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Abstract. We initiate the representation theory of the degenerate affine periplectic Brauer

algebra on n strands by constructing its finite-dimensional calibrated representations when n =

2. We show that any such representation that is indecomposable and does not factor through a

representation of the degenerate affine Hecke algebra occurs as an extension of two semisimple

representations with one-dimensional composition factors; and furthermore, we classify such repre-

sentations with regular eigenvalues up to isomorphism.

1 Introduction

The degenerate affine periplectic Brauer algebra on n strands, or sVVn for short,
belongs to a family of diagram algebras playing various roles in generalized Schur-
Weyl dualities. Related algebras include the Brauer algebra, periplectic Brauer
algebra, degenerate affine Hecke algebra, Nazarov–Wenzl algebra, and walled Brauer
algebra. The algebra sVVn was first defined by Chen and Peng by generators and
relations [2], where it was called “affine periplectic Brauer algebra,” which is some-
what misleading as it suggests an algebra where over- and under-crossings are
distinguished, and in previous work of the authors together with other collaborators
as the endomorphism algebra of the object n in a certain monoidal supercategory
[1], where it was called “affine VW superalgebra,” which is somewhat misleading
as well since there is no relation of our algebra to a German car company of
tarnished reputation (also see [4, 7]). That monoidal supercategory arises from
the representation theory of the periplectic Lie superalgebra, hence the word “peri-
plectic,” while “degenerate affine” indicates the close relationship of sVVn with the
degenerate affine Hecke algebra Hdeg

n , which is a quotient of sVVn. We remark
that there is no nondegenerate version of the algebra sVVn. Like Hdeg

n , the algebra
sVVn contains a large polynomial subalgebra C[y1, . . . , yn] which provides a point of
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leverage for its representation theory.

In the work at hand, we begin the representation theory of the algebras sVVn

with the smallest nontrivial example of these algebras, namely sVV2. Our goal in
this paper is to explicitly construct finite-dimensional calibrated representations,
that is, representations of sVV2 on which the polynomial subalgebra C[y1, y2] acts
diagonalizably. Our approach here is very concrete: write down matrices for the
action of the generators of sVV2, find conditions on these matrices for the repre-
sentation to be indecomposable, and determine when two such indecomposable
representations are isomorphic.

The representations of sVV2 that we focus on are the ones that cannot be obtained
as representations of Hdeg

2 by setting the Temperley-Lieb type generator e equal to 0,
since calibrated representations of (degenerate) affine Hecke algebras in small rank
are known by work of Ram [8]. In Section 3 we give a recipe for producing “new”
calibrated representations of sVV2, i.e. ones on which e does not act by 0. Then we
show that our recipe produces all such indecomposable calibrated representations;
this is Theorem 11. Theorem 11 implies that an indecomposable finite-dimensional
calibrated representation with nonzero action of e always occurs as an extension of
two semisimple representations with 1-dimensional composition factors (Corollary
12). In Theorems 17, 20, and 21 we completely classify the indecomposable finite-
dimensional calibrated representations of sVV2 up to isomorphism on which y1 and
y2 act with regular eigenvalues. In addition to the eigenvalues, the other classifying
device turns out to be an unexpected yet natural class of matrices that we name
rhizomatic, see Section 3.2.

We expect that some of the ideas in this paper will generalize to the case n > 2,
but the algebras sVVn for n > 2 are considerably more complicated, so we also expect
that more work and possibly more ideas will be needed to deal with their calibrated
representations.

2 Definitions

The degenerate affine Hecke algebra Hdeg
n was introduced by Drinfeld [3] and Lusztig

[5]. It contains C[y1, . . . , yn] and CSn as subalgebras, and together they generate

Hdeg
n . We recall its generators and relations in the case n = 2.

Definition 1 ([3]). The degenerate affine Hecke algebra Hdeg
2 is the C-algebra gener-

ated by s, y1, and y2 with relations:

s2 = 1, y1y2 = y2y1, sy1 = y2s− 1, sy2 = y1s+ 1.

Multiplying both sides of the third relation by s we get the fourth relation and vice
versa, but it can be convenient to use this bigger set of relations.

The following is [1, Definition 39].
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On calibrated representations of sVV2 209

Definition 2. The degenerate affine periplectic Brauer algebra sVV2 is the C-algebra
generated by s, y1, y2, and e with relations:

s2 = 1, y1y2 = y2y1, sy1 = y2s− 1− e, sy2 = y1s+ 1− e,

e2 = 0, es = e, se = −e, ey2 = ey1 + e, y1e = y2e+ e.

Again, this is not a minimal set of generators and relations but it is convenient to
use this bigger set. Notice that e is generated by y1, y2, and s. It follows from the
relations given that ef(y1, y2)e = 0 for any polynomial f(y1, y2) ∈ C[y1, y2], see [1,
Lemma 48].

We cannot hope to classify indecomposable representations of Hdeg
2 or sVV2 in

general. However, we may hope to classify a well-behaved subset of indecomposable
representations: those finite-dimensional indecomposable representations on which
y1 and y2 act diagonalizably.

