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HAMILTONIAN LIE ALGEBROIDS

CHRISTIAN BLOHMANN AND ALAN WEINSTEIN

Abstract. In previous work with M.C. Fernandes, we found a Lie algebroid symme-
try for the Einstein evolution equations. The present work was motivated by the effort
to combine this symmetry with the hamiltonian structure of the equations to explain
the coisotropic structure of the constraint subset for the initial value problem. In
this paper, we extend the notion of hamiltonian structure from Lie algebra actions to
general Lie algebroids over presymplectic manifolds. Application of this construction
to the problem in general relativity is still work in progress.

After comparing a number of possible compatibility conditions between an anchor
map A → TM on a vector bundle A and a presymplectic structure on the base M ,
we choose the most natural of them, best formulated in terms of a suitably chosen
connection on A. We define a notion of momentum section of A∗, and, when A is a
Lie algebroid, we specify a condition for compatibility with the Lie algebroid bracket.
Compatibility conditions on an anchor, a Lie algebroid bracket, a momentum section,
a connection, and a presymplectic structure are then the defining properties of a
hamiltonian Lie algebroid. For an action Lie algebroid with the trivial connection, the
conditions reduce to those for a hamiltonian action. We show that the clean zero locus
of the momentum section of a hamiltonian Lie algebroid is a coisotropic submanifold.
To define morphisms of hamiltonian Lie algebroids, we express the structure in terms of
a bigraded algebra generated by Lie algebroid forms and de Rham forms on its base.
We give an Atiyah-Bott type characterization of a bracket-compatible momentum
map; it is equivalent to a closed basic extension of the presymplectic form, within the
generalization of the BRST model of equivariant cohomology to Lie algebroids. We
show how to construct a groupoid by reduction of an action Lie groupoid G×M by a
subgroup H of G which is not necessarily normal, and we find conditions which imply
that a hamiltonian structure descends to such a reduced Lie algebroid.

We consider many examples and, in particular, find that the tangent Lie algebroid
over a symplectic manifold is hamiltonian with respect to some connection if and
only if the symplectic structure has a nowhere vanishing primitive. Recent results of
Stratmann and Tang show that this is the case whenever the symplectic structure is
exact.
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1. Introduction

We introduce in this article a notion of hamiltonian Lie algebroid over a presymplec-
tic manifold. The definition consists of three conditions, each of which generalizes a
standard condition in the case where a Lie algebroid is the action Lie algebroid g×M
associated with an action of a Lie algebra g on a presymplectic manifold M .
Recall that an action of a Lie algebra g on a presymplectic manifold (M,ω) is called

hamiltonian when the following three conditions are satisfied:

(1) the action of g leaves ω invariant;
(2) there is a momentum map µ :M → g∗ for the action;
(3) µ is equivariant for the infinitesimal coadjoint action of g.

To express these conditions in terms of the action Lie algebroid A = g×M , we first
notice that the action is encoded in the anchor ρ : A → TM . Next, the momentum
map can be considered as a section of A∗; thus, for a general Lie algebroid we will look
for a “momentum section” of A∗. To express conditions (1-3) above in terms of the
action Lie algebroid, though, we need to restrict attention to constant sections of A,
which correspond to elements of g.
In a general Lie algebroid, which may not even admit a trivialization, there is no

natural notion of constant section. Instead, we will add to our structure a vector
bundle connection D on A. When D is the product connection on g×M , the constant
sections are the horizontal ones. In general, we have only sections which are “horizontal
at a given point,” so we may attempt to impose our conditions point-wise. It is more
useful, as we will see, to express conditions (1-3) by formulas involving D, applied to
general sections. The other ingredients in these formulas are ω, ρ, and the A∗-valued 1
form γ defined by 〈γ(v), a〉 = ω(v, ρ(a)) for vector fields v and sections a of A. Starting
with D, we get a dual connection on A∗, and from there a degree-1 operator (which we
also denote by D) on the graded vector space Ω•(M,A∗) of A∗-valued differential forms
on M .
We can now make the following definitions, which reduce, for an action Lie algebroid

with the trivial connection, to the usual definitions for Lie algebra actions.
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Definition 1.1. Let (A, ρ, [ , ]) be a Lie algebroid over a presymplectic manifold (M,ω).
With D and γ as defined above:

(H1) A is presymplectically anchored with respect to D if

Dγ = 0 .

(H2) A section µ ∈ Γ(A∗) = Ω0(M,A∗) is a D-momentum section if

Dµ = γ .

(H3) A D-momentum section µ is bracket-compatible if

(dµ)(a, b) = −〈γ(ρa), b〉

for all sections a and b of A, where d is the Lie algebroid differential, a degree-1
differential on the graded algebra Γ(∧•A∗).

A Lie algebroid together with a connection D and a section µ of A∗ satisfying (H1) and
(H2) is called weakly hamiltonian. It is called hamiltonian if it satisfies (H1)-(H3).

Note that 〈γ(ρa), b〉 = ω(ρa, ρb), which shows that the right hand side of condition
(H3) is always antisymmetric in a and b.
In Section 2, we arrive at a version of the condition (H1) in terms of local sections,

choosing one from among several possible notions of what it should mean for a Lie
algebroid to be compatible with a presymplectic structure. This choice is based partly
on examples, but we see in Section 3 that the definition has a very natural formulation
in terms of connections.
In Section 4, we introduce the notion of D-momentum section for a Lie algebroid

presymplectically anchored with respect to a connection D, and we define in Section
4.2 what it means for a momentum section to be compatible with a Lie algebroid
bracket. (Until this point, the bracket on sections of A is irrelevant, and we assume
simply that A is provided with a connection and a bundle map A→ TM .)
We reach in Section 5 one of the original goals of our work, which is to show that, like

the zero set of the momentum map for a hamiltonian Lie algebra action, the zero locus
of the momentum section of any hamiltonian Lie algebroid is coisotropic. It turns out to
be useful here to express bracket-compatibility in terms of a torsion tensor T : ∧2A→ A
associated to the connection D.
Having established the definitions and some properties of hamiltonian Lie algebroids,

we proceed in Section 6 to study a wide range of examples. After dealing with the
rather simple case of bundles of Lie algebras (where ρ = 0), we move to the other
extreme case, where ρ is an isomorphism, so that A is (isomorphic to) the tangent
Lie algebroid. We will see that TM is presymplectically anchored with respect to a
connection D exactly when the presymplectic form ω is parallel with respect to an
“opposite connection” Ď. Such a connection exists if and only if ω has constant rank.
In fact, it is known that the connection can be chosen so that its torsion takes values
in the kernel of the map γ, which is here the map ω̃ : TM → T ∗M associated to ω.
When ω is symplectic, the torsion can thus be made zero. For our purposes, though,
when it comes to finding bracket-compatible momentum sections (which are in this case
1-forms on M), it will be essential to admit connections with nonvanishing torsion. We
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come to some surprising conclusions, including the result that the tangent bundle of
a symplectic manifold has the structure of a hamiltonian Lie algebroid if and only if
ω = dµ for a nowhere vanishing 1-form µ. This raises a question of symplectic topology:
for which exact symplectic structures does a nowhere vanishing primitive µ exist? We
give some classes of examples for which it does exist (such as the cotangent bundles of
noncompact manifolds); we know of no example for which it does not.
To further develop the theory of hamiltonian Lie algebroids, we introduce and study

in Section 7 a notion of morphism, using a bicomplex which provides a unified framework
for the various structures that make up a hamiltonian Lie algebroid. The section ends
with the example of transitive Lie algebroids.
Our original motivation came from previous work on the Einstein evolution equations

for a gravitational field in a spacetime free of matter, which are a hamiltonian system
on a symplectic phase space P of Cauchy data. Because the corresponding lagrangian
functional is degenerate, the initial conditions must belong to a constraint subset C ⊂
P. It is known that the constraint subset is coisotropic and has conic singularities,
geometric properties which are characteristic of the zero level sets of momentum maps
for hamiltonian actions of Lie algebras (see e.g. [35]). But the constraint functionals
cannot actually be the components of a momentum map. When their Poisson brackets
are written as linear combinations of the constraint functions themselves, the coefficients
are functions on P rather than constants, as would be the case with the momentum
components of a hamiltonian action of a Lie algebra action on P.
In [7], with Marco Cezar Fernandes, we found a Lie algebroid over an enlarged space

P ′ mapping onto P, with a natural trivialization for which the bracket relations among
constant sections match the bracket relations among the constraint functions. What
was missing was a connection between our Lie algebroid and the symplectic geometry
of P which would be analogous to that of a hamiltonian action of a Lie algebra. The
present paper begins to fill that gap by introducing a notion of hamiltonian Lie algebroid
for which the zero set of what we call the momentum section is coisotropic. So far,
though, we have not succeeded in finding the required presymplectic structure which is
compatible with the Lie algebroid.
Section 8, independent of the earlier material, is closely related to the application to

general relativity. It is easy to see that, if a group G acts on a set M , and that H is a
normal subgroup of G, then the action descends to an action of G/H onM/H . We show
that, even if H is not normal, if it acts freely onM , then the action groupoid G×M still
descends to a groupoid over M/H (which is the action groupoid G/H ×M/H when H
is normal). This result holds for Lie groupoids1 when the action is free and proper. In
any case, the reduced groupoid is Morita equivalent to the original one. The example
of interest for the Einstein equations is that where G is the group of diffeomorphisms
of a space time S, Σ is a distinguished hypersurface in S, M is the space of Lorentz
metrics on S for which Σ is spacelike, and H is the subgroup leaving Σ pointwise fixed;
we give more details in Example 8.13. Then, in Sec. 9, we discuss the reduction of
hamiltonian structures from action groupoids to their reductions.

1The corresponding result for Lie algebroids was obtained by Lu [28]. See Section 12 for further
discussion.
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In Section 10, the central result is an extension to Lie algebroids of the theorem
of Atiyah and Bott [3] that equivariant momentum maps for a symplectic action of a
Lie algebra g on (P, ω) (i.e., maps which make the action hamiltonian) correspond to
extensions of ω to closed basic elements in a Weil algebra whose cohomology is, under a
properness assumption, the equivariant cohomology for a group action which integrates
the g-action. For Lie algebroids, the usual Weil algebra is replaced by the one introduced
by Mehta [31]. We show that, in this setting, bracket compatible momentum sections for
presymplectically anchored Lie algebroids (i.e., sections which make the Lie algebroid
hamiltonian) correspond to closed basic elements in this more general Weil algebra.
This takes considerable effort, including developing a Cartan calculus extending that
from Section 7 in order to give suitable definitions of what it means for Weil algebra
elements to be closed and basic.
The paper ends with Section 11 on open questions of varying degrees of difficulty,

followed by a discussion of previous work related to ours.

Acknowledgements. For comments, encouragement, and advice we would like to
thank Alejandro Cabrera, Marius Crainic, Noriaki Ikeda, Madeleine Jotz Lean, Hon-
glei Lang, Kirill Mackenzie, Ioan Marcut, João Nuno Mestre, Michele Schiavina, and
Thomas Strobl as well as the audiences over several years who heard us present prelim-
inary versions of this work and gave invaluable feedback. We also thank the referee for
many useful suggestions, which have improved the paper substantially.
C.B. would like to thank the math department of UC Berkeley for its hospitality.

A.W.’s research was supported in part by the UC Berkeley Committee on Research.

2. Anchored vector bundles over presymplectic manifolds

2.1. A review of presymplectic geometry. All manifolds will be assumed to be fi-
nite dimensional and second countable, which implies that the space Γ(M,E) of smooth
sections of a finite rank vector bundle E over a manifold M is finitely generated as a
C∞(M)-module. (We will need this assumption for the proofs of Propositions 2.7
and 3.2.) For convenience, we will also assume that our manifolds are connected.
A presymplectic form on M is a closed 2-form ω ∈ Ω2(M). We denote by ω̃ :

TM → T ∗M , v 7→ ιvω the associated map of vector bundles. When the rank of ω̃
is constant, we will call ω regular.2 As usual, when ω is nondegenerate in the sense
that ω̃ is an isomorphism (equivalently, the characteristic distribution is zero), we call
ω symplectic.
Given a subspace V ⊆ TmM , the subspace {v ∈ TmM |ω(v, w) = 0 for all w ∈ V }

will be called the presymplectic orthogonal of V and will be denoted by V ⊥. The
subspaces (TmM)⊥, which form the kernel of ω̃, will be called the characteristic

subspaces.
The characteristic distribution of all characteristic subspaces will be denoted by

TM⊥, where we omit the parentheses to lighten the notation. For regular ω, TM⊥ is
integrable because ω is closed; the leaves form the characteristic foliation. The local

2Unlike some authors, we will not reserve the term “presymplectic” for the regular case.
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leaf spaces (and the global one, if the foliation is globally a fibration) then inherit sym-
plectic structures which pull back to ω. We will call these reduced spaces of (M,ω).
In the regular case, any presymplectic structure descends to symplectic structures on
these reduced spaces.
A subspace V in any presymplectic space will be called symplectic if the induced

2-form is symplectic (equivalently, if V ∩ V ⊥ is the zero subspace). For instance, any
complement of (TmM)⊥ in TmM is symplectic. When V ⊆ TmM is contained in V ⊥,
i.e. when the pullback of ω to V is zero, V is called isotropic. When V contains V ⊥, V
is called coisotropic. Note that, since the characteristic subspace (TmM)⊥ is contained
in V ⊥ for any V , every coisotropic subspace must contain the characteristic subspace.
V is called lagrangian when it is equal to its presymplectic orthogonal. A subspace

is lagrangian if and only if it is the sum of the characteristic subspace and a lagrangian
subspace of a symplectic complement.

Remark 2.1. Since V ⊥⊥ = V for any subspace of a symplectic space, it is immediate
that a subspace is isotropic if and only if its symplectic orthogonal3 is coisotropic. In the
general presymplectic case, we have only V ⊥⊥ ⊆ V . It does follow from this inclusion
that V ⊥⊥⊥ = V ⊥, and from there that V is isotropic if and only if V ⊥ is coisotropic, and
that V being coisotropic implies that V ⊥ is isotropic. But V ⊥ can be isotropic without
V being coisotropic. For instance, if S is any complement of the characteristic subspace
C, the latter being assumed nonzero, then S⊥ = C, which is certainly isotropic. But S
does not contain its presymplectic orthogonal C, so it is not coisotropic.

Passing from vector spaces to manifolds, we call a submanifold N of M (co)isotropic
if all of its tangent spaces are (co)isotropic in TM . For instance, the leaves of the
characteristic foliation of a coisotropic submanifold C (that is, the foliation tangent to
the characteristic subbundle (TC)⊥) are always isotropic. Since coisotropic subspaces
contain the characteristic subspaces, every (closed) coisotropic submanifold is a union
of characteristic leaves. Thus, coisotropic submanifolds correspond to certain subsets of
the reduced space; when there is a nice reduced manifold, these subsets are coisotropic
submanifolds of it.
A vector field v ∈ X (M) for which ιvω is closed, i.e. for which the Lie derivative

Lv ω is zero, is called presymplectic. When, additionally, ιvω is exact, v is called
hamiltonian; any function f for which df = ιvω is called a generator for v, and the
pair (f, v) is called a hamiltonian pair. Not every f belongs to a hamiltonian pair; when
it does, it is called a hamiltonian function.
For two hamiltonian functions f and g, the Poisson bracket {f, g} := ω(v, w), where

(f, v) and (g, w) are hamiltonian pairs, is well-defined, i.e. it does not depend on the
choice of the hamiltonian vector fields v or w. The Poisson bracket equips the vector
space of hamiltonian functions with the structure of a Lie algebra.

Remark 2.2. Note that a hamiltonian function, since its differential df is in the image
of ω̃, must be constant along each leaf of the characteristic foliation of M . If the

3We will sometimes replace the adjective “presymplectic” by “symplectic” when the ambient space
is symplectic.
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characteristic foliation is not simple, then, non-constant hamiltonian functions may be
scarce or even nonexistent.

When ω is symplectic, every function f belongs to a unique hamiltonian pair (f, vf).
Note that the map C∞(M) → X (M), f 7→ vf is an antihomomorphism of Lie algebras.
On the other hand, to be consistent with the usual definition of Lie algebroids, we
define an action of a Lie algebra g on a manifold M to be a map of vector bundles
ρ : g × M → TM that induces a homomorphism of Lie algebras also denoted by
ρ : g → X (M). This will make it necessary to introduce minus signs at some points,
e.g. in Proposition 4.6.

2.2. A hierarchy of compatibility conditions. The most basic compatibility con-
dition for an action ρ : g → X (M) of a Lie algebra on a presymplectic manifold is
that the vector fields ρ(a) be presymplectic for all a ∈ g. We will often think of the
action as a vector bundle map g ×M → TM , which we will also denote by ρ.4 From
this point of view, if we consider g ×M simply as a vector bundle A, the condition
that the action be symplectic is expressed in terms of the trivialization of A in which
the elements of g correspond to the constant sections of A. (Note that this condition
does not involve the Lie bracket.) As a first step toward a notion of hamiltonian Lie
algebroid, we have to find a suitable condition on a Lie algebroid anchor ρ : A → TM
when A is not equipped with a chosen trivialization.
We will next identify five reasonable compatibility conditions on an anchor ρ : A →

M , ordered by decreasing strength, all of which are satisfied by the anchor of an ac-
tion Lie algebroid associated to a presymplectic action of a Lie algebra: the first is
that Γ(M,A) be generated by sections that are mapped to presymplectic vector fields;
the second is that the Γ(M,A) be locally generated by sections that are mapped to
presymplectic vector fields (in which case subsets of the generators give local frames
around each point of M); the third is that the ideal generated by the 1-forms ιρaω,
a ∈ Γ(M,A) be differential, i.e. closed under the exterior derivative d; the fourth is
that the presymplectic orthogonal of the image of the anchor be involutive. We will
show that the last three conditions are equivalent if the anchor has constant rank, and
we will give examples to show that all four conditions are mutually inequivalent. We
will see that the first three conditions imply that A is equipped with a natural class of
linear connections in terms of which the conditions can be formulated in a natural way;
this formulation will then play a fundamental role in our theory. The fifth condition
is that the hamiltonian functions that are constant on the leaves of the characteristic
distribution ρ(A) are closed under the Poisson bracket.
Until Section 4.2, we will make use only of the anchor ρ : A → TM and not of the

bracket on sections of A. Therefore, we need now only the following structure, weaker
than that of a Lie algebroid.

Definition 2.3. Let A → M be a smooth vector bundle. A map of vector bundles
ρ : A → TM is called an anchor for A. A smooth vector bundle together with an

4Given a map ϕ : A → B of vector bundles over M , we will notationally distinguish between the
value ϕ(a) of ϕ at a ∈ A and the composition ϕ ◦ a of ϕ with a section a ∈ Γ(M,A). If no confusion
can arise we will also write, more succinctly, ϕa for ϕ ◦ a.
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anchor is called an anchored vector bundle. An anchored vector bundle will be called
regular if the rank of its anchor is constant.

Definition 2.4. For an anchored vector bundle A over a presymplectic manifold M ,
the map γ := ω̃ ◦ ρ : A → T ∗M , a 7→ ιρ(a)ω will be called the ω-dualized anchor (or
simply “dualized anchor”). When γ has constant rank, we will call the anchored vector
bundle presymplectically regular.

Since no bracket is involved, any linear map from a Lie algebra g (or any vector
space, for that matter) to the vector fields on M gives the trivial bundle g ×M the
structure of an anchored vector bundle over M .

Definition 2.5. Let (A, ρ) be an anchored vector bundle over the presymplectic manifold
(M,ω). We will consider the following compatibility conditions on ρ and ω:

(C1) There is a set S ⊆ Γ(M,A) of sections generating Γ(M,A) as a C∞(M)-module
such that ρa is a presymplectic vector field for every a ∈ S.

(C2) Every point m ∈ M has a neighborhood U with a local frame {a1, . . . , ar} ⊆
Γ(U,A) such that ρa1, . . . , ρar are presymplectic vector fields.

(C3) The algebraic ideal of Ω(M) generated by {γa | a ∈ Γ(M,A)} is closed under the
de Rham differential.

(C4) The presymplectic orthogonal ρ(A)⊥ is an involutive distribution in the sense
that its space of sections is closed under the bracket of vector fields.

(C5) For every open set U ⊆ M the vector space of all hamiltonian functions on U
that are annihilated by ρ(A) is closed under the Poisson bracket.

Remark 2.6. Recall that there are two natural notions of involutivity for a family {γi}
of 1-forms onM : (i) The ideal in Ω(M) generated by the γi is closed under the de Rham
differential; (ii) the space of vector fields that are annihilated by all γi is closed under
the Lie bracket. The difference between these two notions is the difference between (C3)
and (C4). To make this paper reasonably self-contained, we include below proofs for the
well-known facts that (i) implies (ii) (Proposition 2.7), that (i) and (ii) are equivalent
when the annihilator is regular (Proposition 2.9), and that in the non-regular case (ii)
does not imply (i) (Example 2.10).

Proposition 2.7. We have the following implications between the compatibility condi-
tions: (C1) ⇒ (C2) ⇒ (C3) ⇒ (C4) ⇒ (C5).

Proof. Assume (C1). Since the sections in S are a generating set, we can choose for
any m a subset {a1, . . . , ar} of S whose values form a basis of the fibre at m. It follows
that these sections are a frame when restricted to some neighborhood of m. The vector
fields ρa1, . . . , ρar are presymplectic, so (C2) holds.
Assume (C2). Let {Up} be a collection of open sets coveringM such that every Up has

a local frame {ap1, . . . , aprp} that is mapped by ρ to presymplectic vector fields, i.e. all of
the 1-forms γapk are closed. Since we assume all manifolds to be second countable, we
can assume without loss of generality that the cover {Up} has locally finite intersections.
By Ostrand’s theorem from dimension theory [33, Theorem II.6, p. 22] we can find a
finite open cover {V1, . . . , Vn+1} of M , where every Vq is the disjoint union of open
subsets of the sets in {Up}. Over every Vq there is still a frame {aq1, . . . , aqr} that is
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mapped by ρ to presymplectic vector fields. Let {χq : Vq → [0, 1]} be a partition of
unity. Then the finite collection S := {χqaqk} of sections generates the C∞(M)-module
Γ(M,A). Moreover, d(γ ◦ (χqaqk)) = d(χq γaqk) = dχq ∧ γaqk (no summation over q),
which shows that the ideal generated by the 1-forms γa is closed under the de Rham
differential, so (C3) holds.
Assume (C3). It suffices to check the involutivity of a distribution locally, so let

U ⊆ M be an open set with a local frame {a1, . . . , ar} ⊆ Γ(U,A). Let γk := γak.
Property (C3) means that dγk = Ωj

k ∧ γj (summation over j) for some matrix of 1-

forms Ωj
k, 1 ≤ j, k ≤ r. By definition, two vector fields v, w lie in the presymplectic

orthogonal of ρ(A) if ιvγk = 0 = ιwγk for all k. A short calculation shows that

ι[v,w]γk = (Lv ιw − ιw Lv)γk = −ιwιvdγk = −ιwιv
(

Ωj
k ∧ γk

)

= ιvΩ
j
k ιwγk − ιwΩ

j
k ιvγk

= 0 ,

so (C4) holds.
Assume (C4). Let (f, v) be a hamiltonian pair over U . We have ρ(a) · f = ιρ(a)df =

ω(v, ρ(a)) for all a ∈ A, so that f is annihilated by ρ(A) if and only if v takes values in
ρ(A)⊥. Let (g, w) be another hamiltonian pair for which g is also annihilated by ρ(A).
Then ({f, g}, [v, w]) is a hamiltonian pair which satisfies ρ(a) ·{f, g} = ω([v, w], ρ(a)) =
0 for all a ∈ A, where in the last step we have used that ρ(A)⊥ is involutive. This shows
that (C5) holds. �

Corollary 2.8. Let ρ be a presymplectic action of the Lie algebra g on the presymplectic
manifold (M,ω). Then the compatibility conditions (C1)-(C5) are all satisfied for the
action Lie algebroid A = g×M .

Proof. The constant sections corresponding to any basis of g form a basis of the C∞(M)-
module Γ(M,A) which is mapped to presymplectic vector fields, so (C1) is satisfied.
By Proposition 2.7 this implies the other compatibility conditions. �

Proposition 2.9. For a presymplectically regular anchored vector bundle over a presym-
plectic manifold M , conditions (C2), (C3), and (C4) of Definition 2.5 are equivalent.

Proof. Assume (C4). If p is the constant rank of the dualized anchor γ, the involutive
distribution given by the presymplectic orthogonal of ρ(A) has constant dimension n−p,
n = dimM , so it is integrable by the Frobenius theorem. Let (x1, . . . , xn−p, y1, . . . , yp) :
U → R

n be a local foliation chart, where xi are coordinates along the leaves and yi

are transverse coordinates. Then the dyi span the range of γ, so we can find a local
frame {a1, . . . , ar} ⊆ Γ(U,A) such that γak = dyk for 1 ≤ k ≤ p and the ak for k > p
form a basis of the kernel of γ. We conclude that the anchor maps the local frame to
presymplectic vector fields. This shows that (C4) implies (C2). By Proposition 2.7,
this implies (C3). �

Proposition 2.9 tells us that, in the symplectic case, (C2), (C3), and (C4) are equiva-
lent near points where the anchor ρ itself has constant rank. We will now give examples
to show that, even in the symplectic case, the conditions are inequivalent without the
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regularity assumption, and that (C2) does not imply (C1), even in the regular symplec-
tic case.

Example 2.10. LetM = R
2 with the symplectic form ω = dx∧dy. Let A = R×M be

the trivial line bundle and ρ : A → TM the anchor taking the constant section a = 1
to the vector field ρ ◦ 1 = x ∂

∂x
+ y ∂

∂y
. On the one hand, the symplectic orthogonal of

ρ(A) is a distribution which is 1-dimensional on a open dense subset, so it is involutive.
On the other hand, γ ◦ 1 = x dy − y dx and d(γ ◦ 1) = 2dx ∧ dy, which is not of the
form α ∧ (γ ◦ 1) for any α ∈ Ω1(M). We conclude that A satisfies (C4) but not (C3).

Example 2.11. Once again, let M = R
2 with the symplectic form ω = dx ∧ dy and

A = R ×M . Now let the anchor ρ : A → TM take the constant section a = 1 to
the vector field ρ ◦ 1 =

(

y ∂
∂x

− x ∂
∂y

)

− (x2 + y2)
(

x ∂
∂x

+ y ∂
∂y

)

. This yields the 1-form

γ ◦1 = xdx+ydy+(x2+y2)(ydx−xdy) = 1
2
rdr− r4dθ, where (r, θ) are the usual polar

coordinates. Its differential is

d(γ ◦ 1) = −4r3dr ∧ dθ = 8r2dθ ∧
(

1
2
rdr − r4dθ

)

= α ∧ (γ ◦ 1) ,

for α = 8r2dθ = −8(ydx− xdy). This shows that (C3) holds.
If (C2) were satisfied, there would be a nowhere vanishing function f defined near

the origin such that f(γ ◦ 1) is closed, hence exact. The kernel of γ is spanned by the
vector field ξ = ∂

∂θ
+2r3 ∂

∂r
. It is easy to see from this expression that the trajectories of

ξ, which are the integral manifolds of γ ◦ 1, spiral away from the origin, so any function
g for which dg = f(γ ◦ 1) must be a constant equal to its value at the origin. This is a
contradiction, which shows that (C3) does not imply (C2).

Example 2.12. LetM = T ∗S1 ∼= S1×R be the cylinder with the canonical symplectic
form ω = dϕ∧ dz. Let A =M ×R with the anchor ρ : A→ TM mapping the constant
section a = 1 to the vector field ρ ◦ 1 = ∂

∂ϕ
− z ∂

∂z
, whose trajectories spiral toward the

zero section z = 0 as they repeatedly circumnavigate the cylinder. Since a symplectic
vector field must be area preserving, the contraction property shows that ρ ◦ 1 is not
symplectic. The same problem must hold for a positive or negative, hence for any
nonvanishing multiple of a. So condition (C1) is not satisfied for this Lie algebroid.
Since ρ◦ 1 is nowhere vanishing the symplectic orthogonal of ρ(A) is a 1-dimensional

distribution, so it is regular and involutive. It follows from Proposition 2.9 that this
example satisfies condition (C2), which therefore does not imply (C1).

Remark 2.13. We can extend the argument that the last example does not satisfy
(C1), showing that the only section of A taken by ρ to a symplectic vector field is the
zero section. Any section is of the form f1 for some smooth function f . This section
is taken by γ to f(γ ◦ 1), where γ ◦ 1 = dz + zdϕ. For the section to be mapped to a
symplectic vector field, we must have

0 = d
(

f(γ ◦ 1)
)

= df ∧ (γ ◦ 1) + f d(γ ◦ 1) =
(∂f

∂ϕ
− z

∂f

∂z
− f

)

dϕ ∧ dz ,

which is equivalent to

(ρ ◦ 1) · f =
∂f

∂ϕ
− z

∂f

∂z
= f .
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This equation implies that, along each trajectory of ρ ◦ 1, f is either identically zero
or grows exponentially. One such trajectory is the zero section, along which f must
be periodic, so we see that f must vanish there. On the other hand, we see that any
solution f must blow up along the zero section if it is nonzero somewhere, so the only
symplectic field in the image of ρ is identically zero.

The following equivalence is already contained in the work of Libermann [27] on
symplectically complete foliations.

Proposition 2.14. Let (A, ρ) be an anchored vector bundle over a symplectic manifold
such that ρ is regular and ρ(A) involutive (e.g. if ρ is the anchor of a Lie algebroid).
Then conditions (C4) and (C5) are equivalent.

Proof. Since ρ(A) is regular and involutive, we can find in a neighborhood of every point
local coordinates (x1, . . . , xp, y1, . . . , yq) such that ρ(A) is spanned by ∂

∂x1 , . . . ,
∂

∂xp . The
hamiltonian vector fields generated by (y1, . . . , yq) are a local frame of the distribution
ρ(A)⊥. If the space of functions that depend only on the y-coordinates is closed under
the Poisson bracket, then the distribution spanned by their hamiltonian vector fields is
involutive. We conclude that (C5) implies (C4). The opposite direction was proved in
Proposition 2.7. �

The following example shows that the condition in Proposition 2.14 that ω is non-
degenerate is necessary:

Example 2.15. LetM = R
3 with the presymplectic form ω = dx∧dy. Let A =M×R

with the anchor ρ : A → TM mapping the constant section a = 1 to the vector field
ζ := ρ ◦ 1 = ∂

∂x
+ z ∂

∂y
. The anchor, the presymplectic form, and hence the dualized

anchor are all regular. We will now show that this example satisfies (C5) but not (C4).
The presymplectic orthogonal ρ(A)⊥ is a regular distribution which is spanned by

the vector fields ζ and η := ∂
∂z
. Since [ζ, η] = − ∂

∂y
, this distribution is not involutive (in

fact, it is a version of the standard contact structure on R
3), hence, A does not satisfy

(C4).
Let us now determine the hamiltonian pairs (f, v) such that f is annihilated by ρ(A),

that is, by ζ . We have already seen in the proof of Proposition 2.7 that this is the case
iff v takes its values in ρ(A)⊥. Every vector field in ρ(A)⊥ is of the form v = gζ + hη
for some g, h ∈ C∞(M). The condition for v to be locally hamiltonian is

0 = dιvω

= d
[

g(dy − z dx)
]

= dg ∧ (dy − z dx)− g dz ∧ dx

=
(∂g

∂x
− z

∂g

∂y

)

dx ∧ dy +
(

g − z
∂g

∂z

)

dx ∧ dz −
∂g

∂z
dy ∧ dz ,

which is satisfied if and only if g = 0. It follows that all hamiltonian pairs are of the form
(f, hη) where f is a locally constant function. We conclude that the real vector space
of hamiltonian functions annihilated by ρ(A) is the space of locally constant functions,
which is trivially closed under the Poisson bracket so that (C5) is satisfied.
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The next example, a variant of Example 2.15, shows that the condition in Proposition
2.14 that ρ(A) be involutive is necessary as well.

