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Hodge-to-de Rham degeneration for stacks

Dmitry Kubrak, Artem Prikhodko

Abstract

We introduce a notion of a Hodge-proper stack and apply the strategy of Deligne-Illusie to prove the Hodge-
to-de Rham degeneration in this setting. In order to reduce the statement in characteristic 0 to characteristic
p, we need to find a good integral model of a stack (namely, a Hodge-proper spreading), which, unlike in the
case of proper schemes, need not to exist in general. To address this problem we investigate the property of
spreadability in more detail by generalizing standard spreading out results for schemes to higher Artin stacks
and showing that all proper and some global quotient stacks are Hodge-properly spreadable. As a corollary we
deduce a (non-canonical) Hodge decomposition of the equivariant cohomology for certain classes of varieties with
an algebraic group action.
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0 Introduction

0.1 Deligne-Illusie method for schemes

Let X be a smooth scheme over C and let X (C) be the topological space of its complex points. Grothendieck has
shown that there is a formula for the singular cohomology of X (C) in purely algebraic terms, namely
H, (X(C),C) ~ Hir (X/C),
where the de Rham cohomology HJy(X/C) is defined as the n-th hypercohomology of the algebraic de Rham
complex of X. If, moreover, X is projective, using Hodge theory one obtains the Hodge decomposition
5e(X(C),C) =~ P HU(X,0%).
ptg=n
Unfortunately, it is only possible to get such a decomposition utilizing some transcendental methods (like Hodge
theory). However, for X proper, using just algebraic geometry we still obtain a functorial filtration F'*HJ (X/C)
whose associated graded is given by the sum above. Namely, the de Rham complex has a natural cellular (also
called “stupid”) filtration Q;p 4R given by subcomplexes

d

OFp = ... 0 0% opft 4. L. qlimx
This filtration induces a filtration on the complex of global sections RI'qr (X/C) := RI'(X, Q% 4g) whose associated

graded pieces are RI'(X, Q% [—p]). As a consequence one gets the so-called Hodge-to-de Rham spectral sequence
EPY = HY(X, Q%) = Hiz"(X/C).

As was shown by Deligne and Illusie [DI87] there is a purely algebraic proof of the degeneration of the spectral
sequence above, thus the induced filtration F*H; (X/C) on the de Rham cohomology has the associated graded

gry Hip (X/C)~ € HP(X), where HP(X):= HY(X,Q%).
ptq=n

The strategy of Deligne-Illusie is to reduce the statement in characteristic 0 to an analogous question in big
enough positive characteristic. Let k& be a perfect field of characteristic p and let Y be a smooth scheme over k.
Then we have:

Theorem 0.1.1 (Cartier). Let Y1) denote the Frobenius twist of Y and let py : Y — Y1) be the relative Frobenius
)

morphism. Then there exists a unique isomorphism of sheaves of Oy ) -algebras on YZ(;r

Cyt: PO = P H (v ar),
determined by the property that for any local section f of Oy
Cyl(df) = “df?/p” = fr~df.

The map C’;l is called the inverse Cartier isomorphism.

This way we see that the Postnikov (also called “canonical”) filtration on ¢y. Q5 4 induces another filtration on
RT(Y, Q% 4g) =~ RT(YW, Py 823 4r) Whose associated graded pieces are RT(Y™), Q) [~p]). Taking the spectral
sequence induced by this filtration we obtain the so-called conjugate spectral sequence

Byt =HY (YW, Q1)) = Hig"(Y/k).
Note that for any spectral sequence the Fo.-page is always a subfactor of the E,-page (r > 0), hence dimy EX* <
dimg E*. If all vector spaces E;’" are finite-dimensional, equality holds if and only if all differentials starting
from the r-th page vanish. It follows that for Y proper, the conjugate spectral sequence degenerates if and only
if dimy Hijp(Y) = Y2, dimg HP4(Y (). Since dimy, H?7(Y (V) = dimy, H(Y') this happens if and only if the
Hodge-to-de Rham spectral sequence degenerates as well.

The differentials in the conjugate spectral sequence are induced by the connecting homomorphisms for the
Postnikov filtration on ¢y, Q3 4z In particular, if @y, Q3 5 is formal (i.e. quasi-isomorphic to the sum of its
cohomology), then the conjugate spectral sequence degenerates. While in general this is hard to guarantee, the
formality of the truncation TSp’lgpy*Q;,7dR turns out to be equivalent to the existence of a lift to the second Witt
vectors Wa(k):



Theorem 0.1.2 (Deligne-Illusie). A smooth scheme Y over k admits a lift to Wa(k) if and only if there exists an
equivalence in the derived category of Oy q)-modules

p—1

i S <p—1 .
@ Qyoy[—i] — 7 ey« ¥ ar
i=0

inducing the inverse Cartier isomorphism C;l on H*. In particular, if Y admits a lift to Wa(k) and dimY < p,
then the complex cpy*Q;/)dR 1s formal, and hence the Hodge-to-de Rham spectral sequence degenerates at the first

page.

The proof of the degeneration in characteristic 0 is then accomplished by choosing a smooth proper model (the
so-called spreading) Xg of X over some finitely generated Z-subalgebra R of F. Enlarging R if needed, one can
assume that the R-modules H?(Xg, Q% ) and H'z(Xgr/R) are free of finite rank and that R is smooth over Z.
By smoothness of R any homomorphism from R to a perfect filed of positive characteristic lifts to the second Witt
vectors (see Lemma 1.4.4). Picking a perfectization of closed point of Spec R of residue characteristic p > dim X
one reduces Hodge-to-de Rham degeneration to Theorem 0.1.2.

0.2 Generalization to stacks

In this work we apply the strategy of Deligne-Illusie in the case of Artin stacks. For a smooth proper Deligne-
Mumford stack one can proceed with the original arguments (see e.g. [Sat12, Corollary 1.7]), but they do not
seem to work for a general smooth Artin stack (see Remark 0.2.4). Instead we use another approach relying on
quasi-syntomic descent for the derived de Rham cohomology.

As in the case of schemes, to establish Hodge-to-de Rham degeneration, we need to impose some properness
assumptions. However, the standard notion of a proper stack is too restrictive for our purposes. For example,
the quotient stack [X/G] of a proper scheme X by an action of a linear algebraic group G is proper if and only if
the stabilizers of all points of X are finite group schemes. On the other hand, as we will see in Section 3.1, the
Hodge-to-de Rham spectral sequence for [X/G] with reductive G always degenerates.

This suggests that we should look for a more general notion of properness:

Definition 0.2.1. Let R be a Noetherian ring. A smooth Artin stack X over R is called Hodge-proper if
HY(X,APLLx/g) is a finitely generated R-module for all p and g, where Ly, is the cotangent complex of X
over R.

The complex RI'(X,APLy, r) is a natural analogue of RT'(X, Q%) and, similarly to the scheme case, the
de Rham cohomology complex RT4r(X/R) has a natural (Hodge) filtration whose associated graded pieces are
RI(X, APLy,g[—p]); see Section 1.1 for more details. In this way one obtains a spectral sequence

EPY = HYX,N'Ly,g) = H}YY(X/R).
In the case R = F is a field this spectral sequence degenerates if and only if

dimp Hig(X/F) = Y dimp HY(X, "Ly /). (1)

ptg=n

Remark 0.2.2. By smooth descent for the cotangent complex, RI'(X, APLy ) produces the same answer as the
definition of the Hodge cohomology via the lisse-étale site of X (see Proposition 1.1.4).

We will now explain the strategy of our proof of the equality (1) above. The first step is to extend Theorem 0.1.2
to the setting of stacks:

Theorem (1.3.23). Let ) be a smooth quasi-compact quasi-separated Artin stack over a perfect field k of charac-
teristic p admitting a smooth lift to the ring of the second Witt vectors Wa(k). Then there is a canonical equivalence

p—1
RT(Y, 7577108 4p) ~ RT (9/“),@ NLy(U/k[—i]> .

=0

In particular for n < p —1 we have Hi (9 /k) ~ HE(Y D /k).



Remark 0.2.3. Note that Theorem 1.3.23 gives only a partial generalization of Theorem 0.1.2. Even though the
statement indeed follows from the analogous splitting of sheaves (see Theorem 1.3.21 below) there is no analogue
of the “if and only if” statement of the Deligne-Illusie theorem. One reason for this is that the original approach of
Deligne-Tllusie is poorly suited for general Artin stacks (see Remark 0.2.4); so instead we use the (slightly enhanced)
proof of the splitting due to Fontaine-Messing [FM87, Section IT].

Since the de Rham cohomology for Artin stacks are defined as the right Kan extension from smooth affine schemes
(Definition 1.1.3) one can more or less formally deduce the theorem above from the following very functorial form
of Deligne-Illusie splitting for affine schemes:

Theorem (1.3.21). Let Aff)y,, ;) be the category of smooth affine schemes over Wa(k). Then there is a natural
k-linear equivalence of functors

p—1 p—1
@Qﬂ: B @QEB(I)/P)/IC[_’L'] and TSP*IQ:,dm B — TSP*lQZB/p)/kvdR
i=0 =0

from Affjrélv’;)?k) to the oo-category D(Mody) which induces the Cartier isomorphism on the level of the individual
cohomology functors.

The splitting in Theorem 0.1.2 is already functorial with respect to liftings to Wa(k), but only on the level
of the underlying homotopy category and not the oo-category of complexes D(Mody) itself. To get this higher
functoriality we follow [FM87, Section II] using a more convenient language of [BMS19].

The idea is to extend the de Rham (and the crystalline) cohomology functor to a larger category of quasisyntomic
algebras (Definition 1.3.1). This category, endowed with the quasisyntomic topology, has a basis consisting of quasi-
regular semiperfectoid W, (k)-algebras (Definition 1.3.3), on which the values of RT'qr and RI'cys (or rather their
derived versions RI'rgr and RI'rcys) become ordinary rings. Additionally, the Frobenius morphism, the Hodge
filtration and the conjugate filtration can be described explicitly. This way, using quasi-syntomic descent, the
question reduces to a certain computation in commutative algebra.

More concretely, for a quasi-regular semiperfect k-algebra S one can prove that RI'Lerys(S/ Wi (k)) =~ Acrys(S)/p™,
where Agys(S) is the divided power envelope of the kernel of the natural surjection W((S)?) — S (see Construc-
tion 1.3.15). Under this identification the Hodge filtration on RI¢ys(—/k) ~ RLar(—/k) corresponds to the
filtration by the divided powers of the pd-ideal I < Acys(S)/p. The conjugate filtration Fil®™ admits an ex-
plicit description as well (see Definition 1.3.17). Given a lifting S of S to Wa(k) there is a natural morphism
0: Acrys(S)/p* — S. The image of K := ker § under the first divided Frobenius map 1 then provides a splitting
of Fil{®™ into FilS°™ & Fil®™ / Fil®™ ~ S§* /T @ I/I? (Proposition 1.3.22). By multiplicativity this extends to the
splitting of Fil;clnlj whose descent to smooth schemes gives Theorem 1.3.21.

Remark 0.2.4. The original approach of Deligne-Illusie (at least applied literally) does not seem to work for a
general Artin stack; the key result of [DI87] is the equivalence of two gerbes on the étale site of Y (1) /k for a smooth
k-scheme Y: the one of splittings of 75!y Q% 4 in QCoh(Y (M)) and the one of liftings of Y () to W (k). A general
smooth Artin stack 9 can be covered by an affine scheme only smooth locally, so one needs to replace the étale site
of ¥ by the smooth one. But both the space of splittings of TSlgoy*Q;,7dR and the space of liftings to Wa(k) are
not even presheaves there. Nevertheless, it would be still interesting to have an explicit description of the space of
liftings to Wa(k) for an arbitrary smooth n-Artin stack 9”. We do not discuss this question here.

Spreadings. Let now X be a smooth Hodge-proper stack over a field F' of characteristic 0. If there exists Z-
subalgebra R C F, which is finitely generated over Z', and a Hodge-proper stack Xg over R such that X @ g F ~ X
(a Hodge-proper spreading of X), then one can deduce the equality (1) for the n-th cohomology from Theorem 1.3.23
by taking a suitable closed point Spec k < Spec R of characteristic p > n and considering the fiber Xj. This way
we obtain

Theorem (1.4.3). Let X be a smooth Hodge-properly spreadable Artin stack over a field F' of characteristic zero.
Then the Hodge-to-de Rham spectral sequence for X degenerates at the first page. In particular for each n > 0 there
exists a (non canonical) isomorphism

Hip(X)~ @ H(X).

ptg=n

IMore generally, in Definition 1.4.1 we also allow subrings R C F that are localizations of finitely generated Z-algebras under the
assumption that the image of Spec R in SpecZ is open, but it is fine to assume that R is finitely generated throughout the introduction.



We must warn the reader that smooth Hodge-properly spreadable stacks do not enjoy many of the nice properties
that smooth proper schemes have, in particular the natural mixed Hodge structure on the singular n-th cohomology
is not necessarily pure (see Remark 2.3.18). The main motivation for the definition is that it is the most general
class of stacks for which the Deligne-Illusie method can be applied. This, however, does not exceed all examples of
the Hodge-to-de Rham degeneration (see Remark 2.3.15).

In order to address the question of the existence of a Hodge-proper spreading we first extend the standard
spreading out results for finitely presentable schemes to the case of Artin stacks:

Theorem (2.1.13 and 2.3.2). Let {S;} be a filtered diagram of affine schemes with limit S. Fizx a class of morphism
P = proper, smooth, flat, surjective, or any other class of morphisms that satisfies the conditions of Definition 2.1.9.
For an affine scheme T, let Stk?'TArt’fp’P denote the category of finitely presentable n-Artin stacks over T and
morphisms in P between them. Then the natural functor

. n-Art,fp,P n-Art,fp,P
1113 Stk/si — Stk/S

K3
(induced by base-change) is an equivalence.

As a corollary we deduce that any smooth n-Artin stack X over F' admits a smooth spreading X over some finitely
generated Z-algebra R C F and that any two such spreadings become equivalent after enlarging R. Since all
smooth proper stacks are Hodge-proper (see Proposition 2.2.12), we immediately deduce the Hodge-to-de Rham
degeneration in this case. Note that this includes smooth proper Deligne-Mumford stacks as a special case.

However, Hodge-proper spreadings need not to exist in general: one can show that the classifying stack BG is
Hodge-proper for any finite-type group scheme G over F' (see Proposition 2.3.6) but it is not necessarily Hodge-
properly spreadable. Indeed, the classifying stack BG, of the additive group has nontrivial Hodge cohomology but
is de Rham contractible (i.e. has the de Rham cohomology of a point), so the Hodge-to-de Rham spectral sequence
is clearly nondegenerate. By Theorem 1.4.3 it follows that it is not Hodge-properly spreadable and this forces the
Hodge cohomology of BG, 7 to have infinitely generated p-torsion for a dense set of primes p, which one can also
see from the explicit description (see Example 2.3.7 or Proposition A.2). This illustrates the general phenomenon:
the non-degeneracy of the Hodge-to-de Rham spectral sequence in characteristic 0 is always reflected arithmetically,
namely the Hodge cohomology of any spreading has to be infinitely generated over the base.

In the main case of our interest, namely the quotient stacks X = [X/G], we exhibit some sufficient conditions
for Hodge-proper spreadability purely in terms of the geometry of X, G and the action G ~ X. In this case the
spreadability is not easy to show, especially if we can’t spread G to a linearly reductive group (which is only possible
if G is a torus or an extension of a finite group by one). Nevertheless, using certain cohomological finiteness results
from [FvdK10] we prove

Theorem (3.1.4). Let F be an algebraically closed field of characteristic 0. Let X be a smooth scheme and let Y
be a finite-type quasi-separated scheme over F', both endowed with an action of a reductive group G. Assume that

1. There is a proper G-equivariant map 7: X — Y.
2. The G-action on'Y is locally linear (Definition 5.1.1).
3. The categorical quotient Y//G is proper.

Then the quotient stack [X/G] is Hodge-properly spreadable”.

Theorem 3.1.4 applies to some natural examples of smooth schemes X with a G-action, in particular, equivariant
“proper-over-affine” varieties (see Example 3.1.6) and the GIT quotients, whose coarse moduli space is proper (see
Example 3.1.7).

We also prove a variant of Theorem 3.1.4 where we drop the reductivity assumption on G but impose an
additional Bialynicki-Birula (BB)-completeness assumption on the action when restricted to a subgroup h: G,, — G.
Moreover, the extra structure given by the map 7 is replaced by the internal condition on the properness of h(Gy,)-
fixed points; see Theorem 3.2.12 for details.

Using the results of Halpern-Leistner (specifically, [HL20]) on ©-stratifications we also show that a smooth stack
X, which is endowed with a ©-stratification such that all strata (including the semistable locus) are cohomologically
properly spreadable, is also cohomologically properly spreadable (see Corollary 3.3.5). This gives rise to new
examples of Hodge-properly spreadable stacks where old ones appear as individual ©-strata. In particular, this

2In fact we prove a stronger statement, namely that [X/G] is cohomologically properly spreadable, see Definitions 2.2.2 and 2.3.1.



way, using Theorem 3.1.4 above, one can show that global quotients of KN-complete varieties are Hodge-properly
spreadable; see Example 3.3.6.

As an application, for any Hodge-properly spreadable quotient stack [X/G], we deduce an equivariant Hodge-
to-de Rham degeneration:

Corollary (1.5.2). Let X be a smooth scheme over C endowed with an action of an algebraic group G such that
the quotient stack [X/G] is Hodge-properly spreadable. Then there is a (non-canonical) decomposition

HYo)(X(C),C) ~ @ HYUX/G), NPLix/cy/c)-

ptg=n

Finally, it turns out that Theorem 1.4.3 can be applied even in the case of some non-proper schemes, as we
discuss in some detail in Section 2.3.3.

Remark 0.2.5. Even though all stacks in our main applications are classical (i.e. 1-Artin), the machinery developed
in this work to prove Hodge-to-de Rham degeneration applies automatically to higher Artin stacks, so we did not
put any artificial restrictions on the level of representablity of stacks considered in the paper. An example of a
genuinely higher stack to which our method applies can be found in Section 2.3.4.

0.3 Relation to previous work and further directions

Our definition of Hodge-proper stacks is partially motivated by the work [HLP19] by Halpern-Leistner and Preygel,
where several generalized notions of properness for stacks are studied. In Questions 1.3.2 and 1.3.3 of loc.cit.
authors ask if any formally proper stack (Definition 1.1.3 of loc.cit.) admits a formally proper spreading and if
the Hodge-to-de Rham spectral sequence degenerates for a formally proper stack over a field of characteristic 0.
It follows from our work that the first statement implies the second; however, the method of Section 2.1 does not
help to show the existence of a formally proper spreading. In fact, for the degeneration, only the existence of a
Hodge-proper spreading would suffice, but this still seems pretty hard to show (see Question 3.3.9 in the end of our
paper).

The splitting of the (p— 1)-st truncation of the de Rham complex for a smooth tame 1-Artin stack over a perfect
field k of characteristic p was established (among other things) in [Sat12]. The key observation in [Sat12] is that a
smooth tame stack admits a smooth lift together with a lift of Frobenius étale-locally on its coarse moduli space,
which enables to follow the original argument of Deligne-Illusie. Our proof is different and works for an arbitrary
smooth n-Artin stack.

Even though the main examples of Hodge-spreadable stacks we construct in Section 2.3 are classical Artin
stacks, Theorem 1.3.23 and Theorem 1.4.3 work equally well for higher ones. Thus we keep this level of generality
throughout the paper. The spreading results of Section 2.1 in the case of classical Artin stacks are also covered
in [Ryd15, Appendix B] and [LMB00, Chapter 4]. The use of [Pril5, Section 4] gives a clear way to extend these
results to the setting of higher stacks, which we record in Section 2.1.

It is worth to mention that there is still no example of a smooth liftable scheme X in characteristic p whose
Hodge-to-de Rham spectral sequence does not degenerate (recall that the Deligne-Illusie method gives such a
degeneration only for i + j < p). Motivated by the recent examples of non-degeneration for the HKR-filtration
constructed in [ABM19] one could first look for such a counterexample in the world of stacks. The de Rham
cohomology of various classifying stacks were considered recently in great detail in [Tot18]; however, in all examples
the Hodge-to-de Rham spectral sequence did degenerate.

The equivariant Hodge-to-de Rham degeneration for a reductive group G acting on a scheme X, under the
Kempf-Ness-completeness assumption was treated (among other things) in [Tel00] by completely different methods.
We reprove his result in a (slightly) more general setting (Example 3.3.6) using ©-stratifications and the associated
semiorthogonal decompositions constructed in [HL20]. The same strategy applies to any smooth ©-stratified stack
with cohomologically properly spreadable centra of the strata and the semistable locus (Corollary 3.3.5). [HL18,
Section 4] could provide more examples of stacks that are Hodge-properly spreadable.

Another approach to the equivariant Hodge theory was introduced in [HLP15]. There the authors deduce
(among other things) the noncommutative Hodge-to-de Rham degeneration for the category of perfect complexes
QCoh([X/G])Pe for a KN-complete X and for some purely non-commutative examples (like the categories of matrix
factorizations), by exploiting methods of non-commutative geometry. Note that the result of Kaledin (see [KalOg]
and [Kall7]) does not apply in this situation, since the DG-category QCoh([X/G])P¢™ is usually not smooth. It
is natural to ask whether the commutative degeneration implies the noncommutative one in this case. This is not
immediately clear, since the relation between the Hochschild/periodic cyclic homology of the category of perfect
complexes and the Hodge/de Rham cohomology for Artin stacks is more subtle than in the case of schemes.



0.4 Plan of the paper

Section 1 is devoted to a proof of the degeneration of the Hodge-to-de Rham spectral sequence for Hodge-properly
spreadable stacks. In Subsections 1.1 and 1.2 we review Hodge and de Rham cohomology of stacks, define Hodge-
proper stacks and prove some technical lemmas about them. In Section 1.3 we prove (a truncated version of) the
Hodge-to-de Rham degeneration in positive characteristic for Hodge-proper stacks that admit a lift to Wa(k). Then,
in Section 1.4 we prove the Hodge-to-de Rham degeneration in characteristic 0 for stacks that are Hodge-properly
spreadable. As a corollary, in Section 1.5, in the case of a quotient stack, we also deduce a (non-canonical) Hodge
decomposition for the corresponding equivariant singular cohomology.

In Section 2 we study the spreadability of Hodge proper stacks. In Subsection 2.1 we extend the standard spread-
ing out results for finitely presented schemes and their morphisms to the case of Artin stacks (see Theorem 2.1.13).
In 2.2 we introduce a more convenient class of cohomologically proper stacks which includes all Hodge-proper ones.
In Section 2.3 we give first examples of spreadable Hodge-proper stacks: in Section 2.3.1 we cover the case of smooth
proper stacks, in Section 2.3.2 we discuss for which algebraic groups G the classifying stack BG is Hodge-properly
spreadable. Then, in Section 2.3.3 we discuss the case schemes.

In Section 3 we concentrate on the spreadability of quotient stacks. In Section 3.1 we discuss the case of
global quotients by reductive groups whose coarse moduli space is proper. In Section 3.2.2 we prove Hodge-proper
spreadability of [X/G,,] under the condition that the associated Bialynicki-Birula stratification is full and X is
proper; then, in Section 3.2 we use this to prove spreadability for a more general class of global quotients, including
quotients by some non-reductive groups. Finally, in Section 3.3 we show that finite ©-stratifications spread out; then
using the results of [HL20] we show that if all ©-strata (or rather their centra) together with the semistable locus
have cohomologically proper spreadings, then so does the original ©-stratified smooth stack X. In Example 3.3.6
we show how to establish the cohomologically proper spreadability of Kempf-Ness (KN-)complete quotient stacks
using this method.
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Notations and conventions.