Definition 3. Let H be Hdeg
2 or sVV2. A representation V of H is called calibrated

if V has a basis with respect to which the actions of y1 and y2 on V are given by
diagonal matrices.

Notation 4. We denote by Mm×n(C) the ring of m × n matrices with entries in
C. We write Ck,ℓ for the C-vector space of dimension k + ℓ whose vectors (a, b) are
viewed as the concatenation of a vector a = (a1, . . . , ak) of length k and a vector
b = (b1, . . . , bℓ) of length ℓ.

3 Calibrated representations of sVV2

In this section we construct the calibrated representations of sVV2. The starting
point is the obvious relationship to the degenerate affine Hecke algebra:

Lemma 5. Let V be a representation of sVV2 on which e acts by 0. Then the action
of sVV2 on V factors through Hdeg

2
∼= sVV2 /⟨e⟩. Conversely, if W is a representation

of Hdeg
2 then we may extend W to a representation of sVV2 by declaring e to act by

0.

Proof. Define a homomorphism of algebras Φ : sVV2 → Hdeg
2 by sending yi ∈ sVV2 to

yi ∈ Hdeg
2 , i = 1, 2, s ∈ sVV2 to s ∈ Hdeg

2 , and e ∈ sVV2 to 0. Then Φ(s) = s and

Φ(yi) = yi, i = 1, 2, satisfy the defining relations of Hdeg
2 , since these are obtained

from the defining relations of sVV2 by setting e = 0 in each relation where it occurs.
Therefore Φ is well-defined. By construction, the kernel of Φ is the two-sided ideal
generated by e. Finally, Φ is surjective since s, yi ∈ Hdeg

2 generate Hdeg
2 and are in

the image of Φ.
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The calibrated representations of the affine Hecke algebra are known by work of Ram
[8]. As remarked by Suzuki in his study of Hdeg

n -representations [9], Lusztig’s work
[5],[6] shows that the representation theory of degenerate affine Hecke algebras and
affine Hecke algebras can be recovered from each other. Calibrated representations
of Hdeg

2 may therefore be considered as known. To classify calibrated representations
of sVV2, we then need to construct those on which e does not act by 0. We will do
this by deforming certain calibrated representations of Hdeg

2 .

Definition 6. For any a ∈ C, let V +
a be the one-dimensional Hdeg

2 -representation
on which y1 acts by multiplication by a and s acts by 1; let V −

a be defined similarly
except s acts by multiplication by −1.

Using Lemma 5 and observing that e2 = 0 forces e to act by 0 on any one-dimensional
representation, we have:

Lemma 7. The one-dimensional representations of sVV2 are exactly {V +
a , V −

a | a ∈
C}.

Now let k, ℓ ∈ N. Let S be any k× ℓ matrix. Then there is a (k+ ℓ)-dimensional

calibrated Hdeg
2 -representation Wk,ℓ(S) which fits into a short exact sequence:

0 → (V −
0 )⊕k → Wk,ℓ(S) → (V +

−1)
⊕ℓ → 0,

where y1 acts on Wk,ℓ(S) by the diagonal matrix Y1 with 0’s in the first k diagonal
entries and −1’s in the last ℓ diagonal entries, and s acts by the block matrix

S̃ =

(
−Idk S
0 Idℓ

)
. Using the relation sy1s+ s = y2, we get that y2 acts on Wk,ℓ(S)

by the diagonal matrix Y2 with −1’s in the first k diagonal entries and 0’s in the
last ℓ diagonal entries.

Example 8. Let k = 3 and ℓ = 2, and let S =

⎛⎝s11 s12
s21 s22
s31 s32

⎞⎠. Then the actions of

y1, y2, and s on W3,2(S) are given by the following matrices:

Y1 =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −1

⎞⎟⎟⎟⎟⎠ , Y2 =

⎛⎜⎜⎜⎜⎝
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ ,

S̃ =

⎛⎜⎜⎜⎜⎝
−1 0 0 s11 s12
0 −1 0 s21 s22
0 0 −1 s31 s32
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ .
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On calibrated representations of sVV2 211

Now let (a, b) := (a1, a2, . . . , ak, b1, b2, . . . , bℓ) ∈ Ck,ℓ be any (k + ℓ)-tuple of
complex numbers. We may build a calibrated representation of sVV2 from Wk,ℓ(S)
and (a, b).

Lemma 9. Let Vk,ℓ(S; (a, b)) be a (k + ℓ)-dimensional C-vector space and consider
the following matrices in EndC(Vk,ℓ(S; (a, b)):

y1 = Y1 + diag(a, b), y2 = Y2 + diag(a, b), s = S̃, e = −sy2 + y1s+ Idk+ℓ.

Then Vk,ℓ(S; (a, b)) is a calibrated representation of sVV2 on which y1, y2, s, e act by
the matrices with the same names.

Proof. The matrix e is a block matrix e =

(
0 E
0 0

)
where E is a k × ℓ matrix with

entries eij = (ai − bj)sij . It is then a straightforward computation with matrices to
check that the defining relations of sVV2 are satisfied.

