ + 1 through ~. The residue

n"Llrnber system itself comes into play only when we allow

multiplicative overflow in calculating
2

/ x 1 an.d

2

e i. for

93

Bowe Ver · f th ' in calculating e., we make implicit use o e

overf1 i ow and truncation properties of residue number systems,

at
th

is part of the above algorithm maY not work pro-so th

Per 1 ,,
:t for th

com PUters

'.l'heor em 3.1

d
;n conventional digital

systems use _._

In
the d

;scussion which preceded
e number

particular, in _._

I
we proved onlY that

e.
i

is within the com-

is

:Pu.ter
range for each i

that is, we proved that

94

With' . in the computer range and that , for each i ,

- b ut wed' id not prove anything at all about overflow in

the · 1.ntermed·
iate results used in calculating e . o In general,

these . 1 intermediate results are not within the computer range

so th iplicative overflow usually occurs in the cal-at mult. . .

CUlat·
ion o f j I y ,zi. ,.

But, because all operations are

l?e:rfo rmea modulo M
in the residue number system , the

Co:r :tect result is
still obtained when we subtract the com~

l?Utea
Product of and z.

i
from

Hence , although

few ions are made about the particular residue num-assumpt ·

be:r system b · 1
erng used the algorithm given in Theorem 3 .

ltlak '
es rather

use of the fact that the calculations
important

a:re
Performed

in a residue number system (as opposed to the

nult\b er systems used in conventional digital computers).

Although we can prove only that

i ,

for

the algorithm given in Theorem 3.1 usually con-

r i+l < r i - 1

:x: = 136 , 047
Ve:r ges quite rapidly to z 0

For example , if

we apply Theorem J.l as follows to obtain

1600.5529,· • =
integer z to

I x I> j y j , we obtain

the table of powers of two.

z =
1

p = 18

setting

and q = 7

gives

Ne:x:t
I

CUlate

'l'hen
I

since

z
2

from

95

e
1

= 136,047

rl ~ 16 is greater than q ~ 7, we cal-

85•2048 = -38,033.

by

z2 = 2048
29 = 1536.

e2 = 5487 and r2 = 13, we obtain

and

Since q-1,
we calculate 2e

3
= 94, which is clearly

great er than I Y I = 85. Hence, we set

z =

Which is indeed the nearest integer to

Perhaps the most interesting feature of the above

a· l.Vis· l.on
procedure is that it can be extended to provide

than the nearest
a rnuch better a pproximation to

jx/yj

rn particular, the
integ er obt · ained in Theorem 3.1.

a1 gorithm
of Theorem 3 1 can be modified to yield an

a . j where
P.Prox. imation to jx/yj

in the form
w• 2 ,

an .

w is

l.nteger in the residue nurnber system and j is a

negat·
l.ve it p-q d f' · t · n eger. using z ~ 2 and the e ini ion

(3.si 1 for f f e

1

, we were able to shoW in the proo c

'l'heo em 3 .1 that

Bene e, if

w -1 -

we define

then We h ave

When ever

w
1

and

2p-q- j and

respectively by

•na O ~ j ~ P - n - 1 (3.15)

q ~ 1 0 If
div · q = 0 , then j y I = 1 and no elaborate

l.sio n procedur .
w [e is necessary; that is, we may set

:::: x I,.. 2-j , where

to obta · in

Wh· l.ch gives

O ~ j ~ p-n ,

:::: jx1y1 :::: I X I·
then we have,

as in (3.6),

(3.15),
we are assured

96

lie11 Ce 'by that choosing

the integers

j to satisfy

and

are within the computer range .

1x1Y I ::::

as in
(3. 7) ,

and our division

we define the non-

and if sl ~ q, we obtain a better approximation

to I x/yj by setting

w
2

~ w
1

+ (sign £1)·2s f<-'<J,

Clearly, we may
continue this procedure as before, defining

the · integer f.
l

by
(3.16)

fi = 2-j/xl-/y j•wi

and, if defining the non-negative integer
s . by

l

(3.17)
2si-l <lfij ~2si.

l:f s i ~ q, the next approximation

j
w. 1' 2 i+

def · 1.nea by

wi+l =

fi > 0, then

a fi+l =
nd. it follows as before in

(3.12) that

cll'ld it

s·-1 -2 l =

then

s · -1 .. , .. ,
2
si-q2q < f 2 l - i+l

follows as in (3 . 13) that

in eithe'r case,
s·-1 < 2 J._ I

to I x/y / is

(3.18)

97

so that
it follows from

98

(3. l 7) that

(3.19)

for some i we must have that

= /x/y/, or else we must have

f . == 0 ,
l

- 2 , then

w = w . + (sign f .) •l

l
l

j-1
2 •

and set

(3.20)

we set w == w . .
l

d ivision algorithm whose "flow chart " i s

same as that given in Figure II, but which is

Of ·

ie g iving a more accurate approxi mation to the guot-

11t th

p~00
an

th e a lgorithm of Theorem 3 . 1.

:f Of

This completes the

(Division Algor ithm - Extended Form) - Let

be n

b
.

-.c:. _on-zer£ integers in~ residue num er system 2J2

Values of the integers are not greater than

q be the non-negative integers defined .!2y

(3 . 2), let

be the integer

One

l. If / x /-2-~ - q = 0, ~ w =

2. If -I - q 0, set w = 0 if p-q-j+l < 0 or if --

P-q-j+l = 0 and 2-j+ll XI</ y I· If p-q-j+l = 0

~ 2 -j+ll I I I
X ~ y I set w = 1.

3 • If
p-q-j

4.

- p-q-j ~ 0, set wl = 2 and calculate fl

If -
(3 . 16).

f.-/ O
l.

If f . = 0
l.

for some

w = w i.

for any i, let s .
l

be the non-negative

l.!:!teger satisfying (3.17). If s.) q, define
l.

f .
1.+ l.

w from -- W .
l.

~ w = w . •
l.

~tisfies

s
1

= q - 1, calculate 2/fi/ and , obtain

Qy_ (3.20) if 2Jfi/> / y /· Otherwise,

/fx/y/ -w-2j/~2j-l;

di!_~ from 2-j {xly/ 12.Y. ~ most 1/2 .

* * *

of the more desirable features of the algorithm

th · 1.s theorem is that j may be changed in sue-

that is I j may decrease as i

In particular, for any i, fi+l

With ·
1.n the

d e j

will still

by as much

t i :::::

computer range if we ecreas

n - s . + l
l.

for the (i + l)st iteration.

99

100

Doin . g this · increases W . i+l
and

t •
by a factor of 2

1
'

hut , by (3.19) a nd the definition of
t ., we have

1.

Bence
• We may decrease j

with each iteration in order to

of

incre ased accuracy in the approximation

within the computer
in order to keep w.

1. However I

:tange as we decrease j ,
we must also require that

> (p - q - n + 1)~ J. min·
(3.21)

Sin Ce

0 ~ j

interval specified in j in the ·

<
2p-q-j+l.

n
_. ~ 2

gives

~ M/2 .

I wil

jx/y I ~ 2p-q ,
so that we

may further
Ana. .

< 0 , l.f f

dee 1
then

for the e . ' s

:tea Se Note that, as
j
min

to p - q - n.

in 'l' hear em 3
'>l>,, • 1 • the integers f . in Theorem 3 . 2 are

4
Ys 1.

With' ~ in the

1.

~es~l computer range, but the intermediate

ts -· th "'"Y be · e products 2-j i" j and I yl · wi, in (3.16)

out .
side th · 1 · · o,,

0

e range and maY thus cause multLP 1cat1ve

tt'>ct · However, if the multiplications and the sub-:tflow

l.on are
'" performed modulo M in a residue number

.x St: ern , th ,.::i e COm t d ~uct puted difference f. of the compu e pro-

s 2-j 1 Ix I and IY j -wi will still be correct -

As bf .
e ore in Theorem 3.1, our proof of Theorem 3 . 2

- in (3.19) - only that the error in the approx-

to will diminish by approximately a

facto
"- Of tw .

0
in each successive iteration. ; Cases actually

exist

- namely, when /x/y/ = 1/3 or 2/3 - in which the

a1go .
i:- J..thm

of Theorem 3.2 converges in exactly this way

is
I

obta.
l.n a ,, h

. so that we cannot hope to

s arper" estimate of convergence than that given

in the
above proof.

.Sl.J.rr
:,gests

However, as the following example

. ' the algorithm of Theorem 3.2 actually gives ,

l.n,
inany

cases, a rate of convergence considerably greater

'than the
minimal rate given in the proof.

'.l'o .
illustrate the use of Theorem 3.2, let us assume

Oq.l:'
.residue

<, 3

, S, 7, 11 13, 17, and 19. Since this gives

11/<
J

::::::
4

, 849,845 2 22 = 4 , 194,304, we have

21 ::::::
22

and since

:fol Jf We now apply Theorem 3.2 and the remarks

low ·
l.ng it to approximate the quotient of

cl'tlq

y:::::: 6 , 057

number system to be based on the eight moduli

X = 829 , 314

Oq.l:'

.residue

· f1."rst from

number system, we obtain ,
With the maximal accuracy permitted by

(3 . 3)

p = 20, q = 13, and j = -3 .

