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Abstract

We describe discrete symmetries of two-dimensional Yang-Mills theory with gauge group G
associated to outer automorphisms of G, and their corresponding defects. We show that the
gauge theory partition function with defects can be computed as a path integral over the space
of twisted G-bundles, and calculate it exactly. We argue that its weak-coupling limit computes
the symplectic volume of the moduli space of flat twisted G-bundles on a surface. Using the
defect network approach to generalised orbifolds, we gauge the discrete symmetry and construct
the corresponding orbifold theory, which is again two-dimensional Yang-Mills theory but with
gauge group given by an extension of G by outer automorphisms. With the help of the orb-
ifold completion of the topological defect bicategory of two-dimensional Yang-Mills theory, we
describe the reverse orbifold using a Wilson line defect for the discrete gauge symmetry. We
present our results using two complementary approaches: in the lattice regularisation of the
path integral, and in the functorial approach to area-dependent quantum field theories with
defects via regularised Frobenius algebras.
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1 Introduction

Defects are impurities, discontinuities, boundary conditions, or other ways of modifying a quantum
field theory which are localised on submanifolds of various codimensions of the spacetime. In
general, defects can meet on other defects of higher codimensions. They are an important tool in
the study of non-perturbative features in quantum field theories and condensed matter systems,
and of symmetry protected topological phases. The structure of the collection of all defects is
closely related to higher categories, see [DKR11, Kap11] for a discussion in the case of topological
field theories. Defects are extended observables in quantum field theories, so that one can compute
a partition function or correlation function in the presence of a defect network. A prominent class
of examples are the Wilson line observables in gauge theories.

A particularly simple class of defects are topological defects which can be continuously deformed
without changing any physical observables. Two topological defects can be brought close together
such that their contribution to the partition function can be effectively described by another defect.
This defines an operation for topological defects called fusion. A defect D is called invertible if there
exists another defect D−1 such that the fusion of D with D−1 is the trivial defect 1; every quantum
field theory admits a trivial defect 1 which does not change the value of the partition function.

Invertible topological defects of codimension one, or domain walls, are closely related to sym-
metries of the field theory [FS15]. Given a symmetry we can construct a topological domain wall
which acts on fields passing through it by applying the symmetry. On the other hand, one can
recover the action of the symmetry on fields by wrapping the defect around a field insertion. The
description of symmetries and their corresponding background gauge fields via topological domain
walls makes it possible to describe their action on other quantities of the quantum field theory such
as boundary conditions or other (non-topological) defects [Tac20].1

1This description appears in much earlier literature on conformal field theory, where it is an immediate consequence
of the condition that the topological defect commutes with both copies of the Virasoro algebra (see e.g. [PZ01]).
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In this paper we illustrate the relationship between defects and symmetries for a simple class
of symmetries of two-dimensional Yang-Mills theory. Yang-Mills theory on a Riemann surface has
a long and rich history as an exactly solvable quantum gauge theory which is the first example of a
non-abelian gauge theory that can be reformulated as a (topological) string theory (see [CMR95] for
a review). Mathematically it has served as a tool for studying the topology of various moduli spaces
of interest in geometry and dynamical systems, such as the moduli spaces of flat connections [AB82,
Wit91, Wit92], the Hurwitz moduli spaces of branched coverings [CMR95, KSS16], and the principal
moduli spaces of holomorphic differentials [GSS04, GSS05]. In the following we will study how
some of these features are modified in the presence of domain walls, which in two dimensions can
be thought of as symmetry twist branch cuts on the surface [BBCW19], corresponding to outer
automorphisms of the gauge group.2

Recently it was shown that defects in area-dependent two-dimensional quantum field theories
can be studied in terms of ‘regularised Frobenius algebras’ and their bimodules [RS21]. Let G
be a compact semi-simple Lie group. The square-integrable functions on G form the regularised
Frobenius algebra underlying the two-dimensional Yang-Mills theory with gauge group G. In [RS21]
invertible defects are constructed algebraically from outer automorphisms of G. For example,
the only non-trivial outer automorphism of G = SU(n) for n > 2 is the complex conjugation
automorphism g 7−→ ḡ; further examples of groups with non-trivial outer automorphisms are
displayed in Table 1.

G SU(n) , n > 2 SO(2n) , n > 4 SO(8) E6

Out(G) Z2 Z2 S3 Z2

Table 1: The compact connected simple Lie groups G with non-trivial outer automorphism groups Out(G).
Here Z2 is the abelian cyclic group of order two and S3 is the non-abelian symmetric group of degree three.

One motivation for the present investigation is to give a physical interpretation of these defects,
which is the content of the first part of this paper (Section 2). We show in Section 2.1 that for
an outer automorphism ϕ : G −→ G there is a symmetry of two-dimensional Yang-Mills theory
sending a gauge field described by a principal bundle with connection to the associated G-bundle
for the group homomorphism ϕ with its induced connection. We proceed to show that the partition
function in the presence of a network of the associated defects on a closed oriented surface Σ can
be computed as a path integral over the space of ‘twisted bundles’. Let Bun∇G(Σ) be the space of
principal G-bundles with connection on Σ, Out(G) the (finite) group of outer automorphisms of
G and G o Out(G) the semi-direct product of groups.3 There is a natural group homomorphism
GoOut(G) −→ Out(G) which induces a map Bun∇GoOut(G)(Σ) −→ Bun∇Out(G)(Σ). In Section 2.2 we
construct an Out(G)-bundle D −→ Σ from the defect network and define the space of D-twisted
G-bundles with connection on Σ as the fibre of D for the map Bun∇GoOut(G)(Σ) −→ Bun∇Out(G)(Σ).
Concretely, a twisted bundle on Σ is given by a G o Out(G)-bundle together with a gauge trans-
formation from the induced Out(G)-bundle to D which specifies where the branch cuts on Σ are
located.

We present exact calculations of the partition function in the presence of defect networks us-
ing the lattice regularisation of two-dimensional Yang-Mills theory in Section 2.3. This shows in

2Similar defects are constructed in [FPSV15] in the context of three-dimensional Dijkgraaf-Witten theories, and
have also been proposed to have physical realisations in certain topological states of matter, see for example [BJQ13].

3Generally, Out(G) is defined as the quotient of the group of automorphisms Aut(G) by the normal subgroup of
inner automorphisms, and hence is not a subgroup of Aut(G). However, the construction of outer automorphisms
from symmetries of Dynkin diagrams, reviewed in Section 2.3, gives an embedding of Out(G) ↪−−→ Aut(G). We
implicitly use this embedding throughout the paper, for example when defining the semi-direct product GoOut(G).
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particular that the defects corresponding to the symmetry induced by ϕ agree with the defects
constructed in [RS21]. The weak-coupling limit of two-dimensional Yang-Mills theory can be used
to compute the symplectic volume of the moduli space of flat connections on Σ [Wit91]. Similarly,
we argue in Section 2.4 that the weak-coupling limit of two-dimensional Yang-Mills theory in the
presence of defects computes the symplectic volume of the moduli space of flat twisted bundles on
Σ, introduced for example in [Mei17].

The description of symmetries via defects is particularly convenient in the context of orbifold
theories.4 The partition function of the orbifold theory can be computed by evaluating the original
theory on a sufficiently fine defect network labeled with symmetry defects.5 This requires the
introduction of point defects — called ‘junction fields’ — on which three defect lines can meet.
We use the defect approach to orbifolds [FFRS09, CR16, BCP14, CRS19] in Section 2.5 to show
that the orbifold theory is the Yang-Mills theory on Σ based on the gauge group G o Out(G).
An advantage of the defect approach to orbifolds is that it also works for suitable non-invertible
defects. We use this generalised orbifold construction to show in Section 2.6 that the orbifold of the
Yang-Mills theory with gauge group G o Out(G), with respect to the Wilson line defects induced
from the regular representation L2(Out(G)) of Out(G), is the Yang-Mills theory on Σ with gauge
group G; these defects are invertible, and hence correspond to symmetry defects, only when Out(G)
is an abelian group. This may be thought of as a duality between these two quantum Yang-Mills
theories with defects.

The second part of this paper (Section 3) is concerned with a mathematically rigorous formu-
lation of the orbifold construction performed in the first part. We aim to show that this is a good
illustration of the power of the approach to two-dimensional area-dependent quantum field theories
via functorial field theories and regularised Frobenius algebras. A regularised Frobenius algebra
consists of a Hilbert space A equipped with families of bounded linear operators µa : A⊗A −→ A,
ηa : C −→ A, ∆a : A −→ A⊗A and εa : A −→ C parameterised by a positive real number a ∈ R>0.
These maps are required to be continuous in an appropriate sense and to satisfy parameterised
versions of the usual relations for Frobenius algebras. We give the full definition in Section 3.1.

The example relevant to this paper is the Hilbert space of square-integrable functions A = L2(G)
on a compact semi-simple Lie group G, which becomes a regularised Frobenius algebra via the
morphisms

ηa(1) =
∑
α∈Ĝ

dimα exp
(
− a C2(α)

2

)
χα , µa(f ⊗ g) = ηa(1) ∗ (f ∗ g) ,

εa(f) =
(
ηa(1) ∗ f

)
(1) , ∆af = ∆

(
ηa(1) ∗ f

)
, (1.1)

where the sum runs over all isomorphism classes α of irreducible representations of G of dimension
dimα, χα : G −→ C denotes the corresponding character and C2(α) is the value of the quadratic
Casimir operator C2 in the representation α. Here

(f ∗ g)(x) =

∫
G

dy f
(
x y−1

)
g(y) and (∆f)(x, y) = f(x y)

are the usual convolution product and coproduct on L2(G). The regularised Frobenius algebra
L2(G) is the input for the state sum construction of two-dimensional Yang-Mills theory in [RS21],
which makes the lattice regularisation of Section 2 precise. The centre of L2(G) is the commutative
regularised Frobenius algebra of class functions C`2(G) on G, which describes two-dimensional
Yang-Mills theory without defects.

4Orbifolds of two-dimensional conformal field theories with respect to an outer automorphism group symmetry
were studied long ago, see for example [SY90, BFS99].

5By ‘sufficiently fine’ we mean a defect network that can be obtained as the dual graph of a triangulation of Σ.
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In this approach, defects between different Yang-Mills theories correspond to dualisable bimod-
ules between the regularised Frobenius algebras L2(G) and L2(G′). Such a bimodule consists of a
Hilbert space M together with a family of maps ρa,b : L2(G) ⊗M ⊗ L2(G′) −→ M parameterised
by two positive real numbers a, b ∈ R>0, satisfying a parameterised version of the usual bimodule
relations; we refer again to Section 3.1 for more details. The defect described in the first part of the
paper corresponds to the bimodule Lϕ = L2(G) with action twisted by the outer automorphism ϕ
as

ρa,b : L2(G)⊗ L2(G)⊗ L2(G) −→ L2(G) ,

f ⊗ h⊗ g 7−→ µa
(
f ⊗ µb(h⊗ ϕ∗g)

)
. (1.2)

These observations are the starting point for the content of second part of the paper. After
a brief review of the state sum construction of area-dependent quantum field theories from regu-
larised Frobenius algebras and their bimodules in Section 3.1, we make the mathematical structure
of topological defects in two-dimensional Yang-Mills theories precise by introducing an idempo-
tent complete bicategory of topological defects in Section 3.2. The input for a generalised orbifold
construction in this framework is a strongly separable symmetric Frobenius algebra in an endo-
morphism category inside the topological defect bicategory. In Section 3.3 we construct such a
Frobenius algebra from the defects which is isomorphic to a Frobenius algebra built from a bi-
module structure on the square-integrable functions L2(G o Out(G)) on the semi-direct product
G o Out(G). In Section 3.4 we compute the corresponding orbifold theory using the state sum
construction and show, using the abstract orbifold completion of the defect bicategory [CR16], that
the backwards orbifold can be performed using Wilson line defects in Section 3.5.
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2 Discrete symmetries and defects of Yang-Mills theory

Let G be a compact semi-simple Lie group with Lie algebra g, and ϕ : G −→ G an outer automor-
phism of G. In this section we construct a groupoid homomorphism ϕ : Bun∇G(Σ) −→ Bun∇G(Σ) on
the topological groupoid of principal G-bundles with connection for every closed oriented surface
Σ. We show in Section 2.1 that the Yang-Mills action functional on Σ is invariant under this
transformation, so that ϕ defines a symmetry of the gauge theory. In Section 2.2 we study the
corresponding defects in terms of twisted bundles, and calculate the partition functions exactly
using a lattice regularisation of the quantum gauge theory in Section 2.3. The partition function
for a given defect configuration localises in the weak-coupling limit onto the moduli space of flat
twisted G-bundles, similarly to the untwisted case [Wit91]. In this limit the partition function
computes the symplectic volume of this moduli space, defined for example in [Mei17]. We will use
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the combinatorial quantisation of two-dimensional Yang-Mills theory to make a precise conjecture
for this volume in some simple cases in Section 2.4. In Section 2.5 we compute the corresponding
orbifold theory, and subsequently the reverse orbifold theory in Section 2.6.

2.1 Description of the Out(G)-symmetry

Let π : P −→ Σ be a principal G-bundle on Σ, and let Ad(P ) = (P ×g)/G be the vector bundle on
Σ with fibre g, where G acts on P by the principal bundle action and on g by the adjoint action.
Let A ∈ Ω1(P ; g) be a connection on P ; its curvature FA = dA+A ∧A is a two-form on Σ valued
in the adjoint bundle associated with P : FA ∈ Ω2(Σ; Ad(P )). The group of gauge transformations
is the automorphism group Aut(P ) of P consisting of G-equivariant diffeomorphisms g : P −→ P
with π ◦ g = π.

We define a new bundle ϕ(P ) with the same underlying total space P and projection π, but
with G-action P × G −→ P modified by pre-composing with ϕ−1. This can also be regarded as
the induced G-bundle P ×ϕ G for the Lie group automorphism ϕ : G −→ G. By differentiating
ϕ at the identity we get a Lie algebra automorphism ϕ∗ : g −→ g. The symmetry ϕ acts on the
connection A by mapping it to ϕ∗(A) where ϕ∗ : g −→ g acts only on the Lie algebra part of the
one-form A ∈ Ω1(P ; g); this is the induced connection on the bundle P×ϕG, see for example [Fre95,
Section 1].

