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The Covid-19 Pandemic: Basic Insights from Basic Mathematical Models  
  
 
Abstract  
 
Mathematical models for the spread of infectious diseases have a long history. From the start of the Covid-19 pandemic, there was a huge 
public interest in applying such models, since they help to understand general features of epidemic spread and support the assessment of 
possible mitigation measures – and their later relaxation. We describe and discuss some well-established mathematical models for epidemic 
spread, starting from the susceptible-infected-recovered (SIR) model and branching processes and discussing insights from network-based 
models. During the Covid-19 pandemic, such classical models have also been extended to include many additional aspects that affect epidemic 
spread, such as mobility patterns or testing possibilities. However, such complex models are increasingly difficult to assess from the outside. 
In a situation where their predictions can directly affect the lives of millions of people, this can become a severe problem. We argue that 
simple mathematical models have huge merits and can explain many of the key features of more complex models, such as the importance of 
heterogeneity in disease transmission. For example, basic models allow inferring whether super-spreading, where very few infected individuals 
cause the vast majority of secondary cases, should be the rule or the exception – with wide-ranging consequences for the possible success of 
mitigation measures. In addition, these basic models are simple enough to be understood and implemented without expert knowledge in 
theoretical epidemiology or computer science. Thus, they offer a level of transparency that can be important for a society to accept mitigation 
measures.  
 
 
General Lay Summary 
 
During the Covid-19 pandemic, scientists have been describing the spread of the virus with different kinds of theoretical models. While some 
of these models are challenging to understand in detail, they typically are based on a core of a few classical epidemiological models that are 
also accessible to non-experts. In this article, we discuss several of these classical models and highlight important conclusions that can be 
drawn from them. We are convinced that an understanding of these models can crucially contribute to the public acceptance of governmental 
interventions and to more informed discussions about upcoming decisions. The media often depicts mathematical models as complicated black 
boxes that only a few experts can master.  While the development and analysis of mathematical models indeed requires the expertise of 
specialists, we believe that our society can understand many aspects of these models and of the theoretical basics of infectious disease 
dynamics. 
 
 
Generelle Zusammenfassung 
 
Während der Covid-19-Pandemie haben Wissenschaftler die Ausbreitung des Virus mit unterschiedlichen theoretischen Modellen 
beschrieben. Auch wenn einige dieser Modelle im Detail nur schwer zu verstehen sind, basieren sie typischerweise auf wenigen klassischen 
epidemiologischen Modellen, die auch für Nicht-Experten verständlich sind. In diesem Artikel diskutieren wir einige dieser klassischen 
Modelle und heben wichtige Schlussfolgerungen hervor, die aus ihnen gezogen werden können. Wir sind davon überzeugt, dass das Verstehen 
dieser Modelle entscheidend zur öffentlichen Akzeptanz staatlicher Interventionen und zu konstruktiven Diskussionen über anstehende Ent-
scheidungen beitragen kann. Die Medien stellen mathematische Modelle oft als komplizierte Black Boxes dar, die nur wenige Experten ver-
stehen können. Auch wenn die Entwicklung und Analyse mathematischer Modelle in der Tat das Fachwissen von Spezialisten erfordert, 
glauben wir, dass unsere Gesellschaft viele Aspekte dieser Modelle und der theoretischen Grundlagen der Dynamik von Infektionskrankheiten 
verstehen kann. 
 
 
1.  Introduction  
 
These are the days of mathematical biology. A discipline that was sometimes viewed as supporting experimental 
sciences only, suddenly becomes central and immediately relevant for societies worldwide to plan and assess 
mitigation measures during the Covid-19 pandemic. Theoretical research about disease spread, contact networks, 
and models of virus evolution suddenly became part of the general public discussion, the daily media, and the 
concern of politicians. Many scientists have switched their working and communication style to address important 
problems arising during the pandemic in a timely manner. What does the public expect from such theoretical 
models? Some would like to have a precise prediction of the future – and as long as the predictions are sufficiently 
accurate, they tend to care less about the underlying model. Others would like to understand the underlying mech-
anisms, allowing them to think carefully about possible interventions and work with different future scenarios. 
The purpose of the model has to be taken into account already when the model is developed, as different purposes 
can call for different kinds of models (HOLMDAHL and BUCKEE 2020).  

 The subject of mathematical modeling of epidemic spread has a very long history (BERNOULLI 1766, ROSS 
1908, KERMACK and MCKENDRICK 1927). Infectious disease dynamics has been the focus of a major part of this 
field, and many mathematical biologists have worked towards understanding and predicting the possible courses 
of diseases such as influenza or HIV for decades. In a time when every national (and often also regional) govern-
ment is forced to take wide-ranging decisions that temporarily affect their citizens’ daily lives, there was a high 
demand for the expertise of theoretical epidemiologists (GOG 2020) – and in several countries, not enough epide-
miologists were available to meet this demand. During this time, applying well-established models to Covid-19 
data was an important contribution to assessing the situation. Thus, many scientists who worked on other subjects 
before but were well familiar with the underlying theoretical methods have quickly entered the field. While some 
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of this work merely rediscovered established insights or may even be questionable (a particular problem when the 
public picks up pre-prints), a lot of the work of newcomers proved to be important and meaningful.  

Here, we discuss a number of basic mathematical models. These models had been developed much earlier – 
either to describe other infectious diseases or in terms of the basic understanding of infectious disease dynamics 
– and have now been used to understand the course of the pandemic. We focus, in particular, on basic models that 
abstract from many known biological issues but that are ideal for highlighting important points about the dynamics 
of infectious diseases. Such models are particularly helpful for the general public and decision-makers, as they 
are transparent and allow us to better understand the typical dynamics of an epidemic. Concepts such as repro-
ductive numbers, herd immunity, or overdispersion that are discussed in the public typically go back to these basic 
models. A good understanding of such concepts seems to be of immediate value in assessing the situation and 
discussing the implementation of different mitigation measures – or their relaxation.   
 
 
2.  Classes of Epidemiological Models  
 
In the following, we present four different classes of epidemiological models, starting with the most basic models 
that describe the dynamics of the number of infected individuals either by deterministic or stochastic processes. 
Subsequently, we move to models with an explicit contact structure. These first three classes of models build the 
basis for the subsequent sections. We also briefly discuss complex agent-based models that aim to consider many 
more factors that could affect the course of an epidemic. 
 