Example 10. For k = 3 and ℓ = 2 the matrices look like:

y1 =

⎛⎜⎜⎜⎝
a1 0 0 0 0
0 a2 0 0 0
0 0 a3 0 0
0 0 0 b1 − 1 0
0 0 0 0 b2 − 1

⎞⎟⎟⎟⎠ , y2 =

⎛⎜⎜⎜⎝
a1 − 1 0 0 0 0

0 a2 − 1 0 0 0
0 0 a3 − 1 0 0
0 0 0 b1 0
0 0 0 0 b2

⎞⎟⎟⎟⎠ ,

s =

⎛⎜⎜⎜⎝
−1 0 0 s11 s12
0 −1 0 s21 s22
0 0 −1 s31 s32
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎠ , e =

⎛⎜⎜⎜⎝
0 0 0 (a1 − b1)s11 (a1 − b2)s12
0 0 0 (a2 − b1)s21 (a2 − b2)s22
0 0 0 (a3 − b1)s31 (a3 − b2)s32
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎠ .

We can then think of the family of calibrated representations of sVV2 constructed
by this procedure as being parametrized by pairs consisting of a Hdeg

2 -representation
Wk,ℓ(S) as above together with a vector (a, b) ∈ Ck,ℓ; equivalently, by pairs (S, (a, b))
consisting of a k × ℓ matrix S ∈ Mk×ℓ(C) and a vector (a, b) ∈ Ck,ℓ. When we
take (a, b) to be the 0-vector, then e is the 0 matrix, y1 = Y1, y2 = Y2, s = S̃,

and so we get back the representation Wk,ℓ(S) of Hdeg
2 . Note that nonzero choices

of (a, b) may produce representations on which e acts by 0: for example, taking
(a, b) = (a, . . . , a, a, . . . , a) for any a ∈ C forces e = 0. This choice of (a, b) has the
effect of shifting the eigenvalues by which y1 and y2 act by a.

3.1 The shape of calibrated representations when e does not act by
0

The next step in our classification of calibrated sVV2-representations consists in
showing that all calibrated representations on which e does not act by 0 arise via the
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construction just given in the preceding subsection. We will often abuse notation
and give the matrices representing the generators the same names as the generators
of the abstract algebra themselves.

Theorem 11. Let V be a finite-dimensional, indecomposable calibrated represent-
ation of sVV2 on which e does not act by 0. Then V = Vk,ℓ(S; (a, b)) for some k, ℓ ∈ N,
some S ∈ Mk×ℓ(C), and some (a, b) ∈ Ck,ℓ.

Proof. By assumption there is a basis for V such that y1 and y2 act by diagonal
matrices. We can choose this basis so that the matrix for y1 − y2 has the form

diag(1, . . . , 1,−1, . . . ,−1, d1, . . . , d1,−d1, . . . ,−d1, . . . , ds, . . . , ds,−ds, . . . ,−ds),

where 1 occurs k times and −1 occurs ℓ times, and say di occurs ki times, −di occurs
ℓi times. Let e = (eij) be the matrix of e. Using the relations e = (y1 − y2)e and
−e = e(y1− y2) and writing out the equations for the matrix entries eij , we see that
e has all 0 entries except for in the k × ℓ block 1 ≤ i ≤ k, k + 1 ≤ j ≤ k + ℓ. Next,
we look at the shape of the matrix of s. Adding the two equations mixing s and
the yi’s, we have the equation s(y1 − y2) + (y1 − y2)s = −2. Solving this equation

for the matrix entries of s, we see that s is a block matrix with blocks

(
−Idk S
T Idℓ

)
in the upper left corner; then arranged down the diagonal, further square blocks of

shape

(
− 1

di
Idki Si

Ti
1
di
Idℓi

)
and 0’s everywhere else, giving us

s =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Idk S 0 0 0
T Idℓ

− 1
d1
Idk1

S1

0 T1
1
d1
Idℓ1 0 0

. . .

0 0
. . . 0

− 1
ds
Idks

Ss

0 0 0 Ts
1
ds
Idℓs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Now, considering the shapes of y1, y2, e, and s, we observe that they are all block
matrices with

• a (k + ℓ)× (k + ℓ) block in the upper left corner;

• a (
∑

i(ki + ℓi))× (
∑

i(ki + ℓi)) block in the lower right corner;

• blocks made of 0’s in the upper right and lower left corner.

It follows that the representation V is the direct sum V = V1 ⊕ V2 where V1 is
(k + ℓ)-dimensional and the action of y1, y2, e, and s on V1 is given by the matrix
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On calibrated representations of sVV2 213

block of size (k + ℓ)× (k + ℓ) in the upper left corner, and where e acts by 0 on V2.
Since V is an indecomposable representation on which e does not act by 0, V = V1.

