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Abstract

Multi-Object Tracking (MOT) is most often approached
in the tracking-by-detection paradigm, where object detec-
tions are associated through time. The association step nat-
urally leads to discrete optimization problems. As these
optimization problems are often NP-hard, they can only
be solved exactly for small instances on current hard-
ware. Adiabatic quantum computing (AQC) offers a solu-
tion for this, as it has the potential to provide a consid-
erable speedup on a range of NP-hard optimization prob-
lems in the near future. However, current MOT formulations
are unsuitable for quantum computing due to their scaling
properties. In this work, we therefore propose the first MOT
formulation designed to be solved with AQC. We employ an
Ising model that represents the quantum mechanical sys-
tem implemented on the AQC. We show that our approach
is competitive compared with state-of-the-art optimization-
based approaches, even when using of-the-shelf integer pro-
gramming solvers. Finally, we demonstrate that our MOT
problem is already solvable on the current generation of
real quantum computers for small examples, and analyze
the properties of the measured solutions.

1. Introduction
Multi-Object Tracking (MOT) is a task in computer

vision that requires solving NP-hard assignment prob-
lems [29,30,50]. To make this feasible, the community pro-
posed a range of different approaches: work on the problem
formulation using domain knowledge helps to make it an
easier to solve problem [29,50], approximate solvers extend
the feasible problem size [30], and the combination of deep
learning with simple heuristics can be seen as a data-driven
approach to the problem [8, 12]. Nevertheless, integer as-
signment problems remain hard optimization tasks for any
available solver. With the recent progress in quantum com-
puting, a new way of solving such optimization problems
becomes feasible in the near future [1, 36, 51].

Instead of iteratively exploring possible solutions, e.g.

Figure 1. The proposed approach to MOT states the assignment
problem between detections and a set of tracks as a quadratic un-
constrained binary optimization task. We then represent the op-
timization problem as a quantum mechanical system that can be
implemented on an AQC. Via quantum annealing, a minimum en-
ergy state is found that represent the best assignment.

via branch and bound, the problem is mapped to a quan-
tum mechanical system, whose energy is equivalent to the
cost of the optimization problem. Therefore, if it is possi-
ble to measure the lowest energy state of the system, a so-
lution to the corresponding optimization problem is found.
This is done with an adiabatic quantum computer (AQC),
which implements a quantum mechanical system made
from qubits and can be described by the Ising model [31].
Using this approach, a quantum speedup, which further
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scales with system size and temperature, has already been
shown for applications in physics [35, 36].

While there is a range of advantages that quantum com-
puting can provide in the future, mapping a problem to an
AQC is not trivial and often requires reformulating the prob-
lem from scratch, even for well investigated tasks [4,6]. On
the one hand, the problem needs to be matched to the Ising
model, on the other hand, real quantum computers have a
very limited number of qubits and are still prone to noise,
which requires tuning of the model to handle the limitations.

In this work we present the first quantum computing
approach to MOT. The number of required qubits in our
formulation grows linearly in the number of detections,
tracks and timesteps and only requires entanglement be-
tween qubits to model long-term relations. Our overall con-
tributions are the following:

• A quantum computing formulation of MOT that is
competitive with state-of-the-art methods.

• A method using few problem measurements to find La-
grange multipliers that considerably improve solution
probability.

• Extensive MOT experiments on synthetic as well as
real data using a D-wave AQC.

The remaining paper is structured as follows: After pre-
senting related work, the basics of quantum computing are
introduced. This is followed by our MOT formulation that
is optimized to run on an AQC. We then show the changes
required to make the problem solvable also with the classi-
cal computing paradigm. Finally, experiments on a D-wave
quantum computer are presented together with results on
larger problem instances.

2. Related Work
Quantum computing applications have recently started

to emerge across a range of fields that rely on discrete op-
timization, as adiabatic quantum computers have become
accessible. The applications include examples such as
gene engineering [21], interaction reconstruction in parti-
cle physics [13], traffic flow optimization [44], or route se-
lection in robotics [45]. In computer vision, discrete opti-
mization is a ubiquitous part of many applications. While
these applications frequently rely on heuristics today, quan-
tum computing has the potential to provide an efficient way
of directly solving them. In the area of 3D vision, quan-
tum computing has been used by Feld et al. [19] for opti-
mizing geometry compression. Benkner et al. [3] use adia-
batic quantum computing to match 3D shapes and images
with permutation matrices and investigate different con-
straint formulations to optimize the probability of finding
a correct solution. By using an iterative approach, the same
authors are able to scale the approach up to larger problem
instances [4]. Closest to our work is the contribution of

Birdal et al. [6]. They map the permutation synchroniza-
tion task to an optimization problem solvable on a quantum
computer and show results on small problem instances.