Example 2.16. Let M = R
4 with the symplectic form ω = dx ∧ dy + dz ∧ dw. Let

A = M × R
2 with the anchor ρ : A → TM mapping the constant sections (1, 0) and

(0, 1) to the vector fields ζ := ρ ◦ (1, 0) = ∂
∂x

+ z ∂
∂y

and η := ρ ◦ (0, 1) = ∂
∂z
. The

distribution spanned by ζ and η is lagrangian, so that ρ(A)⊥ = ρ(A). A calculation
analogous to the one in example 2.15 shows that all hamiltonian pairs (f, v) for which
f is annihilated by ρ(A) are of the form

(

f, ∂f
∂w

∂
∂z

)

, where f is a smooth function of the
coordinate w only. We conclude that (C5) holds but not (C4).

3. Compatibility via connections

It turns out that connections provide a basis-free way of interpreting some of the
compatibility conditions above; this interpretation will lead us to choosing (C3) as our
preferred condition.

3.1. A brief review of connections. Although much of the material in this section
is standard, we include it for the convenience of the reader and to set forth the notation
which we will be using.

3.1.1. Ordinary connections. A linear connection on a vector bundle A over a manifold
M may be given in terms of a covariant derivative D : Γ(M,A) → Ω1(M) ⊗ Γ(M,A),
satisfying D(fa) = df ⊗ a + f Da for every function f and every section a of A. For
every vector field v ∈ X (M), we denote by Dva := ιvDa the covariant derivative in the
direction of v.
The connection D on A induces a dual connection on A∗, also denoted by D, which

is defined by

d〈µ, a〉 = 〈Dµ, a〉+ 〈µ,Da〉 ,

for all sections µ ∈ Γ(M,A∗) and a ∈ Γ(M,A). The dual connection extends to a
degree 1 operator on the graded vector space

Ωk(M,A∗) := Γ(M,∧kT ∗M ⊗A∗) ,

of A∗-valued differential forms,5 as follows: Ω(M,A∗) is a graded module over the graded
algebra Ω(M) with

α ∧ (β ⊗ µ) = (α ∧ β)⊗ µ ,

for all α, β ∈ Ω(M) and µ ∈ Γ(M,A∗), where the tensor product of sections over M
is always understood to be the tensor product over C∞(M). The covariant derivative
extends by the graded Leibniz rule

(1) D(α⊗ µ) := dα⊗ µ+ (−1)degαα ∧Dµ

5Of course, there is a similar extension of the original connection to the A-valued forms, but we will
not be using it in this paper.
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to an R-linear operator on Ω(M,A∗), which is well-defined since

D(fα⊗ µ) = (df ∧ α+ fdα)⊗ µ+ (−1)deg αα⊗Dµ

= (−1)deg α(α ∧ df)⊗ µ+ dα⊗ fµ+ (−1)degαα⊗Dµ

= dα⊗ fµ+ (−1)degαα⊗D(fµ)

= D(α⊗ fµ)

for all f ∈ C∞(M). The covariant derivative in the direction of a vector field v ∈ X (M)
extends to the graded vector space Ω(M,A∗) by a Cartan type formula,

Dv := ιvD +Dιv = [ιv, D] ,

where the bracket denotes the graded commutator. The directional covariant derivative
satisfies

Dv(α⊗ µ) = ιv
(

dα⊗ µ+ (−1)degαα ∧Dµ
)

+ dιvα⊗ µ+ (−1)deg ιvαιvα ∧Dµ

= Lv α⊗ µ+ α⊗Dvµ ,
(2)

where we have used that α ∧ Dvµ = α ⊗ Dvµ. The extended curvature operator is
defined by the usual expression

(3) R(v, w) := [Dv, Dw]−D[v,w] .

Using Eq. (2), we see that

R(v, w)(α⊗ µ) = α⊗R(v, w)µ ,

that is, the curvature operator is Ω(M)-linear. Identifying a section µ ∈ Γ(M,A∗) with
the 0-form 1⊗ µ ∈ Ω0(A∗) and using that Dvµ = ιvDµ, we obtain for the action of the
curvature operator

R(v, w)µ = (ιvDιwD − ιwDιvD − ι[v,w]D)µ

=
(

ιv(Dw − ιwD)− (Dw −Dιw)ιv − ι[v,w]

)

Dµ

= ιwιvD
2µ+ (ιvDw −Dwιv − ι[v,w])Dµ+DιvιwDµ

= ιwιvD
2µ ,

where the second term vanishes due to Eq. (2) and the the third term for degree reasons.
We see that, on 1-forms µ ∈ Ω1(M,A∗) = Γ(M,A∗), the curvature operator acts by the
square of the covariant derivative. When we apply D2 to a general form we obtain

D2(α⊗ µ) = D
(

dα⊗ µ+ (−1)deg αα ∧Dµ
)

= d2α⊗ µ+ (−1)deg α+1dα ∧Dµ

+ (−1)deg αdα ∧Dµ+ (−1)2 deg αα ∧D2µ

= α ∧D2µ ,

which shows that D2 is Ω(M)-linear. It follows that D2 = 0 iff D2µ = 0 for all
µ ∈ Γ(M,A∗), which is the case iff the connection D has vanishing curvature.
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3.1.2. Associated Lie algebroid connections. Let (A, ρ) be an anchored vector bundle.
An A-connection on a vector bundle E →M is given by a covariant derivative oper-
ator [17, 18]

D : Γ(M,A)× Γ(M,E) −→ Γ(M,E)

(a, e) 7−→ Dae ,

which is C∞(M)-linear in A and which satisfies

(4) Da(fe) = fDae+ (ρa · f) e .

We call Dae the covariant derivative in the “direction” of a. When A is the tangent
bundle, with ρ the identity, an A-connection is just an ordinary connection.
For later use in Sections 7 and 9, we recall here a construction [14, Sec. 1.2] which

takes an ordinary connection D on an anchored vector bundle A to an A-connection Ď
on TM . When A is TM as well, this produces what is known in differential geometry
as the “opposite connection” (see e.g. [16, p. 129]), so we will use this term as well in
the general case.

Definition 3.1. Let (A, ρ) be an anchored vector bundle over M . For any connection
D on A, we define an A-connection Ď on TM , called the opposite connection, by

(5) Ďav := [ρa, v] + ρ(Dva) ,

for every section a of A and vector field v. It is straightforward to check that Ď satisfies
the defining relation (4) of an A-connection.

In addition to the anchor, we need a Lie algebroid bracket on A to generalize some
other constructions with connections like the following: For any A-connection D on a
Lie algebroid A the Lie algebroid torsion is defined as [18]

(6) T (a, b) = Dab−Dba− [a, b].

for all a, b ∈ Γ(M,A). T is an A-valued 2-form on A.
To any ordinary connection D on E we can associate an A-connection by composition

with the anchor

D̂ae := Dρae .

When E = A, we obtain an A-connection on A. The Lie algebroid torsion of D̂ is

(7) T (a, b) = Dρab−Dρba− [a, b].

From here on, we will simply refer to this Lie algebroid torsion as “the torsion” of D.

3.2. Induced connections. We return now to the setting where ω is a presymplectic
form on M , which combines with the anchor ρ of the anchored vector bundle A to
give the dualized anchor γ = ω̃ ◦ ρ : A → T ∗M as introduced in Definition 2.4. Let
{a1, . . . , ar} ∈ Γ(U,A) be a local frame and

γk = γak .

where we recall that γak ≡ γ ◦ ak. Properties (C2) and (C3) can be described in terms
of the Pfaffian system {γ1, . . . , γr}. In view of Proposition 2.9 we shall not assume that
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this Pfaffian system is regular. Property (C3) holds if there are 1-forms Ωj
i ∈ Ω1(U),

1 ≤ i, j ≤ r such that

(8) dγi = Ωj
i ∧ γj .

The 1-forms Ωj
i are not unique. For example, we could also choose Ω̃j

i = Ωj
i + Bjk

i γk,

where Bjk
i are smooth functions with Bjk

i = Bkj
i .

Moreover, the 1-forms Ωj
i depend on the chosen frame. Let {ãi} be another local

frame. The frames are related as ãi = Aj
iaj by a smooth matrix function (Aj

i ) : U →
GL(n,R). Let γ̃i := ιρãiω. Then

dγ̃i = d
(

Aj
iγj

)

= dAj
i ∧ γj + Aj

iΩ
k
j ∧ γi = Ω̃l

i ∧ γ̃l ,

where
Ω̃l

i = dAj
i (A

−1)lj + Aj
iΩ

k
j (A

−1)lk .

This tells us that we can interpret the 1-forms Ωj
i as corresponding to a local connection

D : Γ(U,A) → Ω1(U)⊗ Γ(U,A) given by

Dai = Ωj
i ⊗ aj .

We recall that, if {Up → M} is an open cover with a subordinate partition of unity
{χp : Up → [0, 1]}, and if Dp is a local connection on each A|Up

, then D =
∑

p χpDp is
a globally defined connection on A. Let the connection 1-forms of Dp be denoted by

Ωi
j,p ∈ Ω1(Up). Then the connection 1-forms of D are given by Ωj

i =
∑

p χpΩ
i
j,p, so that

dγi =
∑

p χpdγi =
∑

p χpΩ
j
i,p ∧ γj = Ωj

i ∧ γj , which shows that Ωj
i still satisfies Eq. (8).

We can use this connection to study the compatibility conditions (C1), (C2), and (C3).

3.3. Connections and the compatibility conditions. Using the natural isomor-
phisms Hom(A, T ∗M) ∼= Γ(M,T ∗M ⊗ A∗) = Ω1(M,A∗), we can identify the dualized
anchor γ with an A∗-valued 1-form, which, by abuse of notation, we will also denote by
γ. If {a1, . . . , an} is a local frame of A and {θ1, . . . , θn} is the dual frame, 〈θi, aj〉 = δij,
and γi := γai, then

(9) γ = γi ⊗ θi .

We can now reexpress condition (C3) in terms of the induced connection.

Proposition 3.2. Let (A, ρ) be an anchored vector bundle over a presymplectic man-
ifold. Condition (C3) holds if and only if there is a linear connection D on A such
that

(10) Dγ = 0 .

Proof. Let γ = γi⊗θ
i in some local frame as in Eq. (9). Assume that (C3) holds. Then

dγi is of the form (8) and Dai = Ωj
i ⊗aj defines a local connection. The dual connection

is given by Dθi = −Ωi
j ⊗ θj . The covariant derivative of γ is given locally by

Dγ = dγi ⊗ θi − γi ∧Dθ
i

= dγi ⊗ θi + (γi ∧ Ωi
j)⊗ θj

= (dγi − Ωj
i ∧ γj)⊗ θi ,
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which vanishes due to Eq. (8). By adding the local connections using a partition of
unity, we obtain a globally defined connection D on A which satisfies Dγ = 0.
By pairing Dγ with a section a of A, we obtain

〈Dγ, a〉 = (dγi − Ωj
i ∧ γj)〈θ

i, a〉

= d(γia
i) + γi ∧ da

i + γj ∧ Ωj
ia

i

= d(γia
i) + γi ∧ (Da)i

= d〈γ, a〉+ 〈γ,Da〉 ,

(11)

where ai = 〈θi, a〉 and

〈γ,Da〉 = γi ∧ (Da)i .

Assume now that we have a connection D such that Dγ = 0. Since M is assumed to be
second countable, the covariant derivative of a section a ∈ Γ(M,A) is given by a finite
sum Da =

∑n
i=1 β

i⊗ bi ∈ Ω1(M)⊗Γ(M,A). From Dγ = 0 and Eq. (11) it follows that

d〈γ, a〉 = −〈γ,Da〉 = −γj ∧
n

∑

i=1

βi〈θj, bi〉 =
n

∑

i=1

βi ∧ γai ,

which lies in the ideal generated by γ
(

Γ(M,A)
)

. �

Based on the results above, it is natural to introduce the following terminology.

Definition 3.3. A connectionD on an anchored vector bundle (A, ρ) over a presymplec-
tic manifold (M,ω) is called a presymplectically anchored connection if Dγ = 0,
where γ ∈ Ω1(M,A∗) is the dualized anchor γ = ω̃ ◦ ρ. We will also say that (A, ρ) is
presymplectically anchored with respect to D.

Thus, condition (C3) is equivalent to the property of being presymplectically an-
chored with respect to some connection.

Remark 3.4. In addition to the ones we have already seen, there are other natural
conditions that are equivalent to Dγ = 0. In Proposition 4.12, we will show that D
is presymplectically anchored if and only if the anchor maps sections of A that are
horizontal (locally or at a point) to presymplectic vector fields on M . In Proposition
6.19, we will see that a regular foliation of a symplectic manifold, when viewed as Lie
algebroid, is presymplectically anchored with respect to some connection if and only if
it is symplectically complete. Finally, Proposition 7.8 expresses the equation Dγ = 0
as the invariance Ďω = 0 of the presymplectic form under the parallel transport of
the opposite A-connection Ď on TM . All this has motivated our terminology and our
choice of (C3) as the most natural compatibility condition.

If Dγ = 0, then Eq. 11 implies that

(12) dιρaω = −〈γ,Da〉 ,

for all sections a ∈ Γ(M,A). This shows that, for a presymplectically anchored connec-
tion, every horizontal section of A is mapped by ρ to a presymplectic vector field.
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Proposition 3.5. Let (A, ρ) be an anchored vector bundle over a presymplectic mani-
fold. Condition (C2) holds if and only if every point of M has a neighborhood U with
a flat presymplectically anchored connection D on A|U .

Proof. The proof is analogous to that of Proposition 3.2. Assuming (C2), we have
for every point in M a neighborhood U with a local frame {ai} ⊆ Γ(U,M) such that
dγi = 0. This means that we can choose Ωj

i = 0, so that the induced connection is flat
over U .
Conversely, assume that for every point m ∈M we have neighborhood U with a flat

connection satisfying Dγ = 0. Then there is a local frame {ai} of horizontal sections,
Dai = 0. It follows that, dιρaiω = dγi = 0. �

From here on, we will use presymplectically anchored connections as our main tool
for studying the compatibility of Lie algebroids and presymplectic structures.

4. Momentum sections for presymplectically anchored Lie algebroids

For a presymplectic action ρ of a Lie algebra g on (M,ω), a momentum map is a
linear map g → C∞(M) (often viewed as a map µ :M → g∗) which maps every element
a of the Lie algebra to a function f for which (f, ρa) is a hamiltonian pair. When ω is
symplectic, such a map always exists locally. In terms of the vector bundle A = g×M ,
the momentum map can be viewed as a section µ ∈ Γ(M,A∗). However, 〈µ, a〉 for
a ∈ Γ(M,A) is a generator for the vector field ρa only when a is a constant section
of A. This tells us that a good notion of momentum “map” for a presymplectically
anchored Lie algebroid will have to involve the connection D on A if it is to generalize
the usual notion of momentum map for actions of Lie algebras.
We will define below the notion of momentum section for a pair (A,D) and then

motivate the definition by proving that it reduces to the usual notion for Lie algebra
actions when D is the trivial connection. However, for a different connection D, an
action Lie algebroid may have aD-momentum section even when the action fails to have
a momentum map in the usual sense. We will give an example for this phenomenon and
then show that condition (C2) guarantees the existence of local momentum sections. In
the following section, we will begin using the Lie algebroid bracket structure on A and
will investigate conditions for compatibility of a momentum section with the bracket.

4.1. Momentum sections. So far we have considered the case that γ = ω̃ ◦ ρ is
D-closed. A natural next step is to require that γ be D-exact, i.e.

(13) Dµ = γ

for some µ ∈ Ω0(M,A∗) = Γ(M,A∗). We will call such a µ a D-momentum section

for A. Note that, since D2 6= 0 unless the connection is flat, Eq. (13) does not imply that
Dγ = 0, which must be required independently. Thus, unlike in the case of an action
Lie algebroid with the trivial connection, the existence of a momentum section does
not in general imply that A is presymplectically anchored with respect to D, though
we will often make this assumption.
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When we evaluate Eq. (13) on a section a ∈ Γ(M,A) and use the definition of the
dual connection, we obtain

(14) d〈µ, a〉 − 〈µ,Da〉 = 〈Dµ, a〉 = 〈γ, a〉 = ιρaω ,

which makes it explicit how the anchor and the presymplectic structure enter into
Eq. (13). In a local frame {ai}, this relation can be further spelled out in terms of
the functions µi = 〈µ, ai〉, the 1-forms γi = γai, and the connection 1-forms defined by
Dai = Ωj

i ⊗ aj. Eq. (14) now takes the form

dµi − µjΩ
j
i = γi .

Our definition of a D-momentum section is justified by the following proposition,
which shows that, for the action of a Lie algebra, it reduces to the usual notion of
momentum map.

Proposition 4.1. Let ρ : g × M → TM be an action of the Lie algebra g on the
presymplectic manifold M . Let D be the trivial connection on A := g × M . Then:
(i) A is presymplectically anchored with respect to D if and only if the action of g is
presymplectic; (ii) when the action is presymplectic, µ ∈ Γ(U,A∗) = C∞(U, g∗) is a
D-momentum section if and only if it is a momentum map in the usual sense.

Proof. (i) Let a ∈ g be viewed as a constant section of A. Since a is horizontal, Eq. (12)
is satisfied iff dιρaω = 0. (ii) Eq. (14) is satisfied for every a ∈ g iff d〈µ, a〉 = ιρaω,
which is the usual definition of a momentum map. Since D2 = 0, the existence of a
momentum section implies that Dγ = 0. �

For a presymplectic action of a Lie algebra g on (M,ω), a natural condition is that
it be weakly6 hamiltonian in the sense that the presymplectic vector field associated
to each element of g is hamiltonian. This condition is equivalent to the existence of a
momentum map. We therefore make the following definition.

Definition 4.2. A vector bundle A over M with presymplectically anchored connection
D is weakly hamiltonian when it admits a (global) D-momentum section. It is
locally weakly hamiltonian if every point in M has a neighborhood on which the
restriction of A is weakly hamiltonian, possibly with different connections on different
open subsets.

Remark 4.3. As explained in the proof of Proposition 3.2, a set {Di} of local presym-
plectically anchored connections defined on a cover of M can always be merged by a
partition of unity to a global presymplectically anchored connection D. However, the
locally defined Di-momentum section µi will generally fail to be a momentum section
for D.

6We will reserve the unmodified term “hamiltonian” for those actions having equivariant momentum
maps. Some authors do not use this convention, calling actions with equivariant momentum maps
“strongly hamiltonian.”
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The following example shows that, even if an action is not weakly hamiltonian in the
usual sense, its action Lie algebroid may be weakly hamiltonian as an anchored vector
bundle, via a D-momentum section in which the constant sections are not horizontal
for D.

Example 4.4. We revisit Example 2.12 of a trivial line bundle over the symplectic
cylinder (S1 × R, dϕ ∧ dz). In this example γ ∈ Γ(M,T ∗M ⊗A∗) is given by

γ = (z dϕ+ dz)⊗ θ ,

where θ = 1 is the constant section of the dual bundle A∗.
For the constant section a = 1 of A itself, we have γ ◦ 1 = z dϕ + dz and d(γ ◦ 1) =

−dϕ∧(γ ◦1) so that the induced connection from Section 3.2 is given by D1 = −dϕ⊗1.
The connection is flat but not trivial, with holonomy group Z. A local horizontal section
is given by ã = eϕ1, which is defined for ϕ ∈ (−π, π). We have

ιρãω = eϕ
(

z dϕ+ dz
)

= d(zeϕ) ,

so ρã is a symplectic vector field on (−π, π) × R. Since the connection has nontrivial
holonomy, however, there is no global horizontal section of A (other than the zero
section), so there is also no global symplectic vector field in the image of ρ.
Let µ := zθ ∈ Γ(M,A∗). The covariant derivative acts on θ by Dθ = dϕ⊗ θ, so we

get
Dµ = dz ⊗ θ + z dϕ⊗ θ = γ .

We conclude that µ is a D-momentum section.

Proposition 4.5. Let (A, ρ) be an anchored vector bundle over a presymplectic manifold
satisfying condition (C2). Then (A, ρ) is locally weakly hamiltonian.

Proof. According to Proposition 3.5, there is for every m ∈M a flat presymplectically
anchored connection D over some neighborhood U of m. Then there is a local frame
{ai} in Γ(U,A) of horizontal sections, Dai = 0. The dual frame {θi} in Γ(U,A∗) is also
horizontal because 〈θi, aj〉 = δij . Expressing Dγ = 0 in this frame reads

D(γi ⊗ θi) = dγi ⊗ θi = 0 ,

so that dγi = 0. Choosing U to be contractible, we can find functions µi ∈ C∞(U) such
that γi = dµi. Let µ := µiθ

i. The short calculation:

Dµ = dµi ⊗ θi + µ ∧Dθi = γi ⊗ θi = γ ,

shows that µ is a local D-momentum section. �

4.2. Bracket-compatible momentum sections. So far, we have studied anchored
vector bundles over presymplectic manifolds. Now we involve the bracket operation for
a Lie algebroid and will define a compatibility condition with presymplectic structures
which reduces to the usual equivariance condition for momentum maps of Lie algebra
actions.
Up to now, we have used the complex of differential forms with values in A∗, which

uses a connection on A but no bracket. When A is a Lie algebroid, we have in addition
the Lie algebroid complex, which encodes all the information in the bracket as well
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as the anchor. It consists of the sections of the exterior algebra of the dual A∗, with
differential the unique derivation

d : Γ(M,∧•A∗) → Γ(M,∧•+1A∗) ,

of graded commutative algebras that satisfies

(df)(a) = ρa · f ,

(dµ)(a, b) = ρa · 〈µ, b〉 − ρb · 〈µ, a〉 − 〈µ, [a, b]〉 ,(15)

for all f ∈ C∞(M), µ ∈ Γ(M,A∗), and a, b ∈ Γ(M,A).
In terms of this Lie algebroid differential, we state our compatibility condition of a

momentum section with the Lie algebroid bracket as follows:

Definition 4.6. Let A be a Lie algebroid over the presymplectic manifold (M,ω). A
D-momentum section µ ∈ Γ(M,A∗) is called bracket-compatible if

(16) (dµ)(a, b) = −ω(ρa, ρb)

for all a, b ∈ Γ(M,A).

Note that, although the condition that µ be a momentum section involves the
connection D, the bracket-compatibility condition does not. In particular, bracket-
compatibility is independent of whether A is presymplectically anchored with respect
to D.

Remark 4.7. Let ρ∗ : Ω(M) → Ω(A) denote the map of differential complexes, induced
by the anchor, from the de Rham complex of M to the Lie algebroid cohomology
complex. In terms of ρ∗, Eq. (16) can be written succinctly as dµ = −ρ∗ω. A necessary
condition for (16) is that ρ∗ω be d-closed, but since dρ∗ω = ρ∗dω = 0, this is always
the case.

Eq. (16) is equivalent to the vanishing of

(dµ)(a, b) + ω(ρa, ρb) = (dµ)(a, b) + ιρbιρaω

= (dµ)(a, b) + ιρb〈Dµ, a〉

= (dµ)(a, b) + ιρb(d〈µ, a〉 − 〈µ,Da〉)

= ρa · 〈µ, b〉 − 〈µ, [a, b]〉 − 〈µ,Dρba〉 ,

(17)

where we have used the defining relation (14) of a momentum section and definition (15)
of the Lie algebroid differential. For an action Lie algebroid with the trivial connection
we thus retrieve the usual notion of equivariance:

Proposition 4.8. A momentum map M → g∗ for the action of a Lie algebra g on
a presymplectic manifold M is equivariant if and only if it is bracket-compatible in
the sense of Definition 4.6 when considered as a section of the dual of the action Lie
algebroid g×M , with the trivial connection.

Proof. Let µ :M → g∗ be a momentum map. Elements of g can be identified with the
sections of the action Lie algebroid A = g⋉M that are horizontal with respect to the
trivial connection D. Inserting a, b ∈ g into (17), we obtain

(dµ)(a, b) + ω(ρa, ρb) = ρa · 〈µ, b〉 − 〈µ, [a, b]〉 .
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The left hand side vanishes iff µ is bracket compatible in the sense of Definition 4.6.
The right hand side vanishes iff µ is equivariant with respect to the g-action ρ on M
and the adjoint action 〈ad∗aµ, b〉 = 〈µ, [a, b]〉 on g∗ (see e.g. Sec. 4.5.18 in [35]). �

Since a Lie algebra action with an equivariant momentum map is called hamiltonian,
we will extend the terminology to Lie algebroids with the following definition.

Definition 4.9. A Lie algebroid A overM with a presymplectically anchored connection
D and a bracket-compatible D-momentum section is called hamiltonian. It is locally
hamiltonian if every point in M has a neighborhood on which the restriction of A is
hamiltonian, possibly with different connections on different open subsets.

Remark 4.10. It is well known that a momentum map µ for an action of g on a
symplectic manifold M is equivariant if and only if it is a Poisson map. Less well
known, but also true, is that an equivariant momentum map for a presymplectic action
is a forward Dirac map [12]. It is not hard to verify that the converse is true as well.
In fact, a forward Dirac map from a presymplectic manifold to a Poisson manifold is
characterized by the property that the pullback of any function is hamiltonian, and
that the Poisson bracket of two pullbacks is the pullback of their Poisson brackets.
The following propositions and the torsion formulation in Section 5.1 provide analo-

gous results for general Lie algebroids.

Proposition 4.11. Let A be a Lie algebroid over a presymplectic manifold (M,ω) and
D a flat connection on A. A D-momentum section µ is bracket-compatible if and only
if, for all horizontal local sections a, b ∈ Γ(U,A) defined on open subsets U ⊆ M , we
have

〈µ, [a, b]〉 = −{〈µ, a〉, 〈µ, b〉} ,

where the bracket is the Poisson bracket of hamiltonian functions (see Section 2.1).

Proof. Since a and b are horizontal, (〈µ, a〉, ρa) and (〈µ, b〉, ρb) are hamiltonian pairs, so
that ρa · 〈µ, b〉 = ιρad〈µ, b〉 = ω(ρb, ρa) = −{〈µ, a〉, 〈µ, b〉}. The proposition now follows
from Eq. (17). �

Proposition 4.11 shows that the definition of bracket-compatible D-momentum sec-
tions looks like the usual definition when we evaluate it on horizontal local sections of
the Lie algebroid. When the connection has nonzero curvature, however, there might
not be any horizontal local sections other than the zero section. For every pointm ∈M ,
though, there is still a basis of local sections that are horizontal at m. We can then
express the defining relations of hamiltonian Lie algebroids by relations that hold at
every point for all sections that are horizontal at that point.

Proposition 4.12. A Lie algebroid A over a presymplectic manifold (M,ω) is presym-
plectically anchored with respect to a connection D if and only if

(18) Lρa ω
∣

∣

m
= 0

for all m ∈M and all sections a of A that are D-horizontal at m.

Proof. Assume that A is presymplectically anchored with respect to D. Then Eq. (12)
implies Eq. (18) when a is horizontal at m. Conversely, assume that Eq. (18) holds.
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For every point m ∈ M there is a local frame {ai} such that every ai is horizontal at
m. Let a = f iai be an arbitrary local section. Then

dιρaω
∣

∣

m
= df i ∧ γai

∣

∣

m
+ f idιρaiω

∣

∣

m

= df i ∧ γai
∣

∣

m
− f i〈γ ∧Dai〉

∣

∣

m

= −〈γ ∧Da〉
∣

∣

m
,

which is Eq. (12) at an arbitrary point m. �

Proposition 4.13. Let A be a Lie algebroid over a presymplectic manifold (M,ω).
Then µ ∈ Γ(M,A∗) is a D-momentum section if and only if

d〈µ, a〉
∣

∣

m
= ιρaω

∣

∣

m
,

for all m ∈ M and all a ∈ Γ(M,A) that are horizontal at m. The momentum section
is bracket-compatible if and only if

〈µ, [a, b]〉
∣

∣

m
= ρa · 〈µ, b〉

∣

∣

m

for all m ∈M and all sections a, b of A that are horizontal at m.

Proof. The proof is analogous to the proof Proposition 4.12. For the first part we use
Eq. (14), for the second part Eq. (17). �

5. The zero momentum locus of a hamiltonian Lie algebroid

One of the most important constructions involving a hamiltonian action of a Lie group
G or its Lie algebra g on a symplectic manifold (M,ω) is symplectic reduction, which
proceeds in two steps. In the first step, the symplectic form is pulled back to the zero
locus Z ⊂M of the momentum map. (If Z is not a smooth embedded submanifold, we
can instead consider the clean zero locus Zcl, i.e. the smooth points of the zero locus at
which a vector is tangent to the submanifold if and only if it annihilates the differential
of the momentum map.) For the second step, as was observed in [30], Zcl is a coisotropic
submanifold, and its characteristic distribution is spanned by the fundamental vector
fields of the action. It follows that, if the leaf space Zcl/g of the induced g-action is a
smooth manifold, then the presymplectic form on Zcl descends to a symplectic form on
Zcl/g, which is then called the symplectic reduction of M . In this section, we will show
how this procedure generalizes to hamiltonian Lie algebroids.

5.1. Bracket-compatibility in terms of torsion. First, we will give an equivalent
characterization of the bracket-compatibility of a D-momentum section in terms of the
torsion defined in Eq. (7). To motivate our characterization, we note that, when D is
the trivial connection on an action Lie algebroid g⋉M , the torsion is given on constant
sections a, b ∈ g by T (a, b) = −[a, b]. (Note that it is nonzero unless g is abelian.) Thus,
the Lie algebroid torsion can be viewed as a substitute, in the case of any Lie algebroid
with connection, for the (negative of the) fibrewise Lie algebra bracket of an action Lie
algebroid, as well as the fibrewise Lie algebra bracket on the kernel of the anchor. In
this general case, there may be no local horizontal sections, but every element of A is
still the value of a section which is horizontal at its basepoint m. For any two such
sections, we have T (a(m), b(m)) = −[a, b](m).
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Proposition 5.1. A D-momentum section µ is bracket-compatible if and only if

(19) 〈µ, T (a, b)〉 = ω(ρa, ρb)

for all sections a and b of A.

Proof. The pullback of ω by ρ⊗ ρ is given by

ω
(

ρa, ρb
)

=
1

2
(ιρbιρaω − ιρaιρbω)

=
1

2
(ιρb〈Dµ, a〉 − ιρa〈Dµ, b〉)

=
1

2
(〈Dρbµ, a〉 − 〈Dρaµ, b〉) ,

where we have used that µ is a momentum section. The Lie algebroid differential of µ
and the torsion are then related as follows:

(dµ)(a, b) = ρa · µ(b)− ρb · µ(a)− µ([a, b])

= ιρad〈µ, b〉 − ιρbd〈µ, a〉 − µ([a, b])

= 〈Dρaµ, b〉 − 〈Dρbµ, a〉+ 〈µ,Dρab−Dρba− [a, b]〉

= −2ω(ρa, ρb) + 〈µ, T (a, b)〉 .

Adding ω(ρa, ρb) on both sides yields

ω(ρa, ρb) + (dµ)(a, b) = −ω(ρa, ρb) + 〈µ, T (a, b)〉 .