   
2.1 Deterministic Models: The SIR Model and its Extensions  
 
Mathematical models to describe the spread of infectious diseases have a long history (BERNOULLI 1766, HAMER 
1906, ROSS 1908, 1916, ROSS and HUDSON 1917a, 1917b, BERNOULLI and BLOWER 2004). The most popular 
model in this context, the SIR model (“Susceptible-Infected-Recovered”), is usually attributed to KERMACK and 
MCKENDRICK (1927). The model was initially formulated in discrete time and used differential equations as an 
approximation. Nowadays, the SIR model is usually introduced from the start as a set of differential equations. 
These describe the change in the number of those who are susceptible, S(t), those who are currently infected, I(t) 
and those who are recovered, R(t),  
 
ௗ

ௗ௧
𝑆(𝑡) = −𝛽𝑆(𝑡)𝐼(𝑡) (1a) 

 
ௗ

ௗ௧
𝐼(𝑡) = +𝛽𝑆(𝑡)𝐼(𝑡) − γI(t) (1b) 

 
ௗ

ௗ௧
𝑅(𝑡) = +γ𝐼(𝑡), (1c) 

   
where the population size N = S(t) + I(t) + R(t) is constant over time. On the left-hand side, we have the temporal 
change in the number of individuals of a certain type. The first term on the right-hand side of Eqs. (1a) and (1b) 
describes that susceptible individuals are infected and become infectious themselves, which happens at rate 
𝛽S(t)I(t). The second term on the right-hand side of Eq. (1b) describes recovery, which leads to an increase in the 
number of recovered individuals at rate 𝛾I(t) in Eq. (1c), see Fig. 1A and 1B. As long as the recovery rate is lower 
than the rate of new infections, 𝛾<𝛽S(t), the number of infected individuals increases. The ratio R0 = S(0)𝛽/𝛾 is 
often used to characterize the system, where R0 is the so-called basic reproductive number of the epidemic. In an 
individual-based model, this corresponds to the number of secondary cases caused by one infectious individual in 
a fully susceptible population: An infected individual on average remains infectious over a time 1/𝛾. During this 
time, this individual on average infects 𝛽S(0) others, which leads on average to S(0)𝛽/𝛾 secondary cases.  
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Fig. 1  Illustration of the SIR model and branching processes. (A) shows the basic dynamics turning susceptible individuals (S) at rate 𝛽SI into 
infected individuals (I). Infected individuals recover at rate 𝛾 I, such that eventually more and more individuals have recovered (R). (B) Tem-
poral dynamics in the SIR model (𝛽 = 1, 𝛾 = 0.4, and N = 10000). The number of infected individuals increases until the condition  
𝛽 S(t) = 𝛾 is fulfilled. From then on, the cumulative number of infected individuals has reached the herd immunity threshold. At this point, 
every infected individual causes on average less than one secondary case, slowing down the epidemic. However, the cumulative number of 
infected individuals by the end of the pandemic can be much larger than the herd immunity threshold. (C) Illustration of a branching process 
model, where each infected primary case can cause a variable number of secondary cases. Secondary cases are assumed to be independent for 
each infected case, which implies that no individual is potentially infected by two primary cases. (D) The branching process ultimately leads 
either to extinction, where no infected individuals are present anymore, or to a continued increase, which increases on average exponentially. 
Here we show 50 trajectories, and colors distinguish between those going extinct and those that continue and only go extinct again with a 
probability < 10−7 (pj given by a negative binomial distribution with basic reproductive number R0 = 2 and dispersion parameter k = 0.2, see 
main text). 
  
There are numerous extensions of this model, which, e.g., work with additional compartments (e.g., exposed, but 
not yet infectious, leading to an SEIR model), models with time delays, models with behavioral feedback, or 
models with more types of infections. In addition, some extensions consider population structure or stochastic 
effects. In terms of population structure, the SIR model can be viewed as a “mean-field” model, which describes 
the average dynamics only. Thus, it is based on the underlying assumption that all individuals in the population 
are identical and, e.g., spread the disease in the same way. While this is, of course, an idealization, it provides a 
very good approximation of the dynamics for many kinds of population structures.   
  
 
2.2 Stochastic Models: Branching Processes  
 
The deterministic SIR model introduced in the previous section describes the expected dynamics and does not 
account for any stochastic effects. Most importantly, it does not account for stochastic variation in the number of 
secondary cases. This variation can crucially affect the dynamics of the pandemic when case numbers are low and 
the spread of rare new variants. How much variation there is also influences which control interventions are most 
effective.   

There are many ways to formulate a stochastic version of the SIR model, e.g., by using the rates 𝛽 and 𝛾 to 
capture the probabilities for individual infection and recovery processes. However, in this section, we will go a 
different route and instead introduce another class of models – branching process models. Branching processes 
are stochastic processes making the assumption that individuals cause secondary cases independent from each 
other (and independent from any past infections in the population). This is a good assumption when case numbers 
are low. Likewise, it is a good assumption when considering the initial spread of a new virus variant. During the 
exponential growth phase, a stochastic SIR model can be well described by a branching process, see Fig. 1C and 
1D.   
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We here introduce the classical discrete-time Galton-Watson branching process (WATSON and GALTON 1875), 
which allows us to understand some key consequences of stochasticity for disease dynamics. It was originally 
developed to describe how noble names are passed down to the children. Formulating the definition in terms of 
disease dynamics, the Galton-Watson branching process is defined by the following assumptions: Each infected 
individual infects j other individuals according to some probability distribution ൛𝑝௝ൟ

௝ୀ଴,ଵ,ଶ,...
 with mean R0. This 

distribution is (i) the same for all infected individuals (ii) independent of the number of infected individuals (iii) 
independent of the number of secondary cases caused by other individuals (iv) constant over time. Individuals 
recover after one time unit, and all infections occur right at the end of this time unit.   

There are other types of branching processes that better match the dynamics of disease spread, e.g., individuals 
recover after a variable time period, and infections occur randomly over time. However for many questions, it is 
irrelevant at which precise time points infections happen, and the relevant behavior is captured well by the Galton-
Watson branching process.  

In the context of epidemics, a popular choice for the distribution of the number of secondary cases is the 
negative binomial distribution (LLOYD-SMITH et al. 2005). The reasoning behind this choice is that individuals 
have an “individual basic reproductive number”, depending on their social network, their infectiousness, etc. Some 
people are likely to infect many others, while other individuals likely infect no one else. One option is to describe 
the distribution of individual reproductive numbers 𝜈 by a Gamma distribution with mean R0 and shape parame-

ter k, which has the probability density function ቀ
௞

ோబ
ቁ

௞

𝜈௞ିଵ𝑒
ି

ೖഌ

ೃబ Γ(𝑘)ൗ  , where Γ is the Gamma function – see 

Fig. 2A and 2B. With this parameterization of the Gamma distribution, the variance is given by 𝑅଴
ଶ 𝑘⁄ . If k≫R0 