We use a local trivialisation to show that this is again a principal G-bundle with connection. Let
{Ui} be an open cover of Σ such that (P,A) can be described by transition functions gij : Uij −→ G
on overlaps Uij := Ui ∩ Uj and local one-forms Ai ∈ Ω1(Ui; g). On the overlaps Uij the one-forms
Ai are required to satisfy

Aj = Adgij (Ai) + g∗ijθ = g−1
ij Ai gij + g−1

ij dgij (2.1)

where θ is the Maurer-Cartan one-form on G and the second equality holds for matrix Lie groups.
Under the automorphism, gij is mapped to ϕ ◦ gij : Uij −→ G. We check that ϕ∗(Ai) satisfy (2.1)
with respect to the new transition functions:

Adϕ◦gij
(
ϕ∗(Ai)

)
+ (ϕ ◦ gij)∗θ = ϕ∗

(
Adgij (Ai)

)
+ (ϕ ◦ gij)∗θ

= ϕ∗
(

Adgij (Ai) + g∗ijθ
)

= ϕ∗(Aj) ,

where the first equality follows from differentiating the equality ϕ(g−1)ϕ( · )ϕ(g) = ϕ
(
g−1 ( · ) g

)
of

group automorphisms of G and the second equality from the definition of the Maurer-Cartan one-
form. The groupoid homomorphism acts on a gauge transformation ξi : Ui −→ G by composition
with ϕ.

In the case of an inner automorphism of G, this would just describe the action of a global
gauge transformation on the physical fields. For later use, we note that the action on the parallel
transport in P described by an element g ∈ G with respect to a given local trivialisation is given
by applying ϕ to g.6

Let us now equip the smooth oriented surface Σ with a Riemannian metric such that Σ has
total area

a :=

∫
Σ

dµ ,

6This can be seen by applying the chain rule to the function ϕ ◦ g : [0, 1] −→ G, where g : [0, 1] −→ G is a solution
to the differential equation describing the parallel transport in P .
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where dµ = ? 1 is the Riemannian measure defined by the corresponding Hodge duality operator
? . The metric induces the Hodge operator ? : Ω2(Σ; Ad(P )) −→ Ω0(Σ; Ad(P )) acting only on the
differential form part. We also equip the Lie algebra g with an invariant quadratic form, which
we may assume without loss of generality to be a suitable multiple, as described in [Wit91], of the
Killing form on g denoted by Trg. Then Yang-Mills theory on Σ is defined by the Aut(P )-invariant
action functional of (P,A) ∈ Bun∇G(Σ) given by

SYM(P,A) :=
1

4e2

∫
Σ

Trg
(
FA ∧ ?FA

)
, (2.2)

where e is the gauge coupling constant.

The Yang-Mills action functional transforms under ϕ according to

Trg
(
FA ∧ ?FA

) ϕ−−→ Trg
(
ϕ∗(FA) ∧ ?ϕ∗(FA)

)
,

where ϕ∗ again acts only on the Lie algebra part. The invariance of the action functional SYM(P,A)
then follows from the fact that the Killing form is preserved by Lie algebra automorphisms. This
shows that ϕ induces a symmetry of the gauge theory at the classical level.

However, this does not necessarily extend to a symmetry at the quantum level. To define the
quantum gauge theory, we note that the tangent space at any point (P,A) ∈ Bun∇G(Σ) can be
identified with Ω1(Σ; Ad(P )), and thus an Aut(P )-invariant symplectic form on Bun∇G(Σ) can be
defined by [AB82]

ω(A1, A2) =
1

4π2

∫
Σ

Trg
(
A1 ∧A2

)
, (2.3)

for any two Ad(P )-valued one-forms A1 and A2 on Σ. This formally induces an Aut(P )-invariant
symplectic measure on the infinite-dimensional space Bun∇G(Σ) which we denote by D(P,A). Two-
dimensional quantum Yang-Mills theory is then defined by the partition function which is given as
the formal Euclidean path integral

ZYM

(
Σ, G, e2 a

)
:=

∫
Bun∇G(Σ)

D(P,A) exp
(
− SYM(P,A)

)
. (2.4)

The partition function is invariant under area-preserving diffeomorphisms of the Riemann surface
Σ, and so depends on e and the metric of Σ only through the combination e2 a [Wit91, CMR95]. It
is therefore possible to set e = 1 without loss of generality and consider all amplitudes of the gauge
theory as functions of the area a. In this sense two-dimensional Yang-Mills theory is a mild variant
of a topological field theory that is an example of an ‘area-dependent quantum field theory’.

Now the same arguments used to establish invariance of the classical Yang-Mills action func-
tional under the symmetry ϕ show that the symplectic form (2.3) is preserved by ϕ. Thus the
partition function (2.4) is formally invariant under the symmetry ϕ. However, the definition of
the formal path integral (2.4) requires a suitable regularisation to make it mathematically well-
defined, and it may be that there is no regularisation which preserves the symmetry; in such a
case the symmetry is anomalous and the partition function is not invariant. We will show in Sec-
tion 2.3 below, using the lattice regularisation of two-dimensional Yang-Mills theory, that indeed
the quantum gauge theory is also invariant under the symmetry induced by the outer automor-
phism ϕ : G −→ G. Different prescriptions for defining the path integral in (2.4) will differ by a
renormalisation ambiguity depending on the topology and area of Σ as [Wit91, Wit92]

∆S = υ1 χ(Σ) + υ2 e
2 a (2.5)

7



for arbitrary constants υ1, υ2 ∈ R, where χ(Σ) is the Euler characteristic of Σ; this respects the
invariance under area-preserving diffeomorphisms and just multiplies the partition function by a
constant factor exp(−∆S). The parameters υ1, υ2 depend only on the gauge group G and the
renormalisation scheme, but not on the area or topology of the surface Σ.

At this stage though we can already see how the symmetry acts on the Hilbert space of wave-
functions. The quantum Hilbert space of the gauge theory on a Cauchy circle S1 in Σ consists of
gauge-invariant functions from the collection of principal bundles with connection on S1 to C. The
only gauge-invariant quantity that one can associate to a G-bundle with connection over S1 is the
conjugacy class of its holonomy around the circle. Hence the state space is given by the Hilbert
space

ZYM

(
S1, G

)
= C`2(G) := L2(G)Ad(G)

of class functions on G. The collection of characters χα of unitary irreducible representations α of
G provide a natural basis for the state space. The symmetry acts unitarily on this Hilbert space
by sending a class function f : G −→ C to the function f ◦ ϕ−1.

The Hamiltonian HYM of the gauge theory associated to any foliation of the surface Σ is given
in terms of the quadratic Casimir operator C2 by [CMR95, Wit92]

HYM =
e2

2
LC2 + e2 Lυ2 , (2.6)

where L is the length of the Cauchy circle. The Hamiltonian operator (2.6) is the generator of
time translations. The time evolution operator exp(−T HYM) is parameterised by the elapsed time
0 ≤ T ≤ a

L , and its action on the character basis is given by

exp(−T HYM)χα = exp

(
− e2 LT

(C2(α)

2
+ υ2

))
χα .

The symmetry maps χα to χϕ∗α, and thus commutes with the time evolution operator since the
invariance of the Killing form implies C2(α) = C2(ϕ∗α): The action of ϕ on the Casimir operator
C2 can be interpreted as a change of basis in the Lie algebra corresponding to the Lie algebra
automorphism ϕ∗, which preserves the Killing form and hence maps dual coordinates to dual
coordinates. As a result, it only changes the choice of basis for the evaluation of the Casimir
operator and leaves its value invariant.

2.2 Defects and twisted bundles

Every symmetry of a quantum field theory comes with a corresponding invertible codimension one
topological defect, such that passing a field through the defect corresponds to the action of the
symmetry on the field, as illustrated in Figure 1. In general, different defects can join at lower-
dimensional submanifolds. In the following we give a geometric description of the partition function
of two-dimensional Yang-Mills theory with gauge group G in the presence of an arbitrary network
of defects corresponding to the symmetry discussed in Section 2.1.

A defect network on the surface Σ is determined by a triangulation of Σ, a choice of an orien-
tation, and an element in Out(G) for every edge of the triangulation; the defect network represents
the dual triangulation. Since Out(G) is a finite group, we require that around every vertex the
product of all three elements in Out(G) is idG (taking the orientation into account as explained
below). The elements of Out(G) describe the types of defects corresponding to the edges. Edges
labeled with idG are interpreted as the absence of any defects (the trivial defects). This condition

8



Ψ ϕ ·Ψ
←→

Figure 1: A defect corresponding to the symmetry ϕ, indicated by the directed lines. A field insertion Ψ
moving through the defect corresponds to the action of ϕ on Ψ.

thus expresses the fact that a defect with label ϕ and a defect with label ϕ′ can fuse at a codi-
mension two junction to give a defect with label ϕϕ′, and it allows us to express the labels as a
consistent configuration of domain walls throughout Σ.

Fix a defect network on Σ. It defines a principal Out(G)-bundle on Σ as follows: For every
face i of the triangulation we pick an open neighbourhood Ui which is only “slightly bigger” than
the face. If there is an edge of the triangulation between Ui and Uj , we set the transition function
from the left of the defect to the right equal to the label of the corresponding edge. This is
possible since we have picked an orientation for every edge. If the intersection of Ui and Uj is
non-empty but there is no edge between them, then we can go from Ui to Uj by passing through a
finite number of neighbourhoods for which there exists an edge for any transition. The transition
function Uij −→ Out(G) is then uniquely fixed by the cocycle condition. The consistency condition
implies that this defines an Out(G)-bundle, which we call D. Since Out(G) is a finite group, D
carries a unique flat connection. The parallel transport from the centre of one face to an adjacent
centre can be described by the action of the element labeling the edge between the two faces. Hence
passing to the dual triangulation provides the holonomy description of the bundle D on Σ.

The semi-direct product G o Out(G) is the group with elements (g, ϕ) ∈ G × Out(G) and
multiplication

(g, ϕ) • (g′, ϕ′) :=
(
g ϕ(g′), ϕϕ′

)
.

The projection onto the second factor G o Out(G) −→ Out(G) is a group homomorphism and
hence induces a map Bun∇GoOut(G)(Σ) −→ Bun∇Out(G)(Σ). A D-twisted G-bundle with connection
is a G o Out(G)-bundle with connection such that the induced Out(G)-bundle is isomorphic to
D. We denote by Bun∇G↓D(Σ) the space of D-twisted G-bundles with connection on Σ. A more
precise but abstract definition states that the space of D-twisted G-bundles with connection is the
homotopy fibre of the map Bun∇GoOut(G)(Σ) −→ Bun∇Out(G)(Σ). An object in this space also comes
with a particular choice of isomorphism which we suppress from the present discussion. In the case
of discrete gauge groups G, this definition reduces to the notion of relative bundles used in [FSV14]
to describe defects in three-dimensional Dijkgraaf-Witten theories.

Twisted bundles implement the defects corresponding to the symmetry introduced in Sec-
tion 2.1. We can describe a twisted bundle with respect to the same open cover {Ui} used to define
the Out(G)-bundle D. The transition functions for a twisted bundle consist of pairs (gij , ϕij), where
gij : Uij −→ G and ϕij are fixed to be the transition functions of D (up to isomorphism). Hence
gij are the only free parameters we can choose. On triple overlaps Uijk = Ui ∩ Uj ∩ Uk the cocycle
condition

(gki, ϕki) = (gkj , ϕkj) • (gji, ϕji)

9



implies that gki = gkj ϕkj(gji), which can be interpreted in the language of defects as the symmetry
acting on the transition function gji when it passes through the defect labeled by ϕkj . A connection
can be described locally by one-forms Ai ∈ Ω1(Ui; g). This is the same data as required for a
connection on a G-bundle. However, its transformation rule is twisted. For instance, if all gij are
trivial, then on Uij the connection one-forms are required to satisfy

Ai = Ad(1,ϕij)(Aj) = ϕij∗(Aj) .

This is exactly the action of the symmetry on the connection one-forms introduced in Section 2.1.
Gauge transformations of twisted bundles are described by elements ξi ∈ Ω0(Ui;G) which, via the
embedding G ↪−−→ G o Out(G), induce a gauge transformation of the corresponding G o Out(G)-
bundle, or in other words gauge transformations of the GoOut(G)-bundle which induce the trivial
gauge transformation of D.7 A gauge transformation ξi acts on the transition functions via

gij(x)
ξi−−→ ξi(x) gij(x)ϕij

(
ξi(x)−1

)
for all x ∈ Uij .

The Yang-Mills action functional for a twisted bundle is given by the same formula (2.2) for
the Yang-Mills action functional of the corresponding G o Out(G)-bundle. This action functional
locally agrees with the Yang-Mills action functional for G-bundles.

To define the corresponding quantum gauge theory, we note again that a tangent vector to an
arbitrary point (P,A) ∈ Bun∇G↓D(Σ) is an Ad(P )-valued one-form on Σ, where here Ad(P ) is the
vector bundle associated to P by the Go Out(G)-action on the Lie algebra g. Given two tangent
vectors A1 and A2, we can define an Aut(P )-invariant symplectic pairing by the same formula
(2.3). The partition function of two-dimensional quantum Yang-Mills theory in the background of
a defect network described by an Out(G)-bundle D on Σ is then physically defined as the formal
path integral

ZYM

(
Σ, G, e2 a;D

)
:=

∫
Bun∇G↓D(Σ)

D(P,A) exp
(
− SYM(P,A)

)
, (2.7)

where the integration is taken over the space of D-twisted G-bundles with connection up to gauge
transformations and the measure D(P,A) is induced by the symplectic form. This can be regarded
as a part of the partition function of the Yang-Mills theory with gauge group GoOut(G). We will
come back to this point in Section 2.5.

2.3 Combinatorial quantisation of defect Yang-Mills theory

We will now study the symmetries and defects introduced in Sections 2.1 and 2.2 using the lattice
formulation of two-dimensional Yang-Mills theory, as reviewed for example in [Wit91, CMR95].
To discretise the calculation we fix a cell decomposition consisting of an embedded graph which
covers the compact oriented surface Σ into vertices Σ(0), edges Σ(1), and faces Σ(2). As the faces
are contractible, the only remainders of a principal G-bundle on Σ are its fibre over every vertex,
which we can trivialise. A gauge transformation is therefore described by a map ξ : Σ(0) −→ G. A
connection on the bundle is described by its parallel transport, which is a group element gγ ∈ G
for every edge γ ∈ Σ(1); if the edge γ joins vertex x to vertex y, then a gauge transformation ξ acts
on gγ by gγ 7−→ ξy gγ ξ

−1
x . The curvature of a connection is a gauge-invariant map U : Σ(2) −→ G.

7Actually, we work with GoOut(G)-gauge transformations that under the map Bun∇GoOut(G)(Σ) −→ Bun∇Out(G)(Σ)
relate the two identifications with D.
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In the lattice formulation the only gauge-invariant quantity one can construct for a face w ∈ Σ(2)

is the (conjugacy class of the) holonomy around the face:

Uw =
∏
γ∈∂w

gγ ,

where the product runs over the boundary edges γ of w; here we choose an ordering for the
multiplication of edges similarly to [RS21].