Multi-object tracking describes the problem of track-
ing all objects belonging to a predefined set of object types
in 2D [14, 38, 41, 43] or 3D [10, 11, 23]. Most competi-
tive trackers follow a tracking by detection approach, where
a set of detections is given in every frame and the trackers
perform association between frames, interpolation of occlu-
sions, and rejection of false-positive detections. While most
approaches use deep learning to generate appearance fea-
tures [47, 52, 56, 57], two major groups of data assignment
approaches exist. The first one maps the matching step to
a deep learning task [8, 12, 55, 59] and uses simple heuris-
tics to resolve the remaining inconsistencies. This allows
for training the complete pipeline end-to-end, without the
direct requirement to define a cost for data association. The
second group directly performs data association using dis-
crete optimization algorithms [29, 30, 39, 46, 48, 50], which
is stated as a network flow optimization problem in most
cases. These formulations allow to include long-term rela-
tions [29], and prior information about the nature of tracks
in an intuitive and transparent way. Nevertheless, these
properties come at a high computational cost. As most
of the proposed optimization problems are NP-hard [22],
a considerable effort was invested in finding heuristics and
approximate solvers for them [30].

3. Preliminaries on Quantum Computing

Quantum computers are systems operating in a state that
is described by its quantum properties, such as superposi-
tion and entanglement. By exploiting these properties, a
range of problems that quickly grow in complexity on clas-
sical computers and thus, cannot be solved in any reason-
able timeframe, could be solved considerably faster [20]
by a quantum computer. Reaching such a point is widely
referred to as quantum primacy. Even though implemen-
tations of quantum computers are still heavily experimen-
tal, some problems have already been shown to profit from
them, including the sampling of pseudo-random quantum
circuits [2, 53] and Gaussian boson sampling [58].
Qubits are two-state quantum-mechanical systems that
form the basis of quantum computers. Like a bit, a qubit
has two basis states |0〉 = [1 0]T and |1〉 = [0 1]T that in
a superposition form the qubit’s state. Qubits can be real-
ized with a wide range of approaches, including supercon-
ducting circuits, ions trapped in an electromagnetic field, or
photons.
Quantum Superposition refers to the property of a quan-
tum system that it is not required to be in one of the basis
states, but rather can be described by a linear combination
of possible basis states. A qubit in a pure state |ψ〉 can be
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described with its two basis states {|0〉 , |1〉} as

|ψ〉 = c1 |0〉+ c2 |1〉 (1)

where c1 and c2 are complex numbers, called probability
amplitudes, with |c1|2 + |c2|2 = 1.
Measurement of a qubit state results in one of the basis
states {|0〉 , |1〉}. The probability of measuring |0〉 and |1〉
evaluates to |c1|2 and |c2|2, respectively [28]. As a mea-
surement corresponds to an observation of the qubit it leads
to wave function collapse, which means that the qubit state
is changed irreversibly [24].
Entanglement of qubits is at the very heart of quantum
computing [32]. A system of entangled qubits is repre-
sented by a system state where each qubit cannot be de-
scribed only with its own state but depends on the state of
the remaining system [17,27,37,40,49]. Thus, measuring a
single qubit can collapse the wave function of other entan-
gled qubits, which alters their state and therefore, also their
measurement outcome [24].

3.1. Adiabatic Quantum Computing

Adiabatic quantum computing [18, 51] is an approach
that, instead of using gates as unitary operations on sub-
sets of the available qubits [15], uses a problem Hamilto-
nian ĤP that describes the operation applied on all qubits
simultaneously. The problem Hamiltonian is designed such
that its ground-state, which is the lowest energy configura-
tion of the system, represents the result for a computational
task [1]. In general, a Hamiltonian Ĥ(t) is an operator that
represents the energy of a quantum system and can be used
in the Schrödinger equation to describe the system’s evolu-
tion over time as

i~
∂

∂t
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 , (2)

where i is the imaginary unit, and ~ the reduced Planck con-
stant.

As the ground-state of the problem Hamiltonian is hard
to find, the complete system is initialized with an ini-
tial Hamiltonian ĤB that has an easy to prepare ground-
state [18]. The system’s Hamiltonian is then slowly evolved
over an annealing time T to the problem Hamiltonian in an
adiabatic transition [7, 34]

Ĥ(t) = (1− t/T)ĤB + t/TĤP , (3)

which is a transition where the system stays in its basis state.
This process is called quantum annealing and needs to be
repeated for multiple measurements, as in a noisy system,
not all solutions have the lowest energy. The condition for
a sufficiently slow evolution depends mostly on two fac-
tors, the temperature of the environment and the spectral
gap of the Hamiltonian, i.e. the difference between lowest

and second-lowest energy level or eigenvalue. While the
first is a system property, the second can be influenced by
choosing a suitable Hamiltonian [3].

The Hamiltonian describing current adiabatic quantum
computers such as the D-wave advantage, is based on the
Ising model [33]. The Ising model uses the Hamiltonian

Ĥising =
∑
i,j

Ji,jσiσj +
∑
i

hiσi, (4)

where σ ∈ {−1,+1} corresponds to the spin of a particle,
Ji,j represent the interaction between two particles and hi
is an external magnetic field. In an adiabatic quantum com-
puter, the particles’ spins are represented by the qubit states
and the interactions and external field correspond to the cou-
plings. The lowest energy of the Ising model is equivalent
to solving the associated quadratic unconstrained binary op-
timization (QUBO)

arg min
z

zTQz + bT z, (5)

which is NP-hard and known to be very challenging for
classical solver. As this task can directly be implemented
on an adiabatic quantum computer, a considerable speedup
for large problem instances is expected in the future.