The left hand side vanishes iff the momentum section is bracket-compatible. The right
hand side vanishes iff Eq. (19) holds. �

5.2. The zero locus of a bracket-compatible momentum section. We arrive
now at one of the main goals of our work, establishing that the zero locus of a bracket-
compatible momentum section for a presymplectic manifold is coisotropic and invariant,
as is well-known to be the case for the zero locus of a momentum map for a hamiltonian
Lie algebra action. We first make a couple of remarks.
Coisotropic submanifolds are usually considered in the context of Poisson manifolds,

where they appear as the graphs of Poisson maps and as the source and target images
of lagrangian subgroupoids in symplectic groupoids (see [8]). But they may also be
defined in presymplectic manifolds as submanifolds whose tangent spaces all contain
their presymplectic orthogonals. Note that these tangent spaces must, in particular,
contain the characteristic spaces of the presymplectic form, which are tangent to the
characteristic foliation. This means that, at least locally, the coisotropic submanifolds
are the inverse images of coisotropic submanifolds in the (symplectic) leaf space of
the characteristic foliation. In fact, for our eventual application to the constraints in
general relativity, it is the image in the symplectic reduced space which is the constraint
manifold of interest to us (see [9]).
The momentum zero locus may be defined in terms of the ideal I of functions on

M generated by the “components” of µ; more precisely, I := {〈µ, b〉 ∈ C∞(M) | b ∈
Γ(M,A)}. The zero locus Z is the set of common zeros of the elements of I.
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Proposition 5.2. In a hamiltonian Lie algebroid, the zero locus Z of the momentum
section is invariant in the sense that every orbit which meets Z is contained in Z.
Moreover, each such orbit is an isotropic submanifold.

Proof. In a hamiltonian Lie algebroid, the Lie derivative of a function 〈µ, b〉 with respect
to ρa for a section a of A can, by Eq. (17), be expressed as

Lρa〈µ, b〉 = 〈µ, [a, b] +Dρba〉 ∈ I .

This shows that I is invariant under the Lie derivative of every vector field in the image
of the anchor. It follows that I and hence its set Z of common zeros are invariant under
the flow of every vector field in the image of the anchor. We conclude that every orbit
of A that meets Z is contained in Z. By Eq. (19), the image of the anchor at each
point of Z is isotropic. �

Since the zero locus of a momentum section is not necessarily a smooth submanifold,
for the coisotropic property we will restrict attention to the clean zero locus Zcl,
which consists of points of smoothness where the tangent space of the zero locus is the
entire zero space of the differential of the momentum section. The clean zero locus can
be identified in algebraic terms as the set of points m for which there is a neighborhood
U on which Z is a smooth submanifold and on which the defining ideal I is no smaller
than the ideal IZ ⊇ I consisting of all functions vanishing on Z.

Remark 5.3. Note that points near which IZ = I are not necessarily smooth points
of Z (e.g. when I is the ideal generated by q2 + p2 in the plane).

Theorem 5.4. The clean zero locus Zcl of the momentum section for a hamiltonian
Lie algebroid over a presymplectic manifold is a coisotropic submanifold which is invari-
ant under the Lie algebroid. When the manifold is symplectic, then the characteristic
distribution of Zcl is equal to the image of the anchor.

Proof. Since Z is determined by I, so is IZ , and hence the latter is invariant under all
the diffeomorphisms generated by the image of ρ. It follows that the subset where they
agree locally is invariant. So is the set of smooth points of Z, and hence so is Zcl.
Now let m belong to the clean zero locus. A vector v ∈ TmM is tangent to µ−1(0) if

and only if it annihilates the differential of µ. This means that, for all a ∈ Γ(M,A),

0 = v · 〈µ, a〉 = ιvd〈µ, a〉 = ιv(〈Dµ, a〉+ 〈µ,Da〉)

= ω(ρa, v) ,

where in the last step we have used that µ is a momentum section and that µ vanishes
at m. In other words, the tangent space is the presymplectic orthogonal of the image
of the anchor:

Tm(µ
−1(0)) = ρ(Am)

⊥ .

Now we suppose that µ is bracket-compatible. By Proposition 5.2, ρ(Am) is an isotropic
subspace of TmM , that is, ρ(Am) ⊆ ρ(Am)

⊥. So the image of the anchor is contained in
the tangent space to the zero locus. Furthermore, since V ⊆W implies V ⊥ ⊇W⊥ even
when ω is degenerate, we obtain Tm(Zcl) = ρ(Am)

⊥ ⊇ (ρ(Am)
⊥)⊥ = (TmZcl)

⊥, and so
Zcl is coisotropic.
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When ω is non-degenerate, then at every m ∈ Zcl the characteristic distribution is
Tm(µ

−1(0))⊥ = (ρ(Am)
⊥)⊥ = ρ(Am), the image of the anchor. �

Theorem 5.4 shows how symplectic reduction works for a hamiltonian Lie algebroid
A over a symplectic manifold: Since the anchor is tangent to Zcl, the Lie algebroid
can be restricted to Zcl. If the leaf space of the characteristic distribution of A|Zcl

is
smooth, then it is a symplectic manifold, called the symplectic reduction of A.

6. Examples

Our definitions of presymplectic Lie algebroids and (bracket-compatible) momentum
sections were motivated by the special case of action Lie algebroids, but there are many
more examples. We present some of them in this section.

6.1. Lie algebra bundles. A Lie algebra bundle is a Lie algebroid A with zero anchor.
In this case γ = 0, so that Dγ = 0 for every linear connection D, and A is presymplec-
tically anchored with respect to any D. As momentum section we can choose the zero
section, µ = 0, which is always bracket-compatible. We conclude that a Lie algebra
bundle is hamiltonian in this trivial way for every choice of connection.
On the other hand, there are obstructions to finding non-zero momentum sections,

and even stronger ones if they are required to be bracket-compatible. For any connection
D on A, µ is a momentum section if and only if it is horizontal, Dµ = 0. This implies
that, if µ does not vanish at m ∈ M , then it cannot vanish anywhere onM . So A∗ (and
hence A) must admit a nowhere-zero section; this is just a topological condition on the
bundle. Conversely, if µ is any nowhere zero section of A, one may use a splitting of A,
with one summand the trivial line bundle spanned by µ, to construct connections on A
for which µ is horizontal.
Since ρ = 0 here, the condition (19) for the bracket-compatibility of a momentum

section becomes

〈µ, [a, b]〉 = 0 .

Since all am, bm ∈ Am can be extended to sections a, b of A, this equation holds if and
only if µ vanishes on the first derived ideal [Am, Am] of the Lie algebra Am for allm ∈M .
When a fibre Am is semisimple then [Am, Am] = Am. In that case, a momentum section
µ can be bracket-compatible only if it vanishes at m, so that it must vanish on all
of M . Consequently, if some fibre of A is semisimple (or more generally has a trivial
abelianization), then µ = 0 is the unique bracket-compatible momentum section.

Remark 6.1. Since the vanishing of the anchor implies that γ = 0, whatever ω might
be, the compatibility conditions here do not depend on the presymplectic structure at
all. We will see in [8] that, for compatibility with Poisson structures, the image in TM
of this structure does intervene in the compatibility conditions.

6.2. Tangent bundles of presymplectic manifolds. The anchor of the tangent
bundle Lie algebroid is ρ = idTM , so the dualized anchor γ is equal to ω̃ : TM → T ∗M ,
v 7→ ιvω, viewed as an element of Γ(M,T ∗M⊗A∗) = Γ(M,T ∗M⊗T ∗M). The condition
Dγ = 0 for TM to be D-presymplectic can be written in the following form:
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Lemma 6.2. The tangent bundle of a presymplectic manifold is presymplectically an-
chored with respect to a connection D if and only if

(20) (Dvω)(u, w)− (Dwω)(u, v) + ω(u, T (v, w)) = 0

for all vector fields u, v, and w.

Proof. For a general Lie algebroid A over a presymplectic manifold (M,ω) the dualized
anchor satisfies

ιwιv〈γ,Da〉 = ιwιv
(

γi ∧ (Da)i
)

= ιw
(

(ιvγi)(Da)
i − γi(Dva)

i
)

= (ιvγi)(Dwa)
i − (ιwγi)(Dva)

i

= ιvγ(Dwa)− ιwγ(Dva)

= ω(ρDwa, v)− ω(ρDva, w) ,

for all vector fields v, w on M and all sections a of A. Using this relation and Eq. (11),
we obtain

ιw〈Dvγ, a〉 = ιwιv〈Dγ, a〉

= ιwιv
(

d〈γ, a〉+ 〈γ,Da〉
)

= v · ω(ρa, w)− w · ω(ρa, v)− ω(ρa, [v, w])

− ω(ρDva, w) + ω(ρDwa, v) .

(21)

For the tangent Lie algebroid A = TM the anchor is the identity ρ = idTM , so that we
obtain

ιw〈Dvγ, a〉 = v · ω(a, w)− w · ω(a, v)− ω(a, [v, w])− ω(Dva, w) + ω(Dwa, v)

= (Dvω)(a, w) + ω(Dva, w) + ω(a,Dvw)

− (Dwω)(a, v)− ω(Dwa, v)− ω(a,Dwv)

− ω(a, [v, w])− ω(Dva, w) + ω(Dwa, v)

= (Dvω)(a, w)− (Dwω)(a, v) + ω
(

a,Dvw −Dwv − [v, w]
)

= (Dvω)(a, w)− (Dwω)(a, v) + ω
(

a, T (v, w)
)

.

Using the antisymmetry of ω and denoting a by u to emphasize that it is also a vector
field on M , we obtain condition (20). �

Remark 6.3. One might have expected the condition for TM be to be presymplecti-
cally anchored to be Dω = 0, the usual definition of a presymplectic connection. This
fails because, in our situation, the connection D is applied only to the target of ω̃ and
not to the source. On the other hand, we will see in Prop 7.8 below that Eq. (20)
has the simple formulation Ďω = 0, where Ď is the opposite A-connection on TM as
defined in Definition 3.1.

A special case where Eq. (20) is satisfied is when each term vanishes separately, that
is, if the connection satisfies Dω = 0 and if its torsion takes values in the characteristic
distribution TM⊥. In other words, (20) is satisfied for what we may call a presymplectic
connection with torsion in TM⊥. In the symplectic case, there is an abundance of
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symplectic connections with vanishing torsion on every symplectic manifold [39]. In
the presymplectic case, there can be a presymplectic connection only when ω is regular,
since parallel translation along curves shows that the rank of γ, and hence the rank
of ω, must be the same everywhere. Vaisman proved in [42] that the regularity of the
presymplectic form is sufficient for the existence of presymplectic connections whose
torsion takes its values in TM⊥. The conclusion is:

Proposition 6.4. The tangent Lie algebroid of any regular presymplectic manifold is
presymplectically anchored with respect to some connection.

Remark 6.5. In [5], connections satisfyingDω = 0 are called symplectic only if they are
torsion free. We will follow other authors [29, 39] and not require the torsion to vanish,
since this would, as a consequence of Proposition 5.1, preclude the existence of bracket-
compatible momentum sections. Fortunately, as we will see, there is an abundance of
connections with torsion which also presymplectically anchor any tangent Lie algebroid.

Another simple way to prove Proposition 6.4 is to observe that, since ω is closed, the
characteristic distribution TM⊥ is involutive. It then follows from Proposition 2.9 that
the tangent Lie algebroid TM satisfies (C3). Moreover, Proposition 4.5 tells us that
TM is locally weakly hamiltonian.
We now study momentum sections. Locally, it is easy to find such sections explicitly.

When the dimension ofM is s and the rank of the presymplectic form is 2r, the Darboux
normal form in coordinates (q1, · · · , qr, p1 · · · , pr, z1, . . . , zs−2r) is ω = dqi ∧ dpi, so that

γ = dpi ⊗ dqi − dqi ⊗ dpi .

For the trivial connection D in which the coordinate vector fields are all parallel, we
have Dω = 0 and T = 0. The 1-form

(22) µ = pidq
i − qidpi

satisfies Dµ = γ, which shows that µ is a local D-momentum section.

Lemma 6.6. Let (M,ω) be a presymplectic manifold and D a connection on TM
that satisfies Eq. (20). Another connection D′ satisfies Eq. (20) if and only if the
difference tensor, the C∞(M)-bilinear map Γ : X (M) × X (M) → X (M) defined by
Γ(v, w) = D′

vw −Dvw, satisfies

(23) ω
(

u,Γ(v, w)
)

= ω
(

v,Γ(u, w)
)

for all u, v, w ∈ X (M).

Proof. Let us denote the tensor on the right hand side of Eq. (20) by

A(u, v, w) := (Dvω)(u, w)− (Dwω)(u, v) + ω(u, T (v, w)) ,

and for D′ by A′. We want to compute the difference A′ − A in terms of Γ.
A short calculation shows that

(D′
uω)(v, w) = u · ω(v, w)− ω(D′

uv, w)− ω(v,D′
uw)

= (Duω)(v, w)− ω
(

Γ(u, v), w
)

− ω
(

v,Γ(u, w)
)

= (Duω)(v, w) + ω
(

w,Γ(u, v)
)

− ω
(

v,Γ(u, w)
)

.
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Similarly, the torsion T ′ of D′ is related to the torsion T of D by

T ′(v, w) = T (v, w) + Γ(v, w)− Γ(w, v) .

With these relations we obtain

A′(u, v, w)−A(u, v, w) = ω
(

w,Γ(v, u)
)

− ω
(

u,Γ(v, w)
)

− ω
(

v,Γ(w, u)
)

+ ω
(

u,Γ(w, v)
)

+ ω
(

u,Γ(v, w)− Γ(w, v)
)

= ω
(

w,Γ(v, u)
)

− ω
(

v,Γ(w, u)
)

.

Assume that A(u, v, w) = 0. Then A′(u, v, w) = 0 if and only if the right hand side of the
last equation vanishes. After renaming the vector fields, we obtain condition (23). �

Proposition 6.7. Let µ ∈ Ω1(M) be a nowhere vanishing 1-form on a regular presym-
plectic manifold. If µ is basic in the sense that µ and dµ annihilate the characteristic
distribution TM⊥ (which is always the case when ω is symplectic) then it is a momen-
tum section for some presymplectically anchored connection.

Proof. Let µ ∈ Ω1(M) be a nowhere vanishing 1-form. Assume that µ annihilates TM⊥.
Then there is a vector field n such that ιnω = µ. Since µ is nowhere vanishing, there is
another vector field n̄ such that 1 = 〈µ, n̄〉 = ω(n, n̄).
Given an arbitrary connection D, the covariant derivative of µ can be expressed as

〈Dvµ, w〉 = v · µ(w)− µ(Dvw)

= v · ω(n, w)− ω(n,Dvw) .

If D′ is another connection with D′
vw −Dvw = Γ(v, w), then

〈D′
vµ, w〉 − 〈Dvµ, w〉 = −ω

(

n,Γ(v, w)
)

.

Now let D be a presymplectic connection satisfying Dω = 0 with torsion taking its
values in TM⊥. As we see from Eq. (20), TM is D-presymplectically anchored. Since
Dω = 0, we have 〈Dvµ, w〉 = ω(Dvn, w). With this, the condition 〈D′

vµ, w〉 = −ω(v, w)
for µ to be a D′-momentum section can be written as the following condition for Γ,

0 = 〈D′
vµ, w〉+ ω(v, w)

= 〈Dvµ, w〉 − ω
(

n,Γ(v, w)
)

+ ω(v, w)

= ω(Dvn, w)− ω
(

n,Γ(v, w)
)

+ ω(v, w)

= ω(Dvn+ v, w)− ω
(

n,Γ(v, w)
)

.

(24)

In addition to this equation, condition (23) for Γ must be satisfied for TM to be
presymplectically anchored with respect to D′.
Conditions (24) and (23) can be viewed as conditions for the 3-form C(u, v, w) :=

ω(u,Γ(v, w)) given by

C(n, v, w)− ω(Dvn + v, w) = 0(25a)

C(u, v, w)− C(v, u, w) = 0 .(25b)

Our strategy to find a C satisfying both conditions is the following: We start from
C = 0. In the first step, we eliminate any non-vanishing term on the left hand side
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term of (25a). In the second step we symmetrize C in the first two arguments in order
to satisfy (25b). This will lead to a new non-zero term on the left hand side of (25b).
So we must repeat this procedure until both conditions are satisfied.
In the first step let

C1(u, v, w) := ω(u, n̄)ω(Dvn+ v, w) ,

which satisfies (25a) because ω(n, n̄) = 1. The symmetrization of C1 is given by

C2(u, v, w) := C1(u, v, w) + C1(v, u, w)

= ω(u, n̄)ω(Dvn+ v, w) + ω(v, n̄)ω(Dun+ u, w) ,

which satisfies (25b). However,

C2(n, v, w)− ω(Dvn+ v, w) = ω(v, n̄)ω(Dnn+ n, w) ,

so that (25a) is not satisfied by C2. The non-vanishing term can be cancelled by setting

C3(u, v, w) = C2(u, v, w)− ω(u, n̄)ω(v, n̄)ω(Dnn + n, w) .

The additional term is manifestly symmetric in u and v, so that C3 satisfies both (25a)
and (25b). We conclude that TM is D′-presymplectically anchored with momentum
section µ = ιnω if Γ satisfies

ω(u,Γ(v, w)) = C3(u, v, w)

= ω(u, n̄)ω(Dvn + v, w) + ω(v, n̄)ω(Dun + u, w)

− ω(u, n̄)ω(v, n̄)ω(Dnn+ n, w)

= ω
(

u, ω(Dvn + v, w)n̄− ω(v, n̄)ω(Dnn + n, w)n̄+ ω(v, n̄)w
)

+ ω(v, n̄)ω(Dun, w) .

The remaining question is whether a Γ satisfying this equation exists, which is not
immediately clear since ω may be degenerate. A sufficient condition is that C3(u, v, w)
vanishes for all u ∈ TM⊥ and v, w ∈ TM . For u ∈ TM⊥ we have C3(u, v, w) =
ω(v, n̄)ω(Dun, w), which vanishes for all v, w ∈ TM if ω(Dun, w) = 0. Therefore, we
it suffices to show that ιuω = 0 implies ω(Dun, w) = 0.
So let u, w be vector fields with ιuω = 0. We get

ιwιudµ = u · µ(w)− w · µ(u)− µ([u, w])

= u · ω(n, w)− w · ω(n, u)− ω(n, [u, w])

= (Duω)(n, w) + ω(Dun, w) + ω(n,Duw)− ω(n, [u, w])

= ω(Dun, w) + ω(n, T (u, w) +Dwu)

= ω(Dun, w) + ω(n,Dwu)

= ω(Dun, w) + w · ω(n, u)− (Dwω)(n, u)− ω(Dwn, u)

= ω(Dun, w) ,

where we have used that Dω = 0 and T = 0. By assumption ιudµ = 0, so that
ω(Dun, w) = 0 as well. This shows that a map Γ : TM × TM → TM satisfying
ω(u,Γ(v, w)) = C3(u, v, w) exists. The conclusion is that TM is D′-presymplectically
anchored and that µ is a D′-momentum section. �
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Remark 6.8. The converse of Proposition 6.7 is not true: Let M be a presymplectic
vector space with Darboux coordinates (q, p, z). TM is presymplectically anchored by
the trivial connection for which dq, dp, and dz are horizontal. Then µ = p dq−q dp+dz
is a nowhere vanishing momentum section that does not annihilate the characteristic
distribution TM⊥ spanned by ∂

∂z
.

In the symplectic case the existence of a global weakly hamiltonian momentum section
turns out to be equivalent to a simple topological condition:

Theorem 6.9. When (M,ω) is a symplectic manifold, the following are equivalent:

(i) TM is weakly hamiltonian.
(ii) M is either non-compact or compact with non-negative Euler characteristic.

Proof. We will first show that (ii) implies (i).
If M is non-compact or compact with zero Euler characteristic, then there is a

nowhere vanishing section of T ∗M . It follows from Proposition 6.7 that TM is weakly
hamiltonian.
Suppose now that M is compact with positive Euler characteristic k. We may con-

struct a vector field with index k as follows. Let U1 be a disc in M with Darboux
coordinates (q1, . . . , qn, p1, . . . , pn), and let D1 be the connection on TM |U1 for which
the coordinate vector fields are horizontal. The 1-form µ = pidq

i − qidpi of Eq. (22)
is a momentum section with respect to the trivial connection given by the Darboux
coordinates. The vector field n satisfying ιnω = µ is the negative Euler vector field
n = −qi ∂

∂qi
− pi ∂

∂pi
which has a zero of index 1 at the origin (since M has even dimen-

sion). We repeat this construction to get vector fields of the same form on Darboux
coordinate discs U2, . . . , Uk with disjoint closures. The vector field we thus obtain on
U := U1 ∪ . . . ∪ Uk has total index k. We can extend this vector field to a vector field
ξ with non-degenerate isolated zeros on all of M . By the Poincaré-Hopf theorem the
restriction of the vector field toM \Ū must have index 0. The index of a non-degenerate
zero is ±1, so that we must have the same number of zeros of index 1 as of index −1.
Since M is assumed to be connected, so is M \ Ū , so we can pairwise cancel the zeros
of positive and negative index by modifying them along paths connecting the elements
of a pair. The result is a vector field v which is the negative Euler vector field of the
Darboux coordinates on U1, . . . , Uk and nowhere vanishing on M \ Ū .
Using Proposition 6.7, we can find a connection D′ over a neighborhood of M \ U

such that µ := ιvω is a D′-momentum section over M \U . By construction, µ is also a
Di-momentum section over every Ui. Since the condition (13) for µ to be a momentum
section does not involve derivatives of the connection, we can use a partition of unity
to merge D′ with the trivial connections Di on Ui to a connection D on all of M with
respect to which µ is a momentum section.
For the converse direction, we let n be the unique vector field such that µ = ιnω. Let

x be a zero of n. The condition for µ to be a D-momentum section can be expressed
in terms of n as

ω(Dvn, w) = ω(−v, w) + (Dvω)(n, w) ,

for all w, which is equivalent to

Dvn = −v + ω̃−1(ιnDvω) .
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When we evaluate this equation at x, the second term on the right hand side vanishes,
so that we obtain

Dvxn = −vx .

This shows that the derivative of n at any zero x is −1, so that x is an isolated zero
with index 1. Since this is true for every zero of n, the Poincaré-Hopf theorem implies
that if M is compact the Euler characteristic cannot be negative.

�

We now move on to bracket compatibility. Recall that a vector field n on (M,ω) is
called a Liouville vector field when Ln ω = −ω. (Some authors do not use the minus
sign in the definition.)

Proposition 6.10. Let (M,ω) be a manifold with a non-zero regular presymplectic
form. The following are equivalent:

(i) There is a Liouville vector field on M that is nowhere tangent to TM⊥.
(ii) There is a nowhere vanishing 1-form µ ∈ Ω1(M) that annihilates TM⊥ and

satisfies dµ = −ω.

These equivalent conditions imply:

(iii) The tangent Lie algebroid of M is hamiltonian.

Proof. Assume (ii). Choose a complement C to TM⊥ in TM . The restriction ωC

of ω to the vector bundle C is nondegenerate, and the pullback map from (TM⊥)◦

to C∗ is an isomorphism. Since µ annihilates TM⊥ it can be viewed as a section
of (TM⊥)◦; since µ is nowhere zero, it pulls back to a nowhere zero section µC of
C∗. Hence there is a (unique) nonzero section n of C ⊆ TM for which inωC = µC .
Now let v ∈ TM be decomposed as vC + v⊥, where vC ∈ C and v⊥ ∈ TM⊥. Then
(inω)(v) = (inω)(vC + v⊥) = (inω)(vC) = (inωC)(vC) = µC(vC) = µ(v) (with the last
equality due to the fact that µ annihilates TM⊥). So inω = µ, and hence n is a Liouville
vector field. Moreover, since µ = ιnω is nowhere vanishing, n is nowhere tangent to
TM⊥. So (ii) implies (i).
Next, assume (i). Since the Liouville vector field n is nowhere tangent to TM⊥, µ =

ιnω is nowhere vanishing. By definition, µ annihilates TM⊥. Since dµ = Ln ω = −ω,
the differential dµ annihilates TM⊥ as well. So (i) implies (ii).
Assume (ii). Then we can apply Proposition 6.7 which states that there is a connec-

tion D such that (TM,D, µ) is a weakly hamiltonian structure for TM . Since dµ = −ω,
the momentum section is bracket compatible. So (ii) implies (iii). �

Remark 6.11. If (iii) of Proposition 6.10 holds, there is a hamiltonian D-momentum
section µ ∈ Ω1(M) which is bracket-compatible, dµ = −ω. By Eq. (19) and the
assumption that ω is nowhere zero, µ must be nowhere vanishing. However, we could
neither prove nor disprove that there is always such a µ that annihilates TM⊥.

Remark 6.12. In the case that ω = 0, every tangent Lie algebroid is hamiltonian with
momentum section µ = 0 and any connection D, so that (iii) always holds. However,
since TM⊥ = TM , every (Liouville) vector field is tangent to TM⊥ and every 1-form
µ annihilating TM⊥ is zero, so that (i) and (ii) are never true.
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Corollary 6.13. The tangent Lie algebroid of every presymplectic vector space is hamil-
tonian.

Proof. Once again, we use the Darboux coordinate system

(q1, · · · , qr, p1 · · · , pr, z1, · · · , zs−2r),

in which ω = dqi ∧ dpi, so that the 1-form µ = pidqi + dp1 is nowhere vanishing,
annihilates TM⊥ = Span{ ∂

∂z1
, . . . , ∂

∂zs−2r }, and satisfies dµ = −ω. We conclude that
(ii) of Proposition 6.10 holds. �

Corollary 6.14. The tangent Lie algebroid of every regular presymplectic manifold is
locally hamiltonian.

In the symplectic case, Proposition 6.10 takes the following simpler form:

Proposition 6.15. For every symplectic manifold (M,ω) the following are equivalent:

(i) There is a Liouville vector field on M that is nowhere zero.
(ii) There is a nowhere vanishing 1-form µ ∈ Ω1(M) such that dµ = −ω.
(iii) The tangent Lie algebroid of M is hamiltonian.

Proof. Since ω is symplectic, we have TM⊥ = 0, so that the conditions in Proposition
6.10 for the Liouville vector field not to be tangent to TM⊥ and for µ to annihilate
TM⊥ are vacuous. Moreover, by Remark 6.11 condition (iii) now implies (ii), so that
all three conditions are equivalent. �

Remark 6.16. The tangent bundle of a symplectic vector space has the structure of
an action Lie algebroid TR2n ∼= R

2n
⋉ R

2n, where R
2n is the commutative Lie algebra

acting freely by the coordinate vector fields of Darboux coordinates. The action is
by hamiltonian vector fields, but the action is only weakly hamiltonian. (A bracket-
compatible momentum section for the trivial connection would have to map the basis of
the Lie algebra to 2n functionally independent, Poisson commuting functions. However,
a maximum of n such functions may exist for a completely integrable system.) We
conclude that the connection of a hamiltonian structure, which is guaranteed to exist
by Corollary 6.13, cannot be the trivial one which is customarily attached to an action
Lie algebroid. In fact if, for a connection making the Lie algebroid hamiltonian, there
is any subbundle of TM on which both the curvature and the torsion vanish, its rank
may not exceed n.

We will see below that the tangent bundle of any exact (hence noncompact) sym-
plectic manifold is hamiltonian. Since the proof of that fact depends on a deep result
in symplectic topology, we present next a class of symplectic manifolds whose tangent
Lie algebroids are more easily proven to be hamiltonian.

Proposition 6.17. If a manifold Q is non-compact or compact with zero Euler char-
acteristic, then the tangent Lie algebroid of M = T ∗Q is hamiltonian.

Proof. Let θ be the canonical 1-form on T ∗Q, which satisfies dθ = −ω. Let n be the
unique vector field satisfying ιnω = θ. In local Darboux coordinates θ = pidq

i so that
n = −pi

∂
∂pi

, which is a negative Liouville vector field, Ln ω = −ω. We cannot apply
Proposition 6.15 yet, because n vanishes on the zero section of the bundle π : T ∗Q→ Q.
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Since Q is non-compact or compact with zero Euler characteristic, there is a nowhere
vanishing vector field ξ ∈ X (Q). Let X be the hamiltonian vector field on T ∗Q gener-
ated by the function f defined as ιξθ for each cotangent vector θ. In local coordinates,
we can write ξ = ξi(q) ∂

∂qi
, so that f = piξ

i and, hence,

X = ξi
∂

∂qi
− pi

∂ξi

∂qj
∂

∂pi
.

Let n′ := n + X . Since X is a hamiltonian vector field, it satisfies LX ω = 0, so
that Ln′ ω = Ln ω + LX ω = −ω. Moreover n′ projects by Tπ to ξ, which is nowhere
vanishing. Hence, n′ is nowhere vanishing as well. From Proposition 6.15 it now follows
that TM is hamiltonian with momentum section µ = ιn′ω. �

For the general case, to prove that the tangent Lie algebroid of every exact sym-
plectic manifold is hamiltonian, we apply recent results of Tang, Stratmann, and
Karshon/Tang. This work, inspired by the application to Lie algebroids, is also of
considerable independent interest in symplectic topology.
To find a nonvanishing primitive of an exact symplectic manifold, the first step is to

begin with any primitive and to modify it by adding the differential of a function so
that the new primitive λ is transversal to the zero section. (See for example, Lemma
3.4 of [22], for a proof.) The zeros of this new primitive are then isolated. Under the
usual assumption thatM is separable, there are at most countably many zeros. In [36],
Stratmann constructs a primitive with further special features and then pushes them
out to infinity one at a time in such a way that there is a limiting primitive with no
zeros.
Another general approach, which we proposed in a previous draft of this paper, is

to remove rays containing the zeros of λ, either one at a time or all at once, showing
the the resulting manifold is still symplectomorphic to M . This has been carried out
by Tang in [38], with some conditions on the behavior at infinity of M , and then in
general by Stratmann in [37] and by Karshon and Tang in [22].
The conclusion follows:

Theorem 6.18. The tangent Lie algebroid of a symplectic manifold is hamiltonian if
and only if the symplectic structure is exact.

6.3. Regular foliations. Let F be a regular foliation of a manifold M . The tangent
spaces to the leaves form the integrable distribution TF ⊆ TM , which can be viewed
as a Lie algebroid over M with the embedding of TF into TM as anchor and the
commutator of vector fields as Lie bracket. Let ω be a symplectic7 form onM . We recall
that the foliation F is called symplectically complete if the symplectic orthogonal
(TF)⊥ is an integrable distribution [27]. When this is the case, the foliation integrating
(TF)⊥ will be denoted by F⊥, so that (TF)⊥ = TF⊥.

Proposition 6.19. The tangent Lie algebroid TF of a regular foliation F of a symplec-
tic manifold M is symplectically anchored if and only if F is symplectically complete.

7We will restrict our attention here to the nondegenerate case in order to avoid issues arising from
the interaction between F and the characteristic foliation of ω.



HAMILTONIAN LIE ALGEBROIDS 35

Proof. (C4) from Section 2.5 is the condition that ρ(A)⊥ = (TF)⊥ is involutive, which
by Frobenius’ theorem is equivalent to (TF)⊥ being integrable. In other words (C4)
is equivalent to F being symplectically complete. Proposition 2.9 tells us that in the
regular case (C4) is equivalent to (C3) which is equivalent to A being presymplectically
anchored. �

Let us now turn to momentum sections. In a first step, we observe that ω̃ : TM →
T ∗M induces an isomorphism from the normal bundle NF⊥ := TM/TF⊥ to the dual
of the tangent bundle of F , given by

θ : NF⊥ ∼=
−→ T ∗F

〈θπ(v), a〉 = ω(v, a)

for all v ∈ TM and a ∈ TF , where π : TM → NF⊥ denotes the canonical projection.
As is the case for the normal bundle of any foliation, we have the Bott connection

on NF⊥, which is the flat TF⊥-connection given by

Dvπ(w) := π([v, w])

for all v ∈ Γ(M,TF⊥) and w ∈ X (M). The isomorphism θ maps the Bott connection
to a TF⊥-connection on T ∗F , which we will also call the Bott connection.