101

Bene e , fort s iteration" we set he fir t 11 ·

w = 220-13 ·-·(-3) 10 1 == 2 == 1024

ana j === -3. Calculating fl from (3.16) gives

f:rorn Which

it e:rat· ion
'

f = 23 8 1 • 29 , 314 - 6057-1024 == 432 , 144

we get using (3.17) .
For the second

we set

and w - w + 2 s 1 -q 6 since 2 - 1 ~ 1024 + 2 ~ 1oss ,
we wish to obta1.· n

maximal accuracy , we decrease

j by

'l'h · t
1

== n - s 1 + 1 == 4 .

l.s .
to

gives t1 o

0

~ i - - 7 and , by multiplying w2 by 2

Pensate With for the change in j , w ~ 17 , 408 , proceeding

~e 2 1he and following iterations as prescribed in second

o:rern 3 . 2
F':rorn '

we obtain the results given in Table rv .
so that we

(3 .21) halt · we calcu late that

the algo . te r1. thm when j == -14

S'l.J.lt · l.ng app rox i mation ,

== .-14 ,

s . < q == 13.
l.

The

by
aPP:ro:xi th mately Oo00000245 ,

which is considerablY less

an the
maximum error

102

~~

Table I V ~ Applicacion of Theorem 3.2: Sample Di v isi on Problem

X = 829r314 Y = 6r05 7 /x/y/ = 136. 9l82l6:r7 •••

i W. j f . s , w , , 2 j Error= x/y - w.• 2j .1. l l l l

1 1,024 -3 432, 144 19 128. 00000000 ,· . ~ +8 091827637 •••

2 17,408 -7 711,936 20 136.00000000 , +0.91827637 • • •

3 140,288 - 10 -506,880 19 13 7 . 00000000 ., --•• -0.0817 2363 •• •
I-'

4 2,243,584 -14 -1, 907,712 21 136.93750000 . -0.01922363 ~--
0
w

5 2,243,328 -14 -357,120 19 13 6 • 9 218 7 5 0 0 ., , ,;:.· -0.00359863 •••

6 2 , 243,264 ~14 30,528 15 136.91796875 , ·t, +0.00030762 •••

7 2,243,268 -14 6 , 300 13 136 .91821:2.69 , . • +0.00006348 ..•

8 2,243 , 269 -14 243 8 136.91827392 • • • +0.00000245 .••

~

Note that , in this example, w
would still be within

the
computer range if j were decreased to

-15- However ,

if th· l.s were done w
would not be less than or equal to

2n ~ 222
'

which is th
e criteria by which we determined

Bence .
' it will happen occasionaJly that we can still

w . withi
le n the computer range when we make j (one)

ss th Jmin ° In that case we have an •

'l'he of these cases , in which we obtain slightly P:tobab . . l 1.lity
ess maximal " accuracy consistent with the range than II • the

Of the
residue

the number system , can be minimized by choosing

modul i <la of that system such that their product is as

Se as that possible , but not less than , a power of two

Powe:r b e ing 2n+l , where n satisfies (3 , 2),

Now we h
"luni, ave shown how to perform "division" in residue

e:r The algorithms we have given maY be used
-1- systems
~C) •

CJive ither t ' t a <l an integer approximation to the quo ,en or e·

Ose:r int approximation in the form wt.!i , where w is an

ege:r
in the · is a negative

residue number system and J

In particular , we have illustrated in the above

al how the "exponent" j can be manipulated so that

CJo:rithm
of Theorem

3
_
2

yields the most accurate

104

consistent wi'th k . eeping w within the approx · imation

comput er range.

algorith

Next , we shall shoW hoW these division

ms can be used
to help perform other useful

operat · ions · in modular arithmetic computers .

.£,. Float · com i ng-Point Aritbmetic.o:.

PUters

In most digital

provision is d
lar ma e for representing very

ge . integers
es and very small fractions by what is

sent · ia1.1 ?hat . y
the equivalent of "scientific notation."

is . , instead f
by

O
representing "six-hundred billion"

600 . 000 , 000 11 is , 000 , the more compact notation 6 < 10

Used , and i illill. nSt ead of representing "minus two
-6

,-2 l(10
is used- In

l.onths " dig · by -0.000002 ,

1.ta1 n computers the equivalent of this scientific

Otat · , dig · i s achieved by reserving a certain number of l.on .

l.ts in each "
number" for the "mantissa"

in th e above examples

6 and

and using the other digits

the" exponent"

The
re computer programmer then bas the option of

gara · the e numbers within the machine as being in

radix ,iotation, which be calls "fixed-point"

11 and -6

1.ng th

ora · 1.nary

l1otat· l.on
I

or in the above equivalent of scientific

which he calls "floating-point" notation-l1ot at · l.on
I

105

Bene e, heh c oice of two sets of rules by which as a h .

addit· ions ' subtractions
•re • multiplications, and divisions

Perf ormed · within the •r j_ thrn computer , " fixed-point "

oating-point" arithmetic. etic and "fl .

For e x ample
Used '

lar ge-scal

in the IBM 7090 computer, a widely-

computer , a number maY be regarded as a

35 e
-b· l. t binary ·

a integer , preceded by a "sign bit , " or as

27 - bit inary fraction , preceded by a sign bit and

:fo11 O'Wed

b'

tnay .
l.nstruct 35_b .

the 7090 to add two numbers as signed

it b ' or he integers by using an

by an
8-bit binary exponent. The programmer

"ADD"
instruction,

1.nary ·
instruction ,

may 'wh · use a "FAD"
l.ch

(floating add)
27-bit fraction

"shift" the caus . es the 7090 to
ll)

0 ne of th
e addends until the corresponding exponent

-w · 1th that of the other addend before adding the

ractions. In the same manner, other in-27-b · 1.t f

•i~ · may be used to cause the 7090 to perform
St.:i:-1, -<Ct . ions

llar o

d

. peratio · 1 · g and lv· ns in subtracting, multlP yin,

ld· i.n g fixed- and floating-point numbers-

Clear1 ~oq Y, addition , subtraction, and multiplication

'\.l.lo
M., and the "nearest integer" division of

106

107

'l'heo rem 3 .1 a
equi-

v re the modular arithmetic computer's

alents of the 7090's
fixed-point addition , subtraction ,

But because of the diffi -rnu1t. 1 Plicat· ion, and division.

•~h e "shifts" necessary to align the cu.it · J.es in performing th

.c--Onents th of
th

e operands in modular arithmetic computers,

ese comput float · ers previously had no equivalents of the 7090's

J.ng- p . oint a . find rithmetic operations,

that a 'by using
the division procedures of Theorems 3.1

na 3 e2 • float '
ing-point arit-tic operations can be per-

•tta · · arithmetic computers in a relatively
:l:o rmea in modular .

J.ghtfor ver ward mannero

y lar ~•t · ge integers or verY small fractions in modular arith-

J.c . computers j
WJ. th . in the form x. 2 , where x is an integer

In particular , we maY represent

. in the " f .
i x ed- point " computer range and represented in

tes · J.due f
h . orm and where .
.c--re J

sent ea . in the usual binary form•

is another integer , probably re-

'I'o
~t simplify the "shifting" processes necessary to align

Oper1y •tat· the two operands for floating- point arithmetic op-

J.on s, the
9.i.v 7090

en

computer assumes that the operands are

in II tl normalized" form

oat in jo g - point representation of a non- zero number is ad-

Stea so that the absolute value of the binary fraction in

in the rep ion is less than 1 but not less than res en tat .. .

(Zero . is represented .
in floating-point form by a

2ero expo nent and a
After performing

••ch zero fraction.)

float · 1.ng-point · •~toma . arithmetic operation, the 7090

ti.call the Y adjuSt S the fraction and the exponent in

result. to put it back into "normalized" form.

I n modular
arithmetic computers, too , floating-point

operations may be simplified by assuming that

operands

o.:tithrn etic

the h have been "normalized" in some way. one

-1:"ClSs. ization of the non-zero floating-paint l.ble normal·

might be to qdjust the exponent

sati s fies
n

~ 2 I

j

{3 0 2) 0

so

J;l:t ess· i.ng a ,fl ·
~id eating-point number in this way would pro-

e the With ximurn nwnber of significant digits consistent

n is th · e integer defined above in

ma ·

keep· 1.ng X

within the (fixed-point) computer range.

~Odu1 we feel that another form of normalization for
I-low ever,

ar ar · 1.thmetic computers
J;lo· l.:nt arithm <:e:i:-

0

etic operations.

numb er ·

leads to simpler floating-

In particular, for a non-

e){ .1.n the form
Po:ne nt j in such a way that

X
satisfies

108

I

I

I

2m-l < / / m
x (2 ,

In is th
e positive integer defined by

.!11
addit ·

m = [n;l}. (3 . 22)

1.on t o .