Write y1 = diag(a1, . . . , ak, b1 − 1, . . . , bℓ − 1) and y2 = diag(a1 − 1, . . . , ak −
1, b1, . . . , bℓ). Using the relations es = e, se = −e, and s2 = 1 gives the following
information about e and s:

s =

(
−Idk S
T Idℓ

)
, e =

(
0 E
0 0

)
,

where S = (sij), T = (tji), E = (eij), 1 ≤ i ≤ k and 1 ≤ j ≤ ℓ, satisfy the equations

TS = ST = ET = TE = 0, eij = (ai − bj)sij , tji(bj − ai) = 0. (3.1)

Suppose T ̸= 0. We will show that V is decomposable. Since we are assuming
e ̸= 0, we also have S ̸= 0. Let vi be an eigenvector for y1 with eigenvalue ai
and let wj be an eigenvector for y1 with eigenvalue bj − 1. By assumption, 0 (
Im(T ) ⊆ Ker(S) ( Cℓ ∼= SpanC(w1, . . . ,wℓ) and 0 ( Im(S) ⊆ Ker(T ) ( Ck ∼=
SpanC(v1, . . . ,vk). Under the isomorphism SpanC(v1, . . . ,vk) ∼= Ck we identify vi =
(0, . . . , 0, 1, 0, . . . , 0, 0, . . . , 0) with the vector vi := (0, . . . , 0, 1, 0, . . . , 0) where we
delete the last ℓ zeros from vi; similarly under the isomorphism SpanC(w1, . . . ,wℓ) ∼=
Cℓ we drop the first k zeros from the vector wℓ and call the resulting vector wℓ.
These isomorphisms are obviously equivariant for the y1 and y2 actions, where y1
acts by diag(a1, . . . , ak) on Ck and by diag(b1 − 1, . . . , bℓ − 1) on Cℓ, and similarly
with y2.. Since T (vi) is just the i’th column of T , by Equation (3.1) it follows
that for any 1 ≤ j ≤ ℓ such that tji ̸= 0, bj = ai and thus y1wj = (ai − 1)wj . So

y1T (vi) = y1
∑ℓ

j=1 tjiwj =
∑ℓ

j=1 tji(bj−1)wj = (ai−1)
∑ℓ

j=1 tjiwj = (ai−1)T (vi).

This shows that Im(T ) consists of eigenvectors for y1. If we take
∑ℓ

j=1 fjwj ∈
Im(T )⊥, a vector space complement to Im(T ) in Cℓ, then T (vi) · (y1

∑ℓ
j=1 fjwj) =∑ℓ

j=1 tji(bj − 1)fj = (ai − 1)T (vi) ·
(∑ℓ

j=1 fjwj

)
= 0. So y1 preserves Im(T )⊥.

Next, we show that y1 preserves Ker(T ). Again, Equation (3.1) shows that am =
bj = ai whenever tjm ̸= 0 is in the same row as tji ̸= 0. Take u ∈ Ker(T ) and write

u =
∑k

i=1 civi for some ci ∈ C. Fix a row tj of T . Since tji = 0 whenever bj ̸= ai, we

then have 0 = bj (tj · u) = bj(
∑k

i=1 tjici) =
∑k

i=1 tjibjci =
∑k

i=1 tjiaici = tj · (y1u),
showing that y1 preserves Ker(T ). Then y1Im(S) ⊆ Ker(T ) since Im(S) ⊆ Ker(T )
and y1Ker(T ) ⊆ Ker(T ). Let Ker(T )⊥ be a vector space complement to Ker(T ) in
Ck. If

∑k
i=1 divi = z ∈ Ker(T )⊥ then (y1z) · u =

∑k
i=1 aidici = z · (y1u) = 0 so y1

preserves Ker(T )⊥ as well.
All the preceding arguments apply as well to y2 as to y1 since y1 − y2 =(

Idk 0
0 −Idℓ

)
. Now take V1 to be the sVV2-subrepresentation of V generated by

a vector space complement to Ker(T ) in SpanC(v1, . . . ,vk), and take V2 to be the
subrepresentation of V generated by Ker(T ) together with a vector space complement
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to Im(T ) in SpanC(w1, . . . ,wℓ). By construction s =

(
−Idk S
T Idℓ

)
preserves V1 and

V2. We checked above that y1 and y2 preserve V1 and V2. Since e = y1s− sy2 +1, e
also preserves V1 and V2. Then V1 ̸= 0, V2 ̸= 0, V1 + V2 = V and V1 ∩ V2 = 0, and
therefore V ∼= V1 ⊕ V2 is decomposable.

Theorem 11 in pictures says that if V is indecomposable and e does not act by
0, then the matrices of y1, y2, e, and s have the following shapes:

y1 =

⎛⎜⎜⎜⎜⎜⎜⎝

a1 . . . 0 0 0 . . . 0

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
0 . . . ak 0 0 . . . 0
0 . . . 0 b1 − 1 0 . . . 0

0 . . . 0 0 b2 − 1
. .
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.
.
. 0

0 . . . 0 0 . . . 0 bℓ − 1

⎞⎟⎟⎟⎟⎟⎟⎠ , e =

⎛⎜⎜⎜⎜⎝
0 . . . 0 e11 e12 . . . e1ℓ
0 . . . 0 e21 e22 . . . e2ℓ
.
.
.

. .
.

.

.

.

.

.

.

.

.

.
. .
.

.

.

