
ar
X

iv
:1

91
0.

12
66

5v
2 

 [
m

at
h.

A
G

] 
 2

2 
A

pr
 2

02
1

Hodge-to-de Rham degeneration for stacks

Dmitry Kubrak, Artem Prikhodko

Abstract

We introduce a notion of a Hodge-proper stack and apply the strategy of Deligne-Illusie to prove the Hodge-
to-de Rham degeneration in this setting. In order to reduce the statement in characteristic 0 to characteristic
p, we need to find a good integral model of a stack (namely, a Hodge-proper spreading), which, unlike in the
case of proper schemes, need not to exist in general. To address this problem we investigate the property of
spreadability in more detail by generalizing standard spreading out results for schemes to higher Artin stacks
and showing that all proper and some global quotient stacks are Hodge-properly spreadable. As a corollary we
deduce a (non-canonical) Hodge decomposition of the equivariant cohomology for certain classes of varieties with
an algebraic group action.
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0 Introduction

0.1 Deligne-Illusie method for schemes

Let X be a smooth scheme over C and let X(C) be the topological space of its complex points. Grothendieck has
shown that there is a formula for the singular cohomology of X(C) in purely algebraic terms, namely

Hn
sing(X(C),C) ≃ Hn

dR(X/C),

where the de Rham cohomology Hn
dR(X/C) is defined as the n-th hypercohomology of the algebraic de Rham

complex of X . If, moreover, X is projective, using Hodge theory one obtains the Hodge decomposition

Hn
sing(X(C),C) ≃

⊕

p+q=n

Hq(X,Ωp
X).

Unfortunately, it is only possible to get such a decomposition utilizing some transcendental methods (like Hodge
theory). However, for X proper, using just algebraic geometry we still obtain a functorial filtration F •Hn

dR(X/C)
whose associated graded is given by the sum above. Namely, the de Rham complex has a natural cellular (also

called “stupid”) filtration Ω≥pX,dR given by subcomplexes

Ω≥pX,dR := . . . // 0 // Ωp
X

d // Ωp+1
X

d // . . .
d // ΩdimX

X .

This filtration induces a filtration on the complex of global sections RΓdR(X/C) := RΓ(X,Ω•X,dR) whose associated

graded pieces are RΓ(X,Ωp
X [−p]). As a consequence one gets the so-called Hodge-to-de Rham spectral sequence

Ep,q
1 = Hq(X,Ωp

X) ⇒ Hp+q
dR (X/C).

As was shown by Deligne and Illusie [DI87] there is a purely algebraic proof of the degeneration of the spectral
sequence above, thus the induced filtration F •Hn

dR(X/C) on the de Rham cohomology has the associated graded

gr•F Hn
dR(X/C) ≃

⊕

p+q=n

Hp,q(X), where Hp,q(X) := Hq(X,Ωp
X).

The strategy of Deligne-Illusie is to reduce the statement in characteristic 0 to an analogous question in big
enough positive characteristic. Let k be a perfect field of characteristic p and let Y be a smooth scheme over k.
Then we have:

Theorem 0.1.1 (Cartier). Let Y (1) denote the Frobenius twist of Y and let ϕY : Y → Y (1) be the relative Frobenius

morphism. Then there exists a unique isomorphism of sheaves of OY (1) -algebras on Y
(1)
Zar

C−1Y :
⊕

i

Ωi
Y (1) →

⊕

i

Hi(ϕY ∗Ω
•
Y,dR),

determined by the property that for any local section f of OY

C−1Y (df) = “dfp/p” := fp−1df.

The map C−1Y is called the inverse Cartier isomorphism.

This way we see that the Postnikov (also called “canonical”) filtration on ϕY ∗Ω
•
Y,dR induces another filtration on

RΓ(Y,Ω•Y,dR) ≃ RΓ(Y (1), ϕY ∗Ω
•
Y,dR) whose associated graded pieces are RΓ(Y (1),Ωp

Y (1) [−p]). Taking the spectral
sequence induced by this filtration we obtain the so-called conjugate spectral sequence

Ep,q
2 = Hp(Y (1),Ωq

Y (1)) ⇒ Hp+q
dR (Y/k).

Note that for any spectral sequence the E∞-page is always a subfactor of the Er-page (r ≥ 0), hence dimk E
∗,∗
∞ ≤

dimk E
∗,∗
r . If all vector spaces E∗,∗∗ are finite-dimensional, equality holds if and only if all differentials starting

from the r-th page vanish. It follows that for Y proper, the conjugate spectral sequence degenerates if and only
if dimk H

n
dR(Y ) =

∑
p+q=n dimk H

p,q(Y (1)). Since dimk H
p,q(Y (1)) = dimk H

p,q(Y ) this happens if and only if the
Hodge-to-de Rham spectral sequence degenerates as well.

The differentials in the conjugate spectral sequence are induced by the connecting homomorphisms for the
Postnikov filtration on ϕY∗Ω

•
Y,dR. In particular, if ϕY∗Ω

•
Y,dR is formal (i.e. quasi-isomorphic to the sum of its

cohomology), then the conjugate spectral sequence degenerates. While in general this is hard to guarantee, the
formality of the truncation τ≤p−1ϕY∗Ω

•
Y,dR turns out to be equivalent to the existence of a lift to the second Witt

vectors W2(k):

2



Theorem 0.1.2 (Deligne-Illusie). A smooth scheme Y over k admits a lift to W2(k) if and only if there exists an
equivalence in the derived category of OY (1)-modules

p−1⊕

i=0

Ωi
Y (1) [−i]

∼
−→ τ≤p−1ϕY ∗Ω

•
Y,dR

inducing the inverse Cartier isomorphism C−1Y on H∗. In particular, if Y admits a lift to W2(k) and dim Y < p,
then the complex ϕY ∗Ω

•
Y,dR is formal, and hence the Hodge-to-de Rham spectral sequence degenerates at the first

page.

The proof of the degeneration in characteristic 0 is then accomplished by choosing a smooth proper model (the
so-called spreading) XR of X over some finitely generated Z-subalgebra R of F . Enlarging R if needed, one can
assume that the R-modules Hq(XR,Ω

p
XR

) and Hn
dR(XR/R) are free of finite rank and that R is smooth over Z.

By smoothness of R any homomorphism from R to a perfect filed of positive characteristic lifts to the second Witt
vectors (see Lemma 1.4.4). Picking a perfectization of closed point of SpecR of residue characteristic p > dimX
one reduces Hodge-to-de Rham degeneration to Theorem 0.1.2.

0.2 Generalization to stacks

In this work we apply the strategy of Deligne-Illusie in the case of Artin stacks. For a smooth proper Deligne-
Mumford stack one can proceed with the original arguments (see e.g. [Sat12, Corollary 1.7]), but they do not
seem to work for a general smooth Artin stack (see Remark 0.2.4). Instead we use another approach relying on
quasi-syntomic descent for the derived de Rham cohomology.

As in the case of schemes, to establish Hodge-to-de Rham degeneration, we need to impose some properness
assumptions. However, the standard notion of a proper stack is too restrictive for our purposes. For example,
the quotient stack [X/G] of a proper scheme X by an action of a linear algebraic group G is proper if and only if
the stabilizers of all points of X are finite group schemes. On the other hand, as we will see in Section 3.1, the
Hodge-to-de Rham spectral sequence for [X/G] with reductive G always degenerates.

This suggests that we should look for a more general notion of properness:

Definition 0.2.1. Let R be a Noetherian ring. A smooth Artin stack X over R is called Hodge-proper if
Hq(X ,∧pLX/R) is a finitely generated R-module for all p and q, where LX/R is the cotangent complex of X

over R.

The complex RΓ(X ,∧pLX/R) is a natural analogue of RΓ(X,Ωp
X) and, similarly to the scheme case, the

de Rham cohomology complex RΓdR(X /R) has a natural (Hodge) filtration whose associated graded pieces are
RΓ(X ,∧pLX/R[−p]); see Section 1.1 for more details. In this way one obtains a spectral sequence

Ep,q
1 = Hq(X ,∧pLX/R) ⇒ Hp+q

dR (X /R).

In the case R = F is a field this spectral sequence degenerates if and only if

dimF Hn
dR(X /F ) =

∑

p+q=n

dimF Hq(X ,∧pLX/F ). (1)

Remark 0.2.2. By smooth descent for the cotangent complex, RΓ(X ,∧pLX/F ) produces the same answer as the
definition of the Hodge cohomology via the lisse-étale site of X (see Proposition 1.1.4).

We will now explain the strategy of our proof of the equality (1) above. The first step is to extend Theorem 0.1.2
to the setting of stacks:

Theorem (1.3.23). Let Y be a smooth quasi-compact quasi-separated Artin stack over a perfect field k of charac-
teristic p admitting a smooth lift to the ring of the second Witt vectors W2(k). Then there is a canonical equivalence

RΓ(Y , τ≤p−1Ω•Y ,dR) ≃ RΓ

(
Y (1),

p−1⊕

i=0

∧iLY (1)/k[−i]

)
.

In particular for n ≤ p− 1 we have Hn
dR(Y /k) ≃ Hn

H(Y
(1)/k).
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Remark 0.2.3. Note that Theorem 1.3.23 gives only a partial generalization of Theorem 0.1.2. Even though the
statement indeed follows from the analogous splitting of sheaves (see Theorem 1.3.21 below) there is no analogue
of the “if and only if” statement of the Deligne-Illusie theorem. One reason for this is that the original approach of
Deligne-Illusie is poorly suited for general Artin stacks (see Remark 0.2.4); so instead we use the (slightly enhanced)
proof of the splitting due to Fontaine-Messing [FM87, Section II].

Since the de Rham cohomology for Artin stacks are defined as the right Kan extension from smooth affine schemes
(Definition 1.1.3) one can more or less formally deduce the theorem above from the following very functorial form
of Deligne-Illusie splitting for affine schemes:

Theorem (1.3.21). Let Affsm
/W2(k) be the category of smooth affine schemes over W2(k). Then there is a natural

k-linear equivalence of functors

p−1⊕

i=0

Ωi
− : B 7→

p−1⊕

i=0

Ωi
(B(1)/p)/k[−i] and τ≤p−1Ω•−,dR : B 7→ τ≤p−1Ω•(B/p)/k,dR

from Affsm,op
/W2(k)

to the ∞-category D(Modk) which induces the Cartier isomorphism on the level of the individual

cohomology functors.

The splitting in Theorem 0.1.2 is already functorial with respect to liftings to W2(k), but only on the level
of the underlying homotopy category and not the ∞-category of complexes D(Modk) itself. To get this higher
functoriality we follow [FM87, Section II] using a more convenient language of [BMS19].

The idea is to extend the de Rham (and the crystalline) cohomology functor to a larger category of quasisyntomic
algebras (Definition 1.3.1). This category, endowed with the quasisyntomic topology, has a basis consisting of quasi-
regular semiperfectoid Wn(k)-algebras (Definition 1.3.3), on which the values of RΓdR and RΓcrys (or rather their
derived versions RΓLdR and RΓLcrys) become ordinary rings. Additionally, the Frobenius morphism, the Hodge
filtration and the conjugate filtration can be described explicitly. This way, using quasi-syntomic descent, the
question reduces to a certain computation in commutative algebra.

More concretely, for a quasi-regular semiperfect k-algebra S one can prove thatRΓLcrys(S/Wn(k)) ≃ Acrys(S)/p
n,

where Acrys(S) is the divided power envelope of the kernel of the natural surjection W ((S)♭) ։ S (see Construc-
tion 1.3.15). Under this identification the Hodge filtration on RΓcrys(−/k) ≃ RΓdR(−/k) corresponds to the

filtration by the divided powers of the pd-ideal I ⊳ Acrys(S)/p. The conjugate filtration Filconj∗ admits an ex-

plicit description as well (see Definition 1.3.17). Given a lifting S̃ of S to W2(k) there is a natural morphism

θ : Acrys(S)/p
2 → S̃. The image of K := ker θ under the first divided Frobenius map ϕ1 then provides a splitting

of Filconj1 into Filconj0 ⊕Filconj1 /Filconj0 ≃ S♭/I ⊕ I/I2 (Proposition 1.3.22). By multiplicativity this extends to the

splitting of Filconjp−1 whose descent to smooth schemes gives Theorem 1.3.21.

Remark 0.2.4. The original approach of Deligne-Illusie (at least applied literally) does not seem to work for a
general Artin stack; the key result of [DI87] is the equivalence of two gerbes on the étale site of Y (1)/k for a smooth
k-scheme Y : the one of splittings of τ≤1ϕY ∗Ω

•
X,dR in QCoh(Y (1)) and the one of liftings of Y (1) to W2(k). A general

smooth Artin stack Y can be covered by an affine scheme only smooth locally, so one needs to replace the étale site
of Y by the smooth one. But both the space of splittings of τ≤1ϕY ∗Ω

•
Y,dR and the space of liftings to W2(k) are

not even presheaves there. Nevertheless, it would be still interesting to have an explicit description of the space of
liftings to W2(k) for an arbitrary smooth n-Artin stack Y . We do not discuss this question here.

Spreadings. Let now X be a smooth Hodge-proper stack over a field F of characteristic 0. If there exists Z-
subalgebra R ⊂ F , which is finitely generated over Z1, and a Hodge-proper stack XR over R such that XR⊗RF ≃ X

(a Hodge-proper spreading of X ), then one can deduce the equality (1) for the n-th cohomology from Theorem 1.3.23
by taking a suitable closed point Spec k →֒ SpecR of characteristic p > n and considering the fiber Xk. This way
we obtain

Theorem (1.4.3). Let X be a smooth Hodge-properly spreadable Artin stack over a field F of characteristic zero.
Then the Hodge-to-de Rham spectral sequence for X degenerates at the first page. In particular for each n ≥ 0 there
exists a (non canonical) isomorphism

Hn
dR(X ) ≃

⊕

p+q=n

Hp,q(X ).

1More generally, in Definition 1.4.1 we also allow subrings R ⊂ F that are localizations of finitely generated Z-algebras under the
assumption that the image of SpecR in SpecZ is open, but it is fine to assume that R is finitely generated throughout the introduction.
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We must warn the reader that smooth Hodge-properly spreadable stacks do not enjoy many of the nice properties
that smooth proper schemes have, in particular the natural mixed Hodge structure on the singular n-th cohomology
is not necessarily pure (see Remark 2.3.18). The main motivation for the definition is that it is the most general
class of stacks for which the Deligne-Illusie method can be applied. This, however, does not exceed all examples of
the Hodge-to-de Rham degeneration (see Remark 2.3.15).

In order to address the question of the existence of a Hodge-proper spreading we first extend the standard
spreading out results for finitely presentable schemes to the case of Artin stacks:

Theorem (2.1.13 and 2.3.2). Let {Si} be a filtered diagram of affine schemes with limit S. Fix a class of morphism
P = proper, smooth, flat, surjective, or any other class of morphisms that satisfies the conditions of Definition 2.1.9.
For an affine scheme T , let Stkn-Art,fp,P

/T denote the category of finitely presentable n-Artin stacks over T and

morphisms in P between them. Then the natural functor

lim
−→

i

Stkn-Art,fp,P
/Si

// Stkn-Art,fp,P
/S

(induced by base-change) is an equivalence.

As a corollary we deduce that any smooth n-Artin stack X over F admits a smooth spreading XR over some finitely
generated Z-algebra R ⊂ F and that any two such spreadings become equivalent after enlarging R. Since all
smooth proper stacks are Hodge-proper (see Proposition 2.2.12), we immediately deduce the Hodge-to-de Rham
degeneration in this case. Note that this includes smooth proper Deligne-Mumford stacks as a special case.

However, Hodge-proper spreadings need not to exist in general: one can show that the classifying stack BG is
Hodge-proper for any finite-type group scheme G over F (see Proposition 2.3.6) but it is not necessarily Hodge-
properly spreadable. Indeed, the classifying stack BGa of the additive group has nontrivial Hodge cohomology but
is de Rham contractible (i.e. has the de Rham cohomology of a point), so the Hodge-to-de Rham spectral sequence
is clearly nondegenerate. By Theorem 1.4.3 it follows that it is not Hodge-properly spreadable and this forces the
Hodge cohomology of BGa,Z to have infinitely generated p-torsion for a dense set of primes p, which one can also
see from the explicit description (see Example 2.3.7 or Proposition A.2). This illustrates the general phenomenon:
the non-degeneracy of the Hodge-to-de Rham spectral sequence in characteristic 0 is always reflected arithmetically,
namely the Hodge cohomology of any spreading has to be infinitely generated over the base.

In the main case of our interest, namely the quotient stacks X = [X/G], we exhibit some sufficient conditions
for Hodge-proper spreadability purely in terms of the geometry of X,G and the action G y X . In this case the
spreadability is not easy to show, especially if we can’t spread G to a linearly reductive group (which is only possible
if G is a torus or an extension of a finite group by one). Nevertheless, using certain cohomological finiteness results
from [FvdK10] we prove

Theorem (3.1.4). Let F be an algebraically closed field of characteristic 0. Let X be a smooth scheme and let Y
be a finite-type quasi-separated scheme over F , both endowed with an action of a reductive group G. Assume that

1. There is a proper G-equivariant map π : X → Y .

2. The G-action on Y is locally linear (Definition 3.1.1).

3. The categorical quotient Y//G is proper.

Then the quotient stack [X/G] is Hodge-properly spreadable2.

Theorem 3.1.4 applies to some natural examples of smooth schemes X with a G-action, in particular, equivariant
“proper-over-affine” varieties (see Example 3.1.6) and the GIT quotients, whose coarse moduli space is proper (see
Example 3.1.7).

We also prove a variant of Theorem 3.1.4 where we drop the reductivity assumption on G but impose an
additional Bialynicki-Birula (BB)-completeness assumption on the action when restricted to a subgroup h : Gm → G.
Moreover, the extra structure given by the map π is replaced by the internal condition on the properness of h(Gm)-
fixed points; see Theorem 3.2.12 for details.

Using the results of Halpern-Leistner (specifically, [HL20]) on Θ-stratifications we also show that a smooth stack
X , which is endowed with a Θ-stratification such that all strata (including the semistable locus) are cohomologically
properly spreadable, is also cohomologically properly spreadable (see Corollary 3.3.5). This gives rise to new
examples of Hodge-properly spreadable stacks where old ones appear as individual Θ-strata. In particular, this

2In fact we prove a stronger statement, namely that [X/G] is cohomologically properly spreadable, see Definitions 2.2.2 and 2.3.1.
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way, using Theorem 3.1.4 above, one can show that global quotients of KN-complete varieties are Hodge-properly
spreadable; see Example 3.3.6.

As an application, for any Hodge-properly spreadable quotient stack [X/G], we deduce an equivariant Hodge-
to-de Rham degeneration:

Corollary (1.5.2). Let X be a smooth scheme over C endowed with an action of an algebraic group G such that
the quotient stack [X/G] is Hodge-properly spreadable. Then there is a (non-canonical) decomposition

Hn
G(C)(X(C),C) ≃

⊕

p+q=n

Hq([X/G],∧pL[X/G]/C).

Finally, it turns out that Theorem 1.4.3 can be applied even in the case of some non-proper schemes, as we
discuss in some detail in Section 2.3.3.

Remark 0.2.5. Even though all stacks in our main applications are classical (i.e. 1-Artin), the machinery developed
in this work to prove Hodge-to-de Rham degeneration applies automatically to higher Artin stacks, so we did not
put any artificial restrictions on the level of representablity of stacks considered in the paper. An example of a
genuinely higher stack to which our method applies can be found in Section 2.3.4.

0.3 Relation to previous work and further directions

Our definition of Hodge-proper stacks is partially motivated by the work [HLP19] by Halpern-Leistner and Preygel,
where several generalized notions of properness for stacks are studied. In Questions 1.3.2 and 1.3.3 of loc.cit.
authors ask if any formally proper stack (Definition 1.1.3 of loc.cit.) admits a formally proper spreading and if
the Hodge-to-de Rham spectral sequence degenerates for a formally proper stack over a field of characteristic 0.
It follows from our work that the first statement implies the second; however, the method of Section 2.1 does not
help to show the existence of a formally proper spreading. In fact, for the degeneration, only the existence of a
Hodge-proper spreading would suffice, but this still seems pretty hard to show (see Question 3.3.9 in the end of our
paper).

The splitting of the (p−1)-st truncation of the de Rham complex for a smooth tame 1-Artin stack over a perfect
field k of characteristic p was established (among other things) in [Sat12]. The key observation in [Sat12] is that a
smooth tame stack admits a smooth lift together with a lift of Frobenius étale-locally on its coarse moduli space,
which enables to follow the original argument of Deligne-Illusie. Our proof is different and works for an arbitrary
smooth n-Artin stack.

Even though the main examples of Hodge-spreadable stacks we construct in Section 2.3 are classical Artin
stacks, Theorem 1.3.23 and Theorem 1.4.3 work equally well for higher ones. Thus we keep this level of generality
throughout the paper. The spreading results of Section 2.1 in the case of classical Artin stacks are also covered
in [Ryd15, Appendix B] and [LMB00, Chapter 4]. The use of [Pri15, Section 4] gives a clear way to extend these
results to the setting of higher stacks, which we record in Section 2.1.

It is worth to mention that there is still no example of a smooth liftable scheme X in characteristic p whose
Hodge-to-de Rham spectral sequence does not degenerate (recall that the Deligne-Illusie method gives such a
degeneration only for i + j < p). Motivated by the recent examples of non-degeneration for the HKR-filtration
constructed in [ABM19] one could first look for such a counterexample in the world of stacks. The de Rham
cohomology of various classifying stacks were considered recently in great detail in [Tot18]; however, in all examples
the Hodge-to-de Rham spectral sequence did degenerate.

The equivariant Hodge-to-de Rham degeneration for a reductive group G acting on a scheme X , under the
Kempf-Ness-completeness assumption was treated (among other things) in [Tel00] by completely different methods.
We reprove his result in a (slightly) more general setting (Example 3.3.6) using Θ-stratifications and the associated
semiorthogonal decompositions constructed in [HL20]. The same strategy applies to any smooth Θ-stratified stack
with cohomologically properly spreadable centra of the strata and the semistable locus (Corollary 3.3.5). [HL18,
Section 4] could provide more examples of stacks that are Hodge-properly spreadable.

Another approach to the equivariant Hodge theory was introduced in [HLP15]. There the authors deduce
(among other things) the noncommutative Hodge-to-de Rham degeneration for the category of perfect complexes
QCoh([X/G])perf for a KN-completeX and for some purely non-commutative examples (like the categories of matrix
factorizations), by exploiting methods of non-commutative geometry. Note that the result of Kaledin (see [Kal08]
and [Kal17]) does not apply in this situation, since the DG-category QCoh([X/G])perf is usually not smooth. It
is natural to ask whether the commutative degeneration implies the noncommutative one in this case. This is not
immediately clear, since the relation between the Hochschild/periodic cyclic homology of the category of perfect
complexes and the Hodge/de Rham cohomology for Artin stacks is more subtle than in the case of schemes.

6



0.4 Plan of the paper

Section 1 is devoted to a proof of the degeneration of the Hodge-to-de Rham spectral sequence for Hodge-properly
spreadable stacks. In Subsections 1.1 and 1.2 we review Hodge and de Rham cohomology of stacks, define Hodge-
proper stacks and prove some technical lemmas about them. In Section 1.3 we prove (a truncated version of) the
Hodge-to-de Rham degeneration in positive characteristic for Hodge-proper stacks that admit a lift to W2(k). Then,
in Section 1.4 we prove the Hodge-to-de Rham degeneration in characteristic 0 for stacks that are Hodge-properly
spreadable. As a corollary, in Section 1.5, in the case of a quotient stack, we also deduce a (non-canonical) Hodge
decomposition for the corresponding equivariant singular cohomology.

In Section 2 we study the spreadability of Hodge proper stacks. In Subsection 2.1 we extend the standard spread-
ing out results for finitely presented schemes and their morphisms to the case of Artin stacks (see Theorem 2.1.13).
In 2.2 we introduce a more convenient class of cohomologically proper stacks which includes all Hodge-proper ones.
In Section 2.3 we give first examples of spreadable Hodge-proper stacks: in Section 2.3.1 we cover the case of smooth
proper stacks, in Section 2.3.2 we discuss for which algebraic groups G the classifying stack BG is Hodge-properly
spreadable. Then, in Section 2.3.3 we discuss the case schemes.

In Section 3 we concentrate on the spreadability of quotient stacks. In Section 3.1 we discuss the case of
global quotients by reductive groups whose coarse moduli space is proper. In Section 3.2.2 we prove Hodge-proper
spreadability of [X/Gm] under the condition that the associated Bialynicki-Birula stratification is full and XGm is
proper; then, in Section 3.2 we use this to prove spreadability for a more general class of global quotients, including
quotients by some non-reductive groups. Finally, in Section 3.3 we show that finite Θ-stratifications spread out; then
using the results of [HL20] we show that if all Θ-strata (or rather their centra) together with the semistable locus
have cohomologically proper spreadings, then so does the original Θ-stratified smooth stack X . In Example 3.3.6
we show how to establish the cohomologically proper spreadability of Kempf-Ness (KN-)complete quotient stacks
using this method.
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the Hodge-to-de Rham degeneration in characteristic p.3 We are also grateful to Daniel Halpern-Leistner for sharing
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Vadim Vologodsky, and Roman Travkin for many helpful discussions. We also want to thank Borys Kadets and
Chris Brav for carefully reading drafts of this text and providing many useful remarks and suggestions. Finally,
we would like to thank anonymous referees for many helpful advises, various comments and questions concerning
different sections of the paper.

