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Efficient approaches to quantum control and feedback are essential for quantum technologies,
from sensing to quantum computation. Pure control tasks have been successfully solved using op-
timization techniques, including methods like gradient-ascent pulse engineering (GRAPE) , relying
on a differentiable model of the quantum dynamics. For feedback tasks, such methods are not
directly applicable, since the aim is to discover strategies conditioned on measurement outcomes.
There, model-free reinforcement learning (RL) has recently proven a powerful new ansatz. What is
missing is a way to combine the best of both approaches for scenarios that go beyond weak mea-
surements. In this work, we introduce feedback-GRAPE, which borrows concepts from model-free
RL to incorporate the response to strong stochastic (discrete or continuous) measurements, while
still performing direct gradient ascent through the quantum dynamics. We illustrate its power
on a Jaynes-Cummings model with feedback, where it yields interpretable feedback strategies for
state preparation and stabilization in the presence of noise. This approach could be employed for
discovering strategies in a wide range of feedback tasks, from calibration of multi-qubit devices to
linear-optics quantum computation strategies, quantum-enhanced sensing with adaptive measure-
ments, and quantum error correction.

I. INTRODUCTION

The application of optimal-control techniques to quan-
tum systems [1, 2] forms a cornerstone of modern quan-
tum technologies, ranging from the tailoring of laser
pulses acting on molecules to the synthesis of unitaries in
multi-qubit systems as part of the ”compilation” of quan-
tum algorithms for specific hardware platforms. Since
the equations of quantum dynamics are explicitly known
and even differentiable, one can exploit this knowledge
and specifically make use of powerful gradient-based
techniques. The most prominent approach is ”gradient-
ascent pulse engineering” (GRAPE)[3, 4], with its effi-
cient evaluation of gradients, together with its variants.
GRAPE has been employed to find optimal control se-
quences for spin systems [3, 5, 6], coupled qubits [7, 8],
an implementation of the Jaynes-Cummings model [9],
and qubit-cavity lattices [10], among many other exam-
ples. It has also been used to optimize open dynam-
ics [11, 12], has been turned into an adaptive approach
to cope with parameter uncertainties [13], and has been
extended to second-order optimization techniques [14].
Other efficient gradient-based optimal control approaches
have also been presented recently (e.g. [15]).

However, there is one crucial extension that is not eas-
ily addressed by such gradient-based techniques: feed-
back. Conditioning the control sequence based on the
stochastic outcomes of quantum measurements is an im-
portant component of many more challenging tasks [16].
It allows to remove entropy from the system and is there-
fore essential in applications like state preparation and
stabilization in the presence of noise [17–21], adaptive
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measurements [22], or quantum error correction with its
syndrome extraction (e.g. [23–26]). Feedback strategies
live in a space that is combinatorially larger than that of
pure control strategies, since every sequence of measure-
ment outcomes may require a different response.

Feedback is a natural ingredient of reinforcement learn-
ing (RL)[27], a set of methods from the domain of ma-
chine learning. These methods consider the interaction of
an agent (a controller) with an environment (a system).
In particular, in the very powerful and flexible so-called
model-free RL approaches, the internal dynamics of the
environment need not be known but is rather treated
as a black box. During the last few years, a number
of groups have demonstrated numerically the promise of
model-free RL for quantum physics. This included both
pure control tasks (e.g. [28–31], even in an experiment
[32]) but in particular also the more challenging quantum
real-time feedback tasks that rely on adaptive responses
to measurement outcomes [33–36].

As mentioned above, model-free RL approaches treat
the quantum system as a ”black box”. On the one hand,
this can be an advantage in applying it to experimen-
tal setups whose parameters are partially unknown (as
emphasized e.g. in [32, 35]). On the other hand, much
of the training time is spent in learning (implicitly) a
model of the dynamics while simultaneously attempting
to find good feedback strategies. This can make learning
relatively inefficient.

It would therefore seem desirable to combine the best
aspects of direct gradient-based approaches (making use
of our knowledge of the differentiable quantum dynam-
ics) and model-free RL (with its natural incorporation of
feedback to stochastic measurements). In this work, we
present such a technique, which we refer to as ’feedback-
GRAPE’. It keeps the ability to exploit gradients through
the quantum dynamics, while also allowing for feedback
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to stochastic quantum measurements. It borrows a cer-
tain idea from policy gradient, a subclass of model-free
RL, but instead of applying gradients to a policy (proba-
bilistic choice of actions), we apply gradients to the prob-
ability of measurement outcomes, in addition to the con-
tinuous deterministic dynamics that would be the domain
of GRAPE and similar methods.

The procedure to be presented enables us in par-
ticular to deal with the outcomes of strong stochastic
measurements, both discrete and continuous, with arbi-
trary probability distributions. The special limiting case
of weak Gaussian-distributed measurements, which does
not yet require the mathematical treatment that we will
introduce, has recently been considered by Schäfer et al.
[37], which can thus be considered an important first step
towards the general method we are going to discuss here.
Another aspect of our approach is that it is well-suited for
the application of automatic differentiation techniques.
Such techniques have recently been suggested as a con-
venient tool for optimal quantum control in a number of
works, namely [38] and subsequent articles [39–42], which
also include open-systems dynamics treated by quantum
jump trajectories [43].

Overall, the technique we introduce here, feedback-
GRAPE, is conceptually simple: GRAPE-type gradient
ascent for the continuous control parts (possibly imple-
mented using automatic differentiation for convenience;
and in any case exploiting modern gradient optimizers),
supplemented with stochastic sampling of measurement
outcomes, plus the addition of an important required
’correction term’ to the overall cost/reward function (for
discrete measurement outcomes). Although the method
is general, we find that it works particularly well for
feedback sequences with a modular structure, i.e. where
building blocks like unitaries and measurements are com-
bined in discrete time steps. These are useful scenar-
ios, since it may become easier to interpret the resulting
strategies. We illustrate the power of feedback-GRAPE
in a series of different tasks. All these example tasks are
based on the physical scenario of a Jaynes-Cummings
model (coupled qubit-cavity system) supplemented with
feedback. This scenario is closely related to modern
quantum computing experimental platforms.

When viewed from the general perspective of reinforce-
ment learning, the feedback-GRAPE approach to be pre-
sented here can be classified as a model-based RL tech-
nique, although this categorization includes a wide range
of approaches (sometimes even including model-free RL
applied to model-based simulations).

In the following, we will first present the general
method, then provide illustrative numerical examples,
and finally discuss further extensions.

II. FEEDBACK-GRAPE METHOD

We consider a general dissipative quantum system with
feedback (for an overview of the scheme, see Fig. 1). Sup-
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FIG. 1. Quantum feedback control with strong measure-
ments. (a) Such feedback tasks combine smooth, differen-
tiable dynamics in Hilbert space with measurement-induced
jumps. (b) This work integrates model-based techniques re-
lying on gradients and feedback to strong stochastic measure-
ments. (c) Schematic decision-tree representation of a feed-
back strategy for discrete measurement outcomes. Intervals of
differentiable evolution with optimizable control functions F jθ
depend on the sequence of outcomes m1, . . . ,mj . In general,
the evolution can be dissipative.

pose measurements are performed at times t1, t2, . . . , tN ,
and the evolution is controlled – in a manner to be opti-
mized – based on the corresponding measurement out-
comes mj . Specifically, the control parameter (which
might be a vector) applied during the time interval
[tj , tj+1] can be written as some function of all previous
measurement results,

F jθ (mj ,mj−1, . . . ,m1). (1)

Here we anticipated that the feedback-control functions
F jθ are parametrized, depending on parameters θ that
will be optimized via gradient ascent (θ is typically a

high-dimensional vector). We assume F jθ to be differ-
entiable with respect to θ, though not necessarily with
respect to the measurement results, which may or may
not be discrete (more on that below). For brevity, we will

sometimes write F jθ (m), it being understood that F jθ can
only depend on outcomes up to and including mj . Ulti-

mately, the value of F jθ will be provided by a neural net-
work, or, alternatively, a lookup table: we comment on
these different approaches further below, but the present
considerations are independent of this aspect. In prac-
tice, the control vector F jθ might enter a Hamiltonian or
directly a parametrized unitary gate. On a minor note,
in some scenarios, during the first time interval [0, t1],
one might apply a control F 0 that does not depend on
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any previous measurement outcomes but can still be op-
timized.

With this notation in place, the time evolution of the
system’s density matrix, for a particular measurement
sequence m = m1,m2, . . ., can be written in the general
form

ρ̂(T |m) = Φ(m)(FNθ , F
N−1
θ , . . . , F 0

θ )[ρ̂(0)] (2)

where Φ(m) is the map that depends on the control pa-
rameters and implements the quantum-dissipative time
evolution throughout the whole time interval [0, T ], con-
ditioned on the given fixed sequence m of measurement
outcomes. Note that our definition implies that Φ(m) it-
self is not a completely positive (CP) map, because it
contains the renormalization of the quantum state re-
quired after each measurement (it implements a ”quan-
tum instrument”), which introduces a nonlinear depen-
dence on the initial state. To obtain the unconditional
average quantum state, the average 〈. . .〉m of this ex-
pression may be taken over all possible measurement se-
quences, weighted with their respective probabilities.

Eq. (2) is valid formally even if the overall evolution
is non-Markovian. It can be simplified in the important
Markovian case. Then, evolution proceeds step-wise. Let
us denote by Φj the CP map for the continuous evolution
during the time interval [t+j , t

−
j+1], where t− is shorthand

for a time point just prior to the measurement at t, and
correspondingly t+ is right after the measurement. Then
we have ρ̂(t−j+1) = Φj(F

j
θ (m))[ρ̂(t+j )]. In the special case

of unitary dynamics, the evolution itself simplifies further
to ρ̂(t−j+1) = Ûj(F

j
θ (m))ρ̂(t+j )Ûj(F

j
θ (m))†. Here ρ̂(t−j+1)

is understood to be the quantum state at time tj+1 for
a fixed sequence m1, . . . ,mj of previous measurement
outcomes, just prior to the next positive-operator-valued
measure (POVM) measurement implemented at tj+1.