4. Quantum MOT
Most existing optimization-based approaches to MOT

aim at finding feasible relaxations [30], implement efficient
heuristics in the solution approach [29] or use deep learn-
ing together with post-processing [8] to solve the assign-
ment problem. With the considerable amount of work in-
vested into them, the problem became solvable for growing
instances by now. Nevertheless, the assignment problem
stays an NP-hard task to solve and growth is thus limited.
Quantum computing with the associated speedup on hard
problems can provide a solution to this challenge, even if
the corresponding optimization problem is much harder to
solve with classical approaches at the moment. However,
representing tasks in a form suitable for quantum computing
often requires a completely new formulation of the problem
and MOT is not different in this aspect.

While widely used flow formulations [29,30,39] are suit-
able for exploiting sparsity, they come with a large set of in-
equality constraints, which makes them intractable on near-
future quantum computers that are limited in the number of
qubits. In this context, permutation matrices were shown
to be a powerful tool for synchronization or shape match-
ing [3, 4, 6]. In the following, we therefore propose a for-
mulation based on assignment matrices that grows linearly
in the number of required qubits for detections, tracks and
frames. Furthermore, it allows to model long-term connec-
tions with terms in the cost-matrix that do not require addi-
tional qubits.
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MOT Formulation. We approach the MOT problem fol-
lowing the tracking by detection paradigm and use a fixed
set of available tracks. Given a set of detections in each
frame of a video, appearance features are extracted for
each detection. By using a multi-layer Perceptron, pair-
wise appearance similarities between detections at different
timesteps are computed [30]. Starting with this, the goal of
the tracking algorithm is to assign each detection to a track,
such that the sum of the similarities of detections assigned
to a single track is maximized. In this context, a track is
defined by its track ID t and each detection in a frame f by
its detection ID d.

We formulate the given task of assigning detections to a
joint set of tracks using assignment matrices, which relax
the assumptions of permutation matrices. The binary as-
signment matrix Xf for a frame f maps a vector of detec-
tion indices to a vector of tracks at every frame of a video.
The elements xdt ∈ {0, 1} of the assignment matrix rep-
resent the connections between detections d and tracks t.
Given D − 1 detections and T − 1 tracks, the assignment
matrix assigns a detection to a track if xdt = 1. The re-
quirement that a single detection is assigned to a track at
one timestep, leads to the constraint

D∑
d=1

xdt = 1 ∀t ∈ {1, ..., T − 1}. (6)

And reversely, Equation 7 asserts that every detection is as-
signed to a single track

T∑
t=1

xdt = 1 ∀d ∈ {1, ..., D − 1}. (7)

To allow for false-positive detections as well as to han-
dle the case of fewer detections than available tracks, one
dummy-detection and one dummy-track, with the respec-
tive indices D and T , are introduced. A detection assigned
to the dummy-track is treated as a false positive and a track
that got the dummy-detection assigned to it is inactive or
occluded. As the dummy-track and dummy-detection may
be assigned multiple times, constraints 6 and 7 do not ap-
ply to them. To model tracks in a sequence consisting of F
frames, a single assignment matrix Xf is required for each
frame f , mapping the detections to tracks.

Quadratic Form. The basis for optimization-based track-
ers are costs between pairs of detections, where the cost is
accounted for if two detections are connected by a common
track. The goal of the tracker is to find a solution that mini-
mizes the total cost associated with the assignment. Our ap-
proach using assignment matrices leads to a quadratic cost
for a pair of frames i, j that reads

cij =
∑
t

∑
di

∑
dj

xiditqdidjxjdjt, (8)

with xidit and xjdjt being entries from the assignment ma-
trices Xi and Xj respectively and qdidj as the correspond-
ing similarity score. It is important to note that only de-
tection pairs assigned to the same track incur a cost, which
results in a single sum over the tracks t.

Equation 8 can be written in matrix form as

cij = vec(Xi)
TQijvec(Xj), (9)

with vec(X) as a row-major vectorization of the corre-
sponding assignment matrices and Qij as the cost matrix
of the frame-pair. The maximum frame gap ∆fmax that is
modeled in our approach depends only on the density of the
cost matrix. To include a connection between frames i and
j, the matrix Qij needs to be filled with the correspond-
ing similarity scores. The cost matrix Qij is sparse, as it
also represents all terms that correspond to detection pairs
matched to different tracks, which add no cost. Further-
more, no cost is associated with the mapping of a frame to
itself, which includes the main diagonal of Q.

A complete sequence consisting of F frames, can be rep-
resented with the stacked assignment matrix

z = [vec(X1)T , ..., vec(XF )T ]T . (10)

And the corresponding cost

c =

F∑
i=1

F∑
j=1

cij = zTQz, (11)

where Q is a block-matrix made from all Qij .

