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MULTI-DIMENSIONAL KRONECKER SEQUENCES WITH A

SMALL NUMBER OF GAP LENGTHS

CHRISTIAN WEISS

Abstract. Recently, generalizations of the classical Three Gap Theorem to
higher dimensions attracted a lot of attention. In particular, upper bounds
for the number of nearest neighbor distances have been established for the
Euclidean and the maximum metric. It was proved that a generic multi-
dimensional Kronecker attains the maximal possible number of different gap
lengths for every sub-exponential subsequence. We mirror this result in dimen-
sion d ∈ {2, 3} by constructing Kronecker sequences which have a surprisingly
low number of different nearest neighbor distances for infinitely N ∈ N. Our
proof relies on simple arguments from the theory of continued fractions.

1. Introduction

It is usually a great challenge to motivate topics from current mathematical
research to a wider audience. Happily, this can be relatively easily done for finite
gap properties of sequences and holds particularly true in the one-dimensional case:
mark the north pole of a circle with red color, let this point rotate by an angle
α ∈ R and again mark the point, where the north pole lands, red. Let us repeat
this procedure N times. Then a remarkable phenomenon occurs. There are always
at most three distinct distances between pairs of points in adjacent positions around
the circle, compare Figure 1. This property was conjectured by Steinhaus and first
proved by Sós in [Sos58] and is since then known as Three Gap Theorem. It is also
very nicely motivated in [MS17]. In a formal sense, the corresponding sequence is
defined as ({nα})n∈N, where {α} := α− ⌊α⌋ denotes the fractional part of α, and
called a Kronecker sequence.
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2 CHRISTIAN WEISS

Figure 1. Illustration of Three Gap Theorem for N = 6 and rotation by
α = π(3 −

√
5), the golden angle, i.e. z = (3−

√
5)/2.

After the first proof by Sós, plenty of other proofs of Three Gap Theorem have
been found, see e.g. [MS17, Tah17, Wei20]. Besides the nice geometric property of
its gap structure, sequences ({nα})n∈N are also important for uniform distribution
theory because there is a classical class of examples of low-discrepancy sequences
among them, see e.g. [Nie92]. Another consequence of the finite gap property is
that it prevents the pair correlation statistics of Kronecker sequences from being
Poissonian, see [LS20].

Three Gap Theorem has been generalized in numerous ways. A comprehensive
summary with an extensive list of corresponding literature is given in [HM20] and
we refer the interested reader to this paper and references therein for more details.
Here, we will concentrate on one specific type of generalization and consider multi-
dimensional Kronecker sequences: Let L be a unimodular lattice in Rd and consider
the d-dimensional torus Td = Rd/L. For α ∈ Rd the d-dimensional Kronecker
sequence is defined by

SN := SN (α,L) := {(zn)n∈N := nα+ L} ⊂ Td.

If α ∈ Qd, then the sequence (zn)n∈N is periodic and thus the number of distances
between elements in SN(α,L) is universally bounded. Let ‖·‖q denote a Lq-norm
on the d-dimensional torus, where 1 ≤ q ≤ ∞ and let their implied metrics be
dq(·, ·). The distance δ1n,N := dq(zn, nn1(zn)) is the distance of zn ∈ SN to its

closest neighbor nn1(zn) ∈ SN \ {zn} in terms of the Lq-metric. Finally, the
number gN(α,L, ‖·‖) denotes the number of distinct nearest neighbors of the finite
sequence SN with respect to the norm ‖·‖. For the case of the Euclidean metric
(q = 2), the best known bound is due to [HM20] improving results from [BS08]: for
any α,L and N the inequality

gN (α,L, ‖·‖2) ≤











3 if d = 1

5 if d = 2

σd + 1 if d ≥ 3

(1)

holds, where σd is the kissing number, i.e. the maximum number of non-overlapping
spheres of radius one in Rd which can be arranged such that they touch the unit
sphere in exactly one point. Let us denote by g(d, 2) the maximal possible value of
any gN(α,L, ‖·‖2) in dimension d. The bounds for dimension d ∈ {1, 2} in (1) are
known to be sharp. Moreover, in dimension d = 2, the upper bound can also be
calculated for the more general case that only neighbors with distances in directions
D, where D ⊂ S11 is an half-open interval, are considered. The upper bound for
gN(D, α,L, ‖·‖) then depends on the arclength of D, see [HM20], Theorem 4.