This measurement is described by some
POVM element that can be written in the form
M̂(m′)†M̂(m′), with the POVM normalization condi-

tion
∑
m′ M̂(m′)†M̂(m′) = 1 and M̂ ≡ M̂j+1 depending

on the physics of the measurement. It will yield
a particular outcome mj+1 ≡ m′ with probability

P (m′) = tr[M̂(m′)†M̂(m′)ρ̂(t−j+1)] and an updated state

ρ̂(t+j+1) = M̂(m′)ρ̂(t−j+1)M̂(m′)†/P (m′).
Our goal is to maximize some overall cumulative re-

ward R, which is called ”return” in the nomencla-
ture of reinforcement learning. For example, in a
state-preparation task this might be the final fidelity
with respect to some target state σ̂. For a given
sequence m of outcomes, we would define R(m) =(

tr
√√

σ̂ρ̂(T |m)
√
σ̂

)2

. This would be averaged even-

tually over all possible measurement outcome sequences
to yield R̄ = 〈R(m)〉m. The return R could also involve
penalties for suppressing larger control amplitudes etc.
These additional contributions depend on the specific se-
quence m as well, via the controls F jθ (m).

It might now seem straightforward to employ auto-
matic differentiation for optimizing R̄ via gradient as-

cent, updating δθ = η ∂R̄∂θ , with some learning rate η and
with all parameters combined in a vector θ.

The crucial observation to be made at this stage is that
the introduction of stochastic measurement results into
this scheme requires some extra care. The following con-
siderations constitute the main conceptual steps needed
to enable the discovery of feedback-based quantum con-
trol strategies based on gradient ascent.

We have to distinguish between discrete and continu-
ous measurement outcomes, which require substantially
different treatment.

For the particularly interesting discrete case (e.g.
strong projective qubit measurements), the essential in-
sight is that the probabilities P for obtaining the different
measurement outcomes themselves depend on all the con-
trols F jθ applied during previous time intervals, simply
because the quantum state itself carries this dependence.
This has to be taken care of during the evaluation of gra-
dients with respect to θ. Illustrating this in the case of a
single measurement at time t1 ∈ [0, T ], we have

〈R〉m =
∑
m

P (m|ρ̂(t−1 ))R(Φ1(F 1
θ (m))[ρ̂(t+1 )]) (3)

Here P (m|ρ̂) is the probability for measurement outcome
m given state ρ̂. As we take the gradient with respect to
the parameters θ, we observe that the derivative acts not
only on the returnR based on the time-evolved state (the
second factor inside the sum) but also on the probability
P (m) itself, due to its dependence on the initial control,
ρ̂(t−1 ) = Φ0(F 0

θ )[ρ̂(0)].
Generalizing this observation, we cannot simply im-

plement gradients of the measurement-averaged return
R̄ = 〈R(m)〉m by averaging the gradient of the
sequence-specific return, 〈∂R(m)/∂θ〉m. Rather, ob-
serve 〈R(m)〉m =

∑
m P (m)R(m). Thus, when eval-

uating ∂〈R(m)〉m/∂θ, we will get two contributions:
∂[R(m)P (m)]/∂θ = P (m)∂R(m)/∂θ+R(m)∂P (m)/∂θ.
To enable stochastic sampling of the second term, we
rewrite it using ∂P (m)/∂θ = P (m)∂ lnP (m)/∂θ. This
then leads to:

∂ 〈R(m)〉m
∂θ

=

〈
∂R(m)

∂θ

〉
m

+

〈
R(m)

∂ lnPθ(m)

∂θ

〉
m

.

(4)
Here we displayed explicitly the parameter-dependence
of Pθ(m), which represents the probability of the full se-
quence of outcomes m = (m1,m2, . . .), given the parame-
ters θ that determined the shape of the control functions
F jθ .

The mathematics for the extra term appearing here,
with the gradient of the log-likelihood, is well known
from policy-gradient-based approaches in model-free re-
inforcement learning. However, there this term appears
for a different reason. It arises due to the deliberate
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FIG. 2. Quantum feedback sequences considered within
feedback-GRAPE, set up for automatic differentiation. (a)
The measurement samples a stochastic outcome mt, adopt-
ing a different method depending on whether the outcome
is continuous or discrete. In both cases, the probability dis-
tribution depends (in a differentiable way) on the learnable
parameters θ, via the preceding unitary controls that have
generated the present quantum state ρθ. Depending on the
measurement outcome, a learnable control F is applied that
may be implemented either via a neural network or a lookup
table. (b) Full sequence. This consists of repeated application
of the blocks depicted in (a), plus subsequent implementation
of unitary controls depending on F , potentially with decay
and decoherence included in the model of the system’s evo-
lution. When optimizing the overall return R using gradient
ascent, a correction term needs to be taken into account (in
the case of discrete outcomes).

choice of implementing stochastic controls, in order to
avoid any need to take gradients through the possibly
unknown dynamics of the system to be controlled (and
also in order to treat discrete actions without giving up
gradients). In our case, by contrast, we do take gradients
through the known dynamics and the controls themselves
are deterministic when conditioned on a fixed sequence of
measurements. The randomness enters via the stochas-
tic measurement outcomes (these are observations of the
”environment” in RL language).

Due to the sequential nature of the control procedure,
the log-likelihood term can be rewritten as a sum of
contributions, lnPθ(m) =

∑
j lnPθ(mj |mj−1, . . . ,m1).

Thus, during the individual time evolution trajectory,
this term may be easily accumulated step by step, since
the conditional probabilities are known (these are just
the POVM measurement probabilities). The gradients of
Eq. (4) can then be taken for such an individual trajec-
tory (or rather a batch), substituting stochastic sampling
for an exact average over m. The whole approach, with
its calculational pipeline, is schematically illustrated in
Fig. 2.

We note in passing that there is a special case in
which things can be simplified: if the return R̄ is de-
fined only to depend on the average state 〈ρ̂(T )〉m itself,
we can exploit that this state can be obtained directly as

a sum over measurement results, without any probability
weights: in the example above, one finds 〈ρ̂(T |m)〉m =∑
m Φ1(F1(m))[M̂(m)Φ0(F 0

θ )[ρ̂(0)]M̂(m)†]. In this ex-
pression, formally no normalization factors are needed,
and gradients could be taken directly. However, not only
does this approach preclude Monte-Carlo evaluation of
the sum via stochastic sampling (which is important for
efficiency in the case of long measurement sequences or
many outcomes), but this assumption about R̄ is also
very restrictive. It excludes even some of the most im-
portant cases, like a return that tries to maximize the av-
erage fidelity instead of the fidelity of the average state.
It also excludes many useful contributions to the return,
such as those based on control amplitudes (that depend
on m), as well as, for example, penalties for large fluctu-
ations of the sequence-specific fidelity, or in general the
return being an average of some nonlinear function of
the density matrix, such as the purity

〈
trρ̂2

〉
m

. We will
therefore not consider this special case further.

The evaluation of the gradients of the return with re-
spect to the parameters θ can proceed in two different
ways, using either automatic differentiation (see below)
or exploiting analytical approaches to obtain explicit ex-
pressions for the gradients that can then be evaluated
numerically. In the latter case, one can either set up evo-
lution equations for the parameter-gradient of the quan-
tum state, ∂θρ̂ or, in the suitable scenario, directly apply
a modified version of the original GRAPE technique to
efficiently evaluate the gradients. We describe both of
these procedures in detail in appendix A. In the language
of current machine learning concepts, taking the gradi-
ent through the continuous-evolution intervals would be
generally speaking an example of the concept of neural
ordinary differential equations, a rather recent develop-
ment [44].

Alternatively, and sometimes more conveniently, the
whole evolution pipeline described above can straight-
forwardly be implemented in an automatic differentia-
tion framework, such as TensorFlow[45], PyTorch, JAX,
or others. Gradients of the resulting overall return and
of the log-probability can then be obtained using that
framework without extra effort. The sequence of discrete
measurement outcomes of a given trajectory is consid-
ered fixed when taking the gradient in this manner. The
automatic-differentiation approach is particularly help-
ful and efficient in cases where the whole time evolu-
tion can be split into many building blocks (parametrized
gates, i.e. unitaries, acting during fixed time intervals),
as is common practice for many quantum control tasks
in present quantum computing platforms. Whenever this
latter situation is encountered, it also aids interpretabil-
ity, as we will see in the numerical examples.

As we remarked at the beginning, the central quantity
of our approach are the measurement-dependent controls
F jθ (m1,m2, . . . ,mj). For accessing those, one can simply
adopt a lookup table, at least for the case of discrete mea-
surements discussed up to now and when the total num-
ber of measurements during the full time evolution is not
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too large. The table for F jθ needs M j entries, if there are
M possible outcomes for each measurement, correspond-
ing to the exponentially many possible sequences. In that
case, the entries of this table would directly represent the
parameters θ for which we perform gradient ascent. Al-
ternatively, the controls F jθ (m) can be implemented via
a neural network that takes measurement results as in-
put and maps those to the current control vector. Since
the number of available measurement results is different
for each time step j, one may choose to set up a differ-
ent network at each j. However, training efficiency and
generalization ability can be improved by constructing
a single recurrent network, i.e. a network with mem-
ory that is employed in sequence processing tasks [46].
It takes the temporal sequence of measurements as in-
put, one step at a time, producing a control vector at
each such time step. This approach can possibly gen-
eralize to infinitely long feedback control sequences, for
example during state stabilization tasks. An alternative,
also network-based approach replaces the measurement
results by the full current quantum state, conditioned on
these results. This carries the same information, and it
might sometimes be easier for the network to learn. In
the course of our numerical experiments, to be detailed
later, we did not observe a single approach to outperform
the others in all scenarios.