.
0 . . . 0 ek1 ek2 . . . ekℓ
0 . . . 0 0 0 . . . 0

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
0 . . . 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎠ ,

y2 =

⎛⎜⎜⎜⎜⎜⎜⎝

a1 − 1 . . . 0 0 0 . . . 0

.

.

.
. .
.

.

.

.

.

.

.

.

.

.
. .
.

.

.

.
0 . . . ak − 1 0 0 . . . 0
0 . . . 0 b1 0 . . . 0

0 . . . 0 0 b2

.
.
.

.

.

.

.

.

.
. .
.

.

.

.

.

.

.
. .
.

. .
. 0

0 . . . 0 0 . . . 0 bℓ

⎞⎟⎟⎟⎟⎟⎟⎠ ,

s =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 . . . 0 s11 s12 . . . s1ℓ

0 −1
.
.
.

.

.

. s21 s22 . . . s2ℓ
.
.
.

. .
.

. .
. 0

.

.

.

.

.

.
. .
.

.

.

.
0 . . . 0 −1 sk1 sk2 . . . skℓ
0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 0 1
.
.
.

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

.

.

.
.
. .

.
. . 0

0 0 . . . 0 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The following corollary is immediate from the matrix descriptions of y1, y2, and
s given by Theorem 11:

Corollary 12. Let V be a (k+ ℓ)-dimensional indecomposable calibrated represent-
ation of sVV2 on which e does not act by 0. Then all simple composition factors of
V are 1-dimensional, and V is the following extension of semisimple sVV2-modules:

0 −→
k⨁

i=1

V −
ai −→ V −→

ℓ⨁
j=1

V +
bj−1 → 0,

where y1 acts on V by (a1, . . . , ak, b1−1, . . . , bℓ−1) ∈ Ck,ℓ. In particular, every simple
calibrated representation of sVV2 is obtained from a simple calibrated representation
of Hdeg

2 by having e act by 0.
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3.2 Rhizomatic matrices

We now introduce a set of matrices that we will use for determining when a calibrated
representation with regular eigenvalues is indecomposable. Let S ∈ Mk×ℓ(C) be a
k × ℓ matrix. Define an equivalence relation ∼ on the set

IS := {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ, sij ̸= 0},

the set of indices of the nonzero matrix entries of S, by (i) considering the binary
relation † on IS defined by (i, j)†(m,n) if i = m or j = n, which is evidently reflexive
and symmetric, and then (ii) defining ∼ to be the transitive closure of the relation
†.

Definition 13. Define the rhizomatic matrices to be the set of matrices S ∈ Mk×ℓ(C)
such that (i) the set IS as above forms a single equivalence class under the relation
∼, and (ii) S has a nonzero entry in every row and in every column.

Put another way, the definition says: S ∈ Mk×ℓ(C) is rhizomatic if and only if
(i) for any nonzero entries sij , smn ∈ S it holds that (i, j) ∼ (m,n), and moreover,
(ii) for any 1 ≤ i ≤ k there exists some 1 ≤ n ≤ ℓ such that (i, n) ∈ IS and for any
1 ≤ j ≤ ℓ there exists some 1 ≤ m ≤ k such that (m, j) ∈ IS .

Example 14. Any matrix all of whose entries are nonzero is rhizomatic. If ℓ ≥ k
then any k × ℓ matrix S where sij ̸= 0 whenever j ≥ i is rhizomatic. Any n × n
diagonal matrix, and more generally any monomial matrix, is not rhizomatic.

Example 15. Denote a 0 entry by · and a nonzero entry by •. Matrix S1 contains
two equivalence classes of nonzero entries and is not rhizomatic: one equivalence
class has black entries •, the other has blue entries •. Matrix S2 contains a single
equivalence class but is not rhizomatic because it has some columns and rows that
are all 0. Matrix S3 contains a single equivalence class and is rhizomatic:

S1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

· · · • • · • • · ·
• · · · · · · · · •
· • · • • • · · · ·
· · · · · · · · • ·
· · • · · · · · · •
· • · · • • • · · ·
· · • · · · · · • ·

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, S2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · • · · · •
· · · • • • · · · ·
· · · · · · · · · ·
· · · • · · · • • ·
• · · • · · · · · ·
· · · · · · · · · ·
· · · · · · · · · •

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

S3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

• · • · · · • · • ·
• · · · · · · · · •
· • · · · • · • · ·
· · · • • · · · • ·
· · • · • • · · · •
· • · · · · · · · ·
• · • · · · • · • ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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3.3 Indecomposable calibrated representations with regular eigen-
values

Definition 16. Suppose V is a calibrated representation of sVV2 such that y1 − y2

acts on V by

(
Idk 0
0 −Idℓ

)
in an eigenbasis for y1 and y2. Set a = (a1, . . . , ak) and

b = (b1, . . . , bℓ) and

Ck,ℓ,reg := {(a, b) ∈ Ck,ℓ | ai ̸= aj , bm ̸= bn for all 1 ≤ i < j ≤ k, 1 ≤ m < n ≤ ℓ}.