Proposition 6.20. Let F be a symplectically complete foliation of (M,ω). Then the
Bott connection on T ∗F ∼= NF⊥ is given for v ∈ Γ(M,TF⊥) and µ ∈ Γ(M,T ∗F) by

〈Dvµ, a〉 = ω([v, w], a) ,

where w ∈ X (M) is a vector field such that 〈µ, a〉 = ω(w, a).

Proof. This follows immediately from the definition of the isomorphism θ. �

Proposition 6.21. Let D be a symplectically anchored connection on the tangent bun-
dle TF of a regular foliation of a symplectic manifold. Then the dual connection on
T ∗F restricted to the direction of TF⊥ is the Bott connection.

Proof. From Eq. (21) we deduce that the condition for the connection D on TF to be
presymplectically anchored is

0 = v · ω(w, a)− w · ω(v, a)− ω([v, w], a)

− ω(w,Dva) + ω(v,Dwa) ,
(26)

for all v, w ∈ X (M) and a ∈ Γ(M,TF).
Let now µ ∈ Γ(M,T ∗F) be given by 〈µ, a〉 = ω(w, a) for some vector field w. Then

〈Dvµ, a〉 = v · 〈µ, a〉 − 〈µ,Dva〉 = v · ω(w, a) − ω(w,Dva). With this we can write
Eq. (26) as

(27) 〈Dvµ, a〉 = ω([v, w], a) + w · ω(v, a)− ω(v,Dwa) .

For v ∈ Γ(M,TF⊥) the last two terms on the right hand side of Eq. (27) vanish, so that
we obtain 〈Dvµ, a〉 = ω([v, w], a). This is the Bott connection of Proposition 6.20. �

Proposition 6.22. Let F be a symplectically complete foliation of M . Let µ be a
nowhere vanishing section of T ∗F . If µ is horizontal with respect to the Bott connection,
then it is the momentum section for some symplectically anchored connection on TF .
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Proof. We follow the strategy of the proof of Proposition 6.7. Let n be a vector field
such that 〈µ, a〉 = ω(n, a). Since µ is nowhere vanishing, there is an n̄ ∈ Γ(M,TF)
such that 〈µ, n̄〉 = ω(n, n̄) = 1.
Let D be a symplectically anchored connection on TF , which exists by Proposition

6.19. Using Eq. (27), we see that µ is a D-momentum section if and only if

B(v, a) := 〈Dvµ, a〉+ ω(v, a)

= ω([v, n], a) + ω(v, a) + n · ω(v, a)− ω(v,Dna)

vanishes for all v ∈ X (M) and a ∈ Γ(M,TF). It is easy to check that B(v, a) is
C∞(M)-linear in both arguments, so that B can be viewed as a bilinear function on
TM × TF .
By assumption, µ is annihilated by the covariant derivative of the Bott connection

of Proposition 6.20, which means that ω([v, n], a) = 0 for all v ∈ Γ(M,TF⊥). Since the
last three terms of B(v, a) also vanish for v tangent to TF⊥, it follows that B(v, a) = 0
for all v in TF⊥. We conclude that for every a ∈ TF there is an B̃(a) ∈ TF such that

B(v, a) = ω(v, B̃(a)). This defines a bundle map B̃ : TF → TF .
We will now construct a symplectically anchored connection D′, such that µ is a

D′-momentum section. The new connection is given by D′
va = Dva + Γ(v, a) for some

bilinear bundle map Γ : TM ×M TF → TF . From Eq. (26) we deduce that D′ is
symplectically anchored, if and only if

(28) ω
(

v,Γ(w, a)
)

= ω
(

w,Γ(v, a)
)

for all v, w ∈ TM and a ∈ TF . Moreover, the condition for µ to be a D′-momentum
section is equivalent to

(29) ω
(

v,Γ(n, a)
)

= B(v, a) .

Let Γ be defined by

Γ(v, a) := B(v, a) n̄+ ω(v, n̄)B̃(a)− ω(v, n̄)B(n, a) n̄ .

Then we have

ω
(

w,Γ(v, a)
)

= B(v, a)ω(w, n̄) + ω(v, n̄)B(w, a)− ω(v, n̄)B(n, a)ω(w, n̄)

= ω
(

v,Γ(w, a)
)

,

so that Eq. (28) is satisfied. This shows that D′ is symplectically anchored. For w = n
we obtain

ω
(

v,Γ(n, a)
)

= B(v, a)ω(n, n̄) + ω(v, n̄)B(n, a)− ω(v, n̄)B(n, a)ω(n, n̄)

= B(v, a) ,

so that Eq. (29) holds as well. This shows that µ is a D′-momentum section. �

The compatibility of a momentum section µ with the bracket of the Lie algebroid
A = TF can be written as dµ = −ρ∗ω. For 〈µ, a〉 = ω(n, a) we can write the Lie
algebroid differential as

dµ = dρ∗ιnω = ρ∗dιnω = ρ∗ Ln ω .
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It follows that the condition of bracket compatibility is equivalent to

(30) ρ∗(Ln ω + ω) = 0 .

We thus arrive at the following sufficient conditions for TF to be hamiltonian. As
expected, they reduce in the case where TF = TM to the ones found above.

Proposition 6.23. Let F be a regular foliation of the symplectic manifold (M,ω).

(i) TF is symplectically anchored if and only if F is symplectically complete.
(ii) TF is weakly hamiltonian if, in addition to (i), there is a vector field n that is

nowhere tangent to F⊥ and a symmetry of F⊥, i.e. Γ(M,TF⊥) is closed under
the Lie bracket with n.

(iii) TF is hamiltonian if, in addition to (i) and (ii), the pullback of Ln ω + ω to F
vanishes.

Proof. Statement (i) is Proposition 6.19. For (ii) we first observe that if n is nowhere
tangent to F⊥, then µ := ρ∗ιnω is nowhere vanishing. Moreover, the Bott connection
of µ is given by 〈Dvµ, a〉 = ω([v, n], a), for v ∈ Γ(M,TF⊥), so that Dvµ = 0 iff [v, n]
lies in Γ(M,TF⊥) for every v. In that case we can apply Proposition 6.22. Statement
(iii) follows from Eq. (30). �

6.4. Lie algebroids of rank 1. By supp ρ we denote the support of ρ viewed as a
section of A∗ ⊗ TM → M . In other words, supp ρ is the closure of the open set of
points m ∈M where ρ(Am) 6= 0.

Proposition 6.24. Let (A, ρ) be an anchored vector bundle of rank 1 over the symplectic
manifold M , symplectically anchored with respect to D. If supp ρ = M , and µ is a D-
momentum section, then D is flat, and the support of µ is M as well.

Proof. Let µ be a D-momentum section. It follows from the defining properties of a
D-momentum section µ that 0 = D2µ = µR, where R is the curvature 2-form. This
shows that R must vanish on the open set of all points where µ is non-zero and so, by
continuity, R must vanish also on the closure of U , that is, on the support of µ.
If µ is zero on an open set U ⊆M , then γ = Dµ vanishes on U , so that ρ also vanishes

on U , since ω is nondegenerate. This contradicts the assumption that supp ρ =M , and
so the support of µ must be all of M . �

Corollary 6.25. Let A be a Lie algebroid of rank 1 over a symplectic manifold M with
supp ρ =M . Then A is locally hamiltonian if and only if (C2) holds.

Proof. Assume A is locally hamiltonian, then Proposition 6.24 and Proposition 3.5
imply (C2). The converse statement was proved in Proposition 4.5. �

Proposition 6.26. Let A be a vector bundle of rank 1 that is symplectically anchored
with respect to the connection D. If A has a D-momentum section, then the curvature
of D vanishes at the singular points of the anchor.

Proof. Let m ∈ M be a singular point. Assume that there is an open neighborhood
U ∋ m on which the D-momentum section µ vanishes. Then γ = Dµ = 0 on U which
implies that ρ = 0 over U , so that the rank of ρ is constant 0. This contradicts the
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assumption that m is singular, so that no such neighborhood exists. It follows that
every neighborhood of m contains a point at which µ does not vanish. Thus, we can
find a sequence (mi) converging to m with µmi

6= 0. We conclude that m lies in the
support of µ, so that R must vanish at m. �

As corollary to the last statement we obtain an obstruction to the existence of a
local momentum section in the neighborhood of a singular point m. If the connection
D has nonzero curvature at m, then there cannot be a local D-momentum section.
This still leaves open the much more difficult question of whether there can be another
connection D′ for which A is D′-symplectic, such that there is a local D′-momentum
section.

7. The category of hamiltonian Lie algebroids

To further develop the concept of hamiltonian Lie algebroids, we will now introduce
and study the notion of morphisms. This will lead to a unified framework for the various
structures that make up a hamiltonian Lie algebroid. The theory developed here will be
used in the example in Section 7.4 on transitive Lie algebroids and in Section 9, where
we study important classes of hamiltonian structures on quotients of Lie algebroids, as
well as in Section 10, where we give a cohomological interpretation of hamiltonian Lie
algebroids.
Stating the definition of a morphism of Lie algebroids directly in terms of the anchor

and the Lie bracket is rather cumbersome. (See [21] and references therein.) The
most succinct definition is in terms of the graded vector space Ωq(A) = Γ•(M,∧qA∗)
of exterior forms on A and the Lie algebroid differential d [41]: A morphism of vector
bundles ϕ : A→ Ã over a map ϕ0 :M → M̃ is called a morphism of Lie algebroids

if its pullback ϕ∗ : Ωq(Ã) → Ωq(A) is a map of differential complexes; i.e. dϕ∗ = ϕ∗d̃.

Example 7.1. When A = TM and Ã = TM̃ are tangent Lie algebroids, and ϕ = Tϕ0

is the tangent map of a smooth map ϕ0 : M → M̃ , then ϕ∗ is the usual pullback of
differential forms along ϕ0, which always intertwines the de Rham differentials.

A connection on A induces a dual connection on A∗, which is given by maps Dp :
Ωp(M,A∗) → Ωp+1(M,A∗) between the spaces

Ωp(M,A∗) := Γ(M,∧pT ∗M ⊗ A∗) ∼= Ωp(M)⊗C∞(M) Ω
1(A)

of A∗-valued differential forms. (Note, that the while the tensor product of vector
bundles is fibre-wise over R, the tensor product of the spaces of sections is over the
ring of smooth functions. We omit the subscript in the former case.) In order to
formulate the connection and the hamiltonian Lie algebroid structure within the same
algebraic framework and study their compatibility with vector bundle morphisms we
are, therefore, led to the bigraded algebra

(31) Ωp,q(M,A) := Ωp(M)⊗C∞(M) Ω
q(A) .

We will show that the Lie algebroid structure, the connection, and the momentum sec-
tion can all be simultaneously encoded either as derivations or as elements of Ω•,•(M,A).
This leads to a conceptually clear and useful notion of morphisms of hamiltonian Lie
algebroids.



HAMILTONIAN LIE ALGEBROIDS 39

7.1. Lie algebroid with a connection in terms of derivations. The bigraded ring
Ω•,•(M,A) can be viewed as ring of functions on the bigraded manifold T [1, 0]M ⊕
A[0, 1],

Ωp,q(M,A) = O(T [1, 0]M ⊕ A[0, 1])p,q

= Γ(M,∧pT ∗M ⊗ ∧qA∗) .

We may think of the elements of this bigraded algebra as exterior forms on the vector
bundle TM ⊕ A, as ∧•T ∗M-valued forms on the vector bundle A, or as ∧•A∗-valued
differential forms on M . The point of view of graded manifolds is explained in Section
10.
As we will now show, the anchor, the connection, and the Lie algebroid bracket can

all be encoded as derivations on Ω(M,A). Any derivation δ of an algebra is uniquely
determined by its action on a set of generators. Ω(M,A) is generated by functions
f ∈ Ω0,0(M,A), differential 1-forms τ ∈ Ω1,0(M,A), and Lie algebroid 1-forms θ ∈
Ω0,1(M,A). The derivation laws on these generators read

(32)

δ(fg) = (δf)g + f(δg)

δ(fτ) = (δf)τ + f(δτ)

δ(fθ) = (δf)θ + f(δθ) ,

Every linear map satisfying these relations is a local (first order differential) operator.
Since, locally, Ω(M,A) is freely generated as a graded commutative C∞(M)-algebra,
any linear map δ defined on functions and 1-forms that satisfies (32) extends uniquely
to a derivation of Ω(M,A).

7.1.1. Interior derivative and anchor. An important space of derivations on the algebra
of exterior forms on a vector bundle is given by the insertion of sections of the vector
bundle as the first entry of the forms. These operations can be viewed a bigraded map

ι : Γ(M,T [1, 0]M ⊕ A[0, 1]) −→ Der(Ω(M,A))

X 7−→ ιX ,

called the interior derivative, where Der(Ω(M,A)) is the space of bigraded derivations
on Ω(M,A). When X = v is a vector field on M , so that deg(v) = (−1, 0), then ιv is a
derivation on Ω(M,A) of bidegree (−1, 0), which acts by ιvτ = 〈τ, v〉 on τ ∈ Ω1,0(M,A)
and by ιvθ = 0 on θ ∈ Ω0,1(M,A). When X = a is a section of A, then ιa is a derivation
of bidegree (0,−1), which acts by ιaτ = 0 and ιaθ = 〈θ, a〉. In both cases ιXf = 0, so
that the derivation property (32) is satisfied trivially.
It is useful to extend the interior derivative Ω(M,A)-linearly to a map

ι : Ω(M,A)⊗C∞(M) Γ(M,T [1, 0]⊕A[0, 1]) −→ Der(Ω(M,A))

ϕ⊗X 7−→ ιϕ⊗X := (ψ 7→ ϕ ιXψ) .

This map can be applied to an anchor A→ TM , which can be viewed as an element

ρ ∈ Ω0,1(M,A)⊗C∞(M) Γ(M,T [1, 0]M) .

We thus obtain a derivation ιρ of bidegree (−1, 1). Let us make the definition of this
derivation explicit:
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Definition 7.2. Let (A, ρ) be an anchored vector bundle over M . The anchor gives
rise to a bidegree (−1, 1) derivation ιρ of Ω(M,A) defined by

ιρf = 0 , 〈ιρτ, a〉 = ιρaτ , ιρθ = 0 ,

for all f ∈ Ω0,0(M,A), τ ∈ Ω1,0(M,A), θ ∈ Ω0,1(M,A), and all sections a of A.

7.1.2. Connection and Lie algebroid structure. A connection on A gives rise to a bide-
gree (1, 0) derivation on Ω(M,A) defined by

Df := df , Dτ := dτ , Dθ := Dθ ,

where df and dτ is the de Rham differential and Dθ the covariant derivative. The
derivation property (32) follows from the derivation property of the de Rham differential
and the Leibniz rule (1) of the connection.
Let Ď be the A-connection on TM defined in Eq. (5). As is the case for every A-

connection, Ď gives rise to a dual A-connection on T ∗M , also denoted by Ď, which is
defined implicitly by

(33) ρa · 〈τ, v〉 = 〈Ďaτ, v〉+ 〈τ, Ďav〉 ,

for every differential 1-form τ ∈ Ω1(M) and vector field v. When A is a Lie algebroid,
the dual A-connection extends to a derivation on Ω(M,A) defined by

Ďf := df , Ďτ := Ďτ , Ďθ := dθ ,

where df = ιρdf and dθ is the Lie algebroid differential, and Ďτ the covariant derivative
of the A-connection. The derivation property (32) follows from the derivation property
of the Lie algebroid differential and the Leibniz rule (4) of the A-connection.

We recall from Section 5.1 that every connection D induces an A-connection D̂. Its
torsion T defined in Eq. (7) can be viewed as an A-valued exterior 2-form on A, i.e. as
an element

T ∈ Ω0,2(M,A)⊗C∞(M) Γ(M,A[0, 1]),

so that ιT is a derivation of bidegree (0, 1), defined by

ιTf = 0 , ιT τ = 0 , ιT θ := 〈θ, T 〉 .

7.1.3. Commutators of the derivations. We have the three bigraded derivations

ιρ ∈ Der(Ω(M,A))−1,1

D ∈ Der(Ω(M,A))1,0

Ď ∈ Der(Ω(M,A))0,1 ,

which encode the anchor, the connection, and the Lie algebroid bracket.
The bigraded commutator of a pair of bigraded derivations is again a bigraded deriva-

tion. Therefore, these three derivations generate a bigraded Lie subalgebra of the graded
Lie algebra of all derivations on Ω(M,A). For example, we have already seen in Sec-
tion 3.1 that [D,D] = 2D2 = 2(id⊗R) acts as the curvature operator on elements of
Ω0,1(M,A), which extends to a derivation on Ω(M,A). And the derivation ιρ is of total
degree 0, so that [ιρ, ιρ] = 0.
The following result will be used in the proofs of Proposition 7.6 and Theorem 10.8:
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Proposition 7.3. The differential Ď can be expressed as

(34) Ď = [ιρ, D] + ιT .

Proof. Since Ď, [ιρ, D], and ιT are all derivations on Ω(M,A) and are thus uniquely
determined by their action on the generators of Ω(M,A), we only need to show that
Eq. (34) holds when applied to functions f ∈ Ω0,0(M,A), to differential 1-forms τ ∈
Ω1,0(M,A), and to exterior A-forms θ ∈ Ω0,1(M,A).
We start with a function f :

〈

([ιρ, D] + ιT )f, a
〉

= 〈ιρdf, a〉 = ρa · f = 〈df, a〉

= 〈Ďf, a〉 .

Next, we consider a differential 1-form τ , for which we have

ιρDτ = ιρdτ .

Before we compute Dιρτ , we observe that, in the definition of the dual connection of
Ď, there appears an additional sign: for every differential 1-form τ , section a of A, and
vector field v on M we have

〈Ďaτ, v〉 = ιvĎaτ = ιvιaĎτ = −ιaιvĎτ

= −〈Ďτ, v ⊗ a〉 .

With this relation, we obtain

〈Dιρτ, v ⊗ a〉 = 〈Dvιρτ, a〉

= v · 〈ιρτ, a〉 − 〈ιρτ,Dva〉

= 〈Lv τ, ρa〉+ 〈τ,Lv ρa〉 − 〈ιρτ,Dva〉

= 〈Lv τ, ρa〉 − 〈τ, [v, ρa] + ρ(Dva)〉

= 〈ιρ Lv τ, a〉 − 〈τ, Ďav〉

= 〈ιρ(ιvd+ dιv)τ, a〉 − 〈τ, Ďav〉

= 〈ιριvdτ, a〉+ ρa · 〈τ, v〉 − 〈τ, Ďav〉

= 〈ιvιρdτ, a〉+ 〈Ďaτ, v〉

= 〈ιρdτ − Ďτ, v ⊗ a〉 ,

where we have used the definition of the dual connection, the defining Eq. (5) of the
opposite A-connection Ď, Cartan’s magic formula, and that ιριv = ιvιρ because ιρ is of
total degree 0. Subtracting the two terms of the commutator yields [ιρ, D]τ = Ďτ−ιT τ ,
where we have used the condition ιT τ = 0 in the definition of ιτ .
Finally, we turn to an exterior 1-form θ on A. In order to apply Eq. (34) to θ we first

observe that

ιρa = [ιa, ιρ] ,
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which can be checked by letting the derivation [ιa, ιρ] act on the generators τ and θ.
Using this relation, we obtain

([ιρ, D]θ)(a, b) = ιbιa(ιρD −Dιρ)θ = ιbιaιρDθ

= (ιbιρa − ιaιρb + ιριbιa)Dθ

= 〈Dρaθ, b〉 − 〈Dρbθ, a〉

= ρa · 〈θ, b〉 − ρb · 〈θ, a〉 − 〈θ,Dρab〉+ 〈θ,Dρba〉

= ρa · 〈θ, b〉 − ρb · 〈θ, a〉 − 〈θ, [a, b]〉

+ 〈θ, [a, b]〉 − 〈θ,Dρab〉+ 〈θ,Dρba〉

= (dθ)(a, b)− 〈θ, T (a, b)〉

= (Ďθ)(a, b)− (ιT θ)(a, b)

for all sections a, b of A. This finishes the proof. �

7.2. Morphisms of anchored vector bundles with connections. A morphism
ϕ : A→ A′ of vector bundles is given explicitly by a commutative diagram of the form

A
ϕ1

//

��

A′

��

M
ϕ0

// M ′

The morphism induces a pullback operator

ϕ∗ : Ω(M ′, A′) −→ Ω(M,A) ,

which is the bigraded linear map defined by ϕ∗(τ ⊗ θ) := ϕ∗
0τ ⊗ ϕ∗θ, where ϕ∗

0τ is the
usual pullback of the differential form τ on M ′ along ϕ0, and where ϕ∗θ is given by the
commutative diagram

∧qA∗ ∧qA′∗
∧qϕ∗

1
oo

M

ϕ∗θ

OO

ϕ0
// M ′

θ

OO

A smooth map of (not necessarily linear) fibre bundles with (Ehresmann) connections
is said to be compatible with the connections if its derivative maps horizontal vec-
tors to horizontal vectors (or, equivalently, the map takes horizontal paths to horizontal
paths). For a map of vector bundles with linear connections, this compatibility can be
expressed in terms of the covariant derivatives as follows:

Proposition 7.4. Let (A,D) and (A′, D′) be vector bundles with connections. A mor-
phism ϕ : A → A′ of vector bundles is compatible with the connections if and only if
Dϕ∗ = ϕ∗D′.

While the statement of this proposition is folklore knowledge, we could not find a
proof in the literature, so we give one here:
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Proof. Tϕ1 : TA→ TA′ maps horizontal vectors to horizontal vectors if and only if the
horizontal lifts h : TM ×M A → TA and h′ : TM ′ ×M ′ A′ → TA′ of the connections
satisfy

(35) Tϕ1 h(vm, am) = h′(Tϕ0 v0, ϕ1(am))

for all m ∈M , vm ∈ TmM , and am ∈ Am.
The decomposition of a tangent vector ȧ ∈ TamA into its horizontal and vertical part

is given by

ȧ‖ = h(Tπ ȧ, am) , ȧ⊥ = ȧ− ȧ‖ ,

where π : A → M is the bundle projection. Since A is a vector bundle, we can
identify the vertical part of ȧ with an element in Am. The dual connection is defined
by requiring that paring a (locally or at a point) horizontal section θ‖ of A∗ with a
horizontal section a‖ of A yields a constant function 〈θ‖, a‖〉 on M . For a tangent
vector vm ∈ TmM represented by the smooth path t 7→ γt ∈M , we have

vm · 〈θ‖, a‖〉 =
d

dt

〈

θ‖(γt), a
‖(γt)

〉

t=0

= 0 .

For arbitrary sections θ and a it follows that the derivative of 〈θ, a〉 depends only on
the horizontal components of the derivatives of θ and a, so that we obtain

vm · 〈θ, a〉 =
〈

(Tθ vm)
⊥, a(m)

〉

+
〈

θ(m), (Ta vm)
⊥vm

〉

.

Using this relation, we can write the derivative in the direction of vm ∈ TmM of the
pairing of the pullback of a section θ′ of A′∗ with a section a of A as follows:

vm · 〈ϕ∗θ′, a〉 = vm · 〈θ′ ◦ ϕ0, ϕ1 ◦ a〉

=
〈

(Tθ′ Tϕ0 vm)
⊥, ϕ1(a(m))

〉

+
〈

θ′(ϕ0(m)), (Tϕ1 Ta vm)
⊥
〉

=
〈

D′
Tϕ0 vm

θ′, ϕ1(a(m))
〉

+
〈

θ′(ϕ0(m)), Tϕ1 Ta vm − h′
(

Tϕ0 vm, ϕ1(a(m))
)〉

= ιvm
〈

ϕ∗D′θ′, a
〉

+
〈

θ′(ϕ0(m)), Tϕ1 Ta vm − h′
(

Tϕ0 vm, ϕ1(a(m))
)〉

,

where we have used that the vertical part of the derivative of a section is its covariant
derivative, (Tθ′ Tϕ0 vm)

⊥ = DTϕ0vmθ
′, and that ϕ being a morphism of bundles implies

Tπ′ Tϕ1 Ta vm = Tϕ0 Tπ Ta v0 = Tϕ0 vm. On the other hand, we can express the
derivative in terms of the covariant derivatives as

vm · 〈ϕ∗θ′, a〉 = 〈Dvmϕ
∗θ′, a〉+ 〈ϕ∗θ′, Dvma〉

= 〈Dvmϕ
∗θ′, a〉+

〈

θ′(ϕ0(m)), Tϕ1

(

Ta vm − h(vm, a(m))
)〉

.

Subtracting the last two equations we obtain

ιvm
〈

(ϕ∗D′ −Dϕ∗)θ′, a
〉

=
〈

θ′(ϕ0), h
′
(

Tϕ0 vm, ϕ1(a(m))
)

− Tϕ1 h(vm, a(m))
〉

,

which holds for all sections θ, a, and all vectors vm. We conclude that ϕ∗D′ = Dϕ∗ if
and only if Eq. (35) holds. �
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Proposition 7.5. Let (A, ρ) and (A′, ρ′) be anchored vector bundles. A morphism
ϕ : A→ A′ of vector bundles is compatible with the anchors, Tϕ0 ◦ ρ = ρ′ ◦ Tϕ1, if and
only if ιρϕ

∗ = ϕ∗ιρ′.

Proof. Evaluating the condition Tϕ0 ◦ ρ = ρ′ ◦ ϕ1 at a ∈ A and pairing it with a
differential 1-form τ ∈ Ω1(M ′), we obtain the equivalent condition

〈ιρϕ
∗τ, a〉 = 〈ϕ∗τ, ρ(a)〉 = 〈τ, Tϕ0ρ(a)〉 = 〈τ, ρ′(ϕ1(a))〉 = 〈ιρ′τ, ϕ1(a)〉

= 〈ϕ∗ιρ′τ, a〉 .

This shows that the compatibility is equivalent to ιρϕ
∗τ = ϕ∗ιρ′τ for all differential

1-forms on M ′. By the derivation property of ιρ and ιρ′ , ιρϕ
∗τ = ϕ∗ιρ′τ then holds

for differential forms of all positive degrees. Since ιρ and ιρ′ annihilate all functions in
C∞(M) and C∞(M ′), as well as all exterior A-forms in Ω(A) and Ω(A′), respectively,
we conclude that ιρϕ

∗ = ϕ∗ιρ′ holds when applied to all forms in Ω(M,A). �

Proposition 7.6. Let (A,D) and (A′, D′) be Lie algebroids with connections and ϕ :
A→ A′ a morphism of vector bundles that is compatible with the connections. Then ϕ
is a morphism of Lie algebroids if and only if Ďϕ∗ = ϕ∗Ď′.

Proof. Assume that ϕ is a morphism of Lie algebroids. This means that for every
function and every exterior A-form θ′ ∈ Ω(A) we have Ďϕ∗θ′ = dϕ∗θ′ = ϕ∗d′θ′ =
ϕ∗Ď′θ′. In particular, for every function f ′ ∈ Ω0(A′) = C∞(M ′) we have

ιρϕ
∗df ′ = ιρdϕ

∗f ′ = dϕ∗f ′ = ϕ∗Ď′f ′

= ϕ∗ιρ′df
′ ,

which implies that ιρϕ
∗ = ϕ∗ιρ′ . Proposition 7.3 implies that Ď acts on differential

forms by the commutator [ιρ, D]. Since ϕ∗ intertwines the interior derivatives of the
anchors and by assumption the connections, it follows that Ďϕ∗τ ′ = ϕ∗Ď′τ ′ for all
τ ′ ∈ Ω(M ′). Differential forms and exterior A-forms generate Ω(M,A), which implies
that the relation Ďϕ∗ = ϕ∗Ď′ holds when applied to any element of Ω(M,A).
Conversely, assume that Ďϕ∗ = ϕ∗Ď′. Since Ď acts on exterior A-forms by the Lie

algebroid differential, it follows that dϕ∗θ′ = ϕ∗d′θ′ for all θ′ ∈ Ω(A′). We conclude
that ϕ is a morphism of Lie algebroids. �

7.3. Morphisms of hamiltonian Lie algebroids. The structure of a hamiltonian
Lie algebroid (A, ω,D, µ) can be interpreted in terms of the bigraded ring Ω(M,A)
as well. The presymplectic 2-form, the dual anchor, and the momentum section are
elements

ω ∈ Ω2,0(M,A) , γ ∈ Ω1,1(M,A) , µ ∈ Ω0,1(M,A) .

The connection is given by the derivation D of bidegree (1, 0) and the Lie algebroid
structure by the derivation Ď of bidegree (0, 1). Moreover, the anchor is encoded in the
derivation ιρ.

Proposition 7.7. The conditions in Definition 1.1 for A to be presymplectically an-
chored with respect to D, for µ to be a momentum section, and for µ to be bracket-
compatible can be written as

(36) Dιρω = 0 , Dµ = −ιρω, and Ďµ = −1
2
ιριρω ,
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respectively.

Proof. We must explain the minus sign in the second equation and the factor 1
2
in the

third equation, which are a bit surprising. By Eq. (9), the dualized anchor γ, viewed
as an A∗-valued 1-form on M , can be written in coordinates as

γ = γi ⊗ θi = ραi ωαβdx
β ⊗ θi

as an element of the graded algebra Ω(M,A). By definition, ιρ is the graded derivation
on Ω(M,A) that is given by its action on local generators as

ιρdx
α = ραi θ

i , ιρθ
i = 0 .

Applying ιρ to ω = 1
2
ωαβdx

α ∧ dxβ ≡ ω = 1
2
ωαβdx

αdxβ, we obtain

ιρω = ωαβdx
αιρdx

β = ωαβdx
αρβi θ

i = −ραi ωαβdx
β ⊗ θi

= −γ .

It follows that γ = −ιρω, so that the condition Dγ = 0 is equivalent to Dιρω = 0, and
the condition Dµ = γ is equivalent to Dµ = −ιρω.
Using ιρa = [ιa, ιρ], we compute for the third condition

ιbιa(ιριρω) = ιb(ιριa + ιρa)ιρω)

= (ιbιρ)(ιaιρ)ω + ιbιρaιρω

= (ιbιρ)ιρaω + (ιbιρ)ιρaω

= 2ω(ρa, ρb) .

This shows that ω(ρa, ρb) = (1
2
ιριρω)(a, b). It follows that the condition (dµ)(a, b) =

−ω(ρa, ρb) is equivalent to Ďµ = −1
2
ιριρω. �

For the first condition of Eqs. (36), there is an equivalent condition in terms of Ď:

Proposition 7.8. An anchored vector bundle A over a presymplectic manifold (M,ω)
is presymplectically anchored with respect to the connection D if and only if

Ďω = 0 .

Proof. The dualized anchor is given by γ = −ιρω. Using Proposition 7.3 and that
Dω = dω = 0, we get

Dγ = −Dιρω = [D, ιρ]ω = −Ďω ,

so the left hand side vanishes if and only if the right hand side does. �

The conditions for a map of vector bundles to be compatible with hamiltonian Lie
algebroid structures are now clear.

Definition 7.9. Let (A, ω,D, µ) and (A′, ω′, D′, µ′) be (weakly) hamiltonian Lie al-
gebroids over presymplectic manifolds. A map ϕ : A → A′ of vector bundles is a
morphism of (weakly) hamiltonian Lie algebroids if it is a morphism of Lie
algebroids and if the following three conditions hold:

(i) ω = ϕ∗
0ω

′,
(ii) Dϕ∗ = ϕ∗D′,
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(iii) µ = ϕ∗µ′.