The path integral can now be defined as an integral over the product group G×|Σ
(1)| with

respect to its Haar measure, induced from the normalised invariant Haar measure dg on G, which
is mathematically well-defined. We still need to understand what to integrate. For this, note that
formally we can rewrite the path integral involving an arbitrary local functional L(P,A) of the
gauge fields as∫

Bun∇G(Σ)
D(P,A) exp

(
−
∫

Σ
L(P,A)

)
=

∫
Bun∇G(Σ)

D(P,A)
∏

w∈Σ(2)

exp
(
−
∫
w
L(P,A)

)
.

Hence the integrand is a product over the faces w of the cell decomposition of Σ. We further
introduce a local measure on the discretisation by giving an area aw for every face w. The integration
factor is a local function Γ (Uw, e2 aw) depending on the holonomy and area associated to w. The
correct choice for this local factor which computes the Yang-Mills partition function is [Mig75,
Wit91]

Γ
(
Uw, e2 aw

)
:= e−υ1

∑
α∈Ĝ

dimα χα(Uw) exp

(
− e2 aw

(C2(α)

2
+ υ2

))
, (2.8)

where the sum runs over all isomorphism classes of unitary irreducible representations α of the gauge
group G of dimension dimα and with character χα, and C2(α) is the value of the quadratic Casimir
operator C2 in the representation α. This factor describes the wavefunction of two-dimensional
Yang-Mills theory on a disk [Mig75] which is determined by the heat kernel corresponding to the
Hamiltonian (2.6). In general it involves the constants υ1, υ2 ∈ R from (2.5) depending on the
renormalisation scheme, where we used χ(w) = 1.8

The partition function on Σ in this lattice regularisation is now defined as

ZYM

(
Σ, G, e2 a

)
:=

∫
G×|Σ

(1)|

∏
γ∈Σ(1)

dgγ
∏

w∈Σ(2)

Γ
(
Uw, e2 aw

)
,

where a =
∑

w∈Σ(2) aw. This partition function is independent of the chosen cell decomposition of
Σ [Wit91] and hence agrees with its continuum limit where the lattice discretisation becomes finer
and finer: the heat kernel defines a renormalisation group-invariant amplitude on the faces so that
the partition function is invariant under subdivision of the lattice. This feature is special to Yang-
Mills theory in two dimensions, and for this reason the lattice regularisation of the quantum gauge
theory actually computes the partition function (2.4) exactly (up to the undetermined constants
υ1 and υ2).

At this stage we can come back to the question of whether ϕ ∈ Out(G) induces a symmetry of
the gauge theory at the quantum level. Since the pullback of the Haar measure along ϕ is invariant
and normalised, it follows from the uniqueness of the Haar measure that the integration measure is

8The explicit expressions for the partition functions below may then be alternatively derived by using standard
glueing rules from topological field theory, as in [RS21], and the additivity of the Euler characteristic under disjoint
unions, together with the fact that pairs of pants have Euler characteristic −1.
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preserved under ϕ. The action on the group element associated to an edge is given by applying ϕ to
it, since this describes the action on the parallel transport. Hence the integration factor transforms
as

Γ
(
Uw, e2 aw

) ϕ−−→ e−υ1
∑
α∈Ĝ

dimα χα
(
ϕ(Uw)

)
exp

(
− e2 aw

(C2(α)

2
+ υ2

))

= e−υ1
∑
α∈Ĝ

dimα χϕ∗α(Uw) exp

(
− e2 aw

(C2(α)

2
+ υ2

))
.

Now notice that the dimensions of the representations α and ϕ∗α are the same. The value of the
quadratic Casimir operator C2 is also the same in both representations, as discussed at the end of
Section 2.1. Combining everything we get9

Γ
(
Uw, e2 aw

) ϕ−−→ e−υ1
∑
α∈Ĝ

dimϕ∗α χϕ∗α(Uw) exp

(
− e2 aw

(C2(ϕ∗α)

2
+ υ2

))
= Γ

(
Uw, e2 aw

)
where in the last step we used the fact that ϕ∗ is a bijection on the set of isomorphism classes
of irreducible representations. Since the lattice regularisation of the quantum gauge theory agrees
with the continuum limit, this shows that ϕ induces an actual symmetry at the quantum level.

Let us now explicitly compute the partition function for a defect corresponding to the symmetry
in terms of the combinatorial data of the discretisation of Σ. The cellular description provided in
this section is dual to that of the triangulation used to define a defect network in Section 2.2;
here defects correspond to turning edges of the cell decomposition into symmetry twist branch cuts
on Σ. A defect or domain wall corresponding to a symmetry can be implemented by performing
the path integral over field configurations which change by the symmetry when passing through
the domain wall. In the lattice gauge theory approach this has a simple implementation: When
calculating the holonomy around a face we count an edge γ labeled by gγ ∈ G which passes through
a defect corresponding to ϕ as gγ to the left of the defect and as ϕ(gγ) to the right of the defect. A
straightforward calculation shows that contractible defects do not change the value of the partition
function, so in the following we focus on defects which wrap around non-contractible cycles of the
surface Σ.

As a warm up, let us begin by calculating the partition function on a genus one surface, which
is a torus Σ1 = T 2, with a single non-contractible defect line labeled by ϕ ∈ Out(G). We pick a
cell decomposition of T 2 with two edges and the defect as illustrated in Figure 2. For the path

Figure 2: Cell decomposition of T 2 into a rectangle with parallel edges identified. The defect is along the
vertical edge.

integral we have to specify the parallel transport along two edges. The partition function can then

9This is also demonstrated in [RS21, Lemma 5.14] from an algebraic perspective, where it is shown that the outer
automorphism ϕ induces an isomorphism of commutative regularised Frobenius algebras.
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be easily computed to give

ZYM

(
T 2, G, e2 a;ϕ

)
=

∫
G×G

dg dh
∑
α∈Ĝ

dimα χα
(
ϕ(h)−1 g−1 h g

)
exp

(
− e2 a

(C2(α)

2
+ υ2

))

=

∫
G

dh
∑
α∈Ĝ

χα
(
ϕ(h)−1) χα(h) exp

(
− e2 a

(C2(α)

2
+ υ2

))

=

∫
G

dh
∑
α∈Ĝ

χϕ∗α(h−1) χα(h) exp

(
− e2 a

(C2(α)

2
+ υ2

))

=
∑
α∈Ĝ
α=ϕ∗α

exp

(
− e2 a

(C2(α)

2
+ υ2

))
,

where we used χ(T 2) = 0 and χα(1) = dimα, together with the orthonormality and fusion relations
for the characters: ∫

G
dg χα(Ag)χβ(g−1B) = δα,β

1

dimα
χα(AB) ,∫

G
dg χα(AgB g−1) =

1

dimα
χα(A)χα(B) , (2.9)

with A,B ∈ G. Setting e = 1 for the renormalisation scheme with υ2 = 0, this reproduces the
result of [RS21]. Representations α ∈ Ĝ for which ϕ∗α = α are called fixed point representations
of the automorphism ϕ in [FSS96].

This calculation can be generalised to an arbitrary connected Riemann surface Σp of genus p > 1
and area a containing p defects, as illustrated in Figure 3, labeled by group outer automorphisms
ϕ1, . . . , ϕp ∈ Out(G). Using the integral formulas (2.9), we then compute

. . .
gp

gp

hp

hp

h1

h1

g1

g1

g2

g2

h2

h2

Figure 3: Cell decomposition of Σp into a 4p-gon with edges of the same label identified. The defects are
labeled by hi.
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ZYM

(
Σp, G, e

2 a;ϕ1, . . . , ϕp
)

= eυ1 (2p−2)

∫
G×2p

p∏
j=1

dgj dhj
∑
α∈Ĝ

dimα χα

( p∏
i=1

gi hi ϕi(g
−1
i )h−1

i

)
× exp

(
− e2 a

(C2(α)

2
+ υ2

))

= eυ1 (2p−2)

∫
G×(2p−1)

dgp

p−1∏
j=1

dgj dhj
∑
α∈Ĝ

χα

(
gp

p−1∏
i=1

gi hi ϕi(g
−1
i )h−1

i

)
χϕ∗pα(g−1

p )

× exp

(
− e2 a

(C2(α)

2
+ υ2

))

= eυ1 (2p−2)

∫
G×(2p−2)

p−1∏
j=1

dgj dhj
∑
α∈Ĝ

δα,ϕ∗pα

dimα
χα

( p−1∏
i=1

gi hi ϕi(g
−1
i )h−1

i

)
× exp

(
− e2 a

(C2(α)

2
+ υ2

))
where we used χ(Σp) = 2− 2p. Proceeding inductively in this way then finally gives

ZYM

(
Σp, G, e

2 a;ϕ1, . . . , ϕp
)

(2.10)

= eυ1 (2p−2)
∑
α∈Ĝ

α=ϕ∗1α=···=ϕ∗pα

(dimα)2−2p exp

(
− e2 a

(C2(α)

2
+ υ2

))

for the Yang-Mills partition function on an oriented Riemann surface Σp of genus p with defects
labeled by ϕ1, . . . , ϕp ∈ Out(G) around non-contractible cycles of Σp. When all defects are trivial,
ϕi = idG for i = 1, . . . , p, this combinatorial expression is just the usual Migdal-Rusakov heat
kernel expansion for the partition function of Yang-Mills theory on Σp [Mig75, Rus90, Wit91,
BT92, CMR95]. In general it agrees with the computation of [RS21, Proposition 5.17] for the
particular defect configuration at hand.

In at least simple cases, the partition function (2.10) can be computed explicitly using the
combinatorics of Dynkin diagrams. For this, recall that outer automorphisms of a semi-simple
Lie algebra g are in one-to-one correspondence with automorphisms of the underlying Dynkin
diagram. Let (Ci,j)i,j∈Ir be the Cartan matrix encoded by the corresponding Dynkin diagram,
where Ir = {1, . . . , r} and r is the rank of g. An automorphism of the Dynkin diagram is a
bijective map ϕ : Ir −→ Ir which preserves the entries of the Cartan matrix: Ci,j = Cϕ(i),ϕ(j) for
all i, j ∈ Ir. Associated to the Dynkin diagram is a Cartan-Weyl basis of Chevalley generators
{Hi, E

±
i }i∈Ir of g in which ϕ induces the outer automorphism

ϕ : g −→ g ,
(
Hi, E

±
i

) ϕ−−→
(
Hϕ(i), E

±
ϕ(i)

)
of g. This in turn induces an isomorphism between the group of symmetries of the underlying
Dynkin diagram and the group of outer automorphisms of the Lie algebra g, see for example [FSS96].
Let h ⊂ g be the Cartan subalgebra spanned by Hi. Then the automorphism ϕ induces an action
on the weight space h∗ given by pullback

ϕ∗ : h∗ −→ h∗ , λ(x)
ϕ∗−−−→ (ϕ∗λ)(x) := λ

(
ϕ−1(x)

)
.

A weight vector λ is symmetric if ϕ∗λ = λ. If α is an irreducible representation of g with highest
weight vector v of weight λα, then v is also a highest weight vector for the representation ϕ∗α with
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weight ϕ∗λα [FSS96, Section 4]. For the calculation of the partition function (2.10), we thus have
to restrict to representations with symmetric highest weight.

The highest weights corresponding to irreducible representations of g can be uniquely expressed
as

λ =
r∑
i=1

ni ωi ,

where ωi are the fundamental weights and ni ∈ N0 for i = 1, . . . , r. The non-negative integers ni are
the Dynkin labels of the corresponding representation. The action of ϕ on the fundamental weights
is given by ϕ∗ωi = ωϕ(i). Hence a representation α is symmetric if and only if the corresponding
Dynkin labels are invariant under the transformation

[n1, . . . , nr]
ϕ−−→ [nϕ−1(1), . . . , nϕ−1(r)] .

The Dynkin labels can be used to concretely calculate the partition function (2.10) for a genus
p surface Σp containing defects: The dimension and quadratic Casimir invariant of an irreducible
unitary representation with highest weight λ are given by

dimλ =
∏
α∈R+

(λ+ ρ, α)g∗

(ρ, α)g∗
and C2(λ) = (λ+ 2ρ, λ)g∗ ,

where R+ ⊂ h∗ is the system of positive roots of the Lie algebra g, ρ = 1
2

∑
α∈R+

α is the Weyl
vector, and the invariant bilinear form ( · , · )g∗ on g∗ is induced by the Killing form of g.

Example 2.11. The Lie group G = SU(3) has rank r = 2 and hence every irreducible represen-
tation can be labeled by a pair of non-negative integers [n,m]. SU(3) admits only one non-trivial
outer automorphism ϕ corresponding to complex conjugation, which acts on the Dynkin labels by
interchanging n and m. Hence Out

(
SU(3)

)
= Z2 and symmetric representations are real representa-

tions which are of the form [n, n]. The dimension of the representation [n, n] is dim[n, n] = (n+1)3,
and the value of its quadratic Casimir invariant is C2

(
[n, n]

)
= n (n+ 2). Consider the defect net-

work from Figure 3 with at least one non-trivial defect label ϕ. Then the partition function (2.10)
reads as

ZYM

(
Σp, SU(3), e2 a;ϕ

)
= eυ1 (2p−2)

∞∑
n=0

(n+ 1)6−6p exp

(
− e2 a

(n (n+ 2)

2
+ υ2

))
. (2.12)

2.4 The moduli space of flat twisted bundles

Let D be an Out(G)-bundle on a surface Σ. We denote by MD
G (Σ) the moduli space of flat D-

twisted G-bundles on Σ, or in other words pairs (P,A) ∈ Bun∇G↓D(Σ) with FA = 0, up to gauge
transformations. Up to equivalence we can describe D by a group homomorphism on the fundamen-
tal group of Σ: κD : π1(Σ) −→ Out(G). A flat D-twisted G-bundle P on Σ can then be described
by a group homomorphism φ′P : π1(Σ) −→ GoOut(G) which lifts the group homomorphism κD in
the sense that the diagram

Go Out(G)

π1(Σ) Out(G)

φ′P

κD

15



commutes, where the vertical arrow is the projection to the second factor.

Equivalently, this can be described by a map φP : π1(Σ) −→ G satisfying

φP (γ1 ∗ γ2) = φP (γ1)κD(γ1)
(
φP (γ2)

)
,

where γ1 ∗γ2 denotes the concatenation of paths on Σ between representatives of the corresponding
homotopy classes. Let HomκD

(
π1(Σ), G

)
denote the space of all such twisted group homomor-

phisms; for any φ ∈ HomκD

(
π1(Σ), G

)
and any homotopy class of paths [γ] ∈ π1(Σ), φ(γ) is the

holonomy of a flat D-twisted G-connection along γ. Gauge transformations correspond to the
action of the Lie group G on this space via the twisted conjugation

g · φ : π1(Σ) −→ G , γ 7−→ (g · φ)(γ) = g φ(γ)κD(γ)
(
g−1
)
.

The moduli space MD
G (Σ) can be identified with the quotient HomκD

(
π1(Σ), G

)
/G by this G-action.

