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Abstract. We define a broad class of graphs that generalize the Gordian graph of knots. These

knot graphs take into account unknotting operations, the concordance relation, and equivalence

relations generated by knot invariants. We prove that overwhelmingly, the knot graphs are
not Gromov hyperbolic, with the exception of a particular family of quotient knot graphs. We

also investigate the property of homogeneity, and prove that the concordance knot graph is

homogeneous. Finally, we prove that that for any n, there exists a knot K such that the ball of
radius n in the Gordian graph centered at K contains no connected sum of torus knots.

1. Introduction

The Gordian graph is a countably infinite graph in which each vertex represents the isotopy type
of a knot, and two vertices are connected by an edge whenever the corresponding knots are related by
a crossing change. A variant of this graph can be similarly defined given any unknotting operation,
and any such ‘knot graph’ may be regarded as a geodesic metric space with the usual distance
metric on a graph. Although unknotting number, or more generally, the H(n)-unknotting numbers,
are widely studied knot invariants, the general structure of these graphs remains mysterious. The
main aim of this article is to study their global metric properties. We will prove:

Theorem 1.1. The Gordian graph, the H(n)-Gordian graph for n ≥ 2, and the concordance
Gordian graph are not Gromov hyperbolic.

A geodesic metric space is Gromov hyperbolic, or δ-hyperbolic, if every geodesic triangle is δ-
thin for some δ ≥ 0. A geodesic triangle is δ-thin whenever each edge is contained in the closed
δ-neighborhood of the union of the remaining two. Our strategy in the proof of Theorem 1.1 is
the direct construction of geodesic triangles that are never δ-thin. In contrast to Theorem 1.1, we
prove:

Theorem 1.2. The quotients of the Gordian graph induced by the smooth four-genus, unknotting
number, Heegaard Floer τ -invariant and Khovanov homology s-invariant, and the quotient of the
H(2)-Gordian graph induced by the non-orientable smooth four-ball genus are all isometric to a
subspace of Z. In particular, they are all Gromov hyperbolic.

To state Theorem 1.1 and Theorem 1.2 more precisely (see Theorems 5.1 and 5.3), we introduce
the general definition of a knot graph KO with respect to an unknotting operation O in Definition
2.4 and extend this definition to quotients of knot graphs induced by knot invariants or under
equivalence generated by concordance. In particular, the concordance knot graph CKO associated
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to an unknotting operation O is the graph whose vertices are concordance classes of oriented knots,
in which a pair of vertices span an edge if there exist oriented knots representing those classes
related by an O-move.

To the best of our knowledge, Definition 2.4 is sufficiently general to include all instances of knot
graphs that have appeared in the literature thus far. The Gordian graph K

/
(where / indicates the

crossing change operation) has been studied for instance in [Baa05], [Baa07], [BK20], [BCJ+17],
[GG16], [HU02]. The band-Gordian graph KH(2) and its analogues, the H(n)-Gordian graphs for
n ≥ 3, have been considered in [ZYL17], [ZY18], and the pass-move Gordian complex K# appears
in [NO09]. We are not aware of any previous results about the concordance knot graphs CKO, but
[IJ11] studies a quotient graph where an equivalence relation on edges is induced by the Conway
polynomial and the unknotting operation is the pass-move.

We remark that Gambaudo and Ghys [GG16] previously established a quasi-isometric embedding
of the integer lattice Zd into the set of knots with a metric equivalent to the edge-metric on the
knot graph K

/
, i.e. the Gordian graph. They noted the naturality of this metric in the sense

that the Gordian distance between two knots is the minimum number of generic double points over
immersed homotopies relating them. Their construction explicitly involves torus knots. This raises
the question as to whether a genuine quasi-isometry could be constructed via torus knots. We prove
this is not the case.

Let Br(v) denote the radius r ball centered on the vertex v in the Gordian graph.

Theorem 1.3. For all r > 0, there exists a knot K such that Br(K) does not contain any arbitrary
connected sum of torus knots.

Besides the hyperbolicity of the knot graphs, we also study the property of homogeneity. A
metric space (X, d) is homogeneous if for every x, y ∈ X there exists an isometry ψ : X → X with
ψ(x) = y, i.e. if the isometry group of X acts transitively on X. In Section 5.4, we show

Theorem 1.4. The concordance graph associated with any set of unknotting operations is always
homogeneous. The quotients of the Gordian graph QKτ

/
and QKs′

/
with respect to the τ and s-

invariants are homogeneous.

We pose several other questions about the structure of the knot graphs, and study the link of
the class in the unknot in several quotient knot graphs in Section 5.4.

1.1. Organization. Section 2 provides a range of background material, including discussions on
metrics on graphs and geodesics in the resulting metric spaces, Gromov hyperbolicity and quasi-
isometries, definitions of general knot graphs and quotients of knot graphs, bounds on the distance
function in H(n)-Gordian graphs, and computations of first homology groups of certain Brieskorn
spheres. In Section 3 we construct explicit geodesic triangles in the H(n)-Gordian knot graphs
and in the concordance knot graphs, that are not δ-thin for any δ ≥ 0. Section 4 is devoted to
the study of quotient knot graphs, and two general theorem are established that in some cases
completely identify their isometry type (Theorems 4.1 and 4.8). Lastly, Section 5 provides the
proofs of Theorems 1.1–1.4 in Sections 5.1–5.4 respectively. Before proving them, some theorems
are restated there in greater generality first.

2. Background Material

This section provides a panoply of background material upon which the proofs of Theorems
1.1–1.4 are based. Sections 2.1–2.3 review material pertaining to graphs as metric spaces and their
hyperbolicity properties. Section 2.4 defines general knot graphs, of which the examples appearing in
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Theorems 1.1–1.4 are special cases. Sections 2.5 and 2.6 remind the reader of the unknotting moves
H(n) that generalize noncoherent band moves when n ≥ 3, and give some bounds on the associated
distance function dn between knots. Lastly, Section 2.7 provides background on 3-dimensional
Brieskorn spheres, including computations of the first homology group of some examples.

2.1. Geodesic Metric Spaces. Let (X, d) be a metric space, and let α : [a, b] → X be a path.
Given a partition P = {t0, . . . , tn} of [a, b], let

L(α,P) =

n∑
i=1

d(α(ti−1), α(ti))

denote the polygonal length of α asssociated to the partition P. We say that α is a rectifiable
path if the supremum of its polygonal lengths, taken over all partitions of [a, b], is finite. In that
case we define the length L(α) of α as said supremum:

L(α) = sup
P
L(α,P).

It is easy to check that if α : [a, b] → X is a rectifiable path, then so is its restriction to any
segment [c, d] ⊂ [a, b].

A metric space (X, d) is called a geodesic metric space if for every pair of points x, y ∈ X there
exists a rectifiable path α : [0, 1]→ X with α(0) = x, α(1) = y and with

L(α|[s,t]) = d(α(s), α(t)), ∀s, t ∈ [0, 1].

Any such path α is called a geodesic path. A geodesic triangle {α, β, γ} in a geodesic metric space
(X, d) is a triple of geodesics α, β, γ : [0, 1] → X with α(1) = β(0), β(1) = γ(0) and γ(1) = α(0).
We refer to α, β and γ (or sometimes their images in X) as the edges of the geodesic triangle, and
the points {α(1), β(1), γ(1)} as the vertices of the geodesic triangle.

For δ ≥ 0, a geodesic triangle {α1, α2, α3} is called δ-thin if for every i ∈ {1, 2, 3} and every
x ∈ Im(αi), the inequality

d(x,∪j 6=iIm(αj)) ≤ δ
holds.

Definition 2.1. The geodesic metric space (X, d) is called δ-hyperbolic if every geodesic triangle in
X is δ-thin, and we say that (X, d) is Gromov hyperbolic if it is δ-hyperbolic for at least one δ ≥ 0.

Observe that if X is δ-hyperbolic then it is also δ′-hyperbolic for every δ′ ≥ δ. If X is Gromov
hyperbolic, we let

δ(X) = inf{δ ≥ 0 |X is δ-hyperbolic}.