The second author was partially supported by Laboratory of Mirror Symmetry NRU HSE, RF Government
grant, ag. №14.641.31.0001 and by the Simons Foundation.

Notations and conventions.

1. We will freely use the language of higher categories, modeled e.g. by quasi-categories of [Lur09]. If not explicitly
stated otherwise all categories are assumed to be (∞, 1) and all (co-)limits are homotopy ones. The (∞, 1)-category
of Kan complexes will be denoted by S and we will call it the category of spaces. By Lani F and Rani F we will
denote left and right Kan extensions of a functor F along i (see e.g. [Lur09, Definition 4.3.2.2] for more details).

2. For a commutative ring R by D(ModR) we will denote the canonical (∞, 1)-enhancement of the triangulated
unbounded derived category of the abelian category of R-modules ModR. All tensor product, pullback and push-
forward functors are implicitly derived.

3. In this work by Artin stacks we always mean (higher) Artin stacks in the sense of [TV08, Section 1.3.3] or
[GR17, Chapter 2.4]: these are sheaves in étale topology admitting a smooth (n− 1)-representable atlas for some
n ≥ 0 (an inductively defined notion, see loc.cit. for more details). We stress that we work with non-derived Artin
stacks, i.e. they are defined on the category of ordinary commutative rings. When we need to emphasize a precise
dependence on n (usually in inductive arguments) we say that X is an n-Artin stack. We denote the ∞-category
of n-Artin stacks over a base scheme S by Stkn-Art

/S . We also freely use the notion of quasi-compact quasi-separated
morphism between Artin stacks from [GR17, Chapter 2, Section 4.1.9].

4. For a stack X we will denote by QCoh(X ) the category of quasi-coherent sheaves on X defined as the limit
limSpecA→X D(ModA) over all affine schemes SpecA mapping to X (see [GR17, Chapter 3.1] for more details).

3In fact his suggestion that one should be able to prove the Hodge-to-de Rham degeneration for some “cohomologically proper”
stacks via the Deligne-Illusie method basically started this project.
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Note that QCoh(X ) admits a natural t-structure such that F ∈ QCoh(X )≤0 if and only if x∗(F ) ∈ D(ModA)
≤0

for any A-point x ∈ X (A). Moreover, by [GR17, Chapter 3, Corollary 1.5.7] if X is Artin stack, then QCoh(X ) is
left- and right-complete (i.e. Postnikov’s and Whitehead’s towers converge) and the truncation functors commute
with filtered colimits.

5. For an affine group scheme G over a ring R, given a representation M (i.e. a comodule over the corresponding
Hopf algebra R[G]) we denote by RΓ(G,M) ∈ D(ModA) the rational cohomology complex of G, namely the derived
functor of G-invariantsM 7→ MG. By flat descent, for G flat over R, the abelian category Rep(G) := RepG(VectF )

♥

is identified with QCoh(BG)♥ and RΓ(G,M) ≃ RΓ(BG,M).

1 Degeneration of the Hodge-to-de Rham spectral sequence

1.1 Hodge and de Rham cohomology

In this section we set up the Hodge-to-de Rham spectral sequence for n-Artin stacks and prove some technical
results needed in subsequent sections of the paper. For the rest of this section fix a base ring R. We refer the reader
to [TV08] for an introduction to the theory of Artin stacks and cotangent complexes.

Definition 1.1.1 (Hodge cohomology). Let X be an Artin stack over R. Define Hodge cohomology RΓH(X /R) of
X to be

RΓH(X /R) :=
⊕

p≥0

RΓ
(
X ,∧pLX/R[−p]

)
,

where LX/R is the cotangent complex of X over R and ∧pLX/R is its p-th derived exterior power (see [Ill71, Chapitre
I.4] or [BM19, Section 3]). For a fixed n ∈ Z we will also denote

Hn
H(X /R) := HnRΓH(X /R) ≃

⊕

p+q=n

Hp,q(X /R), where Hp,q(X /R) := Hq
(
X ,∧pLX/R

)
.

Notation 1.1.2. Let S := SpecA be an affine smooth R-scheme. The algebraic de Rham complex of S over R

A
d // Ω1

A/R

d // Ω2
A/R

d // . . .

will be denoted by Ω•S/R,dR. We define RΓdR(S/R) := Ω•S/R,dR ∈ D(ModR).

Definition 1.1.3 (de Rham cohomology). Let X be a smooth quasi-compact quasi-separated Artin stack over R.
Define the (Hodge-completed) de Rham cohomology RΓdR(X /R) of X to be

RΓdR(X /R) := lim
S∈Affsm,op

/X

RΓdR(S/R),

where Affsm
/X is the full subcategory of stacks over X consisting of affine R-schemes that are smooth over X . We

will also denote HnRΓdR(X /R) by Hn
dR(X /R).

In fact the Hodge cohomology complex admits a description similar to our definition of the de Rham cohomology:

Proposition 1.1.4. For any p ∈ Z≥0 the natural map

RΓ(X ,∧pLX/R) → lim
S∈Affsm,op

/X

RΓ(S,∧pLS/R) (2)

is an equivalence.

Proof. By Proposition 1.1.5 below the left hand side satisfies smooth descent. It follows that both sides of (2)
satisfy smooth descent. Since n-Artin stacks are by definition iterated smooth quotients of schemes, by induction
on n we reduce to the case when X is a smooth affine scheme, where the assertion of the proposition is true, since
Affsm

/X has a final object given by X .

Proposition 1.1.5 (Flat descent for the cotangent complex). Let p : U → X be a surjective quasi-compact quasi-
separated flat morphism between Artin stacks and denote by p• : U• → X the corresponding Čech nerve. Then the
natural map

∧dLX/R
// Tot p•∗(∧

dLU•/R)

is an equivalence for each d ∈ Z≥0.
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Proof. The proof is essentially due to Bhatt (see [Bha12a, Corollary 2.7, Remark 2.8] or [BMS19, Section 3]). For
every n ∈ Z≥0 we have a co-fiber sequence

p∗nLX/R
// LUn/R

// LUn/X

in QCoh(Un). It follows that ∧dLUn/R admits a d-step filtration with associated graded pieces ∧ip∗nLX/R ⊗

∧d−iLUn/X . Note that by flat descent for QCoh (see e.g. [Lur18, Corollary D.6.3.4])

Tot p•∗ gr
0
(
∧dLU•/R

)
= Tot p•∗p

∗
• ∧

d LX/R ≃ ∧dLX/R.

Hence it is enough to prove that

Tot p•∗ gr
i
(
∧dLU•/R

)
= Tot p•∗(p

∗
• ∧

i LX/R ⊗ ∧d−iLU•/X ) ≃ 0

for i > 0. Moreover, since the map p is faithfully flat, it is enough to show that the pullback

p∗ Tot p•∗ gr
i
(
∧dLU•/R

)
≃ p∗ Tot(∧iLX/R ⊗ p•∗ ∧

d−i LU•/X )

of the totalization above is null-homotopic.
Note that by the qcqs assumption p∗pn∗ ≃ qn∗pr

∗
n, where q• : U• ×X U → U is the pullback of the Čech nerve

p• : U• → X on U along p and prn : Un ×X U → Un are natural projections. It follows by base change for the
relative cotangent complex that

p∗p•∗ ∧
d−i LU•/X ≃ q•∗ ∧

d−i LU•×X U/U .

But since U• ×X U → U is a split simplicial object, the same holds for

p∗(∧iLX/R ⊗ p•∗ ∧
d−i LU•/X ) ≃ p∗(∧iLX/R)⊗ q•∗ ∧

d−i LU•×X U/U ,

since the class of split simplicial objects is stable under any functor. It follows Tot p∗p•∗ gr
i
(
∧dLU•/R

)
≃ 0. Finally,

since by flat descent QCoh(X ) is comonadic over QCoh(U), the pullback functor p∗ preserves totalizations of p∗-split
cosimplicial objects, hence

p∗ Tot p•∗ gr
i
(
∧dLU•/R

)
≃ Tot p∗p•∗ gr

i
(
∧dLU•/R

)
≃ 0.

Corollary 1.1.6. Let X be a smooth quasi-compact quasi-separated Artin stack over R. Then

1. There exists a complete (decreasing) Hodge filtration F •RΓdR(X /R) such that grF •RΓdR(X /R) ≃ RΓH(X /R).

2. There exists a strongly convergent spectral sequence Ep,q
1 = Hq(X ,∧pLX/R) ⇒ Hp+q

dR (X /R).

Proof. Note that since X is smooth, all schemes S ∈ Affsm
/X are smooth. Since the Hodge filtration on RΓdR(S/R)

is complete, the same holds for RΓdR(X /R), since complete filtered complexes are closed under limits. Moreover,
by construction we have

grF •RΓdR(X /R) ≃ lim
S∈Affsm,op

/X

grF •RΓdR(S/R) ≃ lim
S∈Affsm,op

/X

RΓH(S/R) ≃ RΓH(X /R),

where the last equivalence follows from the previous proposition. This filtration induces a spectral sequence with
Ep,q

1 as stated. To prove it is strongly convergent, note that by smoothness of X , for each n the induced filtration
on Hn

dR(X /R) is finite.

The following simple observation will be quite useful in what follows:

Remark 1.1.7. Let X be a smooth Artin stack over R. Then the cotangent complex LX/R (and its exte-
rior powers) is concentrated in nonnegative cohomological degrees (with respect to the natural t-structure on
QCoh(X )). Since the global section functor RΓ is left t-exact, it follows that the natural map RΓdR(X /R) →
RΓdR(X /R)/F pRΓdR(X /R) induces an isomorphism on H<p.

Finally, we will need the following

Proposition 1.1.8 (Base-change). Let X be a smooth quasi-compact quasi-separated Artin stack over R and let R →
R′ be a ring homomorphism of finite Tor-amplitude. Then for X ′ := X ⊗RR′ the natural map RΓdR(X /R)⊗RR′ →
RΓdR(X

′/R′) is a filtered equivalence. In particular, for each p ∈ Z≥0 the natural map RΓ(X ,∧pLX/R) ⊗R R′ →
RΓ(X ′,∧pLX ′/R′) is an equivalence.
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Proof. By the smoothness assumption on X the fiber product X ⊗R R′ coincides with the derived fiber product. It
follows by [TV08, Lemma 1.4.1.16 (2)] that LX/R⊗RR

′ ≃ LX ′/R′ . By the base change for QCoh (see [GR17, Chapter
3., Proposition 2.2.2 (b)]) we deduce that the natural map RΓH(X /R)⊗R R′ → RΓH(X

′/R′) is an equivalence.
Next, note that the condition on the morphism R → R′ guarantees that the natural map RΓdR(X /R)⊗R R′ →

lim
←−p

((RΓdR(X /R)/F pRΓdR(X /R)) ⊗R R′) is an equivalence. Since both sides are complete with respect to the

Hodge filtration, and, since by the above the induced map on the associated graded pieces

RΓH(X /R)⊗R R′ ≃ grF •RΓdR(X /R)⊗R R′ → grF •RΓdR(X
′/R′) ≃ RΓH(X

′/R′)

is an equivalence, we deduce that the base-change map for de Rham cohomology is an equivalence as well.

1.2 Hodge-proper stacks

For the rest of this subsection fix a Noetherian base ring R. In this section we will introduce a reasonable (at least
from the point of view of Hodge-to-de Rham degeneration) generalization of the notion of properness for stacks.

Definition 1.2.1. A complex of R-modules M is called bounded below coherent4 if it is cohomologically bounded
below and for any i ∈ Z the cohomology module Hi(M) is finitely generated over R. We will denote the full
subcategory of D(ModR) consisting of bounded below coherent R-modules by Coh+(R).

Remark 1.2.2. We use the term nearly coherent for objects of Coh+(R) to distinguish them from coherent
complexes, which in our convention are necessarily bounded (both from above and below).

We have the following basic properties of Coh+(R):

Proposition 1.2.3. Let R be a Noetherian ring. Then:

1. The category Coh+(R) is closed under finite (co-)limits and retracts. In particular Coh+(R) is a stable
subcategory of D(ModR).

2. For each n ∈ Z the category Coh≥n(R) := Coh+(R) ∩D(ModR)
≥n is closed under totalizations.

Proof. 1. This follows from the fact that for a Noetherian R the abelian category of finitely generated R-modules
is closed under (co)kernels, extensions and direct summands.

2. Let M• be a co-simplicial object of Coh≥n(R). By shifting if necessary, we can assume that n = 0. Since
coconnective modules are closed under limits, Tot(M•) ∈ D(ModR)

≥0; hence it is enough to prove that HiTot(M•)
is finitely generated R-module for all i ∈ Z≥0. Since all M i are coconnective, the natural map Tot(M•) →

Tot≤k(M•) induces an isomorphism on H≤k. But since Tot≤k is a finite limit, each HiTot≤k(M•) is a finitely
generated R-module.

Remark 1.2.4. Recall that the category of perfect R-modules D(ModR)
perf is defined as the smallest full subcat-

egory of D(ModR) containing R and closed under finite (co-)limits and direct summands. Since R ∈ Coh+(R) it
follows from Proposition 1.2.3, that D(ModR)

perf ⊆ Coh+(R).

After this technical digression we are ready to introduce the notion of a Hodge-proper stack:

Definition 1.2.5 (Hodge-proper stacks). A smooth quasi-compact quasi-separated Artin stack X over R is called
Hodge-proper if for every p ∈ Z≥0 the complex RΓ(X ,∧pLX/R) is bounded below coherent.

For us the most important implication of Hodge-properness is that the de Rham cohomology is bounded below
coherent:

Proposition 1.2.6. Let X be a smooth Hodge-proper Artin stack over R. Then RΓdR(X /R) is bounded below
coherent complex of R-modules.

Proof. By smoothness RΓdR(X /R) is bounded below by 0, hence it is enough to prove that for each n ∈ Z≥0
the cohomology module Hn

dR(X/R) is finitely generated over R. By Remark 1.1.7 the natural map RΓdR(X /R) →
RΓdR(X /R)/Fn+1RΓdR(X /R) induces an isomorphism onH≤n. We conclude, sinceRΓdR(X /R)/Fn+1RΓdR(X /R),
being a finite extension of bounded below coherent complexes RΓ(X ,∧iLX/R[−i]), 0 ≤ i ≤ n, is bounded below
coherent.

4In the previous version of this text we called such complexes almost coherent. We decided to change the notation to avoid possible
clashes with almost mathematics.
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1.3 Hodge-to-de Rham degeneration in positive characteristic

Let Y be a Hodge-proper Artin stack over a perfect field k of characteristic p admitting a smooth lift to the ring
of the second Witt vectors W2(k). In this section we will prove that the Hodge-to-de Rham spectral sequence
Hj(Y ,∧iLY /k) ⇒ Hi+j

dR (Y /k) degenerates at the first page for i + j < p. Our strategy is to interpret both
Hodge and de Rham cohomology in terms of crystalline cohomology and then, following Fontaine-Messing [FM87]
(and Bhatt-Morrow-Scholze [BMS19]), use (quasi-)syntomic descent for the crystalline cohomology to get a very
functorial form of the Deligne-Illusie splitting.

We denote by σ : k
x 7→xp

−−−−→ k the absolute Frobenius morphism of k. We denote by the same letter σ the induced
automorphisms W (k) → W (k) and Wn(k) → Wn(k) for any n ∈ N. For a W (k)-algebra (e.g. a Ws(k)-algebra
for some s) A we denote by A(1) := A ⊗W (k),σ W (k) its Frobenius twist and by A(−1) := A ⊗W (k),σ−1 W (k) its

Frobenius untwist. For each n ∈ Z we have the relative Frobenius map ϕA : A(n) → A(n−1).

Definition 1.3.1 ([BMS19, Definition 4.10]). A morphism A → B of Wn(k)-algebras is called quasisyntomic if it
is flat and LB/A has cohomological Tor amplitude [−1, 0]. A morphism A → B is a quasisyntomic cover if it is
quasisyntomic and faithfully flat. We will denote by QSynn the site consisting of quasisyntomic Wn(k)-algebras
with the topology generated by quasisyntomic covers.

Remark 1.3.2. It probably worth clarifying how our definition of quasisyntomic site compares to the one in
[BMS19, Section 4]. Namely, QSynn is just the small quasisyntomic site of Wn(k) in the terminology of [BMS19].
Indeed since all algebras in QSynn are killed by pn, the notions of p-complete (faithful) flatness and quasisyntomicity
coincide with the classical ones. The rest of the properties can be easily seen to agree as well.

The notion of a quasisyntomic morphism is a generalization of more classical notion of a syntomic morphism:
a flat map A → B that is locally a complete intersection in a smooth one. Syntomic morphisms include smooth
morphisms, and, in the case A is a regular k-algebra, the relative Frobenius morphism ϕ : A(1) → A. The advantage
of quasisyntomic morphisms is that they also include some natural non-finite-type maps, most importantly the direct
limit perfection A → Aperf := lim

−→
ϕ,n≥0A

(−n) and its tensor powers A → Aperf⊗A . . .⊗AAperf for a smooth k-algebra

A. Using standard properties of the cotangent complex it is not hard to show that quasisyntomic morphisms are
stable under composition and pushouts along arbitrary morphisms of algebras (and same for quasisyntomic covers).
We refer to Section 4 of [BMS19] for more details.

Recall that an Fp-algebra S is called semiperfect if ϕ : S → S is surjective.

Definition 1.3.3. A k-algebra S is called quasiregular semiperfect if S is quasisyntomic and the relative Frobenius
homomorphism ϕ : S(1) → S is surjective. We call a Wn(k)-algebra S̃ quasiregular semiperfectoid if it is flat

over Wn(k) and S̃/p is quasiregular semiperfect. We will denote by QRSPerfn the site consisting of quasiregular
semiperfectoid Wn(k)-algebras with the topology generated by quasisyntomic covers.

Remark 1.3.4. Note that if n > 1 our definition of a quasiregular semiperfectoid algebra over Wn(k) does not
agree with [BMS19, Definition 4.10] since Wn(k) itself is not semiperfectoid. Nevertheless, since we assume that all
our objects are flat over Wn(k), all the necessary arguments go through essentially without any change by reducing
modulo p.

For any k-algebra S, H0(LS/k) is identified with the Kähler differentials Ω1
S/k. Since d(xp) = 0, we get that

H0(LS/k) = 0 for S semiperfect, and that LS/k is concentrated in a single cohomological degree−1 for S quasiregular

semiperfect. The same is true for LS̃/Wn(k)
for a quasiregular semiperfectoid Wn(k)-algebra S̃. Moreover, any

flat map S̃1 → S̃2 between quasiregular semiperfectoids over Wn(k) is quasisyntomic. This gives a map of sites
QRSPerfn → QSynn.

In fact quasiregular semiperfectoid algebras form a basis of topology in QSynn. This leads to an equivalence
between the corresponding categories of sheaves:

Proposition 1.3.5. The restriction along the natural embedding u : QRSPerfn → QSynn induces an equivalence

Shv(QSynn,C) ∼
u−1

// Shv(QRSPerfn,C)

of the categories of sheaves with values in any presentable ∞-category C.
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Proof. Following the proof of [BMS19, Proposition 4.31] it is enough to show, that first, any quasisyntomic algebra
A has a quasisyntomic cover A → S by a semiperfectoid, and second, that all terms S⊗Ai in the corresponding
Čech object are automatically semiperfectoid. The cover S can be constructed as follows: we take the surjection

Wn(k)[xa]a∈A ։ A from the free polynomial algebra on A and put S := A ⊗Wn(k)[xa] Wn(k)[x
1/p∞

a ]. The map

Wn(k)[xa] → Wn(k)[x
1/p∞

a ] is quasisyntomic and faithfully flat, thus so is A → S. Also Wn(k)[x
1/p∞

a ] → S is a

surjection, k[x
1/p∞

a ] is perfect, thus S/p is semiperfect. We get that S ∈ QRSPerfn. The statement about S⊗Ai

then follows from the analogous one modulo p (see e.g. [BMS19, Lemma 4.30]).

Remark 1.3.6. For a sheaf F on QRSPerfn we will denote its image under the inverse equivalence in Proposi-
tion 1.3.5 by F as well.

Example 1.3.7. Let B be a smooth algebra over Wn(k). By smoothness, Zariski-locally on SpecB, there ex-
ists an étale map P → B from the polynomial algebra P = Pd := Wn(k)[x1, . . . , xd] for some d. Let Pperf =

Wn(k)[x
1/p∞

1 , . . . , x
1/p∞

d ] and let Bperf := B ⊗P Pperf ; it is a quasiregular semiperfectoid Wn(k)-algebra
5 and the

natural map B → Bperf is a quasisyntomic cover. Moreover all terms (Bperf ⊗B . . .⊗B Bperf)n in the corresponding
Cech object are also quasiregular semiperfectoids. Given any sheaf F on QRSPerfn its value on B ∈ QSynn (via
Proposition 1.3.5) can be computed as “the unfolding”:

RΓQSynn
(B,F)

∼
−→ Tot

(
F(Bperf) // // F(Bperf ⊗B Bperf)

////// F(Bperf ⊗B Bperf ⊗B Bperf)
// ////// · · ·

)
.

For a ring R let PolyR ⊂ CAlgR/ denote the full subcategory of finitely generated polynomial R-algebras. Recall
that one of the ways to define the cotangent complex LA/R for an R-algebra A is to consider the left Kan extension
of the functor B 7→ Ω1

B/R from the category of polynomial R-algebras, namely

LA/R ≃ colim
PolyR /A

Ω1
B/R.

One can extend the de Rham and crystalline cohomology functors in a similar way:

Construction 1.3.8. Let k be a perfect field.

• The derived de Rham cohomology functor

RΓLdR(−/Wn(k)) : CAlgWn(k)/ → D(ModWn(k))

is defined as the left Kan extension of the functor B 7→ Ω•B/Wn(k),dR
on PolyWn(k).

• The derived crystalline cohomology functor

RΓLcrys(−/W (k)) : CAlgWn(k)/ → D(ModW (k))

is defined as the (derived) p-adic completion of the left Kan extension of the functor B 7→ RΓcrys((B/p)/W (k))
on PolyWn(k).

Remark 1.3.9. For a more thorough treatment of the derived de Rham and crystalline cohomology functors we
refer the reader to [Ill72] and [Bha12a] where these notions were originally considered and applied.

Remark 1.3.10. For any Wn(k)-algebra B the complexes RΓLcrys(B/W (k))⊗W (k) Wn(k) and RΓLdR(B/Wn(k))
are naturally equivalent. Indeed, by construction both functors commute with geometric realizations, hence it is
enough to prove the statement for B being a smooth Wn(k)-algebra. In this case this is a basic result in the
crystalline cohomology theory, see e.g. [BO78, Corollary 7.4].

Similarly, we can extend the functor B 7→ τ≤mΩ•B/Wn(k),dR
to get a filtered object (RΓLdR(−/Wn(k)) , F

∗
H)

(Hodge filtration). If n = 1 the functor B 7→ Ω≤mB/Wn(k),dR
extends to (RΓLdR(−/k),Filconj∗ ) (conjugate filtration).

The conjugate filtration on the derived de Rham cohomology is exhaustive since it is exhaustive on de Rham
cohomology of polynomial algebras and since colimits commute. For RΓLdR(−/k) the Cartier isomorphism identifies
the corresponding associated graded with

⊕
r≥0 ∧

rLB(1)/k[−r]. Next lemma shows that the derived de Rham
cohomology on the quasi-syntomic site satisfies flat descent:

5In fact it is even quasismooth perfectoid, since LB/Wn(k) ≃ 0 and the relative Frobenius for Bperf/p is an isomorphism.
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Lemma 1.3.11. Let A → B be a faithfully flat homomorphism of k-algebras and let B• be the corresponding Čech
co-simplicial object. Assume that LB/k and LB/A have cohomological Tor-amplitude [−1; 0]. Then the natural map

RΓLdR(A/k) → TotRΓLdR(B
•/k)

is an equivalence.

Proof. Note that since A → B is faithfully flat the base change for cotangent complex and transitivity triangles
imply that LBi/k has Tor-amplitude in degrees [−1; 0] for all i ≥ 0, where Bi is the i-th term in the corresponding

cosimplicial Čech object. Consequently, ∧nLBi(1)/k[−n] is 0-coconnective for any n and i. It then follows by flat
descent for cotangent complex (see [BMS19, Theorem 3.1]) that the natural map

Fn
conjRΓLdR(A/k) → TotRΓLdR(B

•/k)

is n-coconnective and hence induces an equivalence after passing to the colimit by n on the left hand side.

Corollary 1.3.12. For every n ≥ 1 the presheaves on QSynn

A 7→ RΓLdR(A/Wn(k)) and A 7→ RΓLcrys((A/p)/W (k))

are sheaves.

Proof. By Remark 1.3.10 since Wn(k) is of finite Tor-amplitude over W (k) it is enough to prove the assertion for
RΓLcrys((−/p)/W (k)). But since RΓLcrys((−/p)/W (k)) is derived p-complete by construction and since k is a perfect
W (k)-module (and thus −⊗W (k)k commutes with limits) it is enough to prove that RΓLcrys((−/p)/W (k))⊗W (k)k ≃
RΓLdR(−/k) is a sheaf. This is a content of the previous lemma.

Remark 1.3.13. Note that if R were a Q-algebra, the derived de Rham cohomology would be just equal to R
[Bha12b, Remark 2.6]. Indeed, by the A1-invariance of the de Rham cohomology in characteristic 0, the de Rham
cohomology functor restricted to PolyR is constant with value R, hence so is its left Kan extension. In particular, the
derived de Rham cohomology of a smooth R-algebra is usually not equivalent to the classical de Rham cohomology.
To improve the situation one usually works with the Hodge-completed version of the derived de Rham cohomology
instead.

