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MCKAY MATRICES FOR FINITE-DIMENSIONAL HOPF ALGEBRAS

GEORGIA BENKART, REKHA BISWAL, ELLEN KIRKMAN, VAN C. NGUYEN, AND JIERU ZHU

Abstract. For a finite-dimensional Hopf algebra A, the McKay matrix MV of an A-module V

encodes the relations for tensoring the simple A-modules with V. We prove results about the

eigenvalues and the right and left (generalized) eigenvectors of MV by relating them to characters.

We show how the projective McKay matrix QV obtained by tensoring the projective indecomposable

modules of A with V is related to the McKay matrix of the dual module of V. We illustrate these

results for the Drinfeld double Dn of the Taft algebra by deriving expressions for the eigenvalues and

eigenvectors of MV and QV in terms of several kinds of Chebyshev polynomials. For the matrix NV

that encodes the fusion rules for tensoring V with a basis of projective indecomposable Dn-modules

for the image of the Cartan map, we show that the eigenvalues and eigenvectors also have such

Chebyshev expressions.

1. Introduction

Assume A is a finite-dimensional associative algebra over an algebraically closed field k. Let

S1,S2, . . . ,Sm be the nonisomorphic simple (irreducible) A-modules and P1,P2, . . . ,Pm be their

projective covers, that is, the nonisomorphic indecomposable projective modules such that for each

j = 1, . . . ,m, the module Pj modulo its radical is isomorphic to Sj. The dimensions of these

A-modules determine two column vectors in Zm,

(1.0.1) s = [dim(S1) dim(S2) . . . dim(Sm)]T and p = [dim(P1) dim(P2) . . . dim(Pm)]T,

where T denotes “transpose.” If A is viewed as a left A-module under left multiplication, then

(1.0.2) A =

m
⊕

j=1

P
⊕dim(Sj)
j and pT s =

m
∑

j=1

dim(Pj) dim(Sj) = dim(A).

When A is semisimple, then Pj = Sj for all j, and the second part of (1.0.2) is the familiar result

dim(A) =
∑m

j=1 (dim(Sj))
2.

There are two Grothendieck groups, G0(A) and K0(A) associated to A:

• G0(A) is the quotient of the free abelian group on the set of all isomorphism classes [V] of

finite-dimensional A-modules V subject to the relations [U] − [V] + [W] = 0 for each short

exact sequence 0 → U → V → W → 0 of A-modules. By the Jordan-Hölder theorem, this

group has a Z-module basis consisting of the classes [S1], [S2], ..., [Sm], and

[A] =

m
∑

j=1

dim(Pj)[Sj ] in G0(A).

• K0(A) is the quotient of the free abelian group on the set of all isomorphism classes [V] of

finite-dimensional projective A-modules V, subject to the relations [U]− [V] + [W] = 0 for

each direct sum decomposition V = U⊕W of A-modules. This group has a Z-module basis
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consisting of the classes [P1], [P2], . . . , [Pm] due to the Krull-Remak-Schmidt theorem, and

(1.0.2) says

[A] =

m
∑

j=1

dim(Sj)[Pj ] in K0(A).

When A is a Hopf algebra, the tensor product of two A-modules is an A-module with the A-action

given by the coproduct, and the dual vector space of an A-module is an A-module via the antipode.

Both G0(A) and K0(A) have products using ⊗, so that [U][W] = [U ⊗ W], where G0(A) is a ring

with a unit element, which is the one-dimensional A-module k with action given by the counit, and

K0(A) is a ring without a unit element.

Let V be an A-module, and set d = dim(V). The McKay matrix MV for tensoring with V has as

its (i, j) entry Mij = [Si ⊗ V : Sj], the multiplicity of Sj as a composition factor of the A-module

Si ⊗ V, or equivalently, the coefficient of [Sj ] when [Si ⊗ V] is expressed as a Z-linear combination

of the basis elements in G0(A). Then

d si = dim(V)dim(Si) = dim(Si ⊗ V) =

m
∑

j=1

[Si ⊗ V : Sj]dim(Sj) =

m
∑

j=1

Mijdim(Sj) = (MV s)i

shows that the ith entry of MV s is d times the ith entry of s for 1 ≤ i ≤ m, which implies that s

is a right eigenvector of MV for the eigenvalue d = dim(V).

One can argue as in the paper [20] by Grinberg, Huang, and Reiner that the dimension vector

pT = [dim(P1) dim(P2) . . . dim(Pm)] is a left eigenvector for MV with eigenvalue d. (But note that

their McKay matrix and ours are transposes of one another, so for them pT is a right eigenvector,

and s is a left one.)

The matrix MV can be viewed as the adjacency matrix of a quiver (the so-called McKay quiver

determined by V) having nodes labeled by 1 ≤ i ≤ m that correspond to the simple modules Si.

There are [Si ⊗V : Sj] arrows from i to j. If there is an arrow from i to j and one from j to i, they

are replaced by a single undirected edge. The idea to consider such a quiver and matrix goes back

to McKay’s insight [30] that the quivers determined by tensoring with the G-module V = C2 for a

finite subgroup G of SU2 exactly correspond to the affine Dynkin diagrams of types A,D,E. This

result, subsequently referred to as the McKay correspondence, has been the inspiration for much

work on a host of topics in singularity theory, group theory, orbifolds, and many other subjects.

In expanding on McKay’s result, Steinberg [35] showed that for the group algebra CG of any

finite group G, the columns of the character table of G give a complete set of right eigenvectors

for the McKay matrix determined by tensoring with any finite-dimensional G-module V, and the

associated eigenvalues are given by the character values χ
V
(gj), as gj ranges over a set of conjugacy

class representatives of G. Group algebras over algebraically closed fields of characteristic p > 0

were considered in [20], where it was shown that the columns of the Brauer character table of

G are right eigenvectors of MV with corresponding eigenvalues χ
V
(gj), as gj ranges over a set of

representatives for the p′ conjugacy classes of G (that is, elements whose order is relatively prime

to p). Each such gj determines a left eigenvector whose coordinates are the character values of the

projective indecomposable modules Pj evaluated at gj , and whose eigenvalue is χ
V
(gj).

Aside from the result of Grinberg, Huang, and Reiner in [20] mentioned earlier, very little is

known about the eigenvalues and eigenvectors of the McKay matrices for arbitrary finite-dimensional

Hopf algebras, and the purpose of this paper is to remedy that situation. The specific case of the

quantum group uq(sl2) at q an odd root of unity was examined in depth in [2]. In that work,

it was shown that the McKay matrix for tensoring with V = C2 has two-dimensional generalized
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eigenspaces for every eigenvalue different from 2 = dim(V), and it is necessary to work with Jordan

blocks of size 2 × 2 in that example. The main point of [2] is that McKay matrices and quivers

determine interesting Markov chains, and in the particular case of uq(sl2), the chain exhibits new

phenomena due to the existence of such Jordan blocks. The examples in [2] show that the analysis

of the rates of convergence of the Markov chains determined by McKay matrices is quite delicate.

Most of the work on characters of Hopf algebras has been in the case that the algebra is semisim-

ple. For example, Witherspoon defined a notion of a character table for finite-dimensional semisim-

ple, almost cocommutative Hopf algebras and showed that the characters provide eigenvectors for

the McKay matrix for tensoring with the simple modules (see [39, proof of Thm. 3.2]). In [11],

Cohen and Westreich determined Verlinde formulas for semisimple, almost cocommutative Hopf

algebras, and in [9,10], for (nonsemisimple) factorizable ribbon Hopf algebras such as the Drinfeld

double of the Taft algebra considered here. Such formulas were introduced by Verlinde [38] for

diagonalizing fusion relations in 2D rational conformal field theory and have played an important

role in physics. They have been considered subsequently in many different contexts.

For a Hopf algebra A with nonisomorphic simple modules Si and corresponding projective covers

Pi, the Cartan matrix C = (Cij) records the multiplicity Cij = [Pi : Sj] of [Sj] when [Pi] is expressed

in the Z-basis of G0(A). Let r be the rank of C and select r of the Pi so that the corresponding

rows of C are linearly independent. For each simple module Sj there is an r × r matrix Nj , that

contains the fusion rules for tensoring those r projective modules with Sj and writing the answer

[Pi ⊗ Sj] as a linear combination of the r chosen projectives. It was shown in [9] that the matrices

Nj are diagonalizable and have eigenvectors that can be expressed using the primitive idempotents

ei corresponding to the projective modules Pi.

In Section 2 of this work, we consider arbitrary finite-dimensional Hopf algebras A and prove

general results about McKay matrices, their eigenvalues, and their (left and right) eigenvectors

by using the coproduct and the characters of simple and projective modules (Theorem 2.1.2 and

Proposition 2.1.4). The tensor product P ⊗ V of a projective module P with a finite-dimensional

module V is projective, and so [P ⊗ V] can be written as an integral combination of the classes

[Pj ] of the projective indecomposable modules. Letting QV = (Qij), where Qij is the multiplicity

[Pi⊗V : Pj ] of [Pj ] in [Pi⊗V], we obtain what we term a projective McKay matrix. Theorems 2.3.3

and 2.4.1 and Corollary 2.4.2 show how QV and its eigenvectors are related to the McKay matrix

of the dual module V∗. In the special case that the Hopf algebra is semisimple, the McKay matrix

MV and the projective McKay matrix QV are the same, and if the module V is self-dual, then the

McKay matrix is orthogonally diagonalizable (Corollary 2.3.4).

In Section 3, we illustrate the general results of Section 2 by applying them to a family of

nonsemisimple Hopf algebras, namely, the Drinfeld double Dn of the Taft algebra An for n odd, n ≥

3. When n is even, the eigenvalues exhibit different patterns, and that case will not be considered

here. The algebras Dn provide a convenient testing ground, as their representation theory has been

developed in great detail by Chen and coauthors (see [4–8,36]). Unlike the situation for semisimple,

almost cocommutative Hopf algebras, the McKay matrices for Dn fail to be diagonalizable. More

specifically, we

• determine the eigenvalues, right and left eigenvectors and generalized eigenvectors of the

McKay matrix MV obtained by tensoring the simple Dn-modules with one of the two-

dimensional simple Dn-modules, V(2, 0) (Secs. 3.3-3.9);

• express the coordinates of these vectors using Chebyshev polynomials (Secs. 3.4, 3.5, 3.8);
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• relate the eigenvectors to character values of the grouplike elements and other special ele-

ments of Dn (Secs. 3.6, 3.7, 3.9) and show that the character value of a grouplike element

on any simple Dn-module can be computed using Chebyshev polynomials (Thm. 3.6.1 of

Sec. 3.6;

• prove that the (generalized) eigenvectors for MV, V = V(2, 0), are (generalized) eigenvectors

for the McKay matrix of any simple Dn-module (Sec. 3.10);

• show that the eigenvalues of the McKay matrix of any simple Dn-module can be expressed

in terms of Chebyshev polynomials of the second kind (Thm. 3.11.1 of Sec. 3.11);

• find the eigenvectors and eigenvalues of the projective McKay matrix QV by relating them

to the McKay matrix of the dual module V∗ (Prop. 3.12.1 of Sec. 3.12);

• determine the structure of the complex Grothendieck algebra GC
0 (Dn) = C ⊗Z G0(Dn) and

prove that its Jacobson radical squares to 0; (Thm. 3.13.8 of Sec. 3.13);

• construct certain idempotents in GC
0 (Dn), and show how they provide an alternate approach

to producing the eigenvectors and generalized eigenvectors of MV (Sec. 3.13);

• compute the eigenvectors and eigenvalues of the matrix NV that encodes the fusion rules

for tensoring a maximal set of independent projective covers in G0(Dn) with V = V(2, 0)

(Sec. 3.14).

It has been said that “Chebyshev polynomials are everywhere dense in numerical analysis”

(see [28, Sec. 1.1] for a discussion of this quotation). In this paper, Chebyshev polynomials (of the

second, third, and fourth kind) are everywhere dense in expressing eigenvalues, eigenvectors, and

generalized eigenvectors of McKay matrices and fusion rules for Dn. The characters of the simple

Dn-modules evaluated on the grouplike elements of Dn also have Chebyshev polynomial expressions.

When n is odd, Dn is a ribbon Hopf algebra [25], and Dn provides an invariant of 3-manifolds [21].

In [3], we determine the unique ribbon element of Dn explicitly. We use the R-matrix and ribbon

element of the quasitriangular Hopf algebra Dn to obtain an algebra homomorphism from the

Temperley-Lieb algebra TLk(−(q
1
2 + q−

1
2 )) to the centralizer algebra EndDn

(V⊗k), when V is any

two-dimensional simple Dn-module. In the special case that V is the unique two-dimensional

simple module that is self-dual, we show that the homomorphism is injective for all k ≥ 1 and

an isomorphism for k ≤ 2(n − 1). This leads to a realization of EndDn
(V⊗k) for V self-dual as a

diagram algebra.
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2. McKay Matrices for Arbitrary Hopf Algebras

In the classical representation theory of finite groups, the columns of the character table are

obtained by evaluating the characters (traces) of the simple modules on one element from each

conjugacy class [18, Sec. 2.1]. It is known that these columns are right eigenvectors for any McKay
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matrix determined by tensoring with a finite-dimensional module of the group (see [35]). In this

section, we develop an analog of this result by showing how grouplike elements and generalizations

of skew primitive elements in an arbitrary Hopf algebra can be used to construct eigenvectors for

McKay matrices. In the special case that the algebra is semisimple, more detailed results are

possible.

Throughout Section 2, A denotes a finite-dimensional Hopf algebra over an algebraically closed

field k. All A-modules are assumed to be finite-dimensional, and all tensor products are over k. We

adopt Sweedler’s notation for the coproduct ∆ applied to an element x ∈ A,

∆(x) =
∑

x

x(1) ⊗ x(2).

2.1. Right eigenvectors from traces of simple modules. We will use the coproduct of A to

obtain right (generalized) eigenvectors of McKay matrices by taking the trace of certain elements

of A on simple modules. To accomplish this, we apply the following well-known results on traces.

Parts (a) and (b) hold for any finite-dimensional algebra A.

Lemma 2.1.1. (a) Assume S, T, U are finite-dimensional modules over the algebra A such that

U ≃ S/T. Then for any x ∈ A, the trace trU(x) of x on U satisfies trU(x) = trS(x)+ trT(x).

(b) If U1, . . . ,Us are the composition factors of a finite-dimensional A-module U, where Ui

occurs with multiplicity ci, then for any x ∈ A, trU(x) = c1trU1(x) + · · · + cstrUs
(x).

(c) (See [27, Proposition 10.21 (b)].) For any finite-dimensional A-modules U and W, and any

x ∈ A,

(2.1.1) trU⊗W(x) =
∑

x

trU
(

x(1)
)

trW
(

x(2)
)

.

Let S1,S2, . . . ,Sm be a Z-basis of simple modules for the Grothendieck ring G0(A) of the Hopf

algebra A, and for any x ∈ A set

(2.1.2) TrS(x) := [trS1(x) trS2(x) . . . trSm(x)]
T.

Observe that TrS(1) = [dim(S1) dim(S2) . . . dim(Sm)]T = s, the vector of dimensions of the simple

A-modules. We know that s gives a right eigenvector for any McKay matrix determined by tensoring

with a finite-dimensional A-module. Next we explore some other elements of the Hopf algebra A

that give such right eigenvectors.

Theorem 2.1.2. Assume MV = (Mij), where Mij = [Si ⊗ V : Sj], is the McKay matrix associated

to tensoring with an A-module V. Then the trace of x ∈ A on Si ⊗V for any 1 ≤ i ≤ m is given by

(2.1.3)
∑

x

trSi(x(1))trV(x(2)) =
m
∑

j=1

MijtrSj(x), and

(2.1.4) MV TrS(x) =
∑

x

trV(x(2))TrS(x(1)).

Proof. This follows from Lemma 2.1.1 (c) and the fact that Mij is the multiplicity of Sj as a

composition factor of Si ⊗ V. Equation (2.1.3) gives the ith coordinate of the matrix equation in

(2.1.4). �

Corollary 2.1.3. For the McKay matrix MV associated to tensoring the simple A-modules with V,

the following hold:
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(a) When g ∈ A is grouplike, then ∆(g) = g ⊗ g, and (2.1.4) says

(2.1.5) MV TrS(g) = trV(g)TrS(g).

Consequently, for every grouplike element of A, TrS(g) is a right eigenvector for MV with

eigenvalue trV(g). When g = 1, this reverts to the result that the dimension vector s is a

right eigenvector with eigenvalue trV(1) = dim(V).

(b) When x ∈ A has the property that ∆(x) = x ⊗ y + z ⊗ x for some nonzero y, z ∈ A, then

(2.1.4) says

(2.1.6) MV TrS(x) = trV(y)TrS(x) + trV(x)TrS(z).