Off
s1.mplifying , in particular,

10ati

the operation

. ng-point multiplication, this form of normal

Yield l.zat • l.on

t
s reasonably simple floating add and sub-

l:'act
Operations

that
as well and it has the added advantage

the

With
integer x can be represented by its residues

l:'espect

set
to each of the moduli in some (proper) sub-

Of mo dul i

e~
Whos e product

.Ponent .
J is carried as

Of t h
e Inoduli .

exceeds
while the

a "residue" for one (or more)

now describe how the division algorithms

in Theorems 3 . 1 and 3.2 can be used to per

float .

q
1.ng - point arithmetic operations in modular

:Ci.thin
e tic

ab computers with numbers normalized as described

OiTe
t.Jn1

i
ess stated otherwise , a ll divisions in the

Olloi,.,, ·
J.ng .

int WJ.ll be understood to result in the nearest

ese:r-
t o th

3 l

e quotient as explained in Theorem • •

v
to Floatin -Point Conversion . Con-

e.i:-t. J.ng-
a number from fixed- to floating- point is

109

I

I

I
I
I

I

I

I
I
I

I

'
I

110

essentially a
"normalize" operation~ If the fixed-point

V is zero, setting the floating-point number

to zero

conversion.

that is , setting u = j = 0 completes

Otherwise, we obtain from the table of

.Powers f
0 two the non-negative integer p such that

2p-l < I V I ~ 2P

a.na compare p with the integer m defined above in

If p < m, we set
m-p

u = v•2 and j = p-m:

P == m, we set U = V and j = 0: and if P > m,

we divide
V by

p-m
2 , set u equal to the result , and

2..:..,, Floating-Point to Fixed-Point Conversion . If

j <o for the number

.Point form ,

u •2j in normalized floating

U•2j to the fixed-point number

"

j).

we

by dividing

If

convert

u by
-j

2 and setting v equal to

j = o, we simply set v = u; and if

O, We multiply u by to obtain v , checking

:fo:r .
multiplicative overflow if we wish .

l._. Floating-Point Magnitude Comparison.

th
e di· sti· net

· · t b s

normalized floating-poin num er

a = and
k

b = v-2,

Given

(3.23)

wed
ete.t'mine

ll

th e signs of a and b from the signs of

and "

the ' .t'espectively , which are obtained in turn from

two-s •d
l ed ·

q
mJ.xed-radix coefficients of u and v . If

and
b have d'ff

is
i erent signs, whichever of a and

Posit· li!e .

the
ls obviously the greater.

same

b

If a and b have

Sign,
we compare j and k and conclude that,

b
and b are both normalized, a> b if a and

j < k or if a and b are positive

and Vice versa

~--·
If j = k , then a> b if

U > V.

E'loat ·

the
in -Point Addition and Subtraction.

no.rm

Given

21.lized

qb 0

floating -point numbers a and b

"e . .:i.n

defined

J;)oint (
3

•
23), we shall calculate the normalized floating -

C == such that C = a+ b. The differ-

the numbers a and b can be obtained in a similar

by
adding a and

b' = -b. First , we com-

b ', where

the .r :::: / j - k / .

nth
e sm l

the :f1 21. ler of / a / and / b / is too small to affect

-toat ·

a· .:i.ng-po, t
.

l er when the ad-

i1::_ .
~n representation of the arg

io11 .is
Performed

If r > m, where m is defined in (3.22) ,

Hence , we simply set C = a that

Set t

and C = b if

:::: u
if j >k

and i = j

when .t' > m.
r (m, we set

Otherwise, if

Ill

112

r
w = u + v·2 and h = j if j < k; we set

r
W = u•2 + V

and h = k if j > k; and we set w = u + v and

h = j = k if j = k. Then ,
h

w·2 is the floating- point

sum of a and b , but since
h

w • 2 is not normalized,

we must now perform a "normalization" op~ration to obtain

c . From t h e t able of powers of two we obtain the integer

p such that

p-1
2 < IX I~ 2P 3 024)

and we compare p with the integer m defined in (3 . 22) .

I f p > m, we set t = w·2
p-m i and = h + p - m;

p = m, we set t = w and i = h; and if p < m, we

t equal to the quotient obtained by dividing w b y

p - m
2 and set i = h + p - m.

if

set

5. Floa ting-Point Multiplication. Given the normal -

ized floating - point numbers a and b as in (3 . 33) ,

i
c = t · 2 as follows . we calculate t heir product We

multiply u and v to obtain w . I f w = 0 , we set

t = i = O; otherwise , we find the integer p satisfying

(3 .2 3) and set t equal to the quotient o f w and

p-·m
2 and i = j + k + p - m.

6.. Floating-Point Division. Given the normalized

floating-point numbers a and b as in (3.23), we

shall find the normalized floating-point number c = t - 2 1

such that c = a/b. If a= 0, we set t = i = O. If

b = 0, we do not proceed with the division, but rather

we give some indication such as turning on an error

indi cator in the computer that division by zero was

attempted . Otherwise, we know that u and v are both

non- zero and that their absolute values are greater than

m- 1 m
2 but l~ss than or equal to 2 , where m is the

integer satisfying (3.22). Hence, we may divide u

by v as prescribed in Theorem 3.2, taking the j in

that theorem equal to -m+l. If w is the result of

that division , we set t = i = 0 if w = 0, and if

w IO , we obtain from the tabl e of po~ers of two an

integer r such that

2r-l < / w / ,< 2r.

I f r Ip that is, r < p we set t = 2w and

i = .j k - m: if r = p, we set t = w and

i = j - k - m + 1.

* * *

113

114

These procedures

'I'heor

show how the division algorithms of

can be combined with a suitable ems 3 · 1 and 3 • 2

def · l.nition Of II

corn normalization" to provide modular arithmetic

Puter s w·
ar ·

1th th
e capability of performing floating-point

Because of the "normalization" J.thmetic operation s .

Usea
I no over flow . 15

possible in these operations except

large floating-point number is converted to \</here a very

Clearly, however, the floating-point arith-

operations
described above are somewhat slower and

than their fixed-point counterparts, but lllore
com 1 · p icated

the t s ame can be .
said of the floating-point operations in

•rith igital computers . At 1east, floating-point
con Vent · ional a . .

Inet · operations are now possible, in modular arith-metic

J.c <no rs, whereas, to the best of the author ' s

<no;, ' hey had not even been attempted with previouslY

compute

Wleage t

n a · lVision methods .

float · ing-p .
Co oint arithmetic operations in modular arithmetic

lllpu t ers ~erf 'we shall use some of the above procedures to

(To illustrate the workings of

orm Corn some floating-point operations in an illustrative

PU tat . ion near)
the end of the next chapter .

'l'his
Cl presentat · of floating-point arithmetic con-

Udes ion our a · · d nlltnb iscussion of division methods in resi ue

er systems . Although we have been able to prove onlY

that the division algorithms given above i n Th e orems 3 . 1

and 3.2 decrease the error in approximating the quotient

by a factor of two in each "iteration" , we shall see in

Chapter V that , in practice, these procedures u s ually

converge much faster than that. In the meantime , we

shall devote our attention to showing how these division

procedures can be modified to approximate the square roots

of integers in residue number systems .

115

CHAPTER IV

SQUARE ROOTS

A . Square Root Calculations in Digital Computers .

Since the arithmetic operations executable by digital compu

ters are restricted to the "rational" operations, add ,

subtract, multiply, and divide, irrational quantities such

as square roots must be approximated in these computers

through the use of only rational operations . The mos t common

method used for calculating an approximation to the square

root of a positive number in digital computers is the

Newton-Raphson iteration. For a positive number x ,

i terative method yields a s equence of approximations

this

y,
1.

to the positive square root y of x as follows: from

any approximation y,
1.

to y, the nexL approximation

Yi+l is calculated by

½ (y . + x/y .) .
1. 1.

(4 . 1)

If the first approximation y
O

is any positive number,

then it can be shown that the sequence

116

y.
1.

converges to

117

y ana th at the (See convergence, in general, is r th · Eildebrand a er rap i d.
[l 2], PP· 447-448.)

In modular
1.c computers, however, calculating

arithmet·

by the N
ewton-Raphson method presents some square roots

P:tob1 ems 'prim ·i ar1. Y because
at least one division is required

in the equi-
in

"al

each.,. iteration."

ent form

y. = i+l

If we rewrite

. 2
(y. + x)

l.

2y .
l.

(4.1)

(4. 2)

3.l
to perform the

ana .
J.f w the algoritm of Theorem

2
Yi' then we obtain only the nearest integer

':/ .

dih ' VJ. S • ion

to

e use

by

0

on raises the unpleas ant question of hoW the i+1' which ·

>ntrod of
th

e Newton-Raphson method is affected bY "er . gence

Ucing
~ore

th
ese rather sizeable round- off errors- Further-

' We
also =rrY about possible overflow in calcu

nu=rator of the fraction in (4.2), a

nd

if we

J. must
at. J.ng

t:ry to

the

av0 ·

)"\ id thi (4 1) then we must
~•rt s overflow by usin9 • ,
ly ivisions per iteration , ~ich introduces possi•

than that arisin9 from the one
orm b two d . .

a great Yi+l our other ''h er qea error in
:test

q]_ t
e:rnat· ive .

'lsor· is to minimize the round-off error bY usin9 the

J.thm
of Theorem 3.2 to perform the divisions in either

integer" d. . . . 1v1s1on needed 1.n
(4.2) .

118

(4 . l) (4.2), but then we are for ced to calculate t he s u c

cee d ing Yi ' s in floating-point arithmetic, wh .ich results in
or

a. r ::i. t her excessive amount of computation just to approxima te

a
3

q uare root in a modular arithmetic computer .