1. We will freely use the language of higher categories, modeled e.g. by quasi-categories of [Lur09]. If not explicitly
stated otherwise all categories are assumed to be (0o, 1) and all (co-)limits are homotopy ones. The (oo, 1)-category
of Kan complexes will be denoted by 8 and we will call it the category of spaces. By Lan; F and Ran; F we will
denote left and right Kan extensions of a functor F' along i (see e.g. [Lur09, Definition 4.3.2.2] for more details).

2. For a commutative ring R by D(Modg) we will denote the canonical (0o, 1)-enhancement of the triangulated
unbounded derived category of the abelian category of R-modules Modg. All tensor product, pullback and push-
forward functors are implicitly derived.

3. In this work by Artin stacks we always mean (higher) Artin stacks in the sense of [TV08, Section 1.3.3] or
[GR17, Chapter 2.4]: these are sheaves in étale topology admitting a smooth (n — 1)-representable atlas for some
n > 0 (an inductively defined notion, see loc.cit. for more details). We stress that we work with non-derived Artin
stacks, i.e. they are defined on the category of ordinary commutative rings. When we need to emphasize a precise
dependence on n (usually in inductive arguments) we say that X is an n-Artin stack. We denote the oo-category
of n-Artin stacks over a base scheme S by Stk"'SArt. We also freely use the notion of quasi-compact quasi-separated
morphism between Artin stacks from [GR17, Chapter 2, Section 4.1.9].

4. For a stack X we will denote by QCoh(X) the category of quasi-coherent sheaves on X defined as the limit
limgpec 4—sx D(Mod4) over all affine schemes Spec A mapping to X (see [GR17, Chapter 3.1] for more details).

3In fact his suggestion that one should be able to prove the Hodge-to-de Rham degeneration for some “cohomologically proper”
stacks via the Deligne-Illusie method basically started this project.



Note that QCoh(X) admits a natural t-structure such that F € QCoh(X)<? if and only if z*(F) € D(Mod4)=<°
for any A-point z € X(A). Moreover, by [GR17, Chapter 3, Corollary 1.5.7] if X is Artin stack, then QCoh(X) is
left- and right-complete (i.e. Postnikov’s and Whitehead’s towers converge) and the truncation functors commute
with filtered colimits.

5. For an affine group scheme G over a ring R, given a representation M (i.e. a comodule over the corresponding
Hopf algebra R[G]) we denote by RI'(G, M) € D(Mod 4) the rational cohomology complex of G, namely the derived
functor of G-invariants M — M. By flat descent, for G flat over R, the abelian category Rep(G) := Rep (Vect )"
is identified with QCoh(BG)" and RI'(G, M) ~ RT'(BG, M).

1 Degeneration of the Hodge-to-de Rham spectral sequence

1.1 Hodge and de Rham cohomology

In this section we set up the Hodge-to-de Rham spectral sequence for n-Artin stacks and prove some technical
results needed in subsequent sections of the paper. For the rest of this section fix a base ring R. We refer the reader
to [TV08] for an introduction to the theory of Artin stacks and cotangent complexes.

Definition 1.1.1 (Hodge cohomology). Let X be an Artin stack over R. Define Hodge cohomology RT'u(X/R) of
X to be
RTu(X/R) = @ RT (X, A’Lyx/r[-p]),
p>0
where Ly /g is the cotangent complex of X over R and APy g is its p-th derived exterior power (see [[1171, Chapitre
1.4] or [BM19, Section 3]). For a fixed n € Z we will also denote

Hy(X/R) == H"RTu(X/R) ~ @ HP*(X/R), where H"%(X/R):=H(X,A\"LyR).
pt+g=n
Notation 1.1.2. Let S := Spec A be an affine smooth R-scheme. The algebraic de Rham complex of S over R

d Q d
—— A/R—>"'

A—>-QA/R

will be denoted by Q% 4r- We define RUar(S/R) = Qg 4g € D(Modg).

Definition 1.1.3 (de Rham cohomology). Let X be a smooth quasi-compact quasi-separated Artin stack over R.
Define the (Hodge-completed) de Rham cohomology RTUqr(X/R) of X to be

RTan(X/R) = Alén RT4r(S/R),

where Aff%ré is the full subcategory of stacks over X consisting of affine R-schemes that are smooth over X. We
will also denote H" RT'qr (X /R) by H]z (X/R).
In fact the Hodge cohomology complex admits a description similar to our definition of the de Rham cohomology:

Proposition 1.1.4. For any p € Z>o the natural map

RI'(X, APL — RI(S, APLL 2
( X/R) SGA%%,OP ( S/R) (2)

is an equivalence.

Proof. By Proposition 1.1.5 below the left hand side satisfies smooth descent. It follows that both sides of (2)
satisfy smooth descent. Since n-Artin stacks are by definition iterated smooth quotients of schemes, by induction
onn We reduce to the case when X is a smooth affine scheme, where the assertion of the proposition is true, since
Aff5 /x has a final object given by X. O

Proposition 1.1.5 (Flat descent for the cotangent complex). Let p: U — X be a surjective quasi-compact quasi-
separated flat morphism between Artin stacks and denote by pe: Us — X the corresponding Cech nerve. Then the
natural map

NLx/p — Tot pas(A"Lay, /r)

s an equivalence for each d € Z>o.



Proof. The proof is essentially due to Bhatt (see [Bhal2a, Corollary 2.7, Remark 2.8] or [BMS19, Section 3]). For
every n € Z>o we have a co-fiber sequence

pplx/r —La,/r —Laq, /x

in QCoh(U,). It follows that /\dLrun/R admits a d-step filtration with associated graded pieces /\ip;;Lx/R ®
AL, /x. Note that by flat descent for QCoh (see e.g. [Lurl8, Corollary D.6.3.4])

Tot pes gr° (/\dLu./R) = Tot pespi A? Lx/r =~ /\de/R.
Hence it is enough to prove that
Tot pes gr' (A“Lay, /1) = Tot peu(ps A" Ly g @ A 'Ly, jx) = 0
for ¢ > 0. Moreover, since the map p is faithfully flat, it is enough to show that the pullback
p* Tot pex gr’ (ALat, /1) = 1" Tot(A'Li/r ® pes A% Lay, /x)

of the totalization above is null-homotopic.

Note that by the qcgs assumption p*pn. = gnspr;,, where go: Ue X x U — U is the pullback of the Cech nerve
De: Us — X on U along p and pr,: U, xx U — U, are natural projections. It follows by base change for the
relative cotangent complex that

d—i d—i
P Pex N ILd‘ll./)( > ox N ILd‘ll.><)(‘ll/‘ll-

But since U, xx U — U is a split simplicial object, the same holds for
P (AN'Lx/r @ pex A" Loy, jx) = p*(A'Lx/R) ® qox A" Ly vt/ s

since the class of split simplicial objects is stable under any functor. It follows Tot p*pes gr’ (/\deu. / R) ~ (. Finally,
since by flat descent QCoh(X) is comonadic over QCoh(U), the pullback functor p* preserves totalizations of p*-split
cosimplicial objects, hence

p* Tot pes g1’ (/\dLu./R) ~ Tot p*Pes gr* (/\dea./R) ~0. O
Corollary 1.1.6. Let X be a smooth quasi-compact quasi-separated Artin stack over R. Then
1. There exists a complete (decreasing) Hodge filtration F'®* RTqr (X /R) such that gr F*RTqr(X/R) ~ RT'u(X/R).
2. There exists a strongly convergent spectral sequence B! = HI(X, \PLy/p) = HYEY(X/R).
Proof. Note that since X is smooth, all schemes S € Aff7y are smooth. Since the Hodge filtration on RI'qr(S/R)

is complete, the same holds for RT4g(X/R), since complete filtered complexes are closed under limits. Moreover,
by construction we have

gr F°RT4r(X/R)~ lim grF*RT4r(S/R)~ lim RI'y(S/R)~ RT'u(X/R),
SEAFTP SEAFoP

where the last equivalence follows from the previous proposition. This filtration induces a spectral sequence with
ED? as stated. To prove it is strongly convergent, note that by smoothness of X, for each n the induced filtration
on Hi (X/R) is finite. O

The following simple observation will be quite useful in what follows:

Remark 1.1.7. Let X be a smooth Artin stack over R. Then the cotangent complex Ly, z (and its exte-
rior powers) is concentrated in nonnegative cohomological degrees (with respect to the natural ¢-structure on
QCoh(X)). Since the global section functor RT is left t-exact, it follows that the natural map RT4r(X/R) —
RT4r(X/R)/FPRT4r(X/R) induces an isomorphism on H<P.

Finally, we will need the following

Proposition 1.1.8 (Base-change). Let X be a smooth quasi-compact quasi-separated Artin stack over R and let R —
R’ be a ring homomorphism of finite Tor-amplitude. Then for X' := X®g R’ the natural map RTqr(X/R)Qr R —
RU4r(X'/R') is a filtered equivalence. In particular, for each p € Z>q the natural map RT'(X,A\PLy,r) ®r R’ —
RU(X', NPLLx: /) is an equivalence.



Proof. By the smoothness assumption on X the fiber product X ® g R’ coincides with the derived fiber product. It
follows by [TV08, Lemma 1.4.1.16 (2)] that Lx,g®@r R’ =~ Lx/,g. By the base change for QCoh (see [GR17, Chapter
3., Proposition 2.2.2 (b)]) we deduce that the natural map RI'y(X/R) ® g R’ — RT'u(X’/R’) is an equivalence.

Next, note that the condition on the morphism R — R’ guarantees that the natural map RTqr(X/R) ®r R —
<li;n}g((RI‘dR()C/R)/FYDRFdR()C/R)) ®gr R’) is an equivalence. Since both sides are complete with respect to the
Hodge filtration, and, since by the above the induced map on the associated graded pieces

RTH(X/R) ®r R ~ gr F*RT4r(X/R) ®g R’ — gr F*RTqr(X'/R') ~ RT'u(X'/R')

is an equivalence, we deduce that the base-change map for de Rham cohomology is an equivalence as well. o

1.2 Hodge-proper stacks

For the rest of this subsection fix a Noetherian base ring R. In this section we will introduce a reasonable (at least
from the point of view of Hodge-to-de Rham degeneration) generalization of the notion of properness for stacks.

Definition 1.2.1. A complex of R-modules M is called bounded below coherent® if it is cohomologically bounded
below and for any i € Z the cohomology module H!(M) is finitely generated over R. We will denote the full
subcategory of D(Modg) consisting of bounded below coherent R-modules by Coh™ (R).

Remark 1.2.2. We use the term nearly coherent for objects of Coh™(R) to distinguish them from coherent
complexes, which in our convention are necessarily bounded (both from above and below).

We have the following basic properties of Coh™ (R):
Proposition 1.2.3. Let R be a Noetherian ring. Then:

1. The category Coh™(R) is closed under finite (co-)limits and retracts. In particular Coh™(R) is a stable
subcategory of D(Modg).

2. For each n € 7 the category Coh="(R) := Coh™ (R) N D(Modg)=" is closed under totalizations.

Proof. 1. This follows from the fact that for a Noetherian R the abelian category of finitely generated R-modules
is closed under (co)kernels, extensions and direct summands.

2. Let M*® be a co-simplicial object of Cth"(R). By shifting if necessary, we can assume that n = 0. Since
coconnective modules are closed under limits, Tot(M*) € D(Modg)=?; hence it is enough to prove that H® Tot(M*)
is finitely generated R-module for all i € Z>g. Since all M® are coconnective, the natural map Tot(M®) —
Tot=*(M?*) induces an isomorphism on H=F. But since Tot=* is a finite limit, each H? Tot=*(M*) is a finitely
generated R-module. O

Remark 1.2.4. Recall that the category of perfect R-modules D(Modg)P™ is defined as the smallest full subcat-
egory of D(Modpg) containing R and closed under finite (co-)limits and direct summands. Since R € Coh™(R) it
follows from Proposition 1.2.3, that D(Modg)P*™ C Coh™ (R).

After this technical digression we are ready to introduce the notion of a Hodge-proper stack:

Definition 1.2.5 (Hodge-proper stacks). A smooth quasi-compact quasi-separated Artin stack X over R is called
Hodge-proper if for every p € Z>o the complex RI'(X, APLLx,g) is bounded below coherent.

For us the most important implication of Hodge-properness is that the de Rham cohomology is bounded below
coherent:

Proposition 1.2.6. Let X be a smooth Hodge-proper Artin stack over R. Then RTqr(X/R) is bounded below
coherent complex of R-modules.

Proof. By smoothness RI'qr(X/R) is bounded below by 0, hence it is enough to prove that for each n € Zxg
the cohomology module HJ, (X/R) is finitely generated over R. By Remark 1.1.7 the natural map RTqr(X/R) —
RU4r(X/R)/F" 1 RT4r(X/R) induces an isomorphism on H<". We conclude, since R[4r (X/R)/F" ' RTqr(X/R),
being a finite extension of bounded below coherent complexes RI'(X, A'Ly /rl—1]), 0 < i < n, is bounded below
coherent. O

4In the previous version of this text we called such complexes almost coherent. We decided to change the notation to avoid possible
clashes with almost mathematics.
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1.3 Hodge-to-de Rham degeneration in positive characteristic

Let 9 be a Hodge-proper Artin stack over a perfect field &k of characteristic p admitting a smooth lift to the ring
of the second Witt vectors Wa(k). In this section we will prove that the Hodge-to-de Rham spectral sequence
HI(Y Ny i) = H (9 /k) degenerates at the first page for i + j < p. Our strategy is to interpret both
Hodge and de Rham cohomology in terms of crystalline cohomology and then, following Fontaine-Messing [FM87]
(and Bhatt-Morrow-Scholze [BMS19)]), use (quasi-)syntomic descent for the crystalline cohomology to get a very

functorial form of the Deligne-Illusie splitting.

We denote by o: k Linciiy the absolute Frobenius morphism of k. We denote by the same letter o the induced

automorphisms W (k) — W (k) and W,, (k) — W, (k) for any n € N. For a W (k)-algebra (e.g. a W,(k)-algebra
for some s) A we denote by A = A ®w (k),c W (k) its Frobenius twist and by AED = A w (k),o—1 W (k) its
Frobenius untwist. For each n € Z we have the relative Frobenius map ¢ 4: A — A(»=1),

Definition 1.3.1 ([BMS19, Definition 4.10]). A morphism A — B of W, (k)-algebras is called quasisyntomic if it
is flat and Lp,4 has cohomological Tor amplitude [~1,0]. A morphism A — B is a quasisyntomic cover if it is
quasisyntomic and faithfully flat. We will denote by QSyn,, the site consisting of quasisyntomic W, (k)-algebras
with the topology generated by quasisyntomic covers.

Remark 1.3.2. It probably worth clarifying how our definition of quasisyntomic site compares to the one in
[BMS19, Section 4]. Namely, QSyn,, is just the small quasisyntomic site of W, (k) in the terminology of [BMS19].
Indeed since all algebras in QSyn,, are killed by p™, the notions of p-complete (faithful) flatness and quasisyntomicity
coincide with the classical ones. The rest of the properties can be easily seen to agree as well.

The notion of a quasisyntomic morphism is a generalization of more classical notion of a syntomic morphism:
a flat map A — B that is locally a complete intersection in a smooth one. Syntomic morphisms include smooth
morphisms, and, in the case A is a regular k-algebra, the relative Frobenius morphism ¢: A() — A. The advantage
of quasisyntomic morphisms is that they also include some natural non-finite-type maps, most importantly the direct
limit perfection A — Apers = 1igl<p,nzoz4(_n) and its tensor powers A — Aperf®4...®4 Aperf for a smooth k-algebra

A. Using standard properties of the cotangent complex it is not hard to show that quasisyntomic morphisms are
stable under composition and pushouts along arbitrary morphisms of algebras (and same for quasisyntomic covers).
We refer to Section 4 of [BMS19] for more details.

Recall that an IF,-algebra S is called semiperfect if ¢: S — S is surjective.
Definition 1.3.3. A k-algebra S is called quasireqular semiperfect if S is quasisyntomic and the relative Frobenius
homomorphism ¢: S — S is surjective. We call a W, (k)-algebra S quasireqular semiperfectoid if it is flat

over W, (k) and S /p is quasiregular semiperfect. We will denote by QRSPerf,, the site consisting of quasiregular
semiperfectoid W), (k)-algebras with the topology generated by quasisyntomic covers.

Remark 1.3.4. Note that if n > 1 our definition of a quasiregular semiperfectoid algebra over W, (k) does not
agree with [BMS19, Definition 4.10] since W, (k) itself is not semiperfectoid. Nevertheless, since we assume that all
our objects are flat over W, (k), all the necessary arguments go through essentially without any change by reducing
modulo p.

For any k-algebra S, HY(Lg/) is identified with the Kéhler differentials Q}g/k. Since d(zP) = 0, we get that
HO(Lg /i) = 0 for S semiperfect, and that L, is concentrated in a single cohomological degree —1 for S quasiregular

semiperfect. The same is true for Lg W (k) for a quasiregular semiperfectoid W, (k)-algebra S. Moreover, any

flat map §1 — §2 between quasiregular semiperfectoids over W, (k) is quasisyntomic. This gives a map of sites
QRSPerf,, — QSyn,,.

In fact quasiregular semiperfectoid algebras form a basis of topology in QSyn,,. This leads to an equivalence
between the corresponding categories of sheaves:

Proposition 1.3.5. The restriction along the natural embedding u: QRSPerf, — QSyn,, induces an equivalence

Shv(QSyn,, €) '~ Shv(QRSPerf,, €)

of the categories of sheaves with values in any presentable co-category C.
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Proof. Following the proof of [BMS19, Proposition 4.31] it is enough to show, that first, any quasisyntomic algebra
A has a quasisyntomic cover A — S by a semiperfectoid, and second, that all terms S®4* in the corresponding
Cech object are automatically semiperfectoid. The cover S can be constructed as follows: we take the surjection
Wa(k)[Zalaca — A from the free polynomial algebra on A and put S = A Qw, (k)[x.] Wn(k:)[x(ll/pw]. The map

Wi (k)[za] = Wi (k)[za/"" ] is quasisyntomic and faithfully flat, thus so is A — S. Also W, (k)[zs/" | = S is a

surjection, k[xtll/pw] is perfect, thus S/p is semiperfect. We get that S € QRSPerf,,. The statement about S®4°
then follows from the analogous one modulo p (see e.g. [BMS19, Lemma 4.30]). O

Remark 1.3.6. For a sheaf 7 on QRSPerf,, we will denote its image under the inverse equivalence in Proposi-
tion 1.3.5 by F as well.

Example 1.3.7. Let B be a smooth algebra over W,, (k). By smoothness, Zariski-locally on Spec B, there ex-
ists an étale map P — B from the polynomial algebra P = P; := W, (k)[z1,...,2q] for some d. Let Pyeyr =
W, (k)[:z:}/poo, . ,:clli/pw] and let Bperr = B ®p Pyer; it is a quasiregular semiperfectoid W, (k)-algebra® and the
natural map B — Bperf is & quasisyntomic cover. Moreover all terms (Bpert @B ... @B chrf)n in the corresponding
Cech object are also quasiregular semiperfectoids. Given any sheaf 7 on QRSPerf,, its value on B € QSyn,, (via
Proposition 1.3.5) can be computed as “the unfolding”:

RFQSynn (B; ‘/—") :_) Tot ( ]:(chrf) — ]:(chrf ®B chrf) — ]:(chrf @B chrf KB chrf) —s ) .

For a ring R let Polyz C CAlgp, denote the full subcategory of finitely generated polynomial R-algebras. Recall
that one of the ways to define the cotangent complex IL 4, for an R-algebra A is to consider the left Kan extension
of the functor B — Q}B /R from the category of polynomial R-algebras, namely

La/p~ colim QL ..
A/R Pg?y;%lA B/R

One can extend the de Rham and crystalline cohomology functors in a similar way:
Construction 1.3.8. Let k be a perfect field.

e The derived de Rham cohomology functor
RF]LdR(—/Wn(k)) : CAlan (k)/ — D(MOde(k))
is defined as the left Kan extension of the functor B — Q% v, 1y 4g on Polyy, ).

e The derived crystalline cohomology functor
RlLexys(—/W(k)): CAlgy, (r), — D(Modyy ()

is defined as the (derived) p-adic completion of the left Kan extension of the functor B — Rl cys((B/p)/W (k))
on Polyy, .

Remark 1.3.9. For a more thorough treatment of the derived de Rham and crystalline cohomology functors we
refer the reader to [1172] and [Bhal2a] where these notions were originally considered and applied.

Remark 1.3.10. For any W, (k)-algebra B the complexes RT'Lcrys(B/W (k)) @w (k) Wn(k) and RT'Lar(B/W,(k))
are naturally equivalent. Indeed, by construction both functors commute with geometric realizations, hence it is
enough to prove the statement for B being a smooth W, (k)-algebra. In this case this is a basic result in the
crystalline cohomology theory, see e.g. [BOT8, Corollary 7.4].

Similarly, we can extend the functor B — TSmQ]'B/Wn(k) ar to get a filtered object (RT'Lar(—/Wn(k)), Fy;)

(Hodge filtration). If n = 1 the functor B — Qg;nwn(k),dR extends to (RILar(—/k), Fil°°™) (conjugate filtration).
The conjugate filtration on the derived de Rham cohomology is exhaustive since it is exhaustive on de Rham
cohomology of polynomial algebras and since colimits commute. For RT'Lqr(—/k) the Cartier isomorphism identifies
the corresponding associated graded with P, - A"Lga) ,[—7]. Next lemma shows that the derived de Rham

cohomology on the quasi-syntomic site satisfies flat descent:

5In fact it is even quasismooth perfectoid, since Lg,w, (k) = 0 and the relative Frobenius for Bpert/p is an isomorphism.
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Lemma 1.3.11. Let A — B be a faithfully flat homomorphism of k-algebras and let B® be the corresponding Cech
co-simplicial object. Assume that Ly, and g s have cohomological Tor-amplitude [—1;0]. Then the natural map

RTLar(A/k) — Tot RT'Lqr (B®/k)
is an equivalence.

Proof. Note that since A — B is faithfully flat the base change for cotangent complex and transitivity triangles
imply that Lp:/; has Tor-amplitude in degrees [—1;0] for all i > 0, where B’ is the i-th term in the corresponding
cosimplicial Cech object. Consequently, A"Lgi) /k[—n] is 0-coconnective for any n and i. It then follows by flat
descent for cotangent complex (see [BMS19, Theorem 3.1]) that the natural map

F" -J{IEAH{LA/kﬂ —+’Totl{FLdR(13'/k)

conj
is m-coconnective and hence induces an equivalence after passing to the colimit by n on the left hand side. O

Corollary 1.3.12. For every n > 1 the presheaves on QSyn,,
A — RULar(A/ W, (K)) and A RlLeys((A/p)/W(K))
are sheaves.

Proof. By Remark 1.3.10 since W,, (k) is of finite Tor-amplitude over W (k) it is enough to prove the assertion for
RTLerys((—/p)/W (K)). But since RI'Lerys((—/p)/W (k)) is derived p-complete by construction and since k is a perfect
W (k)-module (and thus —®yy () k commutes with limits) it is enough to prove that RI'Lcrys((—/p)/W (k) @w 1)k =~
RT'1L4r(—/k) is a sheaf. This is a content of the previous lemma. O

Remark 1.3.13. Note that if R were a Q-algebra, the derived de Rham cohomology would be just equal to R
[Bhal2b, Remark 2.6]. Indeed, by the Al-invariance of the de Rham cohomology in characteristic 0, the de Rham
cohomology functor restricted to Poly  is constant with value R, hence so is its left Kan extension. In particular, the
derived de Rham cohomology of a smooth R-algebra is usually not equivalent to the classical de Rham cohomology.
To improve the situation one usually works with the Hodge-completed version of the derived de Rham cohomology
instead.