2.2. Graphs as Geodesic Metric Spaces. Let G be a graph and let V ert(G) and Edge(G)
denote its sets of vertices and edges respectively. A graph G can be viewed as a 1-dimensional CW
complex whose 0-cells are the vertices of G, and whose 1-cells are in one-to-one correspondence with
the edges of G. Specifically, for each edge e ∈ Edge(G) with endpoints v, w ∈ V ert(G) we attach a
1-cell αe ∼= [0, 1] to V ert(G) whose attaching map identifies the two endpoints {0, 1} of the 1-cell
αe with v and w. This endows the graph G with the structure of a topological space, in such a way
that G is connected as a graph if and only if it is path-connected as a topological space.

We next define a metric d on a connected graph G, by first defining it for vertices v, w ∈ V ert(G)
as:

d(v, w) = Minimum number of edges needed to connect v to w.
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Note that this definition tacitly gives each edge in the graph length 1. The distance between a pair
of points x, y lying on the same 1-cell αe ∼= [0, 1] is

d(x, y) =

{
|x− y| ; if αe has two distinct endpoints,

min{|x− y|, |x|+ |1− y|} ; if αe has only one endpoint.

In the above definition, we assume in the second case that the attaching map takes the unit
interval to a circle of radius 1/2π so that d(x, y) just corresponds with the distance along a circle
of circumference one. Lastly, given points x, y lying on distinct edges αe and αe′ with boundary
vertices {v0, v1} and {w0, w1} respectively, we define their distance d(x, y) as

d(x, y) = min
i,j∈{0,1}

d(x, vi) + d(vi, wj) + d(wj , y).

With these definitions in place, it is now easy to verify that for a connected graph G, the pair
(G, d) becomes a geodesic metric space. We shall use this structure on graphs implicitly on all knot
graphs in subsequent sections.

2.3. Quasi-isometries and hyperbolicity. A map f : X1 → X2 between metric spaces (X1, d1),
(X2, d2) is called a quasi-isometric embedding if there are constants a ≥ 1, b ≥ 0 such that the
double inequality

1

a
d1(x, x′)− b ≤ d2(f(x), f(x′)) ≤ ad1(x, x′) + b,

holds for all x, x′ ∈ X1. In addition, if there is a constant C ≥ 0 such that for every y ∈ Y there
exists an x ∈ X with

d2(y, f(x)) ≤ C,
then X1 and X2 are called quasi-isometric. If C = 0, the map f is called bi-Lipschitz.

Gromov hyperbolicity is invariant under quasi-isometries between geodesic spaces.

Proposition 2.2. [Ghy90, Theorem 12] Assume that (X1, d1) is quasi-isometric to (X2, d2) with
parameters a, b and C. If X1 is δ-hyperbolic, then X2 is δ′-hyperbolic with δ′ depending on δ, a, b, C.

Corollary 2.3. If (X1, d1) and (X2, d2) are quasi-isometric geodesic metric spaces and X1 is not
δ-hyperbolic for any δ ≥ 0, then neither is X2.

Remark 2.1. An interesting result by Bowditch [Bow91] (see also Chapter 6 in [Gro87] as well as
[PRT04]) posits that hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of
a graph associated to it, underscoring the “approximately-tree-like” nature of hyperbolic spaces.
This result puts the onus on understanding and exploring hyperbolicity in graphs, which is partially
the motivation for this work.

2.4. Knot Graphs. An unknotting operation O on knot diagrams is a local modification/move on
a knot diagram, with the property that any knot diagram can be unknotted with a finite number
of such O-moves and/or their inverses. Examples of unknotting operations abound and include the
crossing change operation and the infinite family of H(n)-moves, n ≥ 2 from Figure 1.

Definition 2.4. Let O be an unknotting operation on knot diagrams, and for m ∈ N let I1, . . . , Im
be integer-valued knot invariants and let I = {I1, . . . , Im}.

(i) The O-Gordian Knot Graph KO associated to the unknotting operation O is the graph
whose vertices are unoriented knots, and in which a pair of knots K and K ′ span an edge
if they possess diagrams related by an O-move (or its inverse).
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(a) (b)

Figure 1. The H(n)-move is the unknotting operation which replaces the pattern
from subfigure (a) in a knot diagram, with the pattern from subfigure (b). The
operation is to be performed so as to preserve the number of components. Shown
here is the example of n = 7. These moves were first introduced and studied by
Hoste, Nakanishi and Taniyama [HNT90].

(ii) The Concordance Knot Graph CKO associated to the unknotting operation O is the graph
whose vertices are concordance classes [K] of oriented knots K, and in which a pair of
concordance classes [K] and [K ′] span an edge if there exist oriented knots L and L′

concordant to K and K ′ respectively, and such that L and L′ possess diagrams related by
an O-move (or its inverse).

(iii) The Quotient Knot Graph QKI
O associated to the unknotting operation O and the collection

of knot invariants I is the graph whose vertices are equivalence classes [K]IO of knots K, by
which a pair of knots K and K ′ are equivalent if Ii(K) = Ii(K ′) for all i = 1, . . . ,m. Two
equivalence classes [K]IO and [K ′]IO span an edge if there exist knots L and L′ equivalent
to K and K ′ respectively, and such that L and L′ possess diagrams related by an O-move
(or its inverse).

We shall collectively refer to these 3 types of graphs as Knot Graphs.

Remark 2.2. In part (iii) of the definition above, we assume that all invariants Ii in the collection
I are preserved under orientation reversal.

Remark 2.3. Following [HU02] one can define the structure of a simplicial complex on all the knot
graphs, by letting a collection of n+ 1 vertices span an n-simplex if each pair of vertices spans an
edge. This leads to very rich simplicial structures on the knot graphs. For example, it has been
shown that in the knot graphs K

/
, KH(n), K# (# = the pass move), KRCC (“RCC” = Region

Crossing Change) each edge of the graph lies in an n-simplex for any n ∈ N, cf.[HU02], [ZYL17],
[ZY18], [GPV20] respectively.

We note that the knot graphs from Definition 2.4 can be generalized still by allowing multiple
unknotting operations O1, . . . ,Ok to be considered simultaneously. In such knot graphs, vertices
share an edge if they posses representative knots that are related by an Oi-move (or its inverse) for
at least one i ∈ {1, . . . , k}. If we let O = {O1, . . . ,Om}, we denote the resulting knot graphs by KO
or QKO. An instance of this type of graph has been studied in [Ohy06].
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Different choices of unknotting operations O and knot invariants I lead to infinitely many ex-
amples of knot graphs. While it would be desirable to understand hyperbolicity properties of these
general knot graphs, presently existing techniques place a limit on what can be proved. We there-
fore restrict our considerations on what we perceive as the most important examples. These rely
on the principal unknotting operations studied in knot theory, namely the

Unknotting Operations =

 / = Crossing change operation.
H(2) = The non-coherent (or non-orientable)

band move.

As indicated by our choice of notation, the non-coherent or non-orientable band move corresponds
to the H(2)-move from Figure 1. As some of our results readily generalize from the H(2)-move to
the H(n)-moves for all n ≥ 2, we shall consider the latter unknotting operations as well. The knot
graphs in Parts (i) and (ii) from Definition 2.4 are fully determined by the choice of one of these
unknotting operations.

To motivate our choice of knot invariants used in the construction of the knot graphs from Part
(iii) of Definition 2.4, we first make this definition.

Definition 2.5. An unknotting operation O and an integer valued knot invariant I are said to be
compatible if changing a knot K by a single O-move (or its inverse) changes I(K) by at most 1. Said
differently, if K and K ′ are knots related by an O-move or its inverse, then |I(K)−I(K ′)| ≤ 1. A
quotient graph QKI

O, with I = {I1, . . . , Im} is said to be compatible if O is compatible with every
Ij ∈ I.

We have found that knot graphs KI
O that are not compatible, are rather difficult to understand,

and some exhibit rather surprising properties (see Example 4.7). Accordingly, having chosen our
unknotting operations to be the crossing-change operation and the H(n)-moves, we were compelled
to pick knot invariants from among those compatible with said unknotting operations. Specifically,
we consider these knot invariants:

Knot Invariants =


g4 = Orientable smooth 4-genus
γ4 = Non-orientable smooth 4-genus
u = Unknotting number
τ = Ozsváth-Szabó’s tau invariant
s = Rasmussen’s s invariant

Of these, g4, u, τ, s/2 are compatible with the crossing-change operation, while γ4 is compatible
with non-coherent band moves.