QUBO form. To solve the proposed MOT assignment
problem with an adiabatic quantum computer it further
needs to be represented as a QUBO task with {−1,+1}
spin states. This consists of two steps, firstly eliminating
the constraints and secondly substituting the variables.
1) Constraints are represented using a Lagrangian multi-
plier λ. As our formulation does not include inequalities,
no additional slack variables with corresponding qubits are
required. Given the original quadratic program with con-
straints

arg min
z

zTQz + bT z s.t. Gz = d, (12)

a QUBO can be formulated as

arg min
z

zTQ′z + b′
T
z (13)

with

Q′ = Q + λGTG (14)

b′ = −2λGTb. (15)
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2) Variables are substituted by replacing the optimization
variables z ∈ {0, 1} with s ∈ {−1, 1} by using z = 1/2(s+
1) the resulting optimization problem reads

arg min
s

sTQs+b′T s with b′T = 2(bT+1TQ). (16)

Lagrangian Optimization. Solving the Lagrangian
would require solving a problem in both discrete and
continuous optimization variables (assignment, and La-
grangian multipliers, respectively). To solve the problem
using AQC, we presented a constant penalty reformulation
in the previous paragraph, which fixes the Lagrangian
multipliers λ. In such an approach, if λ is large enough,
constraint satisfaction is guaranteed. More precisely, a
quadratic equality constraint reformulation of the form

λ||Gz− d||22, (17)

is used in Equations 14 and 15, which allows to only con-
sider positive Lagrangian multipliers λ. Even though λ
needs to be just large enough from a theoretical perspective,
in practice it should be as small as possible. This is espe-
cially relevant for AQC, as with a high λ the conditioning
of the corresponding Hamiltonian in the AQC gets worse.
This should be avoided as it results in a lower probability of
finding the correct solution in each measurement.

Thus, in practice a problem dependent bound for the
minimum penalty term λmin should be used. One approach
to reduce the spectral gap is to estimate an individual λi
for each constraint Gix = di using upper bounds. While
such bounds can be computed, they are not tight in many
cases. We, therefore, propose a heuristic to estimate the
Lagrangian multipliers λi that closely match their minimal
value λi,min. Each multiplier is modeled by

λi = λb + λ′i + λoff, (18)

where λb is a small base value that resolves the easy to fulfill
constraints, λ′i is estimated during the optimization proce-
dure and λoff is an offset to increase the spectral gap.

Starting with λ′i = 0 and λoff = 0 for all constraints,
the QUBO is solved using annealing. In general, this will
result in a solution zλ that does not fulfill the constraints.
As in our formulation, only positive violations result in a
cost improvement, i.e. Gz ≥ d, the cost reduction of a
constraint violation can be estimated as

ai(zλ) = 2(zTGQzλ −min (zTG ◦Qzλ))/v2i , (19)

zTG = (Gi ◦ zTλ ) (20)
vi(zλ) = Gizλ − di, (21)

where zG are the variables masked with Gi, vi is the degree
of violation and ◦ is the Hadamard product. To fulfill the
corresponding constraint, we set

λ′i(zλ) = −ai(zλ)− λb + ε, (22)

with a small ε to assert that constraint i is fulfilled in the cur-
rent setting. While this can be evaluated for all constraints
simultaneously, the full procedure needs to be performed
iteratively, as not all constraints may be violated in the op-
timal solution. Nevertheless, the set of measurements re-
turned by the AQC can be used to reduce the number of re-
quired iterations. Instead of taking a single best solution, all
solutions zj that are close to the optimal solution are evalu-
ated and merged as λ′i = maxj λ

′
i(zj). In our formulation,

these can be solutions where the track order is permuted.
After estimating the Lagrangian multipliers, the total

cost matrix scale is small, nevertheless, the same also holds
for the spectral gap, as the cost of not fulfilling constraints
is small. Therefore, the additional offset λoff is added to the
Lagrangian multipliers.

Similarity Cost. We use the same approach for cost gen-
eration as AP-lift [30], where multi-layer Perceptrons are
used to regress the similarity score between pairs of detec-
tions. Features used to compute this score are the intersec-
tion over union (IoU) of aligned boxes and the dot-product
between DG-Net [57] appearance features. DG-Net fea-
tures are generated with the network trained on the MOT15
dataset [38] together with [47,52,56]. To generate the MLP
input vector, the features are normalized with a global con-
text [29], which results in a total of 22 features [30]. Fur-
thermore, assigning the dummy-detection to a track incurs
no cost and assigning a detection to the dummy-track, i.e.
labeling it as a false-positive, corresponds to a small nega-
tive value β. This is required to prevent the assignment of
single detections to tracks.

Post Processing. Even in an offline setting, long se-
quences cannot be represented as a single optimization
problem and need to be split into a set of overlapping sub-
problems. We set the overlap to the modeled frame gap,
and match tracks using the common frames. Matching is
stated as a linear sum problem that maximizes the number
of detections that are jointly assigned to tracks in both sub-
problems. As multiple subsequent tracks can be modeled
by a single track ID, tracks that are interrupted longer than
the maximum modeled frame gap ∆fmax are separated.