However, in positive characteristic the non-completed derived de Rham cohomology is much better behaved. In

particular it coincides with the classical de Rham cohomology for smooth W, (k)-algebras. Here, the key observation,
which is due to Bhatt (see [Bhal2b]), is to use the conjugate filtration. Namely, to show that the natural morphism
RT'14r(B) — RT4r(B) is an equivalence for a smooth W, (k)-algebra B, it is enough to show this modulo p, and
then (since both sides are complete), that the induced map on the associated graded of the conjugate filtration is
an equivalence. For B smooth, this reduces to natural isomorphisms A’L B /i = Q;,il)/k'
Remark 1.3.14. Since the absolute Frobenius o: k — k is an automorphism, the cotangent complex Ly g, (and
all its wedge powers) vanishes. It follows that RTgr(k/F,) ~ k. Given any k-algebra B we have a natural
morphism of E.-algebras RT'qr (k/F,) — RTqr(B/F;). This endows R qr(B/F,) with a natural k-linear structure.
Similarly, for any k-algebra A the complex RI'Lcrys(A/Zp) has a natural W(k)-linear structure. Moreover, the
natural morphism

RF]LCWS(B/ZP) - RFILcryS(B/W(k)) (3)

is W(k)-linear. We claim that (3) is an equivalence. Since both sides are p-adically complete it is enough to show
that it is an equivalence mod p, where we get an analogous map, but for the derived de Rham cohomology of the
reduction B/p. On the associated graded of the conjugate filtration Filionj the induced map is an equivalence, since
in the transitivity triangle

Ly/r, ®x B — Lp/r, = Lp/i

the term Lj r, is equivalent to 0. Thus (3) is an equivalence.

Recall that the cotangent complex Lz W (k) of S € QRSPerf,, has cohomological Tor-amplitude consentrated

in —1, thus €, N'Lgw, i) [—7] is supported in cohomological degree 0. The same holds for RT'Lqr(S/W,,(k)); in
other words, it is a classical commutative ring. It has a description in terms of one of the Fontaine’s period rings

/4crys:
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Construction 1.3.15. Let S be a quasiregular semiperfect k-algebra and let S” be the inverse limit perfection
SP = lij{l%nZO S(") We have a natural map S” — S which is surjective. The ring Acrys(S) is defined as the p-adic

completion of the divided power envelope of the kernel of the natural composite surjection 6; g: W(Sb) - 5" S
(where the divided power structure agrees with the one on the ideal (p) C W (k)). Note that Agys(S)/p is identified
with the PD-completion DfD(Sb) along the ideal I C S” defined as the kernel of the natural map S° — S.
Theorem 8.14(3) of [BMS19] (together with Remark 1.3.14) identifies RT'Lcrys(S/W (k)) with Acys(S). The
ring Acrys(S) comes with a natural ring morphism ¢: Acys(S )(1) — Aqys(S) induced by the relative Frobenius
o: S — S. Tt is identified with the natural Frobenius ¢: RT'Lerys(S/W (k)M — RTpLcrys(S/W(k)) on the
crystalline cohomology. For each n we define a presheaf of rings Ay on QRSPerf,, by sending Se QRSPerf,, to
Acrys(g /p). By the above identification it is in fact a sheaf. Note that by the universal property of the PD-envelope

there is a natural map® 6 & : Acrys(S/p) = S which factors through Acys(S/p)/p™.
The following two filtrations on Ays/p correspond to the Hodge and the conjugate filtrations:

Definition 1.3.16. Let S be a quasiregular semiperfect k-algebra and let I be the ideal of the natural projection
S* — S. The descending Hodge filtration on Acrys(S)/p =~ DFP(S) is defined as the filtration by the divided
powers of I: Acrys(S)/p ~ I° > T =7 5 12 5 1Bl 5 ... This filtration is functorial in S and thus defines
a filtration by presheaves I > Il = T 5 112l 5 1) 5 ... on the sheaf Ays/(p) on QRSPerf,, for any n. Via
Proposition 8.12 of [BMS19] it is identified with the Hodge filtration on RT'rar(S/k) =~ Acys(S)/p and thus is in
fact a filtration by sheaves.

Definition 1.3.17. The ascending conjugate filtration Fil<®™ on Acyys(S)/p ~ DISD,,D (I) is defined by taking F° to

be the S°-submodule generated by the elements of the form s[lll]s[2l2] ... sl with s; € T and Yol < (r+1)p. This

construction is functorial in S and determines an (ascending) filtration Fil™ on the sheaf Acrys/p on QRSPerf,,
for any n. By Proposition 8.12 of [BMS19] it is identified with the conjugate filtration on RI'Lqr(S/k) and thus is
also a filtration by sheaves. Note that both filtrations are multiplicative and the conjugate filtration is exhaustive.

The following is an analogue of the inverse Cartier isomorphism (see Theorem 0.1.1) between (Acpys/p, 1) and
(Acrys/ps Filionj ):

Proposition 1.3.18 ([BMS19], Propositions 8.11 and 8.12). Let S be a semiperfect k-algebra. There is a well-
defined surjective homomorphism of W (k)-algebras k.: T5(I/T*)) — gri®™ (Aeys(S)/p)". If S is quasiregular, .
is an isomorphism.

Proof. The map is defined as follows: for s; € T

i k;)!
o T (250) ..o
i=1 v

We have (s152)PH = pl(s5)PIslPM = 0 and (s152)1) € FiIS for any I < p. This shows that for s € 12, sl € Filg™

kil ok

for all I and so the map is well-defined. Elements {s m]}k1+...km<r+1 in fact generate Fil®® over S

Since the integer i, (;f,jkk):) is a p-adic unit the map k. is surjective. The fact that x. is an isomorphism for S

quasiregular semiperfect is a part of Proposition 8.12 of [BMS19]. O

conj

Remark 1.3.19. In particular we get an isomorphism r.: T5(I/12)) =5 eri® (Acys/p) of sheaves of algebras on
QRSPerf,,.

Now we descend everything back to the quasisyntomic site QSyn,,. We record what the sheaves defined above
give when computed on a smooth W, (k)-algebra B.

Proposition 1.3.20. Let B be a smooth Wy, (k)-algebra considered as an object of QSyn,,. Then:

1. For any 0 < s < n there is a natural equivalence of Es-algebras RUqsyn, (B, Acrys /D) ~ QZB/pS)/WS(k) dR-

6Here we endow (p) C S with the standard PD-structure, given by pl*l := P k!
"Where I'* denotes the free commutative divided power algebra.
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2. For any r € Lo there is a natural equivalence RTqsyn (B, 1) ~ Q(ZBT/p)/kydR, where lei’;p,dR/k is the r-th

term of the Hodge filtration.

In particular, RTgsyn (B,]I[T]/H[T+1]) = QfB/p)/k[_T]'

8. For any r € Zxq there is a natural equivalence RI'qsyn (B, Filim‘j) ~ TSTQZB/p)/k,dR'
4. The natural map Tg(I/T?) — 17 /1 1 given by maultiplication induces an equivalence
RTqsyn, (B, T (I/1%)) ~ RTqsyn, (B, 101 /1071)

for any r > 0.

5. The isomorphism fi.: T%(I1/12)0) 25 grS® (Aoye/p) from Proposition 1.3.18 induces the inverse Cartier iso-
morphism

N T 071 N T °
D Usw e — DH (Q<B/p>/kvdR)
r=0 r=0

via the above equivalences.

Proof. Parts 1,2, 3 follow from Proposition 8.12 and Theorem 8.14(3) of [BMS19] and flat descent for the derived
crystalline cohomology (using Remarks 1.3.13, 1.3.10 and 1.3.14).

4. We use the notations of Example 1.3.7. We have
RFQSynn (Bv ]:) = Tot ( ]:(chrf) — ]:(chrf ®B chrf) —— ]'—(chrf KRB chrf ®B chrf) :>>; s )

for any quasisyntomic sheaf F. Moreover all terms (Bpert @B - . . @B Bperf)n are in fact regular semiperfect, meaning
I C 5" is generated by a regular sequence. Thus for them I'y(I/1%) = 11" /II"+1 and so RTqgyn, (B, T%(I/1%)) ~
RTsyn, (B, 107 /1r+11),

5. Note that the map depends only on the reduction of B modulo p, thus it is enough to consider the case
B € QSyn, is of characteristic p. The inverse Cartier isomorphism C'~! is uniquely defined by the property that
it is multiplicative, C~1(f) = f? and C~!(df) = fP~1df for any f € B. The map k. is multiplicative, xq is by

definition given by Frobenius, so it remains to check the third assertion. By functoriality (considering the map
x> f

klx] —= B) it is enough to check this in the case B = k[z] and f = 2. While originally we had the proof using
the relation between the Cartier isomorphism and the Bockstein operator, we will present a different proof that was
kindly suggested to us by one of the referees.

One can use the explicit formula for the crystalline cohomology via the Cech-Alexander complex. Namely, for

any smooth k-algebra B the homotopy groups of the cosimplicial algebra C& . (B) = DKe]r (Bo% %B)B‘g; compute

Ker(B®h 1>B)B®; is the PD-envelope
corresponding to its kernel. By [BdJ11, The proof of Theorem 2.12] the totalization of the bicomplex

the de Rham cohomology of B; here B®% % B is the multiplication map and D

B QL 02,
d¢ech
d
D(2) —— Q}:)(z) Q%@)
D@3) — Q}:)(s) Q%@)

with D(7) := DKcr(B@’;cl)B)B@i is quasiisomorphic to both the first row and column (via the embeddings of the
latter) this way establishing the comparison quasiisomorphism of C¢, ((B) and Q% ;5. For B = k[z] we have

D(2) = Dy, —zp k21, 22], dgop (2P~ da) = 22V day — 2% ' dao and we leave it to the reader to check that this also
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equals to dgr(a) with a := (p — 1)!((z1 — 22)P + 3707 ( 1)l p e M) € D(2). Thus under this comparison the
class [zP~'dz] € Hlg (k[z]) goes to [a] in H'(CS,, (B )) Note also that by an analogous but simpler computation

crys

|dx] € Hig (kz]) goes to [z1 — z2] € H(Cys(B)). .

As we saw in part 4, the cosimplicial algebra (Acpys/p)(BEES) ~ D o, )Bfm appearing as the Cech

perf Ker(Bok,— BEE
object associated to the quasisyntomic cover B — Bpers also computes the de Rham cohomology of B. We have
a natural map of cosimplicial algebras C2,(B) — (Acrys/p)(B}?j;) induced termwise by B®k — chrt The
definitions (1.3.16 and 1.3.17) of the conjugate and Hodge filtrations make sense for any PD-envelope and so extend
to the cosimplicial algebra C?, (B) as well. The map « (see the proof of 1.3.18) extends naturally as well, the map
Corys(B) = (Acrys/p) (B?j;) preserves the filtrations, commutes with x and in fact is a filtered quasi-isomorphism?®.
Returning to the case B = k[z] we see that, first, dz € QA1 ~ H{gyu(B,1/T?) corresponds to x1 — 2 € D(2) C
2 .
Kcr(ij’ﬁfanjBf)B?&f under the comparison, and, second, that the class [r1(dz)] in H{g,, (B, gri®") is given by

the class of the element (p —1)!(x; —z2)P! € D(2) ¢ D

lconj

Bfm modulo Fi . It remains to note that

T4 ®B
]KCI‘(Bperf‘> perf)

this element differs from a by Y7 '(~1) [1p 1=l [ | which lies in Filg™. O

Next we prove the following enhancement of the classical Deligne-Illusie splitting:

Theorem 1.3.21. Let A 7?/’1,2(,6) be the category of smooth affine schemes over Wo(k). Then there is a natural
k-linear equivalence of functors

p—1 p—1
@ Qz_(l) . B — @ Q’EB(I)/p)/k [—Z] and T§p719:7dR: B — TS;DilQEB/p)/kﬁdR
1=0 =0

from Aﬁjrélvo?k) to D(Mody,) which induces the Cartier isomorphism on the level of the individual cohomology func-
tors.

By Proposition 1.3.5 and Proposition 1.3.20 to deduce the statement of the theorem it is enough to prove the
following:

Proposition 1.3.22. There is a natural isomorphism f: @p L (]I/]I2) o~ Fil;(f]ij of sheaves of abelian groups on
QRSPerf, such that it agrees with k<p—1: F<p Y/ = gr?;” 1(Acrys/p) after passing to the associated graded.

Proof. Given S e QRSPerf, we denote by S the reduction of S modulo p. As before we denote the kernel of
the natural map S° — S by I. Note that T'%(I/I?) ~ Sym%(I/I?) for i < p — 1 and so, extending the map by
~ ~1con_]"

multiplicativity, it is enough to construct a splitting f: S° JI & I/I? = Fil§ Recall that we have a natural
endomorphism ¢: Agrys(S) = Acrys(S). We consider the Nygaard filtration (see Definition 8.9 of [BMS19])

NZiAcrys(S) = {2 € Acrys(S) | p(z) € piACYYS(S)}'

In fact we will be interested only in the first two of its associated graded terms. We will construct f by using the
divided Frobenii, defined as follows. By Theorem 8.15(1) of [BMS19] A¢yys(S) is p-torsion free and so for each i > 0
one has a well defined map

i = /P N'Acrys(5) = Aerys(S)/p
from the i-th graded piece Nt Acpys(S) = NZ1Ays(S) /N2 Ay (S) of the Nygaard filtration.

It is clear that p-Acpys(S) C N2 Agys(S); moreover, by Theorem 8.14(4) of [BMS19], N2 Acrys(S) mod p-Acrys
is given by I C Aeys(S)/p. Thus N0 = NZ9/NZ1 ~ §°/T and ¢y induces an isomorphism S°/I = Filg™
(since Ko = ¢, this follows from Proposition 1.3.18). We then also have a map ¢1: N Acrys(S) — Acrys(S)/p,
which, by Theorem 8.14(2) of [BMS19], is an isomorphism onto Fil®™. Multiplication by p induces a natural map
NOAys(S) = N1 Acrys(S) which after composing with ¢ is identified with the embedding Filgonj - Filionj. In fact,

8Indeed, both complexes can be considered as Cech-Alexander complexes for a slightly unusual “quasisyntomic” version of the char p

crystalline site: namely, we consider triples (U, T, d) with U — Spec B a quasisyntomic morphism and T being a char p PD-thickening of
U. The complexes C¢,,(B) and (Acrys/p)( chlff') can be interpreted as the Cech-Alexander complexes corresponding to two different
covers, namely Spec B — x and Spec Bperf — *. The map above is then induced by the map of coverings Spec By — Spec B and

being a map Cech-Alexander complexes (for the structure sheaf) is automatically a quasiisomorphism. From this interpretation it is
also clear that it respects the Hodge and conjugate filtrations, as well as the map k.

16



by flatness of Acrys(S), we have N2 Ay (S) N p - Acys(S) = NZ0A,44(S) and so FilgOnj (under the isomorphism
given by 1) is identified exactly with the subspace of those elements in N Apys(S) =~ Fil({onj that lift to elements
of NZ1Aqys(S) divisible by p.

We now use the lifting S of S to construct the splitting of Filior‘j. Recall that we have a map 927 31 Aerys(S)/ P2 -
S and let K = ker 0, - Since both S and Acrys(S)/p* are flat over Wa(k), we get that K is also flat over Wa(k)
and that K/pK ~ I:

00— K —— Auys(S)/p? —= S ——0

R

0——=1——Ayys(S)/p——= S5 ——=0.

The splitting is then given by applying ¢1 to K. Namely, since ¢(I) = 0 € Aqys(S)/p it follows that ¢(K) C
P Acrys(S)/p? and K C NZ1Aqys(S) mod p?Acrys(S). The natural projection from K to N1Acys(S) contains
p- K+ NZ2A0ys(S) mod p?Acyys(S) in its kernel. Since K/pK = I and the image of N'Z2A,ys modulo p is given by
I? (e.g. by Theorem 8.14(4) of [BMS19]), we get that 1 (applied to K) gives a well-defined map f: /1% — Fil{"™.
Moreover K N (p - Acrys(S)/p?) C p- K, since K is flat over Wa(k), and so the image of f does not intersect with
File™, . . |

It remains to check that the constructed f: I/1? — Fil{°™ coincides with 1 after the projection to Fil{*™ / Filg™™.
Given s € I 'let $=[s] +p- s € K C Acys/p? be a lifting of s to an element of K. Then

@ =¢(sh)+p-o(s) =@=Dp-[s]P +p-o(s') = f(s)= (=1 s +o(s).
By the discussion above (see also Theorem 8.14(2) in [BMS19]) o(s') € Fil5™ and f(s) = (p — 1)! - s} modulo
Fileo™,
Since the above splitting is clearly functorial in S we get the statement of the proposition. O

As a corollary we deduce

Theorem 1.3.23. Let ) be a smooth Artin stack over a perfect field k of characteristic p admitting a smooth lift
to the ring of the second Witt vectors Wa(k). Then there is a canonical equivalence

p—1
RT(Y,7<P71Q8 1) ~ RT (9/<1>,@ ALy M—z’]) _

=0
In particular for n < p—1 we have Hiz (9 /k) ~ HE(Y M /).

Proof. Let m: Stk%{};(tlf)m — Sth'Art’Sm be the reduction functor, 5’ — 9~’®W2(k) k. By Theorem 1.3.21 it is enough

to prove that the natural map (existing by the universal property of the right Kan extensions)

erR(—/kJ) oM — Rani2 (RFdR(—/k}) O | Affsm ) (4)

/Wa (k)

where i denotes the inclusion functor Aff5; < Stk ig an equivalence. Since both sides of (4) satisfy
/W2 (k) /Wa (k)

smooth descent, by induction on n we reduce the statement to the case of smooth affine schemes over Ws(k), where
(4) is evidently an equivalence. O

Corollary 1.3.24. Let ) be a smooth Hodge-proper stack over a perfect field k of characteristic p admitting a
smooth, lift to Wa(k). Then the Hodge-to-de Rham spectral sequence H (Y, ALy /) = HF (Y /k) degenerates at
the first page for i + j < p.

Proof. This follows from Theorem 1.3.23 and the equality of dimensions dimy, Hj(9") = dimy H} (9 V). O
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1.4 Degeneration in characteristic zero
To reduce the statement in characteristic 0 to results of the previous section we introduce the following notion:

Definition 1.4.1. A smooth Hodge-proper Artin stack X over a field F' of characteristic 0 is called Hodge-properly
spreadable if there exists a Z-subalgebra R C F' and an Artin stack Xg over Spec R such that

e R is a localization of a smooth Z-algebra such that the image of Spec R in SpecZ is open.
e Xpr is smooth over R and X ®g F' := Xr Xgpec g Spec F' >~ X.
e Xr is Hodge-proper over R, namely RI'(Xg, APLx /) is bounded below coherent over R for any p > 0.

Remark 1.4.2. We note that any field F' of characteristic 0 is a union of all such subrings R C F (in fact even
a union of those that are smooth over Z). As we will see in Section 2.3.3 allowing some infinite localizations of
smooth algebras makes some difference when constructing examples. The condition on openness of the image is
added to guarantee that the diagram of all such R C F' is filtered and that for any such R the image of Spec R
in SpecZ is infinite. To see the first point: indeed, having Q1 = R1[S7}], Q2 = R2[S5 '], Q1,Q2 C F being
localizations of smooth Z-algebras Ry, R, for some subsets S; C R; as in Definition 1.4.1, for any finite localization
(Q1-Q2)[1/f] C F the image of Spec(R;1 - R2)[1/f] in SpecZ is still open. Then, picking f such that (Ry - R2)[1/f]
is again smooth over Z we get a subring (Q; - Q2)[1/f] C F that contains both @1, Q2 and fits in Definition 1.4.1.

We defer a thorough discussion of spreadability of stacks till the next section. We only stress here again, that
(unlike in the case of proper schemes) Hodge-proper spreadings do not exist in general (see Section 2.3.2).
Now we will deduce the promised Hodge-to-de Rham degeneration in characteristic 0:

Theorem 1.4.3. Let X be a smooth Hodge-properly spreadable Artin stack over a field F of characteristic zero.
Then the Hodge-to-de Rham spectral sequence for X degenerates at the first page. In particular for each n > 0 there
exists a (non-canonical) isomorphism

Hip(X/F)~ € HP(X/F).

ptg=n
Proof. For the rest of the proof fix n € Z>o. By Hodge-properness of X it is enough to prove
dimp Hig (X/F) = dimp Hi(X/F).

Let R and Xg be as in Definition 1.4.1. Note that by the assumption on Xr and Proposition 1.2.6 both
Hn(Xgr/R) and H{j(Xg/R) are finitely generated R-modules. Localizing R if necessary, we can assume that R is
connected of some Krull dimension d, and that the i-th cohomology groups H!y(Xg/R) and Hj;(Xgr/R) are free
R-modules of finite rank for i = n,n+1,...,n + d.” Note that for any point s: Speck — Spec R the map R — k
can be factored as a composition of a flat map R — R, (where R, is a local ring of s) and a map R — k of finite
Tor-amplitude (by regularity assumption k is perfect as an Rg-module). Hence by Proposition 1.1.8 we have

RT4r(X/k) ~ RTqr(Xr/R) ®r k  and  RTu(Xu/k) ~ RTu(Xg/R) ®r k,

where Xj; := Xgr ®g k. Since the n,(n+1),...,(n + d)-th cohomology groups are free as R-modules and since the
Tor-amplitude of k over R is bounded by d, we get Hiy (Xi/k) ~ Hiz(Xr/R) ®r k, so

dimp Hig(X/F) = rankg Hz (Xg/R) = dimy, Hiz (X /k)

and analogously for the Hodge cohomology. In particular, to prove that dimp Hjg (X/F) = dimp Hj(X/F) it is
enough to show that dimy H} (Xi/k) = dimy, H{j(Xy/k) for some point s: Speck — Spec R.

To do so, note that by the infiniteness of the image of Spec R — SpecZ and Lemma 1.4.4 below, there exists a
closed point s: Speck < Spec R of characteristic greater than n, such that the map R — k — kP factors through
the ring of the second Witt vectors Wy (kPef). Since the base change Xy, (gwerty = Xg X g Wa(kP™) is smooth and
Hodge-proper over W (kPe'f), by Theorem 1.3.23 we have

dimypert HQR(kaerf/kpcrf) = dimyperr Hft (xkperf/kpcrf)'

9Note that there does not necessarily exist a localization R[s~!] such that for all i the R[s~!]-modules Hiy(Xg/R)[s~!] (or
HE(Xr/R)[s™1]) are free, since there are infinitely many of them.
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Finally, by base change (applied to k — kP°f) we get
as desired. O

Lemma 1.4.4. Let R be a localization of a smooth Z-algebra. Then for any ﬁeld k of positive characteristic and a
map R — k the composite map R — k — kP! factors through the ring Wa(kPe™) of the second Witt vectors.