The next result draws some useful conclusions from this equation. In part (2)(b) of Proposition

2.1.4, the phrase generalized right eigenvector of MV with eigenvalue λ refers to a vector u such

that (MV − λI)u is a nonzero right eigenvector of MV for λ. Similarly, in Proposition 2.2.2 (2)(b)

below, a generalized left eigenvector for the matrix QT

V
with eigenvalue λ is a vector w such that

w(QT

V
− λI) is a nonzero left eigenvector for QT

V
with eigenvalue λ.

Proposition 2.1.4. Assume (2.1.6) holds for some x ∈ A, and TrS(x) 6= 0.

(1) If trV(x) = 0, then TrS(x) is a right eigenvector for MV with eigenvalue trV(y).

(2) If trV(x) 6= 0, and TrS(z) is a right eigenvector for MV with eigenvalue λ, then

(a) trV(y) 6= λ implies that (trV(y)−λ)TrS(x)+ trV(x)TrS(z) is a right eigenvector for MV

with eigenvalue trV(y);

(b) trV(y) = λ and TrS(x) 6∈ kTrS(z) imply that TrS(x) is a generalized right eigenvector

for MV with eigenvalue λ: MV TrS(x) = λTrS(x) + trV(x)TrS(z).

Remark 2.1.5. The case trV(y) = λ and TrS(x) = δ TrS(z) for some 0 6= δ ∈ k cannot happen when

TrS(z) is assumed to be a right eigenvector for MV with eigenvalue λ in (2), as this would imply

that TrS(x) is a right eigenvector for MV with both eigenvalue λ and eigenvalue λ+ δ−1trV(x) 6= λ.

2.2. Left eigenvectors from traces of projective modules. This section discusses using pro-

jective modules to produce left eigenvectors. Suppose P1,P2, . . . ,Pm are the nonisomorphic inde-

composable projective modules for the Hopf algebra A. The tensor product of any A-module V

with a projective A-module is projective, hence the corresponding isomorphism class is a Z-linear

combination of the [Pj ] in the Grothendieck group K0(A) (see [26, Sec. 3.1]). We use [Pi ⊗ V : Pj ]

to denote the multiplicity of [Pj] in [Pi ⊗ V] and define

(2.2.1) QV = (Qij) , where Qij = [Pi ⊗ V : Pj].

We refer to the matrix QV as the projective McKay matrix and relate QV to a McKay matrix in

Theorem 2.3.3 below. If x ∈ A and ∆(x) =
∑

x x(1) ⊗ x(2), then

(2.2.2)
∑

x

trPi
(x(1))trV(x(2)) = trPi⊗V(x) =

m
∑

j=1

QijtrPj
(x) =

m
∑

j=1

trPj
(x)
(

QT

V

)

ji
.

This is the ith component of the matrix equation

(2.2.3) TrP(x)Q
T

V =
∑

x

trV(x(2))TrP(x(1)), where

TrP(x) :=
[

trP1(x) trP2(x) . . . trPm
(x)
]

.(2.2.4)

We have the following analogs of (2.1.5) and (2.1.6):
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Corollary 2.2.1. Let QT

V
be the McKay matrix associated to tensoring the projective indecompos-

able A-modules with V. Then

(a) When g ∈ A is grouplike,

(2.2.5) TrP(g)Q
T

V = trV(g)TrP(g).

Consequently, for every grouplike element of A, TrP(g) is a left eigenvector for QT

V
with

eigenvalue trV(g). When g = 1, the eigenvalue is trV(1) = dim(V), and the eigenvector

TrP(1) is just the dimension vector p =
[

dim(P1) dim(P2) . . . dim(Pm)
]

.

(b) When x ∈ A has the property that ∆(x) = x ⊗ y + z ⊗ x for some nonzero y, z ∈ A, then

(2.2.3) says

(2.2.6) TrP(x)Q
T

V = trV(y)TrP(x) + trV(x)TrP(z).

The next result is the projective version of Proposition 2.1.4.

Proposition 2.2.2. Assume (2.2.6) holds for x ∈ A and TrP(x) 6= 0.

(1) If trV(x) = 0, then TrP(x) is a left eigenvector for QT

V
with eigenvalue trV(y).

(2) If trV(x) 6= 0, and TrP(z) is a left eigenvector for QT

V
with eigenvalue λ, then

(a) trV(y) 6= λ implies that (trV(y)− λ)TrP(x) + trV(x)TrP(z) is a left eigenvector for QT

V

with eigenvalue trV(y);

(b) trV(y) = λ and TrP(x) 6∈ kTrP(z) imply that TrP(x) is a generalized left eigenvector for

QT

V
with eigenvalue λ: TrP(x)Q

T

V
= λTrP(x) + trV(x)TrP(z).

Remark 2.2.3. As in Remark 2.1.5, the case trV(y) = λ and TrP(x) = δ TrP(z) for some 0 6= δ ∈ k

cannot happen when TrP(z) is assumed to be a left eigenvector for QT

V
with eigenvalue λ.

2.3. The Cartan map and Cartan matrix. We will use the Cartan map to relate McKay

matrices and projective McKay matrices for any finite-dimensional Hopf algebra A.

The two Grothendieck groups mentioned in the Introduction are related by the Cartan map

c : K0(A) → G0(A), [P] 7→ [P]. The Cartan matrix is the integral matrix C =
(

Cij) representing c

in the bases {[Pj ] | 1 ≤ j ≤ m} and {[Sj ] | 1 ≤ j ≤ m} of K0(A) and G0(A) respectively. It has

as its (i, j) entry Cij = [Pi : Sj], the multiplicity of [Sj ], when [Pi] is written as a Z-combination

of the classes [Sj], which is also the multiplicity of Sj in a composition series for Pi. When A is

semisimple, C is the identity matrix, as Pj = Sj for all j. In general, the Cartan matrix is not

invertible.

Here is a tiny example exhibiting a non-invertible C: The Sweedler Hopf algebra has a basis

1, a, b, ab, where a2 = 0, b2 = 1, ba = −ab (it is the baby Taft algebra A2 - compare Section 3.1

with q = −1). It has two one-dimensional simple modules Sα and Sε, where α(a) = 0, α(b) = −1,

and ε is the counit with ε(a) = 0 and ε(b) = 1. The corresponding projective covers Pα and Pε

are two-dimensional and have both simple modules as composition factors. Thus, C =

(

1 1

1 1

)

.

In fact, the Cartan matrix of any Taft algebra An defined using a primitive root of unity of order

n ≥ 2 is the n× n matrix with all entries equal to 1 (see [27, Exer. 10.2.4]).

Now suppose that QV =
(

Qij

)

is the projective McKay matrix for tensoring with V as in (2.2.1).

Then the relation between QV and the McKay matrix MV for tensoring simple modules with V can

be described as follows:

Proposition 2.3.1. For any A-module V,
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(a) QVC = CMV, where C =
(

Cij

)

is the Cartan matrix.

(b) If v is a right eigenvector for MV with eigenvalue λ, then Cv is a right eigenvector for QV

with eigenvalue λ.

(c) If w is a left eigenvector for QV with eigenvalue µ, then wC is a left eigenvector for MV

with eigenvalue µ.

Proof. (a) With notation as in (2.2.1), we have on one hand

[Pi ⊗ V] =

m
∑

t=1

Qit[Pt]
c

−→

m
∑

t=1

Qit[Pt] =

m
∑

t,ℓ=1

QitCtℓ[Sℓ],

and on the other,

[Pi ⊗ V]
c

−→ [Pi ⊗ V] = [Pi][V] =

m
∑

t=1

Cit[St][V] =

m
∑

t,ℓ=1

CitMtℓ[Sℓ].

Thus, QVC = CMV.

(b) If v is a right eigenvector for MV with eigenvalue λ, then QVCv = CMVv = λCv so that Cv

is a right eigenvector for QV with eigenvalue λ. (c) Similarly, if w is a left eigenvector for QV with

eigenvalue µ, then wC is a left eigenvector for MV with eigenvalue µ. �

For simplicity, we usually omit the brackets on the isomorphism class representatives of K0(A)

and G0(A) in what follows unless they are needed for clarity. We will use the next result, which

can be found for example in [16, Prop. 9.2.3].

Proposition 2.3.2. Let Pi be the projective cover of the simple module Si. Then for any A-module

N,

dimkHomA(Pi,N) = [N : Si],

the multiplicity of Si in a Jordan-Hölder series of N.

For every P ∈ K0(A) and V,W ∈ G0(A), the following holds (see [26, Sec. 3.1])

(2.3.1) dimkHomA(P⊗ V,W) = dimkHomA(P,W ⊗ V∗).

This will enable us to relate the projective McKay matrix to the McKay matrix of the dual module.

Assume MV =
(

Mij

)

is the McKay matrix for tensoring with V ∈ G0(A), and MV∗ =
(

M∗
ij

)

is the

McKay matrix for tensoring with the dual module V∗. Let MT

V∗ =
(

M∗
ji

)

be the transpose of MV∗ ,

and let QV =
(

Qij

)

be the projective McKay matrix for V. Then we have the following consequence

of Proposition 2.3.2 and (2.3.1). Variations of this result have appeared in several different contexts

such as [1, Lem. 8] and [29, Lem. 10], and it can be regarded as a special case of the tensor category

result [15, Prop. 6.1.2].

Theorem 2.3.3. Assume V is a module for a finite-dimensional Hopf algebra A. Then

Qij = dimkHomA(Pi ⊗ V,Sj) = dimkHomA(Pi,Sj ⊗ V∗) = [Sj ⊗ V∗ : Si] = M∗
ji.

Therefore, QV = MT

V∗.

Corollary 2.3.4. For any module V over a finite-dimensional Hopf algebra A,

(a) MT

V∗ C = CMV, where C is the Cartan matrix.

(b) If v is a right eigenvector of MV with eigenvalue λ, then Cv is a right eigenvector for MT

V∗

with eigenvalue λ. Similarly, if w is a left eigenvector of MT

V∗ with eigenvalue µ, then wC

is a left eigenvector for MV with eigenvalue µ.
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(c) If C is invertible, then MT

V∗ = CMVC
−1. Therefore, MV and MT

V∗ (and also MV∗) have the

same eigenvalues when C is invertible.

(d) If A is semisimple, the Cartan matrix is the identity matrix, and consequently, MT

V∗ = MV.

Moreover, if V is self-dual, then MV is symmetric, hence orthogonally diagonalizable.

2.4. Eigenvectors from projective modules. We combine results from the previous sections to

obtain left eigenvectors from traces of projective modules. Theorem 2.3.3 implies that QT

V
= MV∗

holds for any finite-dimensional Hopf algebra A, where V∗ is the dual module to V, and QV is the

projective McKay matrix. As a consequence of (2.2.3), we have

Theorem 2.4.1. For any A-module V and all x ∈ A,

(a) TrP(x)MV∗ =
∑

x

trV(x(2))TrP(x(1)), where TrP(x) = [trP1(x) trP2(x) . . . trPm
(x)] .

(b) If (V∗)∗ ∼= V, then TrP(x)MV =
∑

x

trV∗(x(2))TrP(x(1)).

Corollary 2.4.2. Under the assumption that (V∗)∗ ∼= V for the A-module V, the following results

hold (compare these to the corresponding results for simple modules (2.1.5) and (2.1.6)):

(a) When g ∈ A is grouplike,

(2.4.1) TrP(g)MV = trV∗(g)TrP(g).

Hence, for every grouplike element of A, TrP(g) is a left eigenvector of MV of eigenvalue

trV∗(g). The vector TrP(1) is just the dimension vector p =
[

dim(P1) dim(P2) . . . dim(Pm)
]

,

and the eigenvalue is trV∗(1) = dim(V∗) = dim(V) = trV(1).

(b) When x ∈ A has the property that ∆(x) = x ⊗ y + z ⊗ x for some nonzero y, z ∈ A, then

(2.2.3) says

(2.4.2) TrP(x)MV = trV∗(y)TrP(x) + trV∗(x)TrP(z).

2.5. Eigenvectors for McKay matrices from the Grothendieck algebra GC
0 (A). Next we de-

scribe a way to produce left eigenvectors and generalized left eigenvectors for McKay matrices using

the Grothendieck algebra GC
0 (A) = C⊗ZG0(A) of any Hopf algebra A. The classes [S1], [S2], . . . , [Sm]

of the nonisomorphic simple modules give a C-basis for GC
0 (A).

Proposition 2.5.1. (a) Let V be an A-module, and assume [X] = c1[S1]+· · ·+cm[Sm] ∈ GC
0 (A),

cj ∈ C for all j, is an eigenvector for the right multiplication operator R[V] of G
C
0 (A) with

eigenvalue λ. Then [c1 c2 . . . cm] is a left eigenvector for MV with eigenvalue λ.

(b) Suppose that [Y] = d1[S1] + · · ·+ dk[Sm] ∈ GC
0 (A) has the property that (R[V] − λI)ℓ(Y) = 0.

Then for the McKay matrix MV, we have [d1 d2 . . . dm](MV − λI)ℓ = 0.

Proof. (a) We are assuming that R[V]([X]) = λ[X], or more specifically,

(c1[S1] + · · ·+ cm[Sm])[V] = c1[S1][V] + · · ·+ cm[Sm][V] = λ(c1[S1] + · · ·+ cm[Sm]).

Since multiplication in GC
0 (A) is given by tensoring, this implies that

m
∑

i=1

ci[Si ⊗ V : Sj] = λcj

holds for each j, where [Si⊗V : Sj] is the multiplicity of [Sj ] in [Si⊗V]. However, [Si⊗V : Sj] = Mij,

(i, j) entry of MV. Therefore
∑m

i=1 ciMij = λcj for all j, which says

[c1 c2 . . . cm]MV = λ[c1 c2 . . . cm].
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Part (b) follows by induction, with part (a) providing the ℓ = 1 case. �

Remark 2.5.2. Grothendieck algebras in general do not have to be commutative, so we do need

to specify the “right” multiplication above.

2.6. Eigenvectors for McKay matrices from KC
0 (A). To determine additional information

about the McKay matrix MV, we consider the operator R[V∗] of right multiplication by [V∗] on

the finite-dimensional complex vector space KC
0 (A) = C ⊗Z K0(A). Suppose [Y] is an eigenvector

for R[V∗] with eigenvalue ξ. Then [Y][V∗] = ξ[Y], where [Y] =
∑m

i=1 yi[Pi], a C-linear combina-

tion of the projective covers. The matrix QV∗ has (i, j) entry equal to the multiplicity of [Pj ] in

[Pi ⊗ V∗] = [Pi][V
∗], which implies

(2.6.1) [y1 y2 . . . ym]QV∗ = ξ[y1 y2 . . . ym].

Using the fact that QT

V∗ = M(V∗)∗ from Theorem 2.3.3 and (2.6.1), we have

Proposition 2.6.1. Assume that the A-module V satisfies (V∗)∗ ∼= V. Let [Y] be a left eigenvector

for R[V∗] with eigenvalue ξ in KC
0 (A), and let [y1 y2 . . . ym] be its coordinate vector relative to the

basis {[Pi]}
m
i=1 of KC

0 (A) of projective covers. Then

MV[y1 y2 . . . ym]T = ξ[y1 y2 . . . ym]T,

so that [y1 y2 . . . ym]T is a right eigenvector for MV with eigenvalue ξ.

Remark 2.6.2. When the antipode S of A has the property that S2 is an inner automorphism

of A, then (V∗)∗ ∼= V holds for all A-modules V (see [27, Lem. 10.2(a)]). Any semisimple Hopf

algebra will have (V∗)∗ ∼= V for all V, as will any symmetric algebra [32]. Drinfeld doubles are

always symmetric (i.e. have a nondegenerate, symmetric, associative bilinear form). In particular,

the Drinfeld double Dn, which we investigate in detail in Section 3, has the property (V∗)∗ ∼= V for

all V, and Dn is not semisimple. Also, since the quantum group uq(sl2) for q a root of unity has a

unique simple module of each dimension, (V∗)∗ ∼= V holds for all uq(sl2)-modules V, and uq(sl2) is

not semisimple.

2.7. Eigenvectors for McKay matrices of semisimple Hopf algebras. In this section, we

assume that the Hopf algebra A is semisimple. The assumption of semisimplicity enables us to say

more about the eigenvectors and characters of A.

Following [26] and [39, p. 886], we define

〈X,Y〉 = dimkHomA(X
∗,Y),

for any two A-modules X and Y in GC
0 (A), where X

∗ denotes the dual module of X. This generates a

nondegenerate, symmetric associative C-bilinear form on GC
0 (A). Therefore, GC

0 (A) is a symmetric

algebra with dual bases {S1,S2, . . . ,Sm} and {S∗1,S
∗
2, . . . ,S

∗
m}, where the Si are representatives of

the isomorphism classes of simple A-modules.