Problem Scaling. One important aspect when designing
algorithms for current and near-future quantum computers
is the required number of qubits. Many current formula-
tions of MOT grow quickly in size w.r.t. the number of
detections, tracks, frames and the length of the modeled
frame gap. In contrast to this, the number of qubits in our
approach only grows linearly in the number of detections,
tracks and frames. Furthermore, by using a quadratic op-
timization problem, longer frame gaps can be modeled by
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additional entries in the cost matrix, which correspond to
additional couplings between qubits.

While on short sequences the number of possible tracks
needs to be at least as high as the total number of tracks,
long sequences can profit from a saturation of the required
number of tracks. After a track has terminated, there is
no cost associated with assigning new detections if they
have a distance of more than the maximal frame gap ∆fmax
from the previous track. Therefore, multiple subsequent
real tracks can be modeled by a single track ID and easily
be separated in post-processing.

5. Traditional Solvers

While our formulation is advantageous when solved on
an adiabatic quantum computer, publicly available real sys-
tems have not yet reached a scale where large experiments
can be performed. We, therefore, use classical solvers to
show the results of our approach on real-world tasks, even
though a quadratic problem formulation is known to be hard
in this context. A common requirement of solvers to per-
form quadratic binary optimization via branch and bound is
the convexity of the continuous relaxation of the problem.
This corresponds to a positive-definite cost matrix Q, i.e. a
matrix with only positive eigenvalues, which is not fulfilled
for the given cost matrix in most cases.

5.1. Hessian Regularization

A common approach to enforce positive eigenvalues is
adding an identity matrix scaled by ε. As this changes the
cost function and thus the optimal solution, small values
need to be used for ε, making this approach only suitable
for compensating small negative eigenvalues. Neverthe-
less, investigating the constraints of our formulation leads
to a sparse diagonal matrix E that can be added to the cost
matrix Q without changing the optimal solution. With the
same approach of grouping the total cost matrix into blocks
between frames as in Equation (11), the following definition
of E is provided in blocks between frames. As only diag-
onal elements are relevant, blocks between different frames
are zero matrices Eij = 0|i 6= j. The blocks on the diag-
onal, which represent the mapping of a frame i to itself Eii
are diagonal matrices defined by the diagonal elements

eidt =

{
e d ∈ {1, ..., D}, t ∈ {1, ..., T − 1}
0 t = T

. (23)

The indices refer to the position on the diagonal that corre-
spond to detection d and track t. Given a block’s assignment
matrix Xi, the total cost of the block after adding the diag-
onal term is

cii = vec(Xi)
T (Qii + Eii)vec(Xi) = e(T − 1), (24)

with Qii = 0 and T tracks in total. The intuition behind
the definition is given in the following and the full proof is
provided in the supplementary material.

Given a binary problem, any diagonal entry adds cost if
a variable is active. In the detection track assignment prob-
lem, this corresponds to adding a constant if a detection is
assigned to a track. As constraint 6 asserts that exactly one
detection (real- or dummy-detection) is assigned to every
real track each time-step, having a cost e for the assignment
adds this cost for each of the T − 1 real tracks. As the con-
straint does not apply for the dummy-track with index T
and an arbitrary number of detections may be assigned to it.
Therefore, the same argument would not hold and we can
not add an additional cost to these entries (eikl = 0|t = T ),
without influencing the total cost function.

6. Experiments and Results
AQC experiments are performed on a D-wave Advantage
4.1 [42]. The system contains at least 5000 qubits and
35,000 couplers implemented as superconducting qubits [9]
and Josephson-junctions [26] respectively. Every qubit of
the D-wave Advantage is connected to 15 other qubits,
which needs to be reflected in the sparsity pattern of the cost
matrix. If a denser matrix is required, chains of qubits are
formed that represent a single state. The actual parameters
can vary due to defective qubits and couplers. All exper-
iments are performed using an annealing time of 1600µs
and an additional delay between measurements to reduce
the inter-sample correlation. In the following, a single mea-
surement refers to the combination of an annealing cycle
and the subsequent measurement.
Simulated annealing is used to evaluate our approach in a
noise-free setting. We use the simulation provided by D-
wave for this purpose.
Classical solvers are used to demonstrate the performance
of the proposed algorithm on the full MOT15 dataset. All
experiments using classical solvers are performed using
Gurobi [25] with CVXPY [16] as a modeling language.

6.1. Lagrangian Multiplier

Fixed Lagrangian multipliers represent the basic approach
to include constraints in the QUBO. We run experiments
with synthetic tracking sequences where object detections
are in random order. The scenarios are defined by their sim-
ilarity scores, which we set to 0.8 for a match and -0.8 for
different objects. Furthermore, we add Gaussian noise with
variance σ2 to the similarity scores and subsequently trun-
cate them to [−1, 1]. In the experiments 3 detections over
5 frames and a noise level between σ = 0.2 to σ = 1.0
is used. The tracking parameters are set to 4 tracks and a
maximal frame-gap of ∆fmax = 3 frames.

Results generated with simulated annealing are shown in
Figure 2, where the top plot shows the solution probabil-
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Figure 2. Solution probability and energy levels using simulated
annealing for different noise levels and changing λ.

ity for different noise levels over an increasing Lagrangian
multiplier. For each λ, 4096 measurements are performed.
The lower plot shows the histogram over the energy of the
returned solutions for a noise level of σ = 0.6. The correct
solution can be seen at an energy level of −38.6.