2.5. H(n)-moves. The H(n)-move, n ≥ 2, is defined in Figure 1. We adopt the convention from
[HNT90] that only those H(n)-moves are allowed which preserve the number of components. The
H(2)-move is called a noncoherent or nonorientable band move, as it is realized by attaching a band
to the knot, in such a way that the orientation of the band agrees with that of the knot at one of
its ends, and disagrees at the other.

The H(n)-moves were introduced and studied by Hoste, Nakanishi and Taniyama in [HNT90],
where they proved that each H(n)-move is an unknotting operation. We are thus justified in letting
KH(n) denote the resulting H(n)-Gordian knot graphs, and we denote the induced metric on KH(n)

by dn. Hoste, Nakanishi and Taniyama established several estimates for the H(n)-unknotting
number un(K), defined as dn(K,U) (with U the unknot). The following theorem is proved in
[HNT90] for the case of K ′ = U , we adapt their proofs for our somewhat more general formulas.
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Figure 2. An H(n)-move can be realized by n− 1 H(2)-moves, i.e. by attaching
n− 1 noncoherent bands, as indicated. Pictured here is the case of n = 7.

Theorem 2.6 (Hoste, Nakanishi, Taniyama [HNT90]). Let K,K ′ be a pair of knots and n ≥ 2 an
integer.

(i) An H(n)-move can be realized by an H(n+ 1)-move. In particular

dn(K,K ′) ≥ dn+1(K,K ′).

(ii) limn→∞ dn(K,K ′) = 1.
(iii) If n ≥ 3 then (n− 1)dn(K,K ′) ≥ 2

3d2(K,K ′).

Proof. (i) The fact that an H(n)-move can be realized as an H(n+ 1)-move is shown in Lemma 2
and Figure 10 in [HNT90]. From this the inequality dn(K,K ′) ≥ dn+1(K,K ′) is obvious.

(ii) For K ′ = U this formula is the content of Theorem 6 in [HNT90]. We modify the proof of
the said theorem to obtain the claimed result. Each H(n)-move can be obtained by a sequence of
(n− 1) H(2)-moves, each of which is realized by attaching a noncoherent band as in Figure 2. Let
n ≥ 2 be arbitrary. Since one can pass from a diagram for K to a diagram for K ′ by applying
dn(K,K ′) H(n)-moves, it follows that the diagrams of K and K ′ are related by (n− 1) · dn(K,K ′)
noncoherent band attachments. By sliding bands if necessary, we may assume that all the bands
are disjoint. Furthermore, we may gather the root of each band near one point of the knot K ′ as
in Figure 3. It is now an easy observation that all (n − 1)dn(K,K ′) noncoherent band moves are
realized by a single H((n− 1)dn(K,K ′) + 1)-move (see again Figure 3), showing that

d(n−1)dn(K,K′)+1(K,K ′) = 1.

The proof of Part (ii) of the present theorem follows from this formula and Part (i).

(iii) This formula for K ′ = U is Part (6) of Theorem 7 in [HNT90], and the proof is readily adapted
for our purposes. Let m ≥ 2 be such that dm(K,K ′) = 1 (such an m exists by Part (ii), e.g.
m = (n − 1)dn(K,K ′) + 1 for any n ≥ 2). Then the diagrams of K and K ′ can be related by a
single H(m)-move, and hence also by m − 1 band attachments. Individually, each of these m − 1
band attachments may be component preserving or may change the number of components by one.
In particular, cutting one band either yields another knot or a two-component link. Each band of
the first kind can be removed by a single H(2)-move. Consider then a band of the second variety,
and specifically consider an “inner-most”one, i.e. a band whose roots divide the knot into two
arcs, each of which contains at most one root of any other band. It must be then that there exists
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(a) (b)

K ′ K

Figure 3. If a knot K ′ can be obtained from K by m H(n)-moves, then K ′ can
also be obtained from K by m(n− 1) H(2)-moves, each of which is realized by the
attaching of a noncoherent band. If the roots of the bands are gathered as shown,
the totality of all m(n−1) band moves is accomplished by a single H(m(n−1)+1)-
move, the one inside the dashed oval. Observe that the number of arcs (colored in
red in Figure (a)) inside the dashed oval equals 1 plus the number of bands.

Figure 4. A special pair of bands used to related the diagrams of K and K ′.

a pair of bands as in Figure 4. It is shown in [HNT90], Figure 15, that this pair of bands can
be removed by 3 H(2)-moves. Therefore, we can remove noncoherent bands with either a single
H(2)-move, or we can remove pairs of noncoherent bands with 3 H(2)-moves. Since removing all
m− 1 noncoherent bands changes a diagram for K to one for K ′, we obtain the inequality

3

2
(m− 1) ≥ d2(K,K ′).

The claim now follows since we may pick m = (n− 1)dn(K,K ′) + 1 for any n ≥ 3. �

A direct and important consequence of the preceding theorem is this observation.
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Figure 5. A 4-fold connected sum of T (3, 2) with itself, can be unknotted by the
single H(5)-move indicated in the dashed oval. A generalization of this picutre
shows that the connected sum #n−1T (2, k) for any odd k and n ≥ 2, can be
unknotted by a single H(n)-move.

Corollary 2.7. The H(n)-Gordian graph KH(n) for n ≥ 3 is quasi-isometric to the H(2)-Gordian
graph KH(2).

2.6. Bounds on dn coming from cyclic branched covers. For a knot L, let Σm(L) denote the
closed 3-manifold obtained as the m-fold cyclic cover of S3 with branching set the knot L. If m = 2
we simply write Σ(L) instead of Σ2(L). Let em(L) denote the minimum number of generators of
H1(Σm(L);Z) and let epm(L) denote the minimum number of generators of H1(Σm(L);Zp) (here
and elsewhere Zp denotes the cyclic group on p elements).

Proposition 2.8. [HNT90, Theorem 4] Let K and K ′ be a pair of knots and let m,n ≥ 2, then

|em(K)− em(K ′)|
(n− 1)(m− 1)

≤ dn(K,K ′).

Proof. The case of K ′ = U is Theorem 4 in [HNT90], and we use its proof as a starting point for the
proof presented here. Suppose a single H(n)-move changes a knot L to a knot L′. Then Σm(L) and
Σm(L′) are related by a surgery on a handlebody of genus (m− 1)(n− 1) (as the m-fold branched
cover of a “thickened disk”containing the loops as in Figure 1 is a handlebody of said genus).
Lemma 3 from [HNT90] shows that in this case the inequality |em(L)− em(L′)| ≤ (m− 1)(n− 1)
holds.

If K ′ is obtained from K by dn(K,K ′) H(n)-moves, with intermediate knots

K = K0 → K1 → · · · → Kdn(K,K′) = K ′,

then

|em(K)− em(K ′)| ≤
dn(K,K

′)∑
i=1

|em(Ki−1)− em(Ki)| ≤ dn(K,K ′)(m− 1)(n− 1),

proving the claim. �
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Recall that the invariants e32(K) and e52(K) are the minimum number of generators of the first
homology of the branched double cover with coefficients in Z/3 and Z/5, respectively. As it turns
out, these invariants are related to certain evaluations of the Jones and Q-polynomials (see [LM86],
[Jon89]). In [AK14], Abe-Kanenobu give criteria for knots to be related by an H(2)-move in terms
of evaluations of these polynomials. This can in turn be rephrased as a lower bound in terms of the
invariants e32(K) and e52(K) as follows:

Proposition 2.9. [AK14, Corollary 5.6, Corollary 5.10] Let K and K ′ be a pair knots. Then

(1) |e32(K)− e32(K ′)| ≤ d2(K,K ′), and

(2) |e52(K)− e52(K ′)| ≤ d2(K,K ′).

2.7. Homology of Brieskorn manifolds. In this section, we review the algorithm for computing
the homology groups of Brieskorn manifolds, following Orlik [Orl72].

For integers w1, w2, w3 > 1,the Brieskorn manifold Σ(w1, w2, w3) is defined as

{(z1, z2, z3) ∈ C3 | zw1
1 + zw1

2 + zw1
3 = 0} ∩ Sε

where Sε is a sphere in C3 centered at 0 and of radius ε > 0 chosen sufficiently small so that the only
singularity contained inside of Sε is at z = 0. Brieskorn manifolds are closed, oriented 3-manifolds,
and by Milnor [Mil75], they can also be obtained as an r-fold cyclic cover of S3 with the branching
set the torus knot or link T (p, q).