Let ζ1, ζ2, . . . , ζs be the GC
0 (A)-characters afforded by the simple GC

0 (A)-modules. Since A is

semisimple, so is the Grothendieck algebra GC
0 (A) (see, for example, [41] and [39]). Therefore,

by [13, Sec. 9B] we know that the characters of GC
0 (A) are linearly independent over C. Moreover,

if E1,E2, . . . ,Es are the primitive central idempotents of GC
0 (A), then ζi(Ei) = ζi(1), and ζi(Ej) = 0

for j 6= i. The idempotents E1,E2, . . . ,Es form a C-basis for the center of GC
0 (A).
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By Proposition 9.17 (i) of [13], the duality of the bases {S∗j}, {Sj} relative to the symmetric

bilinear form above can be used to define

Di =
m
∑

j=1

ζi(S
∗
j )Sj =

m
∑

j=1

ζi(Sj)S
∗
j , for 1 ≤ i ≤ s,

and to prove that ζi(Di) 6= 0, Then applying [13, Prop. 9.17 (ii)], we have

Proposition 2.7.1. Assume that the Hopf algebra A is semisimple, and let ζ1, ζ2, . . . , ζs be the

characters of the simple GC
0 (A)-modules. Then for all 1 ≤ i ≤ s, the primitive central idempotent

Ei of G
C
0 (A) corresponding to the character ζi is given by

Ei = ζi(1)ζi(Di)
−1Di, where ζi(Di) =

m
∑

j=1

ζi(S
∗
j )ζi(Sj) = ζi





m
⊕

j=1

S∗j ⊗ Sj



 ,

and Sj, 1 ≤ j ≤ m, are the simple A-modules.

Remarks 2.7.2. • In [39], Witherspoon investigated GC
0 (A) when A is a semisimple, almost co-

commutative Hopf algebra. Under these assumptions, GC
0 (A) is both semisimple and commutative,

so the simple modules for GC
0 (A) are one-dimensional. The expression for the primitive central

idempotents coming from [39, (3.4)] is basically the same as the one given in Proposition 2.7.1;

however, since ζi(1) = 1 for all i when A is semisimple and almost cocommutative, that factor does

not appear in [39].

• The primitive central idempotents Ei form a basis for GC
0 (A) when A is semisimple and almost

cocommutative, and in fact, the simple GC
0 (A)-modules are exactly the CEi. Therefore, s = m in

the situation considered in [39]. This is not true when A is an arbitrary semisimple Hopf algebra.

Each Ei is the identity element of a matrix block of the semisimple algebra GC
0 (A), but these blocks

do not have to be one-dimensional. The Hopf algebra that is (14) in Kashina’s classification [24]

of 16-dimensional semisimple Hopf algebras is an example of this phenomenon. The Grothendieck

algebra GC
0 (A) has a 2× 2 matrix block in that case.

Assume A is semisimple and V is an A-module that is central in GC
0 (A). Then V =

∑s
i=1 λiEi,

which implies that EiV = λiEi, that is, Ei is an eigenvector for right multiplication by V in GC
0 (A).

Therefore, by Propositions 2.5.1 and 2.7.1, we have for the McKay matrix MV = (Mij),

λiEi = λiζi(1)ζi(Di)
−1

m
∑

j=1

ζi(S
∗
j)Sj = EiV = ζi(1)ζi(Di)

−1
m
∑

j=1

ζi(S
∗
j)SjV

= ζi(1)ζi(Di)
−1

m
∑

j=1

ζi(S
∗
j)

(

m
∑

ℓ=1

[Sj ⊗ V : Sℓ]Sℓ

)

= ζi(1)ζi(Di)
−1

m
∑

ℓ=1





m
∑

j=1

ζi(S
∗
j)Mjℓ



 Sℓ.

In other words, λiζi(S
∗
ℓ) =

∑m
j=1 ζi(S

∗
j)Mjℓ. This says that [ζi(S

∗
1) ζi(S

∗
2) . . . ζi(S

∗
m)] for 1 ≤ i ≤ s,

is a left eigenvector for MV with eigenvalue λi when V =
∑s

i=1 λiEi is a central element of GC
0 (A).

Hence, we have shown the following

Proposition 2.7.3. Assume that the Hopf algebra A is semisimple, and V is an A-module that is

central in the Grothendieck algebra GC
0 (A). Let ζ1, ζ2, . . . , ζs be the simple characters of GC

0 (A). Then

[ζi(S
∗
1) ζi(S

∗
2) . . . ζi(S

∗
m)] is a left eigenvector of MV for 1 ≤ i ≤ s, where the characters ζi are

evaluated on the dual modules S∗1,S
∗
2, . . . ,S

∗
m of the nonisomorphic simple A-modules S1,S2, . . . ,Sm.
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Remark 2.7.4. When A is semisimple and almost cocommutative (as in [39]), then all the left

eigenvectors for MV for any choice of V are obtained in this fashion, since the Ei form a C-basis of

GC
0 (A) in this case, and every A-module V can be expressed as V =

∑s=m
i=1 λiEi for some λi ∈ C.

Consequently, the following result holds.

Corollary 2.7.5. When A is a semisimple, almost cocommutative Hopf algebra, the left eigenvec-

tors of MV are the same for the McKay matrix of any finite-dimensional A-module V, and they

can be gotten by evaluating the simple characters ζi, 1 ≤ i ≤ m, of GC
0 (A),

(2.7.1) [ζi(S
∗
1) ζi(S

∗
2) . . . ζi(S

∗
m)],

on the dual modules S∗j of the nonisomorphic simple A-modules Sj, 1 ≤ j ≤ m.

3. The Drinfeld Double of the Taft Algebra and its Modules

Throughout Section 3, we assume n is an odd integer ≥ 3, k is an algebraically closed field of

characteristic 0, and q is a primitive nth root of unity in k. When n is even, the Drinfeld double

and its modules are defined similarly, but different behavior is exhibited, and so this case will not

be considered in this work.

3.1. Preliminaries. The Drinfeld double Dn of the Taft algebra An has a presentation as the Hopf

algebra over k with generators a, b, c, d that satisfy the following relations:

ba = qab, db = qbd,

ca = qac, dc = qcd,

bc = cb, da− qad = 1− bc,

an = 0 = dn, bn = 1 = cn.

(3.1.1)

The coproduct, counit, and antipode of Dn are given by

∆(a) = a⊗ b+ 1⊗ a, ∆(d) = d⊗ c+ 1⊗ d,

∆(b) = b⊗ b, ∆(c) = c⊗ c,

ε(a) = 0 = ε(d), ε(b) = 1 = ε(c),

S(a) = −ab−1, S(b) = b−1, S(c) = c−1, S(d) = −dc−1.

(3.1.2)

The Taft algebra An is the Hopf subalgebra generated by a and b. It follows from (3.1.2) and the

fact that ∆ is an algebra homomorphism that the elements bick for 0 ≤ i, k ≤ n− 1 are grouplike.

3.1.1. The simple and projective Dn-modules. The simple Dn-modules V(ℓ, r) are indexed by a

pair (ℓ, r) where 1 ≤ ℓ ≤ n and r ∈ Zn = Z/nZ (the integers modulo n). Then V(ℓ, r) is a k-vector

space of dimension ℓ with basis v1, v2, . . . , vℓ and with Dn-action given by

a.vj = vj+1, 1 ≤ j < ℓ, a.vℓ = 0,

b.vj = qr+j−1vj , c.vj = qj−(r+ℓ)vj, 1 ≤ j ≤ ℓ,

d.vj = αj−1(ℓ)vj−1, 1 < j ≤ ℓ, d.v1 = 0,

(3.1.3)

where

(3.1.4) αi(ℓ) =

(

qi − 1
) (

1− qi−ℓ
)

q − 1
for 1 ≤ i ≤ n− 1.

From Chen et al. [6, 8], the following hold:

(1) V(1, 0) is the trivial Dn-module with action given by the counit ε.
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(2) V(ℓ, r)⊗ V(1, s) ∼= V(ℓ, r + s).

(3) V(ℓ, r) ⊗ V(ℓ′, s) is completely reducible if and only if ℓ + ℓ′ ≤ n + 1. In this case, if

m = min(ℓ, ℓ′), then

(3.1.5) V(ℓ, r)⊗ V(ℓ′, s) ∼=

m
⊕

j=1

V(ℓ+ ℓ′ + 1− 2j, r + s+ j − 1).

Let P(ℓ, r) be the projective cover of the simple Dn-module V(ℓ, r). Chen [7] has shown that any

indecomposable projective left Dn-module is isomorphic to one of the modules P(ℓ, r) for 1 ≤ ℓ < n

or to V(n, r) for some r ∈ Zn, and the module P(ℓ, r) for 1 ≤ ℓ < n has the following structure.

There is a chain of submodules P(ℓ, r) ⊃ soc2(P(ℓ, r)) ⊃ soc(P(ℓ, r)) ⊃ (0) such that

(1) soc(P(ℓ, r)) is the socle of P(ℓ, r) (the sum of all the simple submodules), and soc(P(ℓ, r)) ∼=

V(ℓ, r);

(2) soc2(P(ℓ, r))/soc(P(ℓ, r)) ∼= V(n− ℓ, r + ℓ)⊕ V(n− ℓ, r + ℓ);

(3) P(ℓ, r)/soc2(P(ℓ, r)) ∼= V(ℓ, r).

Therefore, [P(ℓ, r)] = 2[V(ℓ, r)] + 2[V(n − ℓ, r + ℓ)] in the Grothendieck group G0(Dn), and the

dimension of the indecomposable module P(ℓ, r) is 2n for 1 ≤ ℓ < n. Hence, it follows that

[P(ℓ, r)] = [P(n − ℓ, r + ℓ)] holds in G0(Dn) for all 1 ≤ ℓ < n and all r ∈ Zn. The modules V(n, r)

for all r ∈ Zn are the only Dn-modules that are both simple and projective.

3.1.2. The Cartan map for Dn. We consider an extension of the Cartan map of Dn to a C-linear

map (also denoted c), c : KC
0 (Dn) → GC

0 (Dn), [P] 7→ [P]. Then c
(

[P(ℓ, r]
)

= [P(ℓ, r)] = 2[V(ℓ, r)] +

2[V(n− ℓ, ℓ+ r)] = c
(

[P(n− ℓ, ℓ+ r)]
)

for all 1 ≤ ℓ ≤ n−1
2 , and r ∈ Zn, and c

(

[V(n, r)]
)

= [V(n, r)]

for all r ∈ Zn. Therefore, the images under c of the basis elements of KC
0 (Dn) are C-linearly

independent elements of GC
0 (Dn), and it follows that dim

(

im(c)
)

= n(n+1)
2 . Since the elements

[P(ℓ, r)]− [P(n− ℓ, ℓ+ r)], 1 ≤ ℓ ≤ n−1
2 , r ∈ Zn, are linearly independent elements of the kernel of

c and dim
(

ker(c)
)

= n2− n(n+1)
2 = n(n−1)

2 , they form a basis for the kernel. To summarize, we have

the following result.

Proposition 3.1.1. (a) The elements 2[V(ℓ, r)]+2[V(n− ℓ, ℓ+r)] for all 1 ≤ ℓ ≤ n−1
2 , r ∈ Zn,

and [V(n, r)], r ∈ Zn, form a basis for the image im(c) of the Cartan map c : KC
0 (Dn) →

GC
0 (Dn). Therefore, dim

(

im(c)
)

= n(n+1)
2 .

(b) The rank of the Cartan matrix C of Dn is n(n+1)
2 .

(c) The elements [P(ℓ, r)] − [P(n − ℓ, ℓ+ r)], 1 ≤ ℓ ≤ n−1
2 , r ∈ Zn, form a basis for the kernel

of c, and dim
(

ker(c)
)

= n(n−1)
2 .

3.2. The McKay matrix for tensoring with the Dn-module V(2, 0). Throughout this section,

we assume that V is the two-dimensional simple Dn-module V(2, 0) with basis {v1, v2}. Now it

follows from (3.1.5) and [8, Prop. 3.1, Thms. 3.3 and 3.5] that for V = V(2, 0),

(1) V(1, r)⊗ V = V(2, r);

(2) V(ℓ, r)⊗ V = V(ℓ+ 1, r)⊕ V(ℓ− 1, r + 1) for 2 ≤ ℓ < n;

(3) V(n, r)⊗ V ∼= P(n− 1, r + 1);

(4) P(1, r)⊗ V ∼= P(2, r) ⊕ 2V(n, r + 1);

(5) P(ℓ, r)⊗ V ∼= P(ℓ+ 1, r)⊕ P(ℓ− 1, r + 1) for 2 ≤ ℓ < n− 1;

(6) P(n− 1, r)⊗ V ∼= P(n− 2, r + 1)⊕ 2V(n, r).
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The McKay matrix for tensoring the simple Dn-modules V(ℓ, r) with V := V(2, 0) is the n2 × n2

matrix MV =
(

M(ℓ,r),(ℓ′,s)

)

, whose entry M(ℓ,r),(ℓ′,s) is given by the composition series multiplicity

M(ℓ,r),(ℓ′,s) = [V(ℓ, r)⊗ V : V(ℓ′, s)].

We assume that the numbering of the rows and columns of MV is first by ℓ = 1, then by ℓ = 2,

etc., and for each ℓ the numbering is r = 0, 1, . . . , n− 1; that is, we are numbering by lexicographic

order, and we will often simply write M for MV when the choice of V is unambiguous. Using the

decomposition formulas above, we observe that the McKay matrix M then can be displayed using

n×n blocks, where I = In is the n×n identity matrix, and Z is the n×n cyclic permutation matrix

as presented below

(3.2.1) M =



























0 I 0 · · · 0 0

Z 0 I · · · 0 0

0 Z 0 I · · · 0 0
...

... Z
. . .

. . . 0 0
...

...
...

. . . I 0

0 0 0 0 · · · Z 0 I

2I 0 0 0 · · · 2Z 0



























Z =



























0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0 1 · · · 0 0
...

...
. . .

. . . 0 0
...

...
...

. . . 1 0

0 0 0 0 · · · 0 1

1 0 0 0 · · · 0 0



























.

There are identity matrices on the superdiagonal of M, and the matrix Z is on the subdiagonal of

M except for the last row (corresponding to the modules V(n, r) for r ∈ Zn), where the nonzero

entries are 2I and 2Z, due to the fact that V(n, r)⊗V(2, 0) = P(n−1, r+1), which has composition

factors V(n− 1, r + 1) (twice) and V(1, r) (twice).

Assume Y = diag{X,X, . . . ,X}, where the n× n matrix X diagonalizes Z,

XZX−1 = D := diag{1, q, . . . , qn−1},

and q is as before, a primitive nth root of unity in k for n odd and ≥ 3. Then

(3.2.2) M′ = YMY−1 =





















0 I 0 · · · 0 0

D 0 I · · · 0 0

0 D 0 I · · · 0 0

,
...

...
...

. . . I 0

0 0 0 · · · D 0 I

2I 0 0 · · · 0 2D 0





















.

3.3. Characteristic polynomial and characteristic roots of MV, V = V(2, 0). We want to

determine the characteristic roots of M = MV, which we can do by computing the characteristic

roots of M′, as they are the same. The advantage to working with M′ is that its entries lie in the

commutative ring of diagonal matrices, and so usual matrix operations apply.
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Consider the characteristic polynomial of M′, which can be found by computing

det
(

tIn2 −M′
)

= det



























tI −I 0 · · · 0 0

−D tI −I · · · 0 0

0 −D tI −I · · · 0 0
...

... −D
.. .

. . . 0 0
...

...
...

. . . −I 0

0 0 0 0 · · · −D tI −I

−2I 0 0 0 · · · −2D 0



























.

Define polynomials Uk(t,D) recursively by

(3.3.1) U0(t,D) = I, U1(t,D) = tI, Uk(t,D) = tUk−1(t,D) −DUk−2(t,D), k ≥ 2.

These polynomials are related to Chebyshev polynomials of the second kind, as we explain in the

next section. In computing the determinant of tIn2 − M′, we will abbreviate Uk(t,D) as Uk. We

perform row operations on tIn2 −M′ using the matrices −I on the superdiagonal to eliminate the

entries beneath them. Therefore, after using the −I in the first row and then the −I in the second

row, we have


























U1 −I 0 · · · 0 0

tU1 −DU0 0 −I · · · 0 0

−DU1 0 tI −I · · · 0 0
...

... −D
.. .

. . . 0 0
...

...
...

. . . −I 0

0 0 0 0 · · · −D tI −I

−2I 0 0 0 · · · −2D tI



























,



























U1 −I 0 · · · 0 0

U2 0 −I · · · 0 0

tU2 −DU1 0 0 −I · · · 0 0
...

...
. . .

. . . 0 0
...

...
...

. . . −I 0

0 0 0 0 · · · −D tI −I

−2I 0 0 0 · · · −2D tI



























,

respectively. Continuing, we obtain


























U1 −I 0 · · · 0 0

U2 0 −I · · · 0 0

U3 0 0 −I · · · 0 0
...

...
. . .

. . . 0 0

Un−2
...

...
. . . −I 0

Un−1 0 0 0 · · · 0 0 −I

−2DUn−2 − 2I 0 0 0 · · · 0 tI



























,

so that after the final step, the result of using the bottommost −I on the superdiagonal is


























U1 −I 0 · · · 0 0

U2 0 −I · · · 0 0

U3 0 0 −I · · · 0 0
...

...
. . .

. . . 0 0
...

...
...