In practice, it turns out surprisingly hard even in dimension 2 to find explicit
examples of combinations α,L, N with gN (α,L, ‖·‖2) = g(2, 2) = 5. Nonetheless,
it is theoretically known from [HM20] that reaching the (unknown) upper bound
g(d, 2) is not at all a singular event bur rather the general case.

Theorem 1.1 (Haynes, Marklof [HM20], Theorem 2). Let L,L0 be unimodular

lattices. There is P ⊂ Rd of full Lebesgue measure, such that for every α ∈ P, a0 ∈
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Rd and for every sub-exponential sequence (Ni)i∈N we have

lim sup
i→∞

gNi
(α,L) ≥ sup

N∈N

gN (α0,L0).

In particular, the maximal possible value g(d, 2) can be realized for an infinite
sequence of (Nij )j∈N although the theorem does not give an explicit way to find the
set P . Moreover, Haynes and Marklof conjectured that in dimension d = 3 even
gN(3, 2) ≤ 7 holds and gave an explicit example with gN (α,L, ‖·‖2) = 7. Similar
results were obtained in [HR20] for the L∞-norm

While Theorem 1.1 describes the generic case, we construct in this paper sequences
in dimension d ∈ {2, 3} which have a surprisingly small number of nearest neigh-
bor distances, namely satisfying gN (α,L, ‖·‖q) = 1 for infinitely many N ∈ N and
all 1 ≤ q ≤ ∞ simultaneously. The construction relies on the continued fraction
expansion of α1, α2 and α3 and makes sure that the denominators qi,j of the con-
vergents of all αj are equal for infinitely i ∈ N. By that we obtain our theorem. For
the sake of simplicity and readability we omit here the exact number theoretical
properties (because they are in our eyes not relevant at this stage) and move the
details to Lemma 2.4.

Theorem 1.2. Let [0; a11, a
1
2, . . .] be the continued fraction of α1 ∈ (0, 1) and let

(q1k)k∈N denote the denominators of the corresponding convergents. Assume that

all a1i > 1 for all i ∈ N and that (q1k)i∈N has a subsequence (qkl
)l∈N which satisfies

the conditions of Lemma 2.4 for all l ∈ N. Then there exists an α2, α3 such that

(α1, α2, α3) satisfies gN(α,L, ‖·‖q) = 1 for infinitely N ∈ N and all 1 ≤ q ≤ ∞
simultaneously.

2. Sequences with few nearest neighbor distances

We will now show that there exist vectors (α1, α2, α3) such that gN (α,L, ‖·‖q) =
1 for infinitely many N ∈ N independent of 1 ≤ q ≤ ∞. The construction of
the αi is based on properties of the continued fraction expansion. Therefore, we
briefly fix notation and summarize some of their important properties. For more
details, we refer the reader to [BS96, Nie92]. Let [ai0; a

i
1, . . .] be the continued

fraction expansion of αi and denote the corresponding sequence of convergents by
(pin/q

i
n)n∈N0

. Recall that

p−2 = 0, p−1 = 1, pn = anpn−1 + pn−1, n ≥ 0(2)

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−1, n ≥ 0(3)

Since every unimodular lattice L ⊂ Rd is of the form ZdM with M ∈ SL(d,R), we
may in the following restrict ourselves to the case L = Zd. Let V = {v1, v2, . . . , vN}
be a set of points in Rd and let d(x, y) be a metric on Rd. A nearest neighbor of
vi is a point vj with minimum distance from vi. In order to make vj unique,
we use an idea which we found in [EPY97], and let vj be the maximum index in
V with this property and denote it by nn1(vi). This definition is slightly differ-
ent than the one used to draw the figures in [HM20], where any point having the
same distance from vi as nn1(vi) is a nearest neighbor. For any vi we define an
edge by e1(vi) = 〈vi, nn1(vi)〉 and obtain the nearest neighbor graph (V,E1) where
E1 = {e1(vi)|vi ∈ V }.
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The Counting Metric. Besides the Lq metric on Rd we also need to consider the

counting metric of the sequence. For iα ∈ SN let hi(N) :=
∣

∣

∣

nn1(iα)
α

− i
∣

∣

∣
be the

closest neighbor in the counting metric of the sequence. Note that hi(N) > hi(M)
implies that h1(N − i + 1) > h1(M − i + 1) because h1(N) is necessarily the first
of the hi(N) to increase. This means that h1(N) has a special role. Although the
proof is elementary, the following lemma plays a crucial role in the remainder of
this paper.