(formally, k → ∞), each individual has the same individual reproductive number R0. The smaller k, the greater is 
the variation between individuals. Nevertheless, how many individuals someone infects is still also affected by 
chance. Let us assume that a person with an individual reproductive number 𝜈 infects a Poisson distributed number 
of other people (with mean 𝜈), see Fig 2C. Combining this with the Gamma distribution for 𝜈 yields overall a 

negative binomial distribution for the number of secondary cases j, ቀ௝ ା ௞ ି ଵ
௝

ቁ ቀ1 − ೖ

ೃబ శ ೖ
ቁ

௝

ቀ ೖ

ೃబ శ ೖ
ቁ

௞

.  This dis-

tribution is characterized by its mean R0 and the dispersion parameter k. The variance of the negative binomial 
distribution is given by 𝜎 2= R0 (1 + R0/k). If k is high, k ≫ R0, each infected individual is approximately equally 
likely to transmit the disease (in the limit k → ∞, each individual has the same “individual basic reproductive 
number” R0) and all variation comes from randomness in transmission. If k is low, k ≪ R0, there is, in addition 
to stochasticity in transmission, also the variation between individuals, and the variance is much higher, i.e., some 
infected individuals transmit the virus to many others (“super-spreaders”), while most infected individuals cause 
few or no secondary infections. See Fig. 2D for an illustration of how strong this effect can be.   
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Fig. 2  Dispersion in disease spread. (A) and (B) The average reproductive number is given by R0, but different individuals are more or less 
likely to transmit the disease (modelled as a Γ-distribution with mean R0 and shape parameter k), which is captured by their individual repro-
ductive numbers 𝜈 and shown here for R0 = 1.1 (A) and R0 = 3 (B). If the shape parameter k is small, the distribution is very broad, and some 
individuals infect many others, while most infect very few or no others. If the shape parameter k is large, the distribution is centered around 
R0, but it is broader for larger values of R0. (C) The number of realized secondary infections of an individual is on average given by this 
individual reproductive number 𝜈 and follows a Poisson distribution with mean 𝜈. Overall, this leads to a negative binomial distribution for 
the number of secondary cases caused by an individual, which depends on R0 and k (the dispersion parameter of the negative binomial distri-
bution). (D) The fraction of secondary cases caused by the top 10% of all spreaders, which can also be individuals with lower values of 𝜈. 
This fraction depends strongly on the dispersion parameter k. For large k, almost all individuals spread the infection in the same way, but for 
small k, the top 10% of spreaders cause virtually all cases (To obtain these values, we first identified the threshold for the top 10% spreaders 
in the negative binomial distribution, 𝑗∗. Typically, this is not an integer, which was compensated by incorporating only an appropriate fraction 
of the cases caused by the individual in question. We then averaged the negative binomial distribution from 𝑗∗ to 104 (to approximate ∞), 
dividing the result by R0 to compare with the average number of secondary cases caused).    
 
Branching processes have a crucial property: they either go extinct or grow to infinity (unless each individual 
infects exactly one other individual). The outbreak size of an epidemic is, of course, never infinite. At some point, 
growth slows down since the number of susceptibles becomes limiting. Branching processes do not capture this 
effect.  
  
 
2.3 Models with Contact Structure: Network-based Models  
 
Several of the issues arising from the stochastic nature of infections are well described by branching processes. 
However, on a more fine-grained level, epidemic spread is governed by individuals with possibly overlapping 
contact structures. Such contact structures can be very different between individuals, and some individuals may 
be very important for the spread of disease between different communities – while others have a negligible effect. 
This has led to the development of the field of network epidemiology (PASTOR-SATORRAS and VESPIGNANI 2001, 
HUFNAGEL et al. 2004, SALATHÉ et al. 2010), which takes into account the social contact networks of individuals 
and is concerned with the question of how the structure of these networks will affect the spread of disease. These 
networks can either be fixed or change over time, which is the case when individuals adjust their ties to the course 
of an epidemic (GROSS et al. 2006, HOLME and SARAMÄKI 2012). In addition, it is important to keep in mind that 
contacts can come with very different risks of infection.  

Networks are impressive visualization tools when a local outbreak can be traced back and allow an intuitive 
approach to understanding how clusters emerge and how they are interconnected. Network science has identified 
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many measures of local network structure and their impact on the overall dynamics within a network (NEWMAN 
2010). For example, the identification of central nodes in a network that connect different clusters and their iso-
lation could be very successful in epidemic control – and much more efficient than general contact reduction 
orders, which affect all individuals in the same way, regardless of their importance for epidemic spread. While 
this identification of central nodes in infection networks is the basis of contact tracing, contact information is 
typically not available in the forms of such networks – for privacy reasons and since many health authorities do 
not use such a perspective and instead treat every case individually and not as part of a network.   

Simulating a model of disease epidemics on a contact network show that details of the contact structure can 
be crucial for the spread of Covid-19 (FIRTH et al. 2020, NANDE et al. 2021). Such simulations can be computa-
tionally very costly and they can typically only be done for a limited set of fixed parameters. On the other hand, 
some fundamental insights about the epidemic spread on networks can already be derived from the network 
topology alone.   
  
 
2.4 Complex Agent-based Models  
 
The goal of the epidemiological models discussed above is to illustrate certain aspects of epidemic spread and the 
dependence of this process on key parameters. This typically requires keeping the number of parameters low to 
allow analytical insights that are valid beyond a chosen set of numerical parameters (BLACK and MCKANE 2012).  

A different modeling approach includes as much detail as possible and describes an epidemic based on the 
behaviors of many individuals and their states in terms of the disease. The rise in computational power in the past 
decades allowed us to consider more and more sophisticated agents and explore larger and larger systems. In many 
fields, such large-scale simulations are standard, e.g., in engineering, where the underlying natural laws are 
known, but the systems are too complex to be understood with any other method. In epidemiology, the underlying 
laws combine biological and sociological aspects and are thus less clear.  

Agent-based approaches for modeling the Covid19 pandemic became popular over the past two years since 
their results can often be presented in a very intuitive way, and their setup suggests a level of realism that most 
abstract models cannot reach. Based on extensive simulations, these models take into account various issues such 
as both the health and economic effects of lockdowns (SILVA et al. 2020, KANO et al. 2021). Such models can 
consider information detailed at the level of single individuals with a complete contact network or full information 
about testing or vaccination options. For example, drive-in testing options, age-dependent mortality and transmis-
sibility probabilities, and vaccination modes generate a large state-space for the simulated agents to explore 
(TRUSZKOWSKA et al. 2021).  

Often, such models are valued based on their power to predict the future. This predictive property is of imme-
diate interest during a pandemic, where biological issues interact with social dynamics. The demand for such 
predictions about the possible course of an epidemic fuels the development of data-driven, complex models. The 
requirement of quality data to calibrate the models and the assumptions made when the data is unreliable or una-
vailable make this modeling framework a double-edged sword. If the data and, maybe even more importantly, the 
remaining underlying assumptions are “good,” then it can be possible to capture the intricacies of social and 
biological processes that are an integral part of an epidemic. These models are often built around a core very 
similar to the more basic models discussed above, but they consider additional data such as human mobility pat-
terns, age structure, healthcare capacities, etc. Given the large number of assumptions that arise when such data 
is integrated, complex models are often a black box that can only be explored by extensive simulations – simple 
rules of thumb that would lead to general guidelines rarely emerge exclusively from them.   

The predictions of complex models have to be interpreted cautiously, and individual forecasts can contain 
large errors. Comparisons between different forecast models suggest that the best predictions are made when 
several such models are treated as an ensemble, and their median is taken as a predictor (FRIEDMAN et al. 2021, 
CRAMER et al. 2021).  
 