. . . −I 0

Un−1 0 0 0 · · · 0 −I

tUn−1 − 2DUn−2 − 2I 0 0 0 · · · 0 0



























.
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Therefore, setting

(3.3.2) pn(t,D) := tUn−1(t,D) − 2DUn−2(t,D)− 2I = Un(t,D)−DUn−2(t,D)− 2I,

we have det(tIn2 − M′) = pn(t,D), where M′ is as in (3.2.2), and the characteristic roots of M′,

hence also of M, are the roots of pn(t,D).

Here are the first few polynomials pn(t,D):

n = 3 : t3 − 3Dt− 2I

n = 5 : t5 − 5Dt3 + 5D2t− 2I

n = 7 : t7 − 7Dt5 + 14D2t3 − 7D3t− 2I

n = 9 : t9 − 9Dt7 + 27D2t5 − 30D3t3 + 9D4t− 2I

n = 11 : t11 − 11Dt9 + 44D2t7 − 77D3t5 + 55D4t3 − 11D5t− 2I

n = 13 : t13 − 13Dt11 + 65D2t9 − 156D3t7 + 182D4t5 − 91D5t3 + 13D6t− 2I.

(3.3.3)

These are polynomials with coefficients that are n×n diagonal matrices. Each diagonal entry qk of

D for k ∈ Zn determines a polynomial pn(t, q
k) in q and t with coefficients in Z. The characteristic

roots of M are obtained by setting those n polynomials equal to 0. For example, when n = 7, the

polynomials are pn(t, q
k) = t7 − 7qkt5 +14q2kt3 − 7q3kt− 2 for k ∈ Z7, and the characteristic roots

of M are the roots of those 7 polynomials.

3.4. Right eigenvectors for MV, V = V(2, 0), and Chebyshev polynomials. The polynomials

pn(t,D) are related to Chebyshev polynomials Uk(t) of the second kind, which are defined recursively

by the formulas

(3.4.1) U0(t) = 1, U1(t) = 2t, Uk(t) = 2tUk−1(t)− Uk−2(t) for k ≥ 2.

Setting Uk(t) = Uk(
t
2 ), we have

(3.4.2) U0(t) = 1, U1(t) = t, Uk(t) = tUk−1(t)− Uk−2(t) for k ≥ 2.

There are a number of closed-form formulas for Chebyshev polynomials of the second kind. Re-

placing t by t
2 in one such formula (see for example, [31, 18.5.10 with λ = 1] or [14, (23), p. 185])

gives the following expression for Uk(t):

(3.4.3) Uk(t) =

⌊k
2
⌋

∑

j=0

(−1)j
(

k − j

j

)

tk−2j.

The polynomials Uk(t,D), which were defined in the previous section, satisfy a similar recursion

(3.3.1), and as a result,

(3.4.4) Uk(t,D) =

⌊k
2
⌋

∑

j=0

(−1)j
(

k − j

j

)

tk−2jDj .

The polynomial Uk(t) is Uk(t,D) with D and the n×n identity matrix I replaced by 1. Thus, when

D and I are replaced by 1 in pn(t,D), we obtain

(3.4.5) pn(t) := pn(t, 1) = tUn−1(t)− 2Un−2(t)− 2 = Un(t)− Un−2(t)− 2.

Assume now that n = 2h+ 1 for h ≥ 1. We aim to show

(3.4.6) pn(t) = p2h+1(t) = (t− 2)W2
h(t),
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where Wh(t) = Uh(t) +Uh−1(t) for all h ≥ 1, by appealing to results on Chebyshev polynomials of

the fourth kind.

The sum of two consecutive Chebyshev polynomials of the second kind is a Chebyshev polynomial

of the fourth kind. These polynomials are defined recursively by the following formulas (see [28, Secs.

1.2.3, 1.2.4]):

(3.4.7) W0(t) = 1, W1(t) = 2t+ 1, Wk(t) = 2tWk−1(t)−Wk−2(t) for k ≥ 2.

Thus, they satisfy the same recursion as the polynomials Uk(t), except W1(t) = 2t + 1, while

U1(t) = 2t. In particular, Wk(t) = Uk(t) + Uk−1(t) for all k ≥ 1 by [28, (1.54)].

Chebyshev polynomials have integer coefficients and complex roots. Suppose x = eiθ ∈ C. Then

z := x+x−1

2 = cos(θ) ∈ C, and it follows from [28, (1.54)] that the relation

(3.4.8) Uk(z) = xk + xk−2 + · · · + x−(k−2) + x−k =
xk+1 − x−(k+1)

x− x−1

holds. Moreover, by [28, (1.57)],

(3.4.9) Wk(z) =
x

2k+1
2 − x−

2k+1
2

x
1
2 − x−

1
2

= xk + xk−1 + · · ·+ x−(k−1) + x−k = x−k x2k+1 − 1

x− 1
.

Hence, for Uk(x+x−1) = Uk(
x+x−1

2 ) andWk(x+x−1) := Wk(
x+x−1

2 ), we can conclude the following:

Proposition 3.4.1. Assume Uk(t) is defined as in (3.4.2). Set W0(t) = 1 = U0(t), and let

Wk(t) = Uk(t) + Uk−1(t) for k ≥ 1. Let x = eiθ ∈ C be chosen so that t = x + x−1. Then for all

k ≥ 1, the following hold:

(a) Uk(t) = xk + xk−2 + · · ·+ x−(k−2) + x−k = xk+1−x−(k+1)

x−x−1 ;

(b) Wk(t) = xk + xk−1 + xk−2 + · · ·+ xk−2 + x−(k−1) + x−k = x−k x2k+1−1
x−1 ;

(c) pn(t) = Un(t)− Un−2(t)− 2 = (t− 2)W2
h(t) for n = 2h+ 1, h ≥ 1.

Proof. Only the last equality in (c) needs to be verified, and we proceed to show that the two sides

of (c) are equal by computing both by induction on h and comparing them. When h = 1,

W2
1(t) = x2 + 2x+ 3 + 2x−1 + x−2 = (x2 + 1 + x−2) + 2(x+ x−1) + 2 = U2(t) + 2U1(t) + 2U0(t).

Assuming the statement

(3.4.10) U2h(t) + 2U2h−1(t) + · · · + 2U1(t) + 2U0(t) = W2
h(t)

for h ≥ 1, we have

U2h+2(t) + 2U2h+1(t) + 2U2h(t) + · · · + 2U1(t) + 2U0(t)

=
(

x2h+2 + x2h + · · ·+ x−2h + x−2h−2
)

+
(

2x2h+1 + 2x2h−1 + · · ·+ 2x−2h+1 + 2x−2h−1
)

+
(

x2h + x2h−2 + · · ·+ x−2h+2 + x−2h
)

+ U2h(t) + 2U2h−1(t) + · · ·+ 2U1(t) + 2U0(t)

=
(

x2h+2 + 2x2h+1 + 2x2h + · · · + 2 + · · ·+ 2x−2h + 2x−2h−1 + x−2h−2
)

+
(

x2h + 2x2h−1 + 3x2h−2 + · · ·+ (2h+ 1) + · · ·+ 3x−2h+2 + 2x−2h+1 + x−2h
)

= x2h+2 + 2x2h+1 + 3x2h + · · ·+ (2h + 3) + · · · + 3x−2h + 2x−2h−1 + x−2h−2 = W2
h+1(t).

This completes the induction step and proves (3.4.10).
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Now on the other hand, we claim that when n = 2h+ 1 ≥ 3,

pn(t) = (t− 2)
(

Un−1(t) + 2Un−2(t) + 2Un−3(t) + · · ·+ 2U0(t)
)

.(3.4.11)

We argue this by induction on n. The base case when n = 3 follows from a direct calculation.

Suppose the statement is true for n. Then by (3.4.5), for n+ 1 we have

pn+1(t) =tUn(t)− 2Un−1(t)− 2

=(t− 2)Un(t) + 2Un(t)− 2Un−1(t)− 2

=(t− 2)Un(t) + 2
[

tUn−1(t)− Un−2(t)
]

− 2Un−1(t)− 2

=(t− 2)
[

Un(t) + Un−1(t)
]

+ pn(t)

=(t− 2)
[

Un(t) + Un−1(t) + Un−1(t) + 2Un−2(t) + · · ·+ 2U0(t)
]

=(t− 2)
[

Un(t) + 2Un−1(t) + 2Un−2(t) + · · · + 2U0(t)
]

.

Therefore, the assertion pn(t) = (t− 2)W2
h(t) follows by comparing (3.4.10) and (3.4.11). �

Applying (3.4.9) with k = h, we deduce

Corollary 3.4.2. For h ≥ 1, the roots of Wh(t) as a polynomial in x are all x 6= 1 which are roots

of unity in C of order 2h + 1. As a polynomial in t, the roots of Wh(t) are all t = x+ x−1, where

x is a root of unity of order 2h+ 1 in C and x 6= 1.

Remark 3.4.3. We are assuming that Dn is defined over an algebraically closed field k of charac-

teristic 0, and q is a primitive nth root of unity in k for n = 2h + 1, h ≥ 1. Since the subfield of

k generated by 1 and q is isomorphic to the subfield of C generated by 1 and x, where x 6= 1 is a

root of unity of order 2h+ 1 as in Corollary 3.4.2, we will identify x with q in what follows.

Corollary 3.4.4. Assume n ≥ 3, n odd. The characteristic roots of the McKay matrix M in (3.2.1)

are λj,r = qr(qj + q−j) = qrU1(q
j + q−j), where r ∈ Zn, 0 ≤ j ≤ n−1

2 , and q is a primitive nth root

of unity. Each root λ0,r = 2qr has multiplicity 1, and each root λj,r for j 6= 0 has multiplicity 2.

The next result gives an expression for right eigenvectors of M = MV, V = V(2, 0), in terms of

the Chebyshev polynomials.

Proposition 3.4.5. Assume r ∈ Zn and 0 ≤ j ≤ n−1
2 , and let v0 be the right eigenvector of the

matrix Z in (3.2.1) corresponding to the eigenvalue q2r given by v0 =
[

1 q2r · · · q(n−1)2r
]T

. For

1 ≤ ℓ ≤ n−1, set vℓ := qℓrUℓ(q
j + q−j)v0, where Uℓ is as in (3.4.2). Then vj,r = [v0 v1 . . . vn−1]

T

is a right eigenvector of M corresponding to the eigenvalue λj,r = qr(qj + q−j).

Proof. We check directly that the given vector vj,r is a right eigenvector of M, that is, we verify

(3.4.12) Mvj,r = M











v0

v1
...

vn−1











= λj,r











v0

v1
...

vn−1











holds by comparing both sides of (3.4.12). We assume that v0 is as in the statement of the

proposition, and argue this forces vℓ := qℓrUℓ(q
j + q−j)v0 to hold for 1 ≤ ℓ ≤ n− 1, where Uℓ is as

in (3.4.2). The comparison involves checking

v1
?
= λj,rv0 = qr(qj + q−j)v0 = qrU1(q

j + q−j)v0, (Row 0)
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vℓ
?
= λj,rvℓ−1 − Zvℓ−2 (Row 1 ≤ ℓ < n− 1)

= λj,rq
(ℓ−1)rUℓ−1(q

j + q−j)v0 − Zq(ℓ−2)rUℓ−2(u
j + u−j)v0,

= qℓr[(qj + q−j)Uℓ−1(q
j + q−j)− Uℓ−2(q

j + q−j)]v0 = qℓrUℓ(q
j + q−j)v0.

For the final row, we compare 2v0+2Zvn−2 with λj,rvn−1, by showing 2v0+2Zvn−2−λj,rvn−1 = 0:

2v0 + 2Zvn−2 − λj,rvn−1 = 2v0 + 2q2rq(n−2)rUn−2(q
j + q−j)v0 − λj,r q

(n−1)rUn−1(q
j + q−j)v0

=
(

2 + 2qnrUn−2(q
j + q−j)− qnr(qj + q−j)Un−1(q

j + q−j)
)

v0

= −pn(λj,0)v0 = 0,

because λj,0 = qj + q−j is a root of pn(t) by Proposition 3.4.6 (b). �

Remark 3.4.6. In the expression for the right eigenvector vj,r of M in (3.4.12) corresponding to

the eigenvalue λj,r = qr(qj + q−j), the last vector component is

(3.4.13) vn−1 = q(n−1)rUn−1(q
j + q−j)v0 = q(n−1)r q

jn − q−jn

qj − q−j
v0 = 0

when j 6= 0 by Proposition 3.4.1 (a).

3.5. Generalized right eigenvectors for MV. Using the Chebyshev polynomials Uk(q
j + q−j),

we now describe generalized right eigenvectors for M.

Theorem 3.5.1. Assume r ∈ Zn and fix a choice of j ∈ {1, 2, . . . , n−1
2 }. Let v =

[

1 q2r · · · q(n−1)2r
]T

be the right eigenvector of the matrix Z corresponding to the eigenvalue q2r as in Proposition 3.4.5,

and set x0 = v. For any 1 ≤ k ≤ n− 1, assume

(3.5.1) xk := qkrUkv + q(k−1)r

⌊k−1
2

⌋
∑

s=0

(k − 2s)Uk−1−2sv,

where Uk is shorthand for Uk(q
j + q−j). Then xj,r = [x0 x1 . . . xn−2 xn−1]

T is a generalized right

eigenvector of MV corresponding to the eigenvalue λj,r = qr(qj + q−j), and MVxj,r = λj,rxj,r+vj,r,

where vj,r is the right eigenvector for MV in Proposition 3.4.5.

Proof. The proof amounts to showing that the matrix equation below holds

(3.5.2) MVxj,r =



























0 I 0 · · · 0 0

Z 0 I · · · 0 0

0 Z 0 I · · · 0 0
...

... Z
. . .

. . . 0 0
...

...
...

. . . I 0

0 0 0 0 · · · Z 0 I

2I 0 0 0 · · · 2Z 0



















































x0

x1

x2
...

xn−3

xn−2

xn−1

























= λj,r

























x0

x1

x2
...

xn−3

xn−2

xn−1

























+

























v

qrU1v

q2rU2v
...

q(n−3)rUn−3v

q(n−2)rUn−2v

q(n−1)rUn−1v

























,

when xj,r has vector components given by (3.5.1).

Row 0 of MVxj,r says that x1 = λj,rx0 + v = qrU1x0 + v, which is true for x1 in (3.5.1).

Next we compute rows k = 2, . . . , n − 1 of MVxj,r proceeding by induction to show that xk =

λj,rxk−1 − Zxk−2 + q(k−1)rUk−1v must hold for 2 ≤ k ≤ n− 1. To facilitate this, we write

(3.5.3) xk = qkrUkv+ q(k−1)r

⌊k−1
2

⌋
∑

s=0

(k − 2s)Uk−1−2sv = qkrUkv + q(k−1)rΣ(k), where
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(3.5.4) Σ(k) =

⌊k−1
2

⌋
∑

s=0

(k − 2s)Uk−1−2sv.

Now for row k of MVxj,r verifying that (3.5.3) holds involves using the Chebyshev recursion Uk+1 =

(qj + q−j)Uk − Uk−1 for 1 ≤ k ≤ n − 1 (which we write Uk+1 = U1Uk − Uk−1 here for the sake of

brevity) and showing that

xk+1 = λj,rxk − Zxk−1 + qkrUkv

= q(k+1)rU1Ukv + qkrU1Σ(k)− q2rxk−1 + qkrUkv,

= q(k+1)r (Uk+1v + Uk−1v) + qkr (U1Σ(k) + Ukv)− q2r
(

q(k−1)rUk−1v + q(k−2)rΣ(k − 1)
)

= q(k+1)rUk+1v + qkr (U1Σ(k)− Σ(k − 1) + Ukv) .

(3.5.5)

We see that (3.5.3) will hold for k + 1, if we can show that

(3.5.6) Σ(k + 1) = U1Σ(k)− Σ(k − 1) + Ukv, (U1 = qj + q−j).

Case k odd, k = 2t + 1 for t ≥ 1. We start from the right-hand side and use the Chebyshev

recursion relation. When we encounter a term Uℓv with ℓ < 0, we assume it is 0 and drop it from

the equation. We use the fact that ⌊k−1
2 ⌋ = t = ⌊k2⌋ and ⌊k−2

2 ⌋ = t− 1. Then

U1Σ(k)− Σ(k − 1) +Ukv

= U1

t
∑

s=0

(k − 2s)Uk−1−2sv−
t−1
∑

s=0

(k − 1− 2s)Uk−2−2sv + Ukv

=

t
∑

s=0

(k − 2s)Uk−2sv +

t−1
∑

s=0

(k − 2s)Uk−2−2sv−

t−1
∑

s=0

(k − 1− 2s)Uk−2−2sv + Ukv

=
t
∑

s=0

(k − 2s)Uk−2sv +
t−1
∑

s=0

Uk−2−2s + Ukv

=

t
∑

s=0

(k + 1− 2s)Uk−2sv −

t
∑

s=0

Uk−2sv +

t−1
∑

s=0

Uk−2−2sv + Ukv

=
t
∑

s=0

(k + 1− 2s)Uk−2sv =

⌊k
2
⌋

∑

s=0

(k + 1− 2s)Uk−2sv = Σ(k + 1).