Continuous measurement outcomes can be treated in
exactly the same way as discrete ones. However, for that
scenario there also exists an alternative, which obviates
the need for the logarithmic-likelihood correction term:
we can adopt a general version of what is known as the
’reparametrization trick’ in stochastic neural networks
(e.g. in variational autoencoders). The idea is that we
can generate a stochastic variable z according to some
fixed probability density and then transform this into the
required measurement probability density p(m|ρ̂), which
does depend on control parameters (via the state ρ̂, as
explained above) and must be subjected to gradients.
This parameter-dependent transformation can be imple-
mented in a differentiable way, as we now show. We
first obtain the cumulative distribution function f(m) =∫m
−∞ p(m′|ρ̂)dm′, by discretizing p as a vector on a lattice

and using a cumulative sum for an Euler approximation
of the integral (this operation exists in frameworks like
TensorFlow). We then draw a random uniformly dis-
tributed z ∈ [0, 1] and invert f(m). The last step also
needs to be performed in a differentiable way. One option
is to set m = f−1(z) ≈ ∑n m̃nH(z − zn)H(zn+1 − z).
Here zn = f(mn) defines the lattice version of f , H is the
Heaviside step function, the sum ranges over the lattice
points, and m̃n solves the piecewise linearized approx-
imation of m = f−1(z) associated with the interval n:
m̃n = (mn+1 −mn)(z − zn)/(zn+1 − zn) + mn. The set
of measure zero where the gradient is undefined can be
ignored (as is common practice in using activation func-
tions like rectified linear units in neural networks).

In this way, one can implement, within the automatic
differentiation framework, for example measurements of

discrete variables with continuous outcomes. A typical
case would be a qubit measurement with m = σ + ξ,
where σ = ±1 is the qubit state and ξ some measure-
ment noise of density q(ξ). Formally, p(m|ρ̂) =

∑
σ q(m−

σ)ρσσ, and M̂(m) =
∑
σ

√
q(m− σ) |σ〉 〈σ|. One can

also perform measurements on continuous variables, e.g.
a weak measurement of position, p(m|ρ̂) =

∫
dxq(m −

x)ρ(x, x), with M̂(m) =
∫
dx
√
q(m− x) |x〉 〈x|. The

dependence of the probability density p in each case
on the parameters determining the control functions at
earlier times will be correctly taken into account, and
one can now use the straightforward formula ∂R̄/∂θ =
〈∂R(m)/∂θ〉m for stochastic sampling of the gradient.
Note that the discrete-outcome case (above) and the
continuous-outcome case can also be easily combined in
our approach.

So far, controls have been continuous and represented
via functions (differentiable with respect to parameters)
depending on previous measurement results. However,
sometimes one might want to also take discrete actions,
e.g. deciding whether some measurement should be per-
formed at all or not, or whether some fixed qubit gate
should be applied. This can be incorporated without
any substantial changes to the approach discussed here,
borrowing from policy-gradient model-free reinforcement
learning, by introducing stochastic actions a, in contrast
to the deterministic continuous actions discussed so far:
use a network or a lookup-table to calculate the probabil-
ity P (a|m) of taking a discrete action a given the previous
measurement record m and then sample from all actions
accordingly. Now a new log-likelihood term lnP (a|m),
stemming from these action probabilities, needs to be
accumulated and treated in the same way in the overall
gradient ascent as explained for stochastic discrete mea-
surement outcomes above.

III. NUMERICAL EXAMPLES

We now turn to an illustration of the feedback-GRAPE
method by solving several different quantum feedback
control tasks in a paradigmatic scenario relevant for
quantum technologies. For this purpose, we chose the
Jaynes-Cummings model, i.e. a qubit coupled to a cav-
ity. This is a well-known system that first emerged as
the simplest light-matter coupling scenario in quantum
optics [47, 48] but is nowadays of practical relevance for
modern quantum-computing platforms [49]. In those, it
is employed both for qubit-readout and for qubit-enabled
nonlinear manipulation of cavity states.

The Jaynes-Cummings model has the additional ad-
vantage of featuring an exact solution for a specific quan-
tum control task, still without feedback: State prepara-
tion of arbitrary cavity states with the help of the qubit,
in the absence of noise. In a groundbreaking work [50],
Law and Eberly showed that this can be achieved by em-
ploying a sequence of steps, each of which involves a rota-
tion of the qubit by some angle, followed by a qubit-cavity
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FIG. 3. Numerical examples: Feedback control tasks in a cavity-qubit system. a) Schematic of the Jaynes-Cummings system
with an additional ancilla qubit used for the measurement. b) Sequence of parametrized controls inside one step, to be repeated
N times. c) State preparation out of the ground state (pure control, no feedback), with target states indicated. Model-free
RL performs very poorly, while the direct gradient-based approach used as the basis for our method converges well. ”Samples”
refers to the number of trajectories generated for gradient ascent. d) Purification of a thermal state (here, with n̄ = 2). An
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visualized in a decision tree. The purple boxes display the measurement parameters (γ/π|δ/π). f)-i) State preparation from
a thermal state (n̄ = 1), employing feedback. f) Gradient-ascent progress for two target states (the curves are smoothed with
a moving average), and g) final infidelity vs total number of time steps. Each point is the best out of 30 runs. h) Evolution
of reduced qubit and cavity state (probability as color) for one trajectory of the converged strategy (target |1〉 + |2〉 + |3〉);
time points of measurements (with results) and controls are indicated as in (b). i) Corresponding decision tree, for the most
probable sequences of measurement outcomes. The red boxes show (α/π|β/π), and ”no meas” means the parameters γ, δ are
such that no measurement takes place. j) Gradient-ascent progress with and without memory. k) Effect of the learning rate
(see legend) during the gradient ascent.

interaction of variable duration. The angles and interac-
tion durations of this sequence form a set of parameters,
which can be found exactly using the Law-Eberly algo-
rithm. This solution has been used to remarkable effect
in experiments with superconducting qubits [51]. It will
serve us as a convenient benchmark for the simpler case
of pure control, forming the starting point of our explo-
ration. In addition, the optimization of control pulses
(without real-time feedback) in the Jaynes-Cummings
model has been explored using GRAPE [12, 52].

However, our interest in the present work is focused
on the application of feedback. Feedback is required
in the presence of noise, e.g. when the initial state is
mixed or when decay or decoherence are present. In
those cases, feedback helps to remove entropy from the
quantum system. To address this, we will extend the
Jaynes-Cummings setting in a suitable way. This can be
done, for example, by coupling to the cavity some ancilla

qubit, which can then be read out to update our knowl-
edge of the cavity’s quantum state. In that scenario, no
protocol is known and suitable feedback strategies have
to be discovered from scratch.

The complete physical situation is shown in Fig. 3a,b.
A cavity is coupled to both a ”control qubit” and an
ancillary ”measurement qubit”. The control qubit ”c”
can be driven externally to implement an arbitrary rota-
tion around an equatorial axis, implementing the uni-
tary gate Ûq(α) = exp

[
−i
(
ασ̂c+ + α∗σ̂c−

)
/2
]
. After-

wards, qubit and cavity mode â can be coupled for
a variable duration, exchanging excitations, Ûqc(β) =
exp
[
−i
(
βâσ̂+ + β∗â†σ̂−

)
/2
]
.

Subsequently, a measurement can take place (this is
where we deviate from the basic pure-control Law-Eberly
scenario). The measurement comprises several steps,
which we will list individually before summarizing their
combined effect on the cavity state. In a first step, the
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ancilla qubit ”a” is prepared in the +x eigenstate. Sub-
sequently it is coupled dispersively to the cavity for a
variable amount of time: Û(γ) = exp

(
−iγσ̂az â†â

)
. This

means the qubit precesses by an angle that depends lin-
early on the number of photons inside the cavity. In the
next, final step, the ancilla qubit is projected along some
selected axis σ̂ax cos δ + σ̂ay sin δ, yielding a discrete result
m ∈ {−1,+1}. This type of measurement (originally pro-
posed in [53]) was indeed an important component e.g. in
several experiments on Rydberg atoms interacting with
microwave cavities [54]. The combined effect of these
operations is to perform a POVM on the cavity, with
outcome probability P (m) = tr[M̂(m)†M̂(m)ρ̂] and an

updated state M̂(m)ρ̂M̂(m)†/P (m). Here ρ̂ is the state
of the qubit-cavity system, excluding the measurement
qubit which has been eliminated in this description. The
measurement operator M̂(m) is given by

M̂(m = +1) = cos(γâ†â+ δ/2) , (5)

and likewise for m = −1, with cos replaced by sin. This
formula indicates that after the measurement the prob-
abilities of the different cavity Fock states |n〉 will be
multiplied by a sinusoidal ”mask”, where the period is
determined by 1/γ and the phase shift is set by both
δ and the measurement outcome m. This helps to pin-
point the state of the cavity, especially when multiple
such measurements are carried out with suitably chosen
periodicities [53] and phase shifts [54].

The set of parameters α, β, γ, δ mentioned here form
the control vector F . Its value will be different for each
step j of the feedback-control sequence and, in particular,
it will depend on previous measurement results: F jθ =

F jθ (m1, . . . ,mj). As explained above, in the feedback-
GRAPE approach, F will be implemented either as a
lookup table or as a neural network. As the number of
measurements increases with time, it is most convenient
to employ a single recurrent neural network.

In our numerical explorations, we will consider four
separate tasks of increasing difficulty: starting with
noiseless state preparation (a pure control task) as a
baseline benchmark for GRAPE-type control in this sce-
nario, then moving to purification (a task that already
benefits from feedback, i.e. adaptive measurements), to
feedback-based state preparation in the presence of noise
and feedback-based state stabilization.