However, in positive characteristic the non-completed derived de Rham cohomology is much better behaved. In
particular it coincides with the classical de Rham cohomology for smoothWn(k)-algebras. Here, the key observation,
which is due to Bhatt (see [Bha12b]), is to use the conjugate filtration. Namely, to show that the natural morphism
RΓLdR(B) → RΓdR(B) is an equivalence for a smooth Wn(k)-algebra B, it is enough to show this modulo p, and
then (since both sides are complete), that the induced map on the associated graded of the conjugate filtration is
an equivalence. For B smooth, this reduces to natural isomorphisms ΛiL

B
(1)
k /k

∼
−→ Ωi

B
(1)
k /k

.

Remark 1.3.14. Since the absolute Frobenius σ : k → k is an automorphism, the cotangent complex Lk/Fp
(and

all its wedge powers) vanishes. It follows that RΓdR(k/Fp) ≃ k. Given any k-algebra B we have a natural
morphism of E∞-algebrasRΓdR(k/Fp) → RΓdR(B/Fp). This endows RΓdR(B/Fp) with a natural k-linear structure.
Similarly, for any k-algebra A the complex RΓLcrys(A/Zp) has a natural W (k)-linear structure. Moreover, the
natural morphism

RΓLcrys(B/Zp) → RΓLcrys(B/W (k)) (3)

is W (k)-linear. We claim that (3) is an equivalence. Since both sides are p-adically complete it is enough to show
that it is an equivalence mod p, where we get an analogous map, but for the derived de Rham cohomology of the
reduction B/p. On the associated graded of the conjugate filtration Filconj∗ the induced map is an equivalence, since
in the transitivity triangle

Lk/Fp
⊗k B → LB/Fp

→ LB/k

the term Lk/Fp
is equivalent to 0. Thus (3) is an equivalence.

Recall that the cotangent complex LS̃/Wn(k)
of S̃ ∈ QRSPerfn has cohomological Tor-amplitude consentrated

in −1, thus
⊕

r ∧
rLS̃/Wn(k)

[−r] is supported in cohomological degree 0. The same holds for RΓLdR(S̃/Wn(k)); in

other words, it is a classical commutative ring. It has a description in terms of one of the Fontaine’s period rings
Acrys:
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Construction 1.3.15. Let S be a quasiregular semiperfect k-algebra and let S♭ be the inverse limit perfection
S♭ := lim

←−
ϕ,n≥0 S(n). We have a natural map S♭ → S which is surjective. The ring Acrys(S) is defined as the p-adic

completion of the divided power envelope of the kernel of the natural composite surjection θ1,S : W (S♭) ։ S♭
։ S

(where the divided power structure agrees with the one on the ideal (p) ⊂ W (k)). Note that Acrys(S)/p is identified
with the PD-completion DPD

I (S♭) along the ideal I ⊂ S♭ defined as the kernel of the natural map S♭
։ S.

Theorem 8.14(3) of [BMS19] (together with Remark 1.3.14) identifies RΓLcrys(S/W (k)) with Acrys(S). The
ring Acrys(S) comes with a natural ring morphism ϕ : Acrys(S)

(1) → Acrys(S) induced by the relative Frobenius
ϕ : S(1) → S. It is identified with the natural Frobenius ϕ : RΓLcrys(S/W (k))(1) → RΓLcrys(S/W (k)) on the

crystalline cohomology. For each n we define a presheaf of rings Acrys on QRSPerfn by sending S̃ ∈ QRSPerfn to

Acrys(S̃/p). By the above identification it is in fact a sheaf. Note that by the universal property of the PD-envelope

there is a natural map6 θn,S̃ : Acrys(S̃/p) → S̃ which factors through Acrys(S̃/p)/p
n.

The following two filtrations on Acrys/p correspond to the Hodge and the conjugate filtrations:

Definition 1.3.16. Let S be a quasiregular semiperfect k-algebra and let I be the ideal of the natural projection
S♭

։ S. The descending Hodge filtration on Acrys(S)/p ≃ DPD
I (S♭) is defined as the filtration by the divided

powers of I: Acrys(S)/p ≃ I0 ⊃ I [1] = I ⊃ I [2] ⊃ I [3] ⊃ · · · . This filtration is functorial in S and thus defines
a filtration by presheaves I0 ⊃ I[1] = I ⊃ I[2] ⊃ I[3] ⊃ · · · on the sheaf Acrys/(p) on QRSPerfn for any n. Via
Proposition 8.12 of [BMS19] it is identified with the Hodge filtration on RΓLdR(S/k) ≃ Acrys(S)/p and thus is in
fact a filtration by sheaves.

Definition 1.3.17. The ascending conjugate filtration Filconj∗ on Acrys(S)/p ≃ DPD
S♭ (I) is defined by taking F conj

r to

be the S♭-submodule generated by the elements of the form s
[l1]
1 s

[l2]
2 . . . s

[lm]
m with si ∈ I and

∑m
i=1 li < (r+1)p. This

construction is functorial in S and determines an (ascending) filtration Filconj∗ on the sheaf Acrys/p on QRSPerfn
for any n. By Proposition 8.12 of [BMS19] it is identified with the conjugate filtration on RΓLdR(S/k) and thus is
also a filtration by sheaves. Note that both filtrations are multiplicative and the conjugate filtration is exhaustive.

The following is an analogue of the inverse Cartier isomorphism (see Theorem 0.1.1) between (Acrys/p, I
[∗]) and

(Acrys/p,Fil
conj
∗ ):

Proposition 1.3.18 ([BMS19], Propositions 8.11 and 8.12). Let S be a semiperfect k-algebra. There is a well-

defined surjective homomorphism of W (k)-algebras κ∗ : Γ
∗
S(I/I

2)(1) → grconj∗ (Acrys(S)/p)
7. If S is quasiregular, κ∗

is an isomorphism.

Proof. The map is defined as follows: for si ∈ I

κk1+···km : s
[k1]
1 · · · s[km]

m 7→
m∏

i=1

(
(pki)!

pkiki!

)
s
[pk1]
1 · · · s[pkm]

m .

We have (s1s2)
[pk] = p!(sk1)

[p]s
[pk]
2 = 0 and (s1s2)

[l] ∈ Filconj0 for any l < p. This shows that for s ∈ I2, s[l] ∈ Filconj0

for all l and so the map is well-defined. Elements {s
[pk1]
1 · · · s

[pkm]
m }k1+···km<r+1 in fact generate Filconjr over S♭.

Since the integer
∏m

i=1

(
(pki)!

pkiki!

)
is a p-adic unit the map κ∗ is surjective. The fact that κ∗ is an isomorphism for S

quasiregular semiperfect is a part of Proposition 8.12 of [BMS19].

Remark 1.3.19. In particular we get an isomorphism κ∗ : Γ
∗
S(I/I

2)(1)
∼
−→ grconj∗ (Acrys/p) of sheaves of algebras on

QRSPerfn.

Now we descend everything back to the quasisyntomic site QSynn. We record what the sheaves defined above
give when computed on a smooth Wn(k)-algebra B.

Proposition 1.3.20. Let B be a smooth Wn(k)-algebra considered as an object of QSynn. Then:

1. For any 0 ≤ s ≤ n there is a natural equivalence of E∞-algebras RΓQSynn
(B,Acrys/p

s) ≃ Ω•(B/ps)/Ws(k),dR
.

6Here we endow (p) ⊂ S̃ with the standard PD-structure, given by p[k] := pk/k!.
7Where Γ∗ denotes the free commutative divided power algebra.
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2. For any r ∈ Z≥0 there is a natural equivalence RΓQSynn
(B, I[r]) ≃ Ω≥r(B/p)/k,dR, where Ω≥rB/p,dR/k is the r-th

term of the Hodge filtration.

In particular, RΓQSynn
(B, I[r]/I[r+1]) ≃ Ωr

(B/p)/k[−r].

3. For any r ∈ Z≥0 there is a natural equivalence RΓQSynn
(B,Filconjr ) ≃ τ≤rΩ•(B/p)/k,dR.

4. The natural map Γr
S(I/I

2) → I[r]/I[r+1] given by multiplication induces an equivalence

RΓQSynn
(B,Γr

S(I/I
2)) ≃ RΓQSynn

(B, I[r]/I[r+1])

for any r ≥ 0.

5. The isomorphism κ∗ : Γ
∗
S(I/I

2)(1)
∼
−→ grconj∗ (Acrys/p) from Proposition 1.3.18 induces the inverse Cartier iso-

morphism
∞⊕

r=0

Ωr
(B(1)/p)/k

C−1

∼
//
∞⊕

r=0

Hr
(
Ω•(B/p)/k,dR

)

via the above equivalences.

Proof. Parts 1, 2, 3 follow from Proposition 8.12 and Theorem 8.14(3) of [BMS19] and flat descent for the derived
crystalline cohomology (using Remarks 1.3.13, 1.3.10 and 1.3.14).

4. We use the notations of Example 1.3.7. We have

RΓQSynn
(B,F)

∼
−→ Tot

(
F(Bperf) //// F(Bperf ⊗B Bperf)

// //// F(Bperf ⊗B Bperf ⊗B Bperf)
//////// · · ·

)

for any quasisyntomic sheaf F . Moreover all terms (Bperf⊗B . . .⊗BBperf)n are in fact regular semiperfect, meaning

I ⊂ S♭ is generated by a regular sequence. Thus for them Γr
S(I/I

2)
∼
−→ I [r]/I [r+1] and so RΓQSynn

(B,Γr
S(I/I

2)) ≃

RΓQSynn
(B, I[r]/I[r+1]).

5. Note that the map depends only on the reduction of B modulo p, thus it is enough to consider the case
B ∈ QSyn1 is of characteristic p. The inverse Cartier isomorphism C−1 is uniquely defined by the property that
it is multiplicative, C−1(f) = fp and C−1(df) = fp−1df for any f ∈ B. The map κ∗ is multiplicative, κ0 is by
definition given by Frobenius, so it remains to check the third assertion. By functoriality (considering the map

k[x]
x 7→f
−−−→ B) it is enough to check this in the case B = k[x] and f = x. While originally we had the proof using

the relation between the Cartier isomorphism and the Bockstein operator, we will present a different proof that was
kindly suggested to us by one of the referees.

One can use the explicit formula for the crystalline cohomology via the Čech-Alexander complex. Namely, for
any smooth k-algebra B the homotopy groups of the cosimplicial algebra C•crys(B) := D

Ker(B⊗
•
k

m−→B)
B⊗

•
k compute

the de Rham cohomology of B; here B⊗
•
k

m
−→ B is the multiplication map and D

Ker(B⊗
•
k

m−→B)
B⊗

•
k is the PD-envelope

corresponding to its kernel. By [BdJ11, The proof of Theorem 2.12] the totalization of the bicomplex

B //

��

Ω1
B

//

dČech

��

Ω2
B

//

��

. . .

D(2)
ddR //

��

Ω1
D(2)

//

��

Ω2
D(2)

//

��

. . .

D(3) //

��

Ω1
D(3)

//

��

Ω2
D(3)

//

��

. . .

. . . . . . . . .

with D(i) := D
Ker(B⊗

i
k

m−→B)
B⊗

i
k is quasiisomorphic to both the first row and column (via the embeddings of the

latter) this way establishing the comparison quasiisomorphism of C•crys(B) and Ω•B,dR. For B = k[x] we have

D(2) = D(x1−x2)k[x1, x2], dČech(x
p−1dx) = xp−1

1 dx1 − xp−1
2 dx2 and we leave it to the reader to check that this also
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equals to ddR(a) with a := (p− 1)!((x1 − x2)
[p] +

∑p−1
i=1 (−1)ix

[p−1−i]
1 x

[i]
2 ) ∈ D(2). Thus under this comparison the

class [xp−1dx] ∈ H1
dR(k[x]) goes to [a] in H1(C•crys(B)). Note also that by an analogous but simpler computation

[dx] ∈ H1
dR(k[x]) goes to [x1 − x2] ∈ H1(C•crys(B)).

As we saw in part 4, the cosimplicial algebra (Acrys/p)(B
⊗B•
perf ) ≃ D

Ker(B
⊗•

k
perf−→B

⊗•
B

perf )
B
⊗•k
perf appearing as the Čech

object associated to the quasisyntomic cover B → Bperf also computes the de Rham cohomology of B. We have

a natural map of cosimplicial algebras C•crys(B) → (Acrys/p)(B
⊗B•
perf ) induced termwise by B⊗

•
k → B

⊗•k
perf . The

definitions (1.3.16 and 1.3.17) of the conjugate and Hodge filtrations make sense for any PD-envelope and so extend
to the cosimplicial algebra C•crys(B) as well. The map κ (see the proof of 1.3.18) extends naturally as well, the map

C•crys(B) → (Acrys/p)(B
⊗B•
perf ) preserves the filtrations, commutes with κ and in fact is a filtered quasi-isomorphism8.

Returning to the case B = k[x] we see that, first, dx ∈ Ω1
A1

k
≃ H1

QSyn(B, I/I2) corresponds to x1 − x2 ∈ D(2) ⊂

D
Ker(B

⊗2
k

perf→B
⊗2

B
perf )

B
⊗2

k

perf under the comparison, and, second, that the class [κ1(dx)] in H1
QSyn(B, grconj1 ) is given by

the class of the element (p− 1)!(x1 − x2)
[p] ∈ D(2) ⊂ D

Ker(B
⊗2

k
perf
→B

⊗2
B

perf
)
B
⊗2

k

perf modulo Filconj0 . It remains to note that

this element differs from a by
∑p−1

i=1 (−1)ix
[p−1−i]
1 x

[i]
2 which lies in Filconj0 .

Next we prove the following enhancement of the classical Deligne-Illusie splitting:

Theorem 1.3.21. Let Affsm
/W2(k) be the category of smooth affine schemes over W2(k). Then there is a natural

k-linear equivalence of functors

p−1⊕

i=0

Ωi
−(1) : B 7→

p−1⊕

i=0

Ωi
(B(1)/p)/k[−i] and τ≤p−1Ω•−,dR : B 7→ τ≤p−1Ω•(B/p)/k,dR

from Affsm,op
/W2(k)

to D(Modk) which induces the Cartier isomorphism on the level of the individual cohomology func-
tors.

By Proposition 1.3.5 and Proposition 1.3.20 to deduce the statement of the theorem it is enough to prove the
following:

Proposition 1.3.22. There is a natural isomorphism f :
⊕p−1

r=0 Γ
r
S(I/I

2) ≃ Filconjp−1 of sheaves of abelian groups on

QRSPerf2 such that it agrees with κ≤p−1 : Γ
≤p−1
S (I/I2)

∼
−→ grconj≤p−1(Acrys/p) after passing to the associated graded.

Proof. Given S̃ ∈ QRSPerf2 we denote by S the reduction of S̃ modulo p. As before we denote the kernel of
the natural map S♭ → S by I. Note that Γi

S(I/I
2) ≃ Symi

S(I/I
2) for i ≤ p − 1 and so, extending the map by

multiplicativity, it is enough to construct a splitting f : S♭/I ⊕ I/I2
∼
−→ Filconj1 . Recall that we have a natural

endomorphism ϕ : Acrys(S) → Acrys(S). We consider the Nygaard filtration (see Definition 8.9 of [BMS19])

N≥iAcrys(S) := {x ∈ Acrys(S) | ϕ(x) ∈ piAcrys(S)}.

In fact we will be interested only in the first two of its associated graded terms. We will construct f by using the
divided Frobenii, defined as follows. By Theorem 8.15(1) of [BMS19] Acrys(S) is p-torsion free and so for each i ≥ 0
one has a well defined map

ϕi := ϕ/pi : N iAcrys(S) → Acrys(S)/p

from the i-th graded piece N iAcrys(S) := N≥iAcrys(S)/N≥i+1Acrys(S) of the Nygaard filtration.
It is clear that p·Acrys(S) ⊂ N≥1Acrys(S); moreover, by Theorem 8.14(4) of [BMS19], N≥1Acrys(S) mod p·Acrys

is given by I ⊂ Acrys(S)/p. Thus N 0 := N≥0/N≥1 ≃ S♭/I and ϕ0 induces an isomorphism S♭/I
∼
−→ Filconj0

(since κ0 = ϕ, this follows from Proposition 1.3.18). We then also have a map ϕ1 : N 1Acrys(S) → Acrys(S)/p,

which, by Theorem 8.14(2) of [BMS19], is an isomorphism onto Filconj1 . Multiplication by p induces a natural map

N 0Acrys(S) → N 1Acrys(S) which after composing with ϕ1 is identified with the embedding Filconj0 ⊂ Filconj1 . In fact,

8Indeed, both complexes can be considered as Čech-Alexander complexes for a slightly unusual “quasisyntomic” version of the char p
crystalline site: namely, we consider triples (U, T, δ) with U → SpecB a quasisyntomic morphism and T being a char p PD-thickening of

U . The complexes C•
crys(B) and (Acrys/p)(B

⊗B•

perf ) can be interpreted as the Čech-Alexander complexes corresponding to two different

covers, namely SpecB → ∗ and SpecBperf → ∗. The map above is then induced by the map of coverings SpecBperf → SpecB and

being a map Čech-Alexander complexes (for the structure sheaf) is automatically a quasiisomorphism. From this interpretation it is
also clear that it respects the Hodge and conjugate filtrations, as well as the map κ.
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by flatness of Acrys(S), we have N≥1Acrys(S) ∩ p · Acrys(S) ≃ N≥0Acrys(S) and so Filconj0 (under the isomorphism

given by ϕ1) is identified exactly with the subspace of those elements in N 1Acrys(S) ≃ Filconj1 that lift to elements
of N≥1Acrys(S) divisible by p.

We now use the lifting S̃ of S to construct the splitting of Filconj1 . Recall that we have a map θ2,S̃ : Acrys(S)/p
2
։

S̃ and let K := ker θ2,S̃ . Since both S̃ and Acrys(S)/p
2 are flat over W2(k), we get that K is also flat over W2(k)

and that K/pK ≃ I:

0 // K

��

// Acrys(S)/p
2

��

// S̃ //

��

0

0 // I // Acrys(S)/p // S // 0.

The splitting is then given by applying ϕ1 to K. Namely, since ϕ(I) = 0 ∈ Acrys(S)/p it follows that ϕ(K) ⊂
p · Acrys(S)/p

2 and K ⊂ N≥1Acrys(S) mod p2Acrys(S). The natural projection from K to N 1Acrys(S) contains
p ·K+N≥2Acrys(S) mod p2Acrys(S) in its kernel. Since K/pK = I and the image of N≥2Acrys modulo p is given by

I2 (e.g. by Theorem 8.14(4) of [BMS19]), we get that ϕ1 (applied to K) gives a well-defined map f : I/I2 → Filconj1 .
Moreover K ∩ (p · Acrys(S)/p

2) ⊂ p ·K, since K is flat over W2(k), and so the image of f does not intersect with

Filconj0 .

It remains to check that the constructed f : I/I2 → Filconj1 coincides with κ1 after the projection to Filconj1 /Filconj0 .
Given s ∈ I let s̃ = [s] + p · s′ ∈ K ⊂ Acrys/p

2 be a lifting of s to an element of K. Then

ϕ(s̃) = ϕ([s]) + p · ϕ(s′) = (p− 1)! · p · [s][p] + p · ϕ(s′) ⇒ f(s) = (p− 1)! · s[p] + ϕ(s′).

By the discussion above (see also Theorem 8.14(2) in [BMS19]) ϕ(s′) ∈ Filconj0 and f(s) = (p − 1)! · s[p] modulo

Filconj0 .

Since the above splitting is clearly functorial in S̃ we get the statement of the proposition.

As a corollary we deduce

Theorem 1.3.23. Let Y be a smooth Artin stack over a perfect field k of characteristic p admitting a smooth lift
to the ring of the second Witt vectors W2(k). Then there is a canonical equivalence

RΓ(Y , τ≤p−1Ω•Y ,dR) ≃ RΓ

(
Y (1),

p−1⊕

i=0

∧iLY (1)/k[−i]

)
.

In particular for n ≤ p− 1 we have Hn
dR(Y /k) ≃ Hn

H(Y
(1)/k).

Proof. Let π : Stkn-Art,sm
/W2(k)

→ Stkn-Art,sm
k be the reduction functor, Ỹ 7→ Ỹ ⊗W2(k) k. By Theorem 1.3.21 it is enough

to prove that the natural map (existing by the universal property of the right Kan extensions)

RΓdR(−/k) ◦ π → Rani2(RΓdR(−/k) ◦ π|Affsm
/W2(k)

) (4)

(where i2 denotes the inclusion functor Affsm
/W2(k) →֒ Stkn-Art,sm

/W2(k)
) is an equivalence. Since both sides of (4) satisfy

smooth descent, by induction on n we reduce the statement to the case of smooth affine schemes over W2(k), where
(4) is evidently an equivalence.

Corollary 1.3.24. Let Y be a smooth Hodge-proper stack over a perfect field k of characteristic p admitting a
smooth lift to W2(k). Then the Hodge-to-de Rham spectral sequence Hj(Y ,∧iLY /k) ⇒ Hi+j

dR (Y /k) degenerates at
the first page for i+ j < p.

Proof. This follows from Theorem 1.3.23 and the equality of dimensions dimk H
n
H(Y ) = dimk H

n
H(Y

(1)).
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1.4 Degeneration in characteristic zero

To reduce the statement in characteristic 0 to results of the previous section we introduce the following notion:

Definition 1.4.1. A smooth Hodge-proper Artin stack X over a field F of characteristic 0 is called Hodge-properly
spreadable if there exists a Z-subalgebra R ⊂ F and an Artin stack XR over SpecR such that

• R is a localization of a smooth Z-algebra such that the image of SpecR in SpecZ is open.

• XR is smooth over R and X ⊗R F := XR ×SpecR SpecF ≃ X .

• XR is Hodge-proper over R, namely RΓ(XR,∧pLXR/R) is bounded below coherent over R for any p ≥ 0.

Remark 1.4.2. We note that any field F of characteristic 0 is a union of all such subrings R ⊂ F (in fact even
a union of those that are smooth over Z). As we will see in Section 2.3.3 allowing some infinite localizations of
smooth algebras makes some difference when constructing examples. The condition on openness of the image is
added to guarantee that the diagram of all such R ⊂ F is filtered and that for any such R the image of SpecR
in SpecZ is infinite. To see the first point: indeed, having Q1 = R1[S

−1
1 ], Q2 = R2[S

−1
2 ], Q1, Q2 ⊂ F being

localizations of smooth Z-algebras R1, R2 for some subsets Si ⊂ Ri as in Definition 1.4.1, for any finite localization
(Q1 ·Q2)[1/f ] ⊂ F the image of Spec(R1 ·R2)[1/f ] in SpecZ is still open. Then, picking f such that (R1 ·R2)[1/f ]
is again smooth over Z we get a subring (Q1 ·Q2)[1/f ] ⊂ F that contains both Q1, Q2 and fits in Definition 1.4.1.

We defer a thorough discussion of spreadability of stacks till the next section. We only stress here again, that
(unlike in the case of proper schemes) Hodge-proper spreadings do not exist in general (see Section 2.3.2).

Now we will deduce the promised Hodge-to-de Rham degeneration in characteristic 0:

Theorem 1.4.3. Let X be a smooth Hodge-properly spreadable Artin stack over a field F of characteristic zero.
Then the Hodge-to-de Rham spectral sequence for X degenerates at the first page. In particular for each n ≥ 0 there
exists a (non-canonical) isomorphism

Hn
dR(X /F ) ≃

⊕

p+q=n

Hp,q(X /F ).

Proof. For the rest of the proof fix n ∈ Z≥0. By Hodge-properness of X it is enough to prove

dimF Hn
dR(X /F ) = dimF Hn

H(X /F ).

Let R and XR be as in Definition 1.4.1. Note that by the assumption on XR and Proposition 1.2.6 both
Hn

dR(XR/R) and Hn
H(XR/R) are finitely generated R-modules. Localizing R if necessary, we can assume that R is

connected of some Krull dimension d, and that the i-th cohomology groups Hi
dR(XR/R) and Hi

H(XR/R) are free
R-modules of finite rank for i = n, n+ 1, . . . , n+ d.9 Note that for any point s : Spec k → SpecR the map R → k
can be factored as a composition of a flat map R → Rs (where Rs is a local ring of s) and a map Rs → k of finite
Tor-amplitude (by regularity assumption k is perfect as an Rs-module). Hence by Proposition 1.1.8 we have

RΓdR(Xk/k) ≃ RΓdR(XR/R)⊗R k and RΓH(Xk/k) ≃ RΓH(XR/R)⊗R k,

where Xk := XR ⊗R k. Since the n, (n+ 1), . . . , (n+ d)-th cohomology groups are free as R-modules and since the
Tor-amplitude of k over R is bounded by d, we get Hn

dR(Xk/k) ≃ Hn
dR(XR/R)⊗R k, so

dimF Hn
dR(X /F ) = rankR Hn

dR(XR/R) = dimk H
n
dR(Xk/k)

and analogously for the Hodge cohomology. In particular, to prove that dimF Hn
dR(X /F ) = dimF Hn

H(X /F ) it is
enough to show that dimk H

n
dR(Xk/k) = dimk H

n
H(Xk/k) for some point s : Spec k → SpecR.