Case k even. Since the argument just requires minor adjustments to the one above when k is

even, we omit the proof.

What remains to be done is to compute the last row of MVxj,r, and to show that 2x0+2Zxn−2 =

λj,rxn−1 + q(n−1)rUn−1v. We will use the relations Zxk = q2rxk for all 0 ≤ k ≤ n − 1 and

Un−1v = 0 and Unv = v which come from Ukv = q(k+1)j−q−(k+1)j

qj−q−j v when k = n − 1, n. Since

Un−1v = 0, what we end up showing is that 2x0 + 2Zxn−2 − λj,rxn−1 = 0. Now the computation

in (3.5.5) for k = n− 1 with a little rearranging and with U1Σ(n− 1)−Σ(n− 2) +Un−1v replaced
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with Σ(n) =
∑

n−1
2

s=0 (n− 2s)Un−1−2sv implies

Zxn−2 − λj,rxn−1 = q(n−1)rUn−1v − qnrUnv − q(n−1)r

n−1
2
∑

s=0

(n − 2s)Un−1−2sv

= −v − q(n−1)r

n−1
2
∑

s=1

(n− 2s)Un−1−2sv (using Un−1v = 0 and Unv = v).

Therefore, for the last row we have

2x0 + 2Zxn−2 − λj,rxn−1 = 2v + q2rxn−2 − v − q(n−1)r

n−1
2
∑

s=1

(n− 2s)Un−1−2sv

= v + q2r

(

q(n−2)rUn−2v + q(n−3)r

n−3
2
∑

s=0

(n − 2− 2s)Un−3−2sv

)

− q(n−1)r

n−1
2
∑

s=1

(n− 2s)Un−1−2sv

= v +Un−2v = v + Un−2v −
1

2
U1Un−1v = −

1

2
pn(q

j + q−j)v = 0,

since λj,0 = qj + q−j is a root of pn(t). �

3.6. Right eigenvectors from grouplike elements of Dn. In this section, we focus on the

grouplike elements bick, 0 ≤ i, k ≤ n − 1, of Dn and compute the trace vectors TrS(b
ick) explic-

itly. Relation (2.1.5) with g = bick says MV TrS(b
ick) = trV(b

ick)TrS(b
ick), so that TrS(b

ick) is a

right eigenvector of eigenvalue trV(b
ick) for the McKay matrix MV, V = V(2, 0). We identify the

eigenvalue trV(b
ick) with λj,r = qr(qj + q−j) for certain values of j and r that depend on i and k.

Since there is a unique right eigenvector of MV corresponding to the eigenvalue λj,r up to scalar

multiples by Theorem 3.5.1, by comparing the vectors TrS(b
ick) with the vectors vj,r in Section

3.4, we obtain an expression for the characters ηℓ,s of the simple Dn-modules V(ℓ, s) evaluated on

the grouplike elements bick of Dn in terms of Chebyshev polynomials of the second kind. The trace

vectors TrS(b
ick) = TrS(b

−kc−i) for i, k ∈ Zn are shown to give a complete set of right eigenvectors

for MV.

The simple Dn-module V(ℓ, s), 1 ≤ ℓ ≤ n and s ∈ Zn, has a basis {v1, v2, . . . , vℓ} with Dn-action

prescribed by (3.1.3), which implies that bick has the following character value on V(ℓ, s):

(3.6.1) ηℓ,s(b
ick) := trV(ℓ,s)(b

ick) =

ℓ
∑

t=1

q(s+t−1)i+(t−(s+ℓ))k = q(s−1)i−(s+ℓ)k
ℓ
∑

t=1

qt(i+k).

We assume that the simple modules of Dn are ordered so that for a fixed grouplike element g,

TrS(g) = [u1 u2 . . . un−1 un]
T , where

uℓ = [ηℓ,0(g) ηℓ,1(g) . . . ηℓ,n−1(g)] for 1 ≤ ℓ ≤ n.
(3.6.2)

Theorem 3.6.1. Assume i, k ∈ Zn, and V = V(2, 0). Then

(a) TrS(b
ick) is a right eigenvector for MV of eigenvalue λj,r = η2,0(b

ick) = qi + q−k if

j = ±
i+ k

2
(modn) r =

i− k

2
(modn),(3.6.3)
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or equivalently, if for 0 ≤ j ≤ n−1
2 and r ∈ Zn,

(3.6.4)
i = j + r

k = j − r
(modn), or

i = −j + r

k = −j − r
(modn).

(b) TrS(b
ick) = vj,r, and for all 1 ≤ ℓ ≤ n and s ∈ Zn

(3.6.5) ηℓ,s(b
ick) = q(ℓ+s−1)rUℓ−1(q

j + q−j),

where j and r are as in (3.6.3), and vj,r is as in Proposition 3.4.5.

(c) TrS(b
ick) = TrS(b

−kc−i) for all i, k ∈ Zn. Therefore, the character ηℓ,s of V(ℓ, s) satisfies

(3.6.6) ηℓ,s(b
ick) = ηℓ,s(b

−kc−i)

for all 1 ≤ ℓ ≤ n and s ∈ Zn.

(d) The vectors TrS(b
ick) = TrS(b

−kc−i) for i, k ∈ Zn give a complete set of right eigenvectors

for the McKay matrix MV for tensoring with the Dn-module V = V(2, 0).

Proof. We already know that TrS(b
ick) is a right eigenvector of MV of eigenvalue η2,0(b

ick) for

i, k ∈ Zn, (see (1) of Corollary 2.1.3).

(a) By (3.6.1) with ℓ = 2 and s = 0,

η2,0(b
ick) = qi + q−k = q

i−k
2 (q

i+k
2 + q−

i+k
2 ) = qr(qj + q−j) = λj,r,(3.6.7)

when j and r are as in (3.6.3). Conversely, given r ∈ Zn and 0 ≤ j ≤ n−1
2 , it is easy to verify that

η2,0(b
ick) = λj,r for the specified values of i and k in (3.6.4).

(b) Let TrS(g) and uℓ be as in (3.6.2) for g = bick, and assume 2r = i−k and 2j = i+k (modn).

We argue first that u1 is the right eigenvector
[

1 q2r q4r . . . q2(n−1)r
]T

for the cyclic n×n matrix

Z with corresponding eigenvalue q2r. For this, observe that by (3.6.1),

(3.6.8) η1,s(b
ick) = q(s−1)i−(s+1)kqi+k = qsi−sk.

Thus,
η1,s(b

ick)

η1,s−1(bick)
= qi−k = q2r for all s ∈ Zn. Since η1,0(b

ick) = 1, we have

u1 =
[

1 q2r q4r . . . q2(n−1)r
]

T

,

which is an eigenvector for Z of eigenvalue q2r, and η1,s(b
ick) = q2sr, for all s ∈ Zn.

Now the first vector components u1 and v0 of TrS(g) and vj,r are identical, and the subsequent

vector components uℓ of TrS(g) must satisfy the same relations as the vector components vℓ−1 in

the proof of Proposition 3.4.5 for ℓ ≥ 1. Thus, TrS(b
ick) = vj,r, where j and r are as in (3.6.3) and

(3.6.9) uℓ = vℓ−1 = q(ℓ−1)rUℓ−1(q
j + q−j)v0 = q(ℓ−1)rUℓ−1(q

j + q−j)u1.

Equating component s on both sides for 0 ≤ s ≤ n− 1 gives the assertion in (3.6.5) – the character

value ηℓ,s(b
ick) of bick on V(ℓ, s) is given by ηℓ,s(b

ick) = q(ℓ+s−1)rUℓ−1(q
j + q−j), where j and r are

as in (3.6.3).

(c) We have seen in the proof of (a) that η2,0(b
ick) = qi + q−k for any i, k ∈ Zn. Therefore,

η2,0(b
−kc−i) = q−k + qi = η2,0(b

ick). Since TrS(b
ick) and TrS(b

−kc−i) are two right eigenvectors of

MV with the same eigenvalue, and since η1,s(b
ick) = qsi−sk = η1,s(b

−kc−i) for all s ∈ Zn follows from

(3.6.8), we obtain as in the proof of (b) that TrS(b
ick) = TrS(b

−kc−i). As a result, bick and b−kc−i

have the same character value on any simple Dn-module V(ℓ, s), that is ηℓ,s(b
ick) = ηℓ,s(b

−kc−i) for

all 1 ≤ ℓ ≤ n, and s ∈ Zn.



MCKAY MATRICES FOR FINITE-DIMENSIONAL HOPF ALGEBRAS 23

(d) We know that the McKay matrix MV has n(n+1)
2 distinct eigenvalues λj,r, and there are

n(n+1)
2 right eigenvectors TrS(b

ick), i, k ∈ Zn, giving all these distinct eigenvalues, since for a given

pair j, r we can take i = j + r (modn) and k = j − r (modn) as in (a). Consequently, the vectors

TrS(b
ick) give a complete set of right eigenvectors for MV. �

3.7. Generalized right eigenvectors as trace vectors. The goal of this section is to show that

generalized right eigenvectors for the McKay matrix M = MV for V = V(2, 0) can also be realized as

trace vectors on simple modules, but for traces of non-grouplike elements. Generalized eigenvectors

occur only for the eigenvalues λj,r with j 6= 0, and the corresponding (generalized) eigenspace is

two-dimensional in that case. We will use the coproduct expression for the trace in (2.1.4) and will

require quantum integers [ℓ] = 1 + q + · · ·+ qℓ−1, the quantum factorial [ℓ]! = [ℓ][ℓ− 1] · · · [1], and

the quantum binomial coefficient
[

ℓ

i

]

=
[ℓ]!

[i]! [ℓ − i]!

for ℓ, i ∈ Z≥0, ℓ ≥ i, where [0] = [0]! = 1 is understood.

Chen has studied a family of Hopf algebras H(p, q), where p and q are arbitrary scalars, and

Lemma 2.7 of [4] gives an expression for coproduct for the algebra H(p, 1). When q is an nth root

of unity, H(p, q) modulo a certain Hopf ideal is a finite-dimensional quasi-triangular Hopf algebra

Hn(p, q), and the algebra Hn(1, q) is isomorphic to Dn. Chen’s coproduct formula can be modified

by replacing binomial coefficients with their q analogues to give a coproduct formula for specific

powers of the generators of Dn. We will use these specializations in the next result.

Lemma 3.7.1. For ℓ ∈ Z≥0,

∆(dℓaℓ) =
ℓ
∑

t=0

[

ℓ

t

]2

dtat ⊗ btctdℓ−taℓ−t + nilpotent terms

= dℓaℓ ⊗ bℓcℓ + [ℓ]2dℓ−1aℓ−1 ⊗ bℓ−1cℓ−1da+ nilpotent terms.

By nilpotent terms, we mean terms x⊗ y such that y acts as a nilpotent endomorphism on V.

Proof. From [4, Lemma 2.7], we deduce

∆(aℓ) =

ℓ
∑

i=0

[

ℓ

i

]

ai ⊗ aℓ−ibi, ∆(dℓ) =

ℓ
∑

i=0

[

ℓ

i

]

di ⊗ cidℓ−i.

Recall that ba = qab, db = qbd in Dn. Therefore,

∆(dℓaℓ) =





ℓ
∑

j=0

[

ℓ

j

]

dj ⊗ cjdℓ−j





(

ℓ
∑

i=0

[

ℓ

i

]

ai ⊗ aℓ−ibi

)

=

ℓ
∑

t=0

[

ℓ

t

]2

dtat ⊗ ctdℓ−taℓ−tbt + nilpotent terms

=

ℓ
∑

t=0

[

ℓ

t

]2

dtat ⊗ btctdℓ−taℓ−t + nilpotent terms.

(3.7.1)

The term btctdℓ−taℓ−t is nilpotent on V only if ℓ− t = 0 or ℓ− t = 1, i.e. t = ℓ or t = ℓ− 1, hence

∆(dℓaℓ) = dℓaℓ ⊗ bℓcℓ + [ℓ]2dℓ−1aℓ−1 ⊗ bℓ−1cℓ−1da+ nilpotent terms. �
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The following result gives a formulation of the generalized right eigenvectors for MV, V = V(2, 0),

as trace vectors on the simple modules. Recall that {TrS(b
ick)} gives a list of right eigenvectors for

MV, with repetitions described by Theorem 3.6.1 (c).

Theorem 3.7.2. Given 0 ≤ i, k ≤ n − 1 with k 6= −i (modn), choose 1 ≤ s ≤ n − 1 such that

s = −(i+ k) (mod n). Let γ1, . . . , γs be defined recursively by γs = 1 and

γℓ =
[ℓ+ 1]2q−1−ℓ+s

[ℓ][s− ℓ](q − 1)
γℓ+1

for ℓ = s− 1, s − 2, . . . , 1. Then
∑s

ℓ=1 γℓ TrS(b
ickdℓaℓ) is in the generalized eigenspace of M = MV,

V = V(2, 0), containing TrS(b
ick).

Proof. From the coproduct expression in (3.7.1) and Lemma 2.1.1 (c), we have

MTrS(d
ℓaℓ) =trV(b

ℓcℓ)TrS(d
ℓaℓ) + [ℓ]2trV(b

ℓ−1cℓ−1da)TrS(d
ℓ−1aℓ−1).

And similarly

MTrS(b
ickdℓaℓ) =trV(b

ℓ+icℓ+k)TrS(b
ickdℓaℓ) + trV(b

ℓ+i−1cℓ+k−1da)[ℓ]2 TrS(b
ickdℓ−1aℓ−1).

Now from (3.6.7) we know that trV(b
ick) = qi + q−k for any i, k ∈ Zn. Using that fact and the

action of the generators of Dn on the basis {v1, v2} of V in (3.1.3), we have

trV(b
ℓ+icℓ+k) = qℓ+i + q−ℓ−k,

da.v1 = α1(2)v1 = (1− q−1)v1, bℓ+i−1cℓ+k−1.v1 = q−ℓ−k+1v1,

trV(b
ℓ+i−1cℓ+k−1da) = (1− q−1)q−ℓ−k+1.

Therefore,

(3.7.2) MTrS(b
ickdℓaℓ) = (qℓ+i + q−ℓ−k)TrS(b

ickdℓaℓ) + [ℓ2](1− q−1)q−ℓ−k+1 TrS(b
ickdℓ−1aℓ−1).

By a change of the index of summation on the second summand,

M

(

s
∑

ℓ=1

γℓ TrS(b
ickdℓaℓ)

)

=

s
∑

ℓ=1

(qℓ+i + q−ℓ−k)TrS(b
ickdℓaℓ)γℓ +

s−1
∑

ℓ=0

[ℓ+ 1]2(1− q−1)q−ℓ−k TrS(b
ickdℓaℓ)γℓ+1

= (1− q−1)q−k TrS(b
ick)γ1 + (qs+i + q−s−k)γs TrS(b

ickdsas)

+

s−1
∑

ℓ=1

(

(qℓ+i + q−ℓ−k)γℓ + [ℓ+ 1]2(1− q−1)q−ℓ−kγℓ+1

)

TrS(b
ickdℓaℓ).

We claim this is equal to

λ

(

s
∑

ℓ=1

γℓ TrS(b
ickdℓaℓ)

)

+ constant · TrS(b
ick),

for λ = qi + q−k = trV(b
ick) = λj,r, where j and r are as in (3.6.3).

First, the terms agree at ℓ = s, where we recall that s = −(i+ k) (modn) so that

λ = qs+i + q−s−k = q−k + qi.
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When 1 ≤ ℓ ≤ s− 1, the following is true

(qℓ+i + q−ℓ−k)γℓ + [ℓ+ 1]2(1− q−1)q−ℓ−kγℓ+1 = λγℓ = γℓ(q
i + q−k),

if and only if the following is true:

γℓ =
[ℓ+ 1]2(1− q−1)q−ℓ−kγℓ+1

qi + q−k − qℓ+i − q−ℓ−k
=

[ℓ+ 1]2(q − 1)q−1−ℓ−kγℓ+1

qi(1− qℓ)− q−ℓ−k(1− qℓ)

=
[ℓ+ 1]2q−1−ℓ−k

[ℓ](q−ℓ−k − q−s−k)
γℓ+1 =

[ℓ+ 1]2q−1−ℓ−k

[ℓ]q−s−k(qs−ℓ − 1)
γℓ+1 =

[ℓ+ 1]2q−1−ℓ+s

[ℓ][s− ℓ](q − 1)
γℓ+1. �

3.8. Left eigenvectors and generalized left eigenvectors of MV, V = V(2, 0). In this section,

we compute left (generalized) eigenvectors of the McKay matrix M = MV for V = V(2, 0) using

modified Chebyshev polynomials Lj(t) that are defined recursively by

(3.8.1) L0(t) = 2, L1(t) = t, Lk(t) = tLk−1(t)−Lk−2(t) for k ≥ 2.