  



Traulsen, A., Gokhale, C. S., Shah, S., Uecker, H., The Covid-19 Pandemic: Basic Insights from Basic Mathematical Models 

NAL-live 2022.3, v1.0, doi:10.34714/leopoldina_NAL-live_0003_01000 7 

3. Harnessing Models during a Pandemic  
 
 
3.1 Obtaining Qualitative Insights from Models 
 
3.1.1 Basic Insights from the SIR Model  
 
Several key insights can already be derived from the basic SIR model described above:  
  
–  Exponential Dynamics. In the initial phase of an epidemic, we have R(t) ≈ 0 and I(t) ≈ 0. This implies that 

the number of susceptibles initially stays roughly constant, S(t) ≈ S0 = N. But the number of infected indi-

viduals increases rapidly, 
ௗ

ௗ௧
 I(t) ≈ (S0𝛽 − 𝛾) I(t). For S0𝛽 > 𝛾, the number of infected individuals increases 

exponentially. This is often described by the basic reproductive number R0 = S0 𝛽/𝛾, which corresponds to 
the average number of infections a single infected person causes in a fully susceptible population. As long 
as an infected person infects, on average more than one other person, R0 > 1, the number of infected indi-
viduals will increase exponentially. Basic reproductive numbers of uncontrolled SARS-CoV-2 have initially 
been estimated to be 2–4 (BAR-ON et al. 2020). Social distancing reduces the number of contacts and thus 
the rate at which new individuals are infected. This reduction in 𝛽 leads to a lower effective reproductive 
number Re. Due to governmental regulations and behavioral changes, the effective reproductive number Re 
has tended to fluctuate around 1 in many countries from mid-2020 to mid-2021 (ARROYO-MARIOLI et al. 
2021).  

  For S(t)𝛽 < 𝛾, the number of infected individuals decreases exponentially. This situation can be induced by 
governmental measures and/or behavioral changes. For example, contact restrictions during a lockdown can 
substantially reduce the number of new infections. In such a phase of exponential decline, the SIR model can 
help to assess how long a lockdown has to take to reach certain incidence goals, as it suggests a meaningful 
way to extrapolate.   

–  Herd Immunity. At which stage does the number of infections decrease again? From Eq. (1b), we can ask 

when the temporal change of the number of infected individuals starts to decrease, which implies 
ௗ

ௗ௧
I(t) = 0. 

Setting the right-hand side of Eq. (1b) to 0, we see that this happens when the number of susceptibles is 
reduced to   

   

  𝑆 =
ఊ

ఉ
=

ௌబ

ோబ
  , (2) 

 
  where we have again used the basic reproductive number R0 – the herd immunity threshold is determined by 

the inverse of the basic reproductive number. After reaching herd immunity, an infected person will no longer 
lead to a long infection chain: Initially, when all individuals are susceptible, R0 secondary infections are 
caused by each infection. However, when only a fraction S(t)/S0 of individuals are susceptible, this is reduced 
to R0S(t)/S0, which decreases below 1 after herd immunity is reached. Once the fraction of susceptibles is 
below this threshold, the epidemic subsides.  

  Without any interventions, herd immunity will eventually be reached via infections. An alternative that 
became available after only one year in Covid-19 is immunization by vaccination. In the ideal case of a 

perfect vaccine, one would have to vaccinate a fraction of 1 −
ଵ

ோబ
 of the population to reach herd immunity – 

or in other words, reduce the fraction of unvaccinated to values below 
ଵ

ோబ
. However, a real vaccine does not 

work perfectly, and vaccinated individuals are protected from the disease with probability pΕ and can thus 

still transmit it to others. In this case, the number of secondary cases is given by 𝑅଴
( ଵ – ௣ಶ )൫  ௌబି ௌ(௧)൯ାௌ(௧)

ௌబ
 . 

Thus, we need to reduce the fraction of susceptible, unvaccinated individuals further to values below,   
   

ௌ(௧)

ௌబ
= 1 −  

ଵ

௣ಶ
ቀ1 −

ଵ

ோబ
ቁ. (3) 

   
  For the 𝛿-variant, it has been estimated that the Biontech/Pfizer protects individuals against symptomatic 

disease in 88% of the cases (LOPEZ BERNAL et al. 2021). For simplicity, let us assume that this is also the 
probability to protect against transmission. For R0 = 5, a current estimate for the 𝛿-variant (LIU and ROCKLÖV 
2021), we would reach herd immunity by vaccination only when the fraction of vaccinated reaches 
ଵ

௣ಶ
ቀ1 −

ଵ

ோబ
ቁ = 91%. For an R0 > 

ଵ

ଵି௣ಶ
, herd immunity with a vaccine that protects against transmission with 

probability 𝑝ா  would not be feasible anymore, even if we optimistically assume that there is no waning of 
protection with time. Moreover, vaccinated individuals are still getting infected in this scenario. However, 



Traulsen, A., Gokhale, C. S., Shah, S., Uecker, H., The Covid-19 Pandemic: Basic Insights from Basic Mathematical Models 

NAL-live 2022.3, v1.0, doi:10.34714/leopoldina_NAL-live_0003_01000 8 

there is still a considerable individual and societal benefit from vaccines in such a situation: Typically, vac-
cines offer a good protection against severe disease and thus avoid overloading the public health system. In 
addition, the partial protection by vaccination contributes to a less severe epidemic.   

–   Vaccination vs. natural immunity. By vaccination, people turn from susceptible into a state that – in the 
context of this model – is equivalent to those recovered from the disease. Thus, we can expect that once the 
herd immunity threshold is reached by vaccination, infection chains are short, and the epidemic is effectively 
controlled such that not many new infections can occur after this point.   

  However, this is not true for naturally acquired immunity occurring in an uncontrolled epidemic. In this case, 
many infectious individuals are present at the stage when herd immunity is reached. This peak in the fraction 
of infected individuals is given by (see Appendix A or Eq. (2.4) in (BRAUER 2008))   

 
ூ೘ೌೣ

ே
= 1 −  

ଵ

ோబ
−  

୪୬ ோబ 

ோబ
 . (4) 

 
  These infectious individuals will still infect many others and cause additional infections and additional 

deaths. Stopping the pandemic by a precisely targeted vaccination campaign shortly before herd immunity is 
reached seems a possibility, but it seems a very theoretical one that is unrealistic in any real scenario. Never-
theless, mitigation measures and behavioral changes slow the course of a pandemic such that the overshoot 
– the difference between the total number of cases at the end of the pandemic and the herd immunity threshold 
– is smaller than in an uncontrolled pandemic.   

  In the SIR model, which assumes a homogeneous population, the herd immunity threshold is the same irre-
spective of whether it is infection-induced or vaccination-induced. This is usually not true in a heterogeneous 
population with a complex population structure. Since disease spread is affected by heterogeneity (e.g., 
highly connected individuals are more likely both to be infected and to infect others), the infection-induced 
herd immunity threshold in a heterogeneous population differs from that in a homogeneous population and 
from the one corresponding to random vaccination of individuals (FERRARI et al. 2006, FINE et al. 2011, 
BRITTON et al. 2020, ELLISON 2020). Targeted non-random vaccination may be used to reduce the number 
of people that need to be immunized to reach herd immunity in a heterogeneous population. However, this 
may oppose other goals of vaccination, especially the protection of the vulnerable risk groups.  