In the local triangulation description of defect networks from Section 2.2, a flat D-twisted G-
bundle is the same as a D-twisted G-local system on Σ, as defined for example in [Lab13]; one
may also characterise it as a groupoid homomorphism from the fundamental groupoid of Σ to the
classifying groupoid of GoOut(G)-bundles. It is possible to generalise this description to surfaces
Σ with boundary circles by using a subgroupoid of the fundamental groupoid, and hence to describe
moduli spaces of flat D-twisted G-connections on Σ with holonomies on the boundary components
in prescribed twisted conjugacy classes of G, see [Mei17] for further details.

To relate this moduli space to the quantum gauge theory defined in Section 2.2, we note that
the weak-coupling limit e −→ 0 of the Yang-Mills action functional (2.2) is either 0 or it diverges
to +∞, and hence the path integral (2.7) localises onto gauge field configurations with vanishing
action functional, or equivalently with vanishing curvature FA = 0; these are precisely the flat
twisted bundles. Hence the path integral formally reduces to an integral over MD

G (Σ). Since the
integration measure D(P,A) is formally induced by the infinite-dimensional symplectic structure
(2.3), it is natural to conjecture that the partition function (2.7) computes the symplectic volume
of MD

G (Σ) in the weak-coupling limit, where the symplectic two-form on MD
G (Σ) is inherited from

(2.3). This argument is completely analogous to that given in the case of ordinary Yang-Mills
theory in [Wit91].

To describe the weak-coupling limit more precisely as a topological field theory, it is useful to
consider an equivalent formulation of the quantum Yang-Mills theory in the presence of defects.
For this, recall that a D-twisted G-bundle on Σ can be described by a GoOut(G)-bundle P . The
curvature FA of the connection on the bundle P is a two-form on Σ with values in the associated
g-bundle Ad(P ). We introduce an auxiliary scalar field φ on Σ with values in Ad(P ), and consider
the action functional

S(P,A, φ) = −i

∫
Σ

Trg
(
φFA

)
− e2

2

∫
Σ

dµ Trg
(
φ2
)
.

The field φ can only be defined after the D-twisted bundle (P,A) is fixed, and the corresponding
path integral ∫

Bun∇G↓D(Σ)
D(P,A)

∫
Ω0(Σ;Ad(P ))

Dφ exp
(
− S(P,A, φ)

)
(2.13)

is taken over all D-twisted bundles with connections and φ ∈ Ω0(Σ; Ad(P )), where the measure on
the space Ω0(Σ; Ad(P ) is induced by the metric on Ad(P ) given by

‖φ‖2 := − 1

4π2

∫
Σ

dµ Trg
(
φ2
)
.
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Performing the Gaussian path integral over φ (or equivalently eliminating φ by its Euler-Lagrange
equation) shows that the quantum field theory defined by (2.13) is equivalent to the quantum field
theory defined by (2.7) for two-dimensional Yang-Mills theory in the presence of symmetry defects.
The path integral (2.13) is subject to the same two-parameter renormalisation ambiguity (2.5),
which multiplies it by the factor exp(−∆S).

The advantage of this reformulation is that it is straightforward now to take the e −→ 0 limit,
which is described by the topological field theory with action functional

S0(P,A, φ) = −i

∫
Σ

Trg
(
φFA

)
.

At e = 0, the invariance under the group of area-preserving diffeomorphisms is promoted to full
diffeomorphism invariance, and the ambiguity (2.5) is reduced to a one-parameter ambiguity de-
pending only on the topology of the surface Σ. This looks similar to the quantum field theory
describing the weak-coupling limit of Yang-Mills theory without defects [Wit91, Wit92]. The dif-
ference is that here φ takes values in a different bundle and that the path integral is taken over
twisted bundles rather than ordinary bundles. Integrating over φ in (2.13) at e = 0 produces a for-
mal delta-functional δ(FA), and the remaining path integral over Bun∇G↓D(Σ) therefore localises on

the locus FA = 0, which by definition is the moduli space MD
G (Σ) of flat D-twisted G-bundles on Σ.

In the usual untwisted case [Wit91], the argument showing that the resulting path integral measure
induces the correct symplectic volume form on the moduli space MG(Σ) ' Hom

(
π1(Σ), G

)
/G of

flat G-connections on Σ uses a careful application of Faddeev-Popov gauge fixing and the triviality
of analytic torsion on oriented surfaces, together with a judicious choice of υ1. It should be possible
to extend these arguments to the twisted case.

Putting everything together, we conjecture that the symplectic volume of MD
G (Σ) can be given

a gauge theory interpretation via the formula

Vol
(
MD

G (Σ)
)

= e−υ1 χ(Σ) lim
e→0

ZYM

(
Σ, G, e2 a;D

)
.

Since the undetermined parameter υ1 ∈ R depends only on G and the renormalisation scheme, but
not on Σ, the ratio

Vol
(
MD

G (Σ)
)

Vol
(
MG(Σ)

) = lim
e→0

ZYM

(
Σ, G, e2 a;D

)
ZYM

(
Σ, G, e2 a

)
is independent of the choice of the renormalisation scheme. This ratio can thus be computed
explicitly using the lattice regularisation of Section 2.3, and used to make concrete predictions for
the symplectic volume Vol

(
MD

G (Σ)
)
; in the lattice formulation, a connection is flat if Uw = 1 for

every face w ∈ Σ(2).

Example 2.14. Let us look again at the simplest non-trivial example of gauge group G = SU(3).
From (2.12) we deduce that the volume of MD

SU(3)(Σp) is independent of the choice of non-trivial
Z2-bundle D −→ Σp. For genus p ≥ 2 the weak-coupling limit e −→ 0 exists and the series sums
to give the value of the Riemann zeta-function ζ(6p− 6). It follows that the symplectic volume in
the presence of defects is

Vol
(
MD

SU(3)(Σp)
)

= lim
e→0

ZYM

(
Σp, SU(3), e2 a;ϕ

)
= eυ1 (2p−2) ζ(6p− 6) .

The undetermined parameter υ1 can in principal be determined from the results for untwisted
bundles; in [Wit91, Wit92] the constant υ1 is evaluated by a direct computation of the Reidemeister
torsion. However, in the present case we are not able to determine a priori the value of υ1, so we
cannot make a more concrete prediction for the symplectic volume at this stage.
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2.5 The orbifold Yang-Mills theory

Given a discrete symmetry of a quantum field theory one can try to gauge the symmetry, or in other
words construct a corresponding orbifold theory; the orbifold field theory is constructed by taking
the quotient by the symmetry group and projecting the Hilbert space onto the invariant states.
In this paper we focus on the defect approach to orbifolds [FFRS09, BCP14] and show that the
orbifold theory corresponding to the symmetry introduced in Section 2.1 is the Yang-Mills theory
with gauge group GoOut(G). We can further naturally twist the orbifold theory by a two-cocycle
c ∈ H2(Out(G);U(1)) representing the inclusion of discrete torsion. The resulting orbifold theory
will then be a two-dimensional Yang-Mills theory based on the structure group G o Out(G) with
a topological Dijkgraaf-Witten term [DW90] for the finite group Out(G) added to the Yang-Mills
action functional (2.2); this corresponds to coupling the Yang-Mills theory to a two-dimensional
symmetry protected topological phase, which is specified by the two-cocycle c and protected by the
Out(G)-symmetry.

Let Dϕ denote the defect corresponding to an outer automorphism ϕ ∈ Out(G). We construct
the orbifold defect as the superposition

PG =
∑

ϕ∈Out(G)

Dϕ ,

corresponding to a superposition of Out(G)-bundles over Σ. The partition function of the orbifold
theory on a Riemann surface Σ can be constructed by picking a triangulation of Σ and computing
the partition function of the original Yang-Mills theory in the presence of a defect network where
every edge of the triangulation is labeled with PG. The intersections need to be labeled by ‘junction
fields’ which introduce an appropriate normalisation; we will explain this in more detail in Section 3.
In practice this reduces to a sum over all consistent defect labels of the triangulation with a
normalisation factor 1

|Out(G)|V , where V is the number of vertices of the triangulation. Recall from

Section 2.2 that, for a fixed defect configuration, the path integral is taken over a subspace of
Bun∇GoOut(G)(Σ). The sum over all labels for defect lines reduces to a sum over all possible Out(G)-
bundles. As a consequence, the partition function of the orbifold theory can be interpreted as an
integral over the entire space Bun∇GoOut(G)(Σ). Dividing the result by |Out(G)|V takes care of the
fact that in Section 2.2 we only divided out G-gauge transformations; the additional normalisation
correctly takes care of the discrete part. This indicates that that the partition function of the
orbifold theory agrees with the partition function of Yang-Mills theory on Σ with gauge group
GoOut(G). By adding a two-dimensional Dijkgraaf-Witten term for Out(G) into the sum we can
also construct a twisted version of this orbifold Yang-Mills theory with coupling to an Out(G)-
symmetry protected topological phase.

We now turn our attention to the state space of the orbifold theory, which can be constructed
by first adding twisted sectors to the original state space to get

H′G =
⊕

ϕ∈Out(G)

ZYM

(
S1, G;ϕ

)
, (2.15)

where ZYM

(
S1, G;ϕ

)
is the state space on a Cauchy circle S1 in Σ in the presence of a point defect

labeled by ϕ. This is the Hilbert space of gauge-invariant functions on the space of twisted bundles
over S1. The only gauge-invariant quantity that can be constructed from a twisted bundle on
S1 is its holonomy U , which transforms under a gauge transformation corresponding to g ∈ G as
U 7−→ g U ϕ(g−1). This shows that the state space for each twisted sector ϕ ∈ Out(G) is given by

ZYM

(
S1, G;ϕ

)
=
{
f ∈ L2(G)

∣∣ f(g) = f
(
h g ϕ(h−1)

)
for all g, h ∈ G

}
.
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The Hilbert space ZYM

(
S1, G;ϕ

)
has a natural basis given by ‘twining characters’, which we

describe explicitly following [FSS96] for the special case of semi-simple Lie groups, see also [Zer18].
Let ω : G −→ G be an outer automorphism of the Lie group G constructed from an automorphism
of the corresponding Dynkin diagram, and let πα : g −→ End(Vα) be a corresponding fixed point
unitary irreducible highest weight representation: ω∗α = α. Then by Schur’s lemma there exists a
unitary automorphism Tωα : Vα −→ Vα such that the diagram

Vα Vα

Vα Vα

Tωα

πα(ω(v))

Tωα

πα(v)

commutes for all v ∈ Vα. Since ω only permutes the generators of g, it preserves the highest weight
space. Requiring Tωα to be the identity on the highest weight space thus fixes it uniquely. Then
Tαω2

Tαω1
= Tαω1 ω2

for any two automorphisms ω1, ω2 ∈ Out(G).

Exponentiating the representation we get a corresponding representation πα : G −→ End(Vα) of
the group G. The twining characters χωα : G −→ C can now be defined by

χωα(g) := trVα
(
πα(g)Tαω

)
for g ∈ G. They satisfy the twisted conjugation invariance

χωα
(
h g ω(h−1)

)
= trVα

(
πα
(
h g ω(h−1)

)
Tαω

)
= trVα

(
πα(h g)Tαω πα(h−1)Tαω

† Tαω
)

= trVα
(
πα(g)Tαω

)
= χωα(g) ,

for all g, h ∈ G. Using the orthogonality of the matrix element functions it is easy to show that
the twining characters span the Hilbert space ZYM

(
S1, G;ω

)
and satisfy a generalisation of the

orthonormality and fusion relations (2.9) given by (see also [Zer18])∫
G

dg χωα(Ag)χω
′

β (g−1B) = δα,β
1

dimα
χω
′ ω

α (AB) ,∫
G

dg χωα(AgB g−1) =
1

dimα
χα(A)χωα(B) , (2.16)

for A,B ∈ G.

We now note that (2.15) is not the Hilbert space of the orbifold theory, because there is a natural
Out(G)-action on H′G and the Hilbert space of the orbifold theory is the subspace of invariants.
An outer automorphism ω ∈ Out(G) maps f ∈ ZYM

(
S1, G;ϕ

)
to ω · f ∈ ZYM

(
S1, G;ω ϕω−1

)
via

the linear map corresponding to the defect network illustrated in Figure 4. A straightforward
computation using (2.16) and the lattice regularisation shows that the action is given by ω ·f := f ◦
ω−1.10 To describe the space of invariants, we pick a representative C for every conjugacy class of
Out(G). For an automorphism ϕ ∈ Out(G), we denote by Com(ϕ) the commutant of ϕ in Out(G),
or in other words the subgroup of Out(G) commuting with ϕ; the action of Com(ϕ) on H′G preserves

10See Proposition 3.22 below for a rigorous proof of this statement.
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ϕω−1

ϕ ω

ω ϕω−1

Figure 4: The action of ω ∈ Out(G) on a defect labeled by ϕ.

ZYM

(
S1, G;ϕ

)
. A description of the state space of the orbifold theory which depends on the choice

of conjugacy class C is then given by

HG,C =
⊕
ϕ∈C

ZYM

(
S1, G;ϕ

)Com(ϕ)
,

where we denote by ZYM(S1, G;ϕ)Com(ϕ) the subspace of invariants in ZYM(S1, G;ϕ) with respect
to the Com(ϕ)-action.

Now we argue that the Hilbert space HG,C is the space C`2
(
GoOut(G)

)
of class functions on

the group GoOut(G), confirming that the orbifold theory is indeed the Yang-Mills theory based on
Go Out(G). For this, we note that a conjugation-invariant function on Go Out(G) is completely
determined by its values on elements of G× C ⊂ GoOut(G). Hence we can describe any function
f ∈ C`2

(
G o Out(G)

)
by a family of functions fϕ : G −→ C labeled by the elements ϕ ∈ C. The

value of a function fϕ(g) on g ∈ G transforms under conjugation with respect to elements of the
form (h, 1) ∈ G o Out(G) as fϕ(g) 7−→ fϕ

(
h g ϕ(h−1)

)
. This shows that fϕ ∈ ZYM

(
S1, G;ϕ

)
.

The function fϕ is further required to be invariant under conjugation by elements of the form
(1, ω) ∈ G o Out(G) with ω ∈ Com(ϕ), which induces the transformation fϕ 7−→ fϕ ◦ ω. Hence
fϕ ∈ ZYM(S1, G;ϕ)Com(ϕ), as required. See Proposition 3.22 below for an explicit description of the
inverse map ZYM(S1, G;ϕ)Com(ϕ) −→ C`2(Go Out(G)).

Generally there are obstructions to the construction of an orbifold theory for a quantum field
theory with a discrete symmetry. However, all of these obstructions vanish in the case considered
in this paper, since we can construct the orbifold theory explicitly. This is reminescent of the
situation for finite gauge groups where classical symmetries can be described via group extensions
by the symmetry group, and the field theory can be gauged if the action functional of the original
gauge theory can be lifted to the extension [KT14, MS19]. In the continuous case considered here
the extension is given by the semi-direct product

1 −→ G −→ Go Out(G) −→ Out(G) −→ 1 ,

and a lift of the action functional is provided by the action functional of the Yang-Mills theory
with gauge group Go Out(G).