Thu s, we a re led to seek a method by wh i ch we can app:r oxi-

ma t e square roots in modul ar arithmetic computers without using

di v .1. s.ion. In the method we shall giv e below, we shall a v oid

:l i ·,
7

.ls i on s i mply by modifying the divi sion algorithm · ts e lf to

Yl-e lj a new algorithm by which we can calculate directly t e

8 Uc ci=> · • ·
t

--ssive approximat.1ons to a square roo .

A Square Root Algorithm for Residue Number sy~ t ~..:..

x b~ any positive integer and let y be its posit i ve

squa r e roo t . We shall now describe, e1..-_l:.:i>T'Ocedure · ~ereby we

:o tain an approximation to y .in the form z . .2J, whe r e

is .:ln inte g er in the residue number sys tem and j is e ith-

z ero o r a negative integer . If J - O, our proc edure wi l

P ~rallel the division procedure of Th eorem 3 . 1 and will y i e ld

the ne .
· • arest integer to y, and if j < 0 , our procedure wi l

b e more like the division procedure of Theorem 3 . 2 i n t ha t i t

'Wi ll Yield a closer approximation to y than the nearest

n t e g e r .

119

As in both of the division procedures given in Theorems

3 -1 and 3.2, we begin our square root approximation algorithm

by using the stored table of powers of two to determine the

non-negative integer p such that

p-1 p
2 <x ~2.

From this def i nition of p it follows that

2 (p-1)/2 < y ~ 2p/ 2

(4. 3)

(4. 4)

so that , since one of the numbers (p-1) / 2 and p/2 must

be an integer, we pick zo = 2q as our first approximation

to y, where

q = [J],
the largest integer not exceeding

Pattern used to calculate the

define

g =
0

e . 0 s
l

(4. 5)

p / 2 . Following the

in Theorem 3.1 , we now

From this def i nition and from the definition of z 0
it

follows that

so that

Recalling now the definition of w1 in Theorem 3.2,

we replace our f i rst approximation to y with
q-j

zl = 2 ,

120

Where j is an i nteger satisfying

0 ~ j) (p-n-1)/2. (4 0 6)

(As before
I we define n to be the pos itive integer such

that

(4. 7)

Where M is the product of the modul i in the residue number

system.)

by

Re placing also g 0
by g1 , where g 1

is defined

-2j
2 •x

we have

-2 j / / p-1 n-p+l = = 2 . g 0
~ 2 2

ana

since n is clearly greater than one. Hence , both

ana are integers within the range of our residue number

system.

If g
1

= 0, then z = X • 2-
2

]
l

so that

actly equal to y , the square root of x.

note that the differential of is

we should correct by to reduce g 1

is ex-

Since

to zero to ob-

tain the desired approximation to y , we should have

121

or equivalently,

Which is essentially how y
2 is obtained from in the

Newton-Raphson iteration. Here, however, we avoid the divi-

sion by 2z1
by approximating z

1
with s-j

2 , where

S = [~] I
(4. 8)

by approximating /g
1

/ with

integer satisfying

2t1 where
I

is the non-negative

2t1-l < /g1/ < 2tl,

ana by approximating dz
1

with

2tl/2·2s-j = 2t1+j-s-l_

Thus, we define our second approximation z
2

to

) . 2 t1+j-s-l
gl .

y by

As for Theorems 3.1 and 3.2, repeating this reason

ing for z 2
, z 3

, and so forth leads to an iterative procedure ,

a "flow chart" of which is given in Figure III.

rnarize this procedure in

We now sum-

Theorem 4.1 (Square Root Algorithm) - Let x be a posi

!_ive integer in a residue number system in which all integers

~ between -M/2 and +M/2. Let p, q, j, n, and s be

~ satisfying (4.3), (4.5), (4.6), (4. 7), and (4.8) /

~spectively. Let z be the integer defined as follows:

~tcl<ea+..._~
I ilt.l"<TA:f-l. {_ ,

1) ,1 611\~

Figure III - Square Root Algorithm

r.
~L-=- 0

7

BtGI:N

122

3 •

4.

l. ~
q-j and calculate £Y

zl = 2
gl

2.

-2j 2
g, = 2 •X - z.

l
l

(4. 9)

If g, = 0 for ~ i,
 set z = z ..

l

l

If gi I 0, let ti be the non-negative integer

satisfying
(4.10)

If t. > s - j, calculate z . 1
from

l
------ 1+

z.
1

= z. + (sign g .)·2ti+j-s-l (4 . 11)

1+ l
l

and return to step l

If t . < s - j, set z

l

If t . = s - j, set z'

l

calculate g' =
-2j

2 •X

to calculate

= z ..
l

= Z, + (sign
l

,2
z . If

g . 1 ·
1+

g .). l
l

I g I I <

and

lg i I·

set z = z'; otherwise, set z = z . .
l

~ z satisfies

{
-2j

2 •X - z
2

/ < 1/2;

z i s the nearest integer to y-2j, where y is

..th£ positive square root of x.

Proof: The proof of this theorem is by i nduction, th e

i d e a being to show that t . decreas es as i i ncreases or

l

else that an exact approximation z .
l

to the s quare root is

ob t ained (in which case t . l
1+

is n o t define d). In order

t o s how this, it is also necessary t o establ ish upper and

lower bounds on the integers z . .
i

In particular , our in-

duction hypotheses are

and

where s is

t . < t. l < p - l
i i-

-j s-1
2 2 < z . < 2-j2s

i I

defined by (4 . 8). Since we

shown in the remarks preceding the theorem

and since, by definition ,

p-1
2

or z =
1

(4.12)

(4.13)

have already

that

124

according as p is odd or even, it follows immediately

that the induction hypotheses are satisfied when i - 1.

Let us now ass ume that these hypotheses are satisfied when

1 is some integer k ~l and let us show that this implies

that (4.1 2) and (4.13) hold for i = k 1.

We begin by obtaining bounds on First,

fr om (4 . 4) , (4 . 8) , and (4 .13) ,wehave

2-j2s = 2-j2(p+l) /2 = 2-j[2(p-l) /2 + 2(p-l)/2]

= 2-j2 (p-1) /2 + 2-j2s-l < 2-jy + zk

< 2-j2p/ 2 + 2-j2s = 2-j[2P/2 + 2(p+l) / 2]

< 2-j2(p+3)/2 = 2-j2s+ l ,

when p is odd; and similarly,

125

+ z
k

2p/2]

= 2-j2 (p+2) /2 = 2-j2s+l
I

when p is even. Hence, we have

(4 .14)

From this, (4 9) d . , an (4.10), it follows that

a nd that

Bence , we have

(4 .15)

At this point it is necessary to s plit our induction

Proof into two cases. In the first of these cases Case

A we shall assume p to be an odd integer, and in the

second case Case B we shall assume p to b e even.

In Case A we shall show first that is less than the

Upper bound given in (4 .13) and then that tk+l is less

than tk whenever and are on "opposite" sides

Next in Case A, we shall show that tk+l ~ tk

Whenever and are on the same side of 2-jy,

Wh '
ich will complete the proof of (4.12) for i = k+l.

Finally, by establishing a slightly stronger result than

(4.12)

Case A

bound in

for i < k, we shall complete the induction for

by proving that z
k+l

is greater than the lower

(4.13). In Case B, our proof will be essen-

tially the same as in Case A, but because the different

Value of s in Case B yields different bounds on zk

in our induction hypothesis (4.13) , it will be necessary

to rearrange the steps of the proof somewhat. In parti-

CUlar, we shall show first in Case B that z
k+l is grea-

ter than the lower bound given in (4.13) and then we shall

establish (4.12) for the situation in which zk > 2-jy .

Next , we shall show that (4.12) holds for i = k+l when-

ever
zk and zk+l.

are both less than 2-jy and then , by

again establishing a slightly stronger result than (4.12)

for i < k, we shall show that 2 k+l
is less than the upper

bound given in (4.13). Finally , we shal l complete the in-

duction for case B by showing that (4.12) a lso holds

We proceed now with

Case A. If z ·2j > y, then gk < 0 and

k
tk+j-s-1 < zk ~

2-j2s

2
k+l = zk - 2

by (4.11) and the induction hypothesis (4.13). And if

126

z · 2 j
)

k < Y, then by (4.4 and (4.11) we have

z =
k+l

=

zk + 2tk+j-s-l < 2-jy + 2p-l+j-(p+3) / 2

2-j2p/2 + 2-2j2j+(p-5)/2

= (4.16)

Bence, zk+l < 2-j2s, which shows that the upper bound in

(4.13) holds for i = k+l.

Let us now consider what happens when

ana have different signs that is , when

are on opposite sides of y. It then

follows from (4.11) that

2 tk+j-s-1 > /2-jy - zk/

so that , by (4.15), we have

Bence
' since

/gk+l I

Therefore, if

{ - j / 2 tk+ j - s -1 - / 2 - jy - zk /

2 y - zk+l =

2
k+l

=

<

z -2
k

< 2-j2s,

(2-jy +

<

=

it

2
tk+j-s-l _ 2 tk+j-s-2

2
tk+ j -s-2

follows t hat

zk+ l) • / 2 - j y - zk+l/

-j s+l tk+j-s-2
2 2 ·2 =

tk-1
2 • (4.17)

j and are on opposite s i des

of y , then it follows that tk+l ~ tk - 1.