 
3.1.2 Assessing Outbreak Probabilities with Branching Processes  
 
Not every infection introduced into an area seeds an infection chain that leads to a considerable number of cases 
– an event often referred to as an “outbreak” that can only be stopped by interventions and would otherwise 
continue to spread. Only a few infection events may occur before the process goes extinct due to stochastic fluc-
tuations. How likely is it that a primary case launches a large outbreak? This is an important factor in making risk 
assessments during a pandemic, and answering this question is a classical application of branching process theory. 
For example, branching processes have been applied to estimate the probability that an introduced case would 
cause a large outbreak (KUCHARSKI et al. 2020) or to assess the impact of different mitigation measures to contain 
an outbreak (LEVESQUE et al. 2021).  

Let us denote the outbreak probability by Poutbreak. It is easier to consider the complementary probability 
1 − 𝑃௢௨௧௕௥௘௔௞, i.e., the probability that the process goes extinct. Suppose the primary case causes j secondary 
infections (which happens with probability pj). In that case, the process goes extinct if none of these j new cases 
launches an outbreak. According to the definition of branching processes, these j processes develop independently 
from each other. Therefore, we have 
 
1 − 𝑃௢௨௧௕௥௘௔௞ = ∑  𝑝௝  (1 − 𝑃௢௨௧௕௥௘௔௞)௝ஶ

௝ୀ଴ , (5) 
 
which can be solved to obtain the outbreak probability, if the distribution of secondary cases  {pj} is known. The 
outbreak probability is zero if R0 ≤ 1 (unless  p1 = 1). It is larger than zero if R0 > 1.  

It is possible to derive an approximation if the mean number of secondary cases R0 is just slightly larger  
than 1, 
 
𝑃௢௨௧௕௥௘௔௞ ≈

ଶ

ఙమ
(𝑅଴  −  1), (6) 

 
where 𝜎2 is the variance of the distribution (see Equation 14.69 in OTTO and DAY 2007). From this approximation, 
we can gain an important insight (which also holds for large R0): For a given R0, the outbreak probability is lower 
if the variance in the number of secondary infections is larger. This means that the outbreak probability is lower 
when few individuals are responsible for most infections and the majority of individuals infect only a few others 
or none at all, compared to a situation in which all patients infect roughly the same number of individuals. How-
ever, if an outbreak happens, it can be explosive. Importantly, this insight relates to the distribution of secondary 
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cases and not to the distribution of contacts that an individual has in a network. A network with greater heteroge-
neity in contacts (but equal mean number of contacts) does not necessarily imply a lower outbreak probability 
(ALEXANDER and DAY 2010). The difference is because an individual with more contacts is also more likely to 
become infected, i.e., the infected individuals are not a random subset of the total population. In the same way, 
branching processes cannot only be used to assess the outbreak probability of local (or global) epidemics, but also 
new viral variants.  

Importantly, the outbreak probability of a branching process is the probability that it grows to infinity, and the 
extinction probability is the probability that it does not do so. However, ultimate extinction does not mean that 
there cannot be many cases. In fact, even if R0 < 1 (and hence Poutbreak = 0), the outbreak size can be substantial 
(see e.g. the simulation for the spread of Ebola in ALTHAUS 2015). However, this captures the real behaviour of 
disease spread. In more complex models in which growth of the epidemic is limited, and the number of cases 
decreases at some point due to herd immunity, the distribution of outbreak sizes is bimodal if R0 > 1: it has one 
peak at rather low values (but the tail of this peak can reach into substantial outbreak sizes) and another one at 
very high outbreak sizes. These peaks correspond to the two outcomes – extinction or infinite growth – of the 
branching process. For R0 ≤ 1, the distribution is unimodal, and the peak is at low outbreak sizes. Again, such an 
outbreak can extend to considerable sizes.   
 
3.1.3 Contact Tracing in Network and Other Models  
 
Individuals are embedded in various overlapping social networks such as schools, work, friends, etc. When an 
epidemic arises, breaking the chain of transmission is critical. Ideally, when a focal individual is found to be 
infected, all contact persons who had potentially infectious contact with the focal are identified and informed. 
Contact tracing needs to be fast and efficient to keep up with the transmission speed. Thus, the process is the most 
effective when done very fast or in a slowly spreading epidemic (FRASER et al. 2004).  

HETHCOTE et al. (1982) were among the first to assess the effectiveness of contact tracing in controlling disease 
spread – in this case Gonorrhoea – by mathematical modeling (see also Chapter 6 in HETHCOTE and YORKE (1984) 
and the highlighting article by MAY (1981)). They already consider two ways of contact tracing – forward and 
backward tracing,   
 
– (i) Trace to whom the focal individual has potentially already spread the disease (forward tracing) or   
– (ii) Trace from whom the individual has been infected in the first place (backward tracing)? 
   
While forward tracing intuitively appears like the more natural way to interrupt infection chains, and backward 
tracing appears to be more relevant in a context that aims to look into history, it has been shown that backward 
tracing can be remarkably efficient due to the heterogeneity of contact networks (cf. also the findings in the early 
study by HETHCOTE et al. 1982). In any real social contact network, some individuals are more connected than 
others. As also diseases are transmitted via these contacts, highly connected individuals are more likely to be 
infected, and these individuals could turn into super-spreaders. To identify those super-spreaders, the fact that the 
contacts of any focal individual (i.e., the infected individual whose contacts are being traced) tend to have more 
contacts than the focal individual itself can be exploited via backward tracing (KOJAKU et al. 2021). Once such 
super-spreaders are identified, their contacts have to be informed – formally leading to a combination of backward 
and forward tracing.   

There are a variety of ways to model explicit contact structures. HETHCOTE et al. (1982) divide the population 
into several groups, based among other criteria on their number of contacts. At a more detailed level, individual-
based models implementing contact structures have been used in a variety of infectious diseases such as smallpox 
(PORCO et al. 2004), tuberculosis (KASAIE et al. 2014), and others, and such models have also been applied to 
model contact tracing of Covid-19 where e.g. the dynamics in an epidemiological model has been simulated and 
visualised on (pre-Covid-19) real world social networks (FIRTH et al. 2020). Such detailed models often do not 
allow for a precise understanding of the processes. Pair approximation (EAMES and KEELING 2002, CLARKE et al. 
2012, BRADSHAW et al. 2021, ENDO et al. 2021, MÜLLER and HÖSEL 2020, FYLES et al. 2021) is one way of 
recovering some analytical tractability in these complex models while accounting for certain elements of the con-
tact structure (such as the probability that a neighbour of an infected individual is also infected or the inclusion of 
tracing probability/delay) (BARLOW 2020). Aspects of contact tracing can also be analyzed by branching pro-
cesses. By allowing to study at least part of the problem analytically, branching process approaches can highlight 
key parameters and their role in contact tracing. For example, when the delay between the first transmission and 
isolation is too long or when there are too many asymptomatic cases, the efficiency of tracing is very limited 
(HELLEWELL et al. 2020).   