To do so, note that by the infiniteness of the image of SpecR → SpecZ and Lemma 1.4.4 below, there exists a
closed point s : Spec k →֒ SpecR of characteristic greater than n, such that the map R → k → kperf factors through
the ring of the second Witt vectors W2(k

perf). Since the base change XW2(kperf ) := XR ×R W2(k
perf) is smooth and

Hodge-proper over W2(k
perf), by Theorem 1.3.23 we have

dimkperf Hn
dR(Xkperf /kperf) = dimkperf Hn

H(Xkperf /kperf).

9Note that there does not necessarily exist a localization R[s−1] such that for all i the R[s−1]-modules Hi
dR(XR/R)[s−1] (or

Hi
H(XR/R)[s−1]) are free, since there are infinitely many of them.
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Finally, by base change (applied to k → kperf) we get

dimk H
n
dR(Xk/k) = dimk H

n
H(Xk/k)

as desired.

Lemma 1.4.4. Let R be a localization of a smooth Z-algebra. Then for any field k of positive characteristic and a
map R → k the composite map R → k →֒ kperf factors through the ring W2(k

perf) of the second Witt vectors.

Proof. By assumption on R the cotangent complex LR/Z ≃ ΩR/Z[0] is concentrated in degree zero and is a locally

free (in particular flat) R-module. By the basic deformation theory the obstruction to lift a map R → kperf to
R → W2(k

perf) → kperf lies in Ext1kperf (LR/Z ⊗R kperf , kperf). But the latter group vanishes, since by flatness of

LR/Z, the restriction LR/Z ⊗R kperf is a complex of kperf-vector spaces concentrated in degree 0.

1.5 Equivariant Hodge decomposition

In this section we apply Theorem 1.4.3 to obtain a (non-canonical) Hodge decomposition for the equivariant singular
cohomology of an algebraic variety X with a G action, under the assumption that the corresponding quotient stack
[X/G] is Hodge-properly spreadable.

Let K be a homotopy type with an action of a topological group H (i.e. an (∞, 1)-functor K• : BH → S, where
S denotes the (∞, 1)-category of spaces, see Section 0.4). Recall that the H-equivariant cohomology C∗H(K,Λ) of
K with coefficients in a ring Λ are defined as

C∗H(K,Λ) := C∗(KhH ,Λ),

where KhH is the homotopy quotient of K by H (i.e. a colimit of the corresponding functor K•, or, more classically,
(K × EH)/H).

If X is a smooth algebraic variety over a field F ⊆ C equipped with an action of an algebraic group G, then the
de Rham cohomology of [X/G] gives a model for the G(C)-equivariant singular cohomology of X(C):

Proposition 1.5.1. Let X and G be as above. Then there is a canonical equivalence

C∗G(C)(X(C),C) ≃ RΓdR([X/G]/F )⊗F C.

Proof. By definition we have

∣∣∣ . . .
// ////// G×G×X

// //// G×X // // X
∣∣∣ ≃ [X/G],

∣∣∣ . . .
//////// G(C)×G(C) ×X(C)

////// G(C)×X(C) //// X(C)
∣∣∣ ≃ X(C)hG(C).

Since the functor of cochains C∗(−,C) sends colimits of homotopy types to limits of complexes and by smooth
descent for RΓdR(−/F ) ⊗F C, the result follows from the analogous comparison between algebraic de Rham and
Betti cohomology for ordinary smooth schemes X ×Gn.

Corollary 1.5.2 (Equivariant Hodge decomposition). Let X be a smooth scheme over C with an action of an
algebraic group G. Assume that [X/G] is Hodge-properly spreadable (e.g. X and G satisfy the conditions of
Theorem 3.1.4 or 3.2.12). Then for all n ∈ Z≥0 there exists an isomorphism

Hn
G(C)(X(C),C) ≃

⊕

p+q=n

Hq([X/G],∧pL[X/G]/C).

Example 1.5.3. Let X = SpecC. Then ∧nLBG ≃ Symn(g∨)[−n] where g is the Lie algebra of G endowed with
the adjoint action of G. This way we get a standard isomorphism

Hn
G(C)(pt,C) ≃

{
Symk(g∨)G if n = 2k,
0 if n = 2k + 1.

In particular,
H•G(C)(pt,C) ≃ Sym(g∨)G, where deg(g∨) = 2.
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Example 1.5.4. As another example one can take a conical resolution π : X → SpecA (see the second example
of 3.2.16). Following Example 3.2.16, the quotient stack [X/Gm] is Hodge-properly spreadable and we get a
decomposition for H•

C×
(X(C),C) as in Corollary 1.5.2. Note also that in this case H1

C×
(X(C),C) ≃ H1(X(C),C);

indeed one can replace C× with S1 and consider the Serre-Lerray spectral sequence

Ep,q
2 = Hp(BS1, Hq(X(C),C)) ⇒ Hp+q

S1 (X(C),C).

We have BS1 ≃ CP∞, thus H1(BS1, H0(X(C),C)) = 0 and it’s enough to show that d0,12 = 0. We leave it as an

exercise to the reader to check that this is trues as soon as X(C) is connected and X(C)S
1

6= 0.
From all this we get a decomposition

H1(X(C),C) ≃ H0([X/Gm],L[X/Gm])⊕H1([X/Gm],O[X/Gm]). (5)

We have L[X/Gm] ≃ Ω1
X

a∗
−→ OX as a complex of Gm-equivariant sheaves on X , where a∗ is the map dual to the

derivative of the action Lie(Gm) ⊗C OX → TX (where TX denotes the tangent bundle). Then H0(X,Ω1
X

a∗
−→

OX) ≃ ker
(
H0(X,Ω1

X)
a∗

−→ H0(X,OX)
)
, which is identified with the invariants of the Lie algebra action, which

also identifies with the group invariants H0(X,Ω1
X)Gm . Finally we get

H0([X/Gm],L[X/Gm]) ≃ H0(X,Ω1
X

a∗
−→ OX)Gm ≃ H0(X,Ω1

X)Gm

as well. The second summand in (5) is just H1(X,OX)Gm . Thus for any conical resolution we get a formula

H1(X(C),C) ≃ H0(X,Ω1
X)Gm ⊕H1(X,OX)Gm .

This is a partial generalization of results of Section 6 in [KT16] to the case when R1π∗OX is not necessarily 0.

2 Spreadings

To apply Theorem 1.4.3 we need to find a good model of our stack over a finitely generated Z-algebra, namely a
Hodge-proper spreading. However, as we will see, such a spreading does not necessarily exist in general.

In Section 2.1 we first prove a general result about the existence of spreadings for some more natural classes of
morphisms between Artin stacks (like smooth, flat, etc). Then some examples of Hodge-properly spreadable and
nonspreadable stacks are given in Section 2.3.

2.1 Spreadable classes

Definition 2.1.1. Let P be a class of morphisms of schemes (e.g. P = smooth, flat or proper morphisms) containing

all isomorphisms and closed under compositions. For a scheme S, define Schfp,P/S to be the (non-full) subcategory

of schemes over S consisting of finitely-presentable S-schemes and morphisms between them that belong to P .

Theorem 2.1.2 ([Gro66, Theorems 8.10.5, 11.2.6] and [Gro67, Proposition 17.7.8]). Let {Si} be a filtered diagram
of affine schemes with limit S and let P be one of the following classes of morphisms: isomorphisms, surjections,
closed embeddings, flat, smooth or proper morphisms10. Then the natural functor

lim
−→

i

Schfp,P/Si
→ Schfp,P/S

(induced by the base change Schfp,P/Si
∋ X 7→ X ×Si S) is an equivalence.

We will say that a schemeX is a P-scheme over S (P-scheme/S) ifX is an S-scheme and the structure morphism
X → S is in P . From the theorem above one can formally deduces the following corollary (see Corollary 2.1.14 for
a proof in a bit more general stacky setting):

Corollary 2.1.3. Let {Si}i∈I , S and P be as above. Then if X is a finitely presentable P-scheme/S, then there
exists i ∈ I and a finitely presentable P-scheme Xi over Si, such that X ≃ Xi ×Si S.

10The list is not even nearly complete. See [Poo17, Appendix C.1] for a much more exhaustive list of classes of morphisms and their
properties with precise references.
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Our goal in this section is to extend Theorem 2.1.2 to the setting of Artin stacks. First we recall how “finitely
presentable” is defined in Artin setting:

Definition 2.1.4 (Finitely presentable Artin stacks). A (−1)-Artin stack X over a base ring R is called finitely
presentable, if X ≃ SpecA and A is a finitely presentable R-algebra. Then, an n-Artin stack X over R is called
finitely presentable if there exists a smooth atlas U ։ X such that U is a finitely presentable affine scheme and
U ×X U is a finitely presentable (n− 1)-Artin R-stack. We will denote the category of finitely presentable n-Artin
stacks by Stkn-Art,fp.

Our general strategy for proving results about spreadability is to inductively reduce to the case of finitely
presentable schemes. For this end it will be technically convenient to use instead of iterative description of Artin
stacks a representation as a geometric realization of a coskeletal hypercover by schemes:

Construction 2.1.5. Let X• : ∆
op → C be a simplicial object in a category C admitting finite limits. Define

X(−) : SSetfin,op → C to be the right Kan extension of X• along the inclusion of ∆op into the opposite SSetfin,op

of the category of finite simplicial sets (meaning simplicial sets with only finitely many non-degenerate simplices).
More concretely, for a finite simplicial set K

X(K) ≃ lim
∆n∈∆op

/K

X(∆n).

In particular, we denote Mn(X•) := X(∂∆n) and call it the n-th matching object of X•.

Definition 2.1.6. Let H be an ∞-topos. An augmented simplicial object X• → X−1 is called a hypercover of X−1
if for any n ∈ Z≥0 the natural map Xn → Mn(X•) is an effective epimorphism (Mn is computed in the category
H/X−1

). A hypercover X• is called n-coskeletal if additionally for each m > n the natural map Xm → Mm(X•)
is an equivalence (equivalently X• coincides with the right Kan extension of its restriction to ∆op

≤n). We refer
interested reader to [BM19, Appendix] for a quick recap on hypercovers and to [Pri15, Section 2] for a discussion
of hypergroupoids, which is most relevant for this section.

With this notation, n-Artin stacks can be thought of as some special (n− 1)-coskeletal hypercovers:

Theorem 2.1.7 ([Pri15, Proposition 4.1 and Theorem 4.7]). Let X be an n-Artin stack over S. Then there exists
an (n− 1)-coskeletal hypercover X• of X such that all Xk are equivalent to coproducts of affine schemes and for all
m, k, with 0 ≤ m ≤ k, the maps Xk → X(Λk

m) are smooth surjections. Conversely, given X• as above, its geometric
realization |X•| (in the category of stacks, i.e. sheaves of spaces in étale topology) is an n-Artin stack.

Corollary 2.1.8. Let X be a finitely presented n-Artin stack over S. Then there exists an (n − 1)-coskeletal
hypercover X• of X such that all Xk are finitely presentable affine schemes and for all m, k, with 0 ≤ m ≤ k, the
maps Xk → X(Λk

m) are smooth surjections. Conversely, given X• as above, its geometric realization |X•| (in the
category of stacks) is a finitely presentable n-Artin stack.

Proof. Let X be a finitely presentable n-Artin stack. The simplicial scheme X• from the theorem above is con-
structed inductively in [Pri15, Proposition 4.5] using only finite limits and atlases, hence all Xi can be chosen to be
finitely presentable.

Conversely, if X• is a simplicial affine scheme as in the statement of corollary, then by the theorem above |X•|
is an n-Artin stack. Moreover, the natural map X0 → |X•| is a smooth finitely presentable atlas. To prove that
X0 ×|X•| X0 is finitely presented, recall that by [Pri15, Remark 2.25] there is a natural equivalence

X0 ×|X•| X0 ≃ |X0 ×X• Dec+(X•)|,

where Dec+ is the décalage functor, Dec+(X•)i ≃ Xi+1. Since finitely presentable affine schemes are closed
under fibered products, it follows that X0 ×X• Dec+(X•) also satisfies conditions of the corollary. Since moreover,
X0×X•Dec+(X•) is (n−2)-coskeletal, its geometric realization X0×|X•|X0 is finitely presentable by induction.

For convenience we introduce the following notation:

Definition 2.1.9 (Spreadable class). A class of morphism P between Artin stacks is called spreadable if

• P is closed under arbitrary base changes, compositions and contains all equivalences.
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• (Locality on source and target) Let f : X → Y be a morphism of finitely presentable Artin stacks. Then f
lies in P if and only if there exist smooth finitely presentable affine atlases U ։ Y and V ։ U ×Y X such
that the composite map V → U ×Y X → U is in P .

• (Affine spreadability) Let {Si} be a filtered diagram of affine schemes with the limit S. Let f : X → Y be a
morphism in P between affine finitely presentable S-schemes. Then for some i there exists a map fi : Xi → Yi

in P of affine finitely presentable Si-schemes, such that f ≃ fi ×Si S.

Example 2.1.10. If P and Q is a pair of spreadable classes, then P ∩ Q and P ∪ Q are also spreadable. There
exists the smallest spreadable class (consisting only of equivalences) and the largest one (consisting of all finitely
presentable morphisms).

Example 2.1.11. Since surjective, smooth and flat morphisms of Artin stacks are by definition local on the source
and the target for the flat topology, by Theorem 2.1.2 we get that these classes are spreadable.

Definition 2.1.12. Let P be a spreadable class and let S be a scheme. Let us denote by Stkn-Art,fp,P
/S the subcategory

of the category of finitely presentable n-Artin stacks over S and morphisms from P between them.

We are now ready to prove the main technical result of this section (see [Ryd15], [LMB00, Chapter 4] for similar
results in the context of 1-Artin stacks and [Lur18, Theorem 4.4.2.2] for the spectral version):

Theorem 2.1.13. Let {Si} be a filtered diagram of affine schemes with limit S. Let P be a spreadable class. Then
the natural functor

lim
−→

i

Stkn-Art,fp,P
/Si

// Stkn-Art,fp,P
/S

(induced by the base-change Stkn-Art,fp,P
/Si

∋ Xi 7→ Xi ×Si S) is an equivalence.

Proof. We will prove the statement by induction on n. The base of the induction n = −1, i.e. the case of affine
schemes, holds by the definition of a spreadable class. To make the induction step, we first prove the statement for
P = “all (finitely presented) morphisms” (using the induction assumption for smooth surjective morphisms) and
then deduce the statement for a general spreadable class P .

Essential surjectivity for P = “all”. Since all n-Artin stacks are (n+1)-truncated, the Yoneda embedding Stkn-Art →֒
Fun(CAlg, S) factors through a full subcategory Fun(CAlg, S≤n+1) =: PStk≤n+1. Let now X be a finitely presented
n-Artin S-stack and let X• be a simplicial diagram of finitely presented affine S-schemes, so that |X•| ≃ X (as in
Corollary 2.1.8). Since for any simplicial diagram A• in any (n + 1, 1)-category the natural map |A•|≤n+2 → |A•|
is an equivalence, we see that X ≃ |X•|≤n+2 in PStk≤n+1. But X•|∆op

≤n+2
is a finite diagram of finitely presented

affine schemes, hence there exists Si and a diagram X•|∆op
≤n+2

,Si
such that X•|∆op

≤n+2
≃ X•|∆op

≤n+2
,Si

×Si S. We set

XSi
:= |X≤n+2,Si|. By applying the inductive assumption with P = “smooth surjective”, we can assume that all

maps Xk,Sj → X•,Sj(Λ
k
m) are smooth and surjective for some Sj ; hence by Corollary 2.1.8 XSj is a finitely presented

n-Artin spreading of X .

Fully-faithfulness for P = “all”. Let Xi,Yi be a pair of n-Artin stacks of finite presentation over Si. We then have

lim
−→

j

HomPStk/Sj
(Xi ×Si Sj ,Yi ×Si Sj) ≃ lim

−→

j

HomPStk/Si
(Xi ×Si Sj ,Yi) ≃ lim

−→

j

HomPStk≤n+1/Si
(Xi ×Si Sj ,Yi), (6)

where the second equivalence follows from the fact that filtered co-limits commute with π∗, hence preserve (n+1)-
truncated spaces. Let now X• → X be as in Corollary 2.1.8. Then

(6) . . . ≃ lim
−→

j

HomPStk≤n+1/Si
(|X• ×Si Sj|≤n+2,Yi) ≃ Tot≤n+2 lim

−→

j

HomPStk≤n+1/Si
(X• ×Si Sj ,Yi) ≃

≃ Tot≤n+2 lim
−→

j

HomStk/Si
(X• ×Si Sj ,Yi),

where the second equivalence follows from the fact that, since ∆≤n+2 is a finite diagram, limits along ∆≤n+2

commute with filtered co-limits. Similarly, one shows that

HomStk/S
(Xi ×Si S,Yi ×Si S) ≃ Tot≤n+2 HomStk/Si

(X• ×Si S,Yi).
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Finally, since Yi is finitely presentable, by [GR17, Chapter 2, Proposition 4.5.2]

lim
−→

j

HomStk/Si
(X• ×Si Sj,Yi) ≃ HomStk/Si

(X• ×Si S,Yi).

General P. Let f : X → Y be a morphism in a spreadable class P over S. It is enough to prove that there exists i
and a map between finitely presentable n-Artin Si-stacks fi : Xi → Yi such that fi ×Si S ≃ f and fi ∈ P . Choose
affine finitely presentable atlases U ։ Y and V ։ U ×Y X . The induced map g : V → U belongs to P , so by the
previous part and definition of spredable classes, the diagram

V // //

g

��

X

f

��
U // // Y

can be spread out to some Si, such that gSi belongs to P . It follows by the definition of spreadable class, that fSi

is also in P .

A stack X is called an n-Artin P-stack over S if the structure morphism π : X → S exhibits X as an n-Artin
stack and π is in P .

Corollary 2.1.14 (Existence of spreading in a predefined class). Let {Si}i∈I be a filtered diagram of affine schemes,
S := lim

←−
Si and P be a spreadable class. Then if X is a finitely presentable n-Artin P-stack over S, then there exists

i ∈ I and a finitely presentable n-Artin P-stack Xi over Si, such that X ≃ Xi ×Si S.

Proof. Let π : X → S be the structure morphism. By the previous theorem and the description of objects in filtered
colimits of categories (see e.g. [Roz12]) there exists a finitely presented stack πj : Xj → Sj such that πj ×Sj S = π.
A morphism in a filtered colimit of categories is a filtered co-limit of morphisms, hence

Hom
Stkn-Art,fp,P

/S
(X , S) ≃ lim

−→

k

Hom
Stkn-Art,fp,P

/Si

(Xi ×Sj Si, Si).

Since the left hand side is non-empty by assumption, the right hand side also must be nonempty for some i, i.e.
there exists i ∈ I such that πi : Xi → Si is in P .

2.2 Cohomologically proper stacks

In most examples for which we are able to construct a Hodge-proper spreading, the spreading in fact satisfies a
stronger property, namely it is cohomologically proper. This property enjoys many natural properties that Hodge-
properness does not: e.g. it translates along proper maps and a cohomologically proper scheme is necessarily proper.
To introduce it we first need to extend Definition 1.2.1 to all locally Noetherian Artin stacks:

Definition 2.2.1. An Artin stack is called locally Noetherian if it admits an atlas
∐

i Ui, where all Ui are Noetherian
affine schemes. An Artin stack is called Noetherian if it is locally Noetherian and quasi-compact quasi-separated.

For a locally Noetherian Artin stack X we will denote by Coh(X ) (resp. Coh+(X)) the full subcategory of
QCoh(X ) consisting of sheaves F such that the restriction of F to some (equivalently to any) locally Noetherian
atlas has bounded (resp. bounded below) coherent cohomology sheaves.

Definition 2.2.2. A quasi-compact quasi-separated morphism f : X → Y of locally Noetherian Artin stacks is
called cohomologically proper if the induced functor f∗ : QCoh(X ) → QCoh(Y ) preserves the full subcategory of
bounded below coherent sheaves. A locally Noetherian Artin stack X over a Noetherian ring R is called cohomo-
logically proper if the structure morphism X → SpecR is cohomologically proper.

Remark 2.2.3. By the left exactness of f∗ it is enough to prove that f∗(Coh(X )♥) ⊂ Coh+(Y ).

We have the following basic properties of cohomologically proper morphisms:

Proposition 2.2.4. In the notations above we have:

1. The class of cohomologically proper morphism is closed under compositions.
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2. Let f : X → Y be a cohomologically proper morphism and assume that X is Noetherian. Then for any open
quasi-compact embedding U →֒ Y the pullback U ×Y X is cohomologically proper over U.

3. Let f : X → Y be a quasi-compact quasi-separated morphism such that for some smooth cover π : U → Y the
pull-back fU : X ×Y U → U is cohomologically proper. Then f is cohomologically proper.

Proof. The first point is obvious. To prove the second one note that by base change it is enough to show that any
coherent sheaf on U ×Y X is a retract of a restriction of a coherent sheaf on X . This is proved in Corollary 2.2.6

below. The third point follows by base change as well since it is enough to check that a sheaf belongs to Coh+ on
a smooth cover.

Proposition 2.2.5. Let X be a Noetherian Artin stack. Then for all n ∈ Z the category QCoh(X )≥n is compactly
generated by Coh(X )≥n.

Proof. The shift functor F 7→ F [n] induces an equivalence QCoh(X )≥n ≃ QCoh(X )≥0, hence without loss of
generality we can assume that n = 0. During the proof we will freely use the fact that the truncation functors for
the natural t-structure on QCoh(X ) preserve filtered colimits (see e.g. [GR17, Chapter 3.3, Corollary 1.5.7]).

We first prove that Coh(X )[0;m] is compact in QCoh(X )[0;m] for all m ≥ 0. Let U• be an affine Noetherian
smooth hypercover of X . Since QCoh(X )[0;m] is an (m+ 1)-category we then have

QCoh(X )[0;m] ≃ Tot≤m+2 QCoh(U•)
[0;m].

Since ∆≤m+2 is a finite diagram it follows that a sheaf in Coh(X )[0;m] is compact in QCoh(X )[0;m], since all of its
images are compact in QCoh(Ui)

[0;m]. Note also that since for any F ∈ QCoh(X )≤m and G ∈ QCoh(X ) we have

HomQCoh(X )≥0(F ,G) ≃ HomQCoh(X )(F , τ≤mG)

and since truncation functor τ≤m preserves filtered colimits, it follows that F ∈ Coh(X )[0;m] is compact in
QCoh(X )≥0 as well.

Next we show that QCoh(X )♥ ≃ Ind(Coh(X )♥). The argument is a slight variation of [SP20, Tag 07TU]. By
assumption on X there exists an affine Noetherian atlas p : U ։ X . Let F ∈ QCoh(X )♥ and write p∗F ≃ lim

−→
Gα,

where the diagram on the right runs over all finitely generated submodules of p∗F . For each α define Fα ∈ QCoh(X )
as a pullback

Fα
�

�

//

��

F

��
H0p∗Gα

�

�

// H0p∗p
∗F .

Using triangular identities one easily checks that the inclusion p∗Fα →֒ p∗F factors through an inclusion Gα →֒ p∗F .
In particular, p∗Fα, being a submodule of a finitely generated module Gα over Noetherian ring Γ(U,OU ), is finitely
generated itself. By definition it means that Fα is coherent. Finally, since p is quasi-compact quasi-separated, the
pushforward functor H0p∗ preserves filtered colimits, hence the natural map lim

−→
Fα → F is an isomorphism.

Let now i : Ind(Coh(X )≥0) → QCoh(X )≥0 be a natural functor. Note that since by the previous Coh(X )≥0 is
compact in QCoh(X )≥0 this functor is fully faithful. Moreover, since i preserves colimits it admits a right adjoint R.
Then to prove that i is essentially surjective it is enough to show that the fiber G of the co-unit iRF → F vanishes.
But R being right adjoint preserves fibered products, hence RG ≃ fib(RiRF → RF) ≃ 0. By Yoneda’s lemma and
adjunction i ⊣ R we conclude that HomQCoh(X )≥0(H,G) ≃ ∗ for all H ∈ Coh(X )≥0. We claim that G ≃ 0. To see

this assume that G 6≃ 0 and let i be the smallest integer such that Hi(G) 6≃ 0. By the previous part there exists a
coherent subsheaf H ⊆ Hi(G). It follows the composition H[−i] → Hi(G)[−i] → G is non-zero, a contradiction.

Corollary 2.2.6. Let X be a Noetherian Artin stack and let j : U → X be an open embedding. Then every coherent
sheaf on U is a retract of a restriction of a coherent sheaf from X .

Proof. Note that since X is Noetherian, the stack U is also Noetherian. In particular the embedding j is quasi-
compact and quasi-separated. Next, by pulling back to an atlas and using base change (which holds by qcqs
assertion about j), one finds that the co-unit of adjunction j∗j∗F → F is an equivalence for any quasi-coherent
sheaf on U. Let now F ∈ Coh(U). By the previous proposition j∗F ≃ lim

−→
Gα for some filtered diagram of coherent

sheaves Gα. It follows that F ≃ lim
−→

j∗Gα. By compactness of F we conclude that it is a retract of some j∗Gα.
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If R is regular, the cohomological properness is stronger than the Hodge-properness:

Proposition 2.2.7. Let X be a smooth cohomologically proper Artin stack over a regular Noetherian ring R. Then
X is Hodge-proper over R.