Proposition 7.10. Let (A,D) and A′, D′) be Lie algebroids with connections. Let
ϕ : A → A′ be a morphism of Lie algebroids that is compatible with the connections.
Let ω′ be a presymplectic form on the base manifold of A′, let µ′ be a section of A′∗,
and let ω := ϕ∗ω′ and µ := ϕ∗µ′ denote their pullbacks.
If (A′, ω′) is presymplectically anchored, then (A, ω) is presymplectically anchored. If

µ′ is a (bracket-compatible) D′-momentum section for (A′, ω′), then µ is a (bracket-
compatible) D-momentum section for (A, ω). Moreover, when ϕ1 is surjective and ϕ0

a submersion, then the converses of these statements are also true.

Proof. By Propositions 7.4 and 7.6 ϕ satisfies Dϕ∗ = ϕ∗D′, ιρϕ
∗ = ϕ∗ιρ′ , and Ďϕ

∗ =
ϕ∗Ď′. Therefore,

Dιρω = Dϕ∗ιρ′ω
′ = ϕ∗D′ιρ′ω

′

Dµ+ ιρω = Dϕ∗µ′ + ιρϕ
∗ω′ = ϕ∗(D′µ′ + ιρ′ω

′)

Ďµ+ 1
2
ιριρω = Ďϕ∗µ′ + 1

2
ιριρϕ

∗ω′ = ϕ∗(Ď′µ′ + 1
2
ιρ′ιρ′ω

′) .

If D′ιρ′ω
′, D′µ′ + ιρ′ω

′, and Ď′µ′ + 1
2
ιρ′ιρ′ω

′ on the right hand sides of these equations
vanish, then the left hand sides vanish as well. Moreover, when ϕ1 is surjective and ϕ0

a submersion, then ϕ∗ is injective, so that in the last statement the “if” becomes “if
and only if”. �

7.4. Quotient by the isotropy subbundle. As an application of the results of this
section, we will study what happens to a (weakly) hamiltonian structure on a Lie
algebroid when we take the quotient by its isotropy bundle. We begin with action Lie
algebroids.
Let ρ : g×M → TM be the anchor of an action Lie algebroid over a presymplectic

manifold. The kernel of the corresponding homomorphism g → X (M) is an ideal h ⊆ g,
so the action descends to an action ρ of the quotient Lie algebra g := g/h. On the other
hand, a momentum map µ : M → g∗ descends to a map µ : M → (g/h)∗ if and only
its image annihilates h under the natural pairing.

Example 7.11. Let g be the 3-dimensional real Heisenberg Lie algebra spanned by the
generators Q, P , I subject to the relations [Q,P ] = I, [Q, I] = 0 = [P, I]. The action
ρ : g → X (R2) on the symplectic plane (R2, ω = dq ∧ dp) given by

ρ(Q) = −
∂

∂p
, ρ(P ) =

∂

∂q
, ρ(I) = 0 ,

is hamiltonian with the momentum map µ defined by 〈µ,Q〉 = q, 〈µ, P 〉 = p, and
〈µ, I〉 = 1.
The kernel of ρ is the 1-dimensional Lie algebra ideal spanned by I. The action ρ

descends to an action of the quotient g = g/ ker ρ, which is a 2-dimensional abelian Lie
algebra. Note, though, that the momentum map µ does not descend to g because it
does not annihilate the kernel of ρ. On the other hand, there is another momentum
map, µ′, obtained from µ by change of the value on I from 1 to 0, which does descend
to a momentum map µ′ for the action of g. This map, which makes the reduced action
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weakly hamiltonian, is given by 〈µ′, Q+ker ρ〉 = q and 〈µ′, P +ker ρ〉 = p. Now neither
µ′ nor µ′ is equivariant. In fact, the action of g is not hamiltonian for any choice of
momentum map. This is a special case of Proposition 7.13 below.

Our example shows that a momentum map for ρ does generally not descend to
a momentum map for ρ, but we found (at the possible expense of equivariance) a
different momentum map which does descend. This is a general phenomenon, as the
next proposition shows.

Proposition 7.12. The action ρ of a Lie algebra g on a presymplectic manifold is
weakly hamiltonian if and only if the induced action of g/ ker ρ is.

Proof. Let ρ : g → X (M) be a weakly hamiltonian action with momentum map µ :
M → g∗. Denote by i : ker ρ →֒ g the embedding of the kernel. Since the hamiltonian
vector fields of elements in ker ρ are zero, the induced map ι∗µ : M → (ker ρ)∗ is
constant. Choosing some linear projection p : g → ker ρ satisfying p i = id, we get a
constant map ν : p∗i∗ ◦ µ : M → g∗, which satisfies 〈ν,X〉 = 〈µ,X〉 for all X ∈ ker ρ.
Since ν is constant, µ′ := µ−ν is also a momentum map for ρ. It satisfies 〈µ′, ker ρ〉 = 0,
so that µ′ descends to a momentum map for the induced action of g := g/ ker ρ.
Conversely, assume that µ is a momentum map for the induced action of g. Let

π : g → g be the canonical projection. Then π∗ ◦ µ : M → g∗ is a momentum map for
ρ. �

For a momentum map of the induced action of the quotient to be equivariant, we
need an extra condition:

Proposition 7.13. Let ρ : g → X (M) be a hamiltonian action on a presymplectic
manifold with equivariant momentum map µ. Then the induced action of g/ ker ρ is
hamiltonian if and only if 〈µ, [g, g] ∩ ker ρ〉 = 0.

Proof. By assumption, the momentum map µ is equivariant, which means that

(37) δµ(X, Y ) = −ω(ρ(X), ρ(Y )) ,

for all X, Y ∈ g, where ω is the presymplectic form and where

δµ(X, Y ) = ρ(X) · 〈µ, Y 〉 − ρ(Y ) · 〈µ,X〉 − 〈µ, [X, Y ]〉 ,

is the Chevalley-Eilenberg differential. As we have seen in the proof of Proposition 7.12,
another map µ′ : M → g∗ is a momentum map if and only if the difference ν = µ− µ′

is constant. (As stated in Section 2.1, M is assumed to be connected.) Moreover, µ′ is
equivariant if and only if

0 = δν(X, Y ) = −〈ν, [X, Y ]〉

for all X, Y ∈ g.
Assume that 〈µ, [g, g] ∩ ker ρ〉 = 0. Then we can find a constant map ν : M → g∗,

such that 〈ν,X〉 = 〈µ,X〉 for all X ∈ ker ρ and 〈ν, [X, Y ]〉 = 0 for all X, Y ∈ g. The
first condition ensures that µ′ = π∗µ for a unique map µ : M → g = g/ ker ρ, where
π : g → g is the quotient map. As in the proof of Proposition 7.12, it follows that µ is
a momentum map.
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The second condition 〈ν, [X, Y ]〉 = 0 ensures that µ′ is equivariant. Let δ denote the
Chevalley-Eilenberg differential of g and let ρ : g → X (M) denote the induced action.
As is the case for any Lie algebra homomorphism, π∗ commutes with the differentials,
δ ◦ π∗ = π∗ ◦ δ. It follows that

δµ
(

π(X), π(Y )
)

+ ω
(

ρ(π(X)), ρ(π(Y ))
)

= π∗(δµ)(X, Y ) + ω
(

π∗ρ(X), π∗ρ(Y )
)

= δ(π∗µ)(X, Y ) + ω
(

ρ(X), ρ(Y )
)

(38)

for all X, Y ∈ g. The right hand side vanishes because µ′ = π∗µ is equivariant. Since
π is surjective, the left hand side vanishes if and only if µ satisfies the equivariance
condition (37). We conclude that ρ is a hamiltonian action.
Conversely, assume that µ is an equivariant momentum map for the induced action

ρ. Let µ′ := π∗µ. As in the proof of Proposition 7.12, it follows that µ′ is a momentum
map. From Eq. (38) it follows that µ′ is equivariant.
The difference ν = µ − µ′ of two momentum maps is a constant map. Since both µ

and µ′ are equivariant, we also have 〈ν, [X, Y ]〉 = 0 for all X, Y ∈ g. Since 〈µ′, X〉 =
〈µ, π(X)〉 vanishes on ker π = ker ρ, it follows that 〈µ,X〉 = 〈ν,X〉 for all X ∈ ker ρ.
From 〈ν, [X, Y ]〉 = 0 we conclude that 〈µ, [g, g] ∩ ker ρ〉 = 0. �

In the case of Lie algebroids, the kernel of the action is replaced by the (generally non-
regular) isotropy bundle ker ρ ⊆ A. The space of sections of ker ρ is still a Lie algebra
ideal, so that when ker ρ is regular, the quotient A := A/ ker ρ is a Lie algebroid with
injective anchor ρ. Then A can be identified with the regular involutive distribution
ρ(A) = ρ(A) ⊆ TM .
When do the additional compatibility conditions of A being presymplectically an-

chored or (weakly) hamiltonian descend to A? As a first step, we observe that for a
presymplectically anchored vector bundle the kernel of the dualized anchor is “invari-
ant” under the connection.

Proposition 7.14. If (A, ρ) is presymplectically anchored with respect to D, then, for
all sections a, 〈γ, a〉 = 0 implies that 〈γ,Da〉 = 0.

Proof. Consider γ as an A∗-valued 1-form on M . In (11) we have seen that, for any
section a of A, the scalar 2-form 〈Dγ, a〉 is equal to d〈γ, a〉+ 〈γ,Da〉. If the connection
satisfies Dγ = 0, then 〈γ,Da〉 = −d〈γ, a〉, and the proposition follows. �

If (A, ρ) is regular and presymplectically anchored with respect to D, then the kernel
of γ = ω̃ ◦ ρ is a vector subbundle of A, and Proposition 7.14 shows that D induces
a connection on it. For D to descend to the quotient Lie algebroid A, however, we
need D to induce a connection on ker ρ ⊆ ker γ, i.e. that ker ρ is invariant under D.
By Proposition 7.14, this happens, for instance, when ker ρ = ker γ, e.g. when ω is
symplectic.

Remark 7.15. Suppose that ω = 0, so that any connection on A is presymplectically
anchored. For a Lie algebroid for which ker ρ is neither 0 nor all of A, most connections
D on A do not leave ker ρ invariant, so they do not induce connections on A.
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Proposition 7.16. If (A, ρ) is a regular anchored vector bundle over a presymplectic
manifold, then for any presymplectically anchored connection D on A which leaves ker ρ
invariant, the induced connection D on A = A/ ker ρ is presymplectically anchored.

Proof. LetD be any presymplectically anchored connection on A. To define the induced
connection D on A, we set for each section a, D a = π ◦Da, where π : A → A is the
projection and a is chosen so that a = π ◦a. Since ker ρ is invariant under D, the result
is independent of the choice of a. To show that D is presymplectically anchored, we
must check that, for any section a of A and vector field v on M , the ordinary 1-form
〈Dvγ, a〉 is equal to zero.
Viewing the dualized anchors γ and γ := ω̃ ◦ ρ as 1-forms on M with values in A∗

and A∗ respectively, we note first that γ = γ ◦ π since ρ = ρ ◦ π. Now, according to the
definition of the dual connection D on A∗-valued forms, we have

(39) 〈Dvγ, a〉 = ιvd〈γ, a〉 − 〈γ,Dv a〉 .

The pairing of the A∗-valued 1-form γ with the section Dva of A can be viewed as
the composition of the map Dva : M → A with the map γ : A → T ∗M . In terms of
such composition of maps, the second term on the right hand side of Eq. (39) can be
rewritten (without the − sign) as

〈γ,Dv a〉 = γ ◦Dv a = γ ◦ π ◦Dva = γ ◦Dva

= 〈γ,Dva〉 ,

for any choice of a with a = π ◦ a.
Since Dγ = 0 by assumption, we have, again by duality,

〈γ,Dva〉 = ιvd〈γ, a〉 = ιvd(γ ◦ a) = ιvd(γ ◦ π ◦ a) = ιvd(γ ◦ a)

= ιvd〈γ, a〉 ,

which cancels the first term on the right side of Eq. (39). So Dvγ = 0, and hence the
connection D is presymplectically anchored. �

Proposition 7.17. Let (A, ρ) be a regular anchored vector bundle such that ker ρ =
ker γ, let D be a presymplectically anchored connection on A, and let (A, ρ) be the
anchored quotient vector bundle with the presymplectically anchored connection D from
Proposition 7.16. Then µ ∈ Γ(M,A∗) is a D-momentum section for (A, ρ) if and only
if its pullback µ ∈ Γ(M,A∗) is a D-momentum section for (A, ρ).

Proof. Viewing the section µ as a map A → R, we may write the pullback section as
µ = µ ◦ π, where π : A→ A is the projection. As in the proof of 7.16, we have, for any
section a and choice of section a of A with a = π ◦ a,

〈Dµ, a〉 = d〈µ, a〉+ 〈µ,D a〉

= d(µ ◦ a) + µ ◦Da

= d(µ ◦ π ◦ a) + µ ◦ π ◦Da

= d(µ ◦ a) + µ ◦Da

= d〈µ, a〉+ 〈µ,Da〉

= 〈Dµ, a〉 ,
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where we have used Eq. (11) twice. Using this equation, we conclude that Dµ = γ
implies that 〈γ, a〉 = 〈γ, a〉 = 〈Dµ, a〉 = 〈Dµ, a〉 for all sections a, so that Dµ = γ. By
an analogous argument we see that Dµ = γ implies that Dµ = γ. �

It does not follow from Proposition 7.16 that (A, ρ) being weakly hamiltonian implies
that (A, ρ) is weakly hamiltonian as well. For it is not clear whether a momentum sec-
tion µ can be chosen to annihilate ker ρ, which is the necessary and sufficient condition
for µ to descend to a section of A∗. The following lemma gives a partial answer to this
question:

Lemma 7.18. Let (A, ρ) be a regular presymplectically anchored vector bundle for which
ker ρ = ker γ. If the subbundle ker ρ has a complement that is invariant under parallel
transport, then a D-momentum section, if it exists, can always be chosen to annihilate
ker ρ.

Proof. Let A2 ⊆ A be a D-invariant complement of A1 = ker ρ, A = A1 ⊕A2. There is
a corresponding splitting of the dual bundle A∗ = A∗

1⊕A
∗
2. By Proposition 7.14 ker ρ is

D-invariant, so that the connection splits as D = D1 +D2 into components acting on
A1 and A2. Let µ be a D-momentum section, which splits as µ = µ1+µ2. For a ∈ ker ρ,
the condition that µ is a momentum section implies 〈Dµ, a〉 = 〈D2µ2, a〉 = γ(a) = 0,
that is, µ1 is a D1-flat section of A∗

1. Since D2µ1 = 0, it follows that µ1 is a D-flat
section of A∗, so that µ2 is a D-momentum section with values in A∗

2 = (ker ρ)◦, the
annihilator in A∗ of ker ρ. �

Remark 7.19. Since M is connected, ker ρ has a D-invariant complement if each fibre
has a complement as a submodule of the representation of the holonomy group. For an
action Lie algebroid with the trivial connection, the holonomy is trivial, so that such
a complement always exists. But in general the holonomy representation may not be
reducible, e.g. when the holonomy group is not compact.

We now suppose that A is a Lie algebroid rather than simply an anchored vector
bundle.

Proposition 7.20. Let (A, ρ, [ , ]) be a regular presymplectically anchored Lie algebroid
such that ker ρ = ker γ. Then a momentum section for the quotient Lie algebroid
A = A/ ker ρ is bracket-compatible if and only if the pullback momentum section for A
from Proposition 7.17 is bracket-compatible.

Proof. Since ρ is a regular homomorphism of Lie algebroids, the quotient A = A/ ker ρ
is a Lie algebroid and the projection π : A→ A a homomorphism of Lie algebroids. As-
sume that µ ∈ Γ(M,A∗) is a momentum section for (A, ρ). It was shown in Proposition
7.17 that the pullback µ = π∗µ ∈ Γ(M,A∗) is a momentum section for (A, ρ).
As is the case for any homomorphism of Lie algebroids, the induced pullback π∗ :

Ω(A) → Ω(A) of exterior forms on A is a map of differential complexes, π∗dA = dAπ
∗.

Applying this to µ, we obtain π∗dAµ = dAπ
∗µ = dAµ. It follows that (dAµ)(a, b) =

−ω(ρa, ρb) if and only if

(dAµ)(a, b) = (dAµ)(π ◦ a, π ◦ b) = (dAµ)(a, b) = −ω(ρa, ρb)

= −ω(ρa, ρb) ,
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where a, b are sections of A for which π ◦ a = a and π ◦ b = b. �

Putting together the results of this section, we obtain the Lie algebroid analog of
Propositions 7.12 and 7.13:

Theorem 7.21. Let A be a regular Lie algebroid over the presymplectic manifold (M,ω)
satisfying ker ρ = ker γ. Assume that A is presymplectically anchored with respect to
the connection D and let D denoted the induced connection on A = A/ ker ρ. Assume
furthermore that the subbundle ker ρ ⊂ A has a D-invariant complement. Then

(i) A is weakly hamiltonian with respect to D if and only A is weakly hamiltonian
with respect to D.

(ii) Assume that A is hamiltonian with D-momentum section µ. Then A is hamil-
tonian with respect to D if and only if 〈µ, T (A,A) ∩ ker ρ〉 = 0.

Proof. (i) By Proposition 7.16 A is presymplectically anchored with respect to D. As-
sume that A is weakly hamiltonian with respect to D. It follows from Proposition 7.17
that A is weakly hamiltonian with respect to D. Conversely, assume that A is weakly
hamiltonian. By lemma 7.18 the momentum section µ can be chosen to annihilate ker ρ,
so that it is the pullback of a section µ of A∗. It follows from Proposition 7.17 that µ
is a momentum section with respect to D.
(ii) Let µ be an equivariant D-momentum section for A. Assume that A is hamil-

tonian with bracket-compatible D-momentum section µ. It follows from Proposition
7.17 that the pullback µ′ = π∗µ along the canonical epimorphism π : A → A is a
D-momentum section and from Proposition 7.20 that it is bracket-compatible. Let
ν := µ−µ′. Since both, µ and µ′ are momentum sections, Dν = Dµ−Dµ′ = γ−γ = 0.
It follows that

(dν)(a, b) = ρa · 〈ν, b〉 − ρb · 〈ν, a〉 − 〈ν, [a, b]〉

= 〈ν,Dρab〉 − 〈ν,Dρba〉 − 〈ν, [a, b]〉

= 〈ν, T (a, b)〉

(40)

for all sections a and b of A. Since both µ and µ′ are bracket-compatible, dν = 0 so
that ν vanishes on the image T (A,A) of the torsion. Since µ′ vanishes on ker ρ it follows
that 〈µ, T (A,A) ∩ ker ρ〉 = 〈ν, T (A,A) ∩ ker ρ〉 = 0.
Conversely, assume that 〈µ, T (A,A) ∩ ker ρ〉 = 0. By assumption ker ρ has a D-

invariant complement C, A = ker ρ ⊕ C, so that the momentum section has two com-
ponents µ := ν + µ′, where ν is a section of (ker ρ)∗ and µ a section of C∗. Since γ
vanishes on ker ρ, the condition for µ to be a momentum section, Dµ = Dν +Dµ′ = γ
is equivalent to the two conditions Dν = 0 and Dµ′ = γ. This shows that µ′ = µ − ν
is a momentum section. Since µ′ annihilates ker ρ it is the pullback µ′ = π∗µ along the
canonical epimorphism π : A→ A of aD-momentum section for A. By Proposition 7.20
µ is bracket-compatible iff µ′ is. By Eq. (40) this is the case iff ν annihilates T (A,A).
Splitting the image of the torsion as T (A,A) = (T (A,A)∩ ker ρ)⊕ (T (A,A)∩C) using
that ν annihilates C and observing that on 〈ν, a〉 = 〈µ, ν〉 for all a ∈ ker ρ, we obtain
〈ν, T (A,A)〉 = 〈µ, T (A,A) ∩ ker ρ〉, which vanishes by assumption. �
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7.5. Application to transitive Lie algebroids. An anchored vector bundle (A, ρ)
over M with surjective anchor can be split as the direct sum of the isotropy bundle
and a subbundle mapping isomorphically by ρ to the tangent bundle of M . In Section
7.4 we have studied the role of the isotropy bundle and in Section 6.2 we have given
conditions for the tangent bundle to be (weakly) hamiltonian. Now we will combine
these results and obtain conditions for transitive Lie algebroids to be hamiltonian.

Proposition 7.22. Every transitive Lie algebroid A over a regular presymplectic man-
ifold M can be presymplectically anchored.

Proof. We choose a splitting of the surjective anchor to identify A ∼= ker ρ⊕ TM, with
the anchor being given by the projection to TM . The quotient bundle of Proposition
7.16 can then be identified with the tangent bundle A = TM and the quotient anchor
with the identity map ρ = idTM . The dualized anchor γ = γ1 + γ2 is given by the zero
section γ1 = 0 on ker ρ and γ2 = ω̃ on TM .
If D1 and D2 are arbitrary linear connections on the subbundles ker ρ and TM ,

respectively, then the connection on the quotient from Proposition 7.16 is D = D2.
The condition for A to be presymplectically anchored with respect to D = D1 + D2

is Dγ = D1γ1 + D2γ2 = 0. The zero section γ1 = 0 is horizontal with respect to any
linear connection D1, which implies that A is presymplectically anchored if and only
if D2γ2 = 0. We conclude that A is presymplectically anchored if TM is, which by
Proposition 6.4 is always the case. �

Proposition 7.23. Let A be a transitive Lie algebroid over a symplectic manifold M .
If TM is (weakly) hamiltonian then so is A.

Proof. Let D = D1 +D2 be a direct sum of connections as above. Let µ be a D = D2-
momentum section for A = TM . According to Proposition 7.17, µ := µ1 + µ2, with
µ1 = 0 and µ2 = µ, is a D-momentum section for A. According to Proposition 7.20, µ
is bracket-compatible iff µ is bracket-compatible. �

Remark 7.24. The proof does not show that A being weakly hamiltonian implies
that TM is weakly hamiltonian, since we cannot exclude the case that A has only
D-momentum sections µ that do not annihilate ker ρ and, therefore, do not descend to
TM . According to Remark 7.19, this can occur only when ker ρ does not have a D-
invariant complement. However, we know of no example that realizes this topological
obstruction.

Corollary 7.25. Any transitive Lie algebroid over a symplectic manifold that is either
non-compact or compact with non-negative Euler characteristic is weakly hamiltonian.

Proof. The statement follows from Propositions 7.22 and 7.23, together with Theorem
6.9. �

8. Reduction of action Lie groupoids and algebroids

If G is a Lie group acting smoothly on a manifold M , and if H is a closed normal
subgroup operating freely and properly on M , so that M/H is a manifold, then the
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reduced action is a smooth action. We will show in this section that, under the addi-
tional assumption that H is acting freely on M , we still have a reduction of the action
groupoid G⋉M to a reduced groupoid over M/H , even when H is not normal. It is
generally no longer an action groupoid, though it does agree with the action groupoid
of the reduced action in the case where H is normal. We will give examples, show the
Morita invariance of the reduced groupoid to the original one, and describe the Lie
algebroid of the reduced groupoid. The reduced Lie algebroid (but not the groupoid)
has appeared with slightly different assumptions in [28].
This section is independent of the previous sections of the paper and may be of

interest in itself. In Section 9, we will return to our main subject and study how
hamiltonian Lie algebroid structures behave under reduction.
As throughout this paper, we will be working in the smooth category. It should be

noted, though, that there are similar versions in the topological category and simply
in the category of sets (in which case properness of an action is not required for the
existence of a nice quotient space).

8.1. Quotient of an action groupoid by a subgroup. Recall that, if a groupH acts
on X from the right, and on M from the left, then X ×H M is defined as (X ×M)/H ,
where the (left) action of H is given by h · (x,m) = (x · h−1, h ·m). If the action on M
is free and proper, then this is is a smooth fibre bundle over M/H with fibre X , called
the associated X bundle to the principal H bundle M → M/H .
For our purposes, X will be a manifold H\G of left H-cosets, with the usual right

H-action. The associated bundle is the quotient

H\G×H M = (G×M)/(H ×H)

with respect to the (left) H ×H-action given by (h1, h2) · (g,m) = (h1gh
−1
2 , h2 ·m).

Remark 8.1. The notation M/H for the orbit space of an H-action is commonly used
for both left and right actions. An exception is the notation for the left and right coset
spaces H\G and G/H , which leads to the unfortunate equation M/H = H\G when
M = G. We have grudgingly decided to bear with this inconsistency rather than fixing
it by redefining the well-established notation for either cosets or group quotients. To
get the usual notation K\G/H for a double coset space, we consider H acting from the
right on the left coset space K\G.

Proposition 8.2. Let G be a Lie group acting from the left on a manifold M . Let
H ⊆ G be a closed Lie subgroup for which the restriction to H of this action is free
and proper. Then there is a unique Lie groupoid structure on Γ̃ := H\G ×H M over

M̃ :=M/H such that the quotient maps

G⋉M
π1

// //

�� ��

H\G×H M = Γ̃

�� ��

M
π0

// // M/H = M̃

form a homomorphism of Lie groupoids.
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Proof. Since H is a closed subgroup, H\G is a smooth manifold on which H has an
induced action from the right. Since the action of H on M is free and proper, M →
M/H is a smooth principal bundle, so that the associated H\G-bundle H\G ×H M
over M/H is smooth. We will use the notation

[m] := π0(m) , [g,m] := π1(g,m)

for elements of this quotient. By definition of the group actions, we have [h ·m] = [m]
and [h1gh

−1
2 , h2 ·m] = [g,m].

To be compatible with π0, π1, and the action groupoid structure, the left and right
anchor maps (sometimes called source or target maps, or moment maps, depending
upon conventions), the identity bisection, and the inverse on the quotient must be
defined as:

(41)
l[g,m] := [g ·m] , r[g,m] := [m] ,

1[m] := [1, m] , [g,m]−1 := [g−1, g ·m] .

for all g ∈ G and m ∈ M . When m1 = g2 · m2, then the multiplication of [g1, m1],

[g2, m2] ∈ Γ̃ must satisfy
[g1, m1] [g2, m2] = [g1g2, m2] .

In the general case, when r[g1, m1] = [m1] and [g2 ·m2] = l[g2, m2] are equal, we observe
that the freeness of the H action onM implies that there is a unique η(m1, g2 ·m2) ∈ H
such that m1 = η(m1, g2 ·m2) · (g2 ·m2). The multiplication must then be defined as

(42) [g1, m1] [g2, m2] := [g1η(m1, g2 ·m2)g2, m2] .

We will now show that the structure maps defined in Eqs. (41) and (42) satisfy the
axioms of a Lie groupoid.
First, we observe that η(m1, g2·m2) is the image of the the smooth map η :M×M̃M →

H that maps a pair of elements m and m′ in the same fibre of M → M̃ to the unique
element η(m,m′) ∈ H satisfying m = η(m,m′) ·m′. It is easy to see that η satisfies the
following relations:

η(h ·m,m′) = hη(m,m′)(H1)

η(m,m) = 1 ,(H2)

for all (m,m′) ∈ M ×M/H M and h ∈ H . Having a smooth map with these properties
is equivalent to the H-action on M being free (cf. Prop. 3.4 in [6]). Relations (H1) and
(H2) imply

(H3) η(m, h ·m′) = η(m,m′)h−1 ,

which we will also need.
With these relations we can show that the multiplication is well-defined in the first

factor:

[h1g1h
−1
2 , h2 ·m1] [g2, m2] =

[

h1g1h
−1
2 η(h2 ·m1, g2 ·m2)g2, m2

]

=
[

h1g1h
−1
2 h2η(m1, g1 ·m2)g2, m2

]

=
[

h1g1η(m1, g2 ·m2)g2, m2

]

=
[

g1η(m1, g2 ·m2)g2, m2

]

,
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where in the second step we have used (H1). For the second factor we get

[g1, m1] [h1g2h
−1
2 , h2 ·m2] =

[

g1η(m1, h1g2h
−1
2 h2 ·m2)h1g2h

−1
2 , h2 ·m2

]

=
[

g1η(m1, g2 ·m2)h
−1
1 h1g2h

−1
2 , h2 ·m2

]

=
[

g1η(m1, g2 ·m2)g2h
−1
2 , h2 ·m2

]

=
[

g1η(m1, g2 ·m2)g2, m2

]

,

where in the second step we have used (H3). Next, we check associativity,

[g1, m1]
(

[g2, m2] [g3, m3]
)

= [g1, m1]
[

g2η(m2, g3 ·m3)g3, m3

]

=
[

g1η
(

m1, g2η(m2, g3 ·m3)g3 ·m3

)

g2η(m2, g3 ·m3)g3, m3

]

=
[

g1η(m1, g2 ·m2)g2η(m2, g3 ·m3)g3, m3

]

=
[

g1η(m1, g2 ·m2)g2, m2

]

[g3, m3]

=
(

[g1, m1] [g2, m2]
)

[g3, m3] ,

where we have used that by definition η(m2, g3 ·m3)g3 ·m3 = m2.
It is a straightforward calculation to check that the left and right anchor maps, the

identity, and the inverse are also well-defined and satisfy the axioms of a groupoid. For
example, for the inverse we have

[h1gh
−1
2 , h2 ·m]−1 =

[

h2g
−1h−1

1 , h1gh
−1
2 · (h2 ·m)

]

=
[

h2g
−1h−1

1 , h1 · (g ·m)
]

= [g−1, g ·m]

= [g,m]−1 .

Moreover, [g,m]−1[g,m] = [g−1, g ·m] [g,m] = [g−1g,m] = [1, m] = 1[m]. Verifying the
remaining relations of a groupoid is equally straightforward.
The smoothness of the structure maps is a consequence of the smoothness of the

quotient maps π0 and π1, of the map η, and of the structure maps of G. Since π0 is a
submersion it follows that the anchor maps are submersions. �

Remark 8.3. Hgh = Hh−1gh = H(Ad−1
h g), so that the right regular action and the

right adjoint action of H on G induce the same right H-action on H\G.

8.2. Examples.

Example 8.4. In the situation of Proposition 8.2 assume that the closed subgroup
H ⊂ G is normal. Then the right action of H on H\G is trivial, so that the associated
H\G bundle is also trivial. More precisely, the map

ϕ : H\G×H M −→ H\G×M/H

[g,m] 7−→ (Hg, [m])

is an isomorphism. The left and right anchor maps of the reduced groupoid Γ̃ are given
in terms of the trivial bundle by l(Hg, [m]) = [g ·m] and r(Hg, [m]) = [m], the groupoid
multiplication by (Hg1, [g2 ·m])(Hg2, [m]) = (Hg1g2, [m]). We conclude that Γ̃ is the
action groupoid of the quotient group H\G acting on the quotient space M/H .
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Example 8.5. Let M = G with the usual action of G by left translation, for which
the action groupoid is the pair groupoid G×G. Elements of our reduced groupoid

H\G×H G = (G×M)/(H ×H)

are then equivalence classes of pairs (g1, g2) of elements of G with respect to the (left)
H ×H-action given by

(h1, h2) · (g1, g2) = (h1g1h
−1
2 , h2g2).

From the definition of the left and right anchor maps, we have l([g1, g2]) = Hg1g2 and
r([g1, g2]) = Hg2 inH\G. Thus, any pair (Hg1, Hg2) of objects for the reduced groupoid
is in the image of the morphism [g1g

−1
2 , g2], and this groupoid is therefore transitive.

A simple computation then shows that this morphism is uniquely determined by its
image, so that the reduced groupoid is isomorphic to the pair groupoid H\G×H\G.

Example 8.6. Assume that the action of G on M is free but not transitive. Then we
can apply the argument of the last example to each G-orbit and assemble the results.
The conclusion is that the reduced groupoid is isomorphic to the “relative pair groupoid”
of the fibration M/H → M/G, i.e. the fibre product M/H ×M/G M/H , which is a Lie
subgroupoid of the pair groupoid M/H ×M/H .