With increasing noise level, the solution probability for
the best value of λ reduces considerably, which can be ex-
plained by the energy histogram. As described in Section
3.1, a low spectral gap, i.e. the difference between the low-
est and second-lowest energy level, reduces the probability
of the AQC staying in its ground state and thus, the prob-
ability of finding the correct solution. In the energy plot,
the spectral gap is visible as the distance between the en-
ergy band of the correct solution and the next higher energy
band, given a sufficiently high λ, such that the correct solu-
tion has the lowest energy.

Tracking with the D-wave advantage is performed on a
problem with 3 detections over 4 frames and noise levels
σ ∈ {0.0, 0.1, 0.2}. Results using 4000 measurements for
each setting are shown in Figure 3. Solution probabilities
are lower compared to simulated annealing and high energy
solutions are returned more often. This can be explained by
the high noise of current AQCs.

Optimized Lagrangian multipliers are introduced to im-
prove the spectral gap of the normalized cost matrix. We
perform the same tracking tasks as for fixed Lagrangian
multipliers, but evaluate the results w.r.t. the offset term
λoff. Results generated with simulated annealing are shown
in Figure 4. Optimization of the Lagrangian multipliers is
initialized with a base value of λb = 0.5. The probabil-
ity of finding the right solution is increased and stays high
over a large range of λoff compared to only using a single
λ. Furthermore, the best solution probability for each of
the noise levels is better than the optimum for a fixed La-
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Figure 3. Solution probability and energy levels using quantum
annealing for different noise levels and changing λ.
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Figure 4. Solution probability and energy levels using simulated
annealing and optimized λi for different noise levels over λoff.

grangian multiplier. This has two advantages: first, fewer
measurements are needed to find the correct solution and
secondly, less effort needs to be invested to find a good set-
ting for λ. Results for the problem with an optimized La-
grangian multiplier with λb = 1.0 solved on the AQC are
shown in Figure 5. When optimally tuned for σ = 0, our
method returns the best solution in 4.8% of the measure-
ments, compared to 3.5% when using a fixed multiplier.
Furthermore, even without an additional offset λoff = 0,
the best solution is returned in 0.8% of the measurements.

6.2. MOT15

We use the MOT15 dataset [38] to show that our method
performs on par with state-of-the-art tracking methods. For
this dataset, GUROBI [25] is used to find a solution for
the optimization problem. The sequence is evaluated in
segments of 20 frames using a maximum frame gap of
∆fmax = 10. As binary quadratic problems are very hard to
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Figure 5. Solution probability and energy levels using quantum
annealing and optimized λi for different noise levels over λoff.

Method MOTA IDF1 MT ML FP FN IDs

Te
st

Lif T [29] 52.5 60.0 244 186 6837 21610 730
MPNTrack [8] 51.5 58.6 225 187 7260 21780 375
ApLift [30] 51.1 59.0 284 163 10070 19288 677
MFI TST [54] 49.2 52.4 210 176 8707 21594 912
Tracktor [5] 44.1 46.7 130 189 6477 26577 1318
Ours 49.9 53.5 187 179 5924 24032 1689

X
-v

al AP lift 59.6 67.8 237 133 8897 10150 283
Ours 59.7 67.6 234 134 8720 10214 370

Table 1. Results on MOT15 [38]. X-val refers to results on the
training set using leave-one-out cross validation.

solve with classical approaches, it is not possible to find an
optimum solution for segments that contain a high number
of tracks. In these cases, we terminate the optimization after
900 s on a single segment and use the best solution found.

For comparisons, ApLift [30] is closest to our method,
as it uses the same set of similarity features. On the test set,
we achieve a MOTA-score of 49.9% and perform only 1.2%
below ApLift, even though it models gaps up to 50 frames.

For a comparison under similar settings, we evaluate
our method and ApLift [30] with the same frame gap of
∆fmax = 10. As MOT15 does not contain a validation
set, we use leave one out cross-validation on all samples of
the training set for a fair comparison. In this scenario, our
method improves by 0.2% over ApLift in MOTA score.
An explanation for this is that the MOT15 test set contains
more detections in each frame on average (10.6 vs. 7.3)
than the training set. In this case, there are more sequences
where the classical solver does not find a solution and thus,
generates a non-optimal result.
MOT15 with AQC. To show that tracking with an AQC
already scales to small real-world examples, a part of the
PETS09-S2L1 sequence is used. As the problem size has to
be limited, three tracks that contain two occlusions, are ex-
tracted between frames 121 to 155. We execute our pipeline

Figure 6. Frames from the extracted sequence tracked on the AQC.
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E 0
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0.0

0.1

0.2

p

Figure 7. Energy of measurements returned by performing track-
ing of the PETS09-S2L1 sequence on the D-wave Advantage. The
bar-plot shows the probability of measuring the optimal solution.

on segments of 5 frames with 3 tracks, a maximum frame-
gap of 3, and optimized Lagrangian multipliers. The sub-
problems are solved on the D-wave Advantage with 1600µs
annealing time and 500 measurements per segment. The
most relevant frames that highlight occlusions are shown in
Figure 6. The normalized energy E−E0 levels of the mea-
surements for each subproblem are shown at the top of Fig-
ure 7 and the corresponding probabilities p of measuring the
right solutions are plotted in the lower one. The subprob-
lems 5 and 10 correspond to the two occlusions highlighted
in Figure 6. These are harder to solve problems, as multi-
ple solutions with small differences in their energy exist and
thus, they have a lower solution probability.