Preparing any (pure) cavity state from the ground
state has the known Law-Eberly solution (reviewed in ap-
pendix B). This can serve as an interesting benchmark to
explore how well different numerical techniques perform.
We set the return R equal to the state fidelity at the final
time step, prescribing a fixed number of time steps. Even
in this simple setting, we encounter a first surprise: State-
of-the-art model-free reinforcement learning is not able
to cope well with this challenge. We employed proximal-
policy optimization (PPO) [55], a powerful and widely
used modern general-purpose advantage actor-critic ap-
proach, to generate the continuous controls. It performs

well only for the very simple task of preparing Fock state
|1〉, while getting stuck at bad final overlaps for higher
Fock states. This statement holds even after training
for many episodes and varying the hyperparameters, and
even for other modern general model-free RL algorithms
that we tried (see Appendix C). In fact, the poor per-
formance of these nominally powerful techniques in this
setting was one of the initial motivations for our develop-
ment of the general feedback-GRAPE method introduced
above.

In contrast, very good results are efficiently achieved,
without particular effort, by using direct gradient ascent
through the unitary evolution in the spirit of GRAPE (in
our case, using the automatic differentiation framework
of TensorFlow and a well-known modern adaptive gradi-
ent optimizer, ’Adam’). In the present example, for the
specific case of pure-state preparation, we found that a
neural network being fed the current quantum state as
input converges better than gradient ascent on the con-
trol parameters themselves, i.e. better than what we have
termed the ’lookup table’ approach (the network-based
results are shown in Fig. 3c). Gradient ascent allows to
find optimal state preparation strategies performing as
well as the known Law-Eberly algorithm even for com-
plex superpositions of Fock states, e.g. a four-component
cat state with n̄ = 9 (cf Fig. 3c). To mitigate local min-
ima, repeated runs may be necessary (see appendix E).

Regardless of these detailed observations, this example
indicates that model-based gradient ascent approaches
can outperform model-free generic methods for optimiz-
ing quantum control in settings relevant for quantum
technologies. Given the large performance difference al-
ready in this simple control scenario, we focused entirely
on the feedback-GRAPE approach in the subsequent ex-
ploration of the more advanced challenges that do include
feedback.

Moving on to a first example of a situation that re-
quires feedback, we will now imagine that the cavity is
initially in a mixed state. The goal will be to purify the
cavity’s state, i.e. the reward is determined by the purity
trρ̂2

cav of the cavity state at the final time. In this case,
we assume there are no qubit-cavity controls (α and β
are not used), but the measurement choices (determined
by δ and γ) can be adaptive, i.e. depend on previous
measurement results.

Fig. 3d shows the results of applying the feedback-
GRAPE method to this problem (labeled ’Adaptive’).
We employ a recurrent neural network to produce the
controls F when provided with the measurement out-
come sequence (more details on numerical parameters
can be found in appendices D,E). As we see, the impu-
rity quickly decreases with the number of allowed mea-
surements, and it does so significantly better than in a
non-adaptive scheme, where the sequence of measure-
ment controls δj and γj is still optimized, but where these
controls are not allowed to depend on previous measure-
ment outcomes. To visualize and analyze the numerically
obtained strategy, we introduce in Fig. 3e a decision tree.
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This is extracted via an automated numerical procedure,
by running many trajectories and noting in each case
the controls suggested by the adaptive strategy. The
controls are a deterministic function of previous mea-
surement outcomes. Such a decision tree will contain
all information about the adaptive strategy learned by
the NN and can possibly allow the user to give it a phys-
ical interpretation and extrapolate analytical solutions
for large numbers of control steps. This might require
to leverage any available physical understanding of the
control operations, e.g. identifying physically significant
values of the control parameters. Using our understand-
ing of the model’s physics, we can choose to (program-
matically) interpret the controls, e.g. trying to represent
them in terms of fractional multiples of π or of π/

√
n

(Fig. 3i has an entry marked l 3 which stands for π/
√

3).
This kind of analysis is optional, and independent of our
method, but it nicely demonstrates what can be usefully
done in settings with discrete measurements, generating
additional insights after running the general-purpose al-
gorithm. For example, here, we were able to take inspi-
ration from the decision tree for four measurements and
a specific value of the temperature to extrapolate the op-
timal purification strategy for any temperature and any
number of measurements, see appendix F.

We now turn to a task that involves both feedback and
control simultaneously. Specifically, we consider state
preparation out of a thermal state, for target states that
are selected as arbitrary superpositions of the first few
Fock states. Results for the state (|1〉+ |2〉+ |3〉)/

√
3 and

a four-component kitten state, built from four coherent
states with n̄ = 2, are shown in Fig. 3f,g. Feedback-
GRAPE converges in about 1000 gradient-ascent steps
(each operating on a batch of 10 sampled trajectories).
We ran the method several times, starting with differ-
ent initial random configurations of the parameters θ,
demonstrating that convergence is robust, despite the
usual absence of a guarantee for such a non-convex opti-
mization problem.

It is interesting to analyze in some more detail the con-
vergence behaviour. As one noteworthy observation, de-
spite the overall very good performance, we sometimes
find that the algorithm may get stuck at suboptimal
solutions if we increase the total number of time steps
available for the feedback sequence (Fig. 3g). Ideally, an
increased number of steps should always lead to an im-
provement (in the present scenario), but apparently the
larger space of control variables then becomes challeng-
ing. This can be mitigated to some extent by running the
gradient ascent repeatedly from random starting condi-
tions.

One motivation for the use of a neural network in-
stead of a lookup table is that the number of parameters
needed for a tree-type table grows exponentially, while
a neural network could in principle make use of a much
smaller number of parameters. Also, it may be expected
that the strategy of a network generalizes to situations
with a number of time steps larger than the one it was

trained on. Despite these obvious advantages of neural
networks, we found (to our surprise) that lookup tables
often converge to better fidelities than networks, in the
present example scenario with feedback. This is evident
in Fig. 3f,g, where we compare three different choices
(a recurrent net, RNN, receiving the measurement se-
quence, a fully-connected NN, receiving the quantum
state, and the lookup table). The reasons for this are
still unclear and merit future investigation.

We note in passing that the difficulty of the control
problem depends of course on the power of the controls
available. The Jaynes-Cummings setting explored here
turns out to be much more challenging than, e.g., the
state-preparation tasks explored recently in [35] with the
help of model-free RL, which relied on much more pow-
erful controls.

What is the nature of the feedback strategies that the
algorithm discovers? Naively, we might expect the follow-
ing strategy: an optimized adaptive purification phase,
of the kind discussed above, leading to some Fock state
|n〉, followed by state preparation that is derived from
the Law-Eberly protocol (e.g. going back down to the
ground state and then building up the arbitrary target
state from there). However, the actual strategies discov-
ered by feedback-GRAPE are significantly more efficient.
They interleave adaptive measurements and controls al-
ready in the first stage of the process. This can be seen
in Fig. 3h,i, where the goal was to prepare the equal su-
perposition (|1〉 + |2〉 + |3〉)/

√
3. Again, it is possible to

obtain more information about the full strategy (as op-
posed to a single trajectory), by extracting a decision tree
(Fig. 3i). There, we observe that measurements are some-
times deliberately performed in such a way that certain
Fock states are completely ruled out (their probability
is set to 0), which requires certain choices of measure-
ment control parameters. Simultaneously, qubit-cavity
interaction cycles are employed to reduce the excitation
number of the cavity.

Quantum state stabilization in the presence of dephas-
ing or decay represents another challenging task that can
be investigated. Some numerical results are shown in
Fig. 4, obtained for the stabilization of a four-legged kit-
ten state (with average photon number n̄ = 9) against
cavity decay. Here the cavity decay rate was set to
γ∆t = 0.05, with ∆t the duration of one time step.

As we explained above, lookup tables often perform
surprisingly well. We now briefly demonstrate, in the
context of state stabilization, one example where the
power of a neural network is clearly helpful (Fig. 4e).
We first train an RNN on sequences of 20 steps, with the
goal to stabilize a given Fock state for an arbitrarily long
time. For this example, the cumulative reward of a tra-
jectory is not only the final fidelity, but the sum of fideli-
ties at all time steps. After training, we test on a 10 times
longer simulation, and we see that the strategy learned
by the RNN generalizes well even for longer sequences.
We note how the strategy can recover, even when some
”unlucky” measurement outcomes significantly perturb
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Ûqc(β)M̂(γ, δ)Decay

controls

Ûq(α)

substeps
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FIG. 4. State stabilization with Feedback-GRAPE. a,b)
Sketch of the feedback control sequence, applied after physical
decay of the cavity. We assume that multiple control substeps
can be applied after a single measurement. c) Performance
of the strategy found by feedback-GRAPE. For various tar-
get states, we show the time evolution of the fidelity. After
each decay and measurement, a single control sequence (i.e.
only one choice of α and β) is applied. The four columns
represents different numbers of decay steps experienced by
the state (here: N=1, 2, 3 and 4); the fidelity for each step
is calculated after the controls have been applied. The bars
with lower values show the bare decay of the fidelity, when no
feedback strategy is employed. d) The fidelity can increase by
applying more control substeps after decay and measurement;
again shown for the different target states (labeled via colors),
for N = 1. e) Stabilization of a Fock state (here |5〉) for an
arbitrarily long time, employing the generalization ability of
a recurrent neural network (RNN).

the quantum state.

IV. EXTENSIONS

Before concluding our discussion, we outline possible
extensions of the general feedback-GRAPE technique in-
troduced above.

A. Reducing sampling noise by using a value
function

The average of the return over different measurement
outcome sequences is obtained by sampling, which in-
troduces noise into the estimate of the gradients. We
can help suppress the noise by adopting value function

approaches that are known as a general technique in re-
inforcement learning [27].