127

On the other hand, if

have t
he same sign, then by

128

(2-jy - zk) and (2-jy - zk+l)

(4.11) and (4.15) we have

= / 2 - j y - zk / - 2 tk+ j - s -1

< tk+j-s tk+j-s-l

2 - 2

=
tk+j-s-l

2 .

f

-j s

r om this and from zk+l < 2 2 , it follows that

f gk+lf = (2 -jY + 2 k+l) • f 2 -jy - 2 k+l f

< 2-j2s+l.2tk+j-s-l = 2tk_ (4.18)

lt now
follows that

whenever and

a r e
on the same side of y. Coupling this with the result

Of the
Preceding paragraph completes the proof that (4.12)

is s t.
a lSfied for i = k+l.

Now all that remains to be shown for Case A is that

the
lower bound in (4.13) holds for i = k+l. In order

to h
sow this we first note that if we have t . l = t .

l+ l
for

i < k , then it follows from (4. l l) that

But then by (4.15) it follows that z. 2 i+
and z .

l
(and

zi+1> are on opposite sides of 2-jy , so that by (4.17)

We have Hence, we have established a s light-

ly stronger result than (4.12): namely , that for any posi-

ti Ve ·
integer i < k,

(

Where t. ~ p - l.
l. ~

and

It is this stronger form of

(4.19)

(4 .12)

129

that enables us to prove that zk+l ~ 2-j2s-l and thus com

Plete the induction.

If that is, z -2j < y
k

then by the

i nauction hypothesis (4.13) we have

But if z < zk, then it follows from

k+l

(4.11) that

must have been greater than 2-jy. Since, by definition,

2 1 is less than 2-jy, there must exist a largest integer

m < k such that

so that

z
m

=

= z
m

z
m

This follows from the fact that

Then, by (4 . l 7) we have

z .
m

t , t 2
, ... , tk 1

must

m+l m+ -

be a strictly decreasing sequence, since otherwise, if two

of these ti's were equal, some zh wo4ld be less than

by (4 . 19) , for m < h < k . Since this would con-

tradict the definition of m, it follows immediately from

the · induction h th . ypo esis applied to

'I'his completes the proof of (4.13)

our co .
nsideration of Case A.

£ase B. If z ·2j < y, then
k

that

for i = k+l

by the induction hypothesis (4.13). And if

z
k+l

=

>

z - 2tk+j-(p+2)/2

k
-j

2
-2j

2
tk+j-(p+2)/2

2 y -

> 2-j[2 (p-l) /2 - 2 (p-4) /2]

=
-j s-1

2 2 .

and ends

Fiene e, the lower bound in (4.13) holds for 1 = k+l.

Let us now assume momentarily that zk · 2j > Y, so that

2 .
k.+1 <zk ~2-J2s by the induction hypothesis (4.13). Then

if

cl.na

2 k+l ·2j is also greater than y , it follows from (4.11)

(4 .15) that

==

<

==

2tk+j-s - 2tk+j-s-l

tk+j-s-1
2

130

Hence, we have

==

<
(4 . 20)

==

Therefore, if zk > zk+l ► 2-jy, then tk+l ~ tk .

Similarly, if zk-2j > y > zk+l·2i, t hen it follows from

(4.11) and (4.15) that
2tk+j-s-l > 12-jy - zkl

and that

From this we have

==

<

==

<

==

2
tk+j-s-l _ 2tk+j-s-2

tk+j-s-2 2 .

(2 - j y + zk+ 1) • J 2 - j y - zk+ 1 I

2
-j

2
s+l_

2
tk+j-s-2

(4.21)
tk-1 2 •

131

The n ,

Now let us assume that zk

if j zk<zk+l <2-y,wehave

12-iy - zk+l l ~ J2-iy - zkJ

<

and

= (2 - jy + z > • / 2 - jy z I
k+l - k+l

< 2-j 2s+l. 2
tk+j-s-l

= 2 tk_

By combining this result with (4o2O) , it follows that

tk+l < tk

Of 2-jy.

whenever

However ,

and are on the same side

as before in Case A , if this happens

ana 2· f t . = t .
i+l l

for some integer i < k , then it follows

from (4.11) that

=

Bence , by (4.15), it follows that z . 2 i +
and z .

l
are on

0 PPosite sides of 2-jy so that (4 . 19) also holds for

Case B whenever z . > 2-jy and i < k.

l

Now if zk < 2-jy < zk+l ' let m be the largest in-

teger such that z > 2-jy.
m

(We know that such an m ex-

ists since 21 > 2-jy by definition .)

We have

Then , by (4 . 21)

so that

Since

=

= z
m

tm+j-s-1 2
t m+l +j-s-1

- 2 + + . . .

... + 2
tk+j-s-l (4.22)

must be a strictly decreas i ng

132

Seq Uence otherwise for some h such that rn < h < k

we would
j

have zh > 2- y, contradicting the definition of

rn
it follows from (4 .22) that Z I

m
which gives

by the
induction hypothesis (4.13) applied to

as in (4.21) we have

12 -jy _ / tk+j-s-2

zk+l < 2

I I
-J· s+l tk+j-s-2

< 2 2 ·2
=

gk+l

'1'herefore
, tk+l < tk - l whenever and

z .
rn

are on

Thu s ,

0
PPosite sides of 2-jy. This proves (4 .12) and also

(4.19) for Case B.

Finally, since is clearly less than when-

or whenever

-j

zk < zk+l < 2 y , and since we

have 1 a ready shown in (4.22) that
-j s

zk+l ~ 2 2 whenever

2
1- < 2 - jy

· f 11 th t

~
< zk+l' it o ows a the upper bound in (4 .13)

holds for i = k+l, which completes the proof for Case B.

By the induction principle it follows that (4.1 2) and

(
4 .l3) are satisfied for every positive integer i. Since

we Proved the result (4.19) in both Cases A and B, we

have actually shown that the z 's converge to y with a

i

133

134

decrease
in the error by at

two., .

least a factor of two for every

.1.terations." Finally, if

.froin

t . < s-j,
J.

then it follows

(4 .1s) that

/2 - j y - z./ < 2ti+j - s < 2 - l = l/2.

J.

ti; s j, then we have

so that z .
J.

differs from the desired ~esult z by at most

The final comparison between g .
J.

and g' as prescribed

i:n s t
ep 4 of the ti)eorem assures us that whichever of z .

J.

Z' is closer to y is the f i nal value assigned to z.

lilote t
hat since we are approximating the square root of an

integer
, the difference between z and

be st .
r.1.ctly less than 1/2, and hence

will always

will differ

y by less than

4.1 .

j-1
2 0 This completes the proof of

* * *

As in the division algorithm of Theorem 3.2 , the

e)(Ponent j in Theorem 4.1 may be decr eased in successive

" .
l.terations." In particular, since t . l ~ t.

1+ J.
for every

i
and since a decrease of one in j causes an increase

in by a factor of four, j may be decreased i n

the (i+l)st iteration by as much as

wi = [n ; ti] .
(4.23)

', .

I-Iowever , since

that

2
s-j

z. (
i

by (4.13), it f0Il0ws ..

n
z. (2 (M/2

i

that is
I z. is within the computer range

i

whenever

j is not less than

j . = s - n.
min

(4.24)

'.l'hu
s , We set j = 0 in Theorem 4 . 1 to obtain the nearest

integer to the positive square square root of a positive

integer or we may make j negative and obtain a more

accurat
· · h t

e approximation tote roo. If we decrease j to

jmin' we obtain the most accurate approximation to the root

that · · · · th . t

is consistent with keeping e in eger z in Theorem

Within the range of the residue number system. And

regardless of the j we use as long as it satisfies

0 2 .
7']

Theorem 4.1 guarantees that the error

in the final approximation to the root is less than 2j-l.

As an example of using this procedure to obtain an

approximation to a square root of an integer, let us now

calculate the most acct,Gte approximation z•2j to the

Positive square root y of x = 627,323 consistent with

keeping z within the range of the residue number system

Whose moduli are 2 3 5 7 11, 13, 17, and 19.

I I I I

From

135

and by

we h ave

and (4o 7), respectively, we have

p = 20 and n = 22,

(4.S), (406), (408), and (4.24), respectively,

P = 10, j = - 1, s = 10, and

'.l''hen
I our f .irst approximation to

calculating

.is

. 11

z = 2q=J = 2 = 2048

l

from (4o9), we have

(4.10), (4.23), and (4oll), we obtain

and z = 2048 - 2
9 = 1536.

2

'.I'he
results of the calculations for the remaining

iterat ·
ions are given in Table V.

Note that in the fourth iteration of this calculation,

we have

IIowever
I since

t4 = 14 = s - j.

]. • ~4 > - 12 = j .
m.1.n

at this point, we do not proceed with step 4 of Theorem

401 0
F or, When we decrease j by 1, W4 = 4, we £.ind that

2 w2 t4 +j =s ~l is indeed an integer, so that we may continue

w .
.I.th a fifth iteration. Moreover, again in the seventh

136

I-'
w
-..J

Tabl e V ~ Applicat.ion o f Theorem 4.l ~ Samp le Square Root Cal culat ion

1.

2

3

4

5

6

7

X c::: 627 , 323

j

2,048 -l

1. ,536 -1

6,400 -3

12, 672 -4

2 0 2,760 - 8

405,524 -9

811,046 -10

3,244 , 185 -12

2j-l - 2-13

g .
].

-l,685,01.2

1.49,996

-811,328

15,104

622,528

-754,064

227,932

-2,841,157

t .
].