Proof. Since X is smooth over a regular Noetherian ring R, the category of coherent sheaves on X coincides with
the category of perfect complexes. So by assumption, it is enough to prove that ∧iLX/R is perfect for all i ≥ 0.
By smoothness, the cotangent complex LX/R is perfect and concentrated in non-negative cohomological degrees. It
follows that LX/R admits a finite filtration with the associated graded pieces being negative shifts of vector bundles.
Hence by induction it is enough to prove that if E is a quasi-coherent sheaf on X such that ∧jE is perfect for
j ≤ i, then ∧i(E[−1]) is also perfect. But by construction (see [BM19, Theorem 3.35]) the functor ∧i is i-excisive,
so ∧i(E[−1]) is a finite limit of sheaves of the form ∧i(E⊕n), n ≤ i, hence is perfect.

Moreover, all proper morphisms are cohomologically proper. To show this, let’s first recall the notion of a proper
morphisms between higher stacks (following [PY14, Section 4]):

Definition 2.2.8. A 0-representable morphism X → Y is called proper if for any affine scheme S mapping to
Y , the pullback X ×Y S is a proper S-scheme. Next, assuming that the notion of a proper (n − 1)-representable
morphism is already defined, an n-representable morphism f : X → Y is called proper if

• f is separated, i.e. the diagonal map X → X ×Y X (which is (n− 1)-representable) is proper.

• For any affine scheme S mapping to Y the pullback XS := X ×Y S admits a surjective S-morphism P ։ XS

such that P is a proper S-scheme.

Remark 2.2.9. Since the property of a morphism of schemes to be proper is flat local on the target, it is enough
in the definition above to check the second condition only for some atlas of Y .

Remark 2.2.10. A potentially more familiar definition of a (classical) proper algebraic stack p : X → S is that p
should be separated, finite type and universally closed. We note that such stacks over S are proper 1-Artin stacks
in the definition above. Indeed, by [Ols05, Theorem 1.1] in this case there exists a proper surjective map U → X

from a proper scheme U .

From the standard results about proper morphisms of schemes and representable morphisms of stacks one
formally deduces:

Proposition 2.2.11. With the notations above:

1. Proper morphism are closed under base change.

2. The property of being a proper morphism is flat local on the target.

3. Proper morphisms are also closed under compositions.

The fact that proper morphisms are cohomologically proper was proved in [PY14, Theorem 5.13], but in a
slightly different context. Their proof essentially follows the argument of [LMB00, Theorem 15.6] in the case of
classical proper stacks. For the reader’s convenience we sketch the argument here:

Proposition 2.2.12. Let f : X → Y be a proper morphism between locally Noetherian Artin stacks. Then f is
cohomologically proper.

Sketch of the proof. The question is local on the target, hence we can assume that Y = Y is an affine Noetherian
scheme. Moreover, by localizing further if necessary, we can assume that there exists a surjective map π : P ։ X

such that P is a proper scheme over Y . Let us also assume that X is n-Artin for some n ≥ 0 and let us prove the
statement by induction on n. The statement for the n = 0 is the fundamental result about the direct image of a
coherent sheaf under a proper morphism of schemes [Gro61, Chapter III, Theorem 3.2.1].

By Remark 2.2.3 it is enough to prove that f∗(Coh
♥(X )) ⊂ Coh+(Y ). Let F ∈ Coh♥(X ). Since X is proper

over a Noetherian base, it is Noetherian itself. It follows that there exists a finite filtration (by power of nil-radical
of OX ) of F with the associated graded pieces coming from X red. Since Coh+(Y ) is closed under finite extensions,
it follows that we can assume that both X and Y are reduced.

Let us denote Totπ•,∗(H0(π∗•F)) by F ′, where π• : P• → X is the Čech nerve of the map P → X . By the
higher “generic flatness” [PY14, Theorem 8.3] there exists an open dense substack U of X such that the induced
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map PU := P ×X U → U is flat. In particular, π∗U ,n(F) ≃ H0(π∗U ,n(F)) for all n ∈ Z≥0. It follows by flat descent
that the natural map F → F ′ becomes an equivalence when restricted to U. By Noetherian induction we can
assume that f∗(fib(F → F ′)) lies in Coh+(Y ). So to prove that π∗(F) lies in Coh+(Y ) it is enough to show that
π∗(F ′) ∈ Coh+(Y ). On the other hand, all elements Pn of the Čech nerve are (n − 1)-Artin proper stacks over Y
and all sheaves H0(p∗n(F)) are coherent. Since the global section functors fn,∗ : QCoh(Pn) → QCoh(Y ) are right
t-exact, it follows by induction and Proposition 1.2.3 that the totalization

f∗(F
′) ≃ Tot f•,∗(H

0(p∗nF))

lies in Coh+(Y ).

Corollary 2.2.13. Let X be a smooth proper Artin stack over a regular Noetherian ring R. Then X is Hodge-proper.

Proof. Follows immediately from the previous proposition and Proposition 2.2.7.

Finally, we record the following observation, which allows to construct new examples of cohomologically proper
stacks in inductive way.

Proposition 2.2.14. Let π• : U• → X be a flat hypercover such that all Un are cohomologically proper over a
Noetherian base ring R. Then X is cohomologically proper over R.

Proof. Let F be a coherent sheaf on X . By shifting if necessary we can assume that H<0(F) ≃ 0. By the flat
descent

RΓ(X ,F) ≃ TotRΓ(U•, π
∗
•F).

Since the global section functors RΓ(Un,−) are right t-exact and by assumptions on Un the diagram RΓ(U•, π
∗
•F)

consists of coconective bounded below coherent complexes. By Proposition 1.2.3 the complex RΓ(X ,F) is also
bounded below coherent.

2.3 Examples of Hodge-properly spreadable stacks

In this subsection we begin to study which Hodge-proper stacks in characteristic 0 admit a Hodge-proper spreading
over some finitely generated Z-algebra. We will make extensive use of Theorem 2.1.13 in the following situation:
let F be an algebraically closed field of characteristic 0, then SpecF ≃ lim

←−
R where R ⊂ F runs through subrings

of F that are smooth over Z. This diagram is filtered since for any two such subalgebras R1, R2 ⊂ F some finite
localization (R1 ·R2)[1/f ] of their composite in F is again smooth over Z. In particular we have an equivalence

lim
−→

R⊂F

Stkn-Art,fp,P
/R

∼ // Stkn-Art,fp,P
/F

for any spreadable class P . Another option is to also allow those localizations of smooth Z-algebras for which the
image of SpecR in SpecZ is open (as in Definition 1.4.1). By Remark 1.4.2 the diagram of all such R is again
filtered and so Theorem 2.1.13 can be applied. In Section 2.3.3 we will see that allowing these localizations actually
makes a difference. In what follows F will always denote an algebraically closed field of characteristic 0 and we will
pick R ⊂ F to be a smooth Z-subalgebra (except Section 2.3.3, where it will be an infinite localization of one) of F .
We also freely use the standard spreading out results for schemes (Theorem 2.1.2) and their easy consequences (like
spreading out group schemes, group actions, group homomorphisms, closed subgroups, etc.) without any additional
reference.

We start with the Hodge-proper spreadability for proper Artin stacks, which is deduced from the spreadability
of proper morphisms (Theorem 2.1.13). This is done in Section 2.3.1. Then we discuss in great detail the question
of Hodge-proper spreadability of BG in Section 2.3.2; the case of more general quotient stacks is postponed till
Section 3. Finally, in Section 2.3.3 we try to grasp the scope of potential applications of Theorem 1.4.3 concentrating
on the case of schemes: in fact a particular set of examples given by semiabelian surfaces.

As was mentioned, often, along with Hodge-proper spreadability, we are able to prove a somewhat stronger
statement, saying that the stacks we consider admit a cohomologically proper spreading. For this it is convenient
to introduce the following variant of Definition 2.2.2:

Definition 2.3.1. A morphism f : X → Y of Artin stacks over a field F of characteristic 0 is called cohomologically
properly spreadable if there exists a finitely generated Z-algebraR ⊂ F 11 and a morphism fR : XR → YR over SpecR,
such that

11Or a suitable localization of one, as in Definition 1.4.1.
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• fR ⊗R F := fR ×R F ≃ f .

• fR : XR → YR is cohomologically proper (see Definition 2.2.2).

In the case Y = SpecF we will call X cohomologically properly spreadable. By Proposition 2.2.7 any such X is
also Hodge-properly spreadable.

2.3.1 Proper stacks

In this subsection we show that all proper stacks are cohomologically (and in particular Hodge-)properly spreadable.
By Proposition 2.2.12 it is just enough to show that proper morphisms spread out.

Following the convention of Section 2.1, for an affine scheme S we denote by Stkn-Art,fp,pr
/S ⊂ Stkn-Art,fp

/S the

subcategory consisting of finitely presented n-Artin S-stacks and with morphisms given by proper maps (see Defi-
nition 2.2.8).

The results of Section 2.1 allow to deduce the spreadability of proper morphisms from the analogous statement
for classical schemes:

Proposition 2.3.2. Let {Si} be a filtered diagram of affine schemes with a limit S. Then the natural functor

lim
−→

i

Stkn-Art,fp,pr
/Si

// Stkn-Art,fp,pr
/S

is an equivalence.

Proof. By Theorem 2.1.13 it is enough to prove that for a proper morphism f : X → Y there exists a proper
morphism fi : Xi → Yi such that fi ×Si S ≃ f . Assume that f is n-representable. We will prove the statement by
induction on n.

For n = 0 let U ։ Y be an affine finitely presentable atlas. Then by assumption XU := X ×Y U is a scheme
proper over U . By Theorem 2.1.13 we can spread the commutative square

XU
//

��

X

f

��
U // // Y

to some Si. By spreadability of equivalences, smooth surjective morphisms of stacks and proper morphisms of
schemes we can assume, taking base change to some Sj if necessary, that the natural map XU,j → Uj ×Yj

Xj is an
equivalence. We can also assume that Uj → Yj is a smooth atlas and that XU,j is proper scheme over Uj. Since
the property of a map of schemes to be proper is flat local on target, it follows that for any T mapping to Yj the
pullback T ×Yj

Xj is a proper T -scheme. So the map fj : Xj → Yj is proper.
Finally, assume that the statement for (n − 1)-representable morphism is already proved. Let U ։ Y be

a smooth finitely presentable atlas and let P ։ XU be a surjection from a proper U -scheme P . Then by the
induction assumption we can find a spreading fi : Xi → Yi such that fi is separated. By taking base change to some
Sj we can assume that Pj is proper over Uj and that the map Pj → XUj is surjective.

Corollary 2.3.3. Let X be a smooth proper stack over a field F of characteristic 0. Then X is Hodge-proper and
Hodge-properly spreadable.

Proof. By Proposition 2.3.2 (and Corollary 2.1.14) applied to X → SpecF we get a smooth proper spreading
XR → SpecR. Then XR is Hodge-proper by Propositions 2.2.7 and 2.2.12.

We will also use the following corollary:

Corollary 2.3.4. Let f : X → Y be a proper map of finitely presentable Artin stacks over a field F of characteristic
0 such that Y is cohomologically properly spreadable (see Definition 2.3.1). Then X is also cohomologically properly
spreadable.

Proof. Let fR : XR → YR be some proper spreading of f . Since any two spreadings become equivalent after
some finite localization of R, we can assume that YR is cohomologically proper over R. Then we conclude by
Proposition 2.2.12 and the first part of Proposition 2.2.4.

Remark 2.3.5. More generally, a composition of two cohomologically properly spreadable morphisms is again
cohomologically properly spreadable.
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2.3.2 Classifying stacks

Let F be an algebraically closed field of characteristic zero. We start our investigation of Hodge-proper spredability
by first understanding for which algebraic groups G over F the classifying stack BG is Hodge-proper. The answer
turns out to be easy: for all finite type G. In fact BG is even cohomologically proper:

Proposition 2.3.6. Let G be a finite type group scheme over F . Then BG is cohomologically (and, in particular,
Hodge-)proper.

Proof. In fact we will show a more precise statement, namely that for any coherent sheaf F on BG, RΓ(BG,F)
lies in Coh(F ) if G is linear and in Coh+(F ) if G is general.

Note that, since we are in characteristic 0, G is smooth and thus so is the natural map SpecF → BG12. In
particular, the natural t-structure on Coh(BG) coincides with the usual t-structure on Coh(F ) after taking pullback
Coh(BG) → Coh(F ) (aka the forgetful functor in terms of representations). It is enough to show the statement for
F ∈ Coh(BG)♥ (Remark 2.2.3). Note that such F is the same thing as a finite-dimensional algebraic representation
of G over F .

By Chevalley’s structure theorem there is an exact sequence 1 → L → G → A → 1 where L is a linear algebraic
group and A is proper. Then for L we have another short exact sequence

1 → U → L → H → 1,

where U is the unipotent radical of L and H ≃ L/U is reductive.
Let j : BU → BL, f : BL → BH , i : BL → BG and p : BG → BA be the corresponding maps between

classifying stacks. We will prove the statement step by step, starting from the unipotent case.

Case 1. G = U is unipotent. We assume F ∈ Coh(BU)♥. Since the characteristic of F is 0 and U is unipotent,
RΓ(BU,F) can be computed as the cohomology of the Lie algebra u. Explicitly, this is given by the Chevalley
complex:

0 → F → F ⊗ u
∗ → F ⊗ ∧2

u
∗ → . . .F ⊗ ∧dimU

u
∗ → 0.

Since F is finite dimensional this complex is clearly perfect.

Case 2. G = H is reductive. This follows from the fact that the abelian category Rep(H) is semi-simple (since
char(F ) = 0). Namely for F ∈ Coh(BH)♥, the complex RΓ(BH,F) is equal to the H-invariants FH (in cohomo-
logical degree 0). Since F is finite-dimensional we get RΓ(BH,F) ∈ Coh(F ).

Case 3. G = A is proper. Let F ∈ Coh(BA). We can compute RΓ(BA,F) using the smooth q : SpecF → BA.

Let pn : A
n → BA be the map from the n-th term of the associated Čech simplicial object. We get a cosimplicial

object
[n] 7→ RΓ(An, p∗nF),

in ModF , and
RΓ(BA,F) ≃ TotRΓ(A•, p∗•F).

However, each term RΓ(An, p∗nF) lies in Coh(F ) (since An is proper) and has cohomology only in non-negative
degrees. By Proposition 1.2.3 it follows that RΓ(BA,F) lies in Coh+(F ).

Case 4. G = L is linear. We assume F ∈ Coh(BU)♥ and consider f∗F ∈ QCoh(BH) (for f : BL → BH). We claim
that f∗F ∈ Coh(BH). It is enough to check that after taking pull-back to the smooth cover q : SpecF → BH . We
have a fibered square

BU
j

//

��

BL

f

��
SpecF

q
// BH

and by base change we have q∗f∗F ≃ RΓ(BU, j∗F). The map j is flat, so j∗F is coherent and thus RΓ(BU, j∗F) ∈
Coh(F ) by Case 1. It follows that f∗F ∈ Coh(BH). But then RΓ(BL,F) ≃ RΓ(BH, f∗F) and we are done by
Case 2. At this point we have the statement for G linear.

Case 5. G is general. The argument in Case 4 works here as well, replacing U with L and H with A. Namely
p∗F ∈ Coh(BA) and then by Case 3

RΓ(BL,F) ≃ RΓ(BH, f∗F).
12Note that since the property of a morphism to be smooth can be checked flat locally on the source the structure map BG → SpecF

is always smooth even when G is not. We refer interested reader to [Toë11] or [SP20, Tag 0DLS] for more details.
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Even though BG is Hodge-proper practically for any G, there are definitely some algebraic groups G for which
BG is not Hodge-properly spreadable. Indeed, consider G = Ga. If BGa were Hodge-properly spreadable, then by
Corollary 1.5.2 we would get a decomposition

Hn
dR(BGa/F ) ≃

⊕

p+q=n

Hq(BGa,∧
pLBGa/F ).

However, this is impossible. Indeed, the left hand side vanishes for n > 0 by the A1-homotopy invariance of the de
Rham cohomology in characteristic 0. On the other hand ∧pLBGa/F ≃ OBGa [−p] and Hi(BGa,OBGa) is non-zero
for i = 0, 1. In particular, the right hand side is non-zero for all n, contradiction.

Note that by Theorem 1.4.3 it follows that the Hodge cohomology of any spreading of BGa has to be infinitely
generated. This is also confirmed by an explicit computation of the cohomology of OBGa over Z which the reader
can find in Appendix A. We only slightly comment on this here:

Example 2.3.7. Let Ga be the additive group considered as an algebraic group scheme over Z. By the computation
in Appendix A one has an embedding

(
Z[v1]⊗Z Sym∗Z

(⊕
p Fpvp ⊕ Fpvp2 ⊕ . . .

))/
v21 = v2

�

�

// H∗(BGa,OBGa) ,

where v1 has cohomological degree 1 and all other vpi are of degree 2. In particular H2(BGa,OBGa) has infinitely
generated elementary p-torsion for any prime p. Given any spreading X of (BGa)F over some R ⊂ F , by Theo-
rem 2.1.13 it becomes isomorphic to (BGa)R for some larger R. Choosing prime p in the image of SpecR in SpecZ,
by flat base change we get that H2(X ,OX ) contains an infinite sum (R/p)⊕N and thus X is not Hodge-proper over
R.

Given the complexity of BGa from cohomological point of view, it is natural to ask for which algebraic groups G,
the classifying stack BG is Hodge-properly spreadable. We provide a list of examples:

Example 2.3.8. BG is Hodge-properly (and in fact also cohomologically properly) spreadable if

• G is proper (=an extension of a finite group by an abelian variety). Then BG is a proper stack and this is
covered by Corollary 2.3.3;

• G is reductive. This follows from Proposition 3.1.2 if we take Y = SpecF ;

• G=P ⊂ H is some parabolic subgroup of some reductive groupH . This is a particular case of Theorem 3.2.12.
Alternatively, it follows from the previous point and Corollary 2.3.4 (using that BP → BH is proper).

Remark 2.3.9. By an argument similar to Proposition 2.3.6 it is also possible to show the spreadability of BG for
an extension of an abelian variety by a parabolic subgroup of some reductive group.

The fact that BP is cohomologically properly spreadable can look a little surprising and we would like to
illustrate what happens by the simplest non-trivial example, a Borel subgroup B ⊂ SL2:

Example 2.3.10. Let G = B ⊂ SL2 be the standard Borel subgroup of SL2 over Z, namely

B =

{(
t s
0 t−1

)}
⊂ SL2 .

In this example we will show that BB is a cohomologically proper spreading of BBF .
Note that B ≃ Ga ⋊ Gm with Gm = SpecZ[t, t−1] acting on Ga = SpecZ[x] by multiplication of x by t2.

Consider the natural map p : BB → BGm and take p∗(OBB). We have a fiber square

BGa
j

//

��

BB

��
pt

q
// BGm.

We have j∗OBB ≃ OBGa and by base change the underlying complex q∗p∗OBB is equal to RΓ(BGa,OBGa). It
follows that

RΓ(BB,OBB) ≃ RΓ(BGm, p∗OBB) ≃ RΓ(BGa,OBGa)
Gm ,
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since Gm-invariants is an exact functor. In the terms of the computation in Appendix A this corresponds to the 0-th
graded component RΓ(BGa,OBGa)0 ⊂ RΓ(BGa,OBGa), which, as we figure there, is just given by Z. Consequently
RΓ(BB,OBB) = Z.

Summarizing, we can see that even though the cohomology of OBGa is enormous, the Gm-action contracts it,
ultimately making the cohomology of OBB finitely generated.

In fact more is true: namely for any Borel subgroup B of a split reductive group G over Z the stack BB is
cohomologically proper. Indeed, one first shows that BG is cohomologically proper over Z by applying Theorem 3.0.1
in the case A = R = Z and, since the morphism BB → BG is proper, the rest follows from Proposition 2.2.12.

2.3.3 Non-proper schemes

Considering schemes, it is natural to ask whether a Hodge-properly spreadable scheme is necessarily proper. On
the other extreme, one can ask whether any schematic example of the Hodge-to-de Rham degeneration is Hodge-
properly spreadable. Below we consider an example of a semiabelian surface X given by an extension of an elliptic
curve by Gm; as we will see, appropriate choices of extensions give counterexamples to both statements above.

Example 2.3.11. Let E be an elliptic curve over a field k. Let K/k be a (not necessarily algebraic) field extension
and let L ∈ Pic0(E)(K) ≃ E(K) be a degree 0 line bundle on EK . Let X be the total space of the associated
Gm-torsor. The K-scheme X is clearly smooth and non-proper; moreover, by [Ser75, VII.3.16], X is in fact an
algebraic group, more concretely a semiabelian surface.

Lemma 2.3.12. X is Hodge-proper over K if and only if L⊗n 6= OX for all n > 0. If charK = 0 this is also
equivalent to the degeneration of the Hodge-to-de Rham spectral sequence for X.

Proof. Note that Ω1
X ≃ O⊕2X , since X is a group. Denote the natural projection X → EK by π. We find

Rπ∗OX ≃ π∗OX ≃
⊕

n∈Z

Ln.

Next, since the degree of L is zero and L 6= OX , we have RΓ(EK ,L) ≃ 0. If L is non-torsion, the same holds for
Ln, for all n 6= 0. So

RΓ(X,Ω2
X) ≃ RΓ(X,OX) ≃ RΓ(EK ,OEK ) ≃ K ⊕K[−1], RΓ(X,Ω1

X) ≃ RΓ(X,O⊕2X ) ≃ K⊕2 ⊕K[−1]⊕2.

If, on the other hand, L is torsion, π∗OX has infinitely many copies of OEK as direct summands and so H0(X,OX)
is infinite-dimensional.

For the second assertion it is enough to consider the caseK = C, where we can compare the de Rham cohomology
with the singular one. Since the degree of L is 0, L is topologically trivial, and X is homotopy equivalent to (S1)×3;
comparing the dimensions we see that the Hodge-to-de Rham spectral sequence degenerates at the first page.

Remark 2.3.13. Note that if K is a subfield of Fp, then Pic0(E)(K) is a torsion abelian group. Thus, in this case
X is never Hodge-proper.

Now let E be an elliptic curve over Q. Let’s consider LC ∈ Pic0(E)(C); the corresponding semiabelian variety
XC is a variety over C.

Proposition 2.3.14. XC is Hodge-properly spreadable if and only if LC ∈ Pic0(E)(C) \ Pic0(E)(Q).

Proof. First, let LC ∈ E(Q). Let K ⊂ Q be the field of definition of LC; then LC and EC are defined over K
and we will denote the corresponding line bundle and elliptic curve over K by LK and EK . We also denote by
XK the total space of LK . Let OK ⊂ K be the ring of integers. Consider the filtered system {OK [1/n]}n∈N of
subrings of K; we have K = colimn OK [1/n]. By Corollary 2.1.3 XK has a smooth spreading XA over A = OK [1/n]
for n big enough and, taking a larger n, we can assume that XA is the total space of a line bundle LA over an
elliptic curve EA (with EA and LA being spreadings of E and L). Note that all closed points of SpecA are of
positive characteristic and have finite residue fields. Localizing A further we can assume that base change for
Hodge and de Rham cohomology holds with respect to all closed points of A. Let x : SpecFq →֒ SpecA be some
closed point. By Remark 2.3.13 the reduction LFq is torsion and thus XFq is not Hodge-proper. It follows that XA

is not Hodge-proper and thus, since any subring R ⊂ K satisfying the conditions in Definition 1.4.1 is contained
in OK [1/n] for some n, X is not Hodge-properly spreadable. We claim that neither is XC; indeed, let X ′R be a
Hodge-proper spreading over some localization R ⊂ C of some finitely generated Z-algebra as in Definition 1.4.1.
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Since C can be represented as a colimit of flat finitely generated R-algebras (and those fit in the framework of
Definition 1.4.1), by the “spreading out” for schemes we can assume that {(X ′R)}R·K ≃ {(XK)}R·K . Considering
two systems: {(XA)R·A}A and {(X ′R)R·A}A with XA as above and A running over OK [ 1n ] for various integers n we
get that (XA)R·A ≃ (X ′R)R·A some A. Note that since the image of SpecR in SpecZ is open and R · A is torsion
free (over Z, and thus also over A), R · A ⊂ C becomes faithfully flat over A = OK [1/n] if we take n big enough.
Since XA is not Hodge-proper, neither is (XA)R·A. Replacing A we can also assume R ·A is flat over R; indeed by
“spreading out” of flat morphisms of schemes it is enough to show that R ·K is flat over RQ. But R ·K is a direct
summand of RQ ⊗Q K, so this is clear. Thus by flat base change (applied to R ·A which is now flat over R) we get
that X ′R can’t be Hodge-proper, which is a contradiction. Thus XC is not Hodge-properly spreadable.

It remains to deal with the transcendent case LC /∈ Pic0(E)(Q). Let’s consider the universal line bundle P
on E × Pic0(E). Since L is not a Q-point, the corresponding map SpecC → Pic0(E) factors through the generic
point SpecQ(E) ⊂ E ≃ Pic0(E) and thus both LC and XC are defined over Q(E). We denote the corresponding
bundle and Q(E)-scheme by L and X . Let y2 = x3 + ax + b be an equation of (the affine part of) E. Let
B = Z[1/n][x, y]/(y2 − x3 − ax − b) ⊂ Q(E) where n is big enough to be divisible by the denominators of both a
and b, and so that B is smooth over SpecZ. Note that E has a smooth proper model EZ[1/n] over Z[1/n] given by
the projective closure of SpecB. Now let R = B[S−1] ⊂ Q(E) be the localization of B with respect to the set S of
elements s ∈ B that are non-zero modulo all primes p ∈ Z provided (p, n) = 1.13 The reduction R/(p) is equal to
the field of fractions of B/(p) which is nothing but Fp(EFp). Identifying Pic0(E) with E, we obtain spreadings LR

(over ER) and XR of L and X (considered as a line bundle on EQ(E) and a scheme over Q(E) correspondingly).
Localizing R we can assume that XR is a group scheme and thus it is enough to show that the cohomology of
RΓ(XR,OXR) is finitely generated over R. We have

Rπ∗OXR ≃ π∗OXR ≃
⊕

n∈Z

Ln
R.