2.6 The reverse orbifold Yang-Mills theory

It is possible to return back to the original Yang-Mills theory via a generalised orbifold construction.
We briefly sketch the construction here and refer to Section 3 for further mathematical details.

We denote by Wc a set of representatives for the isomorphism classes c ∈ Ôut(G) of irreducible
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representations of Out(G). Via pullback by the homomorphism G o Out(G) −→ Out(G), these
induce representations of GoOut(G) and hence Wilson line defects in the Yang-Mills theory with
gauge group G o Out(G), which we denote again by Wc. These defects are invertible only if
Out(G) is an abelian group, so that Wc are all one-dimensional vector spaces. But they are always
topological defects and, in particular, they are trivial for contractible loops, since the Out(G) part
of the holonomy of any Go Out(G)-connection around a contractible loop is trivial.

To reverse the orbifold construction we use the defect

AG =
⊕

c∈Ôut(G)

W⊕wcc ' L2
(
Out(G)

)
, (2.17)

where wc = dimWc. Only when Out(G) is an abelian group does this defect come from a symmetry,
as in that case (2.17) decomposes into a direct sum of invertible defects. For non-abelian groups
Out(G) we need the generalised orbifold construction of [FFRS09, BCP14] to go backwards. The
reason why the choice of defect (2.17) works is that the character of the regular representation
L2(Out(G)) of Out(G) is given by χL2(Out(G))(κ) = |Out(G)| δκ,idG for κ ∈ Out(G). Inserting a
Wilson loop corresponding to AG into the path integral for a Riemann surface Σ localises the
integration domain to GoOut(G)-bundles with trivial Out(G) holonomy around the inserted loop.
If at least one Wilson loop for every generator of the fundamental group π1(Σ) labeled by AG is
inserted into the path integral, then the Out(G) part of all bundles contributing to the partition
function is trivial and hence the partition function reduces to the partition function (2.4) of Yang-
Mills theory with gauge group G. We will prove this rigorously in Section 3 using the orbifold
completion of the topological defect bicategory of two-dimensional Yang-Mills theories.

We conclude by describing the reverse orbifold Yang-Mills theory in the lattice regularisation
of Section 2.3. To compute the orbifold gauge theory we have to evaluate the partition function
in the presence of a sufficiently dense defect network labeled by (2.17) with appropriate junction
fields inserted. The junction fields correspond to the pointwise multiplication of functions and the
comultiplication

∆: L2
(
Out(G)

)
−→ L2

(
Out(G)

)
⊗ L2

(
Out(G)

)
' L2

(
Out(G)× Out(G)

)
,[

κ 7→ f(κ)
]
7−→

[
(κ1, κ2) 7→ δκ1,κ2 f(κ1)

]
.

These maps are homomorphisms of Out(G)-representations and hence induce homomorphisms be-
tween the corresponding representations of G o Out(G). The associated junction fields are then
given by ∑

κ∈Out(G)

κ⊗ κ⊗ δκ,idG ∈ C
[
Out(G)

]
⊗ C

[
Out(G)

]
⊗ L2

(
Out(G)

)
,

∑
κ∈Out(G)

κ⊗ δκ,idG ⊗ δκ,idG ∈ C
[
Out(G)

]
⊗ L2

(
Out(G)

)
⊗ L2

(
Out(G)

)
, (2.18)

where we identify the complex vector space C[Out(G)] generated by the elements of Out(G) with
the dual of L2(Out(G)).

To compute the partition function in the presence of a defect networkD containing only trivalent
vertices with one or two ingoing edges, we proceed as follows. We pick a triangulation agreeing
with the defect network and integrate over all lattice gauge fields as

WYM

(
Σ, Go Out(G), e2 a;D

)
:=

1

|Out(G)|N
∑

(κγ)∈Out(G)×|Σ
(1)|

∫
G×|Σ

(1)|

∏
γ∈Σ(1)

dgγ WD

(
(gγ , κγ)

)
×

∏
w∈Σ(2)

Γ
(
Uw, e2 aw

)
,
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where a =
∑

w∈Σ(2) aw, the sum is over (flat) Out(G)-bundles on the triangulation of the surface
Σ, N is an appropriate normalisation power, and Γ (Uw, e2 aw) is the same local function (2.8)
as for the Yang-Mills theory based on the gauge group G,11 but now with the holonomies Uw
computed for the GoOut(G)-bundle with parallel transport (gγ , κγ) along the edges γ ∈ ∂w. The
quantityWD

(
(gγ , κγ)

)
is the value of the corresponding Wilson line observable for the GoOut(G)-

bundle described by the elements (gγ , κγ) ∈ G o Out(G) for γ ∈ Σ(1), which can be computed as

follows: Combining the junction fields (2.18) for all vertices defines an element in C[Out(G)]⊗|Σ
(1)|⊗

L2(Out(G))⊗|Σ
(1)|. To produce a complex number from this we act on the elements of C[Out(G)]

with the group element of the corresponding edge, and then apply to it the function in L2(Out(G))
corresponding to the endpoint of the edge; this defines WD. The form of the junction fields (2.18)
implies that an edge γx,y between two vertices x, y ∈ Σ(0) induces a delta-function between the
sums for the different vertices of the form δκγx,y κx,κy . This implies that WD is non-zero if and only
if the parallel transport around every loop has trivial part in Out(G). In this case we can apply
a gauge transformation to set all κγ = idG. Restricting to elements with all κγ = idG cancels the
factor |Out(G)|N in the partition function WYM. Hence we are left with the partition function for
Yang-Mills theory with gauge group G, showing that the reverse orbifold theory is the Yang-Mills
theory we started with:

WYM

(
Σ, Go Out(G), e2 a;D

)
= ZYM

(
Σ, G, e2 a

)
.

3 Generalised orbifold of functorial defect Yang-Mills theory

In this section we gauge the Out(G)-symmetry of two-dimensional Yang-Mills theory using the
generalised orbifold construction [FFRS09, CR16, BCP14, CRS19] of a functorial defect quantum
field theory. We start by recalling the notion of area-dependent quantum field theories and their
state sum constructions in Section 3.1. Then we give a detailed description of the bicategory
of topological defects of two-dimensional Yang-Mills theories in Section 3.2, and in Section 3.3 we
discuss the regularised Frobenius algebras constructed from a Lie group and its outer automorphism
group. Finally, in Section 3.4 we gauge the Out(G)-symmetry, and using an orbifold equivalence
in the orbifold completion of the topological defect bicategory we give the defect for the reverse
orbifold in Section 3.5.

3.1 State sum area-dependent quantum field theory with defects

We begin by briefly reviewing the state sum construction of two-dimensional area-dependent quan-
tum field theory with defects [RS21]. We define area-dependent quantum field theories in the
spirit of [Ati88, Seg88, Seg89] as symmetric monoidal functors from a bordism category into an
appropriate target category. Then we recall some details of the state sum construction, and discuss
transmissive defects which are the topological defects in area-dependent theories.

An area-dependent quantum field theory is a symmetric monoidal functor from the category of
two-dimensional bordisms with area Bordarea

2 to the category of Hilbert spaces H ilb. In the former
category the objects are disjoint unions of oriented circles, and the morphisms are oriented bordisms
up to diffeomorphism together with a positive (and possibly zero for cylinders) real number assigned
to each connected component, which we think of as an area. The morphism sets naturally come
with a topology induced by the areas of the connected components of surfaces. In the category of
Hilbert spaces one can choose many different topologies on morphism sets, but for our purposes the
strong operator topology will be relevant. For an area-dependent quantum field theory, in addition

11As in Section 2.3, this is the case because locally both gauge theories agree.
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to being symmetric monoidal, we require the bounded linear operators assigned to bordisms to be
continuous in the area parameters.

Area-dependent quantum field theories (without defects) are completely defined by a variation
of the notion of a Frobenius algebra, analogously to two-dimensional topological field theories. A
regularised Frobenius algebra consists of a Hilbert space A together with families of maps µa : A⊗
A −→ A (products), ηa : C −→ A (units), ∆a : A −→ A⊗A (coproducts) and εa : A −→ C (counits)
which are continuous in the parameter a ∈ R>0 with respect to the strong operator topology.
These are required to satisfy parameterised versions of associativity, unitality, coassociativity, and
counitality:

µa ◦ (µb ⊗ idA) = µa′ ◦ (idA ⊗ µb′) , µa ◦ (ηb ⊗ idA) = µa′ ◦ (idA ⊗ ηb′) =: Pa+b ,

(∆b ⊗ idA) ◦∆a = (idA ⊗∆b′) ◦∆a′ , (εb ⊗ idA) ◦∆a = (idA ⊗ εb′) ◦∆a′ = Pa+b ,
(3.1)

and of the Frobenius relation

∆a ◦ µb = (idA ⊗ µb′) ◦ (∆a′ ⊗ idA) = (µb′ ⊗ idA) ◦ (idA ⊗∆a′) , (3.2)

for all parameters a, a′, b, b′ ∈ R>0 with a+ b = a′ + b′, where the map Pa : A −→ A satisfies

lim
a→0

Pa = idA

in the strong operator topology.

We will heavily rely on the graphical calculus for (strict) symmetric monoidal categories, in
order to simplify the presentation of our calculations. We present a morphism f : A −→ B as

f

B

A

and the identity morphisms with a straight line

A

idA =

A

Composition corresponds to stacking, the tensor product of objects and morphisms is

f

B

A

f ′

B′

A′

f ⊗ f ′

B ⊗B′

A⊗A′

=

and the symmetric braiding is denoted by a crossing

A

σA,B =

B

B

A
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For more details on this graphical calculus, see for example [Kas94].

The structure maps of a regularised Frobenius algebra A are presented as

A

µa =

A

A

a ∆a =

A

A A

aηa =

A

a

a

εa =

A

Pa =

A

A

a

and the relations (3.1) and (3.2) are

A

a′

A

a

A A

b′

A

A

a

A A

b

A

=

A

b

a

A

A

b′

a′

A

=

A A

b

A A

b′

A

a′

AA

=

A

b

a

A

b′

a′
AA

= ==

A A

AA

a+ b a+ b

A A

b

A A

a

A A

A A

A A

A A

= =
b′

a′ a′

b′
and

A regularised Frobenius algebra A is commutative if µa ◦ σA,A = µa for every a ∈ R>0:

A

=

A

A

A A

A
a

a

Area-dependent quantum field theories are classified by commutative regularised Frobenius alge-
bras: the underlying Hilbert space is the value of the quantum field theory on the circle S1, and
the structure maps are the values on the generating morphisms of Bordarea

2 , which are the cups,
caps and pairs of pants. For further details see [RS21, Section 3.2].

An area-dependent quantum field theory with defects is a symmetric monoidal functor from the
category of two-dimensional bordisms with area and defects. In this bordism category we endow
manifolds with a stratification, which is a collection of immersed manifolds of lower dimension.
The surface components are assigned individual areas and the functor is required to be continuous
in all of these area parameters.

The category of bordisms with area and defects comes with three label sets D2, D1 and D0,
which respectively label the submanifolds of dimension two, one and zero. The elements of D2 are
called phases, the elements of D1 are called domain walls or defect conditions, and the elements of
D0 are called junction field labels. For more details see for example [DKR11] and [RS21, Section 3.3].

Consider an area-dependent quantum field theory with defects Z. A defect line labeled with
x ∈ D1 is transmissive if the value of Z on surfaces involving defects labeled with x depends only
on the sum of the areas of the surface components separated by the defect; in other words, area
can be transmitted through the defect line. These are the topological defects in area-dependent
quantum field theories. When only considering topological defects, the sets D0, D1 and D2 can be
organised into a bicategory using the functor Z, see Section 3.2 below for further details.

One way to construct examples of area-dependent quantum field theory with defects is using
the ‘state sum construction’. Here one works with an appropriate cell decomposition of the surface;
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for example, faces are allowed to be intersected by defect lines (without junctions) at most once,
and junctions and faces should intersect at most once.

The set labeling surface components D2 is a set of strongly separable symmetric Frobenius
algebras. A regularised Frobenius algebra A is symmetric if the natural bilinear pairings εa ◦ µb :
A ⊗ A −→ C are symmetric: εa ◦ µb ◦ σA,A = εa ◦ µb, and it is strongly separable if there exist
algebra homomorphisms τa : A −→ A which satisfy τa ◦ µb ◦ ∆c = µb ◦ ∆c ◦ τa = Pa+b+c for
every a, b, c ∈ R>0. Using such Frobenius algebras ensures that the state sum construction will be
independent of the choice of cell decomposition. The examples of Frobenius algebras considered in
this paper are strongly separable symmetric with τa = Pa.

Before we can describe the set D1, we need to define bimodules. A bimodule over regularised
Frobenius algebras A and B is a Hilbert space X together with a family of maps ρXa,b : A ⊗ X ⊗
B −→ X (the two-sided actions), which we denote by

ρXa,b =

A B

X

X

a, b

satisfying a parameterised version of associativity, and the map

X

X

QXa+a′,b+b′ := ρXa,b ◦
(
ηAa′ ⊗ idX ⊗ ηBb′

)
= a+ a′, b+ b′

satisfies

lim
a,b→0

QXa,b = idX .

One can similarly define left and right modules, and commuting left and right actions define a
bimodule. The converse is not true in general, but the bimodules considered in this paper are in
fact left and right modules, with corresponding morphisms QXa , and hence in the following we only
consider such bimodules.

An A–B-bimodule X is dualisable if there exists a B–A-bimodule X̄ together with two families
of morphisms βXa,b : X ⊗ X̄ −→ C and γXa,b : C −→ X̄ ⊗X, which we denote as

βXa,b =
X X̄

γXa,b =

XX̄a, b

a, b

that satisfy the duality relations

a+ a′, b+ b′

a, b

a′, b′a′, b′

a, b
X̄

X̄X

X

=

X

X

a+ a′, b+ b′=

X̄

X̄

and which are compatible with the action:

X X̄

XX̄
a, b

a, b
BA X̄A BX

=a′, b′
a′, b′

a, b

B A

=
a, b

B A

XX̄

a′, b′
a′, b′
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The set labeling defect lines D1 is a set of dualisable bimodules over the regularised Frobenius
algebras in D2. A bimodule is transmissive if the action depends only on the sum of the parameters.
Transmissive bimodules correspond to transmissive defect lines.