Contact tracing requires a lot of resources and thus tends to be slow if done manually. In principle, it can be 
greatly enhanced when the relevant information is automatically made available, e.g., via proximity data from 
mobile phones or warning apps. Some countries have enforced this rigorous contact tracing and have been very 
efficient in containing the epidemics with this approach (RYAN 2020). However, due to concerns about sharing 
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this data with companies or governments, many countries have implemented digital contact tracing on a voluntary 
basis (and in some cases also without central data storage). In this case, it is important to reach a sufficient number 
of individuals to make this approach successful (JUNEAU et al. 2020). Mathematical considerations based on the 
topology of the contact network or on the parameters of the tracing strategies can help to optimize this approach 
and to assess its benefits.  
 
 
3.2 Data Interpretation 
  
3.2.1 Estimating the Effect of Control Measures  
 
The SIR model has been used early in the pandemic to fit the temporal development of new infections to assess 
the impact of mitigation measures. In retrospect, one can then argue at which point the increase in the number of 
new infections has changed or even stopped – and put this into context with the political measures valid at that 
time (DEHNING et al. 2020). However, such an approach is based on the assumption that changes in case numbers 
are directly caused by mitigation measures, which may not always be accurate. E.g., a correlation between season-
ality and certain measures could be misinterpreted as a successful mitigation measure. Later in 2020, data on 
mitigation measures were collected across many countries, which allowed to disentangle the impact of measures 
introduced at the same time (BRAUNER et al. 2021, HAUG et al. 2020). Also, these studies have to be taken with a 
grain of salt, as similar measures may have very different consequences in different countries. However, some 
general pictures emerge, e.g., the closing of non-essential businesses was found to be less efficient than the closing 
of schools (which tends to reduce many contacts indirectly, see LITVINOVA et al. 2019 for a study in the context 
of influenza). This could, for example happen because parents stay at home to take care of their children. However, 
the role of school closures on epidemic spreading remains a subject of current research (FUKUMOTO et al. 2021).   
 
3.2.2 Estimating Heterogeneity in Transmission  
 
For the dynamics of the epidemic and the choice of mitigation interventions, it is important to know whether 
super-spreader events drive an epidemic or if all individuals can be considered to be approximately equal. Ideally, 
we have data from contact tracing that tells us for a reasonably large number of individuals how many others they 
infected. In that case, we would have an empiric distribution of secondary cases. Assuming a negative binomial 
distribution, the mean R0 and the dispersion parameter k can then be obtained from this data, e.g., by maximum 
likelihood estimation (LLOYD-SMITH et al. 2005, ALTHAUS 2015).   

Such data were unavailable in the very early phase of the Covid-19 pandemic. There were total case counts, 
but even those were not reliable. Nevertheless, to obtain at least some estimate already in January 2020, RIOU and 
ALTHAUS (2020) simulated epidemic outbreaks as branching processes with negative binomially distributed 
secondary cases for a range of values of R0 and k, varying other parameters such as the time of the first case as 
well. From comparing a large number of such simulated epidemics to the observed case numbers (accounting for 
large uncertainty), they estimated R0 (median value of 2.2) and k (median value of 0.54). Given the scarcity of the 
data and the uncertainty in many parameters, such as the timing of the pandemic’s start, these estimates are subject 
to much uncertainty, and a large range of k values can explain the observed data.   

Almost simultaneously to the simulation study by RIOU and ALTHAUS (2020), data on the number of secondary 
cases caused by index cases became available. For example, BI et al. (2020) used data from detected cases between 
January 14 to February 9 to estimate k to be 0.54 and Re to be 0.4 in Shenzhen, China. Based on contact tracing 
data collected in France between January 24 and March 30, 2020, PAIREAU et al. (2020) estimated k to be 0.17 
and Re to be 0.3 (or k = 0.28 and Re = 0.9, if retrospectively reconstructed transmission events were taken into 
account). These estimates are quite different from one another. It should be clear that (besides uncertainty in the 
estimates), there is no universally true k, since it depends, for example, on the structure of the society and the 
effects of current mitigation measures in that society.   

To put these estimates for the dispersion parameter in some context, the estimate by LLOYD-SMITH et al. (2005) 
for a SARS outbreak in Singapore was k = 0.16 with an Re value of 1.63 (i.e., highly overdispersed), while (using 
a different model) k was estimated to be 0.94 and Re to be 1.38 for the 1918 influenza pandemic in Baltimore 
(FRASER et al. 2011). All these estimates show that heterogeneity in transmission is a rule rather than the exception 
in infectious diseases – some people are much more likely to spread the disease than others. 
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3.2.3 Short-term Extrapolation 
  
In the short run and in situations well below the herd immunity threshold, the SIR model predicts either exponen-
tial growth (S(t) 𝛽 > 𝛾) or exponential decrease of infections (S(t) 𝛽 < 𝛾). This exponential dynamics can be used 
to extrapolate the dynamics for short time intervals. For example, it gives an idea about the necessary duration of 
a lockdown until certain incidence targets are reached – assuming that nothing else would change. In times of 
increasing case numbers, this approach allows to assess how fast case numbers reach a level that can no longer be 
controlled, e.g., by contact tracing through health authorities, and thus how fast political decisions need to be 
made to avoid this.  

However, these extrapolations are blind towards additional issues that come up and can drive the course of an 
epidemic: New restrictions or taking back restrictions only have an effect after a delay. Upcoming vacation periods 
or holidays may change the disease dynamics, and weather changes can drive social behavior. In addition, novel 
mutations can change the biology of a virus and render such extrapolations irrelevant. Thus, these extrapolations 
only make sense in the short term and even then break down if the factors affecting the incidence are not constant 
during the fit and extrapolation windows. They help to get an intuition of the current situation but do not predict 
the future and must be handled with care.  

As an example, Fig. 3 shows extrapolations of the incidences in several German states in early May 2021.  
 

 
 
Fig. 3  Short-term extrapolation of the incidences for the federal states of Germany in (A) autumn 2020 and (B) spring 2021. The filled symbols 
are 7-day incidence values, i.e., the number of new cases within a week per 100000 people. The short-term extrapolation used the data from 
fitting the function f (t) = a bt to the fitting window, i.e. a and b were estimated by minimizing the sum of squared residual errors in the fit 
window. We used the variance of these estimated parameters to calculate the confidence interval. Subsequently, these parameters were used 
to extrapolate into the immediate future. The real incidences that occurred in the extrapolation window (and beyond) are shown as open 
symbols. Using the inverse of the exponential function 𝜏(𝑥) = భ

ౢ౥ౝ[್]
 ୪୭୥[

ೣ

ೌ
], the time 𝜏 to a future incidence value x can be estimated. For 

example, in (A), such an estimate could be used to assess at which time the incidences call for further interventions. In (B), one could use the 
same approach to estimate when certain restrictions can be lifted again. The COVID19 dataset for Germany is publicly available and can be 
downloaded from the RKI data repository (Robert-Koch-Institute, 2021a), last accessed June 21, 2021.   
 
