ENSP 400 Capstone

LED Lighting: Carbon Footprint Reduction and Energy Cost Savings at Prince George's County Parks and Recreational Facilities

Final Presentation

Alison Snider, Nina Jeffries, Jock Thompson, Derin Belanger, Matthew McClanahan, Parhum Ghassemi

Agenda

Goals and Objectives

- Goal: To account for, and subsequently minimize, the carbon production associated with operation of a facility
- Determine and verify carbon reduction, energy efficiency, and cost savings across 4 facilities
- Apply those findings to measure the assumed carbon reduction and cost saving for a facility that has not undergone a LED retrofit

Objective 1

- To identify 4 facilities with the informational needs to accurately assess the facility electrical energy usage and impact retrofitting:
 - Seat Pleasant Community Center (retrofitted: 18,200 sq. ft.)
 - Vansville Neighborhood Recreation Center (retrofitted: 4,100 sq. ft)
 - Huntington Community Center (not retrofitted: 20,000 sq. ft.)
 - Palmer Park Community Center (not retrofitted, 32,000 sq. ft.)
- Once we started calculations, we cut the aviation museum
 - Analyzing energy usage per square foot per day
 - To compare energy use across retrofit vs non-retrofit we want to have similar energy uses

Objective 2

- Original: Identify realized and potential cost-savings for switching to LED lights. Where data is available, include cost-savings for additional energy-saving technologies (motion sensors, automatic lights, etc.)
- Updated: Examine the projected and actual energy savings that took place at three facilities in response to the conversion to LED lighting, and the addition of light control sensors

Objective 3

- Determine realized and potential carbon footprint reduction that results when switching to LED lights, including the carbon reduction from additional energy-saving devices such as motion sensors or timers
- Carry out a life cycle analysis and evaluate literature in order to obtain data from which the carbon footprint reduction can extrapolated for the facilities being studied

Methods

- Research of peer-reviewed literature on life cycle analysis
- Requests for data from client's points of contact via phone and email
- Analysis of electric bills, consultant reports, contractor documents, and manufacturer information

Methods

- Energy bills from June, July, Aug of 2019 and 2021
- Projected: taken from consulting documents plus the average difference for the two non-retrofit sites
 - Per-facility: calculated change from switching to LED appliances
 - Average difference for non-retrofit represents expected change due to factors other than LED
- Actual: change in kWh/sq. ft/day from energy bills
 - Calculated from the utility bills for the three months
- LED lights only:
 - Calculated from the consultants itemized listing of the wattage of all lights present within the facility
- Everything calculated in kWh/sq. ft./day
 - To account for differences in the size of the facilities, slight differences in the billing periods between the facilities, and the years being considered in the analysis

Findings: Objective 2 - Energy and Cost Savings

- The data shows that the difference in electricity bills from 2019 to 2021 was larger for the retrofitted facilities in all months.
- Since the study only examined two retrofitted facilities, it is hard to determine what would be expected for the average community center.
- Both retrofitted facilities observed electricity savings but less than predicted by the consulting team.
- Some of the reduction in electricity usage can likely be attributed to changes in occupancy due to the COVID-19 pandemic.

Electricity Savings in 2021 for Two Retrofitted Facilities

Findings: Objective 2 - Energy and Cost Savings

- The findings of cost savings for the facilities that retrofitted to LED lights varied
- The reason can be due to the impacts of Covid-19 varied between facilities and saw the effects differently

Findings: Objective 3 - Carbon Savings and LCA

- Carbon footprint reduction from retrofitting is greatest in facilities where lighting already made up a larger portion of total electricity usage (and therefore the total resulting carbon emissions)
- All facilities studied (retrofitted and non-retrofitted) had a reduction in their carbon emissions in Summer 2021 when compared to Summer 2019
- Out of all the facilities studied, Vansville Community Center experienced the greatest carbon emissions reduction after being retrofitted
- Although Seat Pleasant Community Center was also retrofitted, it did not experience a reduction in carbon emissions that was greater than that of non-retrofitted facilities, but it also had a much smaller amount of total electricity usage that came from lighting

Findings: Objective 3 - Carbon Savings and Literature Review

- Manufacturing phase sees LEDs as most impactful
 - Impacts are of less significance when considering use phase
 - LEDs see at least "41% less global warming impact because of less CO2 emissions"
- LEDs with higher luminous efficacy have highest degree of energy/carbon savings
 - The addition of dimming technology can cut energy consumption by an additional 10%
 - Benefits maximized with sensors
- Overall, data on production and disposal stages is not as extensive
 - Data on use stage is extensive for most every lighting product

Recommendations

- Prince George's County Department of Parks and Recreation make a complete switch to LED lights along with other energy saving devices in all facilities under their administrative jurisdiction
 - Motion sensors
 - Automatic lights
- Going forward all newly constructed facilities be fitted with LED lights and energy saving devices from the beginning
 - Saves money on energy bill and maintenance bill
 - Has a greater impact on reduced carbon footprint

Limitations of Results/Findings

- Inconclusive data on multiple stages of LED lifecycle
 - Creates uncertainty during the decision making process
- Study only examined two retrofitted facilities
 - \circ Small sample size can skew the data
- Compares only three months from two years as opposed to the entire year
 - **2019, 2021**
 - Jun, Jul, Aug
- Data shows the amount of saving for cost, energy, and maintenance is linked to the proportion of electricity used for lighting in each facility
 - More electricity dedicated to lighting is grounds for more savings

Future Work

• Same analysis but with more facilities

- Two facilities is not enough to get a complete picture
 - Vansville saw less of a reduction in energy usage compared to Seat Pleasant
 - Facilities have different policies
- Same analysis in a year or two
 - COVID-19 still had impacts on occupancy
 - Different community centers had different policies
 - Ex. Palmer Park: fewer summer camps, closed earlier, etc.
- Interview employees at the four facilities
 - Want to know what we knew for Palmer

Questions?

Photo Credit: Catherine Madsen (Photographer) and the PALS Program at Palmer Park Community Center