To start, we need to discuss the structure of the re-
wards more carefully. Above, we introduced the overall
return (cumulative reward) as the quantity to be opti-
mized. We can also assign the rewards more specifically
to individual time steps. For example, during state sta-
bilization we can evaluate the fidelity at each time step
and sum it over time to obtain the return. Likewise, it
is customary in some optimal control settings to punish
large control amplitudes at any given time step. In all

these cases, the return is a sum R =
∑N
j=1 rj of individ-

ual rewards.
More precisely, in the original approach, we had sim-

ply set R = r1(m1|θ) + r2(m2,m1|θ) + . . .. Here
rj(mj ,mj−1, . . . |θ) is the instantaneous reward obtained
after time step j (which consisted of some control, some
measurement yielding mj , and possibly a further control
step before assigning the reward). For any time step j,
this then yields two contributions to the overall gradient
ascent update. For example, at j = 2 we obtain, in a
given trajectory with randomly sampled m1,m2, . . . the
following contributions:

∂θr2(m2,m1|θ) + ∂θ lnP (m2|m1, θ) ·
{r1(m1|θ) + r2(m2,m1|θ) + r3(m3,m2,m1|θ) + . . .} (6)

Adding up these contributions for all j and averaging
over trajectories yields precisely Eq. (4).

This is a Monte-Carlo sampling approach. One con-
cern in any such approach is the sampling noise, i.e. in
our case the fluctuations of the quantity shown above
between different trajectories. We can now take inspira-
tion from the domain of model-free reinforcement learn-
ing and the general theory of reinforcement learning [27],
where approaches have been invented to reduce the vari-
ance in estimations of the gradient update. Recall that
in our case, the variance stems from the stochasticity of
measurements, whereas in model-free RL it stems from
the stochasticity of policy action choices that is encoun-
tered in policy-gradient and actor-critic approaches, plus
any stochasticity of the environment dynamics. Even
though the following steps follow very closely the corre-
sponding tricks known in the model-free RL community,
we display them explicitly here, for our modified scenario.
This should help avoid any confusion and make this pre-
sentation self-contained.

First, when evaluating the gradient above, we need
only include the sum of future rewards, since only those
can be influenced by the present measurement result. In
the example of Eq. (6), this means the term r1(m1|θ) on
the second line may be dropped, as it is independent of
m2, i.e. the new measurement result. Mathematically,
this follows because when we eventually perform the av-
erage over trajectories, we have to multiply Eq. (6) by
P (m2,m1|θ) = P (m2|m1, θ)P (m1|θ). Collecting terms,
the m2-dependency for the r1 contribution ends up in a
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sum
∑
m2

∂θP (m2|m1, θ). This sum turns out to be zero
due to the normalization of the conditional probability
for any value of θ. This insight holds for any j, where
it is used to drop all rk (k < j) when they multiply
∂θ lnP (mj |mj−1, . . . , θ).

Second, to further suppress stochastic fluctuations one
can learn a value function V , which is a function of the
current state and represents the expected future cumu-
lative reward, averaged over all possible future measure-
ment outcomes. Thus V (mj ,mj−1, . . . |θ) is defined to
be

E(rj+1 + rj+2 + . . . |mj ,mj−1, . . . , θ) ,

where the label E stands for the expectation value over
future rewards, conditioned on the preceding measure-
ment results.

Typically, V would be expressed as a neural network,
though a lookup table can also be used in the case of a
(modest) number of discrete measurements. The input
to the value network would be some representation of
the current ”state” s. This state could be identified di-
rectly with the sequence of previous measurement results,
as indicated in our notation above, sj = mj ,mj−1, . . .
(which uniquely determines the current state). Alter-
natively, this state could also be represented by some
version of the current quantum state (e.g. the den-
sity matrix), if that proves easier to handle for the net-
work. The value network would be trained to output the
expected (averaged) future cumulative reward, counted
from this state onwards. The value training would pro-
ceed in the fashion known from general reinforcement
learning, i.e. using the Bellman update equation [27]
V new(sj) = V (sj)+α(rj+γV (sj+1)−V (sj)), with α < 1
some update factor and γ ≤ 1 some discount factor to re-
duce the weight of long-term rewards (γ → 1 in the ideal
case discussed up to now). When using a neural net-
work, V new would be the new target value for the value
network during a supervised-learning update. Once an
approximation to the value function has been learned
in this manner, we can proceed as in advantage actor-
critic approaches to model-free RL. This means that in
the gradient ascent procedure of the feedback-GRAPE
approach, one would replace the (future) return by the
advantage Aj = rj + γV (sj+1)− V (sj), which expresses
the improvement over the currently expected future re-
turn. In effect, this reduces the variance of the gradient
estimates by subtracting a convenient baseline, without
changing the average gradient update.

Concretely, Eq. (6), the gradient contribution from
time step j = 2, would be replaced by the following:

∂θr2(m2,m1|θ) + ∂θ lnP (m2|m1, θ) ·
{r2(m2,m1|θ) + γV (m2,m1|θ)− V (m1|θ)} (7)

The first line is unchanged, but in the second line r1

was dropped, as explained before. Moreover, the sum of

r3 +r4 + . . . has been replaced by γV (m2,m1|θ), which is
the expectation of the future return (such that averaging
over m3,m4, . . . has already been carried out, reducing
sampling noise). Finally, V (m1|θ) was subtracted, to re-
duce further the variance by canceling the expected value,
given m1. This is possible for the same reason that we
could drop r1(m1), as explained above. The extension to
arbitrary j 6= 2 is obvious.

In summary, such an enhanced feedback-GRAPE
method would run trajectories with deterministic con-
tinuous controls and stochastic discrete quantum mea-
surements just as before. However, it would learn a
value function to represent expected future returns, and
it would use that value function to modify the gradient
ascent procedure and reduce fluctuations.

B. Multi-target quantum feedback control

Whenever we are employing neural networks to repre-
sent the feedback-based controls, a straightforward but
powerful extension of feedback-GRAPE suggests itself.
We may feed a representation of a variable target state
Ψ (or, in general, the target task, however it is defined)
into the network: Fj(θj ,mj , . . . ; Ψ). The whole feedback-
control strategy is then trained on many different ran-
domly chosen tasks (e.g. many possible target states).

Such approaches have been successul recently for other
control challenges, e.g. they are being investigated in
robotic navigation and the general field of multi-target re-
inforcement learning [56, 57]. Multi-target schemes have
also been recently suggested to improve variational quan-
tum circuits [58]. The benefit is data-efficiency: the net-
work learns to generalize from the training tasks to other
similar tasks, which requires less overall effort than to
retrain a freshly initialized network for each task.

V. CONCLUSIONS AND OUTLOOK

In this work, we have presented a general scheme for
the direct gradient-based discovery of quantum feedback
strategies. This scheme, which we have labeled feedback-
GRAPE, works for arbitrarily strong (discrete or contin-
uous) nonlinear stochastic measurements, which so far
had been possible only using the less data-efficient ap-
proaches of model-free reinforcement learning.

We observed very encouraging performance when test-
ing the method on a challenging set of feedback tasks
in a prototypical quantum-optical scenario. Overall, our
method opens a new route towards solving challenging
feedback-based control tasks, including tasks in quantum
communication and quantum error correction on multi-
qubit or qubit-cavity systems. Besides presenting and
analyzing the basic approach, we have also discussed ex-
tensions such as advantage functions (for reducing sam-
pling noise) and training on multiple targets (to increase
data efficiency and exploit transfer learning).
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Appendix A: Evaluation of the parameter gradients
of the time-evolving quantum state

In the numerical results in the main text, we have em-
ployed automatic differentiation to evaluate parameter
gradients, which is very convenient using modern ma-
chine learning tools. However, alternatively, it is also
possible to directly work out analytical formulas to eval-
uate such gradients, based on our knowledge of the evolu-
tion equations. In a particular scenario, where the entries
of the parameter vector θ directly correspond to the con-
trols at different time points, this then produces a suit-
able extension of the approach advocated in the original
GRAPE manuscript[3].

In the following formulas, we will assume for simplicity
unitary evolution outside the measurements, but the ex-
tension to (Markovian) dissipative dynamics is compara-
tively straightforward (using a Liouvillian superoperator
instead of the Hamiltonian).

We will first describe a general approach which works
for any arbitrary choice of the parametrization θ. Further
below, we will then specialize to a scenario where the
original GRAPE idea for efficient gradient evaluation can
be applied.

The general task is to obtain the gradient of the quan-
tum state with respect to the parameters θ that enter the
controls (and, likewise, the gradient of the final probabil-
ity P (m1,m2, . . .) of a measurement sequence).

In modern machine learning language, tracking the
evolution of parameter-gradients in the manner described
in the following is connected to the recent developments
of neural ordinary differential equations [44], where ef-
ficiency is obtained by not using automatic differentia-
tion as a black box but rather evaluating analytically
the form of the equations of motion for the gradients
(and then solving those equations numerically with any
efficient solver available). We can obtain the parameter
gradient of the quantum state by solving the following
evolution equation during measurement-free time inter-
vals:

i∂t∂θρ̂ = [∂θĤ, ρ̂] + [Ĥ, ∂θρ̂], (8)

where ρ̂ is the solution to the original equation of mo-
tion, i∂tρ̂ = [Ĥ, ρ̂], and the initial condition at time 0
would be ∂θρ̂ = 0 (we have set ~ ≡ 1 for brevity). The
interesting step now happens at a measurement, where
ρ̂(t+) = M̂(m)ρ̂(t−)M̂†(m)/Pm, with the probability for

the measurement outcome, Pm = tr[M̂(m)ρ̂M̂†(m)]. For
brevity we suppress the index j (used in the main text)
that would indicate the number of the measurement in
the sequence. It now follows that we have

∂θρ̂(t+) = M̂(m)∂θρ̂(t−)M̂†(m)/Pm−
ρ̂(t+)tr[M̂(m)∂θρ̂(t−)M̂†(m)]/Pm. (9)

Here the required ∂θρ̂(t−) is the outcome of solving the
previous continuous evolution equation up until time t.