To determine both the rank and the torsion subgroup of H1(Σ(w1, w2, w3);Z) we first proceed to
define several sets of numbers following [Orl72] (see also the reference [Ran75]), specialized here to
varieties of only three variables {z1, z2, z3}. For any ordered subset I of {1, 2, 3} let κ(I) be defined
as

κ(I) =
∑
J⊆I

(−1)|J|−|I|
∏
wJ

lcm(wJ)
,

where wJ ⊆ {w1, w2, w3} is the subset corresponding with indexing subset J ⊆ {1, 2, 3}. In the
definition of κ(I) we adopt the convention that Πw∅/lcm(w∅) equals 1. Furthermore, let

κ′(I) =

{
κ(I) when |I| is even, and
0 when |I| is odd.

Next, define inductively on |I| the numbers c(I) as c(∅) = 1 and

c(I) =
gcd({w1, w2, w3} − wI)∏

J⊂I c(J)
.

Lastly, let r = maxI⊆{1,2,3} κ(I), and for j = 1, . . . , r define dj as

dj =
∏

I|κ′(I)≥j>0

c(I).

Proposition 2.10. [Orl72, Propositions 2.6 and 3.4] The rank of H1(Σ(w1, w2, w3);Z) equals
κ({1, 2, 3}) and the torsion subgroup of H1(Σ(w1, w2, w3);Z) is isomorphic to

Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdr .

Lemma 2.11. Let k be an odd natural number, then

H1(Σ(2, k, k);Z) ∼= (Z2)
k−1

.
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Proof. By Proposition 2.10 the rank of H1(Σ(2, k, k);Z) is zero. A direct computation of κ′(I)
shows that

κ′(I) =

 1 I = ∅
k − 1 I = {2, 3}
0 otherwise.

The only values of c(I) appearing in the calculation of the dj are therefore c(∅) = 1 and c({2, 3}) = 2.
Thus r = k − 1 and for all j = 1, . . . , k − 1 we obtain

dj =
∏

κ(I)≥j

c(I) = c(∅) · c({2, 3}) = 2. �

Example 2.12. Consider the Brieskorn manifold Σ(2, 15, 9). Its rank is easily seen to equal zero.
Moreover, κ′(∅) = 1, κ′({2, 3}) = 2 and κ′(I) = 0 otherwise. It follows that r = 2 and dj =
c(∅) · c({2, 3}) = 2 for all j = 1, 2. We conclude that

H1(Σ(2, 15, 9);Z) ∼= (Z2)
2
.

Example 2.13. The rank of Σ(2, 15, 5) is similarly equal zero. Here, κ′(∅) = 1, κ′({2, 3}) = 4 and
κ′(I) = 0 otherwise. It follows that r = 4 and dj = c(∅) · c({2, 3}) = 2 for all j = 1, 2, 3, 4. We
conclude that

H1(Σ(2, 15, 5);Z) ∼= (Z2)
4
.

3. Geodesic Triangles in Knot Graphs

Recall that a metric space is Gromov hyperbolic if it is δ-hypberbolic for at least one δ ≥ 0 (cf.
Definition 2.1). Accordingly, one proves the absence of Gromov hyperbolicity in a metric space
by showing that for every δ ≥ 0 there exists a geodesic triangle that is not δ-thin. We prove
such a statement for the case of the knot graphs KH(n) (Proposition 3.1 in Section 3.1) and the
concordance graph CK

/
(Proposition 3.2 in Section 3.2). These results are then used in Section 5

to prove Theorem 1.1 (see specifically the proof of Theorem 5.1).

3.1. H(n)-Gordian Knot Graphs. Consider any three mutually distinct knots K0,K1,K2. The-
orem 2.6 implies that there exists an n0 ∈ N such that for all n ≥ n0 the equality dn(Ki,Kj) = 1
holds for any pair of distinct indicies i, j ∈ {0, 1, 2}. Accordingly, the knots K0,K1,K2 are the
vertices of a geodesic triangle in KH(n) and this triangle is plainly δ-hyperbolic for all δ ≥ 1/2.
In contrast to this conclusion, we will show that with n ≥ 2 fixed, and for any δ ≥ 0, there exist
geodesic triangles in KH(n) which are not δ-hyperbolic. We begin with the case of n = 2.

For m ∈ N, whose value is to be determined later, consider the vertices given by the unknot U ,
the knot K1 = #mT (2, 9) and the knot K2 = #mT (2, 9)#(#mT (2, 15)) in KH(2). Observe that
each of T (2, 9) and T (2, 15) can be unknotted by a single H(2)-move, and hence d2(U,K1) ≤ m
and d2(U,K2) ≤ 2m. Lower bounds on d2(U,K1) and d2(U,K2) come courtesy of Proposition 2.8.
Indeed, since Σ(T (2, 9)) ∼= L(2, 9) and Σ(T (2, 15)) ∼= L(2, 15), then

H1(Σ(K1);Z) ∼= (Z9)
m

and H1(Σ(K2);Z) ∼= (Z9)
m ⊕ (Z15)

m
.

It follows that e2(K1) = m and e2(K2) = 2m and therefore that d2(U,K1) ≥ m and d2(U,K2) ≥ 2m,
implying that d2(U,K1) = m and d2(U,K2) = 2m. This shows that the path `1 connecting U to
K1 through the edges with vertices #iT (2, 9), i = 1, . . . ,m− 1 is a geodesic path. The same is true
of the path `3 connecting U to K2 via the edges in KH(2) with the vertices

T (2, 15)↔ T (2, 9)#T (2, 15)↔ T (2, 9)#(#2T (2, 15))↔ (#2T (2, 9))#(#2T (2, 15))↔
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· · · ↔ (#m−1T (2, 9))#(#m−1T (2, 15))↔ (#m−1T (2, 9))#(#mT (2, 15)).

By a similar argument, it follows that d2(K1,K2) = m, and the path `2 connecting K1 to K2

passing through the knots (#mT (2, 9))#(#iT (2, 15)), i = 1, . . . ,m− 1, is a geodesic.
Next we shall estimate from below the distance of a particular vertex K3 from the edge `3, to

the union `1 ∪ `2 in the geodesic triangle constructed above.

Claim 1. Assume that m = 2k is even. Set K3 = (#kT (2, 9))#(#kT (2, 15)), and observe that K3

is a vertex on the path `3. Then

d2(K3, `1 ∪ `2) ≥ 3k/4.

Proof. We first prove that d2(K3, `1) ≥ k. Let K = #iT (2, 9) be a vertex on the path `1, then by
Corollary 2.9 we obtain

d2(K3,K) ≥ |e52(K3)− e52(K)| = k.

This concludes that d2(K3, `1) ≥ k.
Now we let K denote a knot on the path `2 of the form (#2kT (2, 9))#(#iT (2, 15)) where i ∈

{0, · · · , 2k}. Consider the 9-fold cyclic covers of S3 with branching sets T (2, 9) and T (2, 15),
respectively. These are the Brieskorn manfolds Σ(2, 9, 9) and Σ(2, 15, 9) respectively, and Lemma
2.11 and Example 2.12 imply that

H1(Σ(2, 9, 9);Z) ∼= (Z2)
8

and H1(Σ(2, 15, 9);Z) ∼= (Z2)
2
.

Applying Corollary 2.9 we obtain

d2(K3,K) ≥ |e9(K)− e9(K3)|
8

=
6k + 2i

8
≥ 3k

4
.

This implies that d2(K3, `2) ≥ 3k/4 and thus that d2(K3, `1 ∪ `2) ≥ 3k/4. Since K3 lies on `3, we
conclude that `3 is not contained in the closed δ-neighborhood of `1 ∪ `2 whenever 3k/4 > δ. �

Given any δ ≥ 0, choose k in the above construction so that 3k/4 > δ, then the geodesic triangle
{`1, `2, `3} is not δ-thin. It follows that KH(2) is not δ-hyperbolic for any δ ≥ 0.