7. Conclusion

In this work, we proposed the first quantum computing
formulation of MOT. We demonstrated that current AQCs
can solve small real-world tracking problems, and that our
approach closely matches state-of-the-art MOT methods.
Current limitations stem from the proposed formulation be-
ing optimized to run on an AQC. As QUBO is know to
be hard using classical approaches and as current AQCs
are still at an experimental stage, problems are limited to a
small scale. Nevertheless, quantum computing has the po-
tential to make much larger problems feasible in the future.
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Supplementary: Adiabatic Quantum
Computing for Multi Object Tracking

8. Introduction
The supplementary material aims at giving a more thor-

ough insight into the technical details of our work and at
highlighting results obtained using simulated and quantum
annealing. First, we prove that Hessian regularization does
not influence the minimizer of the binary optimization prob-
lem in Section 9. After this, more details on matching mul-
tiple subproblems in post processing are provided in Sec-
tion 10 and a further analysis of measurements generated
using simulated and quantum annealing is presented in Sec-
tion 11. Finally, detailed results on the MOT15 challenge
are shown in Section 12 and furthermore, also visualized in
the accompanying video.

9. Hessian Regularization
The following proof shows that the optimum solution is

not influenced by the additional diagonal terms introduced
in Section 5.1 of the main paper. This holds given a binary
optimization problem and the constraints in Equations (6)
and (7).

cii = vct(XT
i )Eiivct(Xi) (25)

=diag
T∑
t=1

D∑
d=1

x2iditedit (26)

=bin
T∑
t=1

D∑
d=1

xiditedit (27)

=

T−1∑
t=1

D∑
d=1

xiditedit +

D∑
d=1

xidiT ediT (28)

=(22)
T−1∑
t=1

D∑
d=1

xidite+

D∑
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xidiT 0 (29)

= e

T−1∑
t=1

D∑
d=1

xidit (30)

=(6) e

T−1∑
t=1

1 (31)

= e(T − 1) (32)

10. Post Processing
To allow the handling of long sequences that cannot be

represented as a single optimization problem, the sequence
needs to be split into overlapping subproblems. We split a
long sequence in equally sized subproblems with an overlap
similar to the modeled frame gap. After tracking each sub-
problem separately, tracks are matched between each pair

of neighboring subproblems by solving a linear sum prob-
lem that can be solved in polynomial time. The optimization
goal is to maximize the number of detections that are jointly
assigned to tracks matched in both subproblems. The linear
sum optimization problem for matching subproblems k and
k + 1 is stated as

max
xij∈{0,1}

Tk∑
i=1

Tk+1∑
j=1

xijmij s.t.

∑Tk

i=1 xij ≤ 1∑Tk+1

j=1 xij ≤ 1,
(33)

where xij are the optimization variables indicating an as-
signment of track i in segment k to track j in segment
k+1, The considered tracks Tk and Tk+1 are the tracks that
have at least one detection assigned to them in the frames
overlapping between both subproblems. mij is the number
of detections shared by tracks i and j in the overlapping
frames, which furthermore is set to a small negative value if
tracks i and j have no overlap.

11. Annealing Energy Distribution
Results from simulated as well as quantum annealing

with synthetic data are presented in Figures 8, 9, 10, and
11. In each of the figures, the topmost plot shows the prob-
ability of finding the correct solution and the plots below
show the measurement energy for increasing noise levels
from top to bottom.

Fixed Lagrangian. Results for a fixed Lagrangian multi-
plier are shown Figures 8 and 9 for real and synthetic data
respectively. For simulated annealing, the Lagrangian mul-
tiplier is in the range λ ∈ [2, 5] and with noise levels be-
tween σ = 0.2 to σ = 1.0. For quantum annealing the
ranges are λ ∈ [1, 5] and σ ∈ [0.0, 0.3] respectively.

For quantum as well as for simulated annealing, the spec-
tral gap decreases with increasing noise levels, and thus,
also the corresponding solution probability. When compar-
ing the two approaches with each other, it becomes apparent
that quantum annealing often returns high energy solutions,
which corresponds to a higher temperature of the currently
available systems.

Optimized Lagrangian. Results for optimized La-
grangian multipliers are shown in Figures 10 and 11 for
real and synthetic data respectively. Noise parameters are
the same as for fixed Lagrangian multipliers and the La-
grangian offset λoff is in the range λoff ∈ [0, 2] for both
approaches.