Proof. By assumption on R the cotangent complex Lg/z; ~ Qg/z[0] is concentrated in degree zero and is a locally

free (in particular flat) R-module. By the basic deformation theory the obstruction to lift a map R — kPt to
R — Wy(kPet) — kPerf Jies in Ext,lgpcrf (Lr/z ®r kpert kperf) - But the latter group vanishes, since by flatness of
LRz, the restriction Lg/z ®r kPerf is a complex of kP"f-vector spaces concentrated in degree 0. O

1.5 Equivariant Hodge decomposition

In this section we apply Theorem 1.4.3 to obtain a (non-canonical) Hodge decomposition for the equivariant singular
cohomology of an algebraic variety X with a G action, under the assumption that the corresponding quotient stack
[X/G] is Hodge-properly spreadable.

Let K be a homotopy type with an action of a topological group H (i.e. an (0o, 1)-functor Ko: BH — 8, where
8 denotes the (00, 1)-category of spaces, see Section 0.4). Recall that the H-equivariant cohomology Cj; (K, A) of
K with coefficients in a ring A are defined as

C;I(Ka A) = C*(KhHu A)7

where K g is the homotopy quotient of K by H (i.e. a colimit of the corresponding functor K,, or, more classically,
If X is a smooth algebraic variety over a field F' C C equipped with an action of an algebraic group G, then the
de Rham cohomology of [X/G] gives a model for the G(C)-equivariant singular cohomology of X (C):

Proposition 1.5.1. Let X and G be as above. Then there is a canonical equivalence
Cé(c)(X(C),C) = RI4r([X/G]/F) @F C.
Proof. By definition we have
L T—EOXGXxXTEGxX—=X \ ~ [X/G],

.. =£G(C) x G(C) x X(C) =X G(C) x X(C) —= X(C) ‘ ~ X(C)neo)-

Since the functor of cochains C*(—,C) sends colimits of homotopy types to limits of complexes and by smooth
descent for RT'qr(—/F) ®F C, the result follows from the analogous comparison between algebraic de Rham and
Betti cohomology for ordinary smooth schemes X x G™. O

Corollary 1.5.2 (Equivariant Hodge decomposition). Let X be a smooth scheme over C with an action of an
algebraic group G. Assume that [X/G] is Hodge-properly spreadable (e.g. X and G satisfy the conditions of
Theorem 3.1.4 or 3.2.12). Then for all n € Z>q there exists an isomorphism

He o) (X(C),C) ~ @ HY[X/G], N’Lix/c/c)-

ptg=n

Example 1.5.3. Let X = SpecC. Then A"Lpg ~ Sym"(g¥)[—n] where g is the Lie algebra of G endowed with
the adjoint action of G. This way we get a standard isomorphism

n _f SymF(gV)& if n =2k,
HG<C>(Ptv(C)—{ 0 ifr =2k + 1.

In particular,
H2 ) (pt, C) ~ Sym(g")¥, where deg(g")=2.
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Example 1.5.4. As another example one can take a conical resolution 7: X — Spec A (see the second example
of 3.2.16). Following Example 3.2.16, the quotient stack [X/G,,] is Hodge-properly spreadable and we get a
decomposition for H2,(X(C),C) as in Corollary 1.5.2. Note also that in this case H}, (X (C),C) ~ H*(X(C),C);
indeed one can replace C* with S* and consider the Serre-Lerray spectral sequence

EY¢ = HP(BS', HU(X(C),C)) = H4(X(C),C).

We have BS! ~ CP>, thus H'(BS', H°(X(C),C)) = 0 and it’s enough to show that d3' = 0. We leave it as an

exercise to the reader to check that this is trues as soon as X (C) is connected and X((C)S1 # 0.
From all this we get a decomposition

H'(X(C),C) ~ H*([X/Gm), Lix/c,.]) © H' ((X/Gn], Oix/6,.)- (5)

We have Ly/g,,] =~ 93% a—> Ox as a complex of G,,-equivariant sheaves on X, where a* is the map dual to the
derivative of the action Lie(G,,) ®c Ox — Tx (where Tx denotes the tangent bundle). Then H°(X, Q% LN
Ox) =~ ker (HO(X, %) X HO(X, OX)), which is identified with the invariants of the Lie algebra action, which

also identifies with the group invariants H°(X, Q%)%= Finally we get
HO([X/Gr), Lix/c,) = HOX, 9 5 Ox)0m = HOX,0)°
as well. The second summand in (5) is just H*(X,Ox)®. Thus for any conical resolution we get a formula
H'(X(C),C) ~ H(X,Q%)® @ H (X, 0x)%.

This is a partial generalization of results of Section 6 in [KT16] to the case when R!7,.Ox is not necessarily 0.

2 Spreadings

To apply Theorem 1.4.3 we need to find a good model of our stack over a finitely generated Z-algebra, namely a
Hodge-proper spreading. However, as we will see, such a spreading does not necessarily exist in general.

In Section 2.1 we first prove a general result about the existence of spreadings for some more natural classes of
morphisms between Artin stacks (like smooth, flat, etc). Then some examples of Hodge-properly spreadable and
nonspreadable stacks are given in Section 2.3.

2.1 Spreadable classes

Definition 2.1.1. Let P be a class of morphisms of schemes (e.g. P = smooth, flat or proper morphisms) containing
all isomorphisms and closed under compositions. For a scheme S, define Schl;pbip to be the (non-full) subcategory
of schemes over S consisting of finitely-presentable S-schemes and morphisms between them that belong to P.

Theorem 2.1.2 ([Gro66, Theorems 8.10.5, 11.2.6] and [Gro67, Proposition 17.7.8]). Let {S;} be a filtered diagram
of affine schemes with limit S and let P be one of the following classes of morphisms: isomorphisms, surjections,
closed embeddings, flat, smooth or proper morphisms'’. Then the natural functor

lim Schfy” — Schs”

3

(induced by the base change Schips’ip 5 X — X xg, S) is an equivalence.

We will say that a scheme X is a P-scheme over S (P-scheme/S) if X is an S-scheme and the structure morphism
X — Sisin P. From the theorem above one can formally deduces the following corollary (see Corollary 2.1.14 for
a proof in a bit more general stacky setting):

Corollary 2.1.3. Let {S;}icr, S and P be as above. Then if X is a finitely presentable P-scheme/S, then there
exists i € I and a finitely presentable P-scheme X; over S;, such that X ~ X, xg, S.

10The list is not even nearly complete. See [Pool7, Appendix C.1] for a much more exhaustive list of classes of morphisms and their
properties with precise references.
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Our goal in this section is to extend Theorem 2.1.2 to the setting of Artin stacks. First we recall how “finitely
presentable” is defined in Artin setting:

Definition 2.1.4 (Finitely presentable Artin stacks). A (—1)-Artin stack X over a base ring R is called finitely
presentable, if X ~ Spec A and A is a finitely presentable R-algebra. Then, an n-Artin stack X over R is called
finitely presentable if there exists a smooth atlas U — X such that U is a finitely presentable affine scheme and
U xx U is a finitely presentable (n — 1)-Artin R-stack. We will denote the category of finitely presentable n-Artin
stacks by Stk AP,

Our general strategy for proving results about spreadability is to inductively reduce to the case of finitely
presentable schemes. For this end it will be technically convenient to use instead of iterative description of Artin
stacks a representation as a geometric realization of a coskeletal hypercover by schemes:

Construction 2.1.5. Let X,: A°? — C be a simplicial object in a category € admitting finite limits. Define
X (—): SSet™°P _ @ to be the right Kan extension of X, along the inclusion of A°P into the opposite SSet™™°P
of the category of finite simplicial sets (meaning simplicial sets with only finitely many non-degenerate simplices).
More concretely, for a finite simplicial set K

X(K)~ lim  X(A™).
(K) At (A")

In particular, we denote M, (X,) := X (OA™) and call it the n-th matching object of Xa.

Definition 2.1.6. Let H be an oco-topos. An augmented simplicial object Xo — X _1 is called a hypercover of X_1
if for any n € Z>¢ the natural map X,, — M, (X,) is an effective epimorphism (M,, is computed in the category
H,x_,). A hypercover X, is called n-coskeletal if additionally for each m > n the natural map X,, — M, (X,)
is an equivalence (equivalently X, coincides with the right Kan extension of its restriction to AZ). We refer
interested reader to [BM19, Appendix] for a quick recap on hypercovers and to [Pril5, Section 2] for a discussion
of hypergroupoids, which is most relevant for this section.

With this notation, n-Artin stacks can be thought of as some special (n — 1)-coskeletal hypercovers:

Theorem 2.1.7 ([Pril5, Proposition 4.1 and Theorem 4.7]). Let X be an n-Artin stack over S. Then there exists
an (n — 1)-coskeletal hypercover Xo of X such that all X, are equivalent to coproducts of affine schemes and for all
m, k, with 0 < m < k, the maps Xy — X(AE)) are smooth surjections. Conversely, given X, as above, its geometric
realization | Xo| (in the category of stacks, i.e. sheaves of spaces in étale topology) is an n-Artin stack.

Corollary 2.1.8. Let X be a finitely presented n-Artin stack over S. Then there exists an (n — 1)-coskeletal
hypercover Xo of X such that all X}, are finitely presentable affine schemes and for all m,k, with 0 <m <k, the
maps Xy, — X(AE)) are smooth surjections. Conversely, given Xo as above, its geometric realization |X,| (in the
category of stacks) is a finitely presentable n-Artin stack.

Proof. Let X be a finitely presentable n-Artin stack. The simplicial scheme X, from the theorem above is con-
structed inductively in [Pril5, Proposition 4.5] using only finite limits and atlases, hence all X; can be chosen to be
finitely presentable.

Conversely, if X, is a simplicial affine scheme as in the statement of corollary, then by the theorem above | X,|
is an n-Artin stack. Moreover, the natural map Xy — |X,e| is a smooth finitely presentable atlas. To prove that
Xo X|x,] Xo is finitely presented, recall that by [Pril5, Remark 2.25] there is a natural equivalence

XO X|X.\ XO ~ |X0 XXe D6C+(X.)|,

where Decy is the décalage functor, Decy(X,s); ~ X;11. Since finitely presentable affine schemes are closed
under fibered products, it follows that Xo x x, Decy(X,) also satisfies conditions of the corollary. Since moreover,
Xo % x, Decy (X,) is (n—2)-coskeletal, its geometric realization X x|x,| Xo is finitely presentable by induction. [J

For convenience we introduce the following notation:
Definition 2.1.9 (Spreadable class). A class of morphism P between Artin stacks is called spreadable if

e P is closed under arbitrary base changes, compositions and contains all equivalences.
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e (Locality on source and target) Let f: X — 9 be a morphism of finitely presentable Artin stacks. Then f
lies in P if and only if there exist smooth finitely presentable affine atlases U — 9" and V' — U x. X such
that the composite map V' — U xo X — U is in P.

o (Affine spreadability) Let {S;} be a filtered diagram of affine schemes with the limit S. Let f: X — Y be a
morphism in P between affine finitely presentable S-schemes. Then for some ¢ there exists a map f;: X; — Y;
in P of affine finitely presentable S;-schemes, such that f ~ f; xg, S.

Example 2.1.10. If P and Q is a pair of spreadable classes, then P N Q and P U Q are also spreadable. There
exists the smallest spreadable class (consisting only of equivalences) and the largest one (consisting of all finitely
presentable morphisms).

Example 2.1.11. Since surjective, smooth and flat morphisms of Artin stacks are by definition local on the source
and the target for the flat topology, by Theorem 2.1.2 we get that these classes are spreadable.

Definition 2.1.12. Let P be a spreadable class and let S be a scheme. Let us denote by Stk%Art’fp’P the subcategory
of the category of finitely presentable n-Artin stacks over S and morphisms from P between them.

We are now ready to prove the main technical result of this section (see [Ryd15], [LMBO00, Chapter 4] for similar
results in the context of 1-Artin stacks and [Lurl8, Theorem 4.4.2.2] for the spectral version):

Theorem 2.1.13. Let {Si} be a filtered diagram of affine schemes with limit S. Let P be a spreadable class. Then
the natural functor pread, T
11111 Stk/éi hofp P gtk;l:gArt,fp,P

K3

(induced by the base-change Stk%ért’fp? > X;— X; xgs, S) is an equivalence.

Proof. We will prove the statement by induction on n. The base of the induction n = —1, i.e. the case of affine
schemes, holds by the definition of a spreadable class. To make the induction step, we first prove the statement for
P = “all (finitely presented) morphisms” (using the induction assumption for smooth surjective morphisms) and
then deduce the statement for a general spreadable class P.

Essential surjectivity for P = “all”. Since all n-Artin stacks are (n+1)-truncated, the Yoneda embedding Stk™AT <y
Fun(CAlg, 8) factors through a full subcategory Fun(CAlg, 8<,+1) =: PStk<,+1. Let now X be a finitely presented
n-Artin S-stack and let X, be a simplicial diagram of finitely presented affine S-schemes, so that |Xe| ~ X (as in
Corollary 2.1.8). Since for any simplicial diagram A, in any (n + 1, 1)-category the natural map |Ae|<nt2 — |Ae|
is an equivalence, we see that X ~ | X¢|<pt2 in PStk<,q1. But X-\AZ"HZ is a finite diagram of finitely presented

affine schemes, hence there exists S; and a diagram X-\A‘;"nH,Si such that X,‘Ac;pn+2 ~ XoIA‘;an,Si xg; S. We set
Xs, = |X<n+t2.5,;]- By applying the inductive assumption with P = “smooth surjective”, we can assume that all
maps Xg 5, — Xe,s, (A% ) are smooth and surjective for some S;; hence by Corollary 2.1.8 Xs, is a finitely presented
n-Artin spreading of X.

Fully-faithfulness for P = “all”. Let X;,9; be a pair of n-Artin stacks of finite presentation over S;. We then have

1131H0m9’5tk/sj (.X,L Xs; Sj,% Xs; Sj) ~ lingOngtk/si (.X,L XS, Sj,%) ~ 11131H0m?5tk§n+1/si (.X,L XS, Sj,%), (6)
J J J

where the second equivalence follows from the fact that filtered co-limits commute with 7., hence preserve (n + 1)-
truncated spaces. Let now Xo — X be as in Corollary 2.1.8. Then

(()) L. liril HomTStkgnJA/si (|X. XS, Sj|§n+2, 9’;) ~ TOtSnJrQ 111;1 HomTStk§n+1/si (X. XS, Sj, 9/;) ~
J J

~ TOtSnJrQ liril HomStk/si (X. Xs; Sj, 9’;),
J

where the second equivalence follows from the fact that, since A<;,,2 is a finite diagram, limits along A<,42
commute with filtered co-limits. Similarly, one shows that

Homgtk/s ()Q X5, S,% X5, S) ~ T0t§n+2 Homgtk/si (X. X5, S,%)
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Finally, since ); is finitely presentable, by [GR17, Chapter 2, Proposition 4.5.2]

1ig1HomStk/Si (X. XS, Sj, 9/;) ~ HomStk/Si (X. Xs; S, 9/;)
J

General P. Let f: X — 9 be a morphism in a spreadable class P over S. It is enough to prove that there exists i
and a map between finitely presentable n-Artin S;-stacks f;: X; — 9 such that f; xg, S ~ f and f; € P. Choose
affine finitely presentable atlases U — 9" and V' — U x X. The induced map g: V' — U belongs to P, so by the
previous part and definition of spredable classes, the diagram

V—sX

-l

U——=9

can be spread out to some S;, such that gg, belongs to P. It follows by the definition of spreadable class, that fg,
is also in P. O

A stack X is called an n-Artin P-stack over S if the structure morphism 7: X — S exhibits X as an n-Artin
stack and 7 is in P.

Corollary 2.1.14 (Existence of spreading in a predefined class). Let {S;}icr be a filtered diagram of affine schemes,
S = llrp S; and P be a spreadable class. Then if X is a finitely presentable n-Artin P-stack over S, then there exists

i € I and a finitely presentable n-Artin P-stack X; over S;, such that X ~ X; xg, S.

Proof. Let m: X — S be the structure morphism. By the previous theorem and the description of objects in filtered
colimits of categories (see e.g. [Roz12]) there exists a finitely presented stack 7;: Xj; — S; such that m; xg, S = 7.
A morphism in a filtered colimit of categories is a filtered co-limit of morphisms, hence

HOmStk;z;Art,fp,P (X, S) ~ 15&11 HomStk;z?rc,fp,P ()CL ij Si, Sl)
k k2

Since the left hand side is non-empty by assumption, the right hand side also must be nonempty for some i, i.e.
there exists ¢ € I such that m;: X; — S; is in P. O

2.2 Cohomologically proper stacks

In most examples for which we are able to construct a Hodge-proper spreading, the spreading in fact satisfies a
stronger property, namely it is cohomologically proper. This property enjoys many natural properties that Hodge-
properness does not: e.g. it translates along proper maps and a cohomologically proper scheme is necessarily proper.
To introduce it we first need to extend Definition 1.2.1 to all locally Noetherian Artin stacks:

Definition 2.2.1. An Artin stack is called locally Noetherian if it admits an atlas [ [, U;, where all U; are Noetherian
affine schemes. An Artin stack is called Noetherian if it is locally Noetherian and quasi-compact quasi-separated.

For a locally Noetherian Artin stack X we will denote by Coh(X) (resp. Coh™ (X)) the full subcategory of
QCoh(X) consisting of sheaves F such that the restriction of F to some (equivalently to any) locally Noetherian
atlas has bounded (resp. bounded below) coherent cohomology sheaves.

Definition 2.2.2. A quasi-compact quasi-separated morphism f: X — 9 of locally Noetherian Artin stacks is
called cohomologically proper if the induced functor f.: QCoh(X) — QCoh(9") preserves the full subcategory of
bounded below coherent sheaves. A locally Noetherian Artin stack X over a Noetherian ring R is called cohomo-
logically proper if the structure morphism X — Spec R is cohomologically proper.

Remark 2.2.3. By the left exactness of f, it is enough to prove that f.(Coh(X)%) c Coh™(9).
We have the following basic properties of cohomologically proper morphisms:
Proposition 2.2.4. In the notations above we have:

1. The class of cohomologically proper morphism is closed under compositions.
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2. Let f: X — 9 be a cohomologically proper morphism and assume that X is Noetherian. Then for any open
quasi-compact embedding U — 9 the pullback U x. X is cohomologically proper over U.

3. Let f: X — 9 be a quasi-compact quasi-separated morphism such that for some smooth cover m: U — ) the
pull-back fq: X Xo U — U is cohomologically proper. Then f is cohomologically proper.

Proof. The first point is obvious. To prove the second one note that by base change it is enough to show that any
coherent sheaf on U x4 X is a retract of a restriction of a coherent sheaf on X. This is proved in Corollary 2.2.6
below. The third point follows by base change as well since it is enough to check that a sheaf belongs to Coh™ on
a smooth cover. O

Proposition 2.2.5. Let X be a Noetherian Artin stack. Then for all n € Z the category QCoh(X)Z" is compactly
generated by Coh(X)=".

Proof. The shift functor F +— F[n] induces an equivalence QCoh(X)=" ~ QCoh(X)=°, hence without loss of
generality we can assume that n = 0. During the proof we will freely use the fact that the truncation functors for
the natural t-structure on QCoh(X) preserve filtered colimits (see e.g. [GR17, Chapter 3.3, Corollary 1.5.7]).

We first prove that Coh(X)™ is compact in QCoh(X)1%™! for all m > 0. Let U, be an affine Noetherian
smooth hypercover of X. Since QCoh(X)!%™ is an (m 4 1)-category we then have

QCoh (X)) ~ Tot=*2 QCoh (U, ).

Since A<,,42 is a finite diagram it follows that a sheaf in Coh(X)™ is compact in QCoh(X)I%™  since all of its
images are compact in QCoh(U;)[%™]. Note also that since for any F € QCoh(X)<" and G € QCoh(X) we have

Homqoon(x)20(F,G) ~ Homqeonx) (F, 75™G)
and since truncation functor 7=™ preserves filtered colimits, it follows that F € Coh(.X)[O;m] is compact in
QCoh(X)Z as well.
Next we show that QCoh(X)¥ ~ Ind(Coh(X)?). The argument is a slight variation of [SP20, Tag 07TU]. By
assumption on X there exists an affine Noetherian atlas p: U — X. Let F € QCoh(X)¥ and write p*F =~ ligl Ga,

where the diagram on the right runs over all finitely generated submodules of p* F. For each « define F,, € QCoh(X)
as a pullback
Folr———> F

| |

Hop* ga(ﬁ 'Hop*p*]:

Using triangular identities one easily checks that the inclusion p*F, — p*F factors through an inclusion G, — p*F.
In particular, p*F,, being a submodule of a finitely generated module G, over Noetherian ring T'(U, Oy ), is finitely
generated itself. By definition it means that F, is coherent. Finally, since p is quasi-compact quasi-separated, the
pushforward functor Hp, preserves filtered colimits, hence the natural map liIE Fo — F is an isomorphism.

Let now i: Ind(Coh(X)Z%) — QCoh(X)Z° be a natural functor. Note that since by the previous Coh(X)=° is
compact in QCoh(X)=? this functor is fully faithful. Moreover, since i preserves colimits it admits a right adjoint R.
Then to prove that 7 is essentially surjective it is enough to show that the fiber G of the co-unit i RF — F vanishes.
But R being right adjoint preserves fibered products, hence RG ~ fib(RiRF — RF) ~ 0. By Yoneda’s lemma and
adjunction i 4 R we conclude that Homgcopn(xyz0(H,G) ~ * for all H € Coh(X)=?. We claim that G ~ 0. To see
this assume that G 2 0 and let i be the smallest integer such that H(G) % 0. By the previous part there exists a
coherent subsheaf H C H!(G). It follows the composition H[—i] — H*(G)[—i] — G is non-zero, a contradiction. [J

Corollary 2.2.6. Let X be a Noetherian Artin stack and let j: U — X be an open embedding. Then every coherent
sheaf on U is a retract of a restriction of a coherent sheaf from X.

Proof. Note that since X is Noetherian, the stack U is also Noetherian. In particular the embedding j is quasi-
compact and quasi-separated. Next, by pulling back to an atlas and using base change (which holds by qcqgs
assertion about j), one finds that the co-unit of adjunction j*j.F — F is an equivalence for any quasi-coherent
sheaf on U. Let now F € Coh(U). By the previous proposition j,F ~ 1ig1 G, for some filtered diagram of coherent

sheaves G. It follows that F ~ lim j*G,. By compactness of 7 we conclude that it is a retract of some j*G,. O
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If R is regular, the cohomological properness is stronger than the Hodge-properness:

Proposition 2.2.7. Let X be a smooth cohomologically proper Artin stack over a regular Noetherian ring R. Then
X is Hodge-proper over R.

Proof. Since X is smooth over a regular Noetherian ring R, the category of coherent sheaves on X coincides with
the category of perfect complexes. So by assumption, it is enough to prove that ALy /r is perfect for all i > 0.
By smoothness, the cotangent complex LLx,g is perfect and concentrated in non-negative cohomological degrees. It
follows that Ly ,r admits a finite filtration with the associated graded pieces being negative shifts of vector bundles.
Hence by induction it is enough to prove that if F is a quasi-coherent sheaf on X such that AJFE is perfect for
j <, then A'(E[—1]) is also perfect. But by construction (see [BM19, Theorem 3.35]) the functor A is i-excisive,
so AY(E[—1]) is a finite limit of sheaves of the form A‘(E®™), n < i, hence is perfect. O

Moreover, all proper morphisms are cohomologically proper. To show this, let’s first recall the notion of a proper
morphisms between higher stacks (following [PY14, Section 4]):

Definition 2.2.8. A O-representable morphism X — 9 is called proper if for any affine scheme S mapping to
9, the pullback X xo S is a proper S-scheme. Next, assuming that the notion of a proper (n — 1)-representable
morphism is already defined, an n-representable morphism f: X — 9 is called proper if

o fis separated, i.e. the diagonal map X — X X X (which is (n — 1)-representable) is proper.

e For any affine scheme S mapping to 9" the pullback Xg := X x4 S admits a surjective S-morphism P — Xg
such that P is a proper S-scheme.