By Corollary 2.7, KH(n) is quasi-isometric to KH(2) for any n > 2. Corollary 2.2 now implies
that KH(n) is also not δ-hyperbolic for any δ ≥ 0. This proves Part (i) of Theorem 5.1.

We conclude this section with an explicit construction of a geodesic triangle in KH(n) that can
be used to disprove its δ-hyperbolicity directly. Indeed, the construction of said triangle proceeds
in analogy with the case n = 2 given above. The needed modifications are replacing T (2, 9) by
#n−1T (2, 9) and replacing T (2, 15) by #n−1T (2, 15). We consider then in KH(n) the vertices

U, K1 = #m(n−1)T (2, 9) and K2 = (#m(n−1)T (2, 9))#(#m(n−1)T (2, 15)).

As before, m ≥ 1 is an integer whose value is to be determined later. Since each of #n−1T (2, 9)
and #n−1T (2, 15) can be unknotted by a single H(n)-move (as in Figure 5), it follows that
dn(U,K1) ≤ m and dn(U,K2) ≤ 2m. An application of Proposition 2.8 shows that dn(U,K1) ≥ m
and dn(U,K2) ≥ 2m, leading to dn(U,K1) = m and dn(U,K2) = 2m. It follows that the path `1
connecting U to K1 by passing through the vertices #i(n−1)T (2, 9), i = 1, . . . ,m − 1 is a geodesic



KNOT GRAPHS AND GROMOV HYPERBOLICITY 13

path in KH(n). The same is true of the path `3 connecting U to K2 by passing through the vertices

#(n−1)T (2, 15)↔ (#(n−1)T (2, 9))#(#(n−1)T (2, 15))

↔ (#(n−1)T (2, 9))#(#2(n−1)T (2, 15))↔ (#2(n−1)T (2, 9))#(#2(n−1)T (2, 15))

↔ · · · ↔ (#(m−1)(n−1)T (2, 9))#(#(m−1)(n−1)T (2, 15))

↔ (#(m−1)(n−1)T (2, 9))#(#m(n−1)T (2, 15)).

Lastly let `2 be the path connecting K1 to K2 via edges in KH(n) with intermediate vertices

(#m(n−1)T (2, 9))#(#i(n−1)T (2, 15)), i = 1, . . . ,m− 1. Clearly dn(K1,K2) ≤ m (to see this use m
H(n)-moves to unknot the m summands of #n−1T (2, 15) in K2) while an application of Proposition
2.8 gives dn(K1,K2) ≥ m. This shows that dn(K1,K2) = m and that `2 is a geodesic path.

As before, let m = 2k with k to be chosen later, and let

K3 = (#k(n−1)T (2, 9))#(#k(n−1)T (2, 15)).

Note that K3 is a vertex on the path `3, and as before we obtain the inequality

dn(K3, `1 ∪ `2) ≥ 3k/4.

If K = #i(n−1)T (2, 9) is any vertex on the path `1, then Proposition 2.8 implies

dn(K3,K) ≥ |e5(K3)− e5(K)|
4(n− 1)

=
|4(n− 1)k − 0|

4(n− 1)
= k.

The above calculation use the facts that Σ5(T (2, 9) ∼= Σ(2, 9, 5) which is an integral homology
sphere, and Σ5(T (2, 15)) ∼= Σ(2, 15, 5). According to Example 2.13 we obtain H1(Σ(2, 15, 5);Z) ∼=
(Z2)4. Thus dn(K3, `1) ≥ k.

Next, we consider dn(K3, `2). Let K be a vertex on the path `2. Then K is of the form
(#2k(n−1)T (2, 9))#(#i(n−1)T (2, 15)) where 0 ≤ i ≤ 2k. Consider again the 9-fold cyclic covers of
S3 with the branching sets T (2, 9) and T (2, 15) as before. Then

dn(K3,K) ≥ |e9(K)− e9(K3)|
8(n− 1)

≥ 6(n− 1)k + 2i(n− 1)

8(n− 1)
≥ 3k

4
.

Given any δ ≥ 0, pick k as large enough so that 3k/4 > δ, then we have constructed a geodesic
triangle {`1, `2, `3} that is not δ-thin. In summary, we proved:

Proposition 3.1. For every n ≥ 2 and every δ ≥ 0 there exists a geodesic triangle in the knot
graph KH(n) that is not δ-thin. Accordingly, KH(n) is not δ-hyperbolic for any δ ≥ 0.

3.2. Concordance Knot Graphs. For simplicity of notation let s′(K) = 1
2s(K), where s(K) is

the Rasmussen invariant of the knot K [Ras10]. We shall still refer to s′ itself as the Rasmussen
invariant. Let τ(K) denote the Ozsváth-Szabó concordance tau invariant [OS03]. Then the distance
function d on CK

/
satisfies the lower bounds

d([K], [K ′]) ≥ |τ(K)− τ(K ′)| and d([K], [K ′]) ≥ |s′(K)− s′(K ′)|,

whenever the knot K and K ′ have diagrams that differ by a single crossing change [OS03], [Ras10].
A result of Hedden–Ording [HO08] stipulates that the knot K0,1 := D+(T (2, 3), 2) (the 2-twisted

positive Whitehead double of the right-handed trefoil knot T (2, 3)) has Ozsváth-Szabó and Ras-
mussen invariants given by

τ(K0,1) = 0 and s′(K0,1) = 1.
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Since all Whitehead doubles of nontrivial knots have unknotting number equal to 1, we obtain
u(K0,1) = 1. Let K1,1 = −T (2, 3) and observe that

τ(K1,1) = −1, s′(K1,1) = 1, and u(K1,1) = 1.

Pick an integer k ∈ N, and form a triangle with edges `1, `2, `3 constructed as follows:

• The edge `1 connects the class of the class of the unknot [U ] to the class of the knot [#kK0,1]
with intermediate vertices given by [#mK0,1], m = 1, , . . . , k − 1. Let L := #kK0,1.

• The edge `2 connects [L] = [#kK0,1] to [L#(#kK1,1)] with intermediate vertices given by
[L#(#mK1,1)], m = 1, , . . . , k − 1.

• The edge `3 connects [U ] to [L#(#kK1,1)] with intermediate vertices given by

[U ]↔ [K1,1]↔ [#2K1,1]↔ [#3K1,1]↔ · · · ↔ [#kK1,1]↔

[#kK1,1]↔ [K0,1#(#kK1,1)]↔ [(#2K0,1)#(#kK1,1)]↔ · · · ↔ [(#kK0,1)#(#kK1,1)].

We first show that all three edges are geodesic paths in CK
/

.
Pick a pair of vertices [#mK0,1] and [#nK0,1] in `1, with m,n ∈ {0, . . . , k}. Then #mK0,1 and

#nK0,1 are related by |m−n| crossing changes, showing that d([#mK0,1], [#nK0,1]) ≤ |m−n|. On
the other hand

d([#mK0,1], [#nK0,1]) ≥ |s′(#mK0,1)− s′(#nK0,1)| = |m− n|,
showing that d([#mK0,1], [#nK0,1]) = |m− n| and thus that `1 is a geodesic edge.

Similarly, pick a pair of vertices [L#(#mK1,1)] and [L#(#nK1,1)] in `2, with m,n ∈ {0, . . . , k}.
Then L#(#mK1,1) and L#(#nK1,1) are related by |m− n| crossing changes, showing that

d([L#(#mK1,1)], [L#(#nK1,1)]) ≤ |m− n|.
On the other hand

d([L#(#mK1,1)], [L#(#nK1,1)]) ≥ |τ(L#(#mK1,1))− τ(L#(#nK1,1))| = |m− n|,
showing that d([L#(#mK1,1)], [L#(#nK1,1)]) = |m− n| and thus that `2 is a geodesic edge.

Lastly, consider two vertices from `3. Since the value of s′ is increasing by exactly 1 as we pass
from the starting vertex [U ] of `3 towards the final vertex [L#(#kK1,1)] of `3, and since every pair
of neighboring vertices in `3 are related by a crossing change, a similar argument applies here too,
showing `1 ∪ `2 ∪ `3 to form a geodesic triangle.