In order to give the set D0, we need some more notions. Let X be an A–B-bimodule and Y a
B–C-bimodule for regularised Frobenius algebras A, B and C. The relative tensor product X⊗B Y
of X and Y is an A–C-bimodule which is a coequaliser of the morphisms

a1, b
b, c

a2

X

X Y

YB

and

X

X Y

YB

a, b

c2

b, c1

If A, B and C are strongly separable symmetric Frobenius algebras then the relative tensor product
is the image of the idempotent

DX,Y0 = lim
a,bi,c→0

X

X

a, b1

Y

Y

b4, c

b2
b3

which exists for dualisable bimodules, and the action is given by

ρX⊗BYa,c = lim
bi→0

a, b1

ι

π

X ⊗B Y

X ⊗B YA C

b1, c
b2 b2 (3.3)

where π and ι are the projection and embedding of the image of the idempotent. For bimodules
which are left and right modules as well, the limit in (3.3) exists as we are allowed to set bi = 0.
The fusion of defect lines in the state sum construction corresponds to the relative tensor product
of bimodules [RS21, Theorem 4.20].

Similarly, we define the cyclic tensor product 	A X of an A–A-bimodule X by identifying the
two actions. Instead of giving details here, we just note that the idempotent with image 	A X is
given by

DX0 = lim
ai→0

X

X

a1, a4

a2
a3

and refer to [RS21] for further details.

Consider a boundary circle of a surface with defect lines, some of which start or end on this
circle. By [RS21, Theorem 4.19], the state space assigned to this circle is

Z(S1, A1, . . . , An;X1, . . . , Xn) = 	A1 X
ε1
1 ⊗A2 X

ε2
2 ⊗A3 · · · ⊗An Xεn

n , (3.4)

where Ai ∈ D2, Xi ∈ D1, and εi ∈ {±} depending on the orientation of the i-th defect, with
X+
i = Xi and X−i = X̄i the dual of Xi.
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The set D0 of junction field labels is given by families of elements in the state spaces (3.4) which
are invariant under the action of cylinders over the circles, which are cylinders with parallel defect
lines. We give more detail on this in Section 3.2 below.

Now we sketch what the state sum construction assigns to a surface Σ : S −→ T with defect
lines. We pick a cell decomposition of the surface such that the defect lines intersect only edges and
they intersect each edge at most once. We require that every face contains at most one junction
of defect lines. Then we define Z(Σ) in two steps. First we consider the surface Σ′ obtained from
Σ by cutting out small disks near the junctions, and we regard the new boundary components as
ingoing. Then we compose Z(Σ′) with idZ(S) tensored with the elements from D0 that label the
junction fields.

It remains to show how to define Z(Σ′), which is the value of the functor Z on surfaces without
junctions of defects. To each face we assign the morphism

X
a 7−→

X̄ X

a1 b1

B B

b

A

a2

a3, b3

b2
b4

a0, b0

(3.5)

Then we use the duality morphisms of the bimodules, and the morphisms εa1 ◦ µa2 , to contract
legs corresponding to inner edges according to the cell decomposition (which describes how faces
are glued together along the edges indicated by dashed lines) and to define ingoing edges. Finally
we compose with the corresponding projections and embeddings to the state space.

As a detailed computation, consider the cylinder with parallel defect lines illustrated in Figure 5.
For the two faces we have the two morphisms from (3.5), for the two dashed edges we contract the

Y

X

a

inout

Figure 5: A cylinder of total area a with two parallel defect lines labeled by X,Y ∈ D1. The dashed lines
indicate a cell decomposition of this surface.

legs using the morphisms εa ◦ µa′ and we pull down two legs using the duality morphisms. Finally
we compose with the embedding ι and projection π onto the cyclic and relative tensor products of
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X and Y to get

ι

π

	B X̄ ⊗A Y

	B X̄ ⊗A Y

ι

π

	B X̄ ⊗A Y

	B X̄ ⊗A Y

=

Y

X

a

in

out

Z7−−→

ι

π

	B X̄ ⊗A Y

	B X̄ ⊗A Y

=
b

(3.6)

In the first step we used the properties of the duality morphisms, and in the second step the
definitions of ι and π. Here and in the following we do not write the area parameters explicitly in
order to streamline the presentation, and since we can distribute the area parameters among the
morphisms arbitrarily. We will also not write the morphisms QXa,b explicitly. In Section 3.4 we give
computations which involve defect junctions as well.

3.2 The defect bicategory of Yang-Mills theory

For the remainder of this paper we focus on the area-dependent quantum field theory Z = ZYM

corresponding to two-dimensional Yang-Mills theory, as defined in Section 1; in this case the state
sum construction provides a rigorous implementation of the lattice regularisation of Section 2.
Compared to Section 2, in the following we set the gauge coupling constant to e = 1 without loss of
generality. The weak-coupling limit, which determines a topological field theory, is then equivalent
to the zero area limit a −→ 0.

We define a bicategory of topological defects BYM in the spirit of [DKR11, CR16]. This bicat-
egory has as objects regularised Frobenius algebras of the form A = L2(G) where G is a compact
semi-simple Lie group. The 1-morphisms X : A −→ B are transmissive bimodules with duals
and the composition is given by the relative tensor product. The 2-morphisms X =⇒ Y for
X,Y : A −→ B are given by the set of families of maps {φa : C −→ 	A Y ⊗B X̄}a∈R>0 which are
invariant under the action of cylinders:12

Cb ◦ φa = φa+b ,

where Ca is the value of ZYM on the cylinder illustrated in Figure 5 and it is computed in (3.6).
We write Hinv(Y ⊗B X̄) for this set of invariant families. For any morphism φ : C −→ 	A Y ⊗B X̄
we can define a family φa := Ca ◦ φ, and in this case φa −→ φ in the limit a −→ 0. However, there
exist invariant families for which this limit does not exist; an example of such a family is{

ηC`
2(G)

a : C −→ 	L2(G) L
2(G)⊗L2(G) L

2(G) ' C`2(G)
}
a∈R>0

.

12This definition is an incarnation of the operator-state correspondence of local quantum field theory.
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Vertical composition of 2-morphisms is given by the pair of pants

Z

Y

X

c

in

in

out (3.7)

of total area c. Explicitly, the vertical composition of {φa}a∈R>0
: X =⇒ Y and {$b}b∈R>0

: Y =⇒
Z for X,Y, Z : A −→ B is the family

{φa}a∈R>0
◦ver {$b}b∈R>0

:=
{
µver
c ◦ (φa ⊗$b)

}
a+b+c∈R>0

: X =⇒ Z ,

where µver
c is the value of ZYM on the pair of pants (3.7). The unit of this product is given by the

value of ZYM on a disk crossed by a defect line.

Horizontal composition of 2-morphisms is given by acting with the pair of pants

X X ′

Y ′Y

in inout

c

(3.8)

of total area c. Explicitly, the horizontal composition of {φa}a∈R>0
: X =⇒ Y and {φ′b}b∈R>0

:

X ′ =⇒ Y ′ for X,Y : A −→ B and X ′, Y ′ : B −→ C is the family

{φa}a∈R>0
◦hor

{
φ′b
}
b∈R>0

:=
{
µhor
c ◦ (φa ⊗ φ′b)

}
a+b+c∈R>0

: X ⊗B X ′ =⇒ Y ⊗B Y ′ ,

where µhor
c is the value of ZYM on the pair of pants (3.8). The unit of this composition is the value

of ZYM on a disk with trivial defect line.

Lemma 3.9. The morphisms µver
c and µhor

c for the vertical and horizontal compositions are given
by

ι ι

π

	B X̄ ⊗A Y 	B Ȳ ⊗A Z

	B X̄ ⊗A Z

µver
c =

ι ι

	B X̄ ⊗A Y 	C X̄
′ ⊗B Y ′

	B X̄ ⊗A Y ⊗B Y ′ ⊗C X̄ ′

µhor
c =

π

The unit of µver
c is

{
π ◦ coevXa : C −→ 	B X̄ ⊗A X

}
a∈R>0

, while the unit of µhor
c is

{
ι ◦ ηAa : C −→

	A A⊗A A
}
a∈R>0

.

Proof. Consider the cell decompositions
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Z

Y

X

and

X X ′

Y ′Y

To the first one the state sum construction assigns the morphism

ι

π

	B X̄ ⊗A Z

	B X̄ ⊗A Y

ι

	B Ȳ ⊗A Z

ι

π

	B X̄ ⊗A Z

	B X̄ ⊗A Y

ι

	B Ȳ ⊗A Z

=

which is µver
c after simplifying the expression using the definitions of ι and π as in the calculation

of (3.6). For the second pair of pants the morphism is

ι

	B X̄ ⊗A Y

ι

	C X̄
′ ⊗B Y ′

π

	B X̄ ⊗A Y ⊗B Y ′ ⊗C X̄ ′

which can be similarly disentangled to give µhor
c .

Let Homfam
A|B(X,Y ) denote the families of bimodule morphisms {ψa : X −→ Y }a∈R>0 which

satisfy the invariance property

QYb ◦ ψa = ψa ◦QXb = ψa+b .

The composition of two families of bimodule morphisms {ξa : Y −→ Z}a∈R>0 ∈ Homfam
A|B(Y, Z) and

{ψb : X −→ Y }b∈R>0 ∈ Homfam
A|B(X,Y ) is defined via the pointwise composition

{ξa}a∈R>0
◦ {ψb}b∈R>0

:= {ξa ◦ ψb}a+b∈R>0
∈ Homfam

A|B(X,Z) .
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This composition is well defined, as it is independent of the choice of parameters a and b. The
unit for this composition is the family defined via the identity morphisms of the respective bi-
modules. Similarly we define the relative tensor product of two families {ψa : X −→ Y }a∈R>0

∈
Homfam

A|B(X,Y ) and {ψ′b : X ′ −→ Y ′}b∈R>0
∈ Homfam

B|C(X ′, Y ′) pointwise by

{ψa}a∈R>0
⊗B

{
ψ′b
}
b∈R>0

:=
{
ψa ⊗B ψ′b

}
a+b∈R>0

∈ Homfam
A|C(X ⊗B X ′, Y ⊗B Y ′) ,

which is again well defined. The units for this tensor product are the families
{
PAa : A −→ A

}
a∈R>0

in Homfam
A|A(A,A).

We then have an analogue of [DKR11, Lemma 3.9] given by

Lemma 3.10. The two maps

Hinv(X̄ ⊗A Y ) Homfam
A|B(X,Y ) ,

F

S

given by

φa

	B X̄ ⊗A Y

7−→
φa

ι

Y

X

F : and
ψa

	B X̄ ⊗A Y

←− [π

X

Y

ψa : S

b

b

for {φa}a∈R>0 ∈ Hinv(X̄ ⊗A Y ) = HomC(C,Hinv(X̄ ⊗A Y )) and {ψa}a∈R>0 ∈ Homfam
A|B(X,Y ), are

inverse to each other. F sends vertical compositions to compositions of families of bimodule mor-
phisms, horizontal compositions to the relative tensor product of families of bimodule morphisms,
and units to units.

Proof. We first look at the composition S ◦ F :

φa

	B X̄ ⊗A Y

7−→
φa

ι

Y

X

S ◦ F :

	B X̄ ⊗A Y

π
b

7−→

φa

ι

b

c

=

φa

	B X̄ ⊗A Y

=

φa+b+c

	B X̄ ⊗A Y

Cb+c

where we used the definition of Cb+c and the invariance property of the family {φa}a∈Ra>0
. Then
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we look at the composition F ◦ S:

7−→

ι

Y

X

F ◦ S :
ψa

	B X̄ ⊗A Y

π

X

Y

ψa

c

b

7−→

ψa

π

b

=

X

Y

ψa

QYb+c
=

X

Y

ψa+b+c

Y

X

c

ψa

b′

= b′′

where we used the definition of the projector D0, the compatibility of the duality morphisms with
the actions, and the invariance property.

Next we show the compatibility of F and S with the vertical (horizontal) composition of in-
variant families and the composition (relative tensor product) of families of morphisms. For the
remainder of this proof we do not write out the parameters of the families. For the vertical com-
position we have

ψ

π

ξ

π

S(ξ) ◦ver S(ψ) = ι ι

π

	B X̄ ⊗A Z

=

ψ ξ

π

	B X̄ ⊗A Z

=

ξ

ψ

π

	B X̄ ⊗A Z

= S(ξ ◦ ψ) .

For the horizontal composition we have

ψ

π

ψ′

π

S(ψ) ◦hor S(ψ′) = ι ι =

π

	B X̄ ⊗A Y ⊗B Y ′ ⊗C X̄ ′

ψ ψ′

=

π

	B X̄ ⊗A Y ⊗B Y ′ ⊗C X̄ ′

ψ ψ′

π

	B X̄ ⊗A Y ⊗B Y ′ ⊗C X̄ ′

π π
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= S(ψ ⊗B ψ′) ,=

ψ ψ′

=

π

	B X̄ ⊗A Y ⊗B Y ′ ⊗C X̄ ′

π π

ψ ψ′

π

	B X̄ ⊗A Y ⊗B Y ′ ⊗C X̄ ′

π

ι

where we used the cyclicity of the tensor product 	B X̄ ⊗A Y ⊗B Y ′ ⊗C X̄ ′ together with the
fact that the relative tensor product of morphisms can be expressed using the projections π and
embeddings ι.

Lemma 3.10 gives two equivalent ways of thinking about the 2-morphisms in the bicategory
of topological defects. Sometimes it is easier to work with families of bimodule morphisms as
their weak-coupling limit exists more frequently, for example the families {ηAa }a∈R>0 ,

{
QXa
}
a∈R>0

and
{
PAa
}
a∈R>0

, and we can compute with the limits instead of the families. On the other hand,
in general the weak-coupling limit of an invariant family may not exist: Take for example the
Frobenius algebra A =

⊕
k∈N C ek with orthonormal basis {ek}k∈N, product µ(ej⊗ek) = δjk ek and

unit
∑

k∈N e−a k
2
ek, and consider A as a bimodule over itself. Then the family of endomorphisms

{φa}a∈R>0
of A given by φa(ek) = e−a k

2
k2 ek clearly does not have a weak-coupling limit.

Accordingly we can now give a working definition.

Definition 3.11. The topological defect bicategory BYM of two-dimensional Yang-Mills theories
has:

(a) Objects: Hilbert spaces L2(G) for G compact semi-simple Lie groups with regularised Frobe-
nius algebra structure given by (1.1);

(b) 1-morphisms: Transmissive bimodules with duals between regularised Frobenius algebras
L2(G) and L2(H); and

(c) 2-morphisms: Invariant families of bimodule morphisms.

In order to apply techniques from [CR16] later on we will need

Proposition 3.12. The bicategory BYM is idempotent complete; that is, its morphism categories
are idempotent complete.