21

18

20

14

20

20

18

--

= 0.0001221 • ••

y = 792 00372465 •••

z . • 2 j
].

1024.0000000

768.0000000

800.0000000

792.0000000

792.0312500

792.0390625

792.0371093 •••

792.0373535 •••

Error

(zi•2j)2

1,048, 5 76 . 0000

589,824.0000

640,000.0000

627,264.0000

627,313.5009 •••

627,325.8765 •••

627,322.7826 •••

627,323.1693 •••

= 0.0001070 •••

iteration we have

t7 = 18 < 20 = S = j I

but since

t 7 + w7 = s - j

we p r oceed a s i n step 4 of Theorem 4.1 to calculate

z ' = 3,244 , 185 . Since

/ g '/ = 2,841 , 157 < 3,646 , 912 =

we s et z = z' to obtain the final approximation

z •2j = 3,244,185•2 -
12 = 792.0373535 •••

Which diffe rs f r om y = 792.0372465 ••• by less than

j - 1 -13
2' ,1 , = 2 = 0 • 0 0 0 l 2 21 ••••

Thus, when j is being decreased from iteration to

iteration , the comparisons made between t .
].

and s - j

i n steps 2, 3, and 4 of Theorem 4.1 should be replaced

b y c ompariso ns between t . + w'
].

and s ~ j, where w'

is the value of j in the ith iteration minus the value

of J desired in the final resu l t .

As the above example suggests, the square root al

g or ithm of Theorem 4.1 often yields successive approximations

converging to the square root y at a rate considerably

faster than the minumum of one binary "bit" of accuracy

per two iterations established in the p r oof. And as we

138

139

shall see i' n the next chapter, th ' l 'th d ·
is a gor1. m oes indeed

Produce · .
in practice a sequence of approximations converging

at a rate several times faster than is predicted 1.·n the p rouf.

Moreover, it is interesting to note that an estimate of the

number of operations necessary in using floating-point arith

metic in conj unction with the Newton-Raphson method in a mod

Ular- arithmetic computer to calculate an approximation to the

square r oot of 627,323 with the same accuracy as obtained in

the above example indicates that the Newton-Raphson method re-

quires nearly t hree times as much computational effort as the

above algorithm.

Floating Point Operations in a Residu e Number System .

Clearly , the algorithm of Theorem 4.1 can be ut ilized to cal

cu late approximations to the positive square root of a positive

number given in floating-point form in a modular arithmetic

k

Computer . • 1 i· f the positive number x = u. 2
I n particu ar,

is given in the normalized floating-po i nt form s pecified in

the Preceding chapter (pp . 108-109), then an a pproximation to

t h e square root of x may be calculated as follows: If k

is odd , set v = 2u and h = (k-l) / 2 ; if k is even, set

and h = k/2.
Next, calculate an approximat ion z 0

the
Th em 4 l a nd j = .. lm/2/ ,

. square root of v , using eor . L J

140

where m is the integer satisfying (3.22). Then ,
i

Y = Z-2 ,

Where i = j + h, is the desired floating-point approximation

to the positive square root of x.

To illustrate the use of this procedure i n approximating

a square root of a number in floating-point form as well the

Use of some of the other floating-point operations described

in the preceding chapter (pp. 109-113), let us now show how

these operations can be used to calculate the greater root of

2
x - 5x - 7 = 0

in a residue number system whose moduli are 2 , 3, 5, 7, 11 ,

13, 17, and 19. From (3.22) we have m = 10, so that the

normalized floating-point representations of the coefficients

in the above equation are

-10
a= l = 1024·2 ,

-7

and c = -7 = -896·2 .

Using floating-point arithmetic operations to evaluate

-b + ✓b2 - 4ac

X = 2a

we first calculate 2a . Since the constant " two " in nor-

malized floating-point form is 1024• 2-
9 , we mul tiply

by
-10

1024·2 as outlined in the description of

floating-point multiplication in the preceding chapter (p.112).

We obtain l,048,576·2-l 7 which, when normalized, gives

-9
2a = 1024·2 .

In a similar manner we calculate

and

2c = -917,504·2-
16 = -896· 2-6 ,

(2a) · (2c) = 4ac = 917,504·2 - 14 = -896·2-5

141

Next, we subtract 4ac f b 2 tl ' d · th
rom as ou ine in e preceding

Chapter under floating-point addition and subtraction (pp . Ill -

112) and obtain

2
-5 -4

b - 4ac = 1696·2 = 848·2 .

2

Approximating the square root of

gives

b - 4ac as outlined above

- 4ac
-7

= 932 · 2 .

Subtracting b from this, we obtain

=

Finally, dividing this result by 2a as outlined in the

Preceding chapter (p. 113) , we obtain

X = 786•2-
7 = 6.140625 ,

Which is our computed approximation to the solution

5 + v53
X = 2

= 6.140055

Thus , we have shown how modular arithmetic computers can be

Used to add , subtract, multiply , divide, and approximate square

roots in either fixed-point or floating-point arithmetic.

142

While the square root approximation procedure given in

Theorem 4 . 1 above is somewhat complicated and while it may

converge rather slowly in some instances , the results of

extensive trial calculations using this procedure i ndicate

that i t converges sufficiently rapidly to be more efficient

on the average than us i ng floating-point arithmetic

and the Newton-Raphson method and more accurate than using

f i xed-point operations with the Newton-Raphson method in

modular arithmetic computers o To examine in more deta i l

the practical behavior of this square root algorithm, let

us now turn our attention to the results of those trial

calculations "

CHAPTER V

COMPUTER SIMULATION

A . Simulation Programs. In order to obtain a

better idea about how the division and square root

procedures of Theorems 3.2 and 4 . 1, respectively,

mi ght behave in practice, two simulation programs

were written to perform those procedures on the IBM

7090 computer . Under the control of the input data ,

these p r ograms perform "typical" divisions and square

r oot approximat i ons, record the amount of computat ion

required for each, and check the accuracy of each

approximat i on obtained . Through the use of these pro-

grams , i t i s possible to compute several thousand

quotients and square roots in a rather short time, so

t ha t deta i led i nformation about the practical be

h a vior of the division and square root procedures can

be obta i ned without resorting to hours of laborious

hand calculations . For simplicity in programming,

most o f the calculations in both the d i v i sion and the

square root simulation programs are performed i n

143

I

I
I

normal 7090 (floating-point) binary arithmetic.

simulation programs use residue arithmetic ~ only when

the error estimates f. and g, defined respectively

l l

by (3.16) and (4.11) are to be calculated~ since

the special truncation and overflow properties of

residue number systems are necessary to obtain the

correct values for these quantities . To calculate f.
l

and g, in the specified residue number systems , the

l

simulation programs use special subroutines~ Other

subroutines are also used to simulate the use of the

stored table of powers of two .

The division simulation program, written partly

in FORTRAN II and partly in FAP, accepts as input

data the modul .i to be used and the number of divisions

to be performed . For each division , it obtains a di

vidend and divisor by using random d igi ts +frqm a "random

number " generating subroutine to give the number of

digits inrthe dividend, the number of digits in the

divisor, then the dividend itself, and finally the

divisor itself . (Since the division procedure be-

haves no differently for positive or negative numbers,

only positive dividends and divisors are used.) Using

144

f-'
.i:,.
V,

Table VI - Division Simulation Program Results

Moduli are 7 11
M = 20,697,677

13 23 29 31

Dividend

2,993,174
502,614

5
2

4
7,786,191

835,659
846

675,797
49,722
48,827

6
9,176

93,846
72,946

Divisor

625,186
6,759

40,290
92

855,024
3

171
20,079

59
13

424
25
13

69,368
7,091,970

M/ 2 = 10,348,838

Quot ient J

5,020,219 -20 =
4,873,400 -16 =
4,263,381 -35 =
5,934,180 -28 =
5,157,832 -40 =
5,190,794 - 1 =
5,004,180 -10 =
5,655,072 -27 =
5,864,543 - 9 =
7,833,127 -11 =
7,546,996 -16 =
8,053,064 -25 =
5,782,292 -13 =
5,674,355 -22 =
5,522,101 -29 =

n = 23

4.78765392
74.36218262

0.00012407
0.02210654
0.00000469

2,595,397.
4,886.89453125

0.04213357
11,454.18554687

3,824.76904297
115.15802002

0.24000001
705.84619141

1.35287166
0.01028571

(/}
(/} C'

g
."(

-/.J
ftJ

g -/.J ftJ
."(A/ ~e '4 C' ii

""(

-/.J
ftJ

ii
-/.J

½

10
10

8
11

9
9
9
8
9
7

10
7
9

12
13

0 ftJ -/.J A/ ."(t!;
:y '4

(/} ::J
-/.J CJ A/

""(0
t:tJ

."(CJ (lJ

t:tJ ftJ 0.,

24 2.400
26 2.600
37 4.625
30 2.727
41 4.556
Exact
24 2.667
28 3.500
24 2,667
24 3.429
26 2.600
26 3.714
24 2 . 667
24 2.000
31 2.385

Average number of bits per iteration= 2.836 1 exact solution.