If y1 acts on V by diag(a, b) for some (a, b) ∈ Ck,ℓ,reg then we say that the represent-
ation V has regular eigenvalues.

Theorem 17. Let V = Vk,ℓ(S; (a, b)), a finite-dimensional calibrated representation
of sVV2 on which e does not act by 0.

1. Suppose (a, b) ∈ Ck,ℓ,reg. Then V is indecomposable if and only if S is a
rhizomatic matrix.

2. Suppose (a, b) ∈ Ck,1. Then V is indecomposable if and only if (a, b) ∈ Ck,1,reg

and all entries of S are nonzero.

3. Suppose (a, b) ∈ C1,ℓ. Then V is indecomposable if and only if (a, b) ∈ C1,ℓ,reg

and all entries of S are nonzero.

Proof. For part (1), suppose (a, b) ∈ Ck,ℓ,reg. Recall that a representation V is
indecomposable if and only if End(V ) is a local ring, which is equivalent to every
element of End(V ) being either nilpotent or invertible. We determine End(V ) as
follows. Let X ∈ End(V ), so by definition X = (xij) is a (k + ℓ) × (k + ℓ) matrix
that commutes with the matrices for y1, y2, and s. (Since e = y1s + 1 − sy2,
we don’t have to check commutation relations with e.) First, from y1 − y2 =
diag(1, . . . , 1,−1, . . . ,−1) it follows thatX ∈ Mk×k(C)×Mℓ×ℓ(C) ⊂ M(k+ℓ)×(k+ℓ)(C)
where we embed Mk×k(C) in the upper left corner and Mℓ×ℓ(C) in the lower right
corner of (k + ℓ) × (k + ℓ) matrices. Second, since ai ̸= aj for all 1 ≤ i < j ≤ k,
and bm ̸= bn for all 1 ≤ m < n ≤ ℓ, computing the matrix entries of the equation
y1X = Xy1 shows that X is a diagonal matrix, and so

End(V ) ⊆ {diag(z1, z2, . . . , zk, w1, w2, . . . , wℓ) | zi, wj ∈ C} ∼= Ck,ℓ.

(Computing the commutator of X with y2 now gives no new information, since we
already used y1 and y1 − y2).

Write X = diag(z1, z2, . . . , zk, w1, w2, . . . , wℓ). We now determine End(V ) as
a subalgebra of diagonal matrices using the remaining equation Xs − sX = 0.
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Computing the commutator Xs− sX, all entries are automatically 0 except in the
upper right k × ℓ corner block, where we obtain the following k × ℓ entries:⎛⎜⎜⎜⎝

s11(z1 − w1) s12(z1 − w2) . . . s1ℓ(z1 − wℓ)
s21(z2 − w1) s22(z2 − w2) . . . s2ℓ(z2 − wℓ)

...
...

. . .
...

sk1(zk − w1) sk2(zk − w2) . . . skℓ(zk − wℓ)

⎞⎟⎟⎟⎠ .

Since Xs − sX = 0, each of these kℓ entries is equal to 0. Thus for a given pair
(i, j), either sij = 0 or zi = wj . Taking the equivalence class of a nonzero entry sij
as in Section 3.2, it follows that zr = wt = zi = wj for all srt ∼ sij , i.e. all the
zr’s and wt’s are equal to each other such that r is the row or t is the column of
some nonzero entry srt ∼ sij . If sij and srt are in different equivalence classes, then
there is no relation between zi and zr or between wj and wt. And finally, if some
row r contains all 0 entries then we get no relation on zr; similarly, if some column
t contains all 0 entries then we get no relation on wt. Let n(S) ≥ 1 be the number
of equivalence classes of nonzero entries of S, let Zr be the number of rows of S
that contain only 0’s, and let Zc be the number of columns that contain only 0’s.
We have that End(V ) ∼= Cn(S)+Zr+Zc , but Cn(S)+Zr+Zc is a local ring if and only
if n(S) + Zr + Zc = 1 if and only if n(S) = 1 and Zr = Zc = 0 if and only if S is
rhizomatic. This concludes the proof of part (1).

We turn now to part (2). One direction of the statement is simply a special
case of part (1) when ℓ = 1: if S is a k × 1 matrix then S is rhizomatic if and
only if all the entries of S are nonzero, thus if all entries of S are nonzero and
(a, b) ∈ Ck,1,reg then part (1) says that V is indecomposable. For the converse
direction, suppose that V is indecomposable. If some entry si1 of S is 0 then we see
that the actions of the generators of sVV2 preserve the subspaces Cvi and Cv1⊕ . . .⊕
Cvi−1⊕Cvi+1⊕. . .⊕Cvk+1 (where vi denotes the i’th basis vector (0, . . . , 1, . . . , 0) of
Ck+1 with 1 in the i’th place and 0’s elsewhere); thus V splits as a direct sum of these
two subrepresentations contradicting the assumption that V is indecomposable. So
si1 ̸= 0 for all i = 1, . . . , k. Suppose (a, b) /∈ Ck,1,reg, so ai = am for some i ̸= m;
without loss of generality we may assume i = 1 and m = 2. Then the centralizer of
y1 and y2 contains any matrix of the form

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 0 0 . . . 0
x21 x22 0 0 . . . 0
0 0 x33 0 . . . 0

0 0 0 x44
. . .