Proof. Let ψ = {ψa : X −→ X}a∈R>0
be an idempotent on an A–B-bimodule X, that is it obeys

ψa ◦ ψb = ψa+b. Let Y be the closure of the subspace
⋃
a∈R>0

im(ψa), p : X −→ Y the projection
and e : Y −→ X the embedding of the subspace Y ⊂ X. The Hilbert space Y becomes an A–B-
bimodule via the induced action p◦ρX ◦ (idA⊗e⊗ idB). Since ψa is an intertwiner, the action on X
indeed restricts to Y . Set π := {pa = p◦ψa : X −→ Y }a∈R>0 and ι := {ea = ψa◦e : Y −→ X}a∈R>0 .
Then ι ◦ π = ψ and π ◦ ι = idY ; the first equation is clear from the definition of p and e, while the
second equation follows from ψa(y) = QYa (y) for y ∈ Y by the definition of Y .
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Example 3.13. Wilson lines can be described by bimodules over L2(G) as follows. Let V be a
representation of G and consider V ⊗ L2(G) with the commuting left and right actions

ψ · (v ⊗ f) =

[
x 7−→

∫
G

dy ψ(y) (y · v) f(y−1 x)

]
and (v ⊗ f) · ψ = v ⊗ (f ∗ ψ) ,

for v ∈ V and ψ, f ∈ L2(G). Similarly, L2(G)⊗ V is a bimodule via

ψ · (f ⊗ v) = (ψ ∗ f)⊗ v and (f ⊗ v) · ψ =

[
x 7−→

∫
G

dy (y−1 · v) f(x y−1)ψ(y)

]
.

The dual of V ⊗ L2(G) is L2(G) ⊗ V ∗, where V ∗ is the dual of V . If G is connected then Wilson
lines are not transmissive, so they are not 1-morphisms in BYM. Nevertheless we will need these for
disconnected gauge groups. For further details on Wilson lines see [RS21, Proposition 5.10].

Example 3.14. The twisted bimodules Lϕ = L2(G) for ϕ ∈ Out(G) with action given in (1.2) are
transmissive bimodules over L2(G), so they are 1-morphisms in BYM.

3.3 Frobenius algebras from symmetry defects

Next we define regularised Frobenius algebras and their bimodules in the category H ilb, starting
from a Lie group and its outer automorphism group. Let G be a compact semi-simple Lie group
and Γ < Out(G) a subgroup of outer automorphisms of G. We will sometimes use the notation
L = L2(G), H = L2(Γ) and K = L2(Go Γ) for brevity.

The group Out(G) is finite and the algebra L2(Γ) is isomorphic to the group algebra of Γ, which
has the structure of a Hopf algebra with coproduct

∆H = φ 7−→ ∆H(φ) =
[
(γ, κ) 7→ |Γ|φγ δγ,κ

]
=: φ(1) ⊗ φ(2)

and antipode

S = S(δγ) =
1

|Γ|
δγ−1 ,

where δγ(κ) = δγ,κ. The algebra L2(Γ) acts on L2(G) via

φ · f =
1

|Γ|
∑
γ∈Γ

φγ f ◦ γ−1

for φ ∈ L2(Γ) and f ∈ L2(G).

Using the Hopf algebra structure of L2(Γ) we endow L2(G) ⊗ L2(Γ) with the structure of a
regularised Frobenius algebra with unit

a

L H

= η
L2(G)
a ⊗ |Γ| δidG

,

and product

H L

L H

HL

(f ⊗ φ) ∗ (g ⊗ ψ) =
(
f ∗ (φ(1) · g)

)
⊗
(
φ(2) ∗ ψ

)
(3.15)
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for f, g ∈ L2(G) and φ, ψ ∈ L2(Γ). We define the coproduct and counit to be the adjoint operators
of the product and unit respectively. We denote this Frobenius algebra by L2(G) o L2(Γ).

The map

L

L H

L2(G) −→ L2(G) o L2(Γ) , f 7−→ f ⊗ |Γ| δidG (3.16)

is a homomorphism of regularised Frobenius algebras. Using this morphism we obtain an L2(G)–
L2(G)-bimodule structure on L2(G) o L2(Γ).

Proposition 3.17. 1. The map

Φ : LoH −→ K , f ⊗ φ 7−→
[
(x, γ) 7→ f(x)φγ

]
is an isomorphism of regularised Frobenius algebras in H ilb. The map (3.16) endows K with
the structure of a transmissive L–L-bimodule.

2. The L–L-bimodule K is a strongly separable symmetric Frobenius algebra in BYM(L,L) via
the structure morphisms

µ̄K :=
{
K ⊗L K

ι−→ K ⊗K µa−−−→ K
}
a∈R>0

,

∆̄K :=
{
K

∆a−−−→ K ⊗K π−−→ K ⊗L K
}
a∈R>0

,

η̄K :=
{
L

η̄a−−→ K
}
a∈R>0

, η̄a(f) = PLa (f)⊗ |Γ| δidG ,

ε̄K :=
{
K

ε̄a−−→ L
}
a∈R>0

, ε̄a(f ⊗ φ) = PLa (f)
1

|Γ|
φidG .

3. The L–L-bimodule M :=
⊕

ϕ∈Γ Lϕ is a strongly separable symmetric Frobenius algebra in
BYM(L,L) via the structure morphisms

µ̄M :=
{
M ⊗LM

ι−→M ⊗M

∑
ϕ,ω∈Γ

µϕ,ωa

−−−−−−−→M
}
a∈R>0

,

∆̄M :=
{
M

1
|Γ|

∑
ϕ,ω∈Γ

∆ϕ,ω
a

−−−−−−−−−→M ⊗M π−−→M ⊗LM
}
a∈R>0

,

η̄M :=
{
L

PLa−−−→ L = LidG ↪−−→
⊕
ϕ∈Γ

Lϕ = M
}
a∈R>0

,

ε̄M :=
{
M =

⊕
ϕ∈Γ

Lϕ � LidG = L
PLa−−−→ L

}
a∈R>0

, (3.18)

where

LϕLω

ω−1

Lϕω

µϕ,ωa =

LϕLω

ω

Lϕω

∆ϕ,ω
a =

L

L

ϕ = (ϕ−1)∗ .
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4. The map

Ψ :
⊕
ϕ∈Γ

Lϕ −→ K ,
∑
ϕ∈Γ

fϕ 7−→
[
(x, γ) 7→ fγ

(
γ−1(x)

)]
is an isomorphism of L–L-bimodules as well as of Frobenius algebras in BYM(L,L).

Proof. For Part 1, we note that ∆H(δϕ) = |Γ| δϕ⊗ δϕ and |Γ| δϕ · f = f ◦ϕ−1. Using (3.15) we first
compute

Φ
(
(f ⊗ δϕ) ∗ (g ⊗ φ)

)
(x, ω) = Φ

(
(f ∗ |Γ| δϕ · g)⊗ (δϕ ∗ φ)

)
(x, ω)

=
(
f ∗ (g ◦ ϕ−1)

)
(x)

1

|Γ|
φϕ−1 ω . (3.19)

Then we compute(
Φ(f ⊗ δϕ) ∗ Φ(g ⊗ φ)

)
(x, ω) =

∫
G

dy
1

|Γ|
∑
γ∈Γ

f(y) δϕ(γ) g
(
γ−1(y−1 x)

)
φγ−1 ω

=
1

|Γ|
(
f ∗ (g ◦ ϕ−1)

)
(x)φϕ−1 ω ,

which agrees with (3.19).

Next we show that Φ
(
η
L2(G)
a ⊗ |Γ| δidG

)
is a unit for this multiplication, which by uniqueness of

the unit of a regularised algebra is precisely η
L2(GoΓ)
a . For F = f ⊗ φ ∈ K we compute(

Φ
(
ηL

2(G)
a ⊗ |Γ| δidG

)
∗ (f ⊗ φ)

)
(x, ω) =

∫
G

dy
1

|Γ|
∑
γ∈Γ

ηL
2(G)

a (y) |Γ| δidG(γ) f
(
γ−1(y−1 x)

)
φγ−1 ω

=
(
ηL

2(G)
a ∗ f

)
(x)φω ,

and(
(f ⊗ φ) ∗ Φ

(
ηL

2(G)
a ⊗ |Γ| δidG

))
(x, ω) =

∫
G

dy
1

|Γ|
∑
γ∈Γ

f(y)φγ η
L2(G)
a

(
γ−1(y−1 x)

)
|Γ| δidG

(
γ−1 ω

)
=
(
f ∗ ηL2(G)

a

)
(x)φω ,

both of which are equal to F (x, ω) in the a −→ 0 limit, showing that Φ
(
η
L2(G)
a ⊗ |Γ| δidG

)
is the

unit of K.

Part 2 follows from the fact that K is a strongly separable symmetric Frobenius algebra and
from Part 1. We only present the computation which shows associativity. Let us compute the
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a+ b+ c component of the family µ̄K ◦ (µ̄K ⊗L idK):

ι

ι

K ⊗L K ⊗L K

Pb

π

ι

K

µc

µa

ι

K ⊗L K ⊗L K

Pb

K

µc

µa
=

where we used associativity of the relative tensor product and µc◦D0 = µc. Computing the a+b+c
component of the family µ̄K ◦ (idK ⊗L µ̄K) in a similar way gives the same family.

For Parts 3 and 4, the verification that the isomorphism is an L–L-bimodule morphism follows
from a direct computation: For the left L-action we have

Ψ
(
g ·
∑
ϕ∈Γ

fϕ

)
= Ψ

(∑
ϕ∈Γ

fϕ ∗ (g ◦ ϕ)
)

= Ψ
(∑
ϕ∈Γ

(
fϕ ◦ ϕ−1

)
∗ g
)

=
[
(x, γ) 7−→

(
(fγ ◦ γ−1) ∗ g

)
(x)
]

= g ·Ψ
(∑
ϕ∈Γ

fϕ

)
.

That Ψ commutes with the right L-action can be similarly shown using

(f ⊗ φ) · g =
[
(x, γ) 7−→

(
f ∗ (g ◦ γ−1)

)
(x)φγ

]
.

Finally, we compare the Frobenius algebra structure on M defined in (3.18) with the structure
transported from K via Ψ. Here we show that the product and coproduct agree. Since the a −→ 0
limits of these families exist, it is enough to check Ψ ◦ PMa = PKa ◦Ψ and compare the limits; this
indeed holds, as it is given by scaling basis elements by factors e−aC2(α)/2. For the product we
compute

Ψ−1

(
Ψ
(∑
ϕ∈Γ

fϕ

)
∗Ψ
(∑
ω∈Γ

gω
))

= Ψ−1

([
(x, γ) 7−→

∫
G

dy
1

|Γ|
∑
κ∈Γ

fκ
(
κ−1(y)

)
gκ−1 γ

(
γ−1 κκ−1(y−1 x)

)])

=
[
(x, γ) 7−→

∫
G

dz
1

|Γ|
∑
σ∈Γ

fγ σ−1

(
σ(z)

)
gσ
(
z−1 x

)]
,

where in the last step we changed summation and integration variables (y, κ) = (1, γ) • (z, σ−1).
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This is exactly the product defined in (3.18). For the coproduct we compute

(
Ψ−1 ⊗Ψ−1

)[
∆

(
Ψ
(∑
ϕ∈Γ

fϕ

))]
=
(
Ψ−1 ⊗Ψ−1

)([(
(x, γ) , (y, κ)

)
7−→ fγ κ

(
(γ κ)−1 (x γ(y))

)])
=
[(

(x, γ) , (y, κ)
)
7−→ fγ κ

(
κ−1(x) y

)]
,

which is exactly the coproduct described in (3.18).

3.4 Gauging the Out(G)-symmetry

We shall now compute the orbifold of two-dimensional Yang-Mills theory with gauge group G
using a defect corresponding to the Out(G)-symmetry. We do this by introducing labels for defect
junctions, and then compute the image of the projector which is the state space of the orbifold
theory. In order to verify that the orbifold theory is again a two-dimensional Yang-Mills theory —
with a different gauge group — we compute the orbifold theory on the generators of the category
of bordisms with area and without defects Bordarea

2 , which is given by the commutative Frobenius
algebra structure on the state space.

The class [Φ] ∈ H3(Out(G),C×) obtained from the associator of a morphism category of
the topological defect bicategory BYM is trivial, [Φ] = 1, so we can gauge any subgroup Γ <
Out(G) [FFRS09, Section 3], which we now fix. In order to compute the orbifold theory of two-
dimensional Yang-Mills theory with defect M =

⊕
ϕ∈Γ Lϕ, we need to give labels for junctions of

the defect labeled with M . It is enough to give the labels for trivalent junctions because, owing to
the fact that M is a strongly separable symmetric Frobenius algebra in BYM(L,L), the value of the
area-dependent quantum field theory on a surface with a defect network is invariant under certain
changes of the defect network, which allow us to define junction fields with higher valency.

To a trivalent junction with an ingoing defect labeled with Lϕ and two outgoing defects labeled
with Lω and Lγ , as in Figure 6 a), we assign the family{ 1

|Γ|
δϕ,γ ω η

L2(G)
a

}
a∈R>0

∈ 	L L̄ϕ ⊗L Lω ⊗L Lϕω ' C`2(G) ,

where a = a1 + a2 + a3 is the total area of the three individual surface components. Similarly, to

AA

ϕ

ωγ AB

ϕ

ωγ

a) b)

Figure 6: Triangles with trivalent junctions.

a trivalent junction with ingoing defect lines labeled with Lϕ and Lω and an outgoing defect line
labeled with Lγ , as in Figure 6 b), we assign the family{

δγ ϕ,ω η
L2(G)
a

}
a∈R>0

∈ 	L L̄ϕ ⊗L L̄ω ⊗L Lϕω ' C`2(G) .

Here the chosen families correspond to the vertical identity morphisms after horizontally composing
the two equidirectional defects in the bicategory of topological defects BYM from Section 3.2.

From [RS21, Section 5.3] we get
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Lemma 3.20. The twisted sectors of the orbifold theory are given by

H =
⊕
ϕ∈Γ

Hϕ ,

where Hϕ = 	L Lϕ is the space of square-integrable functions on G which are invariant under
twisted conjugation by ϕ ∈ Γ, see Section 2.5.

We will need the morphisms

L̄ϕ Lϕω−1 Lω

ω ϕ−1

ω−1
ιA =

C`2(G)

L̄ϕω−1 L̄ω Lω ϕω−1

ω

ω−1 ϕ−1 ω
ιB =

C`2(G)

ιC`2(G) ιC`2(G)

Lϕ L̄ϕ

=

Lϕ L̄ϕ

ϕ

Lemma 3.21. The state sum construction assigns to the parts of a cell decomposition

AA

ϕ

ωγ AB

ϕ

ωγ

a) b)

each with total area a, the respective morphisms

1

|Γ|
δϕ,γ ω ιA ◦ ηL

2(G)
a and δγ ϕ,ω ιB ◦ ηL

2(G)
a .