Remark 2.2.9. Since the property of a morphism of schemes to be proper is flat local on the target, it is enough
in the definition above to check the second condition only for some atlas of 9.

Remark 2.2.10. A potentially more familiar definition of a (classical) proper algebraic stack p : X — S is that p
should be separated, finite type and universally closed. We note that such stacks over S are proper 1-Artin stacks
in the definition above. Indeed, by [Ols05, Theorem 1.1] in this case there exists a proper surjective map U — X
from a proper scheme U.

From the standard results about proper morphisms of schemes and representable morphisms of stacks one
formally deduces:

Proposition 2.2.11. With the notations above:
1. Proper morphism are closed under base change.
2. The property of being a proper morphism is flat local on the target.
3. Proper morphisms are also closed under compositions.

The fact that proper morphisms are cohomologically proper was proved in [PY14, Theorem 5.13], but in a
slightly different context. Their proof essentially follows the argument of [LMBO00, Theorem 15.6] in the case of
classical proper stacks. For the reader’s convenience we sketch the argument here:

Proposition 2.2.12. Let f: X — 9 be a proper morphism between locally Noetherian Artin stacks. Then [ is
cohomologically proper.

Sketch of the proof. The question is local on the target, hence we can assume that " =Y is an affine Noetherian
scheme. Moreover, by localizing further if necessary, we can assume that there exists a surjective map n: P — X
such that P is a proper scheme over Y. Let us also assume that X is n-Artin for some n > 0 and let us prove the
statement by induction on n. The statement for the n = 0 is the fundamental result about the direct image of a
coherent sheaf under a proper morphism of schemes [Gro61, Chapter III, Theorem 3.2.1].

By Remark 2.2.3 it is enough to prove that f.(Coh” (X)) C Coh™(Y). Let F € Coh”(X). Since X is proper
over a Noetherian base, it is Noetherian itself. It follows that there exists a finite filtration (by power of nil-radical
of Ox) of F with the associated graded pieces coming from X4, Since Coh™ (Y') is closed under finite extensions,
it follows that we can assume that both X and Y are reduced.

Let us denote Tot e (H°(7iF)) by F', where me: Po — X is the Cech nerve of the map P — X. By the
higher “generic flatness” [PY14, Theorem 8.3] there exists an open dense substack U of X such that the induced
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map Py := P xx U — U is flat. In particular, m7; , (F) ~ HO(nj; ,(F)) for all n € Zxo. It follows by flat descent
that the natural map F — F’ becomes an equivalence when restricted to U. By Noetherian induction we can
assume that f,(fib(F — F')) lies in Coh™(Y). So to prove that . (F) lies in Coh™(Y) it is enough to show that
7.(F') € Coh™(Y). On the other hand, all elements P, of the Cech nerve are (n — 1)-Artin proper stacks over Y’
and all sheaves H°(p},(F)) are coherent. Since the global section functors f, .: QCoh(P,) — QCoh(Y) are right
t-exact, it follows by induction and Proposition 1.2.3 that the totalization

fe(F') == Tot fo o(H°(p;, F))
lies in Coh™ (V). O
Corollary 2.2.13. Let X be a smooth proper Artin stack over a regular Noetherian ring R. Then X is Hodge-proper.
Proof. Follows immediately from the previous proposition and Proposition 2.2.7. o

Finally, we record the following observation, which allows to construct new examples of cohomologically proper
stacks in inductive way.

Proposition 2.2.14. Let me: Us — X be a flat hypercover such that all U, are cohomologically proper over a
Noetherian base ring R. Then X is cohomologically proper over R.

Proof. Let F be a coherent sheaf on X. By shifting if necessary we can assume that H<°(F) ~ 0. By the flat
descent
RT(X, F) ~ Tot RT'(Us, 7} F).

Since the global section functors RT'(U,, —) are right t-exact and by assumptions on U, the diagram RT'(U,, 7} F)
consists of coconective bounded below coherent complexes. By Proposition 1.2.3 the complex RI'(X,F) is also
bounded below coherent. O

2.3 Examples of Hodge-properly spreadable stacks

In this subsection we begin to study which Hodge-proper stacks in characteristic 0 admit a Hodge-proper spreading
over some finitely generated Z-algebra. We will make extensive use of Theorem 2.1.13 in the following situation:
let F' be an algebraically closed field of characteristic 0, then Spec F' ~ hg{lR where R C F' runs through subrings

of F' that are smooth over Z. This diagram is filtered since for any two such subalgebras Ry, R C I some finite
localization (Ry - R2)[1/f] of their composite in F' is again smooth over Z. In particular we have an equivalence

1121 8tk7}%Art7fp"P ~ Stkf/z}rArt,fp,P

RCF
for any spreadable class P. Another option is to also allow those localizations of smooth Z-algebras for which the
image of Spec R in SpecZ is open (as in Definition 1.4.1). By Remark 1.4.2 the diagram of all such R is again
filtered and so Theorem 2.1.13 can be applied. In Section 2.3.3 we will see that allowing these localizations actually
makes a difference. In what follows F' will always denote an algebraically closed field of characteristic 0 and we will
pick R C F to be a smooth Z-subalgebra (except Section 2.3.3, where it will be an infinite localization of one) of F.
We also freely use the standard spreading out results for schemes (Theorem 2.1.2) and their easy consequences (like
spreading out group schemes, group actions, group homomorphisms, closed subgroups, etc.) without any additional
reference.

We start with the Hodge-proper spreadability for proper Artin stacks, which is deduced from the spreadability
of proper morphisms (Theorem 2.1.13). This is done in Section 2.3.1. Then we discuss in great detail the question
of Hodge-proper spreadability of BG in Section 2.3.2; the case of more general quotient stacks is postponed till
Section 3. Finally, in Section 2.3.3 we try to grasp the scope of potential applications of Theorem 1.4.3 concentrating
on the case of schemes: in fact a particular set of examples given by semiabelian surfaces.

As was mentioned, often, along with Hodge-proper spreadability, we are able to prove a somewhat stronger
statement, saying that the stacks we consider admit a cohomologically proper spreading. For this it is convenient
to introduce the following variant of Definition 2.2.2:

Definition 2.3.1. A morphism f: X — 9 of Artin stacks over a field F' of characteristic 0 is called cohomologically
properly spreadable if there exists a finitely generated Z-algebra R C F'' and a morphism fr: Xg — 9% over Spec R,
such that

1 Or a suitable localization of one, as in Definition 1.4.1.
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° fR®RF::fR XRF’Zf.
e fr: Xgr — Y is cohomologically proper (see Definition 2.2.2).

In the case 9 = Spec F' we will call X cohomologically properly spreadable. By Proposition 2.2.7 any such X is
also Hodge-properly spreadable.

2.3.1 Proper stacks

In this subsection we show that all proper stacks are cohomologically (and in particular Hodge-)properly spreadable.
By Proposition 2.2.12 it is just enough to show that proper morphisms spread out.

Following the convention of Section 2.1, for an affine scheme S we denote by Stk%Art’fp’pr - Stk%Art’fp the
subcategory cousisting of finitely presented n-Artin S-stacks and with morphisms given by proper maps (see Defi-
nition 2.2.8).

The results of Section 2.1 allow to deduce the spreadability of proper morphisms from the analogous statement
for classical schemes:

Proposition 2.3.2. Let {S;} be a filtered diagram of affine schemes with a limit S. Then the natural functor

. n-Art,fp,pr n-Art,fp,pr
l}gl Stk/si —_— Stk/s

3

is an equivalence.

Proof. By Theorem 2.1.13 it is enough to prove that for a proper morphism f: X — 9 there exists a proper
morphism f;: X; — 9; such that f; xg, S ~ f. Assume that f is n-representable. We will prove the statement by
induction on n.

For n =0 let U — 9 be an affine finitely presentable atlas. Then by assumption Xy := X x4 U is a scheme
proper over U. By Theorem 2.1.13 we can spread the commutative square

.XU—>.X

]

U——=Y

to some S;. By spreadability of equivalences, smooth surjective morphisms of stacks and proper morphisms of
schemes we can assume, taking base change to some S; if necessary, that the natural map Xy, ; — U; Xo, Xj is an
equivalence. We can also assume that U; — 9 is a smooth atlas and that Xy ; is proper scheme over U;. Since
the property of a map of schemes to be proper is flat local on target, it follows that for any 7' mapping to 9; the
pullback T' x . X; is a proper T-scheme. So the map f;: X; — 9; is proper.

Finally, assume that the statement for (n — 1)-representable morphism is already proved. Let U — 9 be
a smooth finitely presentable atlas and let P — Xy be a surjection from a proper U-scheme P. Then by the
induction assumption we can find a spreading f;: X; — 9 such that f; is separated. By taking base change to some
S; we can assume that P; is proper over U; and that the map P; — Xy, is surjective. o

Corollary 2.3.3. Let X be a smooth proper stack over a field F of characteristic 0. Then X is Hodge-proper and
Hodge-properly spreadable.

Proof. By Proposition 2.3.2 (and Corollary 2.1.14) applied to X — Spec F' we get a smooth proper spreading
Xr — Spec R. Then Xy is Hodge-proper by Propositions 2.2.7 and 2.2.12. O

We will also use the following corollary:

Corollary 2.3.4. Let f: X — Y be a proper map of finitely presentable Artin stacks over a field F' of characteristic
0 such that 9 is cohomologically properly spreadable (see Definition 2.5.1). Then X is also cohomologically properly
spreadable.

Proof. Let fr: Xr — 9r be some proper spreading of f. Since any two spreadings become equivalent after
some finite localization of R, we can assume that 9% is cohomologically proper over R. Then we conclude by
Proposition 2.2.12 and the first part of Proposition 2.2.4. O

Remark 2.3.5. More generally, a composition of two cohomologically properly spreadable morphisms is again
cohomologically properly spreadable.
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2.3.2 Classifying stacks

Let F be an algebraically closed field of characteristic zero. We start our investigation of Hodge-proper spredability
by first understanding for which algebraic groups G over F the classifying stack BG is Hodge-proper. The answer
turns out to be easy: for all finite type G. In fact BG is even cohomologically proper:

Proposition 2.3.6. Let G be a finite type group scheme over F. Then BG is cohomologically (and, in particular,
Hodge- )proper.

Proof. In fact we will show a more precise statement, namely that for any coherent sheaf F on BG, RI'(BG, F)
lies in Coh(F) if G is linear and in Coh™ (F) if G is general.

Note that, since we are in characteristic 0, G is smooth and thus so is the natural map Spec F — BG'2. In
particular, the natural t-structure on Coh(BG) coincides with the usual t-structure on Coh(F') after taking pullback
Coh(BG) — Coh(F) (aka the forgetful functor in terms of representations). It is enough to show the statement for
F € Coh(BG)Y (Remark 2.2.3). Note that such F is the same thing as a finite-dimensional algebraic representation
of G over F.

By Chevalley’s structure theorem there is an exact sequence 1 - L — G — A — 1 where L is a linear algebraic
group and A is proper. Then for L we have another short exact sequence

1-U—-L—H—1,

where U is the unipotent radical of L and H ~ L/U is reductive.

Let j: BU — BL, f: BL — BH, i: BL — BG and p: BG — BA be the corresponding maps between
classifying stacks. We will prove the statement step by step, starting from the unipotent case.
Case 1. G = U is unipotent. We assume F € Coh(BU)". Since the characteristic of F is 0 and U is unipotent,
RT(BU, F) can be computed as the cohomology of the Lie algebra u. Explicitly, this is given by the Chevalley
complex:

0= F o Fou - FoAu' = . Feo Aty .

Since F is finite dimensional this complex is clearly perfect.

Case 2. G = H is reductive. This follows from the fact that the abelian category Rep(H) is semi-simple (since
char(F) = 0). Namely for F € Coh(BH)", the complex RI'(BH, F) is equal to the H-invariants F* (in cohomo-
logical degree 0). Since F is finite-dimensional we get RT'(BH, F) € Coh(F).

Case 3. G = A is proper. Let F € Coh(BA). We can compute R['(BA,F) using the smooth ¢: Spec F — BA.
Let p,: A" — BA be the map from the n-th term of the associated Cech simplicial object. We get a cosimplicial
object

[n] = RT (A", p, F),
in Modg, and
RT(BA, F) ~ Tot RT(A®, p: F).
However, each term RI'(A™,p}F) lies in Coh(F) (since A™ is proper) and has cohomology only in non-negative
degrees. By Proposition 1.2.3 it follows that RT'(BA, F) lies in Coh™ (F).

Case 4. G = L is linear. We assume F € Coh(BU)" and consider f.F € QCoh(BH) (for f: BL — BH). We claim
that f.F € Coh(BH). It is enough to check that after taking pull-back to the smooth cover ¢q: Spec F — BH. We
have a fibered square

BU —' . BL

b

Spec F ——~ BH

and by base change we have ¢* f.F ~ RI['(BU, j*F). The map j is flat, so j*F is coherent and thus RI'(BU, j*F) €
Coh(F) by Case 1. It follows that f.F € Coh(BH). But then RI'(BL,F) ~ RI'(BH, f.F) and we are done by
Case 2. At this point we have the statement for G linear.

Case 5. G is general. The argument in Case 4 works here as well, replacing U with L and H with A. Namely
p«F € Coh(BA) and then by Case 3

RT(BL,F) ~ RT(BH, {,F). O

12Note that since the property of a morphism to be smooth can be checked flat locally on the source the structure map BG — Spec F'
is always smooth even when G is not. We refer interested reader to [Toél1] or [SP20, Tag 0DLS] for more details.
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Even though BG is Hodge-proper practically for any G, there are definitely some algebraic groups G for which
BG is not Hodge-properly spreadable. Indeed, consider G = G,. If BG, were Hodge-properly spreadable, then by
Corollary 1.5.2 we would get a decomposition

Hjn(BGo/F)~ € HYBG,, N'Lgg, r)-

ptq=n

However, this is impossible. Indeed, the left hand side vanishes for n > 0 by the A'-homotopy invariance of the de
Rham cohomology in characteristic 0. On the other hand APLpg, /¢ ~ Opg, [—p] and H(BG,, Opg,) is non-zero
for ¢ = 0,1. In particular, the right hand side is non-zero for all n, contradiction.

Note that by Theorem 1.4.3 it follows that the Hodge cohomology of any spreading of BG, has to be infinitely
generated. This is also confirmed by an explicit computation of the cohomology of Opg, over Z which the reader
can find in Appendix A. We only slightly comment on this here:

Example 2.3.7. Let G, be the additive group considered as an algebraic group scheme over Z. By the computation
in Appendix A one has an embedding

(Z[vl] ®z Symy, (EBP Fpvp @ Fpvp,e @ .. )) /Uf =vy “——= H*(BG,,0pg,) ,

where v; has cohomological degree 1 and all other v, are of degree 2. In particular I 2(BG,, Opg,) has infinitely
generated elementary p-torsion for any prime p. Given any spreading X of (BG,) over some R C F, by Theo-
rem 2.1.13 it becomes isomorphic to (BG, ) for some larger R. Choosing prime p in the image of Spec R in SpecZ,
by flat base change we get that H%(X, Oy) contains an infinite sum (R/p)®" and thus X is not Hodge-proper over
R.

Given the complexity of BG, from cohomological point of view, it is natural to ask for which algebraic groups G,
the classifying stack BG is Hodge-properly spreadable. We provide a list of examples:

Example 2.3.8. BG is Hodge-properly (and in fact also cohomologically properly) spreadable if

e (5 is proper (=an extension of a finite group by an abelian variety). Then BG is a proper stack and this is
covered by Corollary 2.3.3;

e ( is reductive. This follows from Proposition 3.1.2 if we take Y = Spec F/;

e (=P C H is some parabolic subgroup of some reductive group H. This is a particular case of Theorem 3.2.12.
Alternatively, it follows from the previous point and Corollary 2.3.4 (using that BP — BH is proper).

Remark 2.3.9. By an argument similar to Proposition 2.3.6 it is also possible to show the spreadability of BG for
an extension of an abelian variety by a parabolic subgroup of some reductive group.

The fact that BP is cohomologically properly spreadable can look a little surprising and we would like to
illustrate what happens by the simplest non-trivial example, a Borel subgroup B C SLs:

Example 2.3.10. Let G = B C SLs be the standard Borel subgroup of SLs over Z, namely

B_{<é tf1>}CSL2'

In this example we will show that BB is a cohomologically proper spreading of BBp.
Note that B ~ G, x G,, with G,, = SpecZ[t,t~!] acting on G, = SpecZ[x] by multiplication of z by 2.
Consider the natural map p: BB — BG,, and take p.(Opp). We have a fiber square

J

BG, BB

|,

pt —q>BGm.

We have j*Opp ~ Opgg, and by base change the underlying complex ¢*p.Opp is equal to RI['(BG,,Opg,). It
follows that
RT(BB,Opg) ~ RI(BG,,,p.Opp) ~ RT(BG,, Opg, )®™,
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since G,,,-invariants is an exact functor. In the terms of the computation in Appendix A this corresponds to the 0-th
graded component RI'(BG,,Opg,)o C RI'(BG,, Opg, ), which, as we figure there, is just given by Z. Consequently
RI(BB,Opp) = Z.

Summarizing, we can see that even though the cohomology of Opg, is enormous, the G,,-action contracts it,
ultimately making the cohomology of Opp finitely generated.

In fact more is true: namely for any Borel subgroup B of a split reductive group G over Z the stack BB is
cohomologically proper. Indeed, one first shows that BG is cohomologically proper over Z by applying Theorem 3.0.1
in the case A = R = Z and, since the morphism BB — BG is proper, the rest follows from Proposition 2.2.12.

2.3.3 Non-proper schemes

Considering schemes, it is natural to ask whether a Hodge-properly spreadable scheme is necessarily proper. On
the other extreme, one can ask whether any schematic example of the Hodge-to-de Rham degeneration is Hodge-
properly spreadable. Below we consider an example of a semiabelian surface X given by an extension of an elliptic
curve by G,,; as we will see, appropriate choices of extensions give counterexamples to both statements above.

Example 2.3.11. Let E be an elliptic curve over a field k. Let K/k be a (not necessarily algebraic) field extension
and let £ € Pic’(E)(K) ~ E(K) be a degree 0 line bundle on Ex. Let X be the total space of the associated
Gy-torsor. The K-scheme X is clearly smooth and non-proper; moreover, by [Ser75, VIL.3.16], X is in fact an
algebraic group, more concretely a semiabelian surface.

Lemma 2.3.12. X is Hodge-proper over K if and only if L # Ox for all n > 0. If char K = 0 this is also
equivalent to the degeneration of the Hodge-to-de Rham spectral sequence for X .

Proof. Note that Q% ~ (9??2, since X is a group. Denote the natural projection X — Ex by 7. We find

Rm.Ox ~ 1,0 ~ @L”.
nez

Next, since the degree of L is zero and £ # Ox, we have RI'(Ek, L) ~ 0. If £ is non-torsion, the same holds for
L™ for all n # 0. So

RI(X,0%) ~ RI'(X,0x) ~ RT(Ek,0p,) ~ K ® K[-1], RI(X,Q%)~ R['(X,0%?) ~ K™ & K[-1]%2

If, on the other hand, L is torsion, 7,Ox has infinitely many copies of O, as direct summands and so H°(X, Ox)
is infinite-dimensional.

For the second assertion it is enough to consider the case K = C, where we can compare the de Rham cohomology
with the singular one. Since the degree of L is 0, £ is topologically trivial, and X is homotopy equivalent to (S!)*3;
comparing the dimensions we see that the Hodge-to-de Rham spectral sequence degenerates at the first page. [

Remark 2.3.13. Note that if K is a subfield of F,,, then Pic”(E)(K) is a torsion abelian group. Thus, in this case
X is never Hodge-proper.

Now let E be an elliptic curve over Q. Let’s consider L¢ € Pic’(E)(C); the corresponding semiabelian variety
Xc is a variety over C.

Proposition 2.3.14. X¢ is Hodge-properly spreadable if and only if Lc € Pic?(E)(C) \ Pic’(E)(Q).

Proof. First, let Lc € E(Q). Let K C Q be the field of definition of L¢; then Lc and Ec are defined over K
and we will denote the corresponding line bundle and elliptic curve over K by Lx and Ex. We also denote by
Xk the total space of Li. Let Ox C K be the ring of integers. Consider the filtered system {Ox[1/n]},en of
subrings of K; we have K = colim,, Ok [1/n]. By Corollary 2.1.3 Xk has a smooth spreading X 4 over A = Og[1/n]
for n big enough and, taking a larger n, we can assume that X4 is the total space of a line bundle £4 over an
elliptic curve F4 (with E4 and L4 being spreadings of E and £). Note that all closed points of Spec A are of
positive characteristic and have finite residue fields. Localizing A further we can assume that base change for
Hodge and de Rham cohomology holds with respect to all closed points of A. Let x: SpecF; — Spec A be some
closed point. By Remark 2.3.13 the reduction Lp, is torsion and thus X, is not Hodge-proper. It follows that X 4
is not Hodge-proper and thus, since any subring R C K satisfying the conditions in Definition 1.4.1 is contained
in Og[1/n] for some n, X is not Hodge-properly spreadable. We claim that neither is X¢; indeed, let X}, be a
Hodge-proper spreading over some localization R C C of some finitely generated Z-algebra as in Definition 1.4.1.
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Since C can be represented as a colimit of flat finitely generated R-algebras (and those fit in the framework of
Definition 1.4.1), by the “spreading out” for schemes we can assume that {(Xz)} 5 x ~ {(Xk)}r k. Considering
two systems: {(Xa)p 4}, and {(XR)p. 4}, With X4 as above and A running over Ok [+] for various integers n we
get that (Xa)p 4 ~ (XR)z.4 some A. Note that since the image of Spec R in SpecZ is open and R - A is torsion
free (over Z, and thus also over A), R- A C C becomes faithfully flat over A = Og[1/n] if we take n big enough.
Since X 4 is not Hodge-proper, neither is (X4)p. 4. Replacing A we can also assume R - A is flat over R; indeed by
“spreading out” of flat morphisms of schemes it is enough to show that R - K is flat over Rg. But R- K is a direct
summand of Rg ®qg K, so this is clear. Thus by flat base change (applied to R - A which is now flat over R) we get
that X, can’t be Hodge-proper, which is a contradiction. Thus X¢ is not Hodge-properly spreadable.