Example 8.7. Assume that the G action is transitive but not necessarily free. Then
M ∼= G/K for some subgroup K of G, and freeness of the H action means that H
intersects each subgroup conjugate to K only in the identity element. The argument
in the free and transitive case (Example 8.5) still shows that the reduced groupoid is
transitive, so it must be the gauge groupoid of a principal bundle B over M/H .
As for any gauge groupoid, the principal bundle can be recovered up to isomorphism

as the fibre B = r−1(m̃) over some point m̃ ∈ M/H , with the left anchor map as
bundle projection and the isotropy group of m̃ as gauge group acting by right groupoid
multiplication. Here, M/H is isomorphic to the double coset space H\G/K. An
isomorphism can be obtained explicitly by mapping the double coset HgK to the H-
orbit H · (g · m) for some point m ∈ M . The total space B of the principal bundle,
defined as the right fibre over HeK, is isomorphic to H\G, the isomorphism mapping
Hg to [g,m]. The bundle projection maps Hg to HgK, so the gauge group is K.
We conclude that, for a transitive G-action on M , the H-reduced groupoid is iso-

morphic to the gauge groupoid of the principal K-bundle H\G → H\G/K, where K
is the stabilizer group of some point m ∈ M . (A different choice of m has a conjugate
stabilizer subgroup, so the gauge groupoids are isomorphic.) In the special case where
K reduces to the identity, so that M ∼= G, we have the gauge groupoid of a principal
{e} bundle over H\G, which is just the pair groupoid of H\G, so we are back to our
initial example.

For the general case, we can again apply the argument for transitive Lie groupoids
(G-) orbit-by-orbit. The assumption that the H action is free immediately implies the
condition that H has zero intersection with all the isotropy groups, so there are clearly
many examples of this.
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8.3. Morita equivalence. In many applications, it is useful to view an action groupoid
as a presentation of the quotient stack of the group action, which is a well-behaved
structure even if the quotient is singular. For example, the equivariant cohomology of
a manifold with a group action is the same as the stack cohomology of the quotient
stack. This point of view leads to the cohomological interpretation of hamiltonian Lie
algebroids of Section 10.
A differentiable stack can be viewed as Lie groupoid up to a generalized notion

of isomorphism, called geometric Morita equivalence [32]. The precise statement is
that there is an equivalence between the bicategory of differentiable stacks and the
bicategory that has Lie groupoids as objects, right principal bibundles as 1-morphisms,
and biequivariant maps as 2-morphisms [6]. (The 2-morphisms will not play any role in
this paper.) Let Γ ⇒M and Γ′ ⇒ M ′ be Lie groupoids. A Γ-Γ′-bibundle is a smooth
manifold B together with two smooth maps lB : B → M , rB : B →M ′ together with a
left Γ-action and a right Γ′-action that commute. A bibundle is called right principal

if lB is a surjective submersion and if the right Γ′-action is free and transitive on the
lB-fibres. If in addition the left action is free and transitive on the rB-fibres, then the
bibundle is called a Morita equivalence.
For any morphism π : Γ → Γ′ of Lie groupoids there is the associated groupoid

bibundle given by

B :=M ×π0,l
M ′ Γ

′

with left bundle map lB(m, γ
′) = m, right bundle map rB(m, γ

′) = r(γ′), left action
γ · (m, γ′) =

(

l(γ), π1(γ)γ
′
)

, and right action (m, γ′1) · γ
′
2 = (m, γ′1γ

′
2). The right action

is always principal.
The following result shows that the bibundle associated to the morphism of Proposi-

tion 8.2 from an action groupoid to its reduced groupoid is a Morita equivalence, i.e. an
isomorphism of differentiable stacks.

Proposition 8.8. The morphism of Lie groupoids of Proposition 8.2 is a Morita equiv-
alence.

Proof. The bibundle associated to the morphism of Proposition 8.2 is

B =
{

(m, [g′, m′]) ∈M × Γ̃ | m = hg′ ·m′ for some h ∈ H
}

with left bundle map lB(m, [g
′, m′]) = m, right bundle map rB(m, [g

′, m′]) = [m′], and
left action of Γ = G×M given by

(g,m) · (m, [g′, m′]) =
(

g ·m, [g,m][g′, m′]
)

.

Let (m1, [g
′
1, m

′
1]) and (m2, [g

′
2, m

′
2]) be two elements in the rB-fibre over m̃ ∈ M̃ =

M/H . This means that there are h1, h2, h ∈ H satisfyingm1 = h1g
′
1 ·m

′
1, m2 = h2g

′
2 ·m

′
2,
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and h ·m′
1 = m′

2. Now we check that
(

h2g
′
2hg

′
1
−1h−1

1 , m1) · (m1, [g
′
1, m

′
1]
)

=
(

h2g
′
2hg

′
1
−1h−1

1 ·m1, [h2g
′
2hg

′
1
−1h−1

1 , m1][g
′
1, m

′
1]
)

=
(

h2g
′
2h ·m

′
1, [h2g

′
2hg

′
1
−1h−1

1 , h1g
′
1 ·m

′
1][g

′
1, m

′
1]
)

=
(

h2g
′
2 ·m

′
2, [h2g

′
2hg

′
1
−1, g′1 ·m

′
1][g

′
1, m

′
1]
)

=
(

m2, [h2g
′
2h,m

′
1]
)

=
(

m2, [h2g
′
2, h ·m

′
1]
)

=
(

m2, [g
′
2, m

′
2]
)

,

which shows that the left Γ̃-action is transitive on the rB-fibres.
Assume that (g,m) · (m, [g′, m′]) = (m, [g′, m′]), where m = hg′ ·m′ for some h ∈ H .

This is equivalent to the two conditions

g ·m = m and [g,m][g′, m′] = [g′, m′] .

The second condition implies that [g,m] = 1l([g′,m′]) = [e, g′ ·m′], so that g must lie in
the subgroup H . Since the action of H is free, the first condition g ·m = m now implies
that g ∈ e. We conclude that (g,m) = (e,m) = 1m, that is, the left Γ-action is free. �

8.4. The quotient groupoid in a local trivialization. It is instructive, and will
be helpful for the computation of the Lie algebroid bracket, to describe the quotient
groupoid in terms of a local trivialization of the H-principal bundle M → M̃ :=M/H .
Every such trivialization over an open subset Ũ ⊆ M̃ is obtained by choosing a section
σ : Ũ → M , π0σ = idŨ . The trivialization induced by σ is given by H × Ũ → M |Ũ ,

(h, m̃) 7→ h · σ(m̃). The inverse is M |Ũ → H × Ũ , m→
(

η(m, σπ0(m)), σπ0(m)
)

.

A local trivialization of M → M̃ induces a local trivialization of any associated
bundle. For the bundle r : Γ̃ → M̃ the induced trivialization is given by

(43)
H\G× Ũ

Φ
−→ Γ̃

∣

∣

Ũ

(Hg, m̃) 7−→ [g, σ(m̃)] ,

Γ̃
∣

∣

Ũ

Φ−1

−→ H\G× Ũ

[g,m] 7−→
(

H Ad−1
η(m,σπ0(m)) g, π0(m)

)

,

Let us assume for simplicity that σ is a global section, Ũ = M̃ . Then the left and
right anchor maps, as well as the identity bisection of Γ̃ are given in the trivialization
by

l(Hg, m̃) = π0
(

g · σ(m̃)
)

, r(Hg, m̃) = m̃ , 1m̃ = (He, m̃) .

The groupoid multiplication of (Hg1, m̃1) and (Hg2, m̃2) satisfying m̃1 = π0
(

g2 · σ(m̃)
)

is given by

(Hg1, m̃1)(Hg2, m̃2) = Φ−1
(

Φ(Hg1, m̃1) Φ(Hg2, m̃2)
)

= Φ−1
(

[g1, σ(m̃1)] [g2, σ(m̃2)]
)

= Φ−1
(

[g1η(σ(m̃1), g2 · σ(m̃2))g2, σ(m̃2)]
)

=
(

H(Adζ(g2,m̃2) g1)g2, m̃2

)

,
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where ζ : G× M̃ → H is defined by

(44) ζ(g, m̃) := η
(

g · σ(m̃), σπ0(g · σ(m̃))
)

.

In geometric terms, ζ(g, m̃) is the vertical component of the action of g on σ(m̃) with
respect to the trivialization induced by σ. If we denote the horizontal component of
the action, given by the left anchor map, by

(45) g ⊲ m̃ := π0
(

g · σ(m̃)
)

,

we can decompose the action on σ(m̃) as

g · σ(m̃) = ζ(g, m̃) · σ(g ⊲ m̃)

into its horizontal and vertical part. The groupoid inverse can now be expressed as

(46) (Hg, m̃)−1 =
(

H Ad−1
ζ(g,m̃)g

−1, g ⊲ m̃
)

.

8.5. Lie algebroid of the quotient groupoid. By definition, the Lie algebroid of a
Lie groupoid is the vector bundle that has left invariant vector fields on the groupoid
as sections. Let us review this construction for the action groupoid Γ = G⋉M .
The l-fibre over m ∈ M is given by l−1(m) = {(k, k−1 · m) | k ∈ G}. The action

L(g,m) : l
−1(m) → l−1(g ·m) by left multiplication is

L(g,m)(k, k
−1 ·m) := (g,m)(k, k−1 ·m) = (gk, k−1 ·m) .

Let TL(g,m) : T l
−1(m) → T l−1(g ·m) denote its derivative. At the identity it is given

by
TL(g,m)

(

X, ρ(X,m)
)

=
(

TLgX, ρ(X,m)
)

,

where X = d
dt
kt|t=0 is the element of the Lie algebra g = TeG of G that is represented

by the smooth path kt ∈ G through k0 = e and where

(47) ρ(X,m) :=
d

dt
(k−1

t ·m)
∣

∣

∣

t=0
= −

d

dt
(kt ·m)

∣

∣

∣

t=0

is the anchor. The minus sign implies that the induced map on sections ρ : g → X (G)
is a homomorphism of Lie algebras (cf. Section 2.1 for our sign conventions). Every
X ∈ g induces a left invariant vector field on Γ given by

vX(g,m) =
(

TLgX, ρ(X,m)
)

,

the commutator bracket of which is given by [vX , vY ]X (G) = v[X,Y ]g. It follows that
A ∼= g×M and that the Lie algebroid bracket of constant sections X, Y ∈ g ⊆ Γ(M,A)
is given by [X, Y ]A = [X, Y ]g.

We now turn to the quotient groupoid Γ̃. The left fibre l−1(m̃) over m̃ ∈ M̃ is
{[g, g−1 · m] | g ∈ G} for m ∈ π−1

0 (m̃). In order to determine the tangent space of
l−1(m̃) at [e,m], we observe that every every tangent vector of H\G is represented by
a smooth path in G, so that we have the natural isomorphism

THg(H\G) ∼= TgG/TRgh

(Here and below, g and h are as usual the Lie algebras of G and H , respectively.) At
He ∈ H\G we thus obtain the isomorphism of vector spaces

THe(H\G) ∼= g/h ,
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In light of remark 8.3, we thus obtain that the Lie algebroid of the reduced Lie groupoid
Γ̃ = H\G×H M has as vector bundle the associated bundle

Ã := g/h×H M −→M/H ,

where g/h carries the right adjoint action (X + h) · h := Adh−1 X + h.

Corollary 8.9. Assume the situation of Proposition 8.2. Let g and h be the Lie algebras
of G and H, respectively. Let g⋉M denote the action Lie algebroid. There is a unique
Lie algebroid structure on the vector bundle g/h×H M →M/H such that the diagram

g⋉M
Tπ1

// //

��

g/h×H M

��

M
π0

// // M/H

where Tπ1 is shorthand for the restriction of Tπ1 to g ×M ⊆ T (G×M), is a homo-
morphism of Lie algebroids.

Proof. Follows from the functoriality of the map from Lie groupoids to Lie algebroids.
�

The anchor of Ã is given by

ρ̃
(

[X + h, m]
)

:= Tmπ0 ρ(X,m) ,

where ρ : g × M → TM is the Lie algebra action. Since the H-action is free the
fundamental vector fields of h span the tangent spaces to the H-orbits which are the
fibres of π0, that is, ρ(g, m) = ker Tmπ0. This shows that ρ̃ is well defined in g/h.
Moreover, for every smooth path kt ∈ G with X = d

dt
kt|t=0, we have kt · (h · m) =

h · (h−1ktk ·m). By differentiating this relation at t = 0 and applying Tπ0, we obtain

ρ̃
(

[X, h ·m]
)

= Tπ0 ρ(X, h ·m) = Tπ0
(

h · ρ(Adh−1 X,m)
)

= Tπ0 ρ(Adh−1 X,m)

= ρ̃
(

[Adh−1 X,m]
)

,

which shows that ρ̃ is well-defined also with respect to the quotient of the associated
bundle.
The Lie algebroid bracket is more difficult to describe explicitly. Since the vector

bundle Ã → M̃ is generally not trivial we first have to choose a local trivialization.
Every trivialization (43) of the Lie groupoid induces a trivialization of the Lie algebroid
given by

(48)
g/h× Ũ −→ Ã

∣

∣

Ũ

(X + h, m̃) 7−→ [X + h, σ(m̃)] ,

Ã
∣

∣

Ũ
−→ g/h× Ũ

[X + h, m] 7−→
(

Ad−1
η(m,σπ0(m))X + h, π0(m)

)

.

Proposition 8.10. Assume the situation of Proposition 8.2. Let σ : Ũ → M be a local
section of the H-principal bundle M → M̃ and θ : TM → h the connection 1-form of
the induced trivialization (48). In the local trivialization the anchor of Ã is given by

(49) ρ̃(X + h, m̃) = Tπ0 ρ
(

X, σ(m̃)
)

,
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and the Lie algebroid bracket by

(50) [X + h, Y + h](m̃) =
[

X + θ
(

ρ(X, σ(m̃))
)

, Y + θ
(

ρ(Y, σ(m̃))
)]

g
+ h ,

where X, Y ∈ g represent constant sections of Ã.

Proof. By definition, the Lie algebroid bracket of Ã is the Lie bracket of left invariant
vector fields on Γ̃. In a first step we compute the left action of Γ̃ on vectors tangent to
the l-fibres. We do this by representing a tangent vector by a smooth path γ̃t ∈ Γ̃ and
then taking the derivative with respect to t.
In the trivialization (48) of Γ̃ every smooth path in the left fibre over m̃ is of the

form

γ̃t = (Hk−1
t , m̃)−1 =

(

H Ad−1

ζ(k−1
t ,m̃)

kt, π0(k
−1
t · σ(m̃))

)

=
(

Hk̄t, k
−1
t ⊲ m̃

)

,

for some smooth path kt ∈ G, where we have introduced the abbreviation

k̄t := Ad−1

ζ(k−1
t ,m̃)

kt .

(Recall that k−1
t ⊲ m̃ denotes the result of k−1

t acting on m̃.)
We will need the following relation satisfied by ζ , as defined in (44).

ζ(k̄t, k
−1
t ⊲ m̃) = ζ

(

Ad−1

ζ(k−1
t ,m̃)

kt, k
−1
t ⊲ m̃

)

= ζ
(

ζ(k−1
t , m̃)−1ktζ(k

−1
t , m̃), k−1

t ⊲ m̃
)

= ζ(k−1
t , m̃)−1ζ

(

ktζ(k
−1
t , m̃), k−1

t ⊲ m̃
)

= ζ(k−1
t , m̃)−1 ,

where in the last step we have used that ktζ(k
−1
t , m̃) ·σ(k−1

t ⊲ m̃) = m̃ as a consequence
of Eq. (46). Using the last equation, we obtain for the left multiplication of the smooth
path by an element of the groupoid,

L(Hg,m̃)γ̃t = (Hg, m̃)γ̃t =
(

H(Adζ(k̄t,k−1
t ⊲m̃)g)k̄t, k

−1
t ⊲ m̃

)

=
(

H(Ad−1

ζ(k−1
t ,m̃)

g)k̄t, k
−1
t ⊲ m̃

)

.

The next step is to take the derivative of the last equation with respect to t. Assume
that k0 = e and denote X := d

dt
kt|t=0 ∈ g. We begin with

d

dt
(k−1

t ⊲ m̃)
∣

∣

t=0
=

d

dt
π0(k

−1
t · m̃)

∣

∣

t=0
= Tπ0 ρ

(

X, σ(m̃)
)

=: ρ̃(X, m̃) ,

which is the anchor of Ã in the local trivialization. Next, we compute

d

dt
k̄t
∣

∣

t=0
=

( d

dt
Ad−1

ζ(k−1
t ,m̃)

)

t=0
k0 + Ad−1

ζ(k−1
0 ,m̃)

( d

dt
kt

)

t=0

= X .
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The next term involves the connection 1-form of the local trivialization which is the
H-equivariant map θ : TM 7→ h defined for vectors at points in σ(M̃) by

−ρ
(

θ(vσ(m̃)), σ(m̃)
)

= vσ(m̃) − (Tσ Tπ0)vσ(m̃) ,

where the minus sign on the left hand side is the minus sign in Eq. (47). When mt ∈ M
is a smooth path through m0 = σ(m̃) representing vσ(m) =

d
dt
mt|t=0 ∈ Tσ(m̃)M , we can

express θ as derivative,

d

dt
η
(

mt, σπ0(mt)
)∣

∣

t=0
= θ(vσ(m̃)) .

With this relation we get

d

dt
ζ(k−1

t , m̃)
∣

∣

t=0
=

d

dt
η
(

k−1
t · σ(m̃), σπ0(k

−1
t · σ(m̃))

)
∣

∣

t=0

= θ
(

ρ(X, σ(m̃))
)

.

We thus obtain

d

dt
Ad−1

ζ(k−1
t ,m̃)

g
∣

∣

t=0
= TLg θ

(

ρ(X, σ(m̃))
)

− TRg θ
(

ρ(X, σ(m̃))
)

,

Putting everything together, we can compute the derivative of a path in the l-fibre over
m̃ and of its left translation by an element of the groupoid,

d

dt
γ̃t
∣

∣

t=0
=

(

X + h, ρ̃(X + h, m̃)
)

d

dt
(Hg, m̃)γ̃t

∣

∣

t=0
=

(

TLgX + TLg θ
(

ρ(X, σ(m̃))
)

+ TRgh, ρ̃(X, m̃)
)

.

We conclude that the left action of the groupoid on vectors tangent to the l-fibres is
given by

(51) TL(Hg,m̃)

(

X + h, ρ̃(X, m̃)
)

=
(

TLgX + TLg θ
(

ρ(X, σ(m̃))
)

+ TRgh, ρ̃(X, m̃)
)

.

We can now proceed to calculate the bracket of left invariant vector fields. In the
trivialization (48) a section of the Lie algebroid is given by a map Ũ → g/h, m̃ 7→

X(m̃) + h, where X : Ũ → g is a smooth map. For the computation of the Lie
algebroid bracket it suffices to consider constant sections X+h and Y +h for X, Y ∈ g.
The bracket of non-constant sections can be deduced using the Leibniz rule. The left
invariant vector field associated to a constant section X is given by

vX(Hg, m̃) := TL(Hg,m̃)

(

X + h, ρ̃(X, m̃)
)

.

Using Eq. (51), we can compute the bracket of two such vector fields,

[vX , vY ](Hg, m̃) = TL(Hg,m̃)

(

[

X + θ
(

ρ(X, σ(m̃))
)

, Y + θ
(

ρ(Y, σ(m̃))
)]

g
+ h,

[ρ̃(X, m̃), ρ̃(Y, m̃)]X (M̃)

)

.

This shows that the Lie algebroid bracket is given by Eq. (50). �
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Remark 8.11. When kt ∈ H is a smooth path with X = d
dt
kt|t=0 ∈ h, then

θ
(

ρ(X, σ(m̃))
)

=
d

dt
η
(

k−1
t · σ(m̃), σπ0(k

−1
t · σ(m̃))

)
∣

∣

t=0

=
d

dt
ζ(k−1

t , m̃)
∣

∣

t=0
=

d

dt
k−1
t

∣

∣

t=0

= −X ,

where the minus sign comes from the group inverse of the path k−1
t . This shows that

we have a well-defined map

hor : g/h× M̃ −→ g

(X + h, m̃) 7−→ X + θ
(

ρ(X, σ(m̃))
)

,

in terms of which the bracket (50) can be written as

[X + h, Y + h](m̃) = [hor(X + h, m̃), hor(Y + h, m̃)]g + h .

It is instructive to apply the anchor of the unreduced groupoid to this map,

ρ
(

hor(X + h, m̃)
)

= ρ(X, σ(m̃)) + ρ
(

θ
(

ρ(X, σ(m̃))
)

, σ(m̃)
)

= ρ(X, σ(m̃))− ρ(X, σ(m̃)) + TσTπ0 ρ
(

X, σ(m̃)
)

= Tσ ρ̃(X,m) .

This equation can be written as the following commutative diagram:

g/h× M̃

ρ̃
��

hor×σ
// g×M

ρ

��

TM̃
Tσ

// TM

This shows that hor is the map that maps (X + h, m̃) to the element in g that acts on
σ(m̃) by the horizontal lift of the anchor of the reduced Lie algebroid.

Remark 8.12. In Corollary 8.9 we have used the H-reduction of Lie groupoids in
order to show that there is a unique Lie algebroid structure on Ã = g/h ×H M such
that g⋉M → Ã is a homomorphism of Lie algebroids. This result can be generalized
to situations where the action Lie algebroid g ⋉ M does not integrate to an action
groupoid, e.g. when not all vector fields in the image of the action ρ : g → X (M) are
complete.
It suffices to assume that H-acts freely and properly on M such that (i) the induced

h-action is the restriction of the g-action; (ii) the infinitesimal h-equivariance of the
g-action lifts to the global H-equivariance of ρ : g → X (M), where H acts by the left
adjoint action on g and by the push forward of vector fields on X (M). Under these
conditions [28, Def. 2.2] it was shown in [28, Lem. 2.3] that the quotient g ⋉M → Ã

induces a Lie algebroid structure on Ã.

Example 8.13. The Lie algebroid of [7] arises in the following way as the Lie algebroid
of a reduced Lie groupoid. Let S be a manifold representing spacetime, and let Σ ⊂ S
be an embedded codimension 1 submanifold, which will be the t = 0 slice of the initial
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value problem. The group G = Diff(S) acts by pushforward on the manifold M of
lorentzian metrics on S. Let H ⊂ G be the subgroup of diffeomorphisms of S that fix
all points in Σ. Note that H is not a normal subgroup. G acts by composition on the
space of embeddings of Σ in S. H is the stabilizer group of the inclusion Σ ⊂ G. It
follows that the quotient H\G can be identified with the G orbit of Σ, i.e. with the
space of those embeddings of Σ in S which extend to diffeomorphisms of S.
The Lie algebra g of G is the Lie algebra of vector fields on S; h is the Lie subalgebra

of vector fields on S that vanish on Σ. The quotient g/h can be identified with the
space of vector fields on S supported on Σ, i.e. with sections of the restriction of TS to
Σ. The quotient map g → g/h is the restriction of a vector field on S to Σ.
Now we restrict the action groupoid G ⋉ M on its base to the open submanifold

MΣ ⊂M consisting of those lorentzian metrics for which Σ is a space-like submanifold.
The restricted Lie groupoid ΓΣ we obtain in this way is no longer an action groupoid,
since MΣ is not G-invariant. Since MΣ is invariant under diffeomorphisms close to the
identity, though, the Lie algebroid of ΓΣ is the action Lie algebroid g⋉MΣ. Moreover,
MΣ is H-invariant, so that our construction of the H-reduced Lie algebroid can still be
carried out as explained in Remark 8.12.
For the next step we will assume that Σ is cooriented (i.e. with an orientation on

the normal bundle, which can be viewed as choice of a time direction). The stabilizer
group of Σ is now the group of diffeomorphisms that fix all points in Σ and preserve the
coorientation, which we will denote by H+. Note that H+ has the same Lie algebra as
H . From the proof of [7, Lem. 2.8], we conclude that an element of M̃ :=MΣ/H

+ has
a representative that is given by a unique gaussian metric on an open neighborhood
of Σ. The upshot is that the reduced Lie algebroid Ã := g/h ×H+ MΣ → M̃ is the
Lie algebroid constructed in [7] by an entirely different approach. It was shown in [7,
Prop. 2.6] that, as a vector bundle, Ã ∼= g/h× M̃ is trivial.

9. Hamiltonian structures on the reduced Lie algebroid

We turn to the relation between hamiltonian structures on the action Lie algebroid
A = g ×M and on the H-reduced Lie algebroid Ã = g/h ×H M . The main result is

that a hamiltonan structure on Ã always pulls back along the projection ϕ : A→ Ã of
Corollary 8.9 to a hamiltonian structure on A (Theorem 9.4). However, unless H ⊂ G
is a normal subgroup, the connection on A of the pulled back hamiltonian structure is
not the trivial connection (Proposition 9.6).

9.1. Connections on the reduced Lie algebroid. In order to apply Proposition
7.10 to ϕ : A → Ã, we must find a connection D on A such that ϕ is compatible with
the connections D and D̃. For this we first make a few general observations about
connections on a vector bundle associated to a principal bundle.

Lemma 9.1. Let M → M̃ be a left H-principal bundle, W an H-module, and π :
W × M → W ×H M the quotient map to the associated vector bundle. For every
connection D̃ on W ×H M → M̃ there is a unique connection D on W ×M → M so
that π∗D̃ = Dπ∗.
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Proof. Let the structure homomorphism of the left action of H on W be denoted by
L : H → Aut(W ) and of the infinitesimal action by λ : h → End(W ). Let Ũ ⊂ M̃
be a contractible open subset, so that the restricted principal bundle M |Ũ → Ũ has

a section σ : Ũ → M . This induces a local trivialization W ×H M ∼= W × M̃ like in
Eq. (48). In this trivialization, the canonical epimorphism takes the form

π1 :W × U −→W × Ũ

(w,m) 7−→
(

L−1
η(m,σπ0m)w, π0m

)

,

where U := π−1
0 (Ũ) and where η is defined as in Section 8.1. Let θ : TM → h denote

the connection 1-form of the trivialization, which is given by

θ(vm) =
d

dt
η(mt, η(m0, σπ0m0) · σπ0mt)

∣

∣

t=0
,

for any smooth path mt ∈M representing vm = ṁ0. We thus obtain

d

dt
L−1
η(mt ,σπ0mt)

w
∣

∣

t=0
=

d

dt
L−1
η(m0 ,σπ0m0)

L−1
η(mt ,η(m0,σπ0m0)·σπ0mt)

w
∣

∣

t=0

= −L−1
η(m0 ,σπ0m0)

λ(θ(ṁ0))w .

It follows that the differential Tπ1 : TW × TU → TW × T Ũ is given by

Tπ1((w, u), vm) =
((

L−1
η(m,σπ0m)w,L

−1
η(m,σπ0m)(u− λ(θ(vm))w

)

, Tπ0vm
)

,

where we have identified TW ∼= W ×W .
A linear connection on the trivial bundle W ×U → U is given by a map TU ×W →

W ×W × TU , (vm, w) 7→ (w, α(vm)w, vm), where α : TU → End(W ) is the connection
1-form. Analogously, a connection on W × Ũ → Ũ is given by a 1-form α̃ : T Ũ →
End(W ). The covariant derivative of the connection is given by Dvmw := ιvmdw +
α(vm)w(m). The map π is compatible with the connections if Tπ1((w, α(vm)), vm) =
((w, α̃(Tπ0vm)), Tπ0vm), which is the case iff

L−1
η(m,σπ0m)

(

α(vm)− λ(θ(vm))
)

w = α̃(Tπ0vm)L
−1
η(m,σπ0m)w .

This equation can be solved uniquely for

(52) α(vm) = λ(θ(vm)) + Lη(m,σπ0m)α̃(Tπ0vm)L
−1
η(m,σπ0m) .

We conclude that for a given connection 1-form α̃ : T Ũ → End(W ) there is a unique
connection 1-form α : TU → End(W ), such that the two connections are compatible
with π.
Let now {Ũi}i∈I be a good cover of M̃ and {χ̃i : Ũi → [0, 1]} a partition of unity of

M̃ . Then {Ui := π−1
0 (Ũi)}i∈I is a cover of M and {χi := χ̃iπ0 : Ui → [0, 1]} a partition

of unity ofM . Let α̃ be a connection 1-form on M̃ . For every i let α̃i be the restriction
of α̃ to Ũi and αi : TUi → End(W ) the connection 1-form given by (52). Let D̃i and
Di be the covariant derivatives of the connections, in terms of which the compatibility
with π reads π∗D̃i = Diπ

∗. Multiplying D̃i with the partition function χ̃i yields

π∗(χ̃iD̃i) = (π∗
0χ̃i)(π

∗D̃i) = χi(Diπ
∗)

= (χiDi)π
∗ .
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Summing this equation over i, we obtain π∗D̃ = Dπ∗, where D̃ =
∑

i χ̃iD̃i is the covari-
ant derivative of the connection 1-form α̃ and D :=

∑

i χiDi the covariant derivative of
a connection on W ×M →M . This finishes the proof. �

Lemma 9.2. Let π0 : M → M̃ be a left H-principal bundle, W an H-module, and
π : W ×M →W ×H M the quotient map. Let L : H → Aut(W ) and λ : h → End(W )
denote the representations of H and its Lie algebra h. Let α : TM → End(W ) be the
1-form of a connection on W ×M . Assume that α satisfies:

(i) α(vm) = λ(vm) for all m ∈M and vertical vm ∈ ker Tmπ0 ∼= h.
(ii) α(h · vm) = Lhα(vm)L

−1
h for all vm ∈ TM and h ∈ H.

Then α descends to a unique connection on W ×H M .

Proof. We use the same notation as in the proof of Lemma 9.1. In particular, θ is the
connection 1-form of the local trivialization of W ×H M → M̃ that is induced by a
local section σ of the principal bundle M → M̃ . Solving Eq. (52) for α̃, we obtain the
condition

α̃(Tπ0vm) = L−1
η(m,σπ0m)

(

α(vm)− λ(θ(vm))
)

L−1
η(m,σπ0m) .

We have to show that this equation can be viewed as a definition for α̃.
First, we observe that for vm ∈ ker Tmπ0 ∼= h we have θ(vm) = vm, so that α(vm) −

λ(θ(vm)) = α(vm)− λ(vm) = 0 by assumption (i).
Secondly, we observe since Tπ0(h · vm) = Tπ0v0, the right hand side evaluated on

h · vm must be independent of h. By construction, θ and λ are H-equivariant

θ(h · vm) = Adh θ(vm)

λ(AdhX) = Lhα(X)L−1
h ,

so that λ(θ(h · vm)) = Lhλ(θ(h · vm))L
−1
h . By assumption (ii) α satisfies the analogous

equivariance property. We conclude that

α̃(Tπ0(h · vm)) = L−1
η(h·m,σπ0(h·m))

(

α(h · vm)− λ(θ(h · vm))
)

L−1
η(h·m,σπ0(h·m))

= L−1
η(m,σπ0m)L

−1
h

(

Lhα(vm)L
−1
h − Lhλ(θ(vm))L

−1
h

)

LhL
−1
η(m,σπ0m)

= α̃(Tπ0vm) ,

which shows that α̃ is well-defined. �

Corollary 9.3. The trivial connection on W ×M is compatible with a connection on
W ×H M if and only if the infinitesimal action of h on W is trivial. In that case the
compatible connection is that of the natural trivialization W ×H M ∼= W × M̃ .