Following the same rules as for fixed Lagrangian mul-
tipliers, the spectral gap and corresponding solution prob-
ability decreases with increasing noise level. Comparing
Figure 10 to Figure 8 reveals that in simulation a consider-
able improvement can be achieved by using optimized La-
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seq MOTA IDF1 MT ML FP FN IDs Density [38] Tracks [38] Boxes [38] FPS [38]

X
-V

al

Venice-2 41.6 50.0 13 1 2178 1855 135 11.9 26 7141 30
KITTI-17 79.6 83.6 6 0 5 130 4 4.7 9 683 10
KITTI-13 33.5 57.8 13 11 197 293 17 2.2 42 762 10
ADL-Rundle-8 26.7 51.4 18 3 3587 1336 49 10.4 28 6783 30
ADL-Rundle-6 63.3 53.7 11 1 228 1570 40 9.5 24 5009 30
ETH-Pedcross2 46.2 59.9 28 74 127 3216 27 7.5 133 6263 14
ETH-Sunnyday 78.1 87.0 19 6 110 295 2 5.2 30 1858 14
ETH-Bahnhof 47.3 67.5 98 38 1933 895 24 5.4 171 5415 14
PETS09-S2L1 83.2 76.9 17 0 341 351 58 5.6 19 4476 7
TUD-Campus 75.5 75.4 4 0 9 72 7 5.1 8 359 25
TUD-Stadtmitte 81.6 80.8 7 0 5 201 7 6. 10 1156 25
OVERALL 59.7 67.6 234 134 8720 10214 370 7.3 500 39905 -

Te
st

Venice-1 44.4 49.0 6 3 656 1839 42 10.1 17 4563 30
KITTI-19 48.2 60.1 14 17 528 2191 49 5.0 62 5343 10
KITTI-16 52.7 67.1 3 1 120 666 19 8.1 17 1701 10
ADL-Rundle-3 50.0 47.4 10 7 653 4346 81 16.3 44 10166 30
ADL-Rundle-1 38.2 49.9 12 2 2365 3313 73 18.6 32 9306 30
AVG-TownCentre 52.7 57.0 58 35 363 2767 250 15.9 226 7148 2.5
ETH-Crossing 62.3 75.1 7 8 38 335 5 4.6 26 1003 14
ETH-Linthescher 56.5 62.3 45 89 342 3493 48 7.5 197 8930 14
ETH-Jelmoli 51.0 65.5 18 13 522 701 19 5.8 45 2537 14
PETS09-S2L2 50.1 38.7 2 4 312 4259 243 22.1 42 9641 7
TUD-Crossing 85.7 81.6 12 0 25 122 11 5.5 13 1102 25
OVERALL 49.9 53.5 187 179 5924 24032 840 10.6 721 61440 -

Table 2. Results on the MOT15 [38] training and test set. Results on the training set are generated using leave-one-out cross validation
(X-Val).

grangian multipliers. Also for quantum annealing an ad-
vantage can be achieved, nevertheless, it is smaller than in
simulated annealing, which can be explained by the higher
noise level that results in high energy solutions.

12. MOTChallenge 2015

Detailed results for our method on each sequence in the
MOT15 [38] training and test set are provided in Table 2.
While the results on both sets are competitive with current
state-of-the-art methods [30], the performance on the train-
ing set with leave one out cross-validation is higher than on
the test set.

The difference can be explained by the harder examples
represented by it. While both splits contain a similar num-
ber of frames (5500 frames and 5783 frames respectively),
the number of tracks, detected boxes and the correspond-
ing density is approximately 45% higher in the test set and
thus, also the complexity and size of the optimization prob-
lem. As our formulation is designed for AQC using an Ising
model, the resulting optimization problem is a quadratic bi-
nary program and thus, hard to solve on classical hardware.
This becomes apparent for two sequences in the test set,
AVG-TownCentre and PETS09-S2L2 with a high density of

15.9 and 22.1 and low frame rate of 2.5 fps and 7 fps re-
spectively. The two sequences account for only 27.3% of
the total detections, but for 58.7% of the ID switches. ID
switches are a good measure for the tracker’s performance
in this case, as they are less influenced by the performance
of the object detector than FP and FN. Due to the larger
size of these problems, the optimization cannot finish for
all segments within the given time frame and thus, returns a
sub-optimal solution.

Even though the problem size is a limitation when solv-
ing the problem on classical hardware, it can be resolved
when future AQCs become available. As the overall per-
formance is similar to current state-of-the-art methods on
MOT15 [38], it can be expected that it scales up to larger
datasets accordingly and thus, provides the basis to develop
AQC based formulations of the MOT task.
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Figure 8. Solution probability and energy levels using simulated
annealing for noise levels σ ∈ {0.2, 0.4, 0.6, 0.8, 1.0} and chang-
ing λ.
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Figure 9. Solution probability and energy levels using quantum
annealing for noise levels σ ∈ {0.0, 0.1, 0.2} over λ.
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Figure 10. Solution probability and energy levels using sim-
ulated annealing and optimized λi for noise levels σ ∈
{0.2, 0.4, 0.6, 0.8, 1.0} over λoff.
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Figure 11. Solution probability and energy levels using quantum
annealing and optimized λi for noise levels σ ∈ {0.0, 0.1, 0.2}
over λoff.
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