It remains to deal with the transcendent case Lc ¢ Pic’(FE)(Q). Let’s consider the universal line bundle P
on E x Pic’(E). Since £ is not a Q-point, the corresponding map Spec C — Pic’(E) factors through the generic
point Spec Q(E) C E ~ Pic’(E) and thus both L¢ and X¢ are defined over Q(E). We denote the corresponding
bundle and Q(E)-scheme by £ and X. Let y?> = 2® + ax + b be an equation of (the affine part of) E. Let
B = Z[1/n]x,y]/(y* — 2* — ax — b) C Q(E) where n is big enough to be divisible by the denominators of both a
and b, and so that B is smooth over SpecZ. Note that E has a smooth proper model Ez,,,) over Z[1/n] given by
the projective closure of Spec B. Now let R = B[S™!] C Q(E) be the localization of B with respect to the set S of
elements s € B that are non-zero modulo all primes p € Z provided (p,n) = 1.!% The reduction R/(p) is equal to
the field of fractions of B/(p) which is nothing but F,(Er,). Identifying Pic’(E) with E, we obtain spreadings Lg
(over Er) and Xg of £ and X (considered as a line bundle on Egg) and a scheme over Q(E) correspondingly).
Localizing R we can assume that Xp is a group scheme and thus it is enough to show that the cohomology of
RT'(XR,Ox,,) is finitely generated over R. We have

Rm,Ox, ~ m.0x, ~ P L.
nez

Each L7 is a coherent sheaf on Er and RT(Eg, L}) € Mod%". We claim that it is zero if n # 0; note that R
is regular, thus RI'(Eg, L}) is perfect and so it is enough to check this modulo all primes p € Z. But by the
construction the reduction Lg/, is the restriction of the universal line bundle on Er, xp, PicO(E]Fp) to Er, XF,
SpeclF,(Er,); in particular it is non-torsion. Thus RI'(Eg, L}) ~ 0, and so

RF(XR, OXR) ~ RP(ER,F*OXR) ~ RP(ER, OER)
is coherent. O

Remark 2.3.15. Due to Proposition 2.3.14 and Lemma 2.3.12, a semiabelian surface X¢, for the choice of a
non-torsion line bundle L¢ € Pic’(E)(Q), gives an example of a scheme which is not Hodge-properly spreadable,
but the Hodge-to-de Rham spectral sequence degenerates. On the other hand, taking Lc ¢ Pic’(E)(Q) gives an
example of a Hodge-properly spreadable scheme which is not proper.

Remark 2.3.16. Note that even in the case Lc ¢ Pic’(E)(Q), the scheme X¢ does not have a Hodge-proper
spreading over a finitely generated Z-algebra R (because then Spec R necessarily has points with finite residue fields
over which £ becomes torsion). Thus it really makes a difference to allow arbitrary localizations of the latter in
Definition 1.4.1.

Remark 2.3.17. The ring R used in the proof of Proposition 2.3.14 is a slight generalization of a ring, that could
be called “quantum integers/rationals”. Recall that the “quantum integer n” polynomial [n]|, € Z[q] is defined as
[n]q :==1+q+...+¢""!; we then can consider Qq = Z[g][[n]; ']nen. The ring Qq is a principal ideal domain of
Krull dimension 1 whose reduction modulo a prime p is given by

Qq ®z Fp ~ Fp[‘]][[n]q_l]neN ~Fy(q),
the field of rational functions over IFp.

Remark 2.3.18. Topologically, X¢(C) ~ C* x (S')2, since L¢ has degree 0 and is topologically trivial. The space
Hsling(Xc((C), C) ~ C? is odd dimensional and thus the corresponding mixed Hodge structure can’t be pure of weight
1. In particular this shows that the mixed Hodge structure'? on the n-th singular cohomology of a Hodge-properly

spreadable stack is not necessarily pure of weight n.

13More explicitly, one can see that it is enough to invert functions y™ — 1 for n > 1.
1 Appropriately defined, say via Section 8.3 of [Del74].
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2.3.4 Higher examples
Here we also record some examples of Hodge-properly spreadable stacks that are not classical.

Example 2.3.19. Let GG be a classical abelian algebraic group over F' such that BG is cohomologically properly
spreadable (e.g. by Remark 2.3.9 and the discussion above it, one can take G to be an algebraic torus, an abelian
or even a semiabelian variety). Then the higher stack K(G,n) := B"G (given by the sheafification of S —
K(G(S),n)) is also cohomologically properly spreadable. Indeed, after enlarging R any cohomologically proper
spreading K (G, 1)g becomes equal to K(Gg, 1) for some spreading G of G which has a group structure. Taking
the K (Gg,n) for such Gg gives a spreading of K(G,n) which, we claim, is cohomologically proper. We will show
this by induction. Consider the Cech simplicial object U, corresponding to the cover Spec R — K(Gg,n). All of
its terms Uy, are given by products K(Gr,n — 1)*, the projection morphism K(Gr,n — 1)* — K(Gg,n — 1)1
is cohomologically proper'® and thus, projecting k times, we see that all U} are cohomologically proper. It then
follows from Proposition 2.2.14 that K(Gg,n) is cohomologically proper as well.

3 Hodge-proper spreadability of quotient stacks

In this section we study in more detail the case of quotient stacks, providing several families of non-trivial examples
of cohomologically proper spreadable stacks. Here the proofs of spreadability are much more involved; the following
two important representation-theoretic results will be used:

Theorem 3.0.1 (Theorem 3 and Proposition 57 of [FvdK10]'%). Let Gz be a split reductive group over Z and R
be a finitely generated algebra over Z. Let A be a finitely generated R-algebra endowed with a (rational) action of
Gr and let M be a finitely generated G g-equivariant A-module. Then the algebra A% of Gr-invariants is finitely
generated over R and H"(Ggr, M) is a finitely generated AS%-module for any n > 0.

Theorem 3.0.2 (Kempf’s theorem, see e.g. [Jan07, Proposition I11.4.5]). Let Gz be a split connected reduc-
tive group over Z and let By C Gz be a Borel subgroup. Let (G/B), be the corresponding flag variety. Then
RF((G/B)Z, O(G/B)Z) ~ 7.

As we will see, these two theorems, together with the semiorthogonal decompositions of derived categories
constructed by Halpern-Leistner ([HL15], [HL20]) allow to prove in a lot of cases that the stack is cohomologically
properly spreadable. We stick to the notations of Section 2.3, in particular F' will denote an algebraically closed
field of characteristic 0 and we will choose the base R of the spreading to be a finitely generated Z-subalgebra of F'.

Here is a plan of the section. In Section 3.1 we show that a quotient by reductive group is cohomologically
properly spreadable (Theorem 3.1.4), provided its coarse moduli space is proper and the action is locally linear.
The key result is Proposition 3.1.2, where we use Theorem 3.0.1 to show that under the latter assumption the
natural morphism ¢: [Y/G] — Y//G is cohomologically properly spreadable. Particular examples then include a
proper-over-affine scheme with an action of a reductive group (Example 3.1.6) and quotients coming from GIT
(Example 3.1.7). In Section 3.2 we look at some other set of examples (Theorem 3.2.12), given by quotients that
come from BB-complete G,,-actions (Definition 3.2.3). Theorem 3.2.12 also allows some quotients by non-reductive
groups, and Theorem 3.0.2 is used to pass from the quotient by a Borel subgroup to the quotient by the whole
group (Lemma 3.2.15). In Section 3.3 we also give a recipe of reestablishing the degeneration results of [Tel00]
in the KN-complete case using Theorem 1.4.3; here, however, we need to assume some results which are going to
appear in the upcoming work of Halpern-Leistner [HL20].

3.1 Global quotients by reductive groups

In [Tel00] Teleman proved the Hodge-to-de Rham degeneration for the quotient of a smooth scheme X by a Kempf-
Ness (KN) complete action of a reductive group. In this section we establish spreadability for certain class of
global quotients, which includes the semistable (single KN-stratum) case X = X™(£) (3.1.7) and another standard
KN-complete example given by equivariant “projective-over-affine” variety (3.1.6). Moreover, the “projectivity”
condition in the latter is replaced by the “proper” one almost for free.

Let Y be a quasi-separated finite type scheme over F' and let G be a reductive group acting on Y.

5Indeed, its pull-back to Spec R — K(Ggr,n — 1)*~! is K(Ggr,n — 1) — Spec R which is cohomologically proper by the induction
assumption, thus by Proposition 2.2.4 (3) so is the original map.

16Proposition 57 in loc.cit. is stated for R = Z. However we can consider A as a Z-algebra with an action of Gz; indeed, since the
action on R is trivial and R[GRr] ~ Z[Gz] ®z R we have AQr R[GRr] ~ A®zZ[Gz] and thus get the comultiplication A -+ AQr R[GR] ~
A ®yz Z|Gz]. Same thing works for any G g-representation and, moreover, RI'(Ggr, M) ~ RI'(Gz, M) (e.g. because they are computed
by the same standard complex). Thus Proposition 57 in loc.cit. also applies to any R that is finitely generated over Z.
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Definition 3.1.1. The action of G on Y is called locally linear if there exists a G-invariant affine cover of Y.

In this case there exists the categorical quotient Y//G; in other words, the quotient stack [Y/G] has a coarse
moduli ¢: [Y/G] = Y//G and Y//G is representable by a scheme. More explicitly, if {U;};cr, with U; := Spec 4;, is
the G-invariant affine cover of X, the categorical quotient X //G is glued out of {U;//G}ie1, with U; //G = Spec A§,
with the natural gluing maps induced by the gluing maps for {U;};c;. Note that if G is a torus and Y is normal,
the action is automatically locally linear by the result of Sumihiro ([Sum74, Corollary 2]).

Proposition 3.1.2. Let Y be a quasi-separated finite type scheme over F with a locally linear action of a reductive
group G. Then the natural morphism q: [Y/G] — Y//G is cohomologically properly spreadable.

Proof. The group G is split and has a Chevalley model Gz over Z; this defines a split reductive spreading of G over
any R C F, namely just put Ggr := Gz ®z R. We can also spread Y to a quasi-separated scheme Yy over some R
and assume that Yi has a Gg-action. It is enough to show that after a suitable enlargement R the quotient stack
[Yr/GRr] becomes cohomologically proper. Note that by picking a G-invariant affine cover {U;};cs as above and a
spreading A; r of each A;, localizing R, we can assume that the affine schemes U; r := Spec A; r have a G r-action
and give a G r-equivariant affine cover of Yg.

Let Yr//Gr be the categorical quotient, namely the scheme obtained by gluing the spectra Spec Afﬁ of the
invariants in the same way that was described above. Note that by Theorem 3.0.1 the scheme Ygr//GR is of
finite type and so it is a valid spreading of Y//G (since Afg ®pr F ~ A; for all i € I). We have a natural map
qr: [Yr/GRr] — Yr//Gr given locally (on Yr//Gr) by ¢;.r: [Spec A; r/Gr] — Spec Asg. The map qg is a spreading
of ¢, thus it is enough to show that gr is cohomologically proper. This can be checked locally, so it is enough to
show that for any finitely generated R-algebra A the map qr: [Spec A/GRr] — Spec A% is cohomologically proper.

Let F € Coh([Spec A/Gr])¥ and let M be the corresponding G g-equivariant finitely generated A-module. Since
Spec A is affine, the module gr.F has a simple description: it is just given by RI'(Gr, M) considered as a complex
of modules over A9%®. The complex RI'(Ggr, M) lies in ModigR and its cohomology are finitely generated by

Theorem 3.0.1. Thus RT'(Gg, M) € Coh™(A%%) and ¢ is cohomologically proper. O

Remark 3.1.3. In the case of BG some stronger results in a similar direction were established in [HLP15, Propo-
sition 4.3.4]. Namely under some mild restrictions on the reductive group scheme G and the base scheme S the
structure morphism BG — S is formally proper (in the sense of [HLP15]).

Note that we did not assume that ¥ was smooth. This was on purpose: the actual cohomologically properly
spreadable examples are given by the following theorem:

Theorem 3.1.4. Let X be a smooth scheme and Y be a finite-type scheme over F, both endowed with an action
of a reductive group G. Assume that

1. There is a proper G-equivariant map 7: X — Y.
2. The G-action on'Y is locally linear.
3. The categorical quotient Y//G is proper.
Then the quotient stack [X/G] is cohomologically properly spreadable.

Proof. Consider the map ¢: [Y/G] — Y//G; by Proposition 3.1.2 it is cohomologically properly spreadable. The
map m: [X/G] — [Y/G] is proper, thus [X/G] is cohomologically properly spreadable by Corollary 2.3.4. O

Remark 3.1.5. More generally one can replace [X/G] by any X with a cohomologically properly spreadable
morphism 7: X — [Y/G].

We discuss some applications of Theorem 3.1.4:

Example 3.1.6. Let X be a smooth proper-over-affine scheme X with dim H°(X,Ox)% < oco. By definition,
this means that there is a proper G-equivariant map 7: X — Spec A. By replacing Spec A with the image of 7
we can assume that 7 is surjective. Then A9 embeds in H°(X, Ox )% and thus is finite-dimensional; equivalently,
(Spec A)//G is finite, and in particular proper. Applying 3.1.4 to Y = Spec A we get that [X/G] is cohomologically
properly spreadable. Also note that we were able to relax the “projective” assumption on the map 7 to the “proper”
one.
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Example 3.1.7. Let X have an ample G-equivariant line bundle £, and let’s assume that X = X = X([).
Basically by definition, the action on X*(L) is locally linear (see e.g. the proof of [MFK94, Theorem 1.10]). Assume
further that dimg H°(X,Ox)¢ < co. Then the scheme

X//G =~ Proj ( P HO(X, £®")G)

n>0

is projective over Spec H°(X,Ox)¢ and hence also projective over F. Thus [X/G] is cohomologically properly
spreadable by Theorem 3.1.4 applied to ¥ = X.

3.2 Global quotients coming from BB-complete G,,-actions

In this section we prove another result (Theorem 3.2.12) about the cohomologically proper spreadability of quotient
stacks, which also allows quotients by groups that are not necessarily reductive. Another benefit of Theorem 3.2.12
(compared, say, to Theorem 3.1.4) is that the condition on X (and the G-action) is internal: no additional structure,
such as a map to another scheme Y, is involved.

3.2.1 Varieties with a G,,-action and Bialynicki-Birula stratification

Let X be a smooth scheme over an algebraically closed field F' of characteristic 0 with an action a: G,, ~ X. By
[Sum74] such an action is always locally linear: X has a G,,-invariant affine cover {U; = Spec 4; }icr. A Gp-action
on a given affine scheme Spec A induces a Z-grading A* on A; we denote by I C A* the ideal generated by A~°
and by IT C A* the ideal generated by A>% and A<C.

Here are some examples:

Example 3.2.1. e pt := Spec F' with the trivial G,,-action; here A = A ~ F and IT = I* = 0.

e Al := Spec F[z] endowed with the standard action by dilation, s ~ ts for s € Al; in this case degx = —1, so
It =0and I* = (z) C F[z].
i
There are natural G,,-equivariant maps pt - A! given by the projection and the embedding of 0 € A!(F).
P

We also have a (non-equivariant) map i1 : pt — A! given by the embedding of 1 € A(F).
To a smooth scheme X endowed with a G,,-action one can associate the following objects:

o The fized points X° := Maps(pt, X )®m; its functor of points is given by X°(S) = Maps(S, X)®™, meaning the
G-equivariant maps from S to X, where the action on § is trivial. There is a natural map ¢: X% — X sending
amap f € XY to its evaluation f(pt). The map ¢ is a closed embedding ([Dril3, Proposition 1.2.2]); the affine
cover {U;}ier defines an affine cover {UP}ic; of X© with U? == Spec(A;/IF) (glued along U};). There is a natural
Gp-action on X, which is trivial.

e The attractor X+ = Map(A!, X)®=; here the functor of points is given by X*+(S) = Maps(S x A!, X)®m,
where the G,,-action on S x A! is diagonal. By [Dril3, Corollary 1.4.3], this functor is indeed represented by a
scheme. There are two natural G,,-actions on Map(A!, X), one coming from the G,,-action on A!, the other coming
from the action on X; their restrictions to Map(A!, X)®m coincide and thus define the same G,,-action on X+.

There are natural G,,-equivariant maps X° Xt . X induced by ig, i1 and p. Namely,

— o(f) € Xt is given by pre-composing f: pt — X with p: A — pt; the map o: X — X T is a closed
embedding.

— m(f) € X° is given by the evaluation of f: A — X at 0 € Al; by [BB73]'" 7: XT — XY is a Zariski locally
trivial fibration with the fiber given by an affine space.

— j(f) € X ~ Map(pt, X) is given by the evaluation of f: Al — X at 1 € Al; the map j: X+ — X is a locally
closed embedding when restricted to each component of X .

Similarly to X, the affine cover {U,};cs defines an affine cover {U;' };cr of X+ with U;" := Spec(A;/I;").

"More precisely, by [Dril3, Proposition 1.4.10] X+ is smooth, and (say, by [Dril3, Section 1.4.3]) the action of G, at any point
x € X9 < X7 is definite (in the terminology of [BB73, Section 1]). Then one can apply [BB73, Theorem 2.5] to X .
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Also, by [Dril3, Proposition 1.4.10] both X° and X+ are smooth.

Remark 3.2.2. The construction of the maps o, 7, j is local and is described as follows in terms of a G,,-invariant
cover {U; }icr: 0i: U? — U;r is induced by the projection AZ-/I;r — Ai/Iii; Ai/IijE is identified with the 0-th graded
component of the negatively graded algebra A;/ I;r and this way the contraction m;: U;r — U corresponds to the
embedding A; /I ~ (A;/I;7)° — A;/I;". Finally j;: U;” — Uj is given by the projection A; — A;/I;". The maps
for X, Xt and X° are obtained by gluing along the analogous maps for U; ; := U; N Uj.

Let mo(X?) = mo(X ™) be the set of connected components of X (equivalently, X*). For a given ¢ € mo(X°) we
denote by Z. C X° the corresponding connected component of X°, and by S, :== 7=1(S.) C X* the corresponding
connected component of X3 we call {Sc}cer,(xoy the Bialynicki-Birula (BB) strata.

Definition 3.2.3. The G,,-action a: G, ~ X is called BB-complete if the map j: X+ — X is a surjection on the
underlying topological spaces |j|: [ X | — | X].

Equivalently, j: X+t — X gives a full stratification of X with individual strata being locally closed. In this
case, the limit of a(t) o x for ¢ — 0 exists for any point € X; in particular, the Bialynicki-Birula stratification
{S.} € mo(XY) gives a full stratification of X. We will fix some ordering on 7o(X?) with the only condition that
¢ > cif dim Sy < dim S,; in this case a stratum S, is necessarily closed in X<, := X \ UpcSer.

Remark 3.2.4. Since both Xt and X are of finite type and F is algebraically closed, |j|: |[XT| — | X| is surjective
if and only if the corresponding map j(F): Xt (F) — X (F) between the F-points is.

3.2.2 BB-complete quotients by G,,

Spreading BB-stratification. Let X be a smooth scheme over F' with a G,,-action and let {U,};es, U; ~ Spec A; be
a Gy,-invariant affine cover as above. The smooth schemes X+ and X° are glued out of {U;"} and {U?} (along UJ
and Uioj) correspondingly.

By Corollary 2.1.3 we can spread X to a smooth R-scheme X r endowed with an action of G, r := Spec R[t,t™1].
We can also spread the cover {U;}ier to a Gy,-invariant affine cover {U; r}icr, Ui r =~ Spec A; r over some regular
finitely generated Z-algebra R C F. Each algebra A; i is Z-graded and we can consider closed subschemes U, :r R=

Spec(Ai7R/I:R) and Ul = Spec(Ai7R/IfR), as well as schemes X7, and X%, obtained as their gluings along U;;)R
and UJ; p (defined analogously). We have (X};) xg F'~ X+ and (X%) xg F ~ X°.
Recall Remark 3.2.2 to see how the maps o, 7, j between X, X+, X9 are defined in terms of the covering {U; };c;.

OR .
Performing the same construction with U; g, U:R and Ug r We obtain maps X% X ;{ o x r which spread

TR
o,7,j. After enlarging R further, by Corollary 2.1.3 we can assume that og (resp. jgr) is a closed (resp. locally
closed when restricted to each connected component) embedding. Picking an open cover {V;}icr on which the
affine fibration m: X — X0 is trivial, 771(V;) ~ V; x A%, we can spread it out; enlarging R we can assume that
{Vi,r}ier cover X%, wgl(Vi,R) cover X?% and wgl(V})R) ~V,r XRr A‘]i%. Furthermore, we can assume that X%, and
consequently X I{, are smooth over R.

After enlarging R further, the set mo(X%) can be identified with mo(X"); the connected component Z. g for
¢ € m(XY) ~ mo(X?) then is a spreading of Z. C X°. Similarly, S. g = 73" (Z.,r) is a connected component of
XE and a spreading of S..

If the G,,-action on X is BB-complete, we can assume the same about the G, g-action on Xg; indeed, enlarging
R we can assume that the map XE — Xpg is a surjection. In particular, we can assume that the spreading {S. r}
of the stratification {S.} of X gives a full stratification of Xr by locally closed smooth subschemes.

Semiorthogonal decomposition of Coh(Xg). We now discuss certain semiorthogonal decompositions of the category
Coh(Xg) given by the theory of so-called magic windows developed by Halpern-Leistner in [HL15]. Let X be a
smooth scheme over F' with a G,,-action and let X be a spreading of X as constructed above. Let Sg := Sc.r C Xr
be a closed stratum among {S. r}. Let Zg := Z. g for the same c; the scheme Zp is called the centrum of Sg.
The subschemes S and Zi enjoy the following nice properties:

Proposition 3.2.5. e Both Sp and Zr are smooth over R;

o There is a G,,-equivariant map mr: Sg ~ SE — 8% ~ Zg, which is a Zariski locally trivial fibration with an
affine space A% (for some d) as a fiber;

e The conormal bundle NgRXR has strictly positive weights when restricted to the fized locus Zr C Sg.
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Proof. Since Zr and Si are connected components of X% and X;g correspondingly, it is enough to show that
the above properties hold for XY and X;g in place of Zgr and Sgi. The first two properties are included in our
construction of the spreading. The last property can be checked locally, thus we can assume Xgr =~ Spec Ag,
Sr =~ Spec Agr/I}; and Zp =~ Spec Ar/I. The normal bundle N)\Q;XR is then given by I} /(I})? as a Ag/I}-
module and its restriction to X% is given by I} /(15 ~I§), considered as a Ar/I;-module). Since by definition I},
is generated by elements of strictly positive weight, the weights of IE / (IE - II%) are also strictly positive. O

Remark 3.2.6. In other words, using the terminology of [HL15], Sg C Xg is a smooth KN-stratum satisfying
properties (A) and (L+) (in the case G = Gy, r).

Let Xg = [Xr/Gm,r), Sk = [Sr/Gn r] and Zg = [Zr/G, r]. Also let Ug := Xg \ Sg be the complement
and let Ugr = [Ur/Gy, r]. Let Coh(Xg) be the (bounded derived) category of coherent sheaves on Xp and let
Cohg,, (Xgr) C Coh(Xg) be the full subcategory of sheaves whose pull-back to the flat cover X — Xg is set-
theoretically supported on Sg. The action of G,, r on Zg is trivial and so Zr ~ Zr X BG,, r. Thus the heart
Coh(Zg)? of the category of coherent sheaves on Zp, is identified with the category of Z-graded objects in Coh(Zr)“.
For a given w we denote by Coh(Zg)<.,, C Coh(Zg) the full subcategory spanned by objects F € Coh(Zg) whose
cohomology sheaves H!(F) € Coh(Zg)" have grading less than w. Similarly, by Coh(Zg)>, C Coh(Zg) we denote
the full subcategory spanned by objects whose cohomology sheaves have grading greater or equal than w.

Let ig: Ur — Xg and jr: Sk — Xg be the natural embeddings. Then, given w € Z, by [HL15, Theorem 2.10],
we have a semiorthogonal decomposition

Coh(Xg) = (Cohg, (Xr)<w, Gw, Cohs, (Xr)>w ), (7)
where
e Cohg, (Xr)>w = {F € Cohg, (Xr) | 0 F € Coh(Zr)>w} C Cohg, (Xr),
o Cohs, (Xr)<w = {F € Cohs, (Xr) | o}k%j}%]: € Coh(ZR)<w} C Cohg, (Xr)

and G,, C Coh(Xg) is a certain (full) subcategory such that the functor ¢}, : Coh(Xgr) — Coh(Ug) restricted to G,
irlg, : Gw —— Coh(Ug)

is an equivalence.