Proposition 3.8.1. Assume x 6= 1, and let t = x+ x−1 as in Proposition 3.4.1. Then

(a) For k ≥ 2, Lk(t) = Uk(t)− Uk−2(t).

(b) For all k ≥ 0, Lk(t) = xk + x−k.

Proof. (a) We have L2(t) = tL1(t)−L0(t) = t2−2 = t2−1−1 = U2(t)−U0(t), and for k > 2 the proof

of (a) is an easy inductive argument starting from this base case. (b) The relation Lk(t) = xk+x−k

clearly holds for k = 0, 1. Proposition 3.4.1 (a) says that Uk(t) = xk + xk−2 + · · · + x−(k−2) + x−k

for all k ≥ 2. Part (b) follows readily from that and part (a). �

Proposition 3.8.2. For r ∈ Zn, let w0 6= 0 be a left eigenvector of Z corresponding to the

eigenvalue q2r. Assume 0 ≤ j ≤ n−1
2 , and set wk = qkrLk(q

j + q−j)w0 = qkr(qkj + q−kj)w0 for

1 ≤ k ≤ n − 1, where Lk is the modified Chebyshev polynomial defined in (3.8.1). Then wj,r =

[wn−1 wn−2 . . . w1 w0] is a left eigenvector of M corresponding to eigenvalue λj,r = qr(qj + q−j).

Proof. The proof amounts to comparing the left and right sides of wj,rM = λj,rwj,r and showing

that equality holds when wk = qkrLk(q
j + q−j)w0 = qkr(qjk + q−jk)w0, where the last “=” results

from Lk(q
j + q−j) = qjk + q−jk, which is a direct consequence of Proposition 3.8.1 (b).

We expand the left-hand side of wj,rM starting from the rightmost column and ask if the two

sides of wj,rM = λj,rwj,r are equal:

w1
?
= λj,rw0 = qr(qj + q−j)w0 = qrL1(q

j + q−j)w0,

w2
?
= λj,rw1 −w0(2Z) = w0(λ

2
j,r − 2Z) = w0(λ

2
j,r − 2q2r)

= w0q
2r
(

(qj + q−j)2 − 2
)

= q2rL2(q
j + q−j)w0,

wk
?
= λj,rwk−1 −wk−2Z = λj,rq

(k−1)rLk−1(q
j + q−j)w0 − q(k−2)rLk−2(q

j + q−j)w0Z

= qkr
(

(qj + q−j)Lk−1(q
j + q−j)−Lk−2(q

j + q−j)

)

w0 = qkrLk(q
j + q−j)w0, (3 ≤ k ≤ n− 1).

The leftmost column involves comparing wn−2Z+2w0 with λj,rwn−1, which we do by showing that

wn−2Z + 2w0 − λj,rwn−1 = q(n−2)rLn−2(q
j + q−j)w0Z + 2w0 − λj,r q

(n−1)rLn−1(q
j + q−j)w0

= qnrLn−2(q
j + q−j)w0 + 2w0 − qnr(qj + q−j)Ln−1(q

j + q−j)w0

=
(

qj(n−2) + q−j(n−2)
)

w0 + 2w0 −
(

qj + q−j)(qj(n−1) + q−j(n−1)
)

w0
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= (qj(n−2) + q−j(n−2) + 2− qjn − q−j(n−2) − qj(n−2) − q−jn)w0 = 0. �

The next corollary relates the above eigenvector results to the dimension vectors.

Corollary 3.8.3. The dimension vector s = [dim(S1) dim(S2) . . . dim(Sn2)]T of the simple Dn-

modules is a right eigenvector corresponding to eigenvalue λ0,0 = 2 = dim (V(2, 0)). The dimension

vector pT = [dim(P1) dim(P2) . . . dim(Pn2)] of the projective indecomposable Dn-modules is a left

eigenvector corresponding to the eigenvalue λ0,0.

Proof. Observe that v0 = [1 1 · · · 1 1]T and w0 = vT

0 are right and left (resp.) eigenvectors of

the matrix Z corresponding to the eigenvalue 1, and Uk(2) = k + 1 and Lk(2) = 2 for all values

of k ≥ 0. Therefore, by Propositions 3.4.5 and 3.8.2, vk = (k + 1)v0 and wk = 2w0 for all

1 ≤ k ≤ n − 1. Consequently, v0,0 = s and w0,0 = 1
n
pT, and the corresponding eigenvalue is

λ0,0 = 2 = dim(V(2, 0)). �

Remark 3.8.4. Corollary 3.8.3 confirms the result in [20, Sec. 3] mentioned in the Introduction in

the specific case of the Drinfeld double Dn of the Taft algebra and the McKay matrix for tensoring

with V(2, 0).

Proposition 3.8.5. Let r ∈ Zn, and assume w = w0, where w0Z = q2rw0 as in Proposition

3.8.2. Fix a choice of j ∈ {1, . . . , n−1
2 } and set Uk = Uk(q

j + q−j) for all k ≥ 0. Assume

y0 = w, y1 = qrU1w + w, and yk = qkr(Uk − Uk−2

)

w + kq(k−1)rUk−1w for 2 ≤ k ≤ n − 1,

Then yj,r := [yn−1 yn−2 . . . y1 y0] is a generalized left eigenvector for MV corresponding to the

eigenvalue λj,r = qr(qj + q−j), and yj,r satisfies

yj,rM = [yn−1 yn−2 . . . y1 y0]



























0 I 0 · · · 0 0

Z 0 I · · · 0 0

0 Z 0 I · · · 0 0
...

... Z
. . .

. . . 0 0
...

...
...

. . . I 0

0 0 0 0 · · · Z 0 I

2I 0 0 0 · · · 2Z 0



























= λj,r [yn−1 yn−2 . . . y1 y0] +
[

q(n−1)rLn−1w q(n−2)rLn−2w . . . qrL1w w
]

= λj,ryj,r +wj,r,

(3.8.2)

where wj,r is as in Proposition 3.8.2, and Lk = Lk(q
j + q−j) for k ≥ 1.

Proof. The proof entails comparing the entries on both sides of (3.8.2) starting with column 0 (the

rightmost) and proceeding to column n− 1 (the leftmost). This involves noting that

y1 = λj,ry0 +w = qrU1w +w,

y2 = λj,ry1 − 2y0Z + qrL1w

= qr(qj + q−j)
(

qrU1w +w
)

− 2q2rw + qrL1w = q2r (U2 − U0)w + 2U1w,

and then arguing inductively for k ≥ 3 using the relation Lk = Uk −Uk−2 to show that

yk+1 = λj,ryk − yk−1Z + qkrLkw

= qr(qj + q−j)
(

qkr
(

Uk − Uk−2

)

+ kq(k−1)rUk−1

)

w
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− q(k+1)r
(

Uk−1 − Uk−3

)

w − (k − 1)qkrUk−2w + qkr
(

Uk − Uk−2

)

w

= q(k+1)r
(

Uk+1 − Uk−1

)

w + kqkr(qj + q−j)Uk−1w − (k − 1)qkrUk−2w + qkr
(

Uk − Uk−2

)

w

= q(k+1)r
(

Uk+1 − Uk−1

)

w + kqkr
(

Uk + Uk−2

)

w − (k − 1)qkrUk−2w + qkr
(

Uk − Uk−2

)

w

= q(k+1)r
(

Uk+1 − Uk−1

)

w + (k + 1)qkrUkw.

It remains to check the leftmost column, which involves verifying that

yn−2Z + 2y0 − λj,ryn−1 − q(n−1)rLn−1w = 0.

Now by the right-hand side of the above calculation for yk+1 with k = n− 1, we have

yn−2Z + 2y0 − λj,ryn−1 − q(n−1)rLn−1w

= −qnr(Un − Un−2)w − nq(n−1)rUn−1w + 2w

= −Lnw − 0+ 2w = −(qnj + q−nj)w + 2w = 0,

since Un−1w = qnj−q−nj

qj−q−j w = 0 by Proposition 3.4.1 (a). �

3.9. Left eigenvectors from grouplike elements of Dn. Next we determine the vector TrP(g)

explicitly for g = bick, a grouplike element of Dn. In contrast to the situation for right eigenvectors,

only the n vectors TrP(b
ic−i), i ∈ Zn, are nonzero.

We assume an ordering P1,P2, . . . ,Pn2 of the projective indecomposable Dn-modules P(ℓ, r),

1 ≤ ℓ ≤ n− 1, V(n, r), r ∈ Zn, first by ℓ and then by r. Since the dual of the simple module V(ℓ, r)

is V(ℓ, 1−r−ℓ) by [22, Thm. 4.3], we see
(

V(ℓ, r)∗
)∗ ∼= V(ℓ, r), so that (V∗)∗ ∼= V holds for any finite-

dimensional Dn-module. Using that fact, we have from (2.4.1) that for every grouplike element of Dn

and every Dn-module V, TrP(g)MV = trV∗(g)TrP(g), where TrP(g) =
[

trP1(g) trP2(g) . . . trP
n2
(g)
]

.

Hence for every grouplike element of Dn, TrP(g) is a left eigenvector of MV of eigenvalue trV∗(g).

To compute the vector TrP(g) for g = bick, we use the explicit description of the projective

modules P(ℓ, r) given in [5, Lem. 2.1], showing for 1 ≤ ℓ < n that P(ℓ, r) has a basis p1,p2, . . . ,p2n

such that the actions of b and c are diagonal:

(bick).pt =

{

q(r+t−1)i+(t−r−ℓ)kpt for 1 ≤ t ≤ n,

q(r+t−1+ℓ)i+(t−r)kpt for n+ 1 ≤ t ≤ 2n.

Thus, for ℓ < n,

trP(ℓ,r)(b
ick) = q(r−1)i+(−r−ℓ)k

n
∑

t=1

qt(i+k) + q(r−1+ℓ)i−rk

2n
∑

t=n+1

qt(i+k).

As shown in (3.6.1), we have for V(n, r),

trV(n,r)(b
ick) = q(r−1)i−rk

n
∑

t=1

qt(i+k).

Observe that when i+k 6= 0 (modn), the trace in these expressions is 0; consequently, TrP(b
ick) = 0,

when i+ k 6= 0 (modn). Hence, we may assume that k = −i (modn) and obtain

trP(ℓ,r)(b
ic−i) =

(

q(r−1)i+(r+ℓ)i + q(r−1+ℓ)i+ri
)

n = 2nq(2r+ℓ−1)i for ℓ < n,

trV(n,r)(b
ic−i) = q(r−1)i+ri

n
∑

t=1

qt(i+−i) = nq(2r−1)i.
(3.9.1)
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Except for the extra factor of 2 that occurs when ℓ < n, the second equation in (3.9.1) is the

same as the first one with ℓ = n. This motivates us to define for a fixed value of i, a vector with

the following n components:

(3.9.2) tℓ,i =

{

[

2nq(ℓ−1)i 2n(ℓ+1)i 2n(ℓ+3)i . . . 2nq(ℓ+n−3)i
]

ℓ 6= n,
[

nq(n−1)i nqi nq3i . . . nq(n−3)i
]

ℓ = n.

From the calculations above, we can conclude that the following holds.

Proposition 3.9.1. Assume i ∈ Zn, and let tℓ,i be as in (3.9.2) for 1 ≤ ℓ ≤ n. Then

TrP(b
ic−i) =

[

t1,i t2,i . . . tn,i
]

is a left eigenvector of the McKay matrix MV corresponding to the eigenvalue trV∗(bic−i) for any

finite-dimensional Dn-module V.

Remark 3.9.2. In comparison to the right eigenvector situation in Theorem 3.6.1 (d), no nonzero

left eigenvectors corresponding to the eigenvalues qr(qj + q−j) for j 6= 0 arise from evaluating

projective characters on grouplike elements of Dn.

Example 3.9.3. When V = V(2, 0), we have V∗ = V(2,−1), and (3.1.3) tells us that the matrix

of bic−i on V∗ relative to the basis {v1, v2} is

(

q−1 0

0 1

)i(
1 0

0 q

)−i

=

(

q−i 0

0 q−i

)

.

Hence, trV∗(bic−i) = 2q−i = λ0,(n−1)i. Since these eigenvalues are distinct for i ∈ Zn, the left

eigenvectors TrP(b
ic−i) for MV are linearly independent. When n = 3, the vectors TrP(b

ic−i) and

their corresponding eigenvalues are

(3.9.3)

TrP(1) = [6 6 6 6 6 6 3 3 3] λ0,0 = 2,

TrP(bc
−1) = [6 6q 6q2 6q2 6 6q 3q 3q2 3] λ0,1 = λ0,−2 = 2q,

TrP(b
2c−2) = [6 6q2 6q 6q 6 6q2 3q2 3q 3] λ0,2 = λ0,−1 = 2q2.

3.10. Tensoring with V(ℓ, s). Let g = [V(1, 1)] and x = [V(2, 0)] in the Grothendieck ring G0(Dn).

Then gn = 1 = [V(1, 0)] and xk = [V(2, 0)]k = [V⊗k] = [V]k in G0(Dn). The following results are

consequences of Lemmas 3.1-3.3 of [40] and the tensor rules in Section 3.2:

(3.10.1) [V(ℓ, 0)] = x[V(ℓ− 1, 0)] − g[V(ℓ− 2, 0)] for all 3 ≤ ℓ ≤ n,

and since [V(ℓ, s)] = gs[V(ℓ, 0)] for all s ∈ Zn, it follows that G0(Dn) is generated by g and x.

Moreover,

(3.10.2) [V(ℓ, 0)] =

⌊ ℓ−1
2

⌋
∑

i=0

(−1)i
(

ℓ− 1− i

i

)

gixℓ−1−2i for all 1 ≤ ℓ ≤ n.

Thus, this defines a sequence of elements of G0(Dn) given by

f0(x, g) = 1 = [V(1, 0)], f1(x, g) = x = [V(2, 0)],

fℓ−1(x, g) = [V(ℓ, 0)] =

⌊ ℓ−1
2

⌋
∑

i=0

(−1)i
(

ℓ− 1− i

i

)

gixℓ−1−2i, 2 ≤ ℓ ≤ n,
(3.10.3)
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and satisfying

fℓ(x, g) = xfℓ−1(x, g) − gfℓ−2(x, g) =

⌊ ℓ
2
⌋

∑

i=0

(−1)i
(

ℓ− i

i

)

gixℓ−2i, 2 ≤ ℓ ≤ n.

In addition, if f(x, g) := fn(x, g) − gfn−2(x, g) − 2, then by Lemma 3.3 of [40] we have

(3.10.4) f(x, g) =

⌊n
2
⌋

∑

i=0

(−1)i
n

n− i

(

n− i

i

)

gixn−2i − 2 = 0.

If R is the group algebra ZG, where G is the cyclic group generated by g, then G0(Dn) ∼=

R[x]/〈f(x, g)〉 is a commutative Z-algebra of dimension n2 with a basis given by {gixk | i ∈ Zn, 0 ≤

k ≤ n−1}. Under the correspondence 1 ↔ I = In, tI ↔ x, D ↔ g, we have that Uk(t,D) ↔ fk(x, g)

for 0 ≤ k ≤ n, since the recursion relations are the same. Moreover, pn(t,D) ↔ f(x, g) implies that

(3.10.5) pn(t,D) =

⌊n
2
⌋

∑

i=0

(−1)i
n

n− i

(

n− i

i

)

Ditn−2i − 2 = 0.

These considerations give the following result (compare [40, Thm. 3.4]).

Proposition 3.10.1. The Grothendieck ring G0(Dn) ∼= Z[g, x]/〈gn − 1, f(x, g)〉.

Example 3.10.2. When n = 11, (3.10.4) says

f(x, g) = x11 −
11

10

(

10

1

)

gx9 +
11

9

(

9

2

)

g2x7 −
11

8

(

8

3

)

g3x5 +
11

7

(

7

4

)

g4x3 −
11

6

(

6

5

)

g5x− 2

= x11 − 11gx9 + 44g2x7 − 77g3x5 + 55g4x3 − 11g5x− 2, and (3.10.5) says

pn(t,D) = t11 − 11Dt9 + 44D2t7 − 77D3t5 + 55D4t3 − 11D5t− 2I = 0 (compare (3.3.3)).

Now suppose that M(ℓ,s) is the McKay matrix for tensoring with V(ℓ, s). In computing ma-

trices here, we order the rows and columns as usual, first by ℓ and then by s, so that the

order is (1, 0), (1, 1), . . . , (1, n − 1), (2, 1), . . . , (2, n − 1), . . . , (n, 0), . . . , (n, n − 1) as before. Let

Z(s) = diag{Zs,Zs, . . . ,Zs} (n copies), where Z is the cyclic permutation matrix in (3.2.1), and

let In2 be the n2 × n2 identity matrix. Assume M = M(2,0), the McKay matrix for tensoring with

V = V(2, 0). Then (3.10.2) implies that

(3.10.6) M(ℓ,s) =

⌊ ℓ−1
2

⌋
∑

i=0

(−1)i
(

ℓ− 1− i

i

)

Z(i+s)Mℓ−1−2i for all 1 ≤ ℓ ≤ n, s ∈ Zn.