Finally, consider the “midpoint”vertex M = [#kK1,1] on `3. By direct computation we find that

d[M, `1] = min
0≤m≤k

d[M, [#mK0,1]) ≥ min
0≤m≤k

|τ(#kK1,1)− τ(#mK0,1)| = k,

d[M, `2] = min
0≤m≤k

d[M, [L#(#mK1,1)]) ≥ min
0≤m≤k

|τ(#kK1,1)− τ(L#(#mK1,1))| = |k −m|,

d[M, `2] = min
0≤m≤k

d[M, [L#(#mK1,1)]) ≥ min
0≤m≤k

|s′(#kK1,1)− s′(L#(#mK1,1))| = m.

Since m ranges from 0 to k, we find that

d(M, `1) ≥ k and d(M, `2) ≥ k/2.
Given any δ ≥ 0 and picking k > 2δ shows that the geodesic triangle `1 ∪ `2 ∪ `3 in CK

/
is not

δ-thin. We summarize our finding in the next proposition.

Proposition 3.2. For every δ ≥ 0 there exists a geodesic triangle in the concordance knot graph
CK

/
that is not δ-thin. Accordingly, CK

/
is not δ-hyperbolic for any δ ≥ 0.
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This proves the portion of Theorem 1.1 concerning concordance Gordian graphs, and thus com-
pletes the proof of said theorem.

Remark 3.1. We were not able to prove that the concordance knot graphs CKH(n) are not δ-
hyperbolic, even for the base case of n = 2. This is chiefly because we do not know of two
“independent” lower bounds on the metric d on CKH(n), akin to the roles played by τ and s′ for
the case of CK

/
.

4. Quotient Knot Graphs

This section is devoted to the study of quotient knots graphs as introduced in Section 1 and more
precisely defined in Section 2.4 (cf. Definition 2.4). We study two types of quotient knot graphs,
those resulting from the use of a single unknotting operation and a single knot invariant (Section
4.1), and those obtained from a single unknotting operation in combination with two knot invariants
(Section 4.2). Examples 4.2–4.6 provide the isometry types for the quotient graphs QKu

/
, QKγ4H(2),

QKu
/

, QKτ
/

and QKs/2
/

respectively. Example 4.9 determines the isometry class of QK{g4,u}
/

. Each
of these examples is shown to meet the hypotheses of two general results about quotient graphs,
Theorems 4.1 and 4.8.

4.1. Quotients with respect to a single unknotting operation and knot invariant. Let
O be an unknotting operation on knot diagrams, and let I be an integer-valued knot invariant
compatible with O (Definition 2.5). In the next theorem let | · | denote the Euclidean norm on R,
as well as its restrictions to various subsets of R.

Theorem 4.1. Let I be an integer-valued knot invariant with image N, N ∪ {0} or Z, and let O
be an unknotting operation compatible with I. Let QKIO be the associated quotient knot graph and
let d denote its metric. If for every n ∈ Im(I) there exists a knot Kn with I(Kn) = n, and where
Kn and Kn+1 are related by an O-move or its inverse, then the function

I : (QKIO, d)→ (Im(I), | · |)

is an isometry.

Proof. Recall that for a knot K the equivalence class [K]IO consists of all knot K ′ with I(K ′) =
I(K). If [K]IO 6= [K ′]IO are any two vertices in QKIO with d([K]IO, [K

′]IO) = n ≥ 1, let K0, . . . ,Kn

be knots such that a single O-move or its inverse relates Ki to Ki+1, and such that K0 ∈ [K]IO and
Kn ∈ [K ′]IO. Write I(Ki+1) = I(Ki) + εi+1 for some choice of εi+1 ∈ {−1, 0, 1} (which is possible
since O and I have been assumed to be compatible). Then

|I(K ′)− I(K)| = |I(Kn)− I(K0)| = |ε1 + · · ·+ εn| ≤ n = d([K ′]IO, [K]IO).

It follows that

|n−m| = |I(Kn)− I(Km)| ≤ d([Kn]IO, [Km]IO).

On the other hand, since Kn ∈ [Kn]IO and Km ∈ [Km]IO and Kn and Km differ by at most |n−m|
O-moves and/or their inverses, it follows that d([Kn]IO, [Km]IO) ≤ |n−m| and hence

d([Kn]IO, [Km]IO) = |n−m|,

completing the proof of the theorem. �
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Example 4.2. In this example take O to be a crossing change operation, and take I to be the
unknotting number u, and notice that these are compatible in the sense of Definition 2.5. For
n ∈ N ∪ {0} = Im(I), let Kn = T (2n+ 1, 2). Then u(Kn) = n and Kn+1 can be changed into the
knot Kn by a single crossing change. Thus, by Theorem 4.1, there is an isometry between QKu

/

and N ∪ {0}.

Example 4.3. Take O to be a noncoherent band move (an H(2) move), take I to be γ4 (the non-
orientable smooth 4-genus) and for n ∈ N = Im(I), let Kn = T (2n + 2, 2n + 1). Then by [Bat14],
the knots Kn satisfy the assumptions of Theorem 4.1, leading to the isometry QKγ4H(2)

∼= N.

Example 4.4. Taking O to be a crossing change operation /, taking I = g4 and for n ∈ N ∪ {0} =
Im(g4) letting Kn = T (2n + 1, 2) satisfies the assumptions of Theorem 4.1, giving the isometry
QKg4

/

∼= N ∪ {0}.

Example 4.5. Taking O to be a crossing change operation /, taking I = τ (the Ozsváth-Szabó tau
invariant [OS03]) and for n ∈ Z = Im(τ) letting

Kn =

{
T (2n+ 1, 2) , n ≥ 0,
T (2n− 1, 2) , n < 0,

satisfies the assumptions of Theorem 4.1. Thus QKτ
/

is isometric to Z.

Example 4.6. Taking O to be a crossing change operation /, letting I = s′ (half of the Rasmussen
s invariant [Ras10]) and for n ∈ Z = Im(s′) letting

Kn =

{
T (−2n− 1, 2) , n ≥ 0,
T (−2n+ 1, 2) , n < 0,

satisfies the assumptions of Theorem 4.1, proving that the spaces QKs/2
/

and Z are isometric.

Example 4.7. This example illustrates that when picking an unknotting operation O and knot
invariant I that are not compatible in the sense of Definition 2.5, the resulting metric space QKIO
can be very different from what is asserted in Theorem 4.1.

Take O to be the operation of noncoherent band moves (H(2) moves) and let I = g4. Note that
the values of g4 of a pair of knots differing by a single H(2)-move may differ by an arbitrarily large
amount. The vertices of QKg4H(2) can be identified with N∪{0} = Im(g4), under the correspondence

n 7→ [T (2n+1, 2)]g4H(2). For each n ∈ N a single band move renders T (2n+1, 2) unknotted, showing

that

d(n, 0) = 1, ∀n ∈ N,

where d is the induced metric on QKg4H(2).

In particular, d(n,m) ≤ 2 for all n,m ∈ N∪{0}. There is a band move that transforms T (2n+1, 2)
into T (2n− 3, 2) (see for example [LMV19, Figure 2]) showing additionally that

d(n,m) = 1, if |n−m| = 4.

These relations don’t fully pin down the metric space QKg4H(2) but they show that it is not isometric

to a subspace of R.
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4.2. Quotients with respect to a single operation and two knot invariants. Let || · ||1 and
|| · ||∞ denote the `1- and `∞-norms on R2, as well as their restrictions to various subsets of R2.

Theorem 4.8. Let O be an unknotting operation and let I1, I2 be two integer-valued knot invariants
compatible with O. Assume that if (m1, n1) and (m2, n2) both lie in the image of I1×I2, then either

(1) ∪m,n {(m1, n), (m,n2} ⊂ Im(I1 × I2) or ∪m,n {(m,n1), (m2, n} ⊂ Im(I1 × I2),

with both unions taken over integers m between m1 and m2, and integers n between n1 and n2.
Let I = {I1, I2} and let QKI

O be the associated quotient knot graph with metric d. Suppose there
exists a family {Km,n | (m,n) ∈ Im(I1 × I2)} of distinct knots Km,n such that I1(Km,n) = m,
I2(Km,n) = n, and such that

• Km,n and Km,n+1 are related by an O-move or its inverse, whenever (m,n) and (m,n+ 1)
both lie in the image of I1 × I2, and

• Km,n and Km+1,n are related by an O-move or its inverse, whenever (m,n) and (m+ 1, n)
both lie in the image of I1 × I2.