 
3.3 Making Predictions  
 
3.3.1 Predictions based on Additional Knowledge 
 
Data-driven models for the Covid-19 pandemic are typically based on the available data since early 2020. How-
ever, they typically do not take into account some known properties of coronaviruses. One such property known 
for other coronaviruses is seasonality in the virus transmission. At the start of the current pandemic, this season-
ality was not yet visible in the data for SARS-Cov-2 and was thus initially not taken into account by data driven 
models. Do we need to work with sophisticated models to assess the impact of such seasonality? It turns out that 
it can be enough to work with a time-dependent infection parameter 𝛽, which can be described by a sine wave 
with a period of one year. A minimal model based on this idea was published in mid-March 2020. The authors 
made it very clear that their model does not qualify as a prediction but as an exploration of different scenarios 
(NEHER et al. 2020). Nonetheless, they found that “Simulations of different scenarios show that plausible 
parameters result in a small peak in early 2020 in temperate regions of the Northern Hemisphere and a larger peak 
in winter 2020/2021”. In reality, many additional factors affected the course of the pandemic. However, even a 
very simple model with few parameters illustrated a scenario that unfortunately became true.  
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3.3.2 Assessing Consequences of Virus Evolution 
  
Another point where predictions are not possible based on infection numbers alone is the future spread of new 
variants. If we only look at the total number of cases, we cannot see any dynamics on the level of virus strains. 
But new variants could increase in absolute numbers, while old variants are dominating the dynamics and lead to 
an overall decreasing trend. In the simplest case, the dynamics can be described by the sum of an exponentially 
increasing and an exponentially decreasing function,  
 
𝐼(𝑡) = 𝐼௢௟ௗ(0) (𝑏௢௟ௗ)௧ + 𝐼௡௘௪(0) (𝑏௡௘௪)௧ , (7) 
 
where Iold(0) and Inew(0) are the number of infected individuals carrying the old and the new variant at the initial 
time t = 0 and bold and bnew are the factors with which they increase or decrease. The first summand reflects the 
dynamics of the old variant and with bold < 1 it decreases. The second sum gives the dynamics for the new variant 
and with bnew > 1 it increases. As long as the new variant is rare, the first summand dominates the behavior, such 
that the total number of cases decreases. However, once the new variant becomes frequent, the second summand 
becomes important, and the number of cases rebounds. Overall, this results in a U-shaped curve (Fig. 4A).  
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Fig. 4  Modelling the take-over of a new variant. Early in 2020, the mutant variant B.1.1.7 (“𝛼-variant”) became dominant in many European 
countries during a time where the general incidences were decreasing. The dynamics can be well described by a sum of two exponential 
functions, an increasing one describing the new variant and a decreasing one describing all other strains. Here, we show the dynamics for 
Germany (panels A–D) and Denmark (panels E–H). The data is given in terms of weeks, and we plot the weekly data point on the date of the 
Monday of the corresponding week. We fitted the absolute number of wild-type and mutant cases (obtained from extrapolating the fraction of 
this variant found in genomic data) during the initial phase (filled symbols in panels A and E) to exponential functions. Panels B and F show 
the fitted exponential functions as well as the total number of cases given by their sum. From the data itself, we calculated the fraction of 
infections caused by the mutant (panels C and G). The qualitative agreement with the fractions calculated from the fits (panels D and H) is 
very good. Based on this simple approach, in Germany it was possible to estimate that the vast majority of cases are caused by the mutant 
almost two months ahead of time. Data for Germany from the reports on variants of concern by the Robert Koch Institute, (Robert-Koch-
Institute, 2021b), last accessed June 21, 2021, data for Denmark from (Danish Covid-19 Genome Consortium, 2021), last accessed on June 
21, 2021.  
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This combination of a variant increasing exponentially, while the prevalent variant was decreasing exponentially, 
was observed in many European countries in January – March 2021. As an example, Fig. 4A/B and 4E/F show 
the developments in Germany and Denmark (where more detailed data on new variants was available) between 
the end of December 2020 and mid-April 2021. In Denmark, the exponential trend in the case numbers caused by 
the B.1.1.7 variant eventually did not continue; instead, case numbers started to plateau. In Germany, the expo-
nential trend in the case numbers caused by the B.1.1.7 variant eventually led to a new epidemic wave in March 
and April 2021.   

It should be clear that as for the extrapolations discussed above, fitting two exponential functions on the num-
bers of two different variants does not allow us to make accurate quantitative predictions for the future either, 
especially not beyond a small time window. E.g., as mentioned above, exponential growth eventually stopped in 
Denmark. However, looking at case numbers in that way prevents being deceived by overall declining cases, and 
making exponential fits can help to gain a quick grasp of the new variant’s risk and estimate when the trend in the 
development of the case numbers will reverse.  

Media often report the relative frequencies of variants of concern. In the model in Eq. (7), the relative 
frequency pnew(t) of the new variant is given by   
 

𝑝௡௘௪(𝑡) =
ூ೙೐ೢ(଴) (௕೙೐ )೟

ூ೚೗೏(଴) (௕೚೗೏)೟ାூ೙೐ೢ(଴) (௕೙೐ೢ)೟ =
௣೙೐ೢ(଴) ൬

್೙೐ೢ
್೚೗೏

൰
೟

௣೙೐ೢ(଴) ൬
್೙೐ೢ
್೚೗೏

൰
೟

 ା ଵି௣೙೐ೢ(଴)

 (8) 

 
see Fig. 4C/D and 4G/H. The speed of increase of the relative frequency of a variant describes how much easier 
it spreads. However, it gives no direct insights into the risk posed by the new variant, since one cannot directly 
see whether the new variant is under control or not, as long as overall case numbers are declining. For this, con-
sidering absolute numbers is more suitable.  
 
3.3.3 Long-term Predictions 
 
What do mathematical models tell us about the long-term dynamics of such a pandemic? The key parameters of 
these models depend on the transmission dynamics, which can be driven by behavioral changes as a response to 
the introduction or relaxation of governmental responses during a pandemic and seasonal effects. But a further 
crucial factor is the immune response to infections and vaccination. It is particularly important how well 
individuals are protected from current and future strains and how long this protection will last. Mathematical and 
computational models allow exploring wide parameter ranges that explore scenarios ranging from complete elim-
ination of the virus to the transition to an endemicity (SAAD-ROY et al. 2020). Taking into account the age structure 
of the population and differences in the adaptive immune system between children and adults, some of these 
models predict that in the long run, we will reach an endemic state where most primary cases occur in young 
children (LAVINE et al. 2021). It should be noted that such predictions crucially depend on the features of immunity 
and much less on the current number of infected cases as described, e.g., by the SIR model.   

However, on a time scale of weeks or months, it is important to assess whether we reach a peak of an epidemic 
wave or not. Even in the absence of further complications such as vaccination campaigns, such an assessment is 
surprisingly difficult – and due to the stochastic nature of the disease dynamics more data is necessary, but not 
sufficient to make realistic predictions (CASTRO et al. 2020). The end of the epidemic remains unclear.  
 