Here are a few special cases:

M(1,0) = In2 , M(2,0) = M, M(3,0) = M2 − Z(1),

M(4,0) = M3 − 2Z(1)M, M(5,0) = M4 − 3Z(1)M2 + Z(2).

Corollary 3.10.3. The left and right (generalized) eigenvectors are the same for all the matrices

M(ℓ,s), 1 ≤ ℓ ≤ n, s ∈ Zn.

Proof. Since M and Z(1) commute, we can simultaneously upper-triangularize them and find a

basis of common right (generalized) eigenvectors for them. Similarly, we can simultaneously lower-

triangularize M and Z(1) and find a basis of common left (generalized) eigenvectors. These vectors

will be common left and right (generalized) eigenvectors for all powers of M and Z(1), hence for all

the matrices M(ℓ,s) = Z(s)M(ℓ,0). �
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3.11. Eigenvalues for the McKay matrix of any simple Dn-module. In this section, we use

the results above to determine the eigenvalues of the McKay matrix M(ℓ,s) for all 1 ≤ ℓ ≤ n and

s ∈ Zn. Recall from Proposition 3.4.5 that vj,r = [v0 v1 . . . vn−1]
T is a right eigenvector for

M = M(2,0) with eigenvalue λj,r = qr(qj + q−j) when v0 is a right eigenvector for Z with eigenvalue

q2r, and vk = qkrUk(q
j + q−j)v0 for 1 ≤ k ≤ n− 1. It follows that Z(s)vj,r = q2srvj,r for all s ∈ Zn.

As a consequence, we have the next result by combining (3.10.6) with (3.4.3).

Theorem 3.11.1. (a) Assume vj,r =
[

v0 v1 . . . vn−1

]T

is a right eigenvector for M =

M(2,0) with eigenvalue λj,r = qr(qj + q−j) as in Proposition 3.4.5. Then

M(ℓ,0)vj,r =

⌊ ℓ−1
2

⌋
∑

i=0

(−1)i
(

ℓ− 1− i

i

)

q2irq(ℓ−1−2i)r(qj + q−j)ℓ−1−2ivj,r

= q(ℓ−1)r

⌊ ℓ−1
2

⌋
∑

i=0

(−1)i
(

ℓ− 1− i

i

)

(qj + q−j)ℓ−1−2ivj,r = q(ℓ−1)rUℓ−1(q
j + q−j)vj,r.

(3.11.1)

Hence, for all 1 ≤ ℓ ≤ n and for all s ∈ Zn, vj,r is a right eigenvector for M(ℓ,s) = Z(s)M(ℓ,0)

with eigenvalue

q(ℓ−1+2s)rUℓ−1(q
j + q−j) = q(ℓ−1+2s)r q

jℓ − q−jℓ

qj − q−j
when j 6= 0,

and with eigenvalue q(ℓ−1+2s)rℓ when j = 0.

(b) Assume wj,r = [wn−1 wn−2 . . . w1 w0] is a left eigenvector for M with eigenvalue qr(qj+

q−j) as in Proposition 3.8.2. Then wj,r is a left eigenvector for M(ℓ,s) = Z(s)M(ℓ,0) with

eigenvalue q(ℓ−1+2s)r(qj + q−j) for all 1 ≤ ℓ ≤ n and for all s ∈ Zn.

Proof. Relation (3.11.1) follows directly from (3.11.1) and the fact that vj,r is a right eigenvector

for Z(s) with eigenvalue q2sr. The last equality in (3.11.1) comes from Proposition 3.4.1 (a). Part

(b) is similar. �

3.12. Eigenvectors for the projective McKay matrices of Dn. Recall from Section 2.2 that

the projective McKay matrix for tensoring with a finite-dimensional module V is given by QV =

(Qij), where Qij = [Pi ⊗ V : Pj ]. We have shown in Theorem 2.3.3 that QV = MT

V∗ , where MV∗

is the McKay matrix for tensoring with the dual module V∗. In particular, since for the simple

Dn-module V(ℓ, s), we have V(ℓ, s)∗ = V(ℓ, 1 − ℓ − s), we can conclude the following about Q(ℓ,s)

using Theorem 3.11.1.

Proposition 3.12.1. Assume vj,r and wj,r are as in Theorem 3.11.1. Then for all 1 ≤ ℓ ≤ n and

for all s ∈ Zn,

(a) vT

j,r = [v0 v1 . . . vn−1] is a left eigenvector for Q(ℓ,s) with eigenvalue

(3.12.1) q(1−ℓ−2s)rUℓ−1(q
j + q−j) = q(1−ℓ−2s)r q

jℓ − q−jℓ

qj − q−j
when j 6= 0,

and with eigenvalue q(1−ℓ−2s)rℓ when j = 0.

(b) wT

j,r = [wn−1 wn−2 . . . w1 w0]
T is a right eigenvector for Q(ℓ,s) with eigenvalue as in (a)

for all 1 ≤ ℓ ≤ n and for all s ∈ Zn.
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3.13. Multiplication operators in Grothendieck algebras and idempotents. In Section

2.7, we have described a method for constructing a left eigenvector for the McKay matrix MV using

an eigenvector for the right multiplication operator RV in the Grothendieck algebra of an arbitrary

Hopf algebra. The next result has a similar flavor but is stated in greater generality for an arbitrary

finite-dimensional algebra A.

Proposition 3.13.1. Suppose A is an algebra with basis {b1, b2, . . . , bk}, k ∈ Z≥1, such that bibj =
∑k

t=1 a
(j)
i,t bt for all 1 ≤ i, j ≤ k. Let Mj =

(

a
(j)
i,t

)

be the McKay matrix for multiplying by bj (on the

right). Assume u = [u1 u2 . . . uk] is a common left eigenvector for the Mj with uMj = βju for

all j. Then eu =
∑k

i=1 uibi ∈ A satisfies e2
u
= cueu, where cu =

∑k
j=1 βjuj.

Proof. It follows from the relations uMj = βju that
∑k

i=1 uia
(j)
i,t = βjut for all 1 ≤ j, t ≤ k. Then

for eu =
∑k

i=1 uibi, we have

e2
u
=

(

k
∑

i=1

uibi

)2

=

(

k
∑

i=1

uibi

)





k
∑

j=1

ujbj



 =

k
∑

i,j=1

uiujbibj

=

k
∑

i,j,t=1

uiuja
(j)
i,t bt =

k
∑

j,t=1

uj

(

k
∑

i=1

uia
(j)
i,t

)

bt =

k
∑

j,t=1

ujβjutbt

=





k
∑

j=1

βjuj





(

k
∑

t=1

utbt

)

= cueu. �

Corollary 3.13.2. Assume A = GC
0 (Dn) = C ⊗Z G0(Dn), and let b1, b2, . . . , bn2 be an ordering of

the simple modules for the Drinfeld double Dn, first by ℓ = 1, . . . , n, and then for a given value of

ℓ by r = 0, 1, . . . , n− 1, so that b1, b2, . . . , bn2 is a basis for A, and b1 = V(1, 0) is the unit element

of A. Let Mj be the McKay matrix for tensoring with bj , and let u = [u1 u2 . . . un2 ] be a nonzero

common left eigenvector for matrices Mj (such exist by Corollary 3.10.3). Assume u has eigenvalue

βj relative Mj for all j. Then eu =
∑n2

i=1 uibi ∈ A satisfies e2
u
= cueu, where cu =

∑n2

j=1 βjuj, and

when cu =
∑n2

j=1 βjuj 6= 0, then eu = c−1
u

eu is an idempotent in A.

Remark 3.13.3. In Proposition 3.8.2, we have described n(n+1)
2 left eigenvectors corresponding

to distinct eigenvalues of the McKay matrix M for tensoring with V(2, 0). They correspond to

eigenvectors for the right multiplication operator Rx, x = [V(2, 0)], of GC
0 (Dn) as in Section 3.10.

They are common left eigenvectors for the n2 McKay matrices that result from tensoring with

any simple module V(ℓ, s). Each such left eigenvector u = [u1 u2 . . . un2 ] with cu 6= 0 gives an

idempotent eu = c−1
u

∑n2

i=1 uibi in GC
0 (Dn). Moreover, such idempotents are distinct, u 6= v =⇒

eu 6= ev, because the bi determine a basis for GC
0 (Dn). This suggests that we should be able to

locate n(n+1)
2 linearly independent idempotents in GC

0 (Dn). We accomplish this in Theorem 3.13.8

(b) below. Moreover, we show in part (a) of that theorem, that there are n(n−1)
2 linearly independent

elements that square to 0 and form a basis for the Jacobson radical of GC
0 (Dn).

Our aim here is to identify a C-basis of GC
0 (Dn) consisting of elements that square to 0 and

idempotents. Our calculations will be based on the following well-known result (see for example, [18,

Sec. 2.2]). if CG is the group algebra of a finite group and S is a simple G-module, then

εS :=
dim(S)

|G|

∑

g∈G

χ
S
(g−1) g
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is a central idempotent in CG, and εS projects any finite-dimensional G-module onto the S-isotypic

component. Moreover, εSεT = 0 whenever S and T are simple, nonisomorphic modules.

Recall that GC
0 (Dn) ∼= CG[x]/〈f(x, g)〉, where G = 〈g〉,

f(x, g) =

⌊n
2
⌋

∑

i=0

(−1)i
n

n− i

(

n− i

i

)

gixn−2i − 2,

and g = [V(1, 1)], x = [V(2, 0)]. Therefore, it follows for u ∈ Zn that Eu = 1
n

∑n−1
v=0 q

−uvgv is an

idempotent in CG ⊂ GC
0 (Dn) corresponding to the character χu(g

v) = quv of G = 〈g〉, and these

idempotents are orthogonal EuEu′ = δu,u′Eu. Note that

(3.13.1) gEu =
1

n

n−1
∑

v=0

q−uvgv+1 =
qu

n

n−1
∑

v=0

q−u(v+1)gv+1 = quEu,

so that CG =
⊕n−1

u=0 CEu is a decomposition of the group algebra CG into simple G-modules, where

CEu is the one-dimensional G-module with corresponding character χu.

As a consequence of (3.13.1), we know that

(3.13.2) f(x, g)Eu = f(x, qu)Eu = pn(x, q
u)Eu

in the notation of Corollary 3.4.4. We can write u = 2r for some r, since n is odd and 2 is invertible

modulo n, and then

(3.13.3) f(x, q2r) = pn(x, q
2r) = (x− λ0,r)

n−1
2
∏

j=1

(x− λj,r)
2.

Definition 3.13.4. For r ∈ Zn, let

Fj,r :=
f(x, q2r)

x− λj,r

E2r, 0 ≤ j ≤
n− 1

2
,

Gj,r :=
f(x, q2r)

(x− λj,r)2
E2r, 1 ≤ j ≤

n− 1

2
.

(3.13.4)

Proposition 3.13.5. The elements defined in (3.13.4) satisfy the relations

(a) xFj,r = λj,rFj,r and gFj,r = q2rFj,r;

(b) xGj,r = λj,rGj,r + Fj,r and gGj,r = q2rGj,r.

Proof. The fact that gFj,r = q2rFj,r and gGj,r = q2rGj,r hold is a consequence of gE2r = q2rE2r.

The relations involving x follow easily from

(x− λj,r)Fj,r = (x− λj,r)
f(x, q2r)

x− λj,r

E2r = f(x, q2r)E2r = f(x, g)E2r = 0,

(x− λj,r)Gj,r = (x− λj,r)
f(x, q2r)

(x− λj,r)2
E2r = Fj,r. �

Proposition 3.13.6. For the elements defined in (3.13.4), the following hold:

(a) Fj,rFk,s = Fj,rGk,s = Gj,rGk,s = 0 when r 6= s;

(b) The following products are 0 whenever j 6= k,

Fj,rFk,r, Fj,rGk,r, Gj,rGk,r;

(c) F2
j,r = 0 when 1 ≤ j ≤ n−1

2 ;
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(d) The ideal J = spank{Fj,r | 1 ≤ j ≤ n−1
2 , r ∈ Zn} satisfies J2 = (0).

Proof. (a) Since E2rE2s = 0 whenever r 6= s, it is apparent that Fj,rFk,s = Fj,rGk,s = Gj,rGk,s = 0

for r 6= s and any choice of j and k. (b) Suppose mj = 1 when j = 0, and mj = 1 or 2 when

1 ≤ j ≤ n−1
2 . Then when j 6= k, we have

f(x, q2r)

(x− λj,r)mj
E2r ·

f(x, q2r)

(x− λk,r)mk
E2r =

f(x, q2r)

(x− λj,r)mj (x− λk,r)mk
· f(x, q2r)E2r,

=
f(x, q2r)

(x− λj,r)mj (x− λk,r)mk
· f(x, g)E2r = 0.

(3.13.5)

Part (b) is now clear from the calculation in (3.13.5). For part (c), observe that equation (3.13.5)

holds when k = j 6= 0, and mj = mk = 1. Part (d) follows from (b) and (c). �

Proposition 3.13.7. The elements {ξ−1
r F0,r = ξ−1

r
f(x,q2r)
x−λ0,r

E2r | r ∈ Zn} are (nonzero) orthogonal

idempotents, where ξr =
∏

n−1
2

j=1

(

2qr − qr(qj + q−j)

)2

6= 0.

Proof. Orthogonality is a consequence of Proposition 3.13.6 (a), and the remaining assertions follow

from (3.13.3) and the calculation

F2
0,r =

f(x, q2r)

x− λ0,r
E2r ·

f(x, q2r)

x− λ0,r
E2r =

f(x, q2r)

x− λ0,r
F0,r

=

( n−1
2
∏

j=1

(x− λj,r)
2

)

F0,r =

( n−1
2
∏

j=1

(λ0,r − λj,r)
2

)

F0,r

=

(
n−1
2
∏

j=1

(

2qr − qr(qj + q−j)
)2

)

F0,r = ξr F0,r,

where ξr =

(

∏

n−1
2

j=1

(

2qr − qr(qj + q−j)
)2
)

6= 0, which implies ξ−1
r F0,r is an idempotent. �

So far we have identified n idempotents ξ−1
r F0,r, r ∈ Zn, in GC

0 (Dn) and n(n−1)
2 elements Fj,r,

1 ≤ j ≤ n−1
2 , r ∈ Zn, that square to 0. Next we will find some more idempotents using the elements

Gj,r. In Sec. 3.13.2, we will examine the elements Fj,r and Gj,r explicitly for n = 3.

3.13.1. Idempotents from the elements Gj,r. We begin by computing Gj,rFj,r and G2
j,r for ≤ j ≤

n−1
2 , r ∈ Zn. Now

Gj,rFj,r =

(

f(x, q2r)

(x− λj,r)2

)

Fj,r = (x− λ0,r)

( n−1
2
∏

k=1,k 6=j

(x− λk,r)
2

)

Fj,r

= (λj,r − λ0,r)

( n−1
2
∏

k=1,k 6=j

(λj,r − λk,r)
2

)

Fj,r = ϑj,rFj,r, where

(3.13.6) ϑj,r = (λj,r − λ0,r)

( n−1
2
∏

k=1,k 6=j

(λj,r − λk,r)
2

)

.
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This shows that Gj,rFj,r is a nonzero multiple ϑj,r of Fj,r. We also have

G2
j,r =

(

f(x, q2r)

(x− λj,r)2
E2r

)2

=
f(x, q2r)

(x− λj,r)2
Gjr =

(

(x− λ0,r)

n−1
2
∏

k=1,k 6=j

(x− λk,r)
2

)

Gj,r.(3.13.7)

For 1 ≤ k ≤ n−1
2 , k 6= j,

(x− λk,r)Gj,r = (λj,r − λk,r)Gj,r + Fj,r

(x− λk,r)
2Gj,r = (λj,r − λk,r)(x− λk,r)Gj,r + (x− λk,r)Fj,r

= (λj,r − λk,r)
2Gj,r + 2(λj,r − λk,r)Fj,r

(x− λ0,r)Gj,r = (λj,r − λ0,r)Gj,r + Fj,r.

These computations and (3.13.7) imply that

G2
j,r = ϑj,rGj,r + νj,rFj,r,

for some scalar νj,r, where ϑj,r 6= 0 is as in (3.13.6). Then
(

Gj,r −
νj,r
ϑj,r

Fj,r

)2
= G2

j,r − 2
νj,r
ϑj,r

Gj,rFj,r

= ϑj,rGj,r + νj,rFj,r − 2
νj,r
ϑj,r

ϑj,rFj,r

= ϑj,rGj,r − νj,rFj,r = ϑj,r

(

Gj,r −
νj,r
ϑj,r

Fj,r

)

,

which shows that

(3.13.8) G′
j,r := ϑ−1

j,r

(

Gj,r −
νj,r
ϑj,r

Fj,r

)

is an idempotent in GC
0 (Dn) for ϑj,r as in (3.13.6) and some νj,r ∈ C for each 1 ≤ j ≤ n−1

2 , r ∈ Zn.