146

t he "randomly generated" dividend and divisor, the program

next begi ns the division procedure described in Theorem 3 . 2

a nd " i terates" with that procedure until it obtains the most

a ccurate approximation to the quotient consistent with the

r ange o f t he residue number system being used . Finally,

the p r ogr am checks the accuracy of the approximation ob

t ained and the number of "iterations" which were required

to attain it " After printing out the dividend, the

divisor , the approximation obtained, and the information

about the iterations required and the accuracy obtained ,

t he division program returns to the "random number" sub

r outine to calculate the dividend and the divisor for the

next division " Table VI contains a sample of the output

generated by this simulation program.

The square root simulation program operates in

much the same way as the division program, except that

t he "random number" generator is not used. Instead,

t he program reads from punched cards the smallest and

largest positive numbers whose square roots are to be

c alculated and the increment to be used in obtaining

o t h er numbers which are between the smallest and larges t

a nd whose square roots are also to be calculated . For

I-'
.i:,.
-.J

Table VII Square Root Simu lation Program Results

0

§
""(

-/.J
tr!

Moduli are 8 25

M = 272,327,400
27 29 37 47

M/ 2 = 136 ,163,700 27
§

""(

-/.J

G1 .}J tr]
""(.L.,

..Q ::J
CJ

'4 G1 if
0 tr! -/.J

Number

136,164
340,751
545,338
749,925
954,512

1,159,099
1,363,686
1,568,273
1,772,860
1,977,447
2,182,034
2,386, 621
2,591,2 0 8
2,795,795
3, 000 ,382

Root

96,732,230
76,511,857
96,792,703

113,505 ,966
128,056,2 0 2

70,557, 00 7
76,530,948
82,071,200
87,260,388
92,15 7, 855
96,807,874

101,244,557
105,494,789
1 09,580, 33 5
113,518,906

j

-18 = 369. 00417328
583.73914337
738.46971893
865.98179626

-l.7 =
-17 =
-1 7 =
-1 7 = 976.99128723

= 1076.61448669 -1 6
-1 6 = 1167.76959228

1252.30712891 -1 6 =
-1 6
-1 6
-1 6
-1 6
- 1 6
- 16
- 16

= 1331,48785400
= 1406 .21726990
= 1477.17092895
= 1544,869 33899
= 1609.72273254

= 1 672 . 063 21716
= 1732.16104126

2
Root

n =

136,164.078
340,751.387
545,337.523
749,924.469
954,511.969

1,159,098.750
1,363,685.812
1,568,273.141
1,772,859.891
1,977,447.000
2,182,033.937
2,386,621.250
2,591,207.250
2,795,795.375
3,000 ,381.844

f
-/.J

'-t

11
11
12
11
13
13

8
14
13

9
11
10
12

9
13

.L., ""(
(/J ::J

-/.J CJ .L.,
~~

~'4
""(0

Cl}

""(CJ <lJ
Cl} lrJ ~

28 2.545
34
29
28
28
28
29
28
28
29
29
28
29
27
28

3.091
2.417
2.545
2.154
2.154
3.625
2.000
2.154
3.222
2.636
2 . 800
2.417
3 . 000
2.154

Average number of bits per iteration= 2.594 O exact solutions.

148

each of these numbers , the program approximates the positive

square root by the procedure described above in Theorem

4 "1 , "iterating" over and over until the best approximation

to the square root consistent with the range of the number

system is obta i ned o After check i ng the accuracy of the

approximation and the number of "iterations" required ,

the program prints out the number whos_e square root

was approximated , the approximation itself , the square

of the approximation (for comparison with the original

number whose root was calculated) , and the information

about the accuracy obtained and the iterations required .

Finally the program adds the aforementioned i ncrement

to the number whose root was just approximated and ob -

tains the next number whose square root it is to calculate .

Table VII contains a sample of the output generated

by this simulation program "

S i mulation Results " The simulation programs

were run on the IBM 7090 computer at the Univers i ty

of Maryland ' s Computer Science Center . Eleven d ifferent

sets of moduli , rang i ng from 2 , ~, 5 , and · 7 to 8,

25 , 27 , 29 , 37, and 47, were tried to determi ne whe t her

or not c hanging the residue number system - that is ,

I

I
I

I

I

I
I

I
I

I

I

I

I

I
I

I
I

I

I

I
I

I

I
I

I
I

I

I

I

I
I

I
I

I

I

I
r

I

the computer range has any effect on the behavior

of the division and square root procedures. In general,

changing the moduli produced no noticeable effect, at

least in the average rates of convergence for the

two procedures . The accuracy of the approximations

increased as the computer range increased;but then,

did the number of iterations.

In all, over 6400 divisions and 6400 square

so

roots were calculated by the simulation programs.

total computing time was 35-40 minutes. For the

The

divisions , from 1 to 25 iterations were required

for each approximation, while for the square roots

the number of iterations ranged from 2 to 21.

The accuracy attained in the approximations was,

i n general, higher for the divisions than for the square

roo ts . For example, slightly over 10% o f the division

approximations were exactly equal to the quotient ,

while only 0 . 33% of the square root l approximations

were exact . Also the accuracy of the "non- exact"

approximations was greater for the divisions than

for the square roots, the approximations being often as

great as 20 binary bits "more acc urate " than predicted

149

in Theorem 3 o2 for division while seldom more than 6

or 7 bits more accurate than predicted in Theorem 4 . 1

for square roots .

The most significant results obtained from the

simulation programs were that the division and square

root procedures converge, on the average, considerably

more rapidly than is suggested by the proofs of

Theorems 3 o2 and 4 ol, res pectively . In particular,

for all of the more than 6400 divisions performed,

the average rate of convergence for the division pro

cedure was 3 0021 binary bits of accuracy per iteration,

and for about the same number of square roots, the

square root procedure converged at an average rate of

2 . 617 bits per iteration . For the division program,

the rate of convergence obtained in t he simulation runs

ranged from as low as the minimal l binary bit of

accuracy per iteration predicted in the proof of Theorem

3 o2 to as high as 8 02 bits per iteration . In the

square root simulation, the rate of convergence was

as low as 1 . 2 binary bits per iteration and as high

as 12 bits .

150

Clearly, these results from the simulation programs

emphasize the practical value of the division and s quare

root procedures deve l oped in Theorems 3 . 2 and 4 . 1 ~

Not only do these procedures converge considerably more

rap id ly i n practice than is prov ed in the above theorems,

:but also the computational effort they require to ob

tai n the approximations is considerably less than for

any other divi s ion or square root procedure yet devised

for residue number systems .

151

CONCLUSION

In this thesis we have treated four problems: how to

compare the magnitudes of two numbers, how to detect additive

a
nd multiplicative overflow, how to divide , and how to

approximate square roots in residue number systems. In

Chapter I , we showed how the ordinary positional notation

for integers can be extended to a mi xed - radix no'ta-tion

Which can then be used to determine the larger and smaller

of two numbers in a residue number system. In Chapter II,

We used this comparison technique to help determine whether

or not overflow occurs in addition , subtrac_tion, and multi

Plication in a residue number system. We gave simple

necessary and sufficient conditions for additive overflow

and we presented two methods for detecting multiplicative

overflow. For the latter multiplicative overflow detection

Procedure, we introduced the use of a table of powers of two,

Which we then also used in Chapters III and IV to implement

respectively a divisioh algorithm and a square root alga-

rithm for residue number systems. In Chapter III, we

showed how the division algorithm can be used to provide

152

approximations to a quotient ranging from t he n e a res t i n teger

to the most accurate · ·
approximation possible for the residue

numbe r system being used. We also showed how the division

algorithm may be applied to provide modular arithmetic com

puters with the capability for performing floating-point

arithmetic operations . In Chapter IV, we presented an algo-

rithm in which division can be avoided while approximating

the square root of a number in a residue number system , and

we showed how this algorithm can be used to obtain an approx

imation to the square root with any degree of accuracy from

the nearest integer to most accurate approximation possible

for the residue number system used.

In each instance, we have provided examples illustrating

how the procedures given are used in actual computations and

we have explaine d how the necessary computations for these

procedures can be performed convenie ntly in a modular ar i th

met i c computer. Finally , in Chapte r V , we de s cribed how a

conventional digital computer was programmed to simul · · h

use of the division and square root algorithms in a modular

arithmetic computer in performing trial calculations. From

t he sample calculations performed by the simulation p rograms ,

we found that the convergence of these methods is c onside r

a b l y faster in practice than wa s ind 'ca ted by t h e proofs o f

th ·
e pertinent theorems in Chapters III and IV. Thus , we-

h ave not only presented solutions to the four probl ems we

considered, but we have also shown that these solutions

are workable in practical applications.

At this point it might be well to ask what problems

related to the use of residue number systems in digital

computers have we not solved . In addition to the many prob-

lems related to the electronic engineering and design of

modular arithmetic computers , there are still numerous open

"theoretical" questions, of which we shall mention just a

few . First , we have not considered in the preceding chap-

t ers whether or not a table of powers of three or four or

some other positive integer can be substituted for the table

of powers of two which we used in the multiplicative over

flow detection , the division , and the square root pro

cedures . Because of the reliance on the specific properties

of the powers of two at various c~it i cal points in the proofs

r elated to these procedures , it is the author ' s opinion that

Using a table of powers of an integer greater than two would

complicate cQnsiderably any extensions of the procedures

given . Nevertheless , such extensions , or entirely different

methods, ~.are no doubt possible and would probably converge

1 54

faster than the methods given above for division and square

root approximation . Next, it might be inquired whether or

not the square root algorithm given in Chapter IV can be

extended to provide approximations to real roots of degree

higher than two or, more generally, whether the algorithm

can be extended to approximate real roots of polynomial

equations . Such extensions, or methods entirely different

from that given above, are obviously quite desirable, but

in view of the complexity of the proof of Thedrem 4 . 1, the

author feels that finding them would be rather difficult .