Lemma 2.1. For all n, k ∈ N with k such that h1(n+ k) = h1(n) we have

h1+k(n+ k) = h1(n)

Proof. The nearest neighbor of any {(1 + k)α} can be pulled back to the nearest
neighbor of {1α} by R−k

α , where Rα(z) = zα for z ∈ Td. Since h1 is the first of the
hi to increase, the claim follows. �

Hence, h1(N) essentially determines the behavior of the nearest neighbor dis-
tance structure. Another simple observation serves as our base for constructing
sequences with as few nearest neighbor distances as possible.

Lemma 2.2. If there exists a multiindex (n1, n2, . . . , nd) ∈ Nd with q1n1
= q2n2

=

. . . = qdnd
=: q, then h1(q + 1) = q independent of the Lp metric.

Proof. Let ‖·‖ be the norm of the one-dimensional torus, i.e. ‖x‖ = min(x−⌊x⌋, 1−
(x − ⌊x⌋)), where ⌊x⌋ denotes the Gauß bracket. The claim follows from the fact
∥

∥

{

qini
αi

}∥

∥ <
∥

∥

{

qini−1αo

}∥

∥ for all i but ‖{kαi}‖ ≥
∥

∥

{

qini
αi

}∥

∥ for all k < qini
.

�

Although Lemma 2.2 (in combination with Lemma 2.1) is the best achiev-
able result in the general situation, we can prove stronger distance properties for
non-generic α = (α1, α2, α3). At first, we present a very simple construction of
α = (α1, α2), which captures the gist of our idea, before we come to a more general
one, which allows for an application in dimension d = 3, too.

A simple construction. Let α1 = [a10 = 0, a11 = 1, a12, . . .] ∈ (1/2, 1) be arbitrary and
choose α2 as the real number which has the following continued fraction expansion
a20 = 0, a22 = 1 + a12 and a2i = a1i+1. Consequently by (3), we have

q21 = 1 = q12 ,

q22 = 1 + a12 = q13 ,

q2i = a2i q
2
i−1 + q2i−1 = a1i+1q

1
i + q1i−1 = q1i+1 for i ≥ 3.

The construction is equivalent to setting α2 = 1− α1.

Theorem 2.3. For α = (α1, 1 − α1) the two-dimensional Kronecker sequence has

at most three different nearest neighbor distances, i.e. 1 ≤ gN ≤ 3 for all N ∈ N.
If we have in addition ai1 > 1 for all i, then there are at most two different nearest

neighbor distances, and there is a sequence (N1i) ⊂ N with gN1i
= 1 for all i ∈ N

and a sequence (N2j ) ⊂ N with gN2j
= 2 for all j ∈ N.
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Proof. By Lemma 2.2, the function h1(n) increases by 1 for all n = q1i+1+1 = q2i +1.

For n ∈
{

q2i + 2, q2i + 3, . . . , q2i+1

}

the function h1(n) remains constant because for

each vector component we have ‖{1αi} − {kαi}‖ >
∥

∥{1αi} −
{

(q2i + 1)αi

}∥

∥ . Since
qi+1 ≥ qi + qi−1 there are thus at most three different nearest neighbor distances
by Lemma 2.1. If all the ai > 1, we get again by Lemma 2.1 that hi(N1) = h1(N1)
for all i = 1, 2, . . . , N1 if N1 ∈

{

2q2i + 1, 2q2i + 2, . . . , q2i+1

}

. Furthermore, it follows

that gN2
= 2 if N2 ∈

{

q2i + 1, q2i + 2, . . . , 2q2i
}

. �

A more general construction. In order to find further examples where the one dis-
tance property appears, it suffices if the weaker condition is satisfied that the con-
vergents of α2 are a subset of those of α1, i.e.

{

(q2i )|i ∈ N0

}

⊂
{

(q1i )|i ∈ N0

}

. This
cannot only be achieved for α2 = 1− α1 but for a much broader class of examples
as the following construction will show. The proof of Theorem 2.3 can then be used
to prove that the one distance property holds.

The coefficients of the continued fraction expansion of α1 and α2 have now to be
considered simultaneously. We choose a11, . . . , a

1
k1

arbitrarily. This implies that the

construction works for a dense subset of (0, 1). Then we set a02 = 0 and a12 = q1k1
.