Each Ln
R is a coherent sheaf on ER and RΓ(ER,Ln

R) ∈ ModcohR . We claim that it is zero if n 6= 0; note that R
is regular, thus RΓ(ER,Ln

R) is perfect and so it is enough to check this modulo all primes p ∈ Z. But by the
construction the reduction LR/p is the restriction of the universal line bundle on EFp ×Fp Pic0(EFp) to EFp ×Fp

SpecFp(EFp); in particular it is non-torsion. Thus RΓ(ER,Ln
R) ≃ 0, and so

RΓ(XR,OXR) ≃ RΓ(ER, π∗OXR) ≃ RΓ(ER,OER)

is coherent.

Remark 2.3.15. Due to Proposition 2.3.14 and Lemma 2.3.12, a semiabelian surface XC, for the choice of a
non-torsion line bundle LC ∈ Pic0(E)(Q), gives an example of a scheme which is not Hodge-properly spreadable,
but the Hodge-to-de Rham spectral sequence degenerates. On the other hand, taking LC /∈ Pic0(E)(Q) gives an
example of a Hodge-properly spreadable scheme which is not proper.

Remark 2.3.16. Note that even in the case LC /∈ Pic0(E)(Q), the scheme XC does not have a Hodge-proper
spreading over a finitely generated Z-algebra R (because then SpecR necessarily has points with finite residue fields
over which L becomes torsion). Thus it really makes a difference to allow arbitrary localizations of the latter in
Definition 1.4.1.

Remark 2.3.17. The ring R used in the proof of Proposition 2.3.14 is a slight generalization of a ring, that could
be called “quantum integers/rationals”. Recall that the “quantum integer n” polynomial [n]q ∈ Z[q] is defined as
[n]q := 1 + q + . . . + qn−1; we then can consider Qq := Z[q][[n]−1q ]n∈N. The ring Qq is a principal ideal domain of
Krull dimension 1 whose reduction modulo a prime p is given by

Qq ⊗Z Fp ≃ Fp[q][[n]
−1
q ]n∈N ≃ Fp(q),

the field of rational functions over Fp.

Remark 2.3.18. Topologically, XC(C) ≃ C×× (S1)2, since LC has degree 0 and is topologically trivial. The space
H1

sing(XC(C),C) ≃ C3 is odd dimensional and thus the corresponding mixed Hodge structure can’t be pure of weight

1. In particular this shows that the mixed Hodge structure14 on the n-th singular cohomology of a Hodge-properly
spreadable stack is not necessarily pure of weight n.

13More explicitly, one can see that it is enough to invert functions yn − 1 for n ≥ 1.
14Appropriately defined, say via Section 8.3 of [Del74].
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2.3.4 Higher examples

Here we also record some examples of Hodge-properly spreadable stacks that are not classical.

Example 2.3.19. Let G be a classical abelian algebraic group over F such that BG is cohomologically properly
spreadable (e.g. by Remark 2.3.9 and the discussion above it, one can take G to be an algebraic torus, an abelian
or even a semiabelian variety). Then the higher stack K(G,n) := BnG (given by the sheafification of S 7→
K(G(S), n)) is also cohomologically properly spreadable. Indeed, after enlarging R any cohomologically proper
spreading K(G, 1)R becomes equal to K(GR, 1) for some spreading GR of G which has a group structure. Taking
the K(GR, n) for such GR gives a spreading of K(G,n) which, we claim, is cohomologically proper. We will show
this by induction. Consider the Čech simplicial object U• corresponding to the cover SpecR → K(GR, n). All of
its terms Uk are given by products K(GR, n − 1)k, the projection morphism K(GR, n − 1)k → K(GR, n − 1)k−1

is cohomologically proper15 and thus, projecting k times, we see that all Uk are cohomologically proper. It then
follows from Proposition 2.2.14 that K(GR, n) is cohomologically proper as well.

3 Hodge-proper spreadability of quotient stacks

In this section we study in more detail the case of quotient stacks, providing several families of non-trivial examples
of cohomologically proper spreadable stacks. Here the proofs of spreadability are much more involved; the following
two important representation-theoretic results will be used:

Theorem 3.0.1 (Theorem 3 and Proposition 57 of [FvdK10]16). Let GZ be a split reductive group over Z and R
be a finitely generated algebra over Z. Let A be a finitely generated R-algebra endowed with a (rational) action of
GR and let M be a finitely generated GR-equivariant A-module. Then the algebra AGR of GR-invariants is finitely
generated over R and Hn(GR,M) is a finitely generated AGR-module for any n ≥ 0.

Theorem 3.0.2 (Kempf’s theorem, see e.g. [Jan07, Proposition II.4.5]). Let GZ be a split connected reduc-
tive group over Z and let BZ ⊆ GZ be a Borel subgroup. Let (G/B)Z be the corresponding flag variety. Then
RΓ((G/B)Z,O(G/B)

Z
) ≃ Z.

As we will see, these two theorems, together with the semiorthogonal decompositions of derived categories
constructed by Halpern-Leistner ([HL15], [HL20]) allow to prove in a lot of cases that the stack is cohomologically
properly spreadable. We stick to the notations of Section 2.3, in particular F will denote an algebraically closed
field of characteristic 0 and we will choose the base R of the spreading to be a finitely generated Z-subalgebra of F .

Here is a plan of the section. In Section 3.1 we show that a quotient by reductive group is cohomologically
properly spreadable (Theorem 3.1.4), provided its coarse moduli space is proper and the action is locally linear.
The key result is Proposition 3.1.2, where we use Theorem 3.0.1 to show that under the latter assumption the
natural morphism q : [Y/G] → Y//G is cohomologically properly spreadable. Particular examples then include a
proper-over-affine scheme with an action of a reductive group (Example 3.1.6) and quotients coming from GIT
(Example 3.1.7). In Section 3.2 we look at some other set of examples (Theorem 3.2.12), given by quotients that
come from BB-complete Gm-actions (Definition 3.2.3). Theorem 3.2.12 also allows some quotients by non-reductive
groups, and Theorem 3.0.2 is used to pass from the quotient by a Borel subgroup to the quotient by the whole
group (Lemma 3.2.15). In Section 3.3 we also give a recipe of reestablishing the degeneration results of [Tel00]
in the KN-complete case using Theorem 1.4.3; here, however, we need to assume some results which are going to
appear in the upcoming work of Halpern-Leistner [HL20].

3.1 Global quotients by reductive groups

In [Tel00] Teleman proved the Hodge-to-de Rham degeneration for the quotient of a smooth scheme X by a Kempf-
Ness (KN) complete action of a reductive group. In this section we establish spreadability for certain class of
global quotients, which includes the semistable (single KN-stratum) case X = Xss(L) (3.1.7) and another standard
KN-complete example given by equivariant “projective-over-affine” variety (3.1.6). Moreover, the “projectivity”
condition in the latter is replaced by the “proper” one almost for free.

Let Y be a quasi-separated finite type scheme over F and let G be a reductive group acting on Y .

15Indeed, its pull-back to SpecR → K(GR, n − 1)k−1 is K(GR, n − 1) → SpecR which is cohomologically proper by the induction
assumption, thus by Proposition 2.2.4 (3) so is the original map.

16Proposition 57 in loc.cit. is stated for R = Z. However we can consider A as a Z-algebra with an action of GZ; indeed, since the
action on R is trivial and R[GR] ≃ Z[GZ]⊗ZR we have A⊗RR[GR] ≃ A⊗ZZ[GZ] and thus get the comultiplication A → A⊗RR[GR] ≃
A ⊗Z Z[GZ]. Same thing works for any GR-representation and, moreover, RΓ(GR,M) ≃ RΓ(GZ,M) (e.g. because they are computed
by the same standard complex). Thus Proposition 57 in loc.cit. also applies to any R that is finitely generated over Z.
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Definition 3.1.1. The action of G on Y is called locally linear if there exists a G-invariant affine cover of Y .

In this case there exists the categorical quotient Y//G; in other words, the quotient stack [Y/G] has a coarse
moduli q : [Y/G] → Y//G and Y//G is representable by a scheme. More explicitly, if {Ui}i∈I , with Ui := SpecAi, is
the G-invariant affine cover of X , the categorical quotient X//G is glued out of {Ui//G}i∈I , with Ui//G := SpecAG

i ,
with the natural gluing maps induced by the gluing maps for {Ui}i∈I . Note that if G is a torus and Y is normal,
the action is automatically locally linear by the result of Sumihiro ([Sum74, Corollary 2]).

Proposition 3.1.2. Let Y be a quasi-separated finite type scheme over F with a locally linear action of a reductive
group G. Then the natural morphism q : [Y/G] → Y//G is cohomologically properly spreadable.

Proof. The group G is split and has a Chevalley model GZ over Z; this defines a split reductive spreading of G over
any R ⊂ F , namely just put GR := GZ ⊗Z R. We can also spread Y to a quasi-separated scheme YR over some R
and assume that YR has a GR-action. It is enough to show that after a suitable enlargement R the quotient stack
[YR/GR] becomes cohomologically proper. Note that by picking a G-invariant affine cover {Ui}i∈I as above and a
spreading Ai,R of each Ai, localizing R, we can assume that the affine schemes Ui,R := SpecAi,R have a GR-action
and give a GR-equivariant affine cover of YR.

Let YR//GR be the categorical quotient, namely the scheme obtained by gluing the spectra SpecAGR

i,R of the
invariants in the same way that was described above. Note that by Theorem 3.0.1 the scheme YR//GR is of
finite type and so it is a valid spreading of Y//G (since AGR

i,R ⊗R F ≃ Ai for all i ∈ I). We have a natural map

qR : [YR/GR] → YR//GR given locally (on YR//GR) by qi,R : [SpecAi,R/GR] → SpecAGR

i,R . The map qR is a spreading
of q, thus it is enough to show that qR is cohomologically proper. This can be checked locally, so it is enough to
show that for any finitely generated R-algebra A the map qR : [SpecA/GR] → SpecAGR is cohomologically proper.

Let F ∈ Coh([SpecA/GR])
♥ and let M be the corresponding GR-equivariant finitely generated A-module. Since

SpecA is affine, the module qR∗F has a simple description: it is just given by RΓ(GR,M) considered as a complex

of modules over AGR . The complex RΓ(GR,M) lies in Mod≥0
AGR

and its cohomology are finitely generated by

Theorem 3.0.1. Thus RΓ(GR,M) ∈ Coh+(AGR) and qR is cohomologically proper.

Remark 3.1.3. In the case of BG some stronger results in a similar direction were established in [HLP15, Propo-
sition 4.3.4]. Namely under some mild restrictions on the reductive group scheme G and the base scheme S the
structure morphism BG → S is formally proper (in the sense of [HLP15]).

Note that we did not assume that Y was smooth. This was on purpose: the actual cohomologically properly
spreadable examples are given by the following theorem:

Theorem 3.1.4. Let X be a smooth scheme and Y be a finite-type scheme over F , both endowed with an action
of a reductive group G. Assume that

1. There is a proper G-equivariant map π : X → Y .

2. The G-action on Y is locally linear.

3. The categorical quotient Y//G is proper.

Then the quotient stack [X/G] is cohomologically properly spreadable.

Proof. Consider the map q : [Y/G] → Y//G; by Proposition 3.1.2 it is cohomologically properly spreadable. The
map π : [X/G] → [Y/G] is proper, thus [X/G] is cohomologically properly spreadable by Corollary 2.3.4.

Remark 3.1.5. More generally one can replace [X/G] by any X with a cohomologically properly spreadable
morphism π : X → [Y/G].

We discuss some applications of Theorem 3.1.4:

Example 3.1.6. Let X be a smooth proper-over-affine scheme X with dimH0(X,OX)G < ∞. By definition,
this means that there is a proper G-equivariant map π : X → SpecA. By replacing SpecA with the image of π
we can assume that π is surjective. Then AG embeds in H0(X,OX)G and thus is finite-dimensional; equivalently,
(SpecA)//G is finite, and in particular proper. Applying 3.1.4 to Y = SpecA we get that [X/G] is cohomologically
properly spreadable. Also note that we were able to relax the “projective” assumption on the map π to the “proper”
one.
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Example 3.1.7. Let X have an ample G-equivariant line bundle L, and let’s assume that X = Xss := Xss(L).
Basically by definition, the action on Xss(L) is locally linear (see e.g. the proof of [MFK94, Theorem 1.10]). Assume
further that dimF H0(X,OX)G < ∞. Then the scheme

X//G ≃ Proj
(⊕

n≥0

H0(X,L⊗n)G
)

is projective over SpecH0(X,OX)G and hence also projective over F . Thus [X/G] is cohomologically properly
spreadable by Theorem 3.1.4 applied to Y = X .

3.2 Global quotients coming from BB-complete Gm-actions

In this section we prove another result (Theorem 3.2.12) about the cohomologically proper spreadability of quotient
stacks, which also allows quotients by groups that are not necessarily reductive. Another benefit of Theorem 3.2.12
(compared, say, to Theorem 3.1.4) is that the condition on X (and the G-action) is internal: no additional structure,
such as a map to another scheme Y , is involved.

3.2.1 Varieties with a Gm-action and Bialynicki-Birula stratification

Let X be a smooth scheme over an algebraically closed field F of characteristic 0 with an action a : Gm y X . By
[Sum74] such an action is always locally linear: X has a Gm-invariant affine cover {Ui = SpecAi}i∈I . A Gm-action
on a given affine scheme SpecA induces a Z-grading A∗ on A; we denote by I+ ⊂ A∗ the ideal generated by A>0

and by I± ⊂ A∗ the ideal generated by A>0 and A<0.
Here are some examples:

Example 3.2.1. • pt := SpecF with the trivial Gm-action; here A = A0 ≃ F and I+ = I± = 0.

• A1 := SpecF [x] endowed with the standard action by dilation, s 7→ ts for s ∈ A1; in this case deg x = −1, so
I+ = 0 and I± = (x) ⊂ F [x].

There are natural Gm-equivariant maps pt
i0

++
A1

p
jj given by the projection and the embedding of 0 ∈ A1(F ).

We also have a (non-equivariant) map i1 : pt → A1 given by the embedding of 1 ∈ A1(F ).

To a smooth scheme X endowed with a Gm-action one can associate the following objects:

• The fixed points X0 := Maps(pt, X)Gm ; its functor of points is given by X0(S) = Maps(S,X)Gm , meaning the
Gm-equivariant maps from S to X , where the action on S is trivial. There is a natural map ι : X0 → X sending
a map f ∈ X0 to its evaluation f(pt). The map ι is a closed embedding ([Dri13, Proposition 1.2.2]); the affine
cover {Ui}i∈I defines an affine cover {U0

i }i∈I of X0 with U0
i := Spec(Ai/I

±
i ) (glued along U0

ij). There is a natural

Gm-action on X0, which is trivial.

• The attractor X+ := Map(A1, X)Gm ; here the functor of points is given by X+(S) = Maps(S × A1, X)Gm ,
where the Gm-action on S × A1 is diagonal. By [Dri13, Corollary 1.4.3], this functor is indeed represented by a
scheme. There are two natural Gm-actions on Map(A1, X), one coming from the Gm-action on A1, the other coming
from the action on X ; their restrictions to Map(A1, X)Gm coincide and thus define the same Gm-action on X+.

There are natural Gm-equivariant maps X0
σ

++
X+

π
kk

j
// X induced by i0, i1 and p. Namely,

– σ(f) ∈ X+ is given by pre-composing f : pt → X with p : A1 → pt; the map σ : X0 → X+ is a closed
embedding.

– π(f) ∈ X0 is given by the evaluation of f : A1 → X at 0 ∈ A1; by [BB73]17 π : X+ → X0 is a Zariski locally
trivial fibration with the fiber given by an affine space.

– j(f) ∈ X ≃ Map(pt, X) is given by the evaluation of f : A1 → X at 1 ∈ A1; the map j : X+ → X is a locally
closed embedding when restricted to each component of X+.

Similarly to X0, the affine cover {Ui}i∈I defines an affine cover {U+
i }i∈I of X+ with U+

i := Spec(Ai/I
+
i ).

17More precisely, by [Dri13, Proposition 1.4.10] X+ is smooth, and (say, by [Dri13, Section 1.4.3]) the action of Gm at any point
x ∈ X0 →֒ X+ is definite (in the terminology of [BB73, Section 1]). Then one can apply [BB73, Theorem 2.5] to X+.
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Also, by [Dri13, Proposition 1.4.10] both X0 and X+ are smooth.

Remark 3.2.2. The construction of the maps σ, π, j is local and is described as follows in terms of a Gm-invariant
cover {Ui}i∈I : σi : U

0
i →֒ U+

i is induced by the projection Ai/I
+
i → Ai/I

±
i ; Ai/I

±
i is identified with the 0-th graded

component of the negatively graded algebra Ai/I
+
i and this way the contraction πi : U

+
i → U0

i corresponds to the
embedding Ai/I

±
i ≃ (Ai/I

+
i )0 → Ai/I

+
i . Finally ji : U

+
i → Ui is given by the projection Ai → Ai/I

+
i . The maps

for X,X+ and X0 are obtained by gluing along the analogous maps for Ui,j := Ui ∩ Uj.

Let π0(X
0) = π0(X

+) be the set of connected components of X0 (equivalently, X+). For a given c ∈ π0(X
0) we

denote by Zc ⊂ X0 the corresponding connected component of X0, and by Sc := π−1(Sc) ⊂ X+ the corresponding
connected component of X+; we call {Sc}c∈π0(X0) the Bialynicki-Birula (BB) strata.

Definition 3.2.3. The Gm-action a : Gm y X is called BB-complete if the map j : X+ → X is a surjection on the
underlying topological spaces |j| : |X+| ։ |X |.

Equivalently, j : X+ → X gives a full stratification of X with individual strata being locally closed. In this
case, the limit of a(t) ◦ x for t → 0 exists for any point x ∈ X ; in particular, the Bialynicki-Birula stratification
{Sc} ∈ π0(X

0) gives a full stratification of X . We will fix some ordering on π0(X
0) with the only condition that

c′ > c if dimSc′ < dimSc; in this case a stratum Sc is necessarily closed in X≤c := X \ ∪c′>cSc′ .

Remark 3.2.4. Since both X+ and X are of finite type and F is algebraically closed, |j| : |X+| → |X | is surjective
if and only if the corresponding map j(F ) : X+(F ) → X(F ) between the F -points is.

3.2.2 BB-complete quotients by Gm

Spreading BB-stratification. Let X be a smooth scheme over F with a Gm-action and let {Ui}i∈I , Ui ≃ SpecAi be

a Gm-invariant affine cover as above. The smooth schemes X+ and X0 are glued out of {U+
i } and {U0

i } (along U+
ij

and U0
ij) correspondingly.

By Corollary 2.1.3 we can spread X to a smooth R-schemeXR endowed with an action of Gm,R := SpecR[t, t−1].
We can also spread the cover {Ui}i∈I to a Gm-invariant affine cover {Ui,R}i∈I , Ui,R ≃ SpecAi,R over some regular
finitely generated Z-algebra R ⊂ F . Each algebra Ai,R is Z-graded and we can consider closed subschemes U+

i,R :=

Spec(Ai,R/I
+
i,R) and U0

i,R := Spec(Ai,R/I
±
i,R), as well as schemes X+

R and X0
R, obtained as their gluings along U+

ij,R

and U0
ij,R (defined analogously). We have (X+

R )×R F ≃ X+ and (X0
R)×R F ≃ X0.

Recall Remark 3.2.2 to see how the maps σ, π, j between X,X+, X0 are defined in terms of the covering {Ui}i∈I .

Performing the same construction with Ui,R, U
+
i,R and U0

i,R we obtain maps X0
R

σR
++
X+

R
πR

kk
jR // XR which spread

σ, π, j. After enlarging R further, by Corollary 2.1.3 we can assume that σR (resp. jR) is a closed (resp. locally
closed when restricted to each connected component) embedding. Picking an open cover {Vi}i∈I on which the
affine fibration π : X+ → X0 is trivial, π−1(Vi) ≃ Vi × Ad, we can spread it out; enlarging R we can assume that
{Vi,R}i∈I cover X0

R, π
−1
R (Vi,R) cover X

+
R and π−1R (Vi,R) ≃ Vi,R ×R Ad

R. Furthermore, we can assume that X0
R, and

consequently X+
R , are smooth over R.

After enlarging R further, the set π0(X
0
R) can be identified with π0(X

0); the connected component Zc,R for
c ∈ π0(X

0
R) ≃ π0(X

0) then is a spreading of Zc ⊂ X0. Similarly, Sc,R := π−1R (Zc,R) is a connected component of
X+

R and a spreading of Sc.
If the Gm-action on X is BB-complete, we can assume the same about the Gm,R-action on XR; indeed, enlarging

R we can assume that the map X+
R → XR is a surjection. In particular, we can assume that the spreading {Sc,R}

of the stratification {Sc} of X gives a full stratification of XR by locally closed smooth subschemes.

Semiorthogonal decomposition of Coh(XR). We now discuss certain semiorthogonal decompositions of the category
Coh(XR) given by the theory of so-called magic windows developed by Halpern-Leistner in [HL15]. Let X be a
smooth scheme over F with a Gm-action and let XR be a spreading of X as constructed above. Let SR := Sc,R ⊂ XR

be a closed stratum among {Sc′,R}. Let ZR := Zc,R for the same c; the scheme ZR is called the centrum of SR.
The subschemes SR and ZR enjoy the following nice properties:

Proposition 3.2.5. • Both SR and ZR are smooth over R;

• There is a Gm-equivariant map πR : SR ≃ S+
R → S0

R ≃ ZR, which is a Zariski locally trivial fibration with an
affine space Ad

R (for some d) as a fiber;

• The conormal bundle N∨SR
XR has strictly positive weights when restricted to the fixed locus ZR ⊂ SR.
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Proof. Since ZR and SR are connected components of X0
R and X+

R correspondingly, it is enough to show that
the above properties hold for X0

R and X+
R in place of ZR and SR. The first two properties are included in our

construction of the spreading. The last property can be checked locally, thus we can assume XR ≃ SpecAR,
SR ≃ SpecAR/I

+
R and ZR ≃ SpecAR/I

±
R . The normal bundle N∨

X+
R

XR is then given by I+R /(I+R )2 as a AR/I
+
R -

module and its restriction to X0
R is given by I+R/(I+R · I±R ), considered as a AR/I

±
R -module). Since by definition I+R

is generated by elements of strictly positive weight, the weights of I+R /(I+R · I±R ) are also strictly positive.

Remark 3.2.6. In other words, using the terminology of [HL15], SR ⊂ XR is a smooth KN-stratum satisfying
properties (A) and (L+) (in the case G = Gm,R).

Let XR := [XR/Gm,R], SR := [SR/Gm,R] and ZR := [ZR/Gm,R]. Also let UR := XR \ SR be the complement
and let UR := [UR/Gm,R]. Let Coh(XR) be the (bounded derived) category of coherent sheaves on XR and let
CohSR

(XR) ⊂ Coh(XR) be the full subcategory of sheaves whose pull-back to the flat cover XR ։ XR is set-
theoretically supported on SR. The action of Gm,R on ZR is trivial and so ZR ≃ ZR ×R BGm,R. Thus the heart
Coh(ZR)

♥ of the category of coherent sheaves on ZR is identified with the category of Z-graded objects in Coh(ZR)
♥.

For a given w we denote by Coh(ZR)<w ⊂ Coh(ZR) the full subcategory spanned by objects F ∈ Coh(ZR) whose
cohomology sheaves Hi(F) ∈ Coh(ZR)

♥ have grading less than w. Similarly, by Coh(ZR)≥w ⊂ Coh(ZR) we denote
the full subcategory spanned by objects whose cohomology sheaves have grading greater or equal than w.

Let iR : UR → XR and jR : SR → XR be the natural embeddings. Then, given w ∈ Z, by [HL15, Theorem 2.10],
we have a semiorthogonal decomposition

Coh(XR) = 〈CohSR
(XR)<w,Gw,CohSR

(XR)≥w 〉, (7)

where

• CohSR
(XR)≥w := {F ∈ CohSR

(XR) | σ∗RF ∈ Coh(ZR)≥w} ⊂ CohSR
(XR),

• CohSR
(XR)<w := {F ∈ CohSR

(XR) | σ∗Rj
!
RF ∈ Coh(ZR)<w} ⊂ CohSR

(XR)

and Gw ⊂ Coh(XR) is a certain (full) subcategory such that the functor i∗R : Coh(XR) → Coh(UR) restricted to Gw

i∗R|Gw
: Gw

∼ // Coh(UR)

is an equivalence.

Remark 3.2.7. Note that the [HL15] assumes the base to be a field of characteristic 0. Even though in the case
of G = Gm this assumption is not really necessary, the semiorthogonal decomposition above is also covered by the
proof of Proposition 3.3.2. Indeed it is enough to show that SR gives a Θ-stratum in XR. This follows from the
intrinsic description of Θ-strata (see [HL20, Proposition 1.4.1] or also see the proof of Lemma 3.3.3): the third
point of Proposition 3.2.5 exactly says that LSR/XR

∈ QCoh(SR)
≥1 (meaning the term of the corresponding baric

decomposition).

Proposition 3.2.8. XR is cohomologically proper if and only if both UR and SR are.