In summary, we have the following

Theorem 3.13.8. (a) The n(n−1)
2 elements Fj,r, 1 ≤ j ≤ n−1

2 , r ∈ Zn, determine a C-basis for

the Jacobson radical J of the Grothendieck algebra GC
0 (Dn) and J2 = (0).

(b) The elements ξ−1
0,rF0,r and G′

j,r for r ∈ Zn and 1 ≤ j ≤ n−1
2 are orthogonal idempotents, and

they form a basis for GC
0 (Dn) modulo J.

(c) Suppose S1,S2, . . . ,Sn2 is an ordering of the nonisomorphic simple Dn-modules, first by

ℓ = 1, . . . , n and then by r = 0, 1, . . . , n − 1. If Fj,r = cj,r1 S1 + cj,r2 S2 + · · · + cj,r
n2Sn2, then

fj,r := [cj,r1 cj,r2 . . . cj,r
n2 ] is a left eigenvector for the McKay matrix MV, V = V(2, 0), for all

0 ≤ j ≤ n−1
2 and r ∈ Zn corresponding to the eigenvalue λj,r = qr(qj + q−j).

(d) If Gj,r = dj,r1 S1 + dj,r2 S2 + · · · + dj,r
n2Sn2, then gj,r := [dj,r1 dj,r2 . . . dj,r

n2 ] is a generalized left

eigenvector for the McKay matrix MV such that gj,rMV = λj,rgj,r + fj,r for all 1 ≤ j ≤ n−1
2

and r ∈ Zn.

(e) The vectors fj,r, 0 ≤ j ≤ n−1
2 , r ∈ Zn, give a complete set of left eigenvectors, and the

vectors gj,r, 1 ≤ j ≤ n−1
2 , r ∈ Zn, give a complete set of generalized left eigenvectors for the

McKay matrix MV, V = V(2, 0), hence, for any McKay matrix M(ℓ,s) by Corollary 3.10.3.

Proof. From Proposition 3.13.5 (a) we know that the elements Fj,r are eigenvectors for the multi-

plication operator Rx, x = [V(2, 0)], of GC
0 (Dn), so the corresponding coordinate vectors fj,r relative

to the basis of nonisomorphic simple modules will be left eigenvectors for M = MV by Proposition

2.5.1. Part (b) of Proposition 3.13.5 shows that xGj,r = λj,rGj,r + Fj,r. Therefore, the coordinate
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vector gj,r of Gj,r will be a generalized left eigenvector for MV corresponding to the eigenvalue λj,r

by Proposition 2.5.1 (b). �

3.13.2. Computations for D3. When n = 3, we have f(x, q2r) = x3 − 3q2rx− 2, and

f(x, q2r)

(x− 2qr)
= x2 + 2qrx+ q2r = (x+ qr)2, and ξr =

(

2qr − qr(q + q−1)
)2

= (3qr)2 = 9q2r.

Thus, ξ−1
r F0,r = (9q2r)−1

(

x2 + 2qrx + q2r
)

E2r = 1
9

(

qrx2 + 2q2rx + 1
)

E2r is an idempotent for

r = 0, 1, 2. Now

(3.13.9) F1,r =
f(x, q2r)

x− λ1,r
E2r = (x− λ0,r)(x− λ1,r)E2r,

so that F2
1,r = (x − λ0.r)

2(x − λ1,r)
2E2r = (x − λ0,r)f(x, q

2r)E2r = (x − λ0,r)f(x, g)E2r = 0.

Consequently, the elements F1,r, r ∈ Z3, square to 0 in agreement with Proposition 3.13.6 (b).

Finally,

G1,r =
f(x, q2r)

(x− λ1,r)2
E2r = (x− λ0,r)E2r and G2

1,r = (x− λ0,r)G1,r = (λ1,r − λ0,r)G1,r + F1,r.

This tells us that by taking ν1,r = 1 and ϑ1,r = λ1,r − λ0,r = qr(q + q−1)− 2qr = −3qr,

(

G1,r +
1

3qr
F1,r

)2

= −3qrG1,r + F1,r − 2F1,r = −3qr
(

G1,r +
1

3qr
F1,r

)

,

and therefore by setting G′
1,r = − 1

3qr

(

G1,r +
1

3qrF1,r

)

, we get an idempotent for r ∈ Z3.

Writing (ℓ, r) for V(ℓ, r) and recalling that x = [V(2, 0)] and g = [V(1, 1)] gives

ξ−1
r F0,r = (9q2r)−1

(

x2 + 2qrx+ q2r
)

E2r =
1

27

(

qrx2 + 2q2rx+ 1
)(

q−4rg2 + q−2rg + 1
)

=
1

27

(

qr(3, 0) + qr(1, 1) + 2q2r(2, 0) + (1, 0)
)(

q2r(1, 2) + qr(1, 1) + (1, 0)
)

=
1

27

(

(3, 2) + q2r(3, 1) + qr(3, 0) + 2qr(2, 2) + 2(2, 1) + 2q2r(2, 0) + 2q2r(1, 2) + 2qr(1, 1) + 2(1, 0)
)

.

Ordering the summands from (1, 0) to (3, 2), ignoring the factor of 1
27 , and recording the coefficients,

we have

f0,r = [2 2qr 2q2r 2q2r 2 2qr qr q2r 1].

Multiplying f0,r by 3 and then setting r = 0, 1, 2, we obtain the left eigenvectors of MV for V =

V(2, 0) in (3.9.3) exactly:

TrP(1) = [6 6 6 6 6 6 3 3 3] λ0,0 = 2,

TrP(bc
−1) = [6 6q 6q2 6q2 6 6q 3q 3q2 3] λ0,1 = 2q,

TrP(b
2c−2) = [6 6q2 6q 6q 6 6q2 3q2 3q 3] λ0,2 = 2q2.

Now

G1,r =
f(x, q2r)

(x− λ1,r)2
E2r = (x− λ0,r)E2r = (x− 2qr)

(1

3
(q2r + qrg + 1)

)

=
1

3

(

− 2qr(1, 0) − 2q2r(1, 1) − 2(1, 2) + (2, 0) + qr(2, 1) + q2r(2, 2)
)

.
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Therefore, g1,r =
1
3 [−2qr,−2q2r,−2, 1, qr , q2r, 0, 0, 0], and λ1,r = qr(q + q−1) = −qr. From (3.13.9),

we can deduce that f1,r =
1
3 [−q2r,−1,−qr,−qr,−q2r,−1, 1, qr , q2r]. Then

g1,rMV =
1

3
[−2qr,−2q2r,−2, 1, qr , q2r, 0, 0, 0]





0 I 0

Z 0 I

2I 2Z 0





=
1

3
[q2r, 1, qr,−2qr,−2q2r,−2, 1, qr, q2r]

= −qr
1

3
[−2qr,−2q2r,−2, 1, qr, q2r, 0, 0, 0] +

1

3
[−q2r,−1,−qr,−qr,−q2r,−1, 1, qr, q2r]

= λ1,rg1,r + f1,r,

so that g1,r is a generalized left eigenvector for MV with eigenvalue λ1,r for r ∈ Z3.

3.14. Fusion rules for tensoring a maximal set of independent projective modules in

G0(Dn) with V. We have seen in Proposition 3.1.1 that the Cartan map c for Dn has rank n(n+1)
2 ,

and that the modules P(ℓ, r)−P(n− ℓ, ℓ+ r) lie in the kernel of c for 1 ≤ ℓ ≤ n(n−1)
2 . Following [9],

we let NV be the matrix that records tensoring a projective module P with V = V(2, 0) and writing

the answer [P⊗ V] as a Z-combination of isomorphism classes of projectives whose images form a

Z-basis for c
(

K0(Dn)
)

⊆ G0(Dn). Since the Cartan map has rank n(n+1)
2 , we use only the modules

V(n, r),P(1, r), . . . ,P(n−1
2 , r) in forming NV. We assume that ordering and take all values of r for

each type, first for V(n, r), then for P(1, r) etc.. From the tensor rules (3.2), we have that the

resulting matrix NV is n(n+1)
2 × n(n+1)

2 for any n = 2h+ 1 with h ≥ 1, and

(3.14.1) NV =



























0 I 0 · · · 0 0

2Z 0 I · · · 0 0

0 Z 0 I · · · 0 0
...

... Z
. . .

. . . 0 0
...

...
...

. . . I 0

0 0 0 · · · Z 0 I

0 0 0 0 · · · Z Zh+1



























,

where I is the n× n identity matrix, and Z is the n× n cyclic matrix in (3.2.1). In this section, we

show that the matrix NV has right eigenvectors whose components involve the modified Chebyshev

polynomials Lk(t) of Section 3.8, and left eigenvectors whose components involve the Chebyshev

polynomials Vk(t) of the third kind [28, Sec. 1.2.3], which are defined by

(3.14.2) V0(t) = 1, V1(t) = t− 1, Vk(t) = tVk−1(t) + Vk−2(t), k ≥ 2.

They are expressible in terms of other Chebyshev polynomials via the relations

(3.14.3) Vk(t) = Uk(t)− Uk−1(t), and Lk(t) = Vk(t) + Vk−1(t) for all k ≥ 1.

The first identity can be found in [28, 1.17], and the second comes from Lk(t) = Uk(t) − Uk−2(t)

and the first. More specifically, we show the following for all n = 2h+ 1 ≥ 3:

Theorem 3.14.1. (a) The matrix NV in (3.14.1) has eigenvalues λj,r = qr(qj + q−j) for 0 ≤

j ≤ n−1
2 , r ∈ Zn, (each with multiplicity one), so the matrix NV is diagonalizable (as expected

from [9]).
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(b) Let v 6= 0 satisfy Zv = q2rv, and assume Lk stands for Lk(q
j + q−j). Then

[v qrL1v . . . qhrLhv]
T

is a right eigenvector for NV of eigenvalue λj,r for 0 ≤ j ≤ n−1
2 , r ∈ Zn.

(c) Let w 6= 0 satisfy wZ = q2rw, and assume Vk stands for Vk(q
j + q−j). Then

[qhrVhw . . . qrV1w w]

is a left eigenvector for NV with eigenvalue λj,r for 0 ≤ j ≤ n−1
2 , r ∈ Zn.

Proof. We will argue that (b) and (c) hold, and part (a) will follow.

(b) We compare both sides of this equation and verify they are indeed equal:


























0 I 0 · · · 0 0

2Z 0 I · · · 0 0

0 Z 0 I · · · 0 0
...

... Z
. . .

. . . 0 0
...

...
...

. . . I 0

0 0 0 · · · Z 0 I

0 0 0 0 · · · Z Zh+1



















































v

qrL1v

q2rL2v
...

q(h−1)rLh−1v

qhrLhv

























= λj,r

























v

qrL1v

q2rL2v
...

q(h−1)rLh−1v

qhrLhv

























.

Row 0 on the left is qrL1v = qr(qj + q−j)v, which equals λj,rv, the entry in row 0 on the right.

Row 1 says 2q2rv+ q2rL2v = q2r (L0 + L2)v = q2r(qj + q−j)L1v = λj,rq
rL1v.

Now for rows 2 ≤ s ≤ h− 1, we have

Zq(s−2)rLs−2v + qsrLsv = qsr (Ls−2 + Ls)v = qsr(qj + q−j)Ls−1v = λj,rq
(s−1)rLs−1v.

Finally, for the last row, recall that h = n−1
2 so that h+ 1 = n+1

2 . Then on the left we have

Zq(h−1)rLh−1v + Zh+1qhrLhv =

(

q(h+1)rLh−1 + q

(

2(h+1)+h
)

r
Lh

)

v = q(h+1)r (Lh−1 + Lh)v.

On the right, the last entry is

λj,rq
hrLhv = q(h+1)r(qj + q−j)Lh = q(h+1)r

(

Lh+1 + Lh−1

)

v.

So comparing the left and right sides, we see that the argument boils down to whether Lhv = Lh+1v.

But since

Lh(q
j + q−j) = qhj + q−hj = q−(h+1)j + q(h+1)j = Lh+1(q

j + q−j),

the left and right sides are indeed equal, so (b) holds.

(c) The connection with the Chebyshev polynomials Uk(t) in (3.14.3) is the one that will be most

helpful in proving part (c). Recall we know by Proposition 3.4.1(a) that for t = x + x−1 and all

k ≥ 1,

Uk(t) = xk + xk−2 + · · · + x−(k−2) + x−k =
xk+1 − x−(k+1)

x− x−1
.

Therefore,

Vk(t) = Uk(t)−Uk−1(t) =
xk+1 − x−(k+1)

x− x−1
−

xk − x−k

x− x−1
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for all k ≥ 2. In particular, taking k = h+ 1 for h = n−1
2 , and assuming xn = 1, we obtain

Vh+1(t) =
xh+2 − x−(h+2)

x− x−1
−

xh+1 − x−(h+1)

x− x−1

=
x−(h−1) − xh−1

x− x−1
−

x−h − xh

x− x−1
=

xh − x−h

x− x−1
−

xh−1 − x−(h−1)

x− x−1
= Vh−1(t).

(3.14.4)

We will use (3.14.4) and identify x with q when we argue that the following equation holds:

[qhrVhw . . . qrV1w w]



























0 I 0 · · · 0 0

2Z 0 I · · · 0 0

0 Z 0 I · · · 0 0
...

... Z
. . .

. . . 0 0
...

...
...

. . . I 0

0 0 0 · · · Z 0 I

0 0 0 0 · · · Z Zh+1



























= λj,r[q
hrVhw . . . qrV1w w].

Consider column h on both sides (numbering columns h to 0 from left to right). On the left we

have 2q(h−1)rVh−1wZ = 2q(h+1)rVh−1w. On the right we have for column h,

λj,rq
hrVhw = q(h+1)r(qj + q−j)Vhw = q(h+1)r (Vh+1 + Vh−1)w = 2q(h+1)rVh−1w

by (3.14.4), so the two are equal.

Now for s = h, . . . , 2, column s−1 on the left gives qsrVsw+q(s−2)rVs−2wZ = qsr (Vs + Vs−2)w.

The corresponding column on the right has entry

λj,rq
(s−1)rVs−1w = qsr(qj + q−j)Vs−1 = qsr (Vs + Vs−2)w,

so the two are equal. Finally, for column 0, we have on the left

qrV1w +wZh+1 = qrV1w + q2(h+1)rw = qr(V1 + 1)w

= qr(qj + q−j)w = λj,rw,

which is precisely the entry in column 0 on the right-hand side.

We have produced n(n+1)
2 right (and left) eigenvectors with distinct eigenvalues λj,r, for 0 ≤ j ≤

n−1
2 , r ∈ Zn, for the

n(n+1)
2 × n(n+1)

2 matrix NV, so the λj,r are exactly the eigenvalues of NV. �

3.15. Further Questions. In this paper, we have proven results on McKay matrices of arbitrary

finite-dimensional Hopf algebras and illustrated them for the Drinfeld double Dn of the Taft algebra,

but there remain many interesting open questions, even for semisimple Hopf algebras.

• When is the McKay matrix symmetric or normal, hence orthogonally diagonalizable? It is

shown in [39] that the McKay matrix corresponding to any simple module is orthogonally

diagonalizable when A is semisimple and almost cocommutative, and we have shown in

Corollary 2.3.4 that if A is semisimple and V is self-dual, then MV is symmetric. The McKay

matrix MV, V = V(2, 0), for the nonsemisimple Drinfeld double Dn is not symmetric, and

for the algebra A that is (14) in Kashina’s classification [24] of 16-dimensional semisimple

Hopf algebras there is a module V 6∼= V∗ such that MV is not symmetric.

• For which Hopf algebras do the (generalized) right eigenvectors of McKay matrices corre-

spond to columns in something that can be regarded as a character table?
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• When can all the (right) eigenvectors of the McKay matrix MV be obtained from traces of

grouplike elements? We have shown this is possible for Dn in Sec. 3.6. It is possible for

Radford’s Hopf algebra A(n,m) which is also not semisimple [33, Exer. 10.5.9], but fails to

be true for the Kac-Palyutkin algebra which is semisimple [23]. We have seen in Sec. 3.9

that for Dn, only n of the n(n+1)
2 linearly independent left eigenvectors can be realized as

trace vectors of grouplike elements on projective covers.

• Under what assumptions can the (generalized) eigenvectors of McKay matrices be related

to central elements of the Hopf algebra A or cocommutative elements in A∗?

• When are the eigenvalues of the fusion matrix NV obtained by tensoring a maximal inde-

pendent set of indecomposable projective modules with V the same as the eigenvalues for

the McKay matrix MV? They are for Drinfeld double Dn and V = V(2, 0).

• What can be said about the (generalized) eigenvectors of matrices that encode the fusion

relations in the more general context of tensor or fusion categories (see e.g. [19], [34])?

In [17], Etingof, Nikshych, and Ostrik introduced the Frobenius-Perron dimension of a

fusion category as the spectral radius of a matrix representing the fusion relations.

• When n is even, do the (generalized) eigenvectors of the McKay matrices for tensoring Dn-

modules have expressions in terms of Chebyshev polynomials, and what can be said about

the multiplicities of the eigenvalues?
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