 
4. Discussion  
 
Here, we have discussed some of the most basic models for the dynamics of an epidemic. These models can 
explain many important aspects, such as the dependence of the herd immunity threshold on the basic reproductive 
number of an epidemic or the importance of heterogeneity in the spread of infectious diseases. However, they are 
sketches of an epidemic, and in reality, the dynamics are a complex conglomeration between the effects arising 
from many aspects that are not included in these models, e.g., spatial population structure, human mobility 
patterns, feedbacks between behavior and the state of the epidemic, and many others. In addition, more compli-
cated models may consider economic aspects, different social groups, age effects, etc. Whether the inclusion of 
as many aspects of reality as possible is desirable is answered differently in the different scientific communities, 
where also the typical modeling setups differ. Scientists from diverse fields have contributed to models of the 
Covid-19 pandemics and addressed them in ways that build on the paradigms of their fields: Physicists like to 
point out and exploit connections on a general, abstract level, which, e.g., leads to epidemiological models based 
on dynamic density functional theory from soft matter physics (TE VRUGT et al. 2020). Network scientists stress 
the importance of contact networks and aim to describe aspects arising from these structures (NANDE et al. 2021, 
KOJAKU et al. 2021). The machine learning community focuses on the large datasets available in the pandemic 
and forecasts the future course based on these datasets and less on mechanistic aspects. Engineers who are used 
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to massive simulation models tend to develop more complex mechanistic models that ideally serve to make real-
istic predictions (MÜLLER et al. 2021). While these models are developed and communicated in different ways, 
they involve a core driven by epidemiological considerations. Thus, they are naturally connected to the established 
models developed by theoretical epidemiologists, who have also not only applied their existing models, but also 
adjusted and extended them to address the specificities of Covid-19.   

So which models are the best ones? The choice of the model depends heavily on the actual purpose of the 
models. Is our aim a precise prediction of a system? And if so, along which time scales? Or is our aim to have a 
more detailed understanding of the processes underlying epidemic spread? Or do we use them to illustrate an 
important point, such as the importance of super-spreading? If we are only interested in making short term predic-
tions, an extrapolation of current trends may be sufficient. But predictions over several weeks may already require 
a different approach: For example, when the virus variant B.1.1.7 (𝛼-variant) was first spreading across Germany 
and Denmark, someone modeling the course of the epidemics based only on knowledge of the total case numbers 
would have concluded that case numbers should continue to go down. But as the simple model of two exponential 
functions explained above shows, the knowledge about the abundance of the virus variant allowed to give an early 
warning to what would be coming. For long-term predictions, completely different aspects, e.g., arising from yet 
unknown virus evolution and the long-term dynamics of the immune system after infection or vaccination, have 
to be considered. If we are instead interested in the processes underlying epidemic spread, we must instead develop 
models where the impact of parameters can be analysed in more detail. These are exactly the kind of models we 
put into our focus. These models aim to give quantitative insight and assess the impact of specific control measures 
on a more abstract level. At the same time, these simple models can help in data interpretation and also in making 
first extrapolations given the immediate past.  

At least in retrospect, one could argue that the quality of models can be assessed: Given past disease trajecto-
ries, which ones are best described by a certain model? This only makes sense for models that make concrete 
predictions. However, as soon as these models are communicated to the public or even used to facilitate political 
decision-making, they interfere with their own predictions: If a model predicts that the pandemic situation will 
improve rapidly, people may adjust their behavior such that the situation escalates again. If a model predicts that 
case numbers rise rapidly, politicians may be inclined to take more extreme countermeasures. Thus, even in retro-
spect, it is challenging to assess the model’s predictive ability.   

More complex models are typically more challenging to handle. They have to be sufficiently robust, as they 
can only be analyzed based on large-scale simulations. Usually, the parameter space is so large that such robust-
ness checks are computationally challenging, and a full exploration of the relevant parameter range may even be 
impossible. In addition, one has to assess the structural stability, i.e., if the choices made for functional depend-
encies can be varied without changing the general result. Moreover, in the application of such models one needs 
to keep in mind that the quality of the prediction is typically evaluated in terms of past data. The firm establishment 
of causal links, e.g., between control measures and new infections, remain elusive, as controlled experiments are 
not feasible in the context of an epidemic. However, such models are very useful if interpreted in the proper 
context, as they allow exploring various scenarios for the further development of an epidemic.   

A separate point is that how models in science are developed is very different from the development of applied 
software. Mathematical models in the sciences are often developed, extended, or corrected over long time scales 
and published in peer-reviewed journals. The focus is on the insight arising from the model, and often, many 
different implementations are available, with analytical approaches complementing simulations. In contrast, com-
mercial software development focuses on a single implementation. Especially where security is crucial (such as 
railway systems or autonomous vehicles), such software has to be developed under a much more rigorous code 
testing regime than exploratory scientific models. Since many models developed to understand the course of the 
Covid-19 pandemics are immediately discussed by the media, and by the public, such a more rigorous testing 
regime would also be desirable when scientific computational models are finding immediate applications. But in 
situations where time pressure is as high as in a pandemic, it would be challenging to implement such a regime.  

If mathematical and computational models become important to help decision-makers steer entire countries 
through a pandemic, these models must be accurate and fit this purpose. If one would make all decisions dependent 
on predictions of a single, complex model, can we as an entire society fully rely on its accuracy? Despite the 
laudable availability of the source code of these models, which is now standard, it is not easy to take these models 
apart: To understand the details of the code and the influence of its assumptions, it needs true experts, and for 
most other people, such models remain black boxes. The basic models we focus on here are accessible to anyone 
willing to engage in quantitative thinking. Thus, they are more transparent than many models based purely on 
simulation. These basic models provide simple rules of thumb that do not make more complex models superfluous 
but can help understand if a complex model’s output can make sense. More importantly, basic models can be the 
first guides on how to assess the situation, and they allow to analyze important issues, such as the impact of super-
spreading, in a rigorous and fully transparent way.   

In the past two years, we have seen how powerful different kinds of mathematical models can be. Mathematical 
models have played a pivotal role in helping us understand the dynamics of the pandemic, in guiding our intuition, 
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in making sense of data, and in predicting the consequences of disease spread, viral evolution, and mitigation 
measures. We hope that this contributes to an increased appreciation of the value of mathematical modeling and 
the realization that mathematical biology is not an abstract science without a connection to reality or benefit to 
society, but fundamental for our understanding of the biological processes around us. We hope that also hiring 
committees will recognize that expertise in this field is urgently needed within the biological sciences, medicine, 
and public health.  
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A  Maximal Number of Infected Individuals  
 

When the infection curve reaches its maximum, we have 
ௗ

ௗ௧
𝐼(𝑡) =  0 in Eq. (1b). This implies that the number of 

susceptible individuals at this point is given by 𝑆∗ = ം

ഁ
 = ೄబ

ೃబ
. We can use Eqs. (1a) and (1b) to switch to a descrip-

tion of curves in the (S, I) plane. In this way, we find 
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Since we have S (0) ≈ N and I (0) ≈ 0, we can calculate the maximum 𝐼∗ from 𝑆∗,  
 
𝐼∗ = 𝑁 −

ே

ோబ
+

ே

ோబ
𝑙𝑛

ଵ

ோబ
, (12) 

 
which, renaming 𝐼∗ = Imax, corresponds to Eq. (4).   
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