Proof. The trivial connection on W ×M is given by the zero 1-form α = 0. Looking at
Eq. (52), we see that α(vm) = λ(vm) for vm ∈ ker Tmπ0, which is zero for all vm ∈ h if
and only if λ = 0. In that case α̃ must be zero as well. �

9.2. Pullback of the hamiltonian structure on the reduced Lie algebroid. We
now have all the technical prerequisites to prove the main result:

Theorem 9.4. For every (weakly) hamiltonian structure on the H-reduced action Lie
algebroid g/h×H M there is a (weakly) hamiltonian structure on g⋉M , such that the
quotient map g⋉M → g/h×HM is a morphism of (weakly) hamiltonian Lie algebroids.
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Proof. The quotient map ϕ : A→ Ã factors as g×M → g/h×M
π
→ g/h×HM through

the map π to which we can apply lemma 9.1. So if D is a connection on Ã, then there
is a unique connection D′ on g/h×M such that π∗D̃ = D′π∗.
Let α′ : TM → End(g/h) be the connection 1-form of D′. A connection 1-form

α : TM → End(g) is compatible with respect to the projection g×M → g/h×M if

(53) α(vm)X + h = α′(vm)(X + h) ,

for all vm ∈ TM andX ∈ g. We can obtain such an α by choosing a splitting i : g/h → g

of the quotient map p : g → g/h and setting

α(vm)(X) := iα′(X + h) ,

so that α(vm)X + h = piα′(vm)(X + h) = α′(vm)(X + h).
By construction, the connection 1-form α descends to the connection 1-form α′,

which in turn descends to α̃. We conclude that there is a connection D on A satisfying
Dϕ∗ = ϕ∗D̃.
Let ω̃ be a presymplectic form on M̃ and µ̃ a (weakly) hamiltonian D̃-momentum

section of (Ã, ω̃). We can apply Proposition 7.10, which states that (A,ϕ∗ω̃, D, ϕ∗µ) is
a (weakly) hamiltonian Lie algebroid. �

Remark 9.5. The connection D of Theorem 9.4 is not unique. In fact, the set of
connections that are compatible with a given connection D̃ on Ã is a vector space
that can be described as follows: The connection 1-form α defined by Eq. (53) satisfies
α(vm)(h) = 0, so that α can be viewed as an element of Ω1(M) ⊗ g ⊗ h◦ ⊂ Ω1(M) ⊗
g ⊗ g∗ ∼= Ω1(M) ⊗ End(g), where h◦ = {ϕ ∈ g∗ | ϕ(h) = 0} is the annihilator of
h. Moreover, the difference of two connection 1-forms α1 and α2 subject to Eq. (53)
satisfies (α1(vm)−α2(vm))X ∈ h. We conclude that the space of compatible connections
is isomorphic to Ω1(M)⊗ h⊗ h◦.

Before we state the next result, we recall that, if H is a normal subgroup, then the
adjoint action of H on H\G is trivial because, for any coset Hg and any h ∈ H , there
is some h′ ∈ H for which gh−1 = h′g, and so

h(Hg)h−1 = hH(gh−1) = hH(h′g) = (hHh′)g = Hg .

This implies that the adjoint action of H on g/h is trivial as well, so that the associated

g/h bundle has a natural trivialization, g/h×H M ∼= g/h× M̃ .

Proposition 9.6. Let H and G be connected. Then the trivial connection on g⋉M is
compatible with some connection on g/h×H M if and only if H is a normal subgroup.
In that case the compatible connection is the trivial connection of the reduced action Lie
algebroid g/h×H M ∼= g/h⋉ M̃ .

Proof. The trivial connection on g×M descends to the trivial connection on g/h×M .
By Corollary 9.3 the trivial connection on g/h×M descends to a connection on g/h×HM
if and only if the adjoint action of h on g/h is trivial. This is equivalent to [g, h] ⊂ h,
i.e. h is a Lie algebra ideal. If H and G are connected this implies that H is a normal
subgroup.
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If H is a normal subgroup, then the H-reduced Lie algebroid is the action Lie alge-
broid of the induced action of g/h on M̃ . And by Corollary 9.3 the trivial connection
on g×M descends to the trivial connection of g/h⋉ M̃ . �

From Proposition 9.6 and Theorem 9.4 we can draw the following remarkable con-
clusions:

(a) The equivariant momentum map for a G-action cannot induce a hamiltonian
Lie algebroid structure on the H-reduced Lie algebroid unless H is normal.

(b) If the H-reduced Lie algebroid is hamiltonian, then the action Lie algebroid
g⋉M is also hamiltonian but not with respect to the trivial connection unless
H is normal.

In example 4.4 we have already encountered the phenomenon that a Lie algebra
action that is not hamiltonian in the usual sense may have a hamiltonian action Lie
algebroid if we chose a connection other than the trivial one. Observation (b) tells us
that, for action groupoids with a hamiltonian reduction, this is the general case.

10. Cohomological interpretation of hamiltonian Lie algebroids

In their seminal paper [3] Atiyah and Bott made the following observation: The action
of a Lie group G or on a symplectic manifold is hamiltonian if and only if the symplectic
form has a closed extension in a complex that computes the equivariant cohomology
of the G-manifold M . This yields an insightful interpretation of the Duistermaat-
Heckman formula for the symplectic volume of an integrable symplectic manifold as
a localization formula of a more general type. In this section we will show that the
Atiyah-Bott characterization of the equivariant momentum maps of Lie algebra actions
generalizes to the bracket-compatible momentum sections of Lie algebroids.

10.0.1. Conventions and notation for graded manifolds. We adopt the following conven-
tions for graded manifolds. All our graded manifolds arise from graded vector bundles,
which are therefore used to denote the graded manifolds. (By Batchelor’s theorem
[4], this is always the case for Z2-graded manifolds; however, not all Z-graded mani-
folds arise from graded vector bundles.) The structure rings involve a dualization of
the fibre. That is, if E is a graded vector bundle over the n-dimensional manifold M
with local trivialization E|U ∼= U × V over U ⊂ M , the structure sheaf is given by
OE(U) = C∞(U)⊗ S(V ∗), where S(V ∗) is the graded commutative algebra freely gen-
erated by the graded vector space V ∗. Observe that the graded dualization inverts the
degree, the degree k-component being given by (V ∗)k = (V−k)

∗.
For degree shifts we use the cohomological postfix notation V [k], whose degree j

component is given by V [k]j = Vj+k. The shifted tangent functor T [k] shifts only
the degrees of the tangent directions: On a local trivialization we have T [k]E|U ∼=
U × (Rn[k] ⊕ V ⊕ V [k]), where R

n is the fibre of TU . The degree shift of a graded
manifold and of its tangent bundle commute, T [j](E[k]) = (T [j]E)[k], so that the
notation T [j]E[k] is unambiguous. On a local trivialization we have T [j]E[k]|U ∼=
U × (Rn[j]⊕ V [k]⊕×V [j + k]).
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Besides Z-gradings, we will also consider (Z × Z)-graded manifolds, which will be
called bigraded to mark the difference. (The sign rule is sgn(p, q) = (−1)p+q.) We will
denote a shift by bidegree (p, q) by E[p, q], omitting the inner parentheses.
The global ring of functions on a supermanifold E will be denoted byO(E) ≡ OE(M).

A vector field of degree k on a graded manifold E is by definition a graded derivation
of degree k of O(E). In this terminology, the de Rham differential on Ω(M) is a vector
field of degree 1 on the graded manifold T [1]M .
Let A → M be an ordinary vector bundle, i.e. with typical fibre V concentrated in

degree 0. On a trivialization A ∼= U × V over U ⊂ M we have the following structure
rings:

OA[1](U) = C∞(U)⊗ S(V [1]∗)

OT [1]A[1](U) = C∞(U)⊗ S(Rn[1]∗ ⊕ V [2]∗ ⊕ V [2]∗)(54)

OT [1,0]A[0,1](U) = C∞(U)⊗ S(Rn[1, 0]∗ ⊕ V [0, 1]∗ ⊕ V [1, 1]∗) .

The graded commutative algebra generated by the odd vector space V [1]∗ is the exterior
algebra ∧V ∗, the one generated by the even vector space V [2]∗ is the symmetric algebra
SV ∗.

10.1. Generalization of equivariant cohomology models to Lie algebroids.

Constructions of models of the equivariant cohomology H((M × EG)/G) of a G-
manifold M proceed by a) constructing a model of the cohomology of M × EG which
is built out of infinitesimal data yet big enough so that we can b) identify a differential
subcomplex that is a model of the cohomology of the homotopy quotient (M ×EG)/G.
For step a) an infinitesimal model of the cohomology of M × EG can be given in

terms of the action Lie algebroid g⋉M [31], in a way which generalizes to an arbitrary
Lie algebroid A as follows. The Weil algebra of A is defined to be the graded algebra

W (A) := O(T [1]A[1]) ,

of functions on the graded manifold T [1]A[1], which is the graded algebra of differential
forms on the graded manifold A[1]. For the purpose of this paper the most natural
choice for the differential on W (A) is

d̂ = d+ Ld ,

where d is the de Rham differential and Ld is the Lie derivative with respect to the
differential d of the Lie algebroid cohomology of A, the latter considered as a vector
field on A[1]. It is shown in [31] (Corollary 5.16) that this differential complex is an
infinitesimal model of H•(M) ∼= H•(M × EG). By analogy with the case of a group
action it is called there the BRST-model.
Step b) is more difficult. In the case of a group action we want to find the subcom-

plex of those elements of the model for M × EG that are the pullbacks of forms on
(M ×EG)/G along the bundle projection. To avoid technical subtleties about infinite
dimensional manifolds, consider first a finite-dimensional G-principal bundle P → B.
Let α : g → X (P ) be the corresponding infinitesimal action of the Lie algebra. A form
ϕ ∈ Ω(P ) is the pullback of a form on B if and only if (i) ια(X)ϕ = 0 and (ii) Lα(X) ϕ = 0
for all X ∈ g. Forms which satisfy (i) are called horizontal, forms which satisfy (ii)
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are called invariant, and forms which satisfy both properties are called basic.8 The
space of basic differential forms is a differential subcomplex. When G is connected and
compact, this subcomplex is a model of the cohomology of (M × EG)/G (see [20] and
references therein).
In the case of a general Lie algebroid A, we want to generalize the definition of

basic forms to obtain a subcomplex of W (A) which, under assumptions analogous to
compactness and connectedness of the group in the case of action Lie algebroids, is a
model for the stack cohomology of the stack presented by the groupoid integrating A.
The problem of finding the most general assumptions such that the basic subcomplex
which we will define below models the stack cohomology has been considered by a
number of authors but remains open.9 For our purposes, this is not an issue, though,
since we are working with the Lie algebroid itself, the role of the stack being merely
heuristic.

10.2. The basic subcomplex of the Weil algebra. In the case that A = g⋉M is
an action Lie algebroid, the shifted tangent bundle T [1]A[1] naturally splits as a vector
bundle over M

T [1](M × g)[1] ∼= T [1]M ⊕ g[1]⊕ g[2].

Therefore, the Weil algebra factors as a tensor product, with

(55) W (g⋉M)k ∼=
⊕

k=p+q+2r

Ωp(M)⊗ ∧qg∗ ⊗ Srg∗ ,

which is Eq. (54) for V = g.

Remark 10.1. We write the action Lie algebroid as g⋉M with g on the left to indicate
that it is a left action; i.e. the anchor induces a homomorphism of Lie algebras (see
also Section 2.1 on our conventions). In graded manifolds, however, and for de Rham
cohomology with coefficients (as in Section 7) it is customary to place the fibre of a
vector bundle on the right. We will follow this convention here, which is why we have
to use the isomorphism of vector bundles g⋉M ∼=M ×g in the last two equations and
in the next equation.

A graded function ϕ ∈ W (g ⋉M) is horizontal if ι̂Xϕ = 0 for all X ∈ g where the
interior derivative ι̂X with respect to X ∈ g is given by inserting X into the second
factor, ι̂X(τ ⊗ α⊗ β) := (−1)|τ |ω ⊗ (ιXα)⊗ β. The subalgebra of horizontal functions
is then given by

(

W (g⋉M)hor
)

k
∼=

⊕

k=p+2r

Ωp(M)⊗ Srg∗ .

For a general vector bundle A, the tangent bundle T [1]A[1] is not naturally a graded
vector bundle over M , but it does have the natural structure of a graded manifold with
core M and structure ring W (A) = O(T [1]A[1]). A factorization like (55) amounts to
a splitting of the short exact sequence of graded manifolds,

8Note that, unlike horizontal and basic tangent vectors, horizontal and basic forms are well-defined
without the use of a connection.

9For related work see [1], [2], [13], [26], [31], [45].
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(56) 0 // A[2] // T [1]A[1] // T [1]M ⊕ A[1] // 0 ,

by the horizontal lift of a linear connection on A, which in the case of an action Lie
algebroid we have taken to be the product connection on M × g.

Remark 10.2. A sequence of (non-negatively) graded manifolds with the same core
like (56) is called exact if it induces an exact sequence of vector spaces on all degree
> 0 components of the structure rings. Alternatively, (56) can be viewed as a short
exact sequence of double vector bundles [19].

It is useful for our purposes to refine the grading to a bigrading T [1, 0]A[0, 1]. (The
notation was explained in Section 10.0.1.) The sequence (56) then becomes a sequence
of bigraded manifolds:

(57) 0 // A[1, 1] // T [1, 0]A[0, 1] p
// T [1, 0]M ⊕A[0, 1]

h
oo

// 0 .

Since the horizontal lift h : TM ⊕ A → TA of a linear connection on A is linear in
TM and affine in A it respects the bigrading, so that it is a right inverse of p in the
category of graded manifolds. In other words, h induces an isomorphism T [1, 0]A[0, 1] ∼=
T [1, 0]M ⊕A[0, 1]⊕ A[1, 1].
On the rings of functions, the maps p and h induce morphisms

(58) W (A) = O(T [1, 0]A[0, 1])
h∗

// O(T [1, 0]M ⊕A[0, 1]) = Ω(M,A)
p∗

oo ,

where Ω(M,A) is the bigraded algebra of Section 7. The pullbacks satisfy h∗p∗ =
(ph)∗ = id. The map

(hp)∗ : W (A) −→ W (A) ,

is the projection onto the image of p∗. The complementary projection id−(hp)∗ is the
projection onto the kernel of p∗, which is a subalgebra of W (A) that is isomorphic to
O(A[1, 1]). We conclude that the choice of a connection amounts to a factorization of
the bigraded Weil algebra

(59) W (A)p,q ∼=
⊕

p=j+l
q=k+l

Ωj(M)⊗C∞(M) Γ(∧
kA∗)⊗C∞(M) Γ(S

lA∗) ,

where we have replaced Ω(M,A) with its explicit form (31).
For every section a of A[1] the A-interior derivative operator ι̂a on the factorized

Weil algebra is defined by the insertion of a into the second factor:

ι̂a(τ ⊗ α⊗ β) := (−1)|τ |τ ⊗ (iaα)⊗ β.

It will be used to define horizontal and invariant forms in Definition 10.3 below along
with the A-Lie derivative, which is defined as the graded commutator

L̂a := [ι̂a, d̂] = ι̂ad̂+ d̂ι̂a ,
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where d̂ = d + Ld is the BRST-differential on W (A). Since d is of bidegree (1, 0) and
Ld is of bidegree (0, 1), the A-Lie derivative has components of bidegrees (1,−1) and
(0, 0).

Definition 10.3. Let A→M be a Lie algebroid with a connection. A graded function
ϕ ∈ W (A) is called

(i) horizontal if ι̂aϕ = 0 for all sections a of A,

(ii) invariant if L̂aϕ = 0 for all sections a of A,
(iii) basic if it is horizontal and invariant.

Since ι̂a is a derivation of the same degree (0,−1) for all a, the set of horizontal

elements of W (A) is a bigraded subalgebra. Since L̂a is a derivation of the same
total degree 0 for all a, the set of invariant elements is a graded (but not bigraded)
subalgebra. It follows that the set of all basic elements W (A) is a graded subalgebra of

W (A). Moreover, for a basic function we have ι̂ad̂ϕ = L̂aϕ = 0 and L̂ad̂ϕ = d̂L̂aϕ = 0.
This implies the following:

Proposition 10.4. The set W (A)bas of basic elements of W (A) is a differential graded

subalgebra of
(

W (A), d̂
)

.

Remark 10.5. There are two bundles in play here. On the one hand, we have the
vector bundle A → M . On the other hand, we have the principal bundle M × EG →
(M × EG)/G and, implicitly, its generalization to differentiable stacks. Therefore, we
have also two notions of “horizontal”. On the one hand, we have the notion of horizontal
vectors of the connection D on A. On the other hand, we have the notion of horizontal
forms of Definition 10.3. We believe that it is always clear from the context which one
is meant, so that we do not distinguish them linguistically.

10.3. Statement of the main theorem. In the case of action Lie algebroids, equivari-
ant momentum maps can be identified with closed basic extensions of symplectic forms
regardless of whether the basic subcomplex is a model for equivariant cohomology or
not.10 We will now prove that this statement generalizes to bracket-compatible momen-
tum sections of Lie algebroids. Recall from (58) that the projection p : TA→ TM ⊕A
and the horizontal lift h : TM ⊕A→ TA of a connection induce morphisms p∗ and h∗

between the rings of graded functions.

Definition 10.6. Let A→ M be a Lie algebroid with a connection. An extension of
τ ∈ Ω(M,A) to W (A) is an element τ̄ ∈ W (A) of the same total degree as τ such that
h∗τ̄ = τ .

Remark 10.7. Since h∗p∗ = id, every τ ∈ Ω(M,A) has the extension p∗τ ∈ W (A).
However, p∗τ is generally not basic.

Theorem 10.8. A presymplectically anchored Lie algebroid (A,D, ω) is hamiltonian if

and only if ω has a d̂-closed basic extension to W (A).

10Recall that we require a hamiltonian momentum map to be equivariant with respect to the action
of the Lie algebra.
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While the original result by Atiyah and Bott is more of an observation than a theo-
rem, the proof of Theorem 10.8 is quite involved. One method of proof is by lengthy
calculations in local coordinates which involve the connection on A, its curvature, and
its torsion. A better and more insightful proof, which we will present in Section 10.10
below, is obtained by relating the bigraded algebra of Section 7 to the Weil algebra
W (A).

10.4. The Cartan calculi. By definition, the algebra of functions on the graded man-
ifold A[1] is the graded algebra of exterior A-forms, O(A[0, 1])k = Γ(M,∧kA∗). The
Lie algebroid interior derivative with respect to a section a ∈ Γ(A) is the derivation of
degree −1 given by iaν = ν(a) for ν ∈ Γ(A∗). In the terminology of graded manifolds,
ia is a vector field on A[1] of degree −1. Geometrically, we may think of ia as the vector
field constant on fibres of A[1] whose value along each fibre is given by the value of a at
the basepoint in M . In this terminology the differential d of Lie algebroid cohomology
is a vector field on A[1] of degree +1. The Lie algebroid Lie derivative by a is then
defined as the graded commutator La = [ia,d], which is a vector field of degree 0. De-
noting the vector space of graded vector fields on A[1] by X (A[1]) we have along with
d ∈ X (A[1])1 the vector fields

ia ∈ X (A[1])−1 , La ∈ X (A[1])0 ,

for every section a ∈ Γ(A). The subspace spanned by these derivations is a graded Lie
subalgebra of X (A[1]) with commutation relations

[d,d] = 0 ,

[ia, ib] = 0 , [ia,d] = La ,

[La, ib] = i[a,b] , [La,Lb] = L[a,b] , [La, d] = 0 ,

for all a, b ∈ Γ(A). We call this graded Lie algebra the Lie algebroid Cartan calculus

or the A-Cartan calculus.
On O(T [1, 0]A[0, 1]), which is the bigraded algebra of differential forms on A[0, 1], we

have the Cartan calculus of the de Rham complex consisting of the de Rham differential,

d ∈ X (T [1, 0]A[0, 1])1,0 ,

together with the interior derivative and Lie derivative which are maps from bigraded
vector fields on A[0, 1] to bigraded vector fields on T [1, 0]A[0, 1],

ι : X (A[0, 1]) −→ X (T [1, 0]A[0, 1])[−1, 0] ,

L : X (A[0, 1]) −→ X (T [1]A[1])[0, 0] .

The interior derivative is O(A[0, 1])-linear and so, a fortiori, C∞(M)-linear. The de
Rham differential, interior derivatives, and Lie derivatives also span a bigraded Lie
subalgebra of the derivations on W (A) with commutator relations

[d, d] = 0 ,

[ιv, ιw] = 0 , [ιv, d] = Lv ,

[Lv,Lw] = ι[v,w] , [Lv,Lw] = L[v,w] , [Lv, d] = 0 ,
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for all v, w ∈ X (A[0, 1]). Moreover, the Lie derivative satisfies the Leibniz rule

Lfv = [ιfv, d] = fιvd− (−1)|v|−1d ιfv

= (−1)|v|df ιv + f Lv ,

for every bigraded function f and bigraded vector field v on A[0, 1]. We call this the
de Rham Cartan calculus on A[0, 1].
Since the operations d, ia, and La of the Lie algebroid Cartan calculus are vector

fields in X (A[0, 1]), the interior derivative and Lie derivative maps of the de Rham
Cartan calculus on A[0, 1] can be applied to them. We thus obtain for every section a
of A the vector fields

ιia , ιLa
, ιd,Lia ,LLa

,Ld, d ∈ X (T [1, 0]A[0, 1])

which have the following bidegrees:

deg ιia = (−1,−1) , deg ιLa
= (−1, 0) , deg ιd = (−1, 1)

degLia = (0,−1) , degLLa
= (0, 0) , degLd = (0, 1)

deg d = (1, 0) .

The subspace of X (T [1, 0]A[0, 1]) spanned by these bigraded vector fields is closed under
the commutator bracket. The commutator relations are straight-forward to compute:
First, all interior derivatives commute:

[ιia , ιib] = [ιia , ιLb
] = [ιia , ιd] = 0 ,

[ιLa
, ιLb

] = [ιLa
, ιd] = [ιd, ιd] = 0 .

The Lie derivative is a homomorphism of graded Lie algebras:

[Ld,Ld] = 0 , [Lia ,Lib
] = 0 , [Lia,Ld] = LLa

,

[LLa
,Ld] = 0 , [LLa

,Lib
] = Li[a,b]

, [LLa
,LLb

] = LL[a,b]
.

The Lie derivative acts on the interior derivative by the adjoint action on the argument:

[Lia, ιib ] = 0 , [Lia, ιib] = ιi[a,b] , [Lia, ιd] = ιLa
,

[LLa
, ιib] = ιi[a,b] , [LLa

, ιLb
] = ιL[a,b]

, [LLa
, ιd] = 0 ,

[Ld, ιib] = ιLb
, [Ld, ιLb

] = 0 , [Ld, ιd] = 0 .

The commutator of the interior derivative with the differential is the Lie derivative:

[ιia , d] = Lia , [ιLa
, d] = LLa

, [ιd, d] = Ld .

Finally, the de Rham differential commutes with the Lie derivative:

[d,Lia] = [d,LLa
] = [d,Ld] = 0 .

10.5. Local bigraded coordinates.
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10.5.1. Bigraded coordinates. Let {xα} be local coordinates on U ⊂ M and {ai ∈
Γ(U,A)} a basis of local sections of A, which together define a local trivialization of the
vector bundle A. Let {θi} be the basis of local sections of A∗ dual to {ai}, θ

i(aj) = δij.

Then {xα, θi} are local bundle coordinates of A. We shall use Greek indices α, β to label
the coordinates of base manifold M and Latin indices i, j, k for the fibre coordinates of
A.
We view xα and θi as local coordinate functions of the bigraded manifold A[0, 1]

of degrees deg(xα) = (0, 0) and deg(θi) = (0, 1) that generate the bigraded ring of
functions O(A[0, 1])|U = C∞(U) ⊗ Γ(U,∧A∗). The corresponding coordinate vector
fields have bidegrees deg( ∂

∂xα ) = (0, 0) and deg( ∂
∂θi

) = (0,−1). As it is customary for
graded manifolds, we will denote the coordinate 1-forms dual to the coordinate vector
fields by ẋα ≡ dxα and θ̇i ≡ dθi,

(60) ι ∂
∂xα

ẋβ = δβα , ι ∂

∂θk
θ̇j = δjk .

The functions {xα, θi, ẋα, θ̇i} are local coordinates of the graded manifold T [1, 0]A[0, 1]
of bidegrees

deg(xα) = (0, 0) , deg(θi) = (0, 1) , deg(ẋα) = (1, 0) , deg(θ̇i) = (1, 1) .

10.5.2. The de Rham Cartan calculus. The action of the de Rham differential on the
local coordinate functions is given by

dxα = ẋα , dθi = θ̇i , dẋα = 0 , dθ̇i = 0 .

Viewed as bidegree (1, 0) vector field on T [1, 0]A[0, 1], it can be written as

(61) d = ẋα
∂

∂xα
+ θ̇i

∂

∂θi
.

The interior derivative of the graded de Rham complex of A[1] is given by Eq. (60) and
by zero for all other interior derivatives of graded coordinates. Viewed as graded vector
fields on T [1]A[1] the interior derivatives of the coordinate vector fields are written as

ι ∂
∂xα

=
∂

∂ẋα
, ι ∂

∂θk
=

∂

∂θ̇k
.

The Lie derivative Lv = [ιv, d] with respect to the coordinate vector fields is given by

L ∂
∂xα

=
∂

∂xα
, L ∂

∂θi
=

∂

∂θi
.

10.5.3. The Lie algebroid Cartan calculus. In terms of the basis of local sections of A
the Lie algebroid structure takes the form

[ai, aj ] = ckijak , ρ(ai) = ραi
∂

∂xα
,

where ckij , ρ
α
i ∈ C∞(M) are the structure functions. The Lie algebroid differential is

given in terms of local bundle coordinates by

(62) d = ραi θ
i ∂

∂xα
−

1

2
ckijθ

iθj
∂

∂θk
.
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The Lie algebroid interior derivative is given by iakθ
j = θj(ak) = δjk, which can be

viewed as graded vector field

iak =
∂

∂θk
.

For the Lie algebroid Lie derivative defined as La = [ia,d] we thus obtain

Lai = ραi
∂

∂xα
− ckijθ

j ∂

∂θk
.

10.5.4. The BRST-differential. The de Rham interior derivative with respect to a vector
field on A[0, 1] is given by

ι ∂
∂xα

=
∂

∂ẋα
, ι ∂

∂θi
=

∂

∂θ̇i
.

For the interior derivative with respect to the Lie algebroid differential we thus obtain

(63) ιd = ραi θ
i ∂

∂ẋα
−

1

2
ckijθ

iθj
∂

∂θ̇k
.

The de Rham Lie derivative with respect to d is then given by Cartan’s magic formula,

Ld = [ιd, d ] =
[

ραi θ
i ∂

∂ẋα
−

1

2
ckijθ

iθj
∂

∂θ̇k
, ẋβ

∂

∂xβ
+ θ̇i

∂

∂θi

]

= ραi θ
i ∂

∂xα
−
∂ραi
∂xβ

ẋβθi
∂

∂ẋα
− ραi θ̇

i ∂

∂ẋα
+

1

2

∂ckij
∂xβ

ẋβθiθj
∂

∂θ̇k

−
1

2
ckijθ

iθj
∂

∂θk
− ckijθ

iθ̇j
∂

∂θ̇k
.

(64)

The BRST-differential in local coordinates is the sum of this expression and the one for
the de Rham differential given in Eq. (61).

10.6. Parallel projection of derivations. Let p∗ and h∗ be the maps of (58). They
induce a linear map between the spaces of bigraded endomorphisms,

(65)
P : End

(

W (A)
)

−→ End
(

Ω(M,A)
)

X 7−→ h∗Xp∗ .

We call P the parallel projection of bigraded endomorphisms.

Proposition 10.9. Let A be a vector bundle with a linear connection. The parallel
projection (65) maps derivations to derivations.

Proof. Let X be a graded derivation on W (A) and α, β ∈ Ω(M,A). Then

(PX)(αβ) = (h∗Xp∗)(αβ) = h∗
[

X
(

(p∗α)(p∗β)
)]

= h∗
[(

X(p∗α)
)

(p∗β) + (−1)|X| |α|(p∗α)
(

X(p∗β)
)]

= h∗
(

X(p∗α)
)

(h∗p∗β) + (−1)|X| |α|(h∗p∗α) h∗
(

X(p∗β)
)

=
(

(PX)α
)

β + (−1)|PX| |α|α
(

(PX)β
)

,

where we have used that ph = id and that |PX| = |X|. �
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Remark 10.10. For two derivations X , Y of W (A) we have P (XY ) = h∗XY p∗ which
is generally different from (PX)(PY ) = h∗Xp∗h∗Y p∗, since p∗h∗ is the projection onto
the kernel of h∗. When A has non-zero rank then p∗h∗ has a non-zero kernel, which
shows that P does not preserve the Lie bracket of derivations.

10.6.1. Parallel projection in local coordinates. Let D : Γ(A) → Ω1(M) ⊗C∞(M) Γ(A)
denote the covariant derivative of the connection on A. On the basis of local sections
of A the covariant derivative acts as

Dai = Ωj
αidx

α ⊗ aj ,

where Ωj
αj ∈ C∞(M) are the connection coefficients. On dual coordinates the covariant

derivative acts by Dθi = −Ωi
αj ẋ

αθj . As we have seen in Section 7.1, the covariant deriv-
ative can be extended to a derivation on Ω(M,A). In local coordinates this derivation
is given by

(66) D = ẋα
∂

∂xα
− Ωj

αiẋ
αθi

∂

∂θj
.

The covariant derivative and the horizontal lift of the connection are related by
Dva = (Ta)(v) − h(v, a), where Ta : TM → TA is the derivative of the section
a : M → A. In local coordinates the horizontal lift of v = vα ∂

∂xα to a = aiai is,
therefore, given by

h(v, a) = vα
∂

∂xα
− Ωi

αjv
αaj

∂

∂θi
.

It follows that the pullback along h acts on the coordinate 1-forms as

(h∗ẋα)(v, a) = vα = ẋα(v) ,

(h∗θ̇i)(v, a) = −Ωi
αjv

αaj = −Ωi
αj ẋ

α(v) θj(a) .

Moreover, since h(0m, a) = 0m, the pullback along h preserves the coordinates xα and
θi. We conclude that h∗ acts on the local generators of W (A) by

h∗xα = xα , h∗θi = θi , h∗ẋα = ẋα , h∗θ̇i = −Ωi
αj ẋ

αθj .

The projection p : T [1, 0]A[0, 1] → T [1, 0]M ⊕ A[0, 1] is given p(va) = (Tπ v, a), where
π : A → M is the bundle projection. The pullback along p then acts on the the
generators of Ω(M,A) = O(T [1, 0]M ⊕A[0, 1]) by

p∗xα = xα , p∗ẋα = ẋα , p∗θi = θi .

With the formulas for h∗ and p∗ we can compute the parallel projection of the coordi-
nates,

(67) (hp)∗xα = xα , (hp)∗θi = θi , (hp)∗ẋα = ẋα , (hp)∗θ̇i = −Ωi
αj ẋ

αθj .

For the parallel projection of the coordinate vector fields we obtain

P
( ∂

∂xα

)

=
∂

∂xα
, P

( ∂

∂ẋα

)

=
∂

∂ẋα
, P

( ∂

∂θi

)

=
∂

∂θi
, P

( ∂

∂θ̇i

)

= 0 .
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10.7. The horizontal subalgebra. According to the factorization (59), the bigraded
subalgebra of horizontal elements is isomorphic to the tensor product over C∞(M)
of two factors: The first factor is the image of Ω(M) under the pullback along Tπ :
T [1, 0]A[0, 1] → T [1, 0]M . The second factor is the algebra of functions on the kernel
of p. In local coordinates the first factor is generated by {xα, ẋα}. The second factor is
the image of the projection id−(hp)∗ : W (A) → W (A), which is generated as C∞(M)-
algebra by

ηi := (id−p∗h∗)θ̇i = θ̇i + Ωi
αj ẋ

αθj .