F inally, instead of trying to force residue number systems

t o perform calculations for problems based in the real or

r ational number systems, it might be asked whether or not

there exist problems - in particular, in number theory

which can be stated directly in terms of residues and

congruences and f or which a digital computer using a residue

number system would be better suited than conventional

d i g i tal computers. If such problems exist , the author is

presently unaware of them, but he feels that learning a

suffic i ent amount of number theory to carry out such an

i nquiry should be rewarding enough to make the whole effort

wor thwhile .

155

BIB .IOGRAPHY

s ·nce much oft e work on the appl i cati on of residue

numb9r systems to digital computers has been p bl i shed in

rather obscure journals and ~eports , the a thor has attempted

to include in th i s bibl i ography all r e ferences know . to him

a nd pertaining tote use of r es i due nunioer systems in digita l

computers " To those i nterested in exam ' n i ng some of these

r ,9 ferenc e s , the following i nformat i on may be of ass · stance .

References [l], [Ill, [131, [l7J , (191 ,, a.nd (32)

below are United states Air Force Te_tnical Reports which

Were submitted under ontracts with tte Electronic Tech

nology Laboratory , Aeronaut i cal Systems Divi sion , United

States Air For ce , wr i ght--Pa tte r s on Ai r Forc e Base , Ohio

Qualified requ e sters may obta n co 1-e s of t hese reports

f r om the Defense Documentat · on en t .e r , Cameron stat i on ,

Alexandria , Virginia 22314 . T~ese reports are no t , in

g e neral , part of the "open " l ' tera ture .

156

157

I , ,

The journal, Stroje Na Zpracovani Informaci, referred to

in $(eferences [23), [24]. [28), [30), ana [31) below. li!:s pub

lHihed by• the Laborator Ma:tema'tickych , S.troju•, ~ Oe.skoslovenska

Akademie Ved (Laboratory of Mathematical Machines, Czecho

slovakian Academy of Sciences), Prague, Czechoslovakia . The

,

title means "Machines for Processing Information . " Sbornik

I-VIII (Volumes 1-8) of th.is journal are available at the

Library of Congress under call number QA76 . S84 .

[l] Aiken, H. H. and Semon, W. Advanced Di gital -Computer
Logic . ASD Technical Report No . 59-472 . Wright
Patterson Air Force Base, Ohio : Aeronautical
Systems Di vision, United States Air Force, 1959 .

[2] Cheney, P .W. "A Digital Correlator Based On the Resi-

[3]

due Number System," IRE Transactions on Electronic
Computers, EC-10 (March, 1961), pp . 63-70 .

Dickson, L . E .
Vol . II .
195 2 v

History of the Theory of Numbers,
New York: Chelsea Publishing Company,

[4] Eastman, W
0
L . "Sign Determinat i on in a Modular Number

system, " Proceedings of .£ Harvard Symposium on
Dig ita l Computers and The i r A££lications, 1961,
pp

0
136-162 . Cambr i dge, Massachusetts : Harvard

University Press, 1962 .

[5] Garner, H
0
L . "Error Checking and the Structure of

[6]

Binary Addition . " Ph . D. Dissertation . Ann
Arbor, Michigan: Universi ty of Michigan, 1958.

"The Residue Number System," Proceedings of
the Western Joint Computer Conference, 1959,

pp . 143-153 .

[7] "The Residue Number System," ~ Trans

actions Q!l Electronic Computers, EC-8 (June,

1959) , p p . 1 40- 147 .

[8] Griffin, H. Elementary Theory of Numbers o New York:

McGraw-Hill Book Company, 1954 0

[9] Guffin, R .M. "A Computer For Solving Linear Simul-

158

taneous Equations Using the Residue Number System , "

IRE Transactions .QQ, Electronic ComEuters, EC-11

(April, 1962), pp . 164-173 .

[10] Hardy , G. H. and Wright, E .M. An Introduction to !he

Theory of Numbers, 4th ea . London ~ Oxford Uni

versity Press, 1960 .

[llJ Harvard Computa tion Laboratory, Harvard University .

Notes on Modular Number Systems . ASD Technical

Report No . 61 - 12 . Wright- Patterson Air Force

Bas e, Ohio : Aeronaut ical Systems Div i s i on,

United States Air Force, 1961 .

[12] Hildebrand, F . B . Introduction t o Numerical Analys i s .

New York : McGraw-Hill Book Company, 1956 .

[13] I nformation Systems Laboratory, University of Michigan .

Residue Number Systems for Computers . ASD Techni

cal Report No . 61 - 483 . Wright- Pat terson Air Force

Base, Ohio : Aeronautical Systems Div i sion, United

States Air Force, 1961 .

[14] Jacobson , N. Lectures in Abs tract _Algebra, Vol . I .

Pr i nceton , New Jersey ~ D Van Nostrand Company,

1951 .

[IS] Keir, Y. A . , Cheney, P . W. , and Tannenbaum, M. "Di vision

and Overflow Detection in Residue Number Systems,"

IRE Transactions on Electronic Computers, EC - 11

(August, 1962), pp . 501 -50 7 "

[16] Lindamood, G . E . and Shapiro, G. "Magnittt~·' .Compari

son and Overflow Detection in Modular Arithmetic

Computers," SIAM Review, V (October, 1963) ,

pp . 342-350 .

159

[17) Lockheed Missiles and Space Company. Modular Arith

metic Techniques . ASD Technical Report No . 62-686 .

Wright-Patterson Air Force Base , Ohio: Aeronautical

Systems Division , United States Air Force , 1962.

[18]

[19)

[20]

[21)

[2 2]

[2 3]

[24]

[2 5]

[26]

Rozenberg, D.P . "An Investigation of the Algebraic

Properties of the Residue Number System . " Ph.D.

Dissertation. Ann Arbor , Michigan: Un iversi ty

of Mi chigan, 1961.

Scope , Incorporated. Computer A£plications of Residue

Class Notations. ASD Technical Report No . 61-189 .

Wright-Patterson Air Force Base, Ohio : Aeronautical

Systems Division, United States Air Force, 1961.

Shapiro, G. "Gauss Elimination for Singular Matrices,"

Mathematics of Computation , XVII (October , 1963),

pp. 441-445.

Shapiro , H. S . "Some Notes on Modular Arithmetic and

Parallel Computation," Mathematics of Computation,

XVI (April, 1962), pp . 218 - 222 .

Private communication . May , 1962 .

Svoboda , A. "Application of t he Korobov Sequenc~ in

Mathematical Machines , " Stroj e ~~ Zpracovani

Informaci
1

, Sbornik III (1955 , pp . 61-76 (1956).

"The Rational Number System of Residual
I I I I

Classes, " Stroje ~ Zpracovani Informaci, Sbornik

V l l157), pp . 9-37 .

"The Numerical System of Residual Classes in

Mathematical Machines," .f.E".2.£§.edl:~g§_ · Congreso

Internacionale de Automatica , Madrid, 1 3-18

October 1958 , pp o 388-397 . Madrid : Insti uto

de Electricidad y Automat ica, Consejo Superior

de Investigaciones Cient{ficas, 1961.

"The Numerical System of Residual Classes in

Mathematica l Mach i nes," Information Processing :

Proceedings of the International Conference on

Information Processing, Pris , 15-20 April ~ 1959,

pp. 419-422 . Paris : UNESCO, 1960 .

[2 7]

[28]

[29]

Szabo, N " "Sign Detection in Nonredundant Residue

Number Systems," IRE Transactions on Electronic

Computers, EC-11 (August , 1962), pp.~494-500
0

V / I

Valach, Mu "Vzn.ik Kodu A Ciselne Sous tavy Zbyt-

kovycI-; Trid," Stroje Ii_~ .z12racovani Informaci',

Sbornik III (1955) , pp " 211-245 (1956) "

____ • "Ab bildung der Zahl en und der Ari thmetischen

Operationen in Restklassen ," Aktuelle Probleme

im Rechnentechnik ~ Bericht dber .das Interna-•

tiona le Mathematiker-Kollogu~m., Dresden, 22-27

November 1955, pp " 57 - 59 0 Berlin : VEB Deut-

scher Verlag der Wissenschaften , 1957 "

[30] ·---- "The Translation of Numbers from the System

of Remainder Classes to a Polyadic System by

Change of Scale of Period I II Stroj_e Na, .~racovani'

Informac{, Sborn{k IV 1956), pp 53-·64 "

[31] ____ .and Svoboda, A " "Opercltorove.' Obvody , '1
/ S troje

Na ,zpracovan(Tnformac{, Sbornik III (1955),

pp . 24 7-295 (1956) ..

[32] Westinghouse Electric Corporation . Modular Arith-

.!!!.§tic, Com12uting, Technig:1~~s o ASD Technical Report

No " 63-280 0 Wright •-Patterson Air Force Base, Ohio:

Aeronautical Systems Division , Un ited States Air

For ce, 1963 .

160

	211022781
	1484631