Then the function

I1 × I2 : (QKI
O, d)→ (Im(I1 × I2), | · |1)

is bi-Lipschitz and satisfies the inequality

||(m1, n1), (m2, n2)||∞ ≤ d([Km1,n1
], [Km2,n2

]) ≤ ||(m1, n1), (m2, n2)||1.

Proof. Given a knot K, for simplicity of notation we shall write [K] to mean the equivalence class
[K]IO. The compatibility assumption between O and I implies that

d([K], [K ′]) ≥ |Ij(K)− Ij(K ′)|,

for j = 1, 2 and for any pair of knots K,K ′ related by an O-move or its inverse. From these, in
complete analogy with the proof of Theorem 4.1 (while relying on assumption (1)), one obtains

d([Km,n1
], [Km,n2

]) = |n1 − n2| and d([Km1,n], [Km2,n]) = |m1 −m2|,

whenever (m,n1), (m,n2), (m1, n), (m2, n) lie in the image of I1 × I2. These two equalities show
that there are no O-moves between knots Km,n1 and Km,n2 if |n1 − n2| ≥ 2, and similarly there
are no O-moves between knots Km1,n and Km2,n if |m1 −m2| ≥ 2.

Suppose there is an O-move from Km1,n1
to Km2,n2

for m1 6= m2 and n1 6= n2. Then

1 = d([Km1,n1 ], [Km2,n2 ]) ≥ |I1(Km1,n1)− I1(Km2,n2)| = |m1 −m2|,
1 = d([Km1,n1

], [Km2,n2
]) ≥ |I2(Km1,n1

)− I2(Km2,n2
)| = |n1 − n2|.

We find that the only such O-moves possible are the ones connecting a knot Km,n to the knots
Km±1,n±1 (with both signs chosen arbitrarily). Observe then that the distance d([Km1,n1 ], [Km2,n2 ])
is minimized when all possible O-moves of these types exist. Thus, a lower bound on

d([Km1,n1
], [Km2,n2

])

is given by

|(m1, n1), (m2, n2)|∞ = max{|m1 −m2|, |n1 − n2|} ≤ d([Km1,n1 ], [Km2,n2 ]).

On the other hand, for an arbitrary pair (m1, n1), (m2, n2) ∈ Im(I1 × I2), it is clear that

d([Km1,n1 ], [Km2,n2 ]) ≤ |n1 − n2|+ |m1 −m2| = ||(m1, n1), (m2, n1)||1.
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This claim relies on assumption (1). Indeed, if for instance ∪m,n{(m1, n), (m,n2)} ⊂ Im(I1 × I2)
(with m between m1 and m2 and n between n1 and n2), then there are |n1 − n2| O-moves that
connect Km1,n1

to Km1,n2
, and a further |m1−m2| O-moves that connect the latter knot to Km2,n2

.
A similar argument applies in the case that ∪m,n{(m,n1), (m2, n} ⊂ Im(I1 × I2). �

Example 4.9. Isometry type of QK{g4,u}
/

.

Consider O to be the crossing change operation /, and let I1 = g4 and I2 = u (where u(K) is
the unknotting number of the knot K). Since for any knot K one has the bound g4(K) ≤ u(K), it
follows that the image of g4 × u is a subset of the second octant of Z2. As we shall see, the image
is actually equal to said octant.

Let K0,1 and K1,1 be the knots

K0,1 = 61 = Stevedors knot,

K1,1 = 31 = Trefoil knot.

It is well known and easy to verify that g4(K0,1) = 0, u(K0,1) = 1, g4(K1,1) = 1 = u(K1,1). For
integers 0 ≤ m ≤ n define Km,n as

Km,n = (#n−mK0,1)#(#mK1,1).

In the above #0K denotes the unknot. Observe that

g4(Km,n) = g4((#n−mK0,1)#(#mK1,1))

≤ (n−m)g4(K0,1) +mg4(K1,1)

= m,

and

u(Km,n) = u((#n−mK0,1)#(#mK1,1))

≤ (n−m)u(K0,1) +mu4(K1,1)

= n.

Since
τ(Km,n) = (n−m)τ(K0,1) +mτ(K1,1) = m

and since |τ(K)| ≤ g4(K) for any knot K, it follows that g4(Km,n) = m. Recall that there is a
lower bound for the unknotting number given by the minimal number of generators of H1(Σ(K);Z)
(see [Wen37, page 690] or [Nak81]). That is,

e2(K) ≤ u(K).

For Km,n one finds that

H1(Σ(Km,n);Z) =
(
⊕n−mi=1 H1(L(9, 7);Z)

)
⊕
(
⊕mj=1H1(L(3, 1);Z)

)
= (Z9)n−m ⊕ (Z3)m.

The minimal number of generators for this homology group is n, implying that u(Km,n) = n, and
in particular that

Im(g4 × u) = {(m,n) ∈ Z2 | 0 ≤ m ≤ n}.
This shows that condition (1) from Theorem 4.8 applies in the current setting.

Lastly, the knots Km,n+1 = (#n+1−mK0,1)#(#mK1,1) and Km,n = (#n−mK0,1)#(#mK1,1) are
related by a crossing change that unknots one of the K0,1 summands of Km,n+1. Similarly Km+1,n

is related to Km,n via the crossing change that unknots one of the K1,1 summands of Km+1,n.
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It follows then from Theorem 4.8 that the function

g4 × u : (QKg4,u
/

, d)→ (Im(g4 × u, | · |1)

is bi-Lipschitz, and in particular, (QKg4,u
/

, d) is not δ-hyperbolic for any δ ≥ 0.

5. Hyperbolicity and Homogeneity in Knot Graphs

This section builds on results from previous sections to provide proofs of the main theorems
from the introduction. Specifically, Theorem 1.1 is restated in greater generality in Theorem 5.1,
with Corollary 5.2 completing its proof. Theorem 1.2 is proved in Section 5.3, and Theorem 1.3 is
established in Section 5.3. The final Section 5.4 is devoted to a discussion of homogeneity and links
in knot graphs, and furnishes a proof of Theorem 1.4.

5.1. Proof of Theorem 1.1.

Theorem 5.1. For any δ ≥ 0 there exists a geodesic triangle that is not δ-thin in

(i) The knot graphs KH(n), for all n ≥ 2.
(ii) The concordance graph CK

/
.

(iii) The quotient knot graph QK{g4,u}
/

.

Accordingly, these graphs are not δ-hyperbolic for any δ ≥ 0, and therefore not Gromov hyperbolic.

Proof. Proposition 3.1 from Section 3.1 established that the knot graphs KH(n) for all n ≥ 2 contain
geodesic triangles that are not δ-thin for each δ ≥ 0. It follows that KH(n) is not δ-hyperbolic for
any δ ≥ 0 and any n ≥ 2, proving Part (i).

Similarly, Proposition 3.2 from Section 3.2 established this same result for the concordance graph
CK

/
, thereby proving Part (ii). Part (iii) was established in Example 4.9. �

Corollary 5.2. The knot graph K
/

is not Gromov hyperbolic.

Proof. It suffices to construct a geodesic triangle in K
/

which is not δ-thin for any δ ≥ 0. We
shall reuse here the triangles and notation from Section 3.2. Thus, consider the triangle in K

/
with

vertices the unknot U , #kK0,1, L#(#kK1,1) and edges `1, `2, `3 as in Section 3.2. We first claim
that this is a geodesic triangle in K

/
, just as it was in CK

/
back in Section 3.2. Note that for a

pair of vertices #mK0,1 and #nK0,1 in the edge `1 with m,n ∈ {0, · · · , k},

d
/

(#mK0,1,#
nK0,1) ≤ |m− n|,

where d
/

is the induced metric in K
/

. On the other hand,

d
/

(#mK0,1,#
nK0,1) ≥ d([#mK0,1], [#nK0,1]) ≥ |m− n|

where d is the metric in the concordance graph CK
/

. Hence d
/

(#mK0,1,#
nK0,1) = |m − n|, and

`1 is a geodesic. By using a similar argument, we can prove that `2, `3 are also geodesics and the
geodesic triangle in CK

/
is also a geodesic triangle in K

/
. It is also not hard to see that

d
/

(#kK1,1, `1 ∪ `2) ≥ k/2

by using a similar argument. Hence, K
/

is not δ-hyperbolic for any δ ≥ 0, and therefore not Gromov
hyperbolic. �
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5.2. Proof of Theorem 1.2.