Remark 3.2.7. Note that the [HL15] assumes the base to be a field of characteristic 0. Even though in the case
of G = G, this assumption is not really necessary, the semiorthogonal decomposition above is also covered by the
proof of Proposition 3.3.2. Indeed it is enough to show that Sr gives a ©-stratum in Xg. This follows from the
intrinsic description of ©-strata (see [HL20, Proposition 1.4.1] or also see the proof of Lemma 3.3.3): the third
point of Proposition 3.2.5 exactly says that L, /x, € QCoh(Sr)=! (meaning the term of the corresponding baric
decomposition).

Proposition 3.2.8. Xy is cohomologically proper if and only if both Ugr and Sr are.

Proof. Fix some w € Z.

“=” Sg is cohomologically proper, since for F € Coh(Sr) we have jr.F € Coh(Xg) and RI'(Sg, F) =~
RT(Xg, jr«F). Since Xg is smooth, we have Coh(Xg) ~ Perf(Xg) and so any object of Coh(Xg) is dualizable; in
particular, for any Vi, Vo € Coh(Xg) we have

Homcon(xg) (V1, V2) = RT(Xg, Hom(V1, Va)),

where Hom(V1, V) € Coh(Xg). Thus Homeoen(x,) (V1,V2) € Coh™(R), or, in other words, Coh (Xg) is a nearly
proper R-linear stable co-category. Now, taking E € Coh(UR), we get

RU(Ug, E) ~ Homcon(tg) (Ougs B) ~ Homeonx) ((iklg, ) Otun: (iklg, )" E) € Coh™(R),
via the equivalence (i )" Coh(Ugr) = Gy C Coh(Xg).

“<” Tt is enough to show that the category Coh(Xg) is nearly proper. Let’s first show that the subcategory
Cohg,, (Xg) C Coh(Xg) is nearly proper. Every object of Cohg, (Xg) has a finite filtration with graded pieces of
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the form jg.F, where F € Coh(Sg). Thus it is enough to show that Hom(jr«F1,jr«F2) € Coh™(R) for any
F1,F2 € Coh(Sg). Since Sg and Xg are smooth we have

Homeon(sg) (jr«F1, JrReF2) = RU (SR, Hom(jRjr«F1, F2))

with Hom(j5jr«F1,F2) € Coh(Sg); then RT(Sr, Hom(jhjir«Fi,F2)) € Coht(R) since Sg is cohomologically
proper.
More generally, given F € Coh(Sg) and V' € Coh(Xg) we have

Homcon(xg) (Vi jr«F) =~ Homeon (s, (i Vs F) € Coh™ (R),
Homcon(xp) (7R« F, V) = Homcon(sy) (F, iz V) € Coh™ (R),

where j&V € Coh(Sg), since both Xz and Sg are smooth. It follows that Homcoh(xz) (Vs £) and Homeon(xg) (£, V)
both lie in Coh™(R) if E € Cohg,(Xg) and V is any coherent sheaf on Xg.

Now, due to the semiorthogonal decomposition in (7) any V' € Coh(Xg) has a finite (in fact three-step) filtra-
tion with the associated graded pieces lying either in Cohg, (Xgr) or G,,. By the above discussion, hom-complex
Homeoh(xz) (£, —) for any object E in Cohg, (Xg) is always bounded below coherent. The category G, ~ Coh(Ug)
is nearly proper since Upg is cohomologically proper. Taking such filtrations for a given pair Fy, Fa € Coh(Xg) and
using the exactness of Hom in each variable we get that Homgon(xy) (F1, F2) € Coh™ (R). O

The G, g-action on X is trivial; thus X is isomorphic to X% x g BG,, r. Let p: Xp — X% be the projection.
Lemma 3.2.9. The morphism pomR: Xf{ — X% is cohomologically proper.

Proof. The statement is local on X%. Let {UPp}ier, Uz = Spec Af  be an affine cover of X% such that the affine
bundle given by 7g: X;g — X% is trivial. Let UZFR = w};l(UgR). It is enough to show that the morphism ‘ZI;TR =
[U:R/GWR] — UP,R induced by the composition of 7 and p is cohomologically proper. We have U;r ~ UgR x pA%
where G, r acts with negative weights on A%. Let A:R be the ring of functions on UZTR; it is naturally Z-graded
and AIR ~ AgR[a:l, ..., xq] where x;’s can be chosen to be homogeneous of strictly negative degree.

The functor (p o mg). is t-exact, since mg is affine and G, g is linearly reductive. We have an equivalence
between the abelian category Coh( ‘ll;)r R)o and the category of finitely generated graded A:R—modules. Via this
equivalence, (p o mg). sends a graded module M* to the Ag p-module MY. Since the degrees of z;’s are strictly
negative, it is straightforward to see that if a Ag rlT1,...,z4]-module M is finitely generated, the A?ﬁ p-module MO
is finitely generated as well, and thus corresponds to a coherent sheaf on Ug R O

Proposition 3.2.10. Let X be smooth scheme over F and with a BB-complete G,,-action. Let X be a spreading
as above. Then the following are equivalent:

1. Xgr 1s cohomologically proper.
2. .XIJ{ is cohomologically proper.
3. X% 18 proper.

Proof. 1 < 2. Note that X} o Ueeno(x0)Se,r- Let’s fix an ordering on m(X?) such that each S. g is closed in
X<er = Xr \ UpscSer . Since {S¢ r} form a full finite stratification of Xg, applying Proposition 3.2.8 we are
done by induction on c.

2 = 3. The morphism og: XI% — Xg is a closed embedding (in particular proper) and thus is cohomologically
proper. It follows that Xp is cohomologically proper. On the other hand X ~ X% xr BG,, g and so X% is
cohomologically proper as well. Indeed, p.Oxo ~ Oxo and given F € Coh(X%) we have RT'(X3, p*F) ~ RI'(X%, F)
by the projection formula; since p*F € Coh(Xg) we get RI‘(X%,]:) € Coh+(R). Being a cohomologically proper
R-scheme, X9 is forced to be proper (Corollary 3.8 of [Hallg]).

2 <= 3: The structure morphism X — Spec R factors as the composition of X7 2% X9 and X% — Spec R.
The first map is cohomologically proper by Lemma 3.2.9, the second — since X% is proper. o

Corollary 3.2.11. Let X be a smooth scheme over F with an action of G,,. Assume that the action is BB-complete
and that the scheme of G,,-fized points X° is proper. Then X is cohomologically properly spreadable.

Proof. Let X be a spreading as above, then X9 is a spreading of X° and thus, after enlarging R, we can assume
that X% is proper. Then Xg is cohomologically proper by Proposition 3.2.10. o
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3.2.3 Quotients by G that are BB-complete with respect to a subgroup

In Corollary 3.2.11 we gave some sufficient conditions for the quotient stack [X/G,,] to be cohomologically spread-
able. As we will see soon, Kempf’s theorem allows to generalize this to a quotient by an arbitrary linear group
G; however, a certain extra weight-positivity assumption with respect to a 1-parameter subgroup h: G,, — G is
necessary.

Let G be a linear algebraic group and let B C G be a Borel subgroup'®. Let U C B be the unipotent
radical of B and let T C B be a maximal torus. We have a short exact sequence 1 - U - B — T — 1.
Let X*(T) := Hom(T,G,,) and X.(T) := Hom(G,,,T) be the character and cocharacter lattices of T. One has
X.(T) =~ X*(T)". Given a T-representation V and a character A € X*(T') we denote by V) C V the subspace
of V of weight A\. The adjoint action of T" on U induces an action on the Lie algebra u of U and we denote by
Ot C X*(T') the set of weights of u with respect to this action.

Theorem 3.2.12. Let X be a smooth scheme over F endowed with an action of a linear algebraic group G. Let
B C G be a Borel subgroup and let T C B be a mazimal torus. Let @+ C X*(T) be the set of T-weights of the Lie
algebra u of the unipotent radical U C B with respect to the adjoint action of T on U.

Assume that there is a subgroup h: G,, — T, h € X, (T), such that

1. h(®T) > 0.
2. The Gy,-action induced by h is BB-complete.
3. The h(G,,)-fized points X° are proper.
Then the quotient stack [X/G] is cohomologically properly spreadable.

Proof. Let’s first assume that G is connected. Note that B is isomorphic to a semidirect product T x U and can be
spread out to a semidirect product T X Ug of a split torus Tr and a unipotent group Ug over a finitely generated
Z-algebra R C F. Since Tg is split X*(Tg) ~ X*(T'). In particular we have a cocharacter h: Gy, g — Tr. The
subgroup B C G can be spread out to a closed subgroup Br C G and we can assume that Gp is split. Let Ug be
the unipotent radical of G. Then G/Ug¢ is reductive and can be spread out to a split reductive group (G/Ug)r. We
then also have a spreading pr: Gr — (G/Ug)r of the projection p: G — G/Ug and the kernel (Ug)g = Ker(pg)
is a spreading of Ug and thus can be assumed to be unipotent. Since Ug is a closed subgroup of B, we can assume
that (Ug)gr is a closed subgroup of Bg. The image of Br under pg is a spreading of B/Ug C G/Ug and thus
can be assumed to be a Borel subgroup of the split reductive group (G/U)g. Note that with all these assumptions
Gr/Br ~ (G/Uc)r/pr(BR).

We can also spread X with the action a: G ~ X to a smooth scheme Xy over R with an action ar: G ~ Xg.
Note that by [Sum74] the restriction of the action of G on X to G, (via h) is locally linear; consider a G,,-invariant
open cover {U;}ier of X, U; = Spec A;. We have spreadings A; r of A; with an action of G,, gr; localizing R if
necessary, we can assume that U; p := Spec A; g cover X and that the restriction of ag to G, g via h is locally
linear. Localizing R, we can assume that the G, g-fixed points X% are proper, the action is BB-complete and Xp
is such that the conditions of 3.2.10 are satisfied. Thus we have that [Xg/h(G,, r)] is cohomologically proper. It
is enough to show that [Xr/GR] is cohomologically proper.

We split the argument into a sequence of lemmas:

Lemma 3.2.13. Let Xg be as above. Then
[Xr/MGpm,r))] is cohomologically proper over R = [Xg/TRr] is cohomologically proper over R.

Proof. Let p: Xp — [Xgr/Tgr] and q: [X/h(Gym,r)] — [Xr/Tr] be the natural smooth covers. Then, given F €
Coh([Xr/Tr]), we have RT([Xg/Tg],F) ~ RT'(Xg,p*F)T". But

) ~ RE([X i/ 1(G )] 5" F) /G ),

R]‘—‘(XRup*]:)TR ~ (RP(XR7P*]:)}7’(Gm,R)

since s*F € Coh([Xr/h(Gm.r)]) we have RT([Xg/h( G r)],s*F) € Coh'(R). Recall that the coherence of a
complex of R-modules is equivalent to being t-bounded and having finitely generated cohomology. The group scheme
T/h(G ) is a torus and the functor of Tr/h(G, r)-invariants is t-exact. Thus RT([Xr/h(Gpm g)], s*F)T/#(Cm.r)
is also bounded and has finitely generated cohomology, so is coherent. O

18Recall that a subgroup B C G is called Borel if it is a maximal Zariski-closed solvable subgroup of G.
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Lemma 3.2.14. Let Xg be as above. Then
[XRr/h(Gm,R))] is cohomologically proper over R = [Xgr/BRr] is cohomologically proper over R.

Proof. Consider the natural smooth cover q: [Xr/Tr] — [Xgr/Bg| induced by the embedding Tp — Br. Since
Bgr ~ Tg x Ug, the n-th term of the Cech complex associated to ¢ is given by

Tr Tr Tr Tr C
[XR X BR X BR X e X BR/TR]ﬁ [(XRXURXURX XUR)/TR]U,

where the action of Tr on Xr X Ugr X Ug X --- x Ug is given by the product of the action on Xr and the adjoint
action on each copy of Ug.

Note that the underlying scheme of Ur can be Tr-equivariantly identified with its Lie algebra ug (see I11.1.7 in
[Jan07]); this way functions on Ug (resp UR) are identified with Symp(uj;) (resp. Symp(uf)®™). Since h(®F) > 0
we get that the G, g-weights on non-constant homogeneous functions on U are strictly negative. It follows that
Up ~ (Up)T and (UR)° ~ Spec R. We have (Xp x Up)*t ~ X} x UR, so the map (Xgr x Up)T — Xp x Up is
surjective and thus the G,, g-action on X x UR is BB-complete for every n. Also, (Xg x UR)? ~ X9 is proper.
Finally, since Uy is isomorphic to the affine space, the Bialynicki-Birula strata still satisfy the conditions in 3.2.5.
Consequently, Proposition 3.2.10 applies to X x U} for all n; we get that [(Xg x UR)/h(Gp, r)] is cohomologically
proper. By Lemma 3.2.13 it follows that [(Xr x Up)/Tr| is cohomologically proper for all n. By Proposition 2.2.14
we get that [Xr/Bg] is cohomologically proper. O

To pass from Bg to Gr we use the Kempf’s theorem (3.0.2):
Lemma 3.2.15. Let Xg be as above. Then

[XRr/BR] is cohomologically proper over R = [Xg/GR] is cohomologically proper over R.
Proof. Let j: BBr — BGRr be the natural morphism. Then by the projection formula
RT(BBRr,j*F) ~ RT'(BGR, j+j*F) ~ RT'(BGR, F ® j«Oppg).

By base change, the underlying complex of R-modules of j.Opp,, is equivalent to RI'(Gr/Br,Og,/B,)- But
Gr/Br ~ (G/Ug)r/(pr(BRr)), where pr(Br) C (G/Ug)r is a Borel subgroup and thus RI'(Gr/Br, Og,/By) ~ R
by Theorem 3.0.2. Consequently, RT'(BGg,F) ~ RT'(BBg,j*F) for any sheaf F € QCoh(BGg). We now apply
this as follows: there is a fibered square

[Xr/BR] A [Xr/GR]

| |

BB — > BGr

and, given a coherent sheaf F € Coh([Yr/GRr]), its pull-back f*F € Coh([Yr/Bg]) is also coherent. Applying base
change and the above isomorphism we get that RI'([Yr/GRr], F) ~ RI'([Yr/Bg), f*F); in particular, one complex
is bounded below coherent if and only if the other one is. The statement of the lemma follows. O

It remains to cover the case of a disconnected G. We can write [X/G] ~ [[X/G°]/m(G)], where G° is the
connected component of e € G and 7p(G) is the finite group of components. The homomorphism p: G — m(G) ~
G/G° can be spread out to pr: Gr — m(G)r where G is some spreading out of G and 7 (G)r is the constant
group R-scheme associated to mo(G). Moreover the kernel G% of pg is a spreading of G°.

We have just shown that the quotient stack [X gr/G$%] is cohomologically proper over R. We also have [Xr/G ] ~
[Xr/G%]/70(G)R]. It follows that for any F € Coh([X/GRg])

RI([Xr/Gr],F) ~ RT (Bmo(G)r, RT([Xr/G%], F)) -
Replacing R with R[1/|mo(G)|] we can assume that |7o(G)| is invertible in R, and so the functor of mo(G)-invariants

is t-exact. Then we get HY([Xp/GR], F) ~ HY([Xr/G%],F)™(&). In particular, RT'([Xr/Gg],F) is t-bounded
and its cohomology are finitely generated over R, so RT'([Xr/Gr], F) € Coh™t(R). O

9The isomorphism is given by the formula [(z,b1,...,bn)] — [(z,u1,...,un)], where b; = t; - u; € Tg x Ug.
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We end this subsection by giving some examples to which Theorem 3.2.12 does apply:

Example 3.2.16. 1. X is proper. In this case by the valuative criterion of properness every G,,-orbit of an F-
point has a limit as ¢ — 0, so the map X — X is surjective on F-points. It follows that any G,,-action on X is
BB-complete. Moreover X C X is a closed subscheme and so is proper. Thus, the only condition to check is on
G: namely there should exist h € X, (T) such that h(®*) > 0 (since all Borel subgroups of G are conjugate to each
other this does not depend on the choice of B). Here is a list of linear algebraic groups G which satisfy this:

e G reductive. Then one can take h € X,.(T) given by any dominant coweight. This case is also covered by
Theorem 3.1.4;

e G = P C H is a parabolic subgroup of a reductive group H. Any h that is dominant with respect to some
Borel subgroup B C P applies;

e More or less tautologically, any G with a 1-dimensional subtorus G,, C G such that the adjoint action of
G, on the the Lie algebra ug of the unipotent radical Us C G has strictly positive weights and such that
the projection of G, to G/Ug gives a regular coweight (meaning its centralizer is given by a maximal torus).
Then one picks B as the preimage of a Borel subgroup of G/Ug, with respect to which the G,, above gives
a dominant coweight, under the projection G — G/U¢q and take h given by any lifting G,, — B. As a non-
parabolic example of such G one can take any semidirect product G,, x U where U is unipotent and G,, acts
on u with strictly positive weights.

2. There are also natural examples that are more in the spirit of Theorem 3.1.4. Namely, let 7: X — Y be a proper
G-equivariant morphism where Y is not necessarily smooth. Then, given a cocharacter h: G,, — G that satisfies
h(®*) > 0 for some B C G, we have that if Y+ — Y is a surjection and Y is proper, X satisfies the conditions of
Theorem 3.2.12. Indeed the induced map X° — Y is proper and so X° is proper. Also, given any point z € X (F),
the image m(G,, - z) of its orbit is the orbit G, - w(x). Since YT — Y is a surjection, the limit lim;_, ¢t o 7(z) exists.
This gives a diagram

Gy —= X

]

Al /-o7r(ac) v
and, due to the valuative criterion of properness, the lifting A! — — = X , this way producing the limit of ¢ o x as
t — 0. We get that X — X is a surjection on F-points and that the G,,-action given by h is BB-complete.

This applies, in particular, to the case when Y ~ Spec F' and G = G,,, (where we can assume h = id: G,, — G,,).
In this case we basically arrive at the definition of a conical resolution (see e.g. [KT16]). Namely, we have
Y ~ YT — Spec F is affine, so Y ~ Spec A; the induced Z-grading on A is such that A ~ A< and A° ~ 0. The
map 7: X — Spec A is proper, X is smooth and the G,,-action on X agrees with the grading on A. The geometry
of such X is the following: it is not proper itself, but it has a proper G,,-equivariant map to Spec A so that the
Gn-action contracts it to the central fiber 71(Y?) which is proper over F. Note that even if X is smooth, 7= 1(Y?)
can be singular (for example in the case of the minimal resolution of the A,-singularity for n > 2).

3.3 ©O-stratified stacks and the relation to the work of Teleman

The example of BB-complete quotients by G,, can be vastly generalized by the notion of a ©O-stratified stack
introduced recently by Halpern-Leistner (and studied in great detail in [HL20]). All the stacks in this section are
assumed to be derived and we also assume the base ring R to be Noetherian and regular. Let X be a derived stack
over R and assume that it is locally almost of finite presentation with affine diagonal. We also let © = [Al/G,].
One can define two mapping stacks associated to X: the stack of filtered objects Filt(X) := Map (0, X) and the
stack of graded objects Grad(X) = Map . (BGm, X). We have a stacky version of maps defined in Section 3.2.1

Grad(X) ___ Filt(X)

evo

evy

— X

induced by evaluations at 0: BG,, < © and 1: Spec R ~ [(A'\ 0) /G,,] — O, and the natural projection © —
BG,,. Note that if X is smooth (and thus classical) by [HL20, Corollary 1.3.2.1] the stack Filt(X) is also smooth

2ONote the change of sign in the grading compared to [KT16]. In the case of a commutative group action there are two natural left
actions on the space of functions on Y, induced either by the action of g or g—! on Y. This is exactly the difference we are facing here.
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and classical. A derived ©-stratum S is by definition a union of connected components of Filt(X) with the condition
that evy |5 =S — X is a closed embedding. Let Z := o~(§) C Grad(X) be the centrum of §; evq restricts to a
map S — 2.

Definition 3.3.1 (A particular case of [HL20, Definition 1.10.1]). A finite ©-stratification of X indexed by a totally
ordered finite set I with a minimal element 0 € I is given by:

1. A collection of open substacks X<, C X with « € I such that X, C X, if a < &'.
2. For each a > 0 a O-stratum S, C Filt(X,,) such that X<, \ (Up<caX<ar) = evi(Sa).
3. One should have X = Uger X

The minimal open stratum X*®° C X is called the semistable locus.

Let iq: Sa — Xo be the embedding induced by evy. The pushforward i, has left i, : QCoh(X<q) — QCoh(Sy)
and right i}, : QCoh(X<,) — QCoh(S,) adjoints. Also let Coh™ (—) denote the bounded above category of coherent
sheaves.

Proposition 3.3.2. Let X be a smooth Artin stack of finite type over R with affine diagonal endowed with a finite
O-stratification. Assume that X*° and the centra Z, are cohomologically proper over R. Then X is cohomologically
proper over R.

Proof. By induction on |I| we can reduce to the case of a single ©-stratum § with the complement given by X*5. The
stratum S is a connected component of Filt(X') and thus is also smooth over R. Since both X and § are smooth, we
get that i* restricts to a functor between Coh(X) ~ QCoh(X)Pf and Coh(S) ~ QCoh(S)P*. Also by smoothness
the direct image i,O5 € QCoh(X) is perfect. Indeed, by descent this is enough to check after taking a pull-back
on a smooth cover by a smooth R-scheme of finite type where we get a regular embedding ¢': S’ — X’ which is
automatically a locally complete intersection in X’. After refining the cover in Zariski topology, we can assume
the intersection is actually complete and resolve i’.Og by the Koszul complex. This shows that the functor ' also
restricts to a functor from QCoh(X)P*™ to QCoh(S)Pf. Indeed, one has a formula i'F ~ Homgcon(x) (#1405, F)
where the latter has support on § and is considered as an object of QCoh(S). By smooth descent for Hom
([Prell, Lemma A.1.1]) we can reduce to the case Spec A ~ S — X ~ Spec B of smooth affine schemes over R,
where the sheaf Homgcop(x) (i+Os, Ox) is computed by the dual to the Koszul complex and thus is bounded and
has finitely generated cohomology modules (and this way belongs to Coh(A)).

Given all this, by a similar argument to Proposition 3.2.8 it is enough to get a suitable semiorthogonal decom-
position of Coh(X) ~ QCoh(X)P! in terms of Cohg(X) and Coh(X**) and show that all Hom’s in Coh(S) lie in
Coh™(R). Since Homgon(s) (F,G) ~ RI(S, Homgeon(s) (F; G)) with Homgcons) (F,G) € Coh(S) and Z is cohomo-
logically proper for the latter point it is enough to show that evg: S — Z is cohomologically proper. By descent
and base change this can be checked on a (suitable) smooth cover of X; namely we can use [AHLH18, Lemma 6.11]
to produce a smooth cover [X/G,,] — X where X is an affine scheme and such that the preimage of § is given
by a union of connected components of [X1/G,,] (in the terminology of Sections 3.2.1 and 3.2.2). The centrum
Z is then given by a union of the corresponding components of [X"/G,,] and the needed statement follows from
Lemma 3.2.9.