Proof. Let γ := ϕω−1. The morphism assigned to the part of the cell decomposition a) is

1

|Γ|

ιA

Lϕω−1 LωL̄ϕ

ιA

=
1

|Γ|

Lϕω−1 LωL̄ϕ

Now we use the fact that ιA cancels the idempotents D0 assigned to cylinders with parallel defect

lines to obtain 1
|Γ| ιA ◦ η

L2(G)
a . One similarly computes the morphism associated to b).
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Next we turn to the projector of [BCP14, Section 1] whose image is the state space of the
orbifold theory. The projector P is obtained by applying the defect area-dependent quantum field
theory on the cylinders in Figure 4 and taking the weak-coupling limit.

Proposition 3.22. 1. The projector P is given by

P =
1

|Γ|
∑
ω∈Γ

(
ω−1

)∗
: H −→ H , (3.23)

which implements an action of Γ on H.

2. The image of P is the subspace HΓ of Γ-invariants under this action and there is an isomor-
phism

HΓ ' C`2(Go Γ) .

Proof. For Part 1, take a cell decomposition of the cylinder in Figure 4 where we cut along the
dashed lines:

ϕω−1

ω ϕω−1

ϕ

ω

ω
B

A

in

out

Using Lemma 3.21, the morphism assigned by the state sum area-dependent quantum field theory
to the cylinder is

Hω ϕω−1

Hϕ

ιHϕ

ιHω ϕω−1

=
1

|Γ|

ϕ ϕω−1 ω

ω ϕ−1

ω−1

ιC`2(G)

ω

ω−1 ϕ−1 ω

ιC`2(G)

ιA ιB

Hω ϕω−1

Hϕ

ιHϕ

ιHω ϕω−1

1

|Γ|
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ω ϕω−1

ιHϕ

Hϕ

ιHω ϕω−1

Hω ϕω−1

=
1

|Γ| ω−1

ιHϕ

Hϕ

ιHω ϕω−1

Hω ϕω−1

−−−→
a→0

1

|Γ|

Hω ϕω−1

Hϕ

ιHϕ

ιHω ϕω−1

=
1

|Γ|

ω ω ϕω−1

ω−1

ω−1 ϕ−1 ω

Summing over ϕ, ω ∈ Γ we get (3.23).

For Part 2, let h ∈ HΓ and write h =
∑

ϕ∈Γ hϕ for its components. We define the map

Ψ : HΓ −→ C`2(Go Γ) , h 7−→
[
(x, α) 7→ hα(x)

]
.

We show that the image of the map Ψ indeed lands in C`2(Go Γ). Since h is invariant under the
action of Γ we have

ω · h =
∑
ϕ∈Γ

ω · hϕ =
∑
γ∈Γ

hγ = h .

Because ω · hϕ ∈ Hω ϕω−1 , we get

hϕ ◦ ω−1 = ω · hϕ = hω ϕω−1 . (3.24)

Let (x, ϕ), (y, ω) ∈ Go Γ and f := Ψ(h). Then

f
(
(x, ϕ) • (y, ω) • (x, ϕ)−1

)
= f

(
xϕ(y) (ϕω ϕ−1)(x−1) , ϕ ω ϕ−1

)
:= hϕω ϕ−1

(
xϕ(y) (ϕω ϕ−1)(x−1)

)
= hϕω ϕ−1

(
ϕ(y)

)
= hω(y)

=: f(y, ω) ,

where in the third equality we used the twisted conjugation property of elements in Hϕω ϕ−1 , and
in the fourth equality we used (3.24).

Now we define

Φ : C`2(Go Γ) −→ HΓ , f 7−→ hf =
∑
ϕ∈Γ

hfϕ ,

where hfϕ(x) = f(x, ϕ). We show that the image of the map Φ indeed lands in HΓ. First we show

that hfϕ ∈ Hϕ for ϕ ∈ Γ. Let x, y ∈ G and compute

hfϕ
(
x y ϕ(x−1)

)
:= f

(
x y ϕ(x−1), ϕ

)
= f

(
(x, idG) • (y, ϕ) • (x, idG)−1

)
= f(y, ϕ) = hfϕ(y) ,
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where in the third equality we used the twisted conjugation invariance of f . Next we show that hf

is Γ-invariant:

(ω · hf )(x) =
∑
ϕ∈Γ

(ω · hfϕ)(x)

=
∑
ϕ∈Γ

hfϕ
(
ω−1(x)

)
=
∑
ϕ∈Γ

f
(
ω−1(x), ϕ

)
=
∑
ϕ∈Γ

f
(
(1, ω) • (ω−1(x), ϕ) • (1, ω)−1

)
=
∑
ϕ∈Γ

f
(
x, ω ϕω−1

)
=
∑
ϕ′∈Γ

f
(
x, ϕ′

)
= hf (x) ,

where in the fourth equality we used again the twisted conjugation invariance of f and changed
summation variable in the sixth equality.

Clearly the maps Ψ and Φ are inverse to each other.

Theorem 3.25. The orbifold theory of two-dimensional Yang-Mills theory with gauge group G
and with orbifold defect ⊕

ϕ∈Γ

Lϕ

is two-dimensional Yang-Mills theory with gauge group Go Γ.

Proof. We need to compute the regularised Frobenius algebra structure on C`2(GoOut(G)) given
by the orbifold theory. This is done by computing the orbifold theory on the generators of Bordarea

2 .
The computations are similar to those for the cylinder in the proof of Proposition 3.22, so here we
provide less details.

For the cup with area a we pick the defect network and cell decomposition

ωω

idG

out

A

where we identify the two dashed edges on the two sides. The value of the state sum area-dependent
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quantum field theory on this is

ιA

1

|Γ|
∑
ω∈Γ

HidG

πHidG

=
1

|Γ|
∑
ω∈Γ

HidG

πHidG

ω−1

ω

=

HidG

πHidG

We similarly obtain

HidG

ιHidG
|Γ|

for the value of the area-dependent quantum field theory on the cap with the defect network and
cell decomposition

ωω

idG

in

B

Finally let us turn to the pair of pants with two ingoing circles and one outgoing circle:
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AB4

ϕ

ω

A1

A3

A2

B2

B1

B3

ξ

ϕ ξ−1ω λ−1

λ

ξ ϕ ξ−1

λω λ−1

λ

ξ

(γ = λω λ−1 ξ ω ξ−1)

ζ

γ ζ−1
ζ

in in

out

γ

ζ γ ζ−1

To this decomposition the state sum area-dependent quantum field theory assigns the morphism

1

|Γ|3
∑

ξ,λ,ζ∈Γ

ιB4

Hζ γ ζ−1

πHζ γ ζ−1

λ−1 ξ−1

ζ−1

ιHϕιHω

Hω Hϕ

λω λ−1

γ−1

λω λ−1

ξ ϕ ξ−1

=
1

|Γ|3
∑

ξ,λ,ζ∈Γ

λ−1 ξ−1

ιHϕιHω

Hω Hϕ

Hζ γ ζ−1

πHζ γ ζ−1

ζ−1

ξ ϕ ξ−1=
1

|Γ|3
∑

ξ,λ,ζ∈Γ

λ−1 ξ−1

ιHϕιHω

Hω Hϕ

Hζ γ ζ−1

πHζ γ ζ−1

ζ−1

=
1

|Γ|2
∑
%,ν∈Γ

Hν ω ν−1 %ϕ %−1

πHν ω ν−1 %ϕ %−1

%ϕ %−1

ν−1 %−1

ιHϕιHω

Hω Hϕ

(3.26)

Let f, g ∈ C`2(G o Γ) ' HΓ with components fω = f( · , ω) and gω = g( · , ω) for ω ∈ Γ. The
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morphism in (3.26) acts on these functions as

f ⊗ g 7−→ 1

|Γ|2
∑

ϕ,ω,%,ν∈Γ

(
fν ω ν−1 ◦ (%ϕ %−1)

)
∗ g%ϕ %−1 =

∑
σ,κ∈Γ

(fκ ◦ σ) ∗ gσ =
∑
σ,κ∈Γ

fσ−1 κσ ∗ gσ

which maps

(x, γ) 7−→
∑
σ,κ∈Γ

(
fσ−1 κσ ∗ gσ

)
(x) δκσ,γ =

∑
σ∈Γ

(
fσ−1 γ ∗ gσ

)
(x) ,

as fσ−1 κσ ∗ gσ ∈ Hκσ. On the other hand we have

(f ∗ g)(x, γ) =
1

|Γ|
∑
κ∈Γ

∫
G

dy f(y, κ) g
(
(y, κ)−1

• (x, γ)
)

=
1

|Γ|
∑
κ∈Γ

∫
G

dy fκ(y) gκ−1 γ

(
κ−1(y−1 x)

)
=

1

|Γ|
∑
κ∈Γ

∫
G

dy fκ(y) gγ κ−1

(
y−1 x

)
=

1

|Γ|
∑
σ∈Γ

(
fσ−1 γ ∗ gσ

)
(x) .

Altogether we have shown that multiplying by |Γ| is an isomorphism of regularised Frobenius

algebras C`2(Go Γ)
'−−→ HΓ.

3.5 Orbifold equivalence and the backwards orbifold

We can translate the statement of Theorem 3.25 into an adjoint equivalence in the orbifold comple-
tion Borb

YM [CR16] of the topological defect bicategory of two-dimensional Yang-Mills theories BYM,
which is idempotent complete by Proposition 3.12. Since the objects of BYM are bimodules in the
symmetric monoidal category H ilb, and the left and right duality morphisms can be related by
the symmetric braiding, it follows that the defect bicategory BYM is pivotal, similarly to the case
of topological field theories.

Proposition 3.27. There are adjoint equivalences in Borb
YM :

KKL : (L, LKL) � (K,KKK) : LKK and KKL : (L, LLL) � (K,KK ⊗L KK) : LKK .

Proof. Observe that LKL ' LK ⊗K KL. Then use [CR16, Proposition 4.4] get the second adjoint
equivalence.

By [CR16, Proposition 4.3], K ⊗L2(G) K has the structure of a strongly separable symmetric
Frobenius algebra, which we will describe in more detail now. We will see that K ⊗L2(G) K is a
Wilson line defect, which is isomorphic to a defect coming from a group symmetry exactly when Γ
is abelian.
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Proposition 3.28. 1. K ⊗LK ' K ⊗H as K–K-bimodules. The left K-action is by multipli-
cation on the K factor and the right K-action is

L HH

L H H L H

(3.29)

where we used the isomorphism Φ : L oH
'−−→ K from Part 1 of Proposition 3.17. Denote

this K–K-bimodule by (K ⊗H)ind.

2. Consider H = L2(Γ) as a left Γ-module with action given by (γ · φ)ω = φω γ for ω, γ ∈ Γ and
φ ∈ H, and consider the pullback of H along the projection G o Γ −→ Γ which we denote
again by H. Write (K ⊗H)Wilson for the K–K-bimodule structure given by Example 3.13.
The left K-action is by multiplication on the K factor and the right K-action is given by

L H H L H

L H H

(3.30)

3. The map

L H H

L H H

Ψ =

is a K–K-bimodule isomorphism Ψ : (K ⊗H)ind −→ (K ⊗H)Wilson.

4. The bimodule (K⊗H)Wilson is a direct sum of invertible bimodules if and only if Γ is abelian.

Proof. For Part 1, the idempotent DK,K0 projecting onto the relative tensor product is the weak-
coupling limit

DK,K0 = lim
a→0

K

K

L H

HL

= lim
a→0

L H

HLL H

L H

=

L H

HLL H

L H
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We can factorise this as DK,K0 = ι ◦ π, where

L L H

H

= ι = lim
a→0

K

K

L H

H

=

L H H

L H L HK

K L H

H

π =

H

L H

We first show π ◦ ι = idK⊗H :

π ◦ ι = lim
a→0

K

K

H

H

= lim
a→0

K

K

H

H

= lim
a→0

K

K

H

H

= idK⊗H .

Now we show ι ◦ π = DK,K0 :

ι ◦ π = lim
a→0

K L H

= lim
a→0

K L H

K L H

K L H

= lim
a→0

K L H

K L H

= DK,K0
.

The induced action can be computed in a similar way as

K K H L

HK

π ◦ ρK⊗LK ◦ ι =

H

and after writing out the right action of L on K we get (3.29).

For Part 2 we compute the right K-action on (K ⊗ H)Wilson for f, g ∈ L and δϕ, δω, δγ ∈ H
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with ϕ, ω, γ ∈ Γ:

(f ⊗ δϕ ⊗ δω) · (g ⊗ δγ)

=

[
(x, σ) 7−→

∫
G

dy
1

|Γ|
∑
κ∈Γ

f
(
x (σ κ−1)(y−1)

)
δϕ
(
σ κ−1

) (
κ−1 · δω) g(y) δγ(κ)

]

=

[
(x, σ) 7−→

∫
G

dy
1

|Γ|
∑
κ∈Γ

f
(
xϕ(y−1)

)
δϕγ(σ)

(
γ−1 · δω

)
g(y) δγ(κ)

]

=

[
(x, σ) 7−→ 1

|Γ|

∫
G

dy f
(
xϕ(y−1)

)
δϕγ(σ) δω γ g(y)

]
=

[
(x, σ) 7−→ 1

|Γ|

∫
G

dz f
(
x z−1

)
δϕγ(σ) δω γ g

(
ϕ−1(z)

)]
=
(
f ∗ (δϕ · g)

)
⊗ δϕγ ⊗ δω γ ,

where in the first step we used the delta-functions, in the second step we used the action of Γ on
H, and finally the invariance of the integral. This is exactly the right K-action in (3.30).

For Part 3, we use Part 1 to read off the right K-action on (K ⊗H)ind to be

(f ⊗ δϕ ⊗ δω) · (g ⊗ δγ) =
(
f ∗ (δϕω · g)

)
⊗ δϕ ⊗ δω γ .

Since Ψ obviously commutes with the left K-actions, we only need to show that Ψ commutes with
the right K-actions:

Ψ(f ⊗ δϕ ⊗ δω) · (g ⊗ δγ) = (f ⊗ δϕω ⊗ δω) · (g ⊗ δγ) =
(
f ∗ (δϕω · g)

)
⊗ δϕω γ ⊗ δω γ ,

Ψ
(
(f ⊗ δϕ ⊗ δω) · (g ⊗ δγ)

)
= Ψ

(
(f ∗ (δϕω · g))⊗ δϕ ⊗ δω γ

)
=
(
f ∗ (δϕω · g)

)
⊗ δϕω γ ⊗ δω γ .

Clearly Ψ is an isomorphism.

Part 4 follows from the facts that L2(Γ) '
⊕

c∈Γ̂
V ⊕vcc as Γ-modules, where vc = dimVc and

Vc is a representative of the conjugacy class c, and that all simple Γ-modules are one-dimensional
if and only if Γ is abelian.

As a consequence of Propositions 3.27 and 3.28 we get the defect for the backwards orbifold:

Theorem 3.31. The orbifold theory of two-dimensional Yang-Mills theory with gauge group GoΓ
and with orbifold Wilson line defect

L2(Go Γ)⊗ L2(Γ)

is two-dimensional Yang-Mills theory with gauge group G.
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