...
...

...
...

. . .
. . . 0

0 0 0 . . . 0 xk+ℓ,k+ℓ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Computing the matrix entries of the equation Xs− sX = 0 we get the following k
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entries which are all equal to 0:⎛⎜⎜⎜⎜⎜⎝
(x11 − xk+1,k+1)s11 + x12s21
x21s11 + (x22 − xk+1,k+1)s21

(x33 − xk+1,k+1)s31
...

(xk,k − xk+1,k+1)sk1

⎞⎟⎟⎟⎟⎟⎠ .

Since all si1 ̸= 0 for i = 1, . . . , k, xi,i = xk+1,k+1 for all i = 3, . . . , k, and from the
first and second lines we get that xk+1,k+1 can be solved in terms of x21, x22, s11,
and s21, and then similarly we can solve for x12 in terms of x11, x21, x22, s11, and
s21 in the first equation. Then we have

End(V ) ∼=
(
C 0
C C

)
,

which is not a local ring, contradicting the assumption that V is indecomposable.
Therefore all the eigenvalues ai are distinct, and part (2) is proved.

Finally, part (3) is proved in a totally symmetric way to part (2).

Remark 18. In fact, if (a, b) ∈ Ck,ℓ,reg and S is rhizomatic, then for some (i, j) the
entry eij = (ai−bj)sij of e is automatically nonzero. Indeed, by way of contradiction
suppose that e is the 0 matrix, but S is rhizomatic. Then for any sij ̸= 0 there is
some other sik ̸= 0 in the same row or some other shj ̸= 0 in the same column. In
the first case, (ai − bj)sij = 0 = (ai − bk)sik forces bj = ai and bk = ai and thus
bj = bk for some j ̸= k, contradicting the assumption (a, b) ∈ Ck,ℓ,reg. Similarly in
the second case. Thus (a, b) ∈ Ck,ℓ,reg and S rhizomatic implies that e does not act
by 0 on Vk,ℓ(S; (a, b)).

Example 19. Let k = 3 and ℓ = 2 and take (a, b) = (2i,−2i, 1,−1, 1). Then

(a, b) ∈ C3,2,reg. Take S =

⎛⎝ 0 1
−π 5
iπ
2 0

⎞⎠, a rhizomatic matrix. Then V3,2(S; (a, b)) is

an indecomposable calibrated sVV2-representation by Theorem 1, and y1, y2, s, e act
by:

y1 =

⎛⎜⎜⎜⎜⎝
2i 0 0 0 0
0 −2i 0 0 0
0 0 1 0 0

0 0 0 −2 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ , y2 =

⎛⎜⎜⎜⎜⎝
2i− 1 0 0 0 0

0 −2i− 1 0 0 0
0 0 0 0 0

0 0 0 −1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ ,

s =

⎛⎜⎜⎜⎜⎝
−1 0 0 0 1
0 −1 0 −π 5
0 0 −1 iπ

2 0

0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ , e =

⎛⎜⎜⎜⎜⎝
0 0 0 0 1− 2i
0 0 0 π − 1 5 + 10i
0 0 0 1 0

0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ .
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3.4 Isomorphism classes of calibrated representations with regular
eigenvalues

Many of the calibrated representations we constructed in the previous section may
be isomorphic to each other. In this section, we determine when two indecomposable
calibrated representations with regular eigenvalues are isomorphic.

Recall the following constructions from Lie theory, which may be found in [10].
The symmetric group Sk is isomorphic to the Weyl group W of the Lie group G =
GLk(C). The Weyl group is defined by W = NG(T )/T where T ⊂ G is a maximal
torus and NG(T ) is its normalizer in G. We may take T to be the diagonal matrices
in GLk(C). Then NG(T ) is the group of k× k monomial matrices that have exactly
one nonzero complex entry in every row and column, while NG(T )/T ∼= Sk is the
group of k × k permutation matrices consisting of those monomial matrices whose
nonzero entries are all 1’s. Let us denote by Nk = NG(T ) the group of k × k
monomial matrices. Similarly, let Nℓ be the group of ℓ× ℓ monomial matrices.

Let (a, b) ∈ Ck,ℓ,reg, so a = (a1, . . . , ak) with ai ̸= aj for all i ̸= j, and b =
(b1, . . . , bℓ) with bm ̸= bn for all m ̸= n.

Theorem 20. The group Nk ×Nℓ acts naturally on the set of (k + ℓ)-dimensional
indecomposable calibrated representations with regular eigenvalues and on the space
of pairs consisting of a (k× ℓ) rhizomatic matrix and a vector (a, b) ∈ Ck,ℓ,reg which
parametrize these representations:

(Nk ×Nℓ) y Ṽk,ℓ := {(S, (a, b)) | S ∈ Mk×ℓ(C) is rhizomatic, (a, b) ∈ Ck,ℓ,reg}.