After this update, the continuous evolution of ∂θρ̂(t) will
proceed. We note, however, that the controls (embed-

ded inside Ĥ in the present setup) will now depend on
the measurement outcome m that was selected. Likewise
for later time intervals, they will depend on the whole
previous sequence, as described in the main text.

At the end, we also need the gradient of the extra
term, the log-likelihood of the whole measurement se-
quence, lnP (m1,m2, . . .). One way to obtain this is to

evolve an unnormalized version of the quantum state, ˜̂ρ,
whose trace will give P , which follows the same evolu-
tion as the quantum state itself, but without the nor-
malization factors that are the probabilities for the in-
dividual measurement outcomes. The θ-gradient of this
unnormalized state again follows an evolution equation
of the form like Eq. 8, just with ˜̂ρ substituted for ρ̂,
during the unitary evolution intervals. However, at a
measurement-induced update, we obtain the simpler rule
˜̂ρ(t+) = M̂(m)˜̂ρ(t−)M̂†(m) and consequently ∂θ ˜̂ρ(t+) =

M̂(m)∂θ ˜̂ρ(t−)M̂†(m).

What we have described here so far uses less assump-
tions than GRAPE, because θ can enter the controls in
an arbitrary manner. In GRAPE [3], an additional as-
sumption was used to simplify the gradients further and
gain efficiency: The components of the parameter vec-
tor θ were supposed to directly correspond to the control
values applied at different time steps. That is, schemat-
ically speaking, we would have θ1, θ2, . . . associated with
the controls at time steps j = 1, 2, . . .. This then leads
to a further simplification in the evaluation of the gra-
dients. Importantly, if the number of parameters scales
with the number of time steps N , then this approach has
a runtime growing only linearly in N , while the general
approach outlined above would need N2 operations.

Let us briefly recall the GRAPE approach to gradient
evaluation [3], before extending it. In the simplest pos-
sible version, with unitary evolution, let us consider the
fidelity tr(σ̂(T )Û(T, 0)ρ̂(0)Û(0, T )). The derivative with
respect to parameters θ entering the Hamiltonian will
produce a contribution for each time t ∈ (0, T ) in the evo-
lution. Specifically, the contribution from time t will be

an expression of the type tr(σ̂Û(T, t)[−i∂Ĥ∂θ , ρ̂(t)]Û(t, T )).
Using the cyclic property of the trace, this can be

reordered to obtain tr(Û(t, T )σ̂(T )Û(T, t)[−i∂Ĥ∂θ , ρ̂(t)]).
This can now be re-interpreted, namely as the over-
lap between a backward-evolved target state σ̂(t) =

Û(t, T )σ̂(T )Û(T, t) and the perturbation of the forward-

evolved state at time t: tr(σ̂(t)[−i∂Ĥ∂θ , ρ̂(t)]).

In machine learning language, the GRAPE procedure
of obtaining gradients in this way can essentially be
viewed as an analytically derived version of backprop-
agation for this specific case of a quantum-physical evo-
lution. It is very efficient, since the effort scales only
linearly in the number of time steps, even if there is a
different, independently optimizable parameter θ(t) for
each time step.

The question is how this procedure needs to be modi-
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fied in the presence of measurements. Let us imagine we
have a particular trajectory with a given fixed sequence
of measurement outcomes. We find that we can perform
the temporal backpropagation (starting from the final
time T ) in the same manner as reviewed above, until a
point in time t̃ where a measurement has happened (un-
less of course we talk about a time point t later than the
last measurement). At that point t̃, we need to replace

σ̂(t̃) = Û(t̃, T )σ̂Û(T, t̃) by the following expression:

σ̂′(t̃) =
1

P
M̂†σ̂(t̃)M̂ − 1

P 2
M̂†M̂tr(M̂†σ̂(t̃)M̂ρ̂(t̃)) (10)

Here we have defined, for brevity, the measurement op-
erator M̂ ≡ M̂m̃ at time point t̃, with measurement
outcome m̃, and the associated probability P ≡ Pm̃ =

tr(M̂m̃ρ̂(t̃)M̂†m̃), where ρ̂(t̃) is already conditioned on pre-
vious measurement outcomes, for times less than t̃ and
has been obtained by the forward evolution starting from
time 0 (with measurements and re-normalization of the
state after each measurement).

After this procedure has been implemented for the
measurement at t̃, we would proceed with the backward
evolution of σ̂ until point t, where the derivative is to
be evaluated. There, we employ the same formula as
in the usual GRAPE approach, i.e. we would evaluate

tr(σ̂(t)†[−i∂Ĥ∂θ , ρ̂(t)]).
If there are multiple measurements between t and T ,

the backward evolution will proceed by alternating uni-
tary evolution and applying the formula in Eq. (10).

If we want to treat the unnormalized quantum state
in the same manner, e.g. for obtaining the log-likelihood
term, we will only need the trace of that unnormalized
state ˜̂ρ at the end of the time evolution (see our discussion
above). Formally, this is as if we were to calculate the
fidelity against a state σ̂(T ) = 1, which is given by the
identity matrix. We can now evolve this state backwards
in the manner discussed above, but in addition, Eq. (10)
simplifies: One needs to drop the second term and also
formally set P = 1 in the first term.

Finally, we briefly remark how the procedure will
change if we are dealing with continuous measurement
outcomes (strong continuous measurements, as briefly
discussed in the main text, using the ’reparametrization
trick’). In that case, we do not need the log-likelihood
term. However, we now do need to differentiate the mea-
surement outcome m = f−1

ρ̂ (z) which depends on some

random variable z (of a fixed distribution, not dependent
on θ) and the quantum state ρ̂ (that does depend on θ).
As a consequence, Eq. (10) needs to be modified. We
have to add the following terms to the right-hand-side:

1

P
∂θ(M̂

†σ̂(t̃)M̂)− 1

P 2
tr(M̂†σ̂(t̃)M̂ρ̂(t̃))∂θ(M̂

†M̂) (11)

Here ∂θ in both parts of this expression is supposed to
act only on the M̂† and M̂ terms. This derivative is to be
applied in the way ∂θM̂(m) = (∂mM̂(m))(∂θm), where

|0〉c

|2〉c

|4〉c

|6〉c

|8〉c

|10〉c
Law-Eberly Gradient-ascent

FIG. 5. Comparison between one solution obtained analyti-
cally from the Law-Eberly protocol and a strategy found by
using gradient ascent. The target state is |ψ〉 = (|0〉 + |5〉 +
|10〉)/

√
3. Even though some details look different, we have

verified that the gradient ascent strategy is a valid alternative
solution for the Law-Eberly equations (which do not deter-
mine the controls uniquely).

the derivative of m with respect to θ must be evaluated
using the dependence of the inverse cumulative distribu-
tion function on the θ-dependent quantum state at that
time-point.

Appendix B: Law-Eberly algorithm

As a benchmark with an analytical solution (but still
without feedback), we consider the task of preparing an
arbitrary pure cavity state in a cavity-qubit system. This
can be achieved by exploiting the well-known Law-Eberly
protocol [50]. This algorithm relies on the essential as-
sumption that we start from the ground state. We briefly
recall it in the following.
The Hamiltonian that describes the system is a Jaynes-
Cummings model with controllable couplings:

Ĥ(t) = (α(t)σ̂++α∗(t)σ̂−)+(β(t)âσ̂++β∗(t)â†σ̂−) (12)

where the first term refers to the qubit excitation and
the second one refers to the cavity-qubit interaction. The
two complex controls α(t) and β(t) can assume continu-
ous values and, for simplicity, we will assume that when
α(t) 6= 0, then β(t) = 0, and when β(t) 6= 0, then
α(t) = 0. If we define a dynamics made of N steps,
then each of those steps contains one qubit excitation
step followed by one cavity-qubit coupling step.
The algorithm starts in the ground state

|ψ〉init = |0, g〉 (13)

and ends up in an arbitrary superposition up to (includ-
ing) Fock state N ,

|ψ〉target =

N∑
n=0

cn |n, g〉 (14)
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in N steps.
The time evolution operator that represents the whole
dynamics is:

Û = B̂N ÂN B̂N−1ÂN−1...B̂1Â1 (15)

where Âj = exp
{
−i(αj σ̂+ + α∗j σ̂−)

}
and B̂j =

exp
{
−i(βj âσ̂+ + β∗j â

†σ̂−)
}

The Law-Eberly idea is to start from the target state
and progressively remove excitations from the cavity: at
each step, the goal should be to take the contributions
of the highest excited states, |N, g〉 and |N − 1, e〉, and
bring them down to |N − 1, g〉. After the ground state is
reached in this manner, one simply reverses the obtained
control sequence. Due to the unitarity of the process,
the desired sequence that turns |ψ〉init into |ψ〉target is
achieved.
By imposing this condition on the reverse evolution
Û |ψ〉target, the problem switches to solving the follow-

ing system of non-linear equations (assuming α and β
∈ R):

〈j, g|ψj+1〉 cos
(
βj
√
j
)

+

+i 〈j − 1, e|ψj+1〉 sin
(
βj
√
j
)

= 0,

〈j − 1, e| B̂†j |ψj+1〉 cos(αj)+

+i 〈j − 1, g| B̂†j |ψj+1〉 sin(αj) = 0

(16)

where |ψj〉 = Â†jB̂
†
j Â
†
j−1B̂

†
j−1... |ψtarget〉.

It should be noted that the solution of these equations
is not unique. This is why Fig. 5 shows two different
strategies for the same task, although both of them fulfill
the Law-Eberly ansatz.

Appendix C: Model-free reinforcement learning for
the Jaynes-Cummings scenario

It turns out that state-of-the-art model-free RL has
surprising difficulties in addressing a physical scenario
as important and conceptually simple as the Jaynes-
Cummings model. In this subsection we provide some
more details.