We conclude that the subalgebra of horizontal functions of W (A) is given on a local
coordinate neighborhood U ⊂M by

W (A)hor
∣

∣

U
∼= C∞(U)⊗ R[ẋα, ηi] ∼= Ω(U) ⊗ R[ηi] .

From this we can deduce that the A-interior derivative with respect to a section a = aiai
of A is given in local coordinates by

ι̂a = ai
∂

∂θi
+ aiΩj

αiẋ
α ∂

∂θ̇j
.

In order to give a coordinate free interpretation of ι̂a we observe that when a is a
horizontal section of A, that is, dai + ajΩi

αj ẋ
α = 0, then

Lia = [ιia , d]

= [aiιiai , d]

= −(dai)ιiai + ai Liai

= ajΩi
αj ẋ

α ∂

∂θ̇i
+ ai

∂

∂θi

= ι̂a .

We see that the A-interior derivative with respect to a horizontal section a is the
prolongation of the vertical vector field ia = ai ∂

∂θi
on A to the tangent bundle TA. This

follows the same approach as many other definitions in the paper: The definition of
the interior derivative with respect to a Lie algebra is generalized to a Lie algebroid
by requiring the usual condition to hold for all horizontal sections. In order to get a
coordinate free expression for ι̂a that holds for arbitrary sections a we have to subtract
the terms coming from the covariant derivative of a. This leads to

ι̂a = Lia + ι[D,ia] ,

where D is given by Eq. (66) and where we have implicitly extended the de Rham
interior derivative Ω(M)-linearly from X (A) to Ω(M) ⊗C∞(M) X (A), similar to what
we did in Section 7.1.

10.8. Relation to the bigraded algebra of Section 7. In Section 7 we have con-
structed two derivations D and Ď on the bigraded algebra Ω(M,A), which can be
viewed as the algebra of bigraded functions on T [1, 0]M ⊕ A[0, 1]. These derivations
are related to the Cartan calculus on W (A) as follows:
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Proposition 10.11. Let A be a Lie algebroid with a connection. The bigraded deriva-
tions D and Ď on Ω(M,A) = O(T [1, 0]M ⊕ A[0, 1]) are the parallel projections

D = P (d) , Ď = P (Ld)

of the two components of the BRST-differential.

Proof. P (d) = h∗dp∗ acts on the local coordinate functions as

P (d)xα = h∗ẋα = ẋα = Dxα

P (d)ẋα = 0 = Dẋα

P (d)θi = h∗θ̇i = −Ωi
αj ẋ

α = Dθi .

We see that the actions of D and P (d) on the coordinate functions are equal. By
Proposition 10.9, P (D) is a derivation. Since two derivations are equal if they are equal
on the generators of an algebra, it follows that D = P (d).
For the second equation we compare the action of Ď and P (Ld) on the local coordi-

nate functions. On the one hand, Ď acts on xα and θi as the Lie algebroid differential,

Ďxα = ραi θ
i , Ďθi = −

1

2
cijkθ

jθk .

Let now v = vα ∂
∂xα be an arbitrary vector field on M and a = aiai an arbitrary section

of A. Then

〈Ďaẋ
α, v〉 = ρa · 〈ẋα, v〉 − 〈ẋα, Ďav〉

= ρa · 〈ẋα, v〉 − 〈ẋα, [ρa, v] + ρ(Dva)〉

= 〈Lρa ẋ
α, v〉 − 〈ẋα, ρ(Dva)〉

= vβ
∂(aiραi )

∂xβ
− ραi v

β
( ∂ai

∂xβ
+ ajΩi

βj

)

=
〈

(iaθ
i)
(∂ραi
∂xβ

− ραi Ω
i
βj

)

ẋβ , v
〉

,

from which it follows that

Ďẋα =
(

−
∂ραi
∂xβ

+ ραj Ω
j
βi

)

ẋβθi .

On the other hand, applying P (Ld) to x
α, ẋα, and θi using the local coordinate expres-

sion (64), we obtain

P (Ld)x
α = h∗ Ld x

α = h∗ραi θ
i = ραi θ

i

P (Ld)ẋ
α = h∗ Ld ẋ

α = h∗
(

−
∂ραi
∂xβ

ẋβθi − ραi θ̇
i
)

=
(

−
∂ραi
∂xβ

+ ραj Ω
j
βi

)

ẋβθi

P (Ld)θ
i = h∗ Ld θ

i = h∗
(

−
1

2
cijkθ

jθk
)

= −
1

2
cijkθ

jθk .

Since the action of Ď and P (Ld) on the local coordinates of Ω(M,A) are equal, we
conclude that Ď = P (Ld). �

Proposition 10.12. Let ιρ be the derivation on Ω(M,A) defined in Section 7.1. Then

p∗ιρ = ιdp
∗ .
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Proof. In local coordinates ιρ = ραi θ
i ∂
∂xα , whereas ιd is given by Eq. (63). The relation

is now straightforward to check in local coordinates. �

10.9. Some technical lemmas. For the proof of Theorem 10.8, we need the following
technical lemmas.

Lemma 10.13. Let τ ∈ Ωp,q(M,A) with q > 0. The following are equivalent:

(i)
(

id−(hp)∗
)

dp∗τ = 0.
(ii) τ = 0.

Proof. In local coordinates τ = τAI ẋ
α1 · · · ẋαpθi1 · · · θiq , where A = (α1, . . . , αp) and

I = (i1, . . . , iq) are multi-indices and τAI are smooth functions on M that are totally
antisymmetric in A and I. Using the Leibniz rule for d, the antisymmetry of τAI in A,
Eqs. (67), and the definition of ηi, we obtain

(

id−(hp)∗
)

dp∗τ = (−1)pτAI ẋ
α1 · ẋαpηi1θi2 · · · θiq .

This vanishes if and only if τAI = 0, that is, if and only if τ = 0. �

Lemma 10.14. Let τ ∈ Ωp,q(M,A) with q > 0. Then dp∗τ = 0 if and only if τ = 0.

Proof. If τ = 0 then dp∗τ = 0. Conversely, if dp∗τ = 0 then
(

id−(hp)∗
)

dp∗τ = 0.
Lemma 10.13 now implies that τ = 0. �

Lemma 10.15. If ϕ ∈ W (A) is of bidegree (p, 0) or (0, q), then it satisfies ϕ = (hp)∗ϕ.

Proof. If ϕ is of bidegree (p, 0) or (0, q) then its local coordinate expression does not

contain any factor θ̇. The relation ϕ = (hp)∗ϕ then follows from Eqs. (67). �

10.10. Proof of Theorem 10.8. We start by observing that in local coordinates every
horizontal extension of ω is for degree reasons of the form

ω̄ = 1
2
ωαβẋ

αẋβ + µiη
i

for some smooth functions µi ∈ C∞(M). Every horizontal element of W (A) which is

d̂-closed is automatically basic, so that we only have to determine the conditions for
d̂ω̄ = 0.
The second term of the extension can be written as

µiη
i = (id−p∗h∗)d(µiθ

i) = (id−p∗h∗)dp∗µ

= dp∗µ− p∗Dµ ,

where µ := µiθ
i is an arbitrary exterior 1-form on A. Our goal is now to show that

ω̄ = p∗ω + dp∗µ− p∗Dµ

is d̂-closed if and only if dω = 0 and µ is a bracket-compatible D-momentum section.
Applying d̂ = d+Ld to ω̄ produces terms of bidegrees (3, 0), (2, 1), and (1, 2) which

have to vanish separately for d̂ω̄ to vanish. The three equations we thus obtain are:

0 = dp∗ω(68a)

0 = Ld p
∗ω − dp∗Dµ(68b)

0 = Ld(dp
∗µ− p∗Dµ)(68c)
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For Eq. (68a) we use lemma 10.15, which yields

dp∗ω = (hp)∗dp∗ω = p∗Dω = p∗dω .

Since p is surjective, its pullback p∗ is injective so that p∗dω vanishes if and only if
dω = 0. We conclude that Eq. (68a) is satisfied if and only if dω = 0.
We turn to Eq. (68b). Using Cartan’s magic formula and Eq. (68a), we can rewrite

it as

0 = Ld p
∗ω − dp∗Dµ = (ιdd− dιd)p

∗ω − dp∗Dµ

= −dp∗(ιρω +Dµ) ,
(69)

where in the last step we have used Proposition 10.12. Applying lemma 10.14 to
Eq. (69), we conclude that Eq. (68b) holds if and only if ιρω+Dµ = 0. This is precisely
the condition in Proposition 7.7 for µ to be a momentum section.
We finally turn to Eq. (68c), which we split into two equations by applying the

complementary projections (hp)∗ and id−(hp)∗. The first equation we obtain is

0 = (id−p∗h∗)Ld(dp
∗µ− p∗Dµ)

= (id−p∗h∗)(−dLd p
∗µ− Ld p

∗Dµ)

= −(id−p∗h∗)(dp∗h∗ Ld p
∗µ+ Ld p

∗Dµ)

= −(id−p∗h∗)(dp∗Ďµ+ Ld p
∗Dµ) ,

(70)

where we have used Ld d = −dLd, then applied lemma 10.15 to Ld p
∗µ which is of

bidegree (0, 2), and finally used Proposition 10.11. In oder to rewrite the second term,
we need the relation

dp∗ιριρω = dιdιdp
∗ω = (ιdd−Ld)ιdp

∗ω = −(ιd Ld +Ld ιd)p
∗ω

= −2Ld ιdp
∗ω ,

where we have used dp∗ω = 0. By substituting ιρω = −Dµ, we get

Ld p
∗Dµ = −Ld p

∗ιρω = −Ld ιdp
∗ω = dp∗ 1

2
ιριρω .

Inserting this into Eq. (70), we arrive at the condition

0 = (id−p∗h∗)dp∗(Ďµ+ 1
2
ιριρω) .

By lemma 10.13, this equation is satisfied if and only if Ďµ + 1
2
ιριρω = 0. This is

precisely the condition in Proposition 7.7 for the momentum section µ to be bracket-
compatible.
We now apply the complimentary projection (hp)∗ to Eq. (68c) and obtain

0 = (hp)∗ Ld(dp
∗µ− p∗Dµ)

= p∗h∗(−dLd p
∗µ−Ld p

∗Dµ)

= −p∗h∗(dp∗h∗ Ld p
∗µ+ Ld p

∗Dµ)

= −p∗(DĎ + ĎD)µ ,

where we have used the same identities and lemmas as before. Since p∗ is injective, this
equation holds if and only if [D, Ď]µ = 0. We have already established that dω = 0,
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Dµ = −ιρω, and Ďµ = −1
2
ιριρω are necessary conditions for ω̄ to be a closed basic

extension of ω. With these three relations we obtain

[D, Ď]µ = D(−1
2
ιριρω) + Ď(−ιρω)

= −1
2
Dιριρω − (ιρD −DιρD + ιT )ιρω

= ιρĎω + 1
2
Dιριρω − ιT ιρω ,

where we have used Dω = 0, which implies that Ďω = (ιρD −Dιρ − ιT )ω = −Dιρω.
We now need the following lemma:

Lemma 10.16. Every 2-form ω ∈ Ω2,0(M,A) satisfies

(71) ιρĎω + 1
2
Dιριρω − ιT ιρω = 1

2
ιριρdω

Proof. The proof follows from a lengthy calculation. Eq. (71) is an equation of elements
in Ω1,2(M,A), so we can evaluate it on a vector field v and two sections a, b of A. We
consider every summand on the left hand side of (71) separately. For the first summand
we first establish the relation

ιvιbιaιρ = ιvιb(ιρa + ιριa) = ιv
(

−ιρaιb + (ιρb + ιριb)ιa
)

= ιv(ιρbιa − ιρaιb + ιριbιa) ,

where we have used [ιa, ιρ] = ιaιρ − ιριa = ιρa. With this relation we compute

A := ιvιbιaιρĎω = ιvιρbιaĎω − ιvιρaιbĎω

= ρa · ω(ρb, v)− ω(Ďaρb, v)− ω(ρb, Ďav)

− ρb · ω(ρa, v) + ω(Ďbρa, v) + ω(ρa, Ďbv) .

For the second summand, we recall from the proof of Proposition 7.7 that ιbιa
1
2
ιριρω =

ω(ρa, ρb). Using the definition (33) of the dual connection of the A-connection Ď on
TM , we obtain for the second term

B = ιvιbιaD
1
2
ιριρω = ιbιaιvD

1
2
ιριρω = ιbιaDv

1
2
ιριρω

= v · ω(ρa, ρb)− ω(ρDva, ρb)− ω(ρa, ρDvb) .

For the third term we use the definition (7) of the torsion,

C := −ιvιbιaιT ιρω = −ιvιT (a,b)ω

= −ω(ρDρab− ρDρba− [ρa, ρb], v) .
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Using the definition Ďva = [ρa, v] + ρDva of the A-connection (5), the sum of the three
terms can be written as

A +B + C = ρa · ω(ρb, v)− ρb · ω(ρa, v) + v · ω(ρa, ρb)

− ω(Ďaρb− ρDρba, v) + ω(Ďbρa− ρDρba, v) + ω([ρa, ρb], v)

+ ω(Ďav − ρDva, ρb)− ω(Ďbv − ρDvb, ρa)

= ρa · ω(ρb, v)− ρb · ω(ρa, v) + v · ω(ρa, ρb)

− ω([ρa, ρb], v) + ω([ρb, ρa], v) + ω([ρa, ρb], v)

+ ω([ρa, v], ρb)− ω([ρb, v], ρa)

= ρa · ω(ρb, v)− ρb · ω(ρa, v) + v · ω(ρa, ρb)

− ω([ρa, ρb], v) + ω([ρa, v], ρb)− ω([ρb, v], ρa)

= ιvιρbιρadω .

With the relation

1
2
ιaιbιριρ = ιρbιρa + ιρ(ιbιρa − ιaιρb) +

1
2
ιριριbιa ,

which can be checked by a straightforward calculation, we get

ιvιρbιρadω = ιvιaιb
1
2
ιριρdω .

We thus obtain the relation A+B +C = ιvιaιb
1
2
ιριρdω, which is Eq. (10.10) evaluated

on v, a, and b. �

From Eq. (71) it follows that [D, Ď]µ = 1
2
ιριρdω = 0.

To conclude: We have established that every horizontal extension of ω is of the form
p∗ω + dp∗µ− p∗Dµ for some µ ∈ Ω1(A) and proved that this extension is closed if and
only if the conditions dω = 0, Dµ = −ιρω, and Ďµ = −1

2
ιριρω are satisfied. Since

(A,D, ω) is assumed presymplectically anchored in the statement of Theorem 10.8, we
conclude that ω has a closed basic extension if and only if (A,D, ω) is hamiltonian.
This finishes the proof of Theorem 10.8. �

Remark 10.17. The conditions for a horizontal extension of ω to be closed that we
have derived in the proof of Theorem 10.8 are independent of whether the Lie algebroid
is presymplectically anchored or not. So we have actually shown the following:

Proposition 10.18. Let A→ M be a Lie algebroid with connection D. A differential
2-form ω on M has a closed basic extension to W (A) if and only if ω is closed and A
has a bracket-compatible momentum section.

Remark 10.19. The expression [D, Ď]µ that appears in the proof of Theorem 10.8
can be rewritten in more familiar terms as follows:

[D, Ď] = [D, [ιρ, D] + ιT ]

= [[D, ιρ], D] + [ιρ, [D,D]] + [D, ιT ]

= [−Ď + ιT , D] + [ιρ, [D,D]] + [D, ιT ]

= −[D, Ď] + [ιρ, [D,D]] + 2[D, ιT ] ,
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where we have used Eq. (34). Recalling that 1
2
[D,D] = D2 = R is the curvature

operator defined in Section 3.1 and using [D, ιT ] = ιDT , we obtain

(72) [D, Ď]µ = ιρRµ+ ιDTµ = 〈µ, ιρR +DT 〉 .

Proposition 10.20. Let A be a Lie algebroid with connection D over a presymplectic
manifold (M,ω). A bracket-compatible D-momentum section µ satisfies

(73) 〈µ, ιρR +DT 〉 = 0 ,

where R is the curvature operator defined in Eq. (3) and T the torsion form defined in
Eq. (7). When, moreover, D is presymplectically anchored, then 〈µ,DT 〉 = 0.

Proof. In the last step of the proof of Theorem 10.8, we have shown that a bracket-
compatible momentum section µ satisfies [D, Ď]µ = 0. It follows from Eq. (72) that
Eq. (73) holds.
When, moreover, A is presymplectically anchored, then every momentum section

satisfies 0 = Dγ = D2µ = Rµ. Since R is a tensor, 〈R(v, w)µ, a〉 = 〈µ,R(v, w)a〉
for all vector fields v, w and all sections a of A. (Recall, that we do not distinguish
notationally between the connection on A and the dual connection on A∗, so that R
denotes the curvature operator on sections of A as well as on sections of A∗.) It follows
that Rµ = 0 implies that 〈µ, ιρRa〉 = ιρ〈µ,Ra〉 = ιρ〈Rµ, a〉 = 0 for all sections a of A.
With this relation, Eq. (73) becomes 〈µ,DT 〉 = 0. �

Remark 10.21. Assume that the connection is flat, R = 0, so that the condition (73)
becomes 〈µ,DT 〉 = 0. Let a and b be horizontal sections of A. Then the covariant
derivative of the torsion in the direction of a vector field v is given by

(DvT )(a, b) = DvT (a, b)− T (Dva, b)− T (a,Dvb)

= Dv

(

Dρab−Dρba− [a, b]
)

= −Dv[a, b] .

If DT = 0, then the bracket of horizontal sections is again horizontal, so that A is
locally an action Lie algebroid. This leaves the possibility that there are more general
hamiltonian Lie algebroids with a flat connection for which DvT is not zero but in the
kernel of µ. (The simplest case of this is where the anchor is zero, in which case the
Lie algebroid is hamiltonian with respect to any connection, with µ = 0.)

11. Open questions, conjectures, outlook

11.1. Hamiltonian foliations.

Question 11.1. Viewing a regular foliation as a Lie algebroid with injective anchor,
we obtain the notion of a hamiltonian foliation of a symplectic manifold. In Propo-
sition 6.23 (ii), we have shown that a symplectically complete foliation F is weakly
hamiltonian if there is a vector field n that is a symmetry of the symplectic orthogonal
foliation F⊥ and is transverse to F⊥. If, in addition, the pullback of Ln ω + ω to F
vanishes, then F is hamiltonian. Locally, such an n always exists. What are the global
obstructions?
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Note that n is the presymplectic version of a Liouville vector field. In the symplectic
case, transversality of n to F⊥ is simply the nowhere vanishing of n. In this case, that
of hamiltonian tangent bundles, the existence of such an n has been established, as we
explained in Section 6.2.

11.2. Obstruction theory. For the action of a Lie algebra g onM the obstructions to
the existence of an equivariant momentum map are the following. The action gives rise
to a class in H1(g)⊗H1(M) which must vanish for the action to be weakly hamiltonian.
When it vanishes, the obstruction to it being hamiltonian lies in H2(g)⊗H0(M). What
is the obstruction theory for hamiltonian structures on Lie algebroids?
When there is a flat symplectically anchored connection, the first obstruction can

be easily generalized. For a flat connection, the operator D on the bigraded algebra
Ω•,•(M,A) of Section 7 is a differential. Then the Lie algebroid has a momentum section
if and only if the D-cohomology class of the dualized anchor [ιρω] ∈ H1,1

D (M,A) is zero.
The failure of a D-momentum section µ to be bracket-compatible is given by the

2-form

Θ := Ďµ+ 1
2
ιριρω ∈ Ω0,2(M,A) .

On the edge complex Ω0,•(M,A) of A-forms, Ď acts as the Lie algebroid differential d.
Moreover, ρ : A→ TM is a morphism of Lie algebroids, so that the pullback on forms
ρ∗ : Ωp,0(M,A) → Ω0,p(M,A) intertwines the differentials dρ∗ = ρ∗d. In particular,
d1

2
ιριρω = dρ∗ω = ρ∗dω = 0. This shows that Θ is Ď-closed:

ĎΘ = d2µ+ d1
2
ιριρω = 0 .

Applying the differential D yields

DΘ = DĎµ+D 1
2
ιριρω

= D(ιρD −Dιρ + ιT )µ+D 1
2
ιριρω

= −Dιριρω +DιTµ+D 1
2
ιριρω

= DιTµ−D 1
2
ιριρω

= DιTµ− ιT ιρω

= DιTµ+ ιTDµ

= [D, ιT ]µ ,

where we have used D2 = 0, Dµ = −ιρω, and lemma 10.16. For a cohomological
interpretation of Θ, we will make the additional assumption that [D, ιT ] = ιDT , which
is equivalent to the condition that the torsion tensor be D-invariant, i.e. DT = 0. This
implies that Θ is D-closed. Moreover, we infer from Eq. (72) that [D, Ď] = 0, so that
Ď = d induces a differential d̄ on the graded vector space of D-cohomology classes
H0,•

D (M,A) at the edge of the bicomplex. We conclude that Θ represents a double
cohomology class

[[Θ]] ∈ H2
(

H0,•
D (M,A), d̄

)

.
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This cohomology class is zero if and only if there is a D-closed 1-form ν ∈ Ω0,1(M,A)
such that Ďν = Ďµ + 1

2
ιριρω, which is the case if and only if µ′ = µ − ν is a bracket-

compatible momentum section. We conclude that [[Θ]] is the obstruction for the exis-
tence of a bracket-compatible momentum section.
The assumptions D2 = 0 and DT = 0 are quite strong, since they are equivalent

to A being locally an action Lie algebroid. For instance, they hold for a bundle of Lie
algebras with zero anchor only if the parallel translation given by D gives Lie algebra
isomorphisms.
So the following question remains open:

Question 11.2. What are the obstructions to the existence of a (bracket-compatible)
D-momentum section in the general case?

A small hint as to a general obstruction theory is given in Proposition 6.26, which
states (for the rank 1 case) that non-vanishing curvature of D at a singular point of the
anchor is an obstruction to the existence of a D-momentum section. A more difficult
problem yet is that any obstruction theory formulated in terms of the bigraded algebra
Ω•,•(M,A) will depend on the choice of D. As we have seen in Example 4.4, when there
is a nonzero obstruction to a D-momentum section, it may still happen that there is
another connection for which it does vanish.

11.3. The Poisson case. In Propositions 4.12 and 4.13 we have shown that the axioms
for a hamiltonian Lie algebroid A can be derived from the following simple geometric
principle. Given a connection D on A → M , we require the usual axioms for a hamil-
tonian action for every point m ∈ M and all sections of A that are horizontal at m.
This principle can be applied without modification to a Lie algebroid over a Poisson
manifold, which leads to the following definition:

Definition 11.3. Let (A, ρ, [ , ]) be a Lie algebroid over a Poisson manifold (M,Π).
Let D be a connection on A and Ď the opposite A-connection on TM (Definition 3.1).

(P1) A is Poisson anchored with respect to D if

ĎΠ = 0 .

(P2) A section µ ∈ Γ(A∗) = Ω0(M,A∗) is a D-momentum section if

Π̃ ◦Dµ = ρ ,

where Π̃ : T ∗M → TM is the bundle map associated to Π and Dµ is viewed as
map from A→ T ∗M .

(P3) A D-momentum section µ is bracket-compatible if

〈µ, T (a, b)〉 = Π(〈Dµ, a〉, 〈Dµ, b〉)

for all sections a and b of A

A Lie algebroid together with a connection D and a section µ of A∗ satisfying (P1) and
(P2) is called weakly hamiltonian. It is called hamiltonian if it satisfies (P1)-(P3).

Hamiltonian Lie algebroids over Poisson manifolds will be studied in a forthcoming
paper [8].
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11.4. Hamiltonian Lie groupoids. One of the good properties of a proper hamilton-
ian action of a Lie group G is that the singularities of the zero locus Z of the momentum
map are conical, i.e. there is always a local chart in which Z is the zero locus of a qua-
dratic polynomial in the coordinates. This is a simple consequence of the symplectic
version [43] of Bochner’s linearization theorem [10], which states that the action of G on
the neighborhood of a fixed point can be linearized by a choice of canonical coordinates,
so that the momentum functions generating the fundamental vector fields of this linear
action must be quadratic.
The linearizability of proper group actions generalizes to the linearization of proper

Lie groupoids [15, 44, 46]. For an analogous statement about the singularities of the
zero locus of the momentum section of a hamiltonian Lie algebroid we, therefore, need
a suitable notion of hamiltonian Lie groupoid.The result we would like to be able to
prove under reasonable assumptions is the following.

Conjecture 11.4. If a hamiltonian Lie algebroid over a symplectic manifold integrates
to a proper hamiltonian Lie groupoid, then the zero locus of the momentum section has
only conical singularities.

By analogy with the case of hamiltonian Lie algebroids, it seems that the notion
of hamiltonian Lie groupoid should involve a connection for the submersion given by
the source map, such that each bisection horizontal at a groupoid element g induces
a diffeomorphism of the base which is presymplectic at the source of g. Moreover, we
should assume that the identity bisection is horizontal. Then the linearization of the
connection at the identity bisection will induce a presymplectically anchored connection
on the Lie algebroid.
The notion of momentum section for a Lie groupoid should be simply that for the

Lie algebroid. The condition of bracket compatibility, however, will have to be replaced
by a global condition on the Lie groupoid, just as the g-equivariance of a hamiltonian
momentum map for a Lie algebra action has to be replaced by G-equivariance for a Lie
group action.
Determining the precise axioms for hamiltonian Lie groupoids and the additional

conditions that make Conjecture 11.4 true is a goal of ongoing work on generalized
hamiltonian structures.

11.5. Structure theory of reduced action groupoids. The construction of Propo-
sition 8.2 to reduce an action groupoid by a subgroup is quite simple and straight-
forward. The question of which Lie groupoids arise in this way, however, is not that
simple.
In Proposition 8.8 we have seen that the reduced groupoid is Morita equivalent to

the action groupoid. A proper Lie groupoid is Morita equivalent to an action groupoid
of a compact group if and only if it admits a faithful representation on a vector bundle
of finite rank [40]. But even if this is the case, the Lie groupoid may not arise by
reduction. For example, every transitive groupoid is equivalent to a gauge groupoid of
a principal bundle, which is Morita equivalent to the gauge group, i.e. to the action
groupoid of the trivial action of the gauge group on a point. However, not every gauge
groupoid arises by reduction.
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In fact, let P be a right K-principal bundle over M̃ . Then the conditions for Γ̃ :=
Gauge(P ) = (P × P )/K to be the reduction of an action groupoid are the following:

(i) P ∼= H\G is a homogeneous space.
(ii) The right action of K on P ∼= H\G lifts to a left G-equivariant right action of

K on G.

Condition (i) implies that M̃ ∼= H\G/K is isomorphic to the quotient ofM := G/K by
an H-action. Moreover, every left G-equivariant isomorphism of G is given by the right
multiplication by a unique element of G, so condition (ii) implies that K is a subgroup
of G which acts by right multiplication. The action of K on P ∼= H\G is free, which
implies that K has trivial intersection with all conjugacy classes of H . All this shows
that Γ̃ is isomorphic to the gauge groupoid of the principal K bundle H\G→ H\G/K.
By example 8.7 this is the general form of the reduction of a transitive action groupoid.
Every Lie groupoid is the union of the transitive Lie groupoids over its orbits. In the

case of an H-reduced groupoid of a G-action on M , the orbit groupoids are isomorphic
to the gauge groupoids (H\G×H\G)/Kx, where Kx is a smooth family of subgroups
of G that is parametrized locally by a submanifold X ⊂ M/H transverse to the orbits.
Joining the orbit groupoids to a smooth manifold, however, is generally very subtle. For
example, the dimension of the orbits and, hence, the gauge group may not be locally
constant. But even in the regular case when the subgroups Kx are all isomorphic to a
fixed groupK, the embedding ofKx into Gmay depend on the parameter x. It would be
interesting to better understand the structure transverse to the orbits of reduced action
groupoids. For example the following question is related to the question of hamiltonian
Lie groupoids and relevant for the application to general relativity.

Question 11.5. How is the linearization of a proper G-action on M around an orbit
related to the linearization of the H-reduced groupoid around the corresponding orbit
in M/H .

Question 11.6. Find a hamiltonian Lie algebroid which explains the coisotropic prop-
erty of the constraint set for the initial value problem of Einstein’s equations.

12. Related work

In [25, 34], Levin and Olshanetsky defined a hamiltonian algebroid to be a vector
bundle A→M over a symplectic manifold together with an antisymmetric bracket [ , ]
on the sections of A and a bundle map h : A→M × R, such that

h([a, b]) = {h(a), h(b)} , [a, fb] = f [a, b] + {h(a), f} b ,

for all sections a, b of A, all functions f onM , where { , } denotes the Poisson bracket.
Since the bracket is not assumed to satisfy the Jacobi identity and since the map
Γ(A) → X (M), a 7→ {h(a), } is not C∞(M)-linear, a hamiltonian algebroid is not a
Lie algebroid. In fact, the requirement that h be compatible with the brackets of all
sections precludes the possibility that A is a Lie algebroid in all but trivial cases.
In [11, Def. 1.30], Bos introduced a notion of hamiltonian action of a Lie algebroid on

a fibre bundle. Let α : A×M S → TS be an action of the Lie algebroid A→M on the
bundle S → M . Assume that the bundle S →M is equipped with a smooth family ω of
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symplectic forms on the A-orbits. The first condition [11, Eq. (1.8)] for a hamiltonian
action is that the pullback of the family of symplectic forms along the action to a form
on the action Lie algebroid A⋉S is exact in the Lie algebroid cohomology, dµ = −α∗ω,
where µ ∈ Γ(S,A∗×M S) is a momentum “map”. The second condition [11, Eq. (1.9)] is
that d〈µ, a〉 = −ια(a)ω holds on the fibres of S → M . To compare this with our notion
of hamiltonian Lie algebroids we consider the case that S = M → M is the trivial
bundle, so that A⋉ S = A and α = ρ. The family ω of symplectic forms on the orbits
of A now pulls back to a Lie algebroid 2-form on A given by (ρ∗ω)(a, b) = ω(ρa, ρb) for
all sections a and b of A. The first condition [11, Eq. (1.8)] is our condition (H3) for a
momentum section to be bracket-compatible. The second condition [11, Eq. (1.9)] for
the Lie algebroid action to be hamiltonian is vacuous, since the fibres of S =M → M
are trivial. The upshot is that from the notion of hamiltonian Lie algebroid action we
retrieve only condition (H3).
In March of 2015, we sent an early draft of this paper to Kotov and Strobl, the authors

of [23, 24], who were working independently on related questions. Our condition (H1) for
A to be symplectically anchored appears in [24, Eq. (6)] and in the form of Proposition
7.8 in [24, Eq. (52)]. The defining equation (H2) for a momentum section appears in
[24, Eq. (7)]. The study of Lie algebroids over symplectic manifolds satisfying these
two conditions, weakly hamiltonian Lie algebroids in our terminology, was postponed
in [24, p. 7] to possible future work.
In [28, Def. 2.4] the following notion of H-quotient of an action Lie algebroid g⋉M

was introduced by Lu. Let H be a subgroup of a group G that integrates the Lie
algebra g. Let h ⊂ g be the Lie algebra of H . Assume further that there is a free
and proper H-action on M which integrates the action of h, such that the action
map g → X (M) is H-equivariant (see Remark 8.12). Under these assumptions, it is
shown in [28, Lemma 2.3] that there is a Lie algebroid structure on the vector bundle
g/h×HM →M/H such that the projection g⋉M → g/h×HM is a homomorphism of
Lie algebroids. As we have shown in Corollary 8.9, this is the infinitesimal counterpart
of our construction of an analogous quotient for an action groupoid.
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