It remains to deal with the semiorthogonal decomposition. By [HL20, Theorem 1.9.2] for each integer w € Z we
have a decomposition for the bounded above category Coh™ (X)

Coh™ (X) = (Cohj (X)<w, Gy, Coh (X)>w )

in terms of certain subcategories Cohs(X)<w, Cohg(X)>, C Cohg(X) forming a semiorthogonal decomposition of
Cohg(X) on its own and with G, being isomorphic to Coh™ (X*%) via the restriction F + F|xss. This decomposition
holds without extra assumptions on X, however if we assume X, S are smooth (and thus in particular the embedding
i: § — X is regular) the proof of [HL20, Proposition 2.1.2] goes through without any changes, giving the analogous
decomposition for QCohP*"" (and thus also for Coh). O

Let’s now assume that we have a smooth finite type stack X over a characteristic 0 field F' endowed with a ©-
stratification. Filtering F' by regular Noetherian rings R C F' as in Section 2.3 we get a smooth spreading Xg; we can
also spread the open substacks X<, to get open substacks X<, r C Xgr. Applying the following lemma inductively
we can in fact assume that this gives a O-stratification. Before stating the lemma note that one has a natural monoid
structure on © induced by the multiplication map A! x A! — A!. Having a stack 9 with an action of © in the
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homotopy category one gets a baric structure on QCoh(9) (see [HL20, Section 1.1]); in particular for each weight
w € Z one has a semiorthogonal decomposition (QCoh(9)=%, QCoh(9")<¥). Moreover if 9" is smooth over a regular
Noetherian base ring R this also defines a decomposition for coherent sheaves: Coh(9") = (Coh(9)=%, Coh(9)<%)
([HL20, Proposition 1.2.1(3)]); we will denote by =%, 3<% the corresponding truncation functors. We note that
any ©-stratum S C Filt(X) comes with a natural ©-action.

Lemma 3.3.3. Let Xp be a smooth Artin stack of finite type over F' with affine diagonal and let ip: Sp — Xp be
a ©-stratum. Then one has a spreading ig: Sg — Xgr which is a ©-stratum as well.

Proof. The key step here is to use the intrinsic description of O-strata ([HL20, Section 1.4]). Namely, over any
Noetherian base a closed substack i: § < X with an action a: © x § — S gives a map ¢: S — Filt(X) defined as
a composition

S L5 Map(©,5) <5 Map(©, X).

By [HL20, Proposition 1.4.1] if X is locally of finite presentation with affine diagonal the map ¢ is also a closed
embedding; moreover, ¢: § < Filt(X) defines a ©-stratum if and only if L/ x € QCoh($)=.

The stack X is smooth, thus by [HL20, Corollary 1.3.2.1] Filt(XF) is smooth and so S is smooth. The stack
Sr is also a closed substack of a stack of finite type and so is of finite type over F' as well. Using Theorem 2.1.13
we can spread the natural action ap: O X Sp — Sr and the closed embedding ip: Sp — Xp to get an action
ar: Or XSr — Sr and a closed embedding ir: Sgp — Xg. Moreover we can assume Sg, Xr are smooth and of finite
type over R. By the above description Sg is a ©-stratum if and only if Ly, /x, € QCoh(Sg)2'; this is equivalent to
B<'(Ls,/x) ~ 0. Note that by smoothness Ly, /x, and thus also 3<'(Lg,/x,) are coherent. Since the restriction
to Xp of B~(ILs, /x,) is given by 3= (L, /x,.) which is zero, we get that <! (L, /x,) ~ 0 after a finite localization
of R (indeed this is enough to check for a pull-back to a smooth cover by a scheme, where this follows from the
Chevalley’s consructibility theorem). O

Remark 3.3.4. We needed to use the intrinsic description of the @-strata in Lemma 3.3.3 because the stack Filt(X)
is only locally finitely presentable; thus we can’t directly apply Theorem 2.1.13 to spread Sp — Filt(Xz) or compare
Filt(Xg) with some other spreading Filt(X)g.

From the discussion above we deduce the following result:

Corollary 3.3.5. Let X be a smooth Artin stack of finite type with affine diagonal over F and let {X<q, Sa} be a
finite ©-stratification of X. If the centra Z, of O-strata and the semistable locus X*° are cohomologically properly
spreadable then X is also cohomologically properly spreadable. In particular the Hodge-de Rham spectral sequence
degenerates for X.

Proof. By induction on |I| using Lemma 3.3.3 we can spread out the O-stratification (with the properties as in the
proof of the latter). The centrum Z, g is a closed substack of S, g, thus it is also of finite type and is a spreading
of Z,. Enlarging R C F' so that all Z, g and X3’ become cohomologically proper we then use Proposition 3.3.2 to
get that so is Xg. O

In [HL18] various ways of constructing a ©-stratifications on a stack are discussed in great detail. We will stop
on a single example given by a KN-stratification of a global quotient stack.

Example 3.3.6. In [Tel00] Teleman showed the degeneration of the Hodge-to-de Rham spectral sequence for the
quotient stacks [X/G] with G reductive under the condition that the action on X is KN-complete (see Section 1 of
loc.cit. for the definition of a KN-complete action and Section 7 for the proof of degeneration). We comment on
how to deduce his results (in a slightly more general form) from Theorem 1.4.3 and Corollary 3.3.5.

A KN-stratification of a variety X with a G-action is a stratification

X=Xx*UlJ S
a€el

by locally closed G-invariant subschemes satisfying the following properties:

e For each a there should exist a one-parameter subgroup Ay: G,, — G; let L, C G be the centralizer of
Aa(Gy,). The KN-strata S, should come as follows: for each oo € I there should exist an open subvariety
Zy C X2a(Gm) of the fixed locus of Aa(Gy,) such that S, is given by the G-span G -Y,, of the corresponding
attracting locus

Yo ={z¢€ X|%i_r3%)\a(t) T € Za}.
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The subvariety Z,, is called the centrum of S, and it is endowed with the natural action of the centralizer
L. The attracting locus Y, is endowed with the natural action of the (automatically parabolic) subgroup
P, C G of elements p € G for which the limit of A\, (£)pAa(t)~! in G as t — 0 exists.

e Each KN-stratum S, should satisfy one further property: namely, the natural action map G x Y, — X

should induce an isomorphism S, ~ G I;? Y,. In the context of GIT the KN-stratification usually comes as
follows: the centra Z, C X*«(©m) are the semistable loci of the action of L/, == Ly /A (Gy) on XA (Cm): we
note that in this case the L,-action on Z, is automatically locally linear and thus Theorem 3.1.4 applies to
Zo = [Zo/La). We will assume further on that we are in this setting.

A KN-stratification is called complete if the categorical quotients Z,// L, and X*//G are projective. We will
call it locally linear if the actions of L, on Z, and the action of G on X*%) are locally.

Let X = [X/G], X* = [X*/G], S; = [Sa/G| =~ [Y;/P)] and Z, = [Z,/Li]. Find a total ordering®' on I
such that for X<, := X \ Ug'>a S the embedding iq: Sy — X<q is closed. By the description of ©-strata in a
quotient stack ([HL18, Theorem 1.37]) applied to X<, one can see that S, is naturally a O-stratum and that Z,
is its centrum. Then, given the KN-stratification is complete and locally linear, by Theorem 3.1.4 we get that the
stacks Z, and X*° are cohomologically properly spreadable. Thus by Corollary 3.3.5 X is also cohomologically
properly spreadable and the Hodge-de Rham spectral sequence degenerates for it.

Note that the same proof works if the categorical quotients Z,// L, and X* //G are proper but not necessarily
projective.

Remark 3.3.7. In [HLP15] the non-commutative Hodge-to-de Rham degeneration was proved for a slightly more
general definition of a KN-complete stratification: namely one does not need to assume that the L;-action on Z; is
locally linear, only that there exists a good quotient q: [Z;/L;] — Z;//L;. In this case the strata are not necessarily
covered by Theorem 3.1.4 (and the above strategy) but we still hope that they could be cohomologically properly
spreadable. More generally, it would be interesting to answer the following question:

Question 3.3.8. Let ¢: 9 — Y be a good moduli space (e.g. see the Definition in Section 1.2 of [Alp13]) and
assume that Y is a proper algebraic space. Is it true that 9 is cohomologically properly spreadable?

The notion of a good moduli space does not spread out well unless the stabilizers are nice, i.e. extension of a
finite group by a torus. Thus we think it would be very interesting to understand if the property of having a good
proper moduli space in characteristic 0 implies any cohomological properness for its mixed characteristic spreadings
(as it happens in the case of BG for a reductive G).

Motivated by Questions 1.3.2 and 1.3.3 of [HLP19], one can also ask the following:

Question 3.3.9. Let X be a formally proper stack (in the sense of Definition 1.1.3 of [HLP19]) over F. Is X
cohomologically properly spreadable?

A Computation of H*(BG,, Opg,) over Z

In this section we compute cohomology (with coefficients in the structure sheaf) of the classifying stack BG, of the
additive group G, over the ring of integers Z. Unfortunately, were not able to locate this result in the literature, so
we do the computation here based on the Jantzen’s computation of cohomology of BG, r,. This result is included
for completeness only and will not be used anywhere else in the paper.

We start by constructing sufficiently many elements in the first few cohomology groups of Opg,,, the rest of
the computation will then unravel from there. We consider the action of G,, on G, with ¢ € G,, acting on the
variable x in O(G,) ~ Z[x] by t: z — t?x (note the square in the formula). This makes H*(BG,,Opg,) into
a G,,-representation??, thus providing an extra Z-grading which we denote by H*(BG,, Opg,), using the lower
indexing.

The cohomology H*(BG,, Opg, ) is the same as the cohomology of G, with coefficients in the trivial module Z.
We can compute it via the standard complex C*(G,,Z) := Z[G?] (see [Jan07, Section 4.14]):

*

072 7] 2 Z[y, 2] 22 ...

211t is not hard to see that such a total ordering exists for any stratification. In the GIT “projective-over-affine” case it usually comes
via the values of the Hilbert-Mumford potential. Examples of more general potentials which apply to other situations can be found in
[HL18, Section 4].

22More precisely we should take the corresponding semidirect product G4 XG,, with the projection p: G¢ XG., — Gy, and then consider
the direct image p+Op (G, xG.m) € QCoh(BGm); by base change its fiber over the point SpecZ — BG, is given by RI'(BGa,Opg, )-
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The action of G,, extends to C*(G,,Z) giving a Z-grading which on each term Z[G”]| ~ Z[z1,...,x,] is given by
the doubled degree of a polynomial. This splits C*(G,,Z) as a direct sum of graded components C*(G,, Z),, with
i > 0. Note that all non-zero components have even weight.

The 0-th component C*(G,,Z)o has Z in every component and is just the complex associated to the constant
simplicial set Z; thus C*(Gg,Z)¢ ~ Z[0]. The second graded component C*(G,,Z)2 looks as

0=-0—=22Z-2—=>Z xDZ y—...

and is the complex associated to the simplicial interval A; (or rather the corresponding free abelian group) shifted
by 1; thus C*(G,,Z)s ~ Z|—1]. Let v1 be the corresponding generator of H'(G,,Z),.

For any n € N consider ®,,(y, 2) == di(z") = (y—2)" —y" +2" as an element of C*(G,, Z)2,,. Note that 2" is the
generator of C(G,,Z)2, and thus, first, H*(G,,Z)2, = 0 unless n = 1 and, second, ®,(y, z) generates the group

of coboundaries B?(Gg,Z)2, C C*(Gq,Z)a2n over Z. In particular H'(G,,Z) ~ Zv;. Note also that since p|(’£) if

0 < k < p’, ®,i(y,2) is divisible by p for any i > 1; moreover da (W) = 0 since da(®,i (x,y)) = 0 and all terms
in the complex are free Z-modules. Thus for any prime p and 7 > 0 we get a class v, = [W} € H?(G,, Z) pi

such that p-v,, = 0. This way, we get a map

X: (Z ® Zvy) ®z Symy, (@ Fpvp @ Fpv,e @ .. ) — H*(Gq,2Z) (8)

p

which is an isomorphism on H' and an injection on H2. In the context of Hodge-properness we see that this is
already very bad: for any p the p-torsion in H?(BG,, Opg,) is infinitely generated.

To compute H* (G, Z) fully we will need a description of the cohomology of G, over F,, (see e.g. [Jan07, Lemma
4.22 and Proposition 4.27]). The first cohomology Hl((Ga)]Fp, [F,) is a span F,w; ® Fpw, ® Fpw,e @ ... of classes
w1, Wp, wg ... with the Gy,-weight of each wy: given by 2p°. Moreover since by the universal coefficient formula the
reduction map H*(G,,Z)/p — Hl((Ga)]Fp, F,) is an injection and preserves the G,,-weights we get that the class
wy equals to the reduction 77 of v; (up to a scalar) for any p. From the computation in [Jan07, second paragraph

on p.60] it also follows the reductions v, € H 2((Ga)]FP, [Fp,)api are non-zero (namely in the notations of [Jan07] 7

is equal to B(zP') up to a sign change in the second variable) and lincarly independent (since they have different
Gyn-weights).

Lemma A.1l. For any prime p the p-primary part of H*(G,,Z) is elementary, i.e. it is killed by p.

Proof. The statement will follow from the computation of the Bockstein differential
Bp: H*((Ga)]ppa Fp) - H*Jrl((Ga)]Fp ) Fp)-

Namely we will use the fact that if we have a class [c] € H*(Gq,Z) then its reduction [¢] € H*((Ga)g, ,Fp) is killed
by B, and that if [¢] € Im 8, then p - [c] = 0 (in other words if the class of [¢] in the cohomology with respect to
Bockstein is 0 then [] is killed by p).

There are two cases. If p = 2 there is an isomorphism

H*((Ga)g,, F2) ~ Symg, (Hl((GQ)M,Fg)) ~ Folw, we, wy, . . ).

Consequently, all G,,-weights in H*((Gq)g,,Fa) are given as sums 2° + 27 for 4,5 > 0. Since the reduction
Ty € H?((Ga)g,,F2) is non-zero and its weight is 2°*' the only option for it is w3;_,. Also, by the univer-
sal coefficient formula the class wy:i, i > 0 should come as the only non-zero element of Tor;(H?(G,,Z),F2)
of weight 2i*1. The latter group is equal to the 2-torsion in H?(G,,Z) and contains vy which has the cor-
rect weight. From the properties of the Bockstein operator it follows that Sa(wgi) is equal to Ty = w;-,l if
1> 0. Also B2(w1) = 0 (since w; = 1) and since By is a differentiation this, together with the above, defines
it uniquely®®. Note that (s is Fo[wy, w3, w?, .. .]-linear and that Fo[wy,ws,wy,...] is free over Falwy, w3, w?,.. ]
with basis given by wyr = wWyi; Wiy ... Wi, where I = {i1,...,45} runs over finite subsets of Z~o. We turn
(Fo[wy, wa, wy, .. .],B2) into a complex of Fa[ws, w3, w?,...]-modules be defining another (homological) grading,
namely putting deg, wqr to be equal to |I|. In fact this way we can identify (Fa[wy, wa, wy, . . .]«, B2) with the Koszul

23Tn terms of the identification H*((Gq )py > F2) = Falwi, wa,wy, .. ], B2 acts as the well-defined vector field 3772 ngl awi
i
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complex Kosg, (4, w2,w?,..] (w?, w3, w?,...), for the infinite sequence (w?,w?,w?,...);** indeed, one can map the k-

th term Kosg, [, w2,02,..](WF, w3, w, .. )k = A§2[w1,w§,w§,...} (Fo[wy, w3, w3, ...]%>) with the basis (e1,ea,e3,...) of
Falw, w3, w3,...]% associated to the elements (w?, w3, w3, ...), to the k-th graded component of Fa[w1, wa, wy, . . .]

by sending ey :=e;; A ... Ae; to wor. It is easy to see that the Koszul differential goes exactly to 2. Since the
sequence (wf, w3, wj,...) is regular we get that the cohomology of (H?((Gq)g,,F2), 82) is given by

FQ[wlvwngiv . ]/(wiw%awza e ) = FQ[wl]/w%

and is spanned by 1 and w; over Fo. But we know that wy = 71 (and of course 1) is a reduction of a non-torsion
class v1 (resp. 1). Thus we get the statement.
If p is odd then

H*((Ga)g, Fp) = Ap, (w1, wp, wpe, ...) ®F, Symg, (Vp, Vp2, Vps, - . -),

By a similar reasoning to the p = 2 case we get that (,(w,:) = 7, (at least up to a scalar) for i > 0 and that
Bp(w1) = 0. Similarly, 8, is Fp[vp, vp2,vps, .. |-linear and H*((G4)p ,Fp) is a free module over Fp[vy,, vy2, vps, .. ]
with the basis given by wpr == wpi, A ... Aw,;, where I = {i1,... ,gk} with 41 < ...4 runs over finite subsets of
Z>g. Defining a new (homological) grading on (H*((GG)FP, [F,) by putting deg, w,r = |I| and deg, v; = 0 we view
(H((Ga)g, Fp)s, Bp) as a complex of Symg [Up,Vy2, s, .. J-algebras, which in fact is identified with the product
(now as dg-algebras)

Aﬁ;p [wl] ®]Fp KOS]Fp[Wpﬁpz T, (51,,51)2,5;03, .. ) ~ H*((GG)]F;,’FP)

where the differential on w; is 0. Indeed one can define a map by sending each generator e; € Kos|y| to w,r and

we leave it to the reader to check that it is an isomorphism. Since Ty, Tp2,Tps, ... € Fp[0p, Up2,Tps, . . .| is a regular
sequence in the case of an odd p we also get that the cohomology of 3, is spanned by 1 and w; over F,,, and they
come as reductions of non-torsion classes. This finishes the proof. O

We finish the description of H*(G,,Z). By Lemma A.1 the p-primary part of H*(G,,Z) (as a non-unital
algebra) is killed by p and thus can be described as Im 8, C H*((Gq)r,, ;) via the reduction map. More explicitly
Im 3, is freely generated by elements §,(ws) as a module over [, [Ty, T2, Tps, ...] in the notations of Lemma A.1.
The elements (3,(w;) are not algebraically independent over IF,, [T}, U2, Tps, . . .] and it seems hard to describe all the
relations between them; but still this description is somewhat nice, since there is only finite number of §,(w;) of a
given cohomological degree. To finish the computation over Z it only remains to see what happens with the powers
of v1. Since vy is of cohomological degree 1, v is 2-torsion and we saw in the course of proof of Lemma A.1 that

in fact v? = ve. All in all this gives the following description of H*(BG,, Opg, ):

Proposition A.2. We have

H*(BG,,Opg,) ~ (Z[vl] o (@Imﬂp>> /vf = vg.

Also, returning to the map x (see Equation (8)), we get a subalgebra

A= (Z[Ul] ®z Symy, <@ Fpvp @ Fpupe @ .. )) /v% =wvy C H*(BG,,Opg, ),

p

and the algebra H*(BG,, Opg,) is generated by 1 and 3, (w;) (for various p and I) as an A-module. More precisely
one can check that we have a direct sum decomposition

H*(BG,,0pg,) ~ A @A “ Bp(wr),

p,I

where for each 3,(wy) the submodule A - 8,(wy) is just isomorphic to (non-derived) quotient A/p.

24We warn the reader that this is only an isomorphism Fa[wy, w%, wi, ...]-dg-modules and not dg-algebras.
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Remark A.3. Quite remarkably the cohomology H*(BG,, Opg,) turns out to be directly related to the cohomology
of the Eilenberg-Maclane space K (Z,3)?°: namely there is an isomorphism

H2,(K(Z,3),Z) ~ P H' (BG4, Opg, )n-2i,

sing
=0

which in fact extends to the isomorphism of the graded algebras
@ Hgng(K(Za 3)7 Z) = @ (@ Hi(BGav OBGa)n2i> .
n>0 n>0 \i1=0

We comment more on this. Indeed, K(Z,3) ~ B(K(Z,2)) ~ BCP>. Realizing K(Z,3) as the colimit of the
simplicial diagram

cohm(...Egccwx(cPoo:;moo *) ~ . K(Z,3)

we get a spectral sequence
B = HY,,(CP™)",Z) = Hi (K (Z,3), Z).
The cohomology H;‘ing((CIP’OO, Z) ~ Z[z], degx = 2 has a natural Hopf algebra structure with comultiplication
induced by the addition m: CP*>® x CP>* — CP*. It is easy to see that m*(z) = x®1+1®x and so the corresponding
affine group scheme is G,; moreover, the cohomological grading corresponds exactly to the G,,-action on G, which
we considered before. Via this identification and the Kiinneth formula, the first page E7"? of the spectral sequence

above is identified the standard complex C*(G,, Z):
do d1 da
0—7Z — Zlz] = Zlz]) @z Z]z] = ...

Thus we also know the second page, namely we have E5'? = H"(G,,Z),. Note that all odd rows are automatically
zero.

We claim that the spectral sequence degenerates at the second page. Since all terms E5°? are finitely generated
over Z and by Lemma A.1 all torsion they have is elementary, it is enough to check that all the differentials on the
second page are zero modulo all primes p. Consider the analogous spectral sequence Ef ’Z‘f = Hfing((CIP’OO)", F,) =
H;:;(K(Z,3),Fp) for Fy-cohomology; similarly to the above its second page looks as Eyl = H"((Ga)r,,Fp)aq
and as we have seen the reduction map Ey?/p — E3! is an embedding. Thus it will be enough to show that
E%, degenerates at the second page for any p. All differentials in E;’, are generated by maps between some F,,-
cohomology of some spaces and thus commute with the action of the Steenrod algebra A,. By [Jan07, Proposition
in 4.27] the algebra generators w,: in fact are related by the Frobenius Fg, : Go — Gg, namely wy: = Fg wpi-1.
From the topological point of view, if z € Ellf) ~ H?(CP*>, Fp.) is a generator whose class in Ezlﬁ = H*((Ga)r,,Fp)2
is equal to wy € E;:;, then such wy: comes as a generator x? e H*' (CP>,F,) and is expressed more functorially
as PP~ ... P'w;, where P’ denotes i-th Steenrod power operation. Also recall that T, = (3, (w,:). Since w,: and
vpi together generate Ey’; and are obtained from w; by applying cohomological operations it is enough to show
that d,, ,(w1) = 0 for any n. This is obvious for n > 2 and for n = we have da ,(w;1) = 0 since da p(w) € Eg’; =
H?((Ga)r,, Fp)1 = 0.

Even though the degeneration of the spectral sequence a priori only gives the description of a certain associated
graded of HE, (K (Z,3),Z), we claim that there also exists a natural isomorphism of the latter with E; +*. Indeed,
let ¢ be the generator of H*(K(Z,3),Z) ~ 7 which goes to v; € Ey® ~ H'Y(G,,Z); under the natural map
and consider its reduction ¢ which generates H*(K(Z,3),F,) ~ F,. Then putting ¢, = P'P'""!...P'¢, and
dyi = Bp(cpi) in the case of odd p, we get an isomorphism

FQ[E, C2,C4, . . ] >~ H*(K(Z, 3),F2)

and
A%, (@ cpycp2, .. ) @r, Symp (dp, 2, dys, .. .) = H(K(Z,3),F)p)

for p odd. Moreover, the Bockstein 5, is acting on H*(K(Z,3),F,) by analogous formulas analogous to the
ones we had in the course of the proof of Lemma A.1 and by the same argument it follows that the p-primary

25Recall that K (Z,n) for n > 1 is the unique (up to homotopy) space such that m, (K (Z,n)) = Z and 7;(K(Z,n)) = 0 for i # n.
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part in H* g(K(Z,?)),IE‘p) is killed by p. Sending ¢ to vi, ¢, to wy,: and dy,: to vy defines an isomorphism be-

Sin,

tween H*(K(Z,3),F,) and H*((Ga)r,,,Fp), which, moreover, respects Bocksteins on both sides. Finally, describing
H*(K(Z,3),Z) in terms of Im 3, for various p and the class c as in Proposition A.2 this extends to the isomorphism
of graded algebras

@ Hgng(K(Za 3)7 Z) = @ @ Hi(BGav OBGa)n72i

n>0 n>0 \i=0

as we claimed.
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