We will only consider the (simpler) no-feedback case,
meaning only the two controls α(t) and β(t) (see main
text) are available. Since model-free RL already has se-
vere problems in this case, we did not explore further the
more challenging cases.

In our numerical experiments, we relied on the RL li-
brary Stable Baselines [59], which implements many of
the most well-known optimized state-of-the-art RL algo-
rithms. The RL environment (not to be confused with
a ”physical” environment) has been implemented in the
following way:

• Action aj : The two continuous controls, α(tj) and
β(tj).

• State sj (i.e. input to the agent): In principle, the
no-feedback task requires no state input. However,
we chose to make it easier for the agent, by sup-
plying the full current quantum state of the system
at time tj . Since the state is pure and the sys-
tem is closed, we simplify the observation by only
using the state vector |ψj〉 (instead of the density
matrix). Since it is complex-valued, we split its
real and imaginary part and so we have a vector of
length 2N , where N is the size of the Hilbert space.

• Reward rj : the fidelity at step tj (in various ver-
sions, see below).

We have used a variety of different approaches to solve
the task of pure state preparation. These included: using
either a sparse final reward (i.e. rj 6= 0 only if j = N) or
else a reward based on the fidelity at each time step, ei-
ther discrete (discretized) actions or continuous actions,
and several different optimization algorithms (PPO[55],
A2C[60], HER[61], TRPO[62], DDPG[63]). The results
shown in 3a) are the best results we could manage to
produce among all these approaches. They were obtained
with PPO, continuous actions and sparse rewards and us-
ing the following hyperparameters (see the Stable Base-
lines PPO documentation):

Parameter Value

gamma 0.99

n steps 0.01

ent coef 0.999

learning rate 0.00025

vf coef 0.5

max grad norm 0.5

lam 0.95

nminibatches 4

noptepochs 4

cliprange 0.2

Appendix D: Controls via Neural network or
Lookup Table, and remarks on Physical Simulations

As explained in the main text, in the feedback-GRAPE
approach presented in this manuscript we can produce
the control values (conditioned on previous measurement
results) either with the help of a neural network or with
the help of a lookup table (containing trainable control
values). In this section we present more details on both
of these approaches, as implemented for the specific nu-
merical examples shown in the main text.

In our illustrative physical scenario (the feedback-
controlled Jaynes-Cummings model), there are four con-
trol parameters: αj , βj , γj and δj . In the most general
case, where arbitrary superpositions should be generated,
αj and βj need to be complex. In the scenarios whose re-
sults are displayed in the main text, this was not needed
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FIG. 6. Sketch of the three alternative types of trainable controls that can be employed in feedback-GRAPE: the first one is
a fully connected neural network which receives the density matrix (quantum state) of the system as input and output the

controls. The second one is a RNN with GRU cells as recurrent neurons. The third one is a lookup table, with
∑N
n=0 2n

entries (when feedback is required and when the measurement outcomes are binary, as shown here), and each entry contains
the controls that need to be applied after observing a particular measurement sequence.

due to the nature of the target states. However, we have
checked independently that the whole approach works
just as well for complex control parameters.

Neural Network - We first discuss the case when
the controls are computed by means of a neural network.
This network can receive the measurement results so far,
m1,m2, . . . ,mj . Alternatively, we can also supply it with
the quantum state as input, which has been updated ac-
cording to the measurement outcomes. Both techniques
supply the full information content needed to apply the
next control.

For the ”state as input” approach, we defined a fully
connected neural network that takes the density ma-
trix of the system as input. Since the density matrix
is complex-valued, we chose to split it into its real and
imaginary parts and to stack it, in such a way that for
a NH × NH density matrix, the input tensor has shape
[NH ×NH, 2].

The fully connected NN has been employed both for
the no-feedback case (pure state preparation), where in
principle no such input would be needed (but can still be
helpful for convergence), and also for the more interesting
feedback cases.

If, on the other hand, we want to supply directly the
measurement results, then we employ a recurrent neural
network (RNN). For our scenario, its input at each time
step is a binary measurement outcome mj ∈ {−1,+1}.
When a RNN network is used, due to the probabilis-
tic outcome of the trajectories during a simulation, it
is useful to feed batches of multiple randomly sampled
trajectories as input to the network.

As already mentioned, both types of neural networks
output real-valued controls αj , βj , γj and δj to be applied
in the next time step. When complex-valued controls are
required, two additional neurons can be added to the
output of the neural networks, and they correspond to
the imaginary parts of αj and βj . In the main text,
we did not use complex controls, because these were not
needed for the tasks considered there.

Our neural networks are implemented using Keras and
their hyperparameters are shown for completeness in Ta-
bles I and II (we always used the same hyperparameters).

Parameter Value

Neurons [[NH ×NH , 2], Flatten, 30, 30, 2 or 4]

Batch size 1

Activation ReLU

Initializer Glorot uniform

Initial bias last layer π

TABLE I. Parameters of the fully connected neural network

Parameter Value

Type RNN cells GRU

Neurons [30, 2 or 4]

Batch size 10

Dropout 0.2

Input shape [batch size, 1, 1]

Activation tanh

Recurrent activation Sigmoid

Initializer Glorot uniform

Initial bias last layer π

TABLE II. Recurrent neural network

Lookup Table - Another way to represent the entire
feedback-based control strategy is to use a lookup table,
which essentially is just a list of optimisable parameters.
In the case of feedback, we have to build a lookup table
that encodes the structure of a decision tree. For binary

measurement outcomes (as used here), this has
∑N
n=0 2n

entries, each of which is the vector of all control param-
eters, i.e. in our scenario (αj , βj , γj , δj). Each column
of this table represents the 2j possible control parameter
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vectors at time step j ∈ {0, ...N}. At j = 0, we have only
one set of numbers, which stand for the (only) possible
control vector to apply (not dependent on any previous
measurement; in our case reduced to only the entries con-
trolling the first measurement). At step j = 1, we have
two sets of numbers, and we apply the set of controls
corresponding to the observed measurement, and so on
and so forth. By doing so, we can apply controls condi-
tioned on the ”memory” of all previous measurements,
at the cost of keeping an exponentially growing number
of entries in the computer’s memory. Many of those will
likely not be explored at all, if their probabilities are too
small.

In our numerical experiments, we went as far as lookup
tables containing about 221 ∼ 2 · 106 entries, which still
was easily handled. The initial condition for the whole
table was to set each parameter value to a random num-
ber uniformly distributed within (0, π).

In several results mentioned in the main text, we use a
lookup table ”without memory”. This means that there
is just one control parameter vector for each step j, in-
stead of a tree-type structure with an exponentially grow-
ing number of parameters. Thus, we still optimize the
controls but ignore the result of the measurements. This
is used both for the ”non-adaptive” scheme for the pu-
rification task in Fig. 3c) and in figure 3h).

A sketch of all of the three feedback-based strategies
discussed here and in the main text (neural network with
state as input, recurrent neural network with measure-
ment sequence as input, and a tree-type lookup table) is
shown in Fig. 6.

In any case, in whatever ways we choose to parametrize
our controls, we have a finite number of parameters that
need to be learned. In order to do so, the optimizer
employed for every example is Adam [64], and its hyper-
parameters are shown in table III.

Parameter Value

learning rate 0.01*

beta 1 0.9

beta 2 0.999

epsilon 1E-7

clipnorm 1

clipvalue 0.5
*unless otherwise specified

TABLE III. Adam hyperparameters

Physical Simulations - In the unitary case, we sim-
ply apply the sequence of parametrized unitaries, as ex-
plained in the main text. In the case of decay (in the state
stabilization scenario), we have solved the master equa-
tion for the density matrix during the respective time
intervals (where decay is present). Specifically, we have
simulated the weak Markovian coupling of the oscilla-
tor to a zero temperature bath via the Lindblad master
equation,
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FIG. 7. Gradient-ascent-based pure state preparation of the
first 10 Fock states, by starting from the ground state. Each
curve is the best one among 10 tries. Instead of using a net-
work like in Fig. 3c), here we directly optimize the control
parameter vector. Note that some higher Fock states are not
successfully prepared in this example. This can be mitigated
by performing gradient ascent from more random initial con-
ditions.

˙̂ρ = γ

(
âρ̂â† − 1

2

{
â†â, ρ̂

})
. (17)

We discretize this continuous time-evolution applying the
fourth-order Runge-Kutta method. In particular, every
decay step in Fig. 4 (corresponding to the overall decay
time ∆t = 0.05/γ) corresponds to ten Runge-Kutta iter-
ations.

We chose the Hilbert-space to have a finite dimension
NH with a cut-off in the Fock states excitation number.
An appropriate choice of the cut-off depends both on the
initial and the target state and ranges from 10 to 30 in
our simulations.

Appendix E: Further numerical results

In this subsection we present a few more numerical re-
sults to illustrate various options or aspects of the tech-
nique.

1. Pure-state preparation with a lookup table

For pure-state preparation out of the ground state (a
pure control task), in the main text we showed results for
an approach where we feed the current quantum state as
input to a neural network to obtain the control param-
eter vector. For comparison, in Fig. 7 we show how the
”lookup table” approach fares in this case. Instead of
the parameters of a NN, we optimize directly the control
parameter vector Since there is no feedback, the number
of entries in this ”lookup table” grows only linearly with
the total number of measurements. Surprisingly, in this
case the lookup table method performs worse than the
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FIG. 8. Purification of a thermal state (with n̄ = 2) like in
Fig. 3d) of the main text. Here, the shaded lines show 10
different strategies found by repeated runs of the algorithm,
from different random starting points. The thick lines repre-
sent the best strategy found.

network approach, since it only can find a solution re-
liably up to Fock state |6〉. This could be mitigated to
some extent by having more runs from different starting
conditions.