Proof. Fix some w ∈ Z.
“⇒” SR is cohomologically proper, since for F ∈ Coh(SR) we have jR∗F ∈ Coh(XR) and RΓ(SR, F ) ≃

RΓ(XR, jR∗F). Since XR is smooth, we have Coh(XR) ≃ Perf(XR) and so any object of Coh(XR) is dualizable; in
particular, for any V1, V2 ∈ Coh(XR) we have

HomCoh(XR)(V1, V2) ≃ RΓ(XR,Hom(V1, V2)),

where Hom(V1, V2) ∈ Coh(XR). Thus HomCoh(XR)(V1, V2) ∈ Coh+(R), or, in other words, Coh (XR) is a nearly
proper R-linear stable ∞-category. Now, taking E ∈ Coh(UR), we get

RΓ(UR, E) ≃ HomCoh(UR)(OUR
, E) ≃ HomCoh(XR)((i

∗
R|Gw

)−1OUR
, (i∗R|Gw

)−1E) ∈ Coh+(R),

via the equivalence (i∗R|Gw
)−1 : Coh(UR)

∼
−→ Gw ⊂ Coh(XR).

“⇐” It is enough to show that the category Coh(XR) is nearly proper. Let’s first show that the subcategory
CohSR

(XR) ⊂ Coh(XR) is nearly proper. Every object of CohSR
(XR) has a finite filtration with graded pieces of
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the form jR∗F , where F ∈ Coh(SR). Thus it is enough to show that Hom(jR∗F1, jR∗F2) ∈ Coh+(R) for any
F1,F2 ∈ Coh(SR). Since SR and XR are smooth we have

HomCoh(SR)(jR∗F1, jR∗F2) ≃ RΓ(SR,Hom(j∗RjR∗F1,F2))

with Hom(j∗RjR∗F1,F2) ∈ Coh(SR); then RΓ(SR,Hom(j∗RjR∗F1,F2)) ∈ Coh+(R) since SR is cohomologically
proper.

More generally, given F ∈ Coh(SR) and V ∈ Coh(XR) we have

HomCoh(XR)(V, jR∗F) ≃ HomCoh(SR)(j
∗
RV,F) ∈ Coh+(R),

HomCoh(XR)(jR∗F , V ) ≃ HomCoh(SR)(F , j!RV ) ∈ Coh+(R),

where j!RV ∈ Coh(SR), since both XR and SR are smooth. It follows that HomCoh(XR)(V,E) and HomCoh(XR)(E, V )

both lie in Coh+(R) if E ∈ CohSR
(XR) and V is any coherent sheaf on XR.

Now, due to the semiorthogonal decomposition in (7) any V ∈ Coh(XR) has a finite (in fact three-step) filtra-
tion with the associated graded pieces lying either in CohSR

(XR) or Gw. By the above discussion, hom-complex
HomCoh(XR)(E,−) for any object E in CohSR

(XR) is always bounded below coherent. The category Gw ≃ Coh(UR)
is nearly proper since UR is cohomologically proper. Taking such filtrations for a given pair F1,F2 ∈ Coh(XR) and
using the exactness of Hom in each variable we get that HomCoh(XR)(F1,F2) ∈ Coh+(R).

The Gm,R-action on X0
R is trivial; thus X 0

R is isomorphic to X0
R ×RBGm,R. Let p : X 0

R → X0
R be the projection.

Lemma 3.2.9. The morphism p ◦ πR : X +
R → X0

R is cohomologically proper.

Proof. The statement is local on X0
R. Let {U

0
i,R}i∈I , U

0
i,R = SpecA0

i,R be an affine cover of X0
R such that the affine

bundle given by πR : X+
R → X0

R is trivial. Let U+
i,R := π−1R (U0

i,R). It is enough to show that the morphism U+
i,R :=

[U+
i,R/Gm,R] → U0

i,R induced by the composition of πR and p is cohomologically proper. We have U+
i,R ≃ U0

i,R×RAd
R

where Gm,R acts with negative weights on Ad
R. Let A+

i,R be the ring of functions on U+
i,R; it is naturally Z-graded

and A+
i,R ≃ A0

i,R[x1, . . . , xd] where xi’s can be chosen to be homogeneous of strictly negative degree.
The functor (p ◦ πR)∗ is t-exact, since πR is affine and Gm,R is linearly reductive. We have an equivalence

between the abelian category Coh(U+
i,R)
♥ and the category of finitely generated graded A+

i,R-modules. Via this

equivalence, (p ◦ πR)∗ sends a graded module M∗ to the A0
i,R-module M0. Since the degrees of xi’s are strictly

negative, it is straightforward to see that if a A0
i,R[x1, . . . , xd]-module M is finitely generated, the A0

i,R-module M0

is finitely generated as well, and thus corresponds to a coherent sheaf on U0
i,R.

Proposition 3.2.10. Let X be smooth scheme over F and with a BB-complete Gm-action. Let XR be a spreading
as above. Then the following are equivalent:

1. XR is cohomologically proper.

2. X +
R is cohomologically proper.

3. X0
R is proper.

Proof. 1 ⇔ 2. Note that X +
R ≃ ∪c∈π0(X0)Sc,R. Let’s fix an ordering on π0(X

0) such that each Sc,R is closed in
X≤c,R := XR \ ∪c′>cSc′,R. Since {Sc,R} form a full finite stratification of XR, applying Proposition 3.2.8 we are
done by induction on c.

2 ⇒ 3. The morphism σR : X 0
R → X +

R is a closed embedding (in particular proper) and thus is cohomologically
proper. It follows that X 0

R is cohomologically proper. On the other hand X 0
R ≃ X0

R ×R BGm,R and so X0
R is

cohomologically proper as well. Indeed, p∗OX 0
R
≃ OX0

R
and given F ∈ Coh(X0

R) we have RΓ(X 0
R, p

∗F) ≃ RΓ(X0
R,F)

by the projection formula; since p∗F ∈ Coh(X 0
R) we get RΓ(X0

R,F) ∈ Coh+(R). Being a cohomologically proper
R-scheme, X0

R is forced to be proper (Corollary 3.8 of [Hal18]).

2 ⇐ 3: The structure morphism X +
R → SpecR factors as the composition of X +

R

p◦πR
−−−→ X0

R and X0
R → SpecR.

The first map is cohomologically proper by Lemma 3.2.9, the second — since X0
R is proper.

Corollary 3.2.11. Let X be a smooth scheme over F with an action of Gm. Assume that the action is BB-complete
and that the scheme of Gm-fixed points X0 is proper. Then X is cohomologically properly spreadable.

Proof. Let XR be a spreading as above, then X0
R is a spreading of X0 and thus, after enlarging R, we can assume

that X0
R is proper. Then XR is cohomologically proper by Proposition 3.2.10.
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3.2.3 Quotients by G that are BB-complete with respect to a subgroup

In Corollary 3.2.11 we gave some sufficient conditions for the quotient stack [X/Gm] to be cohomologically spread-
able. As we will see soon, Kempf’s theorem allows to generalize this to a quotient by an arbitrary linear group
G; however, a certain extra weight-positivity assumption with respect to a 1-parameter subgroup h : Gm → G is
necessary.

Let G be a linear algebraic group and let B ⊂ G be a Borel subgroup18. Let U ⊂ B be the unipotent
radical of B and let T ⊂ B be a maximal torus. We have a short exact sequence 1 → U → B → T → 1.
Let X∗(T ) := Hom(T,Gm) and X∗(T ) := Hom(Gm, T ) be the character and cocharacter lattices of T . One has
X∗(T ) ≃ X∗(T )∨. Given a T -representation V and a character λ ∈ X∗(T ) we denote by Vλ ⊂ V the subspace
of V of weight λ. The adjoint action of T on U induces an action on the Lie algebra u of U and we denote by
Φ+ ⊂ X∗(T ) the set of weights of u with respect to this action.

Theorem 3.2.12. Let X be a smooth scheme over F endowed with an action of a linear algebraic group G. Let
B ⊂ G be a Borel subgroup and let T ⊂ B be a maximal torus. Let Φ+ ⊂ X∗(T ) be the set of T -weights of the Lie
algebra u of the unipotent radical U ⊂ B with respect to the adjoint action of T on U .

Assume that there is a subgroup h : Gm → T , h ∈ X∗(T ), such that

1. h(Φ+) > 0.

2. The Gm-action induced by h is BB-complete.

3. The h(Gm)-fixed points X0 are proper.

Then the quotient stack [X/G] is cohomologically properly spreadable.

Proof. Let’s first assume that G is connected. Note that B is isomorphic to a semidirect product T ⋉U and can be
spread out to a semidirect product TR ⋉UR of a split torus TR and a unipotent group UR over a finitely generated
Z-algebra R ⊂ F . Since TR is split X∗(TR) ≃ X∗(T ). In particular we have a cocharacter h : Gm,R → TR. The
subgroup B ⊂ G can be spread out to a closed subgroup BR ⊂ GR and we can assume that GR is split. Let UG be
the unipotent radical of G. Then G/UG is reductive and can be spread out to a split reductive group (G/UG)R. We
then also have a spreading pR : GR → (G/UG)R of the projection p : G → G/UG and the kernel (UG)R := Ker(pG)
is a spreading of UG and thus can be assumed to be unipotent. Since UG is a closed subgroup of B, we can assume
that (UG)R is a closed subgroup of BR. The image of BR under pR is a spreading of B/UG ⊆ G/UG and thus
can be assumed to be a Borel subgroup of the split reductive group (G/U)R. Note that with all these assumptions
GR/BR ≃ (G/UG)R/pR(BR).

We can also spread X with the action a : G y X to a smooth scheme XR over R with an action aR : GR y XR.
Note that by [Sum74] the restriction of the action of G on X to Gm (via h) is locally linear; consider a Gm-invariant
open cover {Ui}i∈I of X , Ui = SpecAi. We have spreadings Ai,R of Ai with an action of Gm,R; localizing R if
necessary, we can assume that Ui,R := SpecAi,R cover XR and that the restriction of aR to Gm,R via h is locally
linear. Localizing R, we can assume that the Gm,R-fixed points X0

R are proper, the action is BB-complete and XR

is such that the conditions of 3.2.10 are satisfied. Thus we have that [XR/h(Gm,R)] is cohomologically proper. It
is enough to show that [XR/GR] is cohomologically proper.

We split the argument into a sequence of lemmas:

Lemma 3.2.13. Let XR be as above. Then

[XR/h(Gm,R))] is cohomologically proper over R ⇒ [XR/TR] is cohomologically proper over R.

Proof. Let p : XR → [XR/TR] and q : [X/h(Gm,R)] → [XR/TR] be the natural smooth covers. Then, given F ∈
Coh([XR/TR]), we have RΓ([XR/TR],F) ≃ RΓ(XR, p

∗F)TR . But

RΓ(XR, p
∗F)TR ≃

(
RΓ(XR, p

∗F)h(Gm,R)
)T/h(Gm,R)

≃ RΓ([XR/h(Gm,R)], s
∗F)T/h(Gm,R);

since s∗F ∈ Coh([XR/h(Gm,R)]) we have RΓ([XR/h(Gm,R)], s
∗F) ∈ Coh+(R). Recall that the coherence of a

complex of R-modules is equivalent to being t-bounded and having finitely generated cohomology. The group scheme
T/h(Gm,R) is a torus and the functor of TR/h(Gm,R)-invariants is t-exact. Thus RΓ([XR/h(Gm,R)], s

∗F)T/h(Gm,R)

is also bounded and has finitely generated cohomology, so is coherent.

18Recall that a subgroup B ⊂ G is called Borel if it is a maximal Zariski-closed solvable subgroup of G.
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Lemma 3.2.14. Let XR be as above. Then

[XR/h(Gm,R))] is cohomologically proper over R ⇒ [XR/BR] is cohomologically proper over R.

Proof. Consider the natural smooth cover q : [XR/TR] → [XR/BR] induced by the embedding TR → BR. Since
BR ≃ TR ⋉ UR, the n-th term of the Čech complex associated to q is given by

[XR

TR

× BR

TR

× BR

TR

× · · ·
TR

× BR︸ ︷︷ ︸
n

/TR] ≃ [(XR × UR × UR × · · · × UR︸ ︷︷ ︸
n

)/TR]
19,

where the action of TR on XR × UR × UR × · · · × UR is given by the product of the action on XR and the adjoint
action on each copy of UR.

Note that the underlying scheme of UR can be TR-equivariantly identified with its Lie algebra uR (see II.1.7 in
[Jan07]); this way functions on UR (resp Un

R) are identified with SymR(u
∗
R) (resp. SymR(u

∗
R)
⊗n). Since h(Φ+) > 0

we get that the Gm,R-weights on non-constant homogeneous functions on Un
R are strictly negative. It follows that

Un
R ≃ (Un

R)
+ and (Un

R)
0 ≃ SpecR. We have (XR × Un

R)
+ ≃ X+

R × Un
R, so the map (XR × Un

R)
+ → XR × Un

R is
surjective and thus the Gm,R-action on XR × Un

R is BB-complete for every n. Also, (XR × Un
R)

0 ≃ X0
R is proper.

Finally, since Un
R is isomorphic to the affine space, the Bialynicki-Birula strata still satisfy the conditions in 3.2.5.

Consequently, Proposition 3.2.10 applies to XR×Un
R for all n; we get that [(XR×Un

R)/h(Gm,R)] is cohomologically
proper. By Lemma 3.2.13 it follows that [(XR×Un

R)/TR] is cohomologically proper for all n. By Proposition 2.2.14
we get that [XR/BR] is cohomologically proper.

To pass from BR to GR we use the Kempf’s theorem (3.0.2):

Lemma 3.2.15. Let XR be as above. Then

[XR/BR] is cohomologically proper over R ⇒ [XR/GR] is cohomologically proper over R.

Proof. Let j : BBR → BGR be the natural morphism. Then by the projection formula

RΓ(BBR, j
∗F) ≃ RΓ(BGR, j∗j

∗F) ≃ RΓ(BGR,F ⊗ j∗OBBR).

By base change, the underlying complex of R-modules of j∗OBBR is equivalent to RΓ(GR/BR,OGR/BR
). But

GR/BR ≃ (G/UG)R/(pR(BR)), where pR(BR) ⊂ (G/UG)R is a Borel subgroup and thus RΓ(GR/BR,OGR/BR
) ≃ R

by Theorem 3.0.2. Consequently, RΓ(BGR,F) ≃ RΓ(BBR, j
∗F) for any sheaf F ∈ QCoh(BGR). We now apply

this as follows: there is a fibered square

[XR/BR]
f

//

��

[XR/GR]

��
BBR

j
// BGR

and, given a coherent sheaf F ∈ Coh([YR/GR]), its pull-back f∗F ∈ Coh([YR/BR]) is also coherent. Applying base
change and the above isomorphism we get that RΓ([YR/GR],F) ≃ RΓ([YR/BR], f

∗F); in particular, one complex
is bounded below coherent if and only if the other one is. The statement of the lemma follows.

It remains to cover the case of a disconnected G. We can write [X/G] ≃ [[X/G0]/π0(G)], where G0 is the
connected component of e ∈ G and π0(G) is the finite group of components. The homomorphism p : G → π0(G) ≃
G/G0 can be spread out to pR : GR → π0(G)R where GR is some spreading out of G and π0(G)R is the constant
group R-scheme associated to π0(G). Moreover the kernel G0

R of pR is a spreading of G0.
We have just shown that the quotient stack [XR/G

0
R] is cohomologically proper over R. We also have [XR/GR] ≃

[[XR/G
0
R]/π0(G)R]. It follows that for any F ∈ Coh([X/GR])

RΓ([XR/GR],F) ≃ RΓ
(
Bπ0(G)R, RΓ([XR/G

0
R],F)

)
.

Replacing R with R[1/|π0(G)|] we can assume that |π0(G)| is invertible in R, and so the functor of π0(G)-invariants
is t-exact. Then we get Hq([XR/GR], F ) ≃ Hq([XR/G

0
R],F)π0(G). In particular, RΓ([XR/GR],F) is t-bounded

and its cohomology are finitely generated over R, so RΓ([XR/GR],F) ∈ Coh+(R).

19The isomorphism is given by the formula [(x, b1, . . . , bn)] 7→ [(x, u1, . . . , un)], where bi = ti · ui ∈ TR ⋉ UR.
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We end this subsection by giving some examples to which Theorem 3.2.12 does apply:

Example 3.2.16. 1. X is proper. In this case by the valuative criterion of properness every Gm-orbit of an F -
point has a limit as t → 0, so the map X+ → X is surjective on F -points. It follows that any Gm-action on X is
BB-complete. Moreover X0 ⊂ X is a closed subscheme and so is proper. Thus, the only condition to check is on
G: namely there should exist h ∈ X∗(T ) such that h(Φ+) > 0 (since all Borel subgroups of G are conjugate to each
other this does not depend on the choice of B). Here is a list of linear algebraic groups G which satisfy this:

• G reductive. Then one can take h ∈ X∗(T ) given by any dominant coweight. This case is also covered by
Theorem 3.1.4;

• G = P ⊂ H is a parabolic subgroup of a reductive group H . Any h that is dominant with respect to some
Borel subgroup B ⊂ P applies;

• More or less tautologically, any G with a 1-dimensional subtorus Gm ⊂ G such that the adjoint action of
Gm on the the Lie algebra uG of the unipotent radical UG ⊂ G has strictly positive weights and such that
the projection of Gm to G/UG gives a regular coweight (meaning its centralizer is given by a maximal torus).
Then one picks B as the preimage of a Borel subgroup of G/UG, with respect to which the Gm above gives
a dominant coweight, under the projection G ։ G/UG and take h given by any lifting Gm → B. As a non-
parabolic example of such G one can take any semidirect product Gm ⋉U where U is unipotent and Gm acts
on u with strictly positive weights.

2. There are also natural examples that are more in the spirit of Theorem 3.1.4. Namely, let π : X → Y be a proper
G-equivariant morphism where Y is not necessarily smooth. Then, given a cocharacter h : Gm → G that satisfies
h(Φ+) > 0 for some B ⊂ G, we have that if Y +

։ Y is a surjection and Y 0 is proper, X satisfies the conditions of
Theorem 3.2.12. Indeed the induced map X0 → Y 0 is proper and so X0 is proper. Also, given any point x ∈ X(F ),
the image π(Gm ·x) of its orbit is the orbit Gm ·π(x). Since Y +

։ Y is a surjection, the limit limt→0 t◦π(x) exists.
This gives a diagram

Gm
·◦x //

��

X

��
A1

>>
⑤

⑤

⑤

⑤·◦π(x)
// Y

and, due to the valuative criterion of properness, the lifting A1 //❴❴❴ X , this way producing the limit of t ◦ x as
t → 0. We get that X+ → X is a surjection on F -points and that the Gm-action given by h is BB-complete.

This applies, in particular, to the case when Y 0 ≃ SpecF and G = Gm (where we can assume h = id: Gm → Gm).
In this case we basically arrive at the definition of a conical resolution (see e.g. [KT16]). Namely, we have
Y ≃ Y + → SpecF is affine, so Y ≃ SpecA; the induced Z-grading on A is such that A ≃ A≤0 and A0 ≃ F 20. The
map π : X → SpecA is proper, X is smooth and the Gm-action on X agrees with the grading on A. The geometry
of such X is the following: it is not proper itself, but it has a proper Gm-equivariant map to SpecA so that the
Gm-action contracts it to the central fiber π−1(Y 0) which is proper over F . Note that even if X is smooth, π−1(Y 0)
can be singular (for example in the case of the minimal resolution of the An-singularity for n > 2).

3.3 Θ-stratified stacks and the relation to the work of Teleman

The example of BB-complete quotients by Gm can be vastly generalized by the notion of a Θ-stratified stack
introduced recently by Halpern-Leistner (and studied in great detail in [HL20]). All the stacks in this section are
assumed to be derived and we also assume the base ring R to be Noetherian and regular. Let X be a derived stack
over R and assume that it is locally almost of finite presentation with affine diagonal. We also let Θ := [A1/Gm].
One can define two mapping stacks associated to X : the stack of filtered objects Filt(X ) := Map

R
(Θ,X ) and the

stack of graded objects Grad(X ) := Map
R
(BGm,X ). We have a stacky version of maps defined in Section 3.2.1

Grad(X )
σ --

Filt(X )
ev0

nn
ev1 // X

induced by evaluations at 0 : BGm →֒ Θ and 1: SpecR ≃ [
(
A1 \ 0

)
/Gm] → Θ, and the natural projection Θ →

BGm. Note that if X is smooth (and thus classical) by [HL20, Corollary 1.3.2.1] the stack Filt(X ) is also smooth

20Note the change of sign in the grading compared to [KT16]. In the case of a commutative group action there are two natural left
actions on the space of functions on Y , induced either by the action of g or g−1 on Y . This is exactly the difference we are facing here.
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and classical. A derived Θ-stratum S is by definition a union of connected components of Filt(X ) with the condition
that ev1 |S := S → X is a closed embedding. Let Z := σ−1(S ) ⊂ Grad(X ) be the centrum of S ; ev0 restricts to a
map S → Z.

Definition 3.3.1 (A particular case of [HL20, Definition 1.10.1]). A finite Θ-stratification of X indexed by a totally
ordered finite set I with a minimal element 0 ∈ I is given by:

1. A collection of open substacks X≤α ⊂ X with α ∈ I such that Xα ⊂ Xα′ if α < α′.

2. For each α > 0 a Θ-stratum Sα ⊂ Filt(Xα) such that X≤α \ (∪α′<αX≤α′) = ev1(Sα).

3. One should have X = ∪α∈IXα.

The minimal open stratum X ss ⊂ X is called the semistable locus.

Let iα : Sα → Xα be the embedding induced by ev1. The pushforward iα∗ has left i
∗
α : QCoh(X≤α) → QCoh(Sα)

and right i!α : QCoh(X≤α) → QCoh(Sα) adjoints. Also let Coh−(−) denote the bounded above category of coherent
sheaves.

Proposition 3.3.2. Let X be a smooth Artin stack of finite type over R with affine diagonal endowed with a finite
Θ-stratification. Assume that X ss and the centra Zα are cohomologically proper over R. Then X is cohomologically
proper over R.

Proof. By induction on |I| we can reduce to the case of a single Θ-stratum S with the complement given by X ss. The
stratum S is a connected component of Filt(X ) and thus is also smooth over R. Since both X and S are smooth, we
get that i∗ restricts to a functor between Coh(X ) ≃ QCoh(X )perf and Coh(S ) ≃ QCoh(S )perf . Also by smoothness
the direct image i∗OS ∈ QCoh(X ) is perfect. Indeed, by descent this is enough to check after taking a pull-back
on a smooth cover by a smooth R-scheme of finite type where we get a regular embedding i′ : S′ → X ′ which is
automatically a locally complete intersection in X ′. After refining the cover in Zariski topology, we can assume
the intersection is actually complete and resolve i′∗OS′ by the Koszul complex. This shows that the functor i! also
restricts to a functor from QCoh(X )perf to QCoh(S )perf . Indeed, one has a formula i!F ≃ HomQCoh(X )(i∗OS ,F)
where the latter has support on S and is considered as an object of QCoh(S ). By smooth descent for Hom
([Pre11, Lemma A.1.1]) we can reduce to the case SpecA ≃ S → X ≃ SpecB of smooth affine schemes over R,
where the sheaf HomQCoh(X)(i∗OS ,OX) is computed by the dual to the Koszul complex and thus is bounded and
has finitely generated cohomology modules (and this way belongs to Coh(A)).

Given all this, by a similar argument to Proposition 3.2.8 it is enough to get a suitable semiorthogonal decom-
position of Coh(X ) ≃ QCoh(X )perf in terms of CohS (X ) and Coh(X ss) and show that all Hom’s in Coh(S ) lie in
Coh+(R). Since HomCoh(S)(F ,G) ≃ RΓ(S ,HomQCoh(S)(F ,G)) with HomQCoh(S)(F ,G) ∈ Coh(S ) and Z is cohomo-
logically proper for the latter point it is enough to show that ev0 : S → Z is cohomologically proper. By descent
and base change this can be checked on a (suitable) smooth cover of X ; namely we can use [AHLH18, Lemma 6.11]
to produce a smooth cover [X/Gm] → X where X is an affine scheme and such that the preimage of S is given
by a union of connected components of [X+/Gm] (in the terminology of Sections 3.2.1 and 3.2.2). The centrum
Z is then given by a union of the corresponding components of [X0/Gm] and the needed statement follows from
Lemma 3.2.9.

It remains to deal with the semiorthogonal decomposition. By [HL20, Theorem 1.9.2] for each integer w ∈ Z we
have a decomposition for the bounded above category Coh−(X )

Coh−(X ) = 〈Coh−S (X )<w,G
−
w ,Coh

−
S (X )≥w 〉

in terms of certain subcategories CohS (X )<w,CohS (X )≥w ⊂ CohS (X ) forming a semiorthogonal decomposition of
CohS (X ) on its own and with G−w being isomorphic to Coh−(X ss) via the restriction F 7→ F|X ss . This decomposition
holds without extra assumptions on X , however if we assume X , S are smooth (and thus in particular the embedding
i : S → X is regular) the proof of [HL20, Proposition 2.1.2] goes through without any changes, giving the analogous
decomposition for QCohperf (and thus also for Coh).