Hence q21 = q1k1
. We proceed inductively and assume that we have already reached

q2l = q1kl
. Again we may choose a1kl+1, . . . , a

1
kl+1−2 arbitrarily. Next we assume that

a1kl+1−1 is such that gcd(q1kl+1−1, q
1
kl
) = 1. Then a1kl+1

may be any natural number

with

a1kl+1
q1kl+1−1 + q1kl+1−2 mod (q1kl

)) = q2l−1.(4)

Finally, we set a2l+1 = (a1kl+1
q1kl+1−1 + q1kl+1−2 − q2l−1)/q

1
kl

∈ N. Therefore

q2l+1 = a2l+1q
2
l + q2l−1 = a1kl+1

q1kl+1−1 + q1kl+1−2 = q1kl+1
.

The condition gcd(q1kl+1−1, q
1
kl
) = 1 holds automatically if kl+1 = kl + 2. In all

other cases this can be assured if akl+1
− 1 satisfies two extra conditions.

Lemma 2.4. Let gcd(q1kl
, q1kl+1−2) = b and define c := q1kl

/b, d := gcd(c, q1kl+1−3)

and e := c/d. Then gcd(q1kl+1−1, q
1
kl
) = 1 holds if gcd(d, a1kl+1−1) = 1 and e|a1kl+1−1.

We remark that c = 1 if kl+1 = kl + 2 and that d, e = 1 if c = 1.

Proof. We consider the prime divisors p ∈ N of q1kl
and show that none of them

can divide q1kl+1−1. If p|b, then p|q1kl+1−2 and thus p ∤ q1kl+1−1 because we have

gcd(q1kl+1−2, q
1
kl+1−1) = 1. Otherwise we have that p|c by the definition of c and

thus either p|d or p|e. If p|d, then p|qkl+1−3 and therefore p ∤ qkl+1−2 and also

p ∤ qkl+1−1 = a1kl+1−1qkl+1−2 + qkl+1−3. If p|e, then p ∤ qkl+1−3 and hence p ∤ qkl+1−1

because p|a1kl+1−1. �

From this we can derive the desired theorem in dimension d = 2.

Theorem 2.5. Let [0; a11, a
1
2, . . .] be the continued fraction of α1 ∈ (0, 1) and let

(q1k)k∈N denote the denominators of the corresponding convergents. Assume that

all a1i > 1 for all i ∈ N and that (q1k)i∈N has a subsequence (qkl
)l∈N which satisfies

the conditions of Lemma 2.4 for all l ∈ N. Then there exists an α2 whose conver-

gents have denominators (qkl
)l∈N and α = (α1, α2) satisfies gN1i

(α,L, ‖·‖q) = 1 for

infinitely N1i ∈ N and all 1 ≤ q ≤ ∞.
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Proof. The number α2 exists by the general construction. Additionally we have
h1(qkl

+ 1) = qkl
for all l ∈ N by Lemma 2.2. As the a1i > 1 also the a2i >

1 by construction. Hence there are infinitely many N1i ∈ N with gN1i
= 1 by

Lemma 2.2. �

Combining the simple construction and the more general approach we also obtain
Theorem 1.2, where we choose α3 = 1−α1. The following lemma allows to further
generalize this construction. It gives the necessary information about which points
of the Kronecker lie closest to the origin.

Lemma 2.6. Let α ∈ R \ Q have continued fraction expansion [0, a1, a2, . . .] and
convergents (pi, qi)i∈N. Now consider the subset {nα}qi+1

n=qi
of the Kronecker se-

quence. Then the 2ai+1 points closest to the origin are given by the following

inequality

‖{qi+1α}‖ < ‖{1 · qiα}‖ < ‖{(qi+1 − 1 · qi)α}‖ < ‖{2 · qiα}‖
< . . . < ‖{(qi+1 − ai+1qi)α}‖ < ‖{(a1+1 · qi)α}‖ ,

where ‖·‖ as usual denotes the one-dimensional torus norm.

Proof. This is the dynamics behind Three Gap Theorem, compare e.g. [Wei20]. �

Hence, the right hand side of (4) may be replaced by the condition bq2l−1 with

b ≤ a1kl+1
and we still get a sequence with only one nearest neighbor distance for

infinitely many N1i by Lemma 2.6 if in addition a1kl+1
/2b > 2 is satisfied.
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