2. Effect of different initial condition on the
training

In order to assess the variability during the training,
we show in this subsection how the results of Fig. 3 can
change, depending on the choice of different random ini-
tial conditions of the algorithm. As a first example, we
show in Fig. 8 an equivalent plot of Fig. 3d), but in this
case we want to differentiate the distinct strategies found
by feedback-GRAPE. The majority of the adaptive runs
can systematically reach higher purities then the other
strategies (Random and Non-Adaptive). Nonetheless,
one should be aware of such variability of strategies at
the end of the training.
To further analyse the variability of training, we focus on
the state preparation case from a thermal state, like in
Fig. 3f,g,h. In Fig. 9, the performance for many different
target state was evaluated, along with the uncertainty
due to different initial condition.

3. Impact of the batch size on generalization

A final analysis that we conducted deals with the ef-
fect of the batch size during training. We want to analyze
both the performance during training and the generaliza-
tion capabilities of the strategy learned. In order to asses
that, we focus on the state preparation case from thermal
state (Fig. 3f)-i) ). We run different trainings with dis-
tinct batch sizes (ranging from 1 to 100). For each batch
size, we run 5 different training. We then post-select the

best one, by computing the average fidelity on a much
larger batch size (i.e. 1000). In 10 we then show the
best performing NN/RNN/Lookup table. Interestingly,
even though the training is noisier with a lower batch
size, it seems that feedback-GRAPE can converge faster
and to higher fidelity solution. Also, it seems that lower
batch sizes can generalize well to higher ones. The bet-
ter performance of lower batch sizes could be due to the
possibility of the optimizer to escape local minima more
efficiently than larger ones.

Appendix F: Detailed analysis of strategies
discovered by feedback-GRAPE for the

Jaynes-Cummings model scenario

In our work, we chose several different tasks within a
Jaynes-Cummings model to illustrate the performance of
our approach. Despite being only an illustrative physical
example in this context, the model is of sufficient interest
as a paradigm for actual feedback control of quantum-
optical systems. In this section, we describe some of the
insights we were able to extract by closer inspection of
the numerical results obtained by feedback-GRAPE, in
situations with feedback.

In the main text, we show the decision tree for the pu-
rification of a thermal state with initial occupation num-
ber 〈â†â〉 = 2 in four measurements. Here, we want to
show how the insight gained by analyzing the decision
tree for this special case allows to derive an analytical
solution for an optimal purification strategy valid for ar-
bitrary temperature and number of measurements.

We start by reviewing the physics for the building
block measurement, cf Eq. (5). This type of measurement
has been originally proposed in [53] and has been exten-
sively used in quantum optics experiments with flying
Rydberg atoms, e.g. to monitor the occupation number
of a cavity in the presence of very small thermal fluctu-
ations [54] or to prepare a Fock state starting from an
initial coherent state [65]. After each measurement, the
Fock state probability distribution Pj(n) is updated by
multiplying it with a sinusoidal mask,

Pj+1(n) ∝ Pj(n) cos2

[
γin+

δi
2

+ π(1−mj)/4

]
. (18)

To better understand the effects of the measurement it
is important to keep in mind two key insights: (i) If the
measurement strength can be well approximated with a
rational multiple of π, γi = πpi/qi where pi and qi are co-
prime numbers, the denominator qi represents the period
of the mask. Thus, the relative occupations P (n)/P (n′)
of any pair of Fock states that have the same excitation
number modulus qi, (n − n′) mod qi = 0, do not change
after the measurement. (ii) If the phase δi satisfies either
condition

π
pi
qi
ni +

δi
2

= 0 modπ, or = π/2 modπ,
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FIG. 9. State preparation from a thermal state (n̄ = 1), employing feedback, like in Fig. 3f)-i). We show the final infidelity
as a function of the number of time steps available for the strategy. The columns represents various final target states, while
the rows shows the three different approaches to obtain the control parameters (NN: neural network being fed the current
quantum state as input; RNN: recurrent neural network obtaining the measurement sequence step-wise; Lookup: a lookup
table as defined in the main text). Each dot represents a different training run with different initial condition. For each number
of steps, 5 runs are shown. The shaded area represents the variance of the latter.
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FIG. 10. State preparation from a thermal state (here n̄ = 1) and for target state ψ = (|1〉+|2〉+|3〉)/
√

3, in 6 steps. Each train-
ing was run with a different batch size (encoded in the color), and the performance of the resulting strategy (NN/RNN/Lookup)
was evaluated with a larger batch size (here 1000) to suppress statistical noise. The training curves are plotted with a mov-
ing average of 50 samples in order to suppress fluctuations. The number of samples (i.e. batch size × number of gradient
optimization steps) for each curve is the same.

for an integer ni, one measurement outcome (mi = −1
or mi = 1, respectively) rules out the infinite set of Fock
states with excitation numbers n satisfying nmod qi =
ni. We note that if qi is an even number any δi that
satisfies the first condition for ni ≡ ni,−1 satisfies also the
second condition for ni = ni,1 ≡ (ni,−1 + qi/2) mod qi.
In this scenario, each of the two possible measurement
outcomes rules out a (different) infinite set of Fock states,
ni,±1 mod qi for mi = ±1. We note further that there
are infinitely many values of δi satisfying one of the two
conditions in Eq. (18) for the same ni. All of these values
of δi are rational multiples of π.

Motivated by the insights (i) and (ii), we have writ-

ten an algorithm that identifies values of γi and δi that
are close to rational multiples of π with small denom-
inators (we allow a deviation of 1% of π) and displays
these rational values (in units of π) in the decision tree
as shown in Fig. 3(d). By inspecting the decision tree,
cf Fig. 3(d), one can immediately observe that the NN
tends to use measurement strength γj corresponding to
the period qj = 2j for the j-th measurement. In order to
understand this pattern, we inspect the phases δj selected
by the NN. For the first measurement, the measurement
strength is γ1 = π/2 and the phase δ1 = 0. This corre-
sponds to n1,−1 = 0 and n1,1 = 1. In other words, the
Fock state 0 (1) along with all other even (odd) states
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are ruled out by the measurement m1 = −1 (m1 = 1).
Thus, the net effect is that, irrespective of the measure-
ment outcome, the probability of every second Fock state
is set to zero. Such a measurement extracts exactly 1 bit
of information in the large temperature limit. For the
second measurement, the NN doubles the period of the
sinusoidal mask, q2 = 4, (independent of the outcome of
the first measurement). By inspecting the phases δ2 cho-
sen adaptively by the NN we find out that they always
allow to rule out either of the two most likely states af-
ter the measurement. For example, in the upper branch
(corresponding to m1 = 1) all odd states have been dec-
imated and, thus, the two more likely states are the 0
and 2 Fock states. From the tree we see that δ2 = π/2 in
this branch. This indeed satisfies the two conditions in
Eq. (18) with ni = n2,−1 = 2 and ni = n2,1 = 0, respec-
tively. In other words, the Fock states with nmod 4 = 0
(nmod 4 = 2) are ruled out by the measurement outcome
m2 = 1 (m2 = −1). Since all odd Fock states had been
already ruled out after the first measurement, the over-
all effect of the first two measurements is to postselect
every fourth Fock state, nmod 4 = 0 (nmod 4 = 2) for
m1 = 1 and m2 = −1 (m1 = m2 = 1). Likewise, the
choice of the phase δ2 = −π/4 in the lower branch allows
to postselect every fourth Fock state, now, nmod4 = 1
and nmod4 = 3 for m2 = 1 and m2 = −1, respectively.
This strategy can be easily generalized for any arbitrar-
ily large number of measurements J : the period qi is
doubled after every measurement, qj = 2j , independent
of the measurement outcomes and appropriate adaptive
phases δj are selected to always rule out either of the two
most likely states. Such a strategy allows to postselect
the Fock states with nmod 2J = ni where ni depends
on the measurement history. More precisely there is a
bijective mapping between 0 ≤ ni < 2J − 1 and the
2J possible measurements outcomes. Indeed, a close in-
spection of the strength γi and phases δi selected by the

NN shows that the NN adopts this strategy for all four
measurements in most (but not all) branches. A notable
exception is the third measurement in the lowest branch
(corresponding to m1 = m2 = −1). This choice results
in an ineffective measurement that does not allow to ex-
clude either of the two most likeliest states. Interestingly,
in this case the NN selects for the fourth measurement
the measurement settings that were expected (according
to the strategy identified above) already for the third
measurement. We believe that this sub-optimal strat-
egy corresponds to a local minimum for the gradient as-
cent. We note that the strategy whose tree is displayed
in Fig. 3(d) has been obtained after selecting the best
gradient ascent training run out of 10 runs with different
random initializations. A tree without any such subopti-
mal measurements could be obtained by performing more
gradient ascent runs or, more efficiently, by increasing the
temperature of the initial mixed state (which will punish
more suboptimal purification strategies).

The same optimal strategy discussed above can be im-
plemented for infinitely many different choices of γj and
δj . In particular, different bijective mappings between
the measurement outcomes and the likeliest state nj af-
ter j measurements can be implemented. To find a simple
analytical solution for the phases γj for one of the imple-
mentations of the optimal strategy, we choose pj = 1
and, thus, γj = π/2j . In addition, we choose nj as the
number whose binary representation is dj−1 . . . d2d1 with
di = (1 −mi)/2, e.g. for m1 = m2 = −1 corresponding
to d1 = d2 = 1 we have n3 = 1 + 2 = 3. This map-
ping is implemented, if the phase δj always allows to rule
out the Fock state with largest probability (or, equiva-
lently, lowest excitation number among the states that
have not yet been decimated by previous measurements)
for the measurement outcome mj = −1. With these
constraints we find a simple analytical solution for the
phases, δj = πnj/2

j .
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Wilhelm, Training Schrödinger’s cat: Quantum opti-
mal control, The European Physical Journal D 69, 279
(2015).

[2] C. P. Koch, Controlling open quantum systems: Tools,
achievements, and limitations, Journal of Physics: Con-
densed Matter 28, 213001 (2016).

[3] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen,
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