Let’s now assume that we have a smooth finite type stack X over a characteristic 0 field F endowed with a Θ-
stratification. Filtering F by regular Noetherian rings R ⊂ F as in Section 2.3 we get a smooth spreading XR; we can
also spread the open substacks X≤α to get open substacks X≤α,R ⊂ XR. Applying the following lemma inductively
we can in fact assume that this gives a Θ-stratification. Before stating the lemma note that one has a natural monoid
structure on Θ induced by the multiplication map A1 × A1 → A1. Having a stack Y with an action of Θ in the
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homotopy category one gets a baric structure on QCoh(Y ) (see [HL20, Section 1.1]); in particular for each weight
w ∈ Z one has a semiorthogonal decomposition 〈QCoh(Y )≥w,QCoh(Y )<w〉. Moreover if Y is smooth over a regular
Noetherian base ring R this also defines a decomposition for coherent sheaves: Coh(Y ) = 〈Coh(Y )≥w,Coh(Y )<w〉
([HL20, Proposition 1.2.1(3)]); we will denote by β≥w, β<w the corresponding truncation functors. We note that
any Θ-stratum S ⊂ Filt(X ) comes with a natural Θ-action.

Lemma 3.3.3. Let XF be a smooth Artin stack of finite type over F with affine diagonal and let iF : SF →֒ XF be
a Θ-stratum. Then one has a spreading iR : SR →֒ XR which is a Θ-stratum as well.

Proof. The key step here is to use the intrinsic description of Θ-strata ([HL20, Section 1.4]). Namely, over any
Noetherian base a closed substack i : S →֒ X with an action a : Θ× S → S gives a map ϕ : S → Filt(X ) defined as
a composition

S
a∗
−→ Map(Θ, S )

◦i
−→ Map(Θ,X ).

By [HL20, Proposition 1.4.1] if X is locally of finite presentation with affine diagonal the map ϕ is also a closed
embedding; moreover, ϕ : S →֒ Filt(X ) defines a Θ-stratum if and only if LS/X ∈ QCoh(S )≥1.

The stack XF is smooth, thus by [HL20, Corollary 1.3.2.1] Filt(XF ) is smooth and so SF is smooth. The stack
SF is also a closed substack of a stack of finite type and so is of finite type over F as well. Using Theorem 2.1.13
we can spread the natural action aF : ΘF × SF → SF and the closed embedding iF : SF →֒ XF to get an action
aR : ΘR×SR → SR and a closed embedding iR : SR →֒ XR. Moreover we can assume SR,XR are smooth and of finite
type over R. By the above description SR is a Θ-stratum if and only if LSR/XR

∈ QCoh(SR)
≥1; this is equivalent to

β<1(LSR/XR
) ≃ 0. Note that by smoothness LSR/XR

and thus also β<1(LSR/XR
) are coherent. Since the restriction

to XF of β<1(LSR/XR
) is given by β<1(LSF /XF

) which is zero, we get that β<1(LSR/XR
) ≃ 0 after a finite localization

of R (indeed this is enough to check for a pull-back to a smooth cover by a scheme, where this follows from the
Chevalley’s consructibility theorem).

Remark 3.3.4. We needed to use the intrinsic description of the Θ-strata in Lemma 3.3.3 because the stack Filt(X )
is only locally finitely presentable; thus we can’t directly apply Theorem 2.1.13 to spread SF → Filt(XF ) or compare
Filt(XR) with some other spreading Filt(X )R.

From the discussion above we deduce the following result:

Corollary 3.3.5. Let X be a smooth Artin stack of finite type with affine diagonal over F and let {X≤α, Sα} be a
finite Θ-stratification of X . If the centra Zα of Θ-strata and the semistable locus X ss are cohomologically properly
spreadable then X is also cohomologically properly spreadable. In particular the Hodge-de Rham spectral sequence
degenerates for X .

Proof. By induction on |I| using Lemma 3.3.3 we can spread out the Θ-stratification (with the properties as in the
proof of the latter). The centrum Zα,R is a closed substack of Sα,R, thus it is also of finite type and is a spreading
of Zα. Enlarging R ⊂ F so that all Zα,R and X ss

R become cohomologically proper we then use Proposition 3.3.2 to
get that so is XR.

In [HL18] various ways of constructing a Θ-stratifications on a stack are discussed in great detail. We will stop
on a single example given by a KN-stratification of a global quotient stack.

Example 3.3.6. In [Tel00] Teleman showed the degeneration of the Hodge-to-de Rham spectral sequence for the
quotient stacks [X/G] with G reductive under the condition that the action on X is KN-complete (see Section 1 of
loc.cit. for the definition of a KN-complete action and Section 7 for the proof of degeneration). We comment on
how to deduce his results (in a slightly more general form) from Theorem 1.4.3 and Corollary 3.3.5.

A KN-stratification of a variety X with a G-action is a stratification

X = Xss ∪
⋃

α∈I

Sα

by locally closed G-invariant subschemes satisfying the following properties:

• For each α there should exist a one-parameter subgroup λα : Gm →֒ G; let Lα ⊂ G be the centralizer of
λα(Gm). The KN-strata Sα should come as follows: for each α ∈ I there should exist an open subvariety
Zα ⊂ Xλα(Gm) of the fixed locus of λα(Gm) such that Sα is given by the G-span G · Yα of the corresponding
attracting locus

Yα := {x ∈ X | lim
t→0

λα(t) · x ∈ Zα}.
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The subvariety Zα is called the centrum of Sα and it is endowed with the natural action of the centralizer
Lα. The attracting locus Yα is endowed with the natural action of the (automatically parabolic) subgroup
Pα ⊂ G of elements p ∈ G for which the limit of λα(t)pλα(t)

−1 in G as t → 0 exists.

• Each KN-stratum Sα should satisfy one further property: namely, the natural action map G × Yα → X

should induce an isomorphism Sα ≃ G
Pα

× Yα. In the context of GIT the KN-stratification usually comes as
follows: the centra Zα ⊂ Xλα(Gm) are the semistable loci of the action of L′α := Lα/λα(Gm) on Xλα(Gm); we
note that in this case the Lα-action on Zα is automatically locally linear and thus Theorem 3.1.4 applies to
Zα := [Zα/Lα]. We will assume further on that we are in this setting.

A KN-stratification is called complete if the categorical quotients Zα//Lα and Xss//G are projective. We will
call it locally linear if the actions of Lα on Zα and the action of G on Xss) are locally.

Let X := [X/G], X ss := [Xss/G], Si := [Sα/G] ≃ [Yi/Pi] and Zα := [Zα/Li]. Find a total ordering21 on I
such that for X≤α := X \ ∪α′>αSα′ the embedding iα : Sα → X≤α is closed. By the description of Θ-strata in a
quotient stack ([HL18, Theorem 1.37]) applied to X≤α one can see that Sα is naturally a Θ-stratum and that Zα

is its centrum. Then, given the KN-stratification is complete and locally linear, by Theorem 3.1.4 we get that the
stacks Zα and X ss are cohomologically properly spreadable. Thus by Corollary 3.3.5 X is also cohomologically
properly spreadable and the Hodge-de Rham spectral sequence degenerates for it.

Note that the same proof works if the categorical quotients Zα//Lα and Xss//G are proper but not necessarily
projective.

Remark 3.3.7. In [HLP15] the non-commutative Hodge-to-de Rham degeneration was proved for a slightly more
general definition of a KN-complete stratification: namely one does not need to assume that the Li-action on Zi is
locally linear, only that there exists a good quotient q : [Zi/Li] → Zi//Li. In this case the strata are not necessarily
covered by Theorem 3.1.4 (and the above strategy) but we still hope that they could be cohomologically properly
spreadable. More generally, it would be interesting to answer the following question:

Question 3.3.8. Let q : Y → Y be a good moduli space (e.g. see the Definition in Section 1.2 of [Alp13]) and
assume that Y is a proper algebraic space. Is it true that Y is cohomologically properly spreadable?

The notion of a good moduli space does not spread out well unless the stabilizers are nice, i.e. extension of a
finite group by a torus. Thus we think it would be very interesting to understand if the property of having a good
proper moduli space in characteristic 0 implies any cohomological properness for its mixed characteristic spreadings
(as it happens in the case of BG for a reductive G).

Motivated by Questions 1.3.2 and 1.3.3 of [HLP19], one can also ask the following:

Question 3.3.9. Let X be a formally proper stack (in the sense of Definition 1.1.3 of [HLP19]) over F . Is X

cohomologically properly spreadable?

A Computation of H∗(BGa,OBGa
) over Z

In this section we compute cohomology (with coefficients in the structure sheaf) of the classifying stack BGa of the
additive group Ga over the ring of integers Z. Unfortunately, were not able to locate this result in the literature, so
we do the computation here based on the Jantzen’s computation of cohomology of BGa,Fp . This result is included
for completeness only and will not be used anywhere else in the paper.

We start by constructing sufficiently many elements in the first few cohomology groups of OBGa , the rest of
the computation will then unravel from there. We consider the action of Gm on Ga with t ∈ Gm acting on the
variable x in O(Ga) ≃ Z[x] by t : x 7→ t2x (note the square in the formula). This makes H∗(BGa,OBGa) into
a Gm-representation22, thus providing an extra Z-grading which we denote by H∗(BGa,OBGa)∗ using the lower
indexing.

The cohomology H∗(BGa,OBGa) is the same as the cohomology of Ga with coefficients in the trivial module Z.
We can compute it via the standard complex C•(Ga,Z) := Z[G•a] (see [Jan07, Section 4.14]):

0 → Z
d0−→ Z[x]

d1−→ Z[y, z]
d2−→ . . . .

21It is not hard to see that such a total ordering exists for any stratification. In the GIT “projective-over-affine” case it usually comes
via the values of the Hilbert-Mumford potential. Examples of more general potentials which apply to other situations can be found in
[HL18, Section 4].

22More precisely we should take the corresponding semidirect product Ga⋊Gm with the projection p : Ga⋊Gm → Gm and then consider
the direct image p∗OB(Ga⋊Gm) ∈ QCoh(BGm); by base change its fiber over the point SpecZ → BGm is given by RΓ(BGa,OBGa ).
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The action of Gm extends to C•(Ga,Z) giving a Z-grading which on each term Z[Gn
a ] ≃ Z[x1, . . . , xn] is given by

the doubled degree of a polynomial. This splits C•(Ga,Z) as a direct sum of graded components C•(Ga,Z)n with
i ≥ 0. Note that all non-zero components have even weight.

The 0-th component C•(Ga,Z)0 has Z in every component and is just the complex associated to the constant
simplicial set Z; thus C•(Ga,Z)0 ≃ Z[0]. The second graded component C•(Ga,Z)2 looks as

0 → 0 → Z · x → Z · x⊕ Z · y → . . .

and is the complex associated to the simplicial interval ∆1 (or rather the corresponding free abelian group) shifted
by 1; thus C•(Ga,Z)2 ≃ Z[−1]. Let v1 be the corresponding generator of H1(Ga,Z)2.

For any n ∈ N consider Φn(y, z) := d1(x
n) = (y−z)n−yn+zn as an element of C2(Ga,Z)2n. Note that x

n is the
generator of C1(Ga,Z)2n and thus, first, H1(Ga,Z)2n = 0 unless n = 1 and, second, Φn(y, z) generates the group

of coboundaries B2(Ga,Z)2n ⊂ C2(Ga,Z)2n over Z. In particular H1(Ga,Z) ≃ Zv1. Note also that since p|
(
pi

k

)
if

0 < k < pi, Φpi(y, z) is divisible by p for any i ≥ 1; moreover d2

(
Φpi (x,y)

p

)
= 0 since d2(Φpi(x, y)) = 0 and all terms

in the complex are free Z-modules. Thus for any prime p and i > 0 we get a class vpi
:=
[
Φpi (y,z)

p

]
∈ H2(Ga,Z)pi

such that p · vpi = 0. This way, we get a map

χ : (Z⊕ Zv1)⊗Z Sym∗Z

(
⊕

p

Fpvp ⊕ Fpvp2 ⊕ . . .

)
→ H∗(Ga,Z) (8)

which is an isomorphism on H1 and an injection on H2. In the context of Hodge-properness we see that this is
already very bad: for any p the p-torsion in H2(BGa,OBGa) is infinitely generated.

To compute H∗(Ga,Z) fully we will need a description of the cohomology of Ga over Fp (see e.g. [Jan07, Lemma
4.22 and Proposition 4.27]). The first cohomology H1((Ga)Fp

,Fp) is a span Fpw1 ⊕ Fpwp ⊕ Fpwp2 ⊕ . . . of classes

w1, wp, w
2
p . . . with the Gm-weight of each wpi given by 2pi. Moreover since by the universal coefficient formula the

reduction map H1(Ga,Z)/p → H1((Ga)Fp
,Fp) is an injection and preserves the Gm-weights we get that the class

w1 equals to the reduction v1 of v1 (up to a scalar) for any p. From the computation in [Jan07, second paragraph
on p.60] it also follows the reductions vpi ∈ H2((Ga)Fp

,Fp)2pi are non-zero (namely in the notations of [Jan07] vpi

is equal to β(xpi

) up to a sign change in the second variable) and linearly independent (since they have different
Gm-weights).

Lemma A.1. For any prime p the p-primary part of H∗(Ga,Z) is elementary, i.e. it is killed by p.

Proof. The statement will follow from the computation of the Bockstein differential

βp : H
∗((Ga)Fp

,Fp) → H∗+1((Ga)Fp
,Fp).

Namely we will use the fact that if we have a class [c] ∈ H∗(Ga,Z) then its reduction [c] ∈ H∗((Ga)Fp
,Fp) is killed

by βp and that if [c] ∈ Im βp then p · [c] = 0 (in other words if the class of [c] in the cohomology with respect to
Bockstein is 0 then [c] is killed by p).

There are two cases. If p = 2 there is an isomorphism

H∗((Ga)F2
,F2) ≃ Sym∗F2

(
H1((Ga)F2

,F2)
)
≃ F2[w1, w2, w4, . . .].

Consequently, all Gm-weights in H2((Ga)F2
,F2) are given as sums 2i + 2j for i, j ≥ 0. Since the reduction

v2i ∈ H2((Ga)F2
,F2) is non-zero and its weight is 2i+1 the only option for it is w2

2i−1 . Also, by the univer-

sal coefficient formula the class w2i , i > 0 should come as the only non-zero element of Tor1(H
2(Ga,Z),F2)

of weight 2i+1. The latter group is equal to the 2-torsion in H2(Ga,Z) and contains v2i which has the cor-
rect weight. From the properties of the Bockstein operator it follows that β2(w2i) is equal to v2i = w2

2i−1 if
i > 0. Also β2(w1) = 0 (since w1 = v1) and since β2 is a differentiation this, together with the above, defines
it uniquely23. Note that β2 is F2[w1, w

2
2 , w

2
4 , . . .]-linear and that F2[w1, w2, w4, . . .] is free over F2[w1, w

2
2 , w

2
4 , . . .]

with basis given by w2I := w2i1w2i2 . . . w2ik where I = {i1, . . . , ik} runs over finite subsets of Z>0. We turn
(F2[w1, w2, w4, . . .], β2) into a complex of F2[w1, w

2
2 , w

2
4 , . . .]-modules be defining another (homological) grading,

namely putting deg∗ w2I to be equal to |I|. In fact this way we can identify (F2[w1, w2, w4, . . .]∗, β2) with the Koszul

23In terms of the identification H∗((Ga)F2 , F2) ≃ F2[w1, w2, w4, . . .], β2 acts as the well-defined vector field
∑

∞

i=1 w
2
2i−1

∂
∂w

2i
.
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complex KosF2[w1,w2
2,w

2
4,...]

(w2
1 , w

2
2, w

2
4 , . . .)∗ for the infinite sequence (w2

1 , w
2
2, w

2
4 , . . .);

24 indeed, one can map the k-

th term KosF2[w1,w2
2,w

2
4,...]

(w2
1 , w

2
2 , w

2
4 , . . .)k ≃ Λk

F2[w1,w2
2,w

2
4,...]

(F2[w1, w
2
2 , w

2
4, . . .]

⊕∞) with the basis (e1, e2, e3, . . .) of

F2[w1, w
2
2 , w

2
4 , . . .]

⊕∞, associated to the elements (w2
1 , w

2
2, w

2
4 , . . .), to the k-th graded component of F2[w1, w2, w4, . . .]

by sending eI := ei1 ∧ . . . ∧ eik to w2I . It is easy to see that the Koszul differential goes exactly to β2. Since the
sequence (w2

1 , w
2
2 , w

2
4, . . .) is regular we get that the cohomology of (H2((Ga)F2

,F2), β2) is given by

F2[w1, w
2
2 , w

2
4 , . . .]/(w

2
1 , w

2
2, w

2
4 , . . .) ≃ F2[w1]/w

2
1

and is spanned by 1 and w1 over F2. But we know that w1 = v1 (and of course 1) is a reduction of a non-torsion
class v1 (resp. 1). Thus we get the statement.

If p is odd then
H∗((Ga)Fp

,Fp) ≃ Λ∗Fp
(w1, wp, wp2 , . . .)⊗Fp Sym

∗
Fp
(vp, vp2 , vp3 , . . .),

By a similar reasoning to the p = 2 case we get that βp(wpi) = vpi (at least up to a scalar) for i > 0 and that
βp(w1) = 0. Similarly, βp is Fp[vp, vp2 , vp3 , . . .]-linear and H∗((Ga)Fp

,Fp) is a free module over Fp[vp, vp2 , vp3 , . . .]

with the basis given by wpI := wpi1 ∧ . . . ∧ wpik where I = {i1, . . . , ik} with i1 < . . . ik runs over finite subsets of
Z≥0. Defining a new (homological) grading on (H∗((Ga)Fp

,Fp) by putting deg∗ wpI = |I| and deg∗ vi = 0 we view

(H((Ga)Fp
,Fp)∗, βp) as a complex of Sym∗Fp

[vp, vp2 , vp3 , . . .]-algebras, which in fact is identified with the product

(now as dg-algebras)

Λ∗Fp
[w1]⊗Fp KosFp[vp,vp2 ,vp3 ,...]

(vp, vp2 , vp3 , . . .) ≃ H∗((Ga)Fp
,Fp)

where the differential on w1 is 0. Indeed one can define a map by sending each generator eI ∈ Kos|I| to wpI and
we leave it to the reader to check that it is an isomorphism. Since vp, vp2 , vp3 , . . . ∈ Fp[vp, vp2 , vp3 , . . .] is a regular
sequence in the case of an odd p we also get that the cohomology of βp is spanned by 1 and w1 over Fp, and they
come as reductions of non-torsion classes. This finishes the proof.

We finish the description of H∗(Ga,Z). By Lemma A.1 the p-primary part of H∗(Ga,Z) (as a non-unital
algebra) is killed by p and thus can be described as Imβp ⊂ H∗((Ga)Fp ,Fp) via the reduction map. More explicitly
Im βp is freely generated by elements βp(wI) as a module over Fp[vp, vp2 , vp3 , . . .] in the notations of Lemma A.1.
The elements βp(wI) are not algebraically independent over Fp[vp, vp2 , vp3 , . . .] and it seems hard to describe all the
relations between them; but still this description is somewhat nice, since there is only finite number of βp(wI) of a
given cohomological degree. To finish the computation over Z it only remains to see what happens with the powers
of v1. Since v1 is of cohomological degree 1, v21 is 2-torsion and we saw in the course of proof of Lemma A.1 that
in fact v21 = v2. All in all this gives the following description of H∗(BGa,OBGa):

Proposition A.2. We have

H∗(BGa,OBGa) ≃

(
Z[v1]⊕

(
⊕

p

Im βp

))/
v21 = v2.

Also, returning to the map χ (see Equation (8)), we get a subalgebra

A =

(
Z[v1]⊗Z Sym∗Z

(
⊕

p

Fpvp ⊕ Fpvp2 ⊕ . . .

))/
v21 = v2 ⊂ H∗(BGa,OBGa),

and the algebra H∗(BGa,OBGa) is generated by 1 and βp(wI) (for various p and I) as an A-module. More precisely
one can check that we have a direct sum decomposition

H∗(BGa,OBGa) ≃ A⊕
⊕

p,I

A · βp(wI),

where for each βp(wI) the submodule A · βp(wI) is just isomorphic to (non-derived) quotient A/p.

24We warn the reader that this is only an isomorphism F2[w1, w2
2, w

2
4, . . .]-dg-modules and not dg-algebras.
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Remark A.3. Quite remarkably the cohomologyH∗(BGa,OBGa) turns out to be directly related to the cohomology
of the Eilenberg-Maclane space K(Z, 3)25: namely there is an isomorphism

Hn
sing(K(Z, 3),Z) ≃

n⊕

i=0

Hi(BGa,OBGa)n−2i,

which in fact extends to the isomorphism of the graded algebras

⊕

n≥0

Hn
sing(K(Z, 3),Z) ≃

⊕

n≥0

(
n⊕

i=0

Hi(BGa,OBGa)n−2i

)
.

We comment more on this. Indeed, K(Z, 3) ≃ B(K(Z, 2)) ≃ BCP∞. Realizing K(Z, 3) as the colimit of the
simplicial diagram

colim
(
. . .

// //// CP∞ × CP∞ //// CP∞ // ∗
)

∼ // K(Z, 3)

we get a spectral sequence
En,q

1 = Hq
sing((CP

∞)n,Z) ⇒ Hn+q
sing (K(Z, 3),Z).

The cohomology H∗sing(CP
∞,Z) ≃ Z[x], deg x = 2 has a natural Hopf algebra structure with comultiplication

induced by the additionm : CP∞×CP∞ → CP∞. It is easy to see thatm∗(x) = x⊗1+1⊗x and so the corresponding
affine group scheme is Ga; moreover, the cohomological grading corresponds exactly to the Gm-action on Ga which
we considered before. Via this identification and the Künneth formula, the first page En,q

1 of the spectral sequence
above is identified the standard complex C•(Ga,Z):

0 → Z
d0−→ Z[x]

d1−→ Z[x] ⊗Z Z[x]
d2−→ . . . .

Thus we also know the second page, namely we have En,q
2 = Hn(Ga,Z)q. Note that all odd rows are automatically

zero.
We claim that the spectral sequence degenerates at the second page. Since all terms En,q

2 are finitely generated
over Z and by Lemma A.1 all torsion they have is elementary, it is enough to check that all the differentials on the
second page are zero modulo all primes p. Consider the analogous spectral sequence En,q

1,p = Hq
sing((CP

∞)n,Fp) ⇒

Hn+q
sing (K(Z, 3),Fp) for Fp-cohomology; similarly to the above its second page looks as En,q

2,p = Hn((Ga)Fp ,Fp)2q
and as we have seen the reduction map En,q

2 /p → En,q
2,p is an embedding. Thus it will be enough to show that

E∗,∗∗,p degenerates at the second page for any p. All differentials in E∗,∗∗,p are generated by maps between some Fp-
cohomology of some spaces and thus commute with the action of the Steenrod algebra Ap. By [Jan07, Proposition
in 4.27] the algebra generators wpi in fact are related by the Frobenius FGa : Ga → Ga, namely wpi = F ∗Ga

wpi−1 .

From the topological point of view, if x ∈ E1,2
1,p ≃ H2(CP∞,Fp) is a generator whose class in E1,2

2,p = H2((Ga)Fp ,Fp)2

is equal to w1 ∈ E1,2
2,p , then such wpi comes as a generator xpi

∈ H2pi

(CP∞,Fp) and is expressed more functorially

as P iP i−1 . . . P 1w1, where P
i denotes i-th Steenrod power operation. Also recall that vpi = βp(wpi). Since wpi and

vpi together generate E∗,∗∗,p and are obtained from w1 by applying cohomological operations it is enough to show

that dn,p(w1) = 0 for any n. This is obvious for n > 2 and for n = we have d2,p(w1) = 0 since d2,p(w1) ∈ E3,1
2,p =

H3((Ga)Fp ,Fp)1 = 0.
Even though the degeneration of the spectral sequence a priori only gives the description of a certain associated

graded of H∗sing(K(Z, 3),Z), we claim that there also exists a natural isomorphism of the latter with E∗+∗2 . Indeed,

let c be the generator of H3(K(Z, 3),Z) ≃ Z which goes to v1 ∈ E1,2
2 ≃ H1(Ga,Z)2 under the natural map

and consider its reduction c which generates H3(K(Z, 3),Fp) ≃ Fp. Then putting cpi := P iP i−1 . . . P 1c, and
dpi = βp(cpi) in the case of odd p, we get an isomorphism

F2[c, c2, c4, . . .] ≃ H∗(K(Z, 3),F2)

and
Λ∗Fp

(c, cp, cp2 , . . .)⊗Fp Sym
∗
Fp
(dp, dp2 , dp3 , . . .) ≃ H∗(K(Z, 3),Fp)

for p odd. Moreover, the Bockstein βp is acting on H∗(K(Z, 3),Fp) by analogous formulas analogous to the
ones we had in the course of the proof of Lemma A.1 and by the same argument it follows that the p-primary

25Recall that K(Z, n) for n ≥ 1 is the unique (up to homotopy) space such that πn(K(Z, n)) = Z and πi(K(Z, n)) = 0 for i 6= n.
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part in H∗sing(K(Z, 3),Fp) is killed by p. Sending c to v1, cpi to wpi and dpi to vpi defines an isomorphism be-
tween H∗(K(Z, 3),Fp) and H∗((Ga)Fp ,Fp), which, moreover, respects Bocksteins on both sides. Finally, describing
H∗(K(Z, 3),Z) in terms of Imβp for various p and the class c as in Proposition A.2 this extends to the isomorphism
of graded algebras

⊕

n≥0

Hn
sing(K(Z, 3),Z) ≃

⊕

n≥0

(
n⊕

i=0

Hi(BGa,OBGa)n−2i

)

as we claimed.
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