Proof. We embed Nk ×Nℓ in GLk+ℓ(C) in the obvious way, as block matrices:

Nk ×Nℓ
∼=

(
Nk 0
0 Nℓ

)
,

which then act by conjugation on y1, y2, s, e. On the matrix S, Nk acts on the
left via the left multiplication while Nℓ acts on the right via the right (inverse)
multiplication. These actions are also called left translation and right (inverse)
translation, respectively. Take elements X1 =

∑k
i=1 ξiei,σ(i) ∈ Nk and X2 =∑ℓ

j=1 φjej,τ(j) ∈ Nℓ where ξi, φj ∈ C×, σ ∈ Sk, τ ∈ Sℓ. On the matrices for
y1, y2, s, e we get the following effect:

(X1, X2) · y1 = diag(aσ(1), aσ(2), . . . , aσ(k), bτ(1) − 1, bτ(2) − 1, . . . , bτ(ℓ) − 1),

(X1, X2) · y2 = diag(aσ(1) − 1, aσ(2) − 1, . . . , aσ(k) − 1, bτ(1), bτ(2), . . . , bτ(ℓ)),

(X1, X2) · s =
(
X1 0
0 X2

)(
−Idk S
0 Idℓ

)(
X−1

1 0

0 X−1
2

)
=

(
−Idk X1SX

−1
2

0 Idℓ

)
,

(X1, X2) · e =
(
X1 0
0 X2

)(
0 E
0 0

)(
X−1

1 0

0 X−1
2

)
=

(
0 X1EX−1

2

0 0

)
.

******************************************************************************
Surveys in Mathematics and its Applications 16 (2021), 207 – 222

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v16/v16.html
http://www.utgjiu.ro/math/sma


220 Z. Daugherty, I. Halacheva, M.S. Im and E. Norton

The action on pairs (S, (a, b)) is given explicitly by:

(X1, X2) · (S, (a, b)) = (X1SX
−1
2 , (aσ(1), . . . , aσ(k), bτ(1), . . . , bτ(ℓ))),

where the effect of the action S → X1SX
−1
2 is to permute the rows of S by σ and

the columns by τ−1, then to multiply the i’th row of the resulting matrix by ξi and
the j’th column by φj . That is, we have

(
X1SX

−1
2

)
ij
= ξiφjsσ−1(i),τ(j).

We need to check that X1SX
−1
2 is also a rhizomatic matrix. The minimal

relations generating the relation sij ∼ srp in Section 3.2 are of the form sij ∼ sir and
sij ∼ spj , i.e. the relations given by two nonzero entries being in the same row, and
two nonzero entries being in the same column. Since ξi, φj ̸= 0,

(
X1SX

−1
2

)
ij

̸=
0 if and only if sσ−1(i),τ(j) ̸= 0. Therefore

(
X1SX

−1
2

)
ij

∼
(
X1SX

−1
2

)
ir

if and

only if sσ−1(i),τ(j) ∼ sσ−1(i),τ(r), and
(
X1SX

−1
2

)
ij

∼
(
X1SX

−1
2

)
pj

if and only if

sσ−1(i),τ(j) ∼ sσ−1(p),τ(j). It then follows that
(
X1SX

−1
2

)
ij

∼
(
X1SX

−1
2

)
pr

if and

only if sσ−1(i),τ(j) ∼ sσ−1(p),τ(r). Thus X1SX
−1
2 has a single equivalence class of

entries since S does. Since a nonzero entry appears in every row and column of
S, the same is true for X1SX

−1
2 . Therefore X1SX

−1
2 is again rhizomatic, and we

indeed get an action.

Theorem 21. Let V1, V2 ∈ Ṽk,ℓ be two indecomposable calibrated representations of
dimension k + ℓ with regular eigenvalues. Then V1

∼= V2 as sVV2-representations if
and only if V1 and V2 are in the same (Nk × Nℓ)-orbit. Thus Vk,ℓ := Ṽk,ℓ/(Nk ×
Nℓ) parametrizes the isomorphism classes of indecomposable (k + ℓ)-dimensional
calibrated sVV2-representations with regular eigenvalues.

Proof. Let the matrices of the generators y1, y2, s acting on Vi, i = 1, 2, be given by

y
(i)
1 = diag(a

(i)
1 , . . . , a

(i)
k , b

(i)
1 − 1, . . . , b

(i)
ℓ − 1),

y
(i)
2 = diag(a

(i)
1 − 1, . . . , a

(i)
k − 1, b

(i)
1 , . . . , b

(i)
ℓ ),

s(i) =

(
−Idk S(i)

0 Idℓ

)
.

By definition, V1
∼= V2 if and only if there exists A ∈ GLk+ℓ(C) such that

A
(
y
(1)
1

)
A−1 = y

(2)
1 , A

(
y
(1)
2

)
A−1 = y

(2)
2 , A

(
s(1)

)
A−1 = s(2).

The first two equations imply that A ∈ Nk ×Nℓ. Thus V1
∼= V2 implies that V1 and

V2 are in the same (Nk×Nℓ)-orbit. The converse follows from the previous theorem
which showed that conjugation by Nk ×Nℓ respects the sVV2-action.
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