Theorem 5.3. Each of the quotient knot graphs

QKu
/
, QKγ4H(2), QKg4

/
, QKτ

/
, and QKs/2

/
,

is δ-hyperbolic for any δ ≥ 0. Specifically, the first three spaces are isometric to N ∪ {0}, while the
second two are isometric to Z, each equipped with the Euclidean metric.

Theorem 5.3 generalizes Theorem 1.2, and is a direct consequence of Examples 4.2–4.6 respec-
tively, from Section 4.

Remark 5.1. The results presented in Theorems 5.1 and 5.3 stand in stark contrast to one another,
representing opposite extremes on the “δ-hyperbolicity scale”. It would appear that hyperbolicity in
quotient knot graphs emerges only when the set of invariants I used in its construction consists of a
single knot invariant, and when that knot invariant is compatible with all the unknotting operations
in O. Indeed, in such a case we find the resulting quotient knot graph to be quasi-isometric to a
subset of R (cf. Theorem 4.1). In all other cases we find that hyperbolicity is absent from knot
graphs.

Question 5.4. Does there exist a knot graph that is δ-hyperbolic for some, but not all δ > 0?

5.3. Proof of Theorem 1.3. The proof of Theorem 1.3 rests on the observation that there exist
knots whose s′ and τ -invariants differ, something already exploited in Section 3.2. This observation
allows us to construct a vertex in the Gordian knot graph that is of unbounded distance from any
arbitrary connected sum of torus knots. We do so now.

In a proof by contradition of Theorem 1.3, suppose that there exists some universal bound n
such that for all knots K there is a connected sum of some number torus knots T with d(K,T ) ≤ n.
Because both s′ and τ change by either −1, 0 or 1 under a crossing change, the difference r = s′− τ
provides the lower bound 2d(K,K ′) ≥ |r(K)− r(K ′)| on the Gordian distance, while on the other
hand for any connected sum T of torus knots, r(T ) = 0. Let K := #2n+2K0,1. Since τ(K0,1) = 0
and s′(K0,1) = 1, we obtain that 2d(K,T ) ≥ |r(K)− r(T )| ≥ 2n+ 2, and so d(K,T ) > n. Theorem
1.3 follows.

Remark 5.2. In fact, Theorem 1.3 could be stated more generally by replacing the set of connected
sums of torus knots with the larger set consisting of connected sums of knots whose s′ and τ -
invariants agree. Indeed, Feller-Lewark-Lobb define a class of knots called squeezed knots, which
occur as a slice of a minimal-genus cobordism between positive and negative torus knots [FLL21].
Squeezed knots contain torus knots, positive and quasi-positive knots, negative and quasi-negative
knots, alternating and homogeneous knots and is closed under connected sums. Such knots have
the property that their evaluations on different slice-torus invariants are identical, and in particular,
s′ and τ will agree. Any subset of squeezed knots could replace the torus knots in the statement of
Theorem 1.3.

5.4. Homogeneity and Links, and the Proof of Theorem 1.4. Recall that a metric space
(X, d) is homogeneous if for every x, y ∈ X there exists an isometry ψ : X → X with ψ(x) = y, i.e.
if the isometry group of X acts transitively on X. If a metric space (G, d) arises from a graph G
all of whose edges have length 1, let us define the link of a vertex v ∈ V ert(G), denoted `k(v), as
the induced subgraph of G generated by the set

{w ∈ V ert(G) | d(v, w) = 1}.
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Note that v /∈ `k(v) and that for w, u ∈ `k(v), an edge e = {w, u} belongs to `k(v) if and only if
d(w, u) = 1. The diameter of `k(v) is the supremum of {d(w, u) |w, u ∈ V ert(`k(v))}. If (G, d) is
a homogeneous metric space, clearly the links of any pair of vertices are isometric.

Question 5.5. With regards to the above definition, we ask:

(i) In which, if any, knot graphs is the link of the (class of the) unknot connected?
(ii) If the link of the (class of the) unknot is connected, determine if its diameter is finite. If

the diameter is finite, calculate or estimate its value.
(iii) Which, if any, knot graphs from Definition 2.4 are homogeneous?

Some of these questions are inspired by the work [HW15] of Hoffman-Walsh which studies the
Big Dehn Surgery Graph. The vertices of this graph are closed orientable 3-manifolds, and edges
are formed by 3-manifolds related by a Dehn surgery. Hoffman-Walsh prove that the link of S3 is
connected and of finite diameter. In another direction, Nakanishi and Ohyama [NO09] show that
the #-Gordian graph K# is not homogeneous, by utilizing the well understood relation between
the Conway polynomial and pass-moves.

We now state a more detailed version of Theorem 1.4.

Theorem 5.6. Let O = {O1, . . . ,On} be a collection of unknotting operations and let CKO be the
associated concordance graph.

(i) The concordance graph CKO is always homogeneous. Specifically, an isometry of CKO send-
ing a concordance class [K] to a concordance class [K ′] is given by

ψ([L]) = [L#(−K)#K ′],

where −K is the reverse mirror of K.
(ii) The quotient knot graphs QKτ

/
and QKs′

/
are homogeneous.

Proof. Part (ii) of the preceding theorem and the following corollary are direct consequences of
Theorem 5.3.

Let O = {O1, . . . ,On} be a collection of distinct unknotting operations, let CKO be the associated
concordance graph, and let d denote its induced metric. For a fixed pair of knots K,K ′, let
ψK,K′ : CKO → CKO be the function

ψ([L]) = [L#(−K)#K ′],

where −K denotes the reverse mirror of K. Note that ψ([K]) = [K ′] and that ψK,K′ is a bijection
with inverse ψK′,K .

To show that ψK,K′ is an isometry of CKO, let [L] and [L′] be concordance classes with d([L], [L′]) =
1. Without loss of generality we may assume that the knots L and L′ are related by an Oi-move
(or its inverse) for some i ∈ {1, . . . , n}. It follows that the knots L#(−K)#K ′ and L′#(−K)#K ′

are also related by an Oi-move (or its inverse) showing that

d(ψK,K′([L]), ψK,K′([L′]) = d([L#(−K)#K ′], [L′#(−K)#K ′]) = 1.

Iterating this argument one finds that for any pair of concordance classes [L] and [L′] (with arbitrary
d([L], [L′])) the following inequality holds:

d(ψK,K′([L]), ψK,K′([L′])) ≤ d([L], [L′]).

Repeating the argument for (ψK,K′)−1 = ψK′,K one obtains the opposite inequality, showing that
ψK,K′ is an isometry.

�
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Corollary 5.7. The link of the class of the unknot in the quotient knot graphs QKg4
/

, QKu
/

and

QKγ4H(2) is a singleton set. In the quotient knot graphs QKτ
/
QKs/2

/
, the link of the class of the

unknot consists of exactly two points and is disconnected.
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[PRT04] Ana Portilla, José M. Rodŕıguez, and Eva Touŕıs. Gromov hyperbolicity through decomposition of metrics

spaces. II. J. Geom. Anal., 14(1):123–149, 2004.
[Ran75] Richard C. Randell. The homology of generalized Brieskorn manifolds. Topology, 14(4):347–355, 1975.

[Ras10] Jacob Rasmussen. Khovanov homology and the slice genus. Inventiones mathematicae, 182(2):419–447,

2010.
[Wen37] H. Wendt. Die gordische Auflösung von Knoten. Math. Z., 42(1):680–696, 1937.

[ZY18] Kai Zhang and Zhiqing Yang. A note on the Gordian complexes of some local moves on knots. J. Knot

Theory Ramifications, 27(9):1842002, 6, 2018.
[ZYL17] Kai Zhang, Zhiqing Yang, and Fengchun Lei. The H(n)-Gordian complex of knots. J. Knot Theory

Ramifications, 26(13):1750088, 7, 2017.

Department of Mathematics and Statistics, University of Nevada, Reno NV, 89557 USA
Email address: jabuka@unr.edu

School of Mathematics, Georgia Institute of Technology, Atlanta, GA, 30332 USA

Email address: bliu96@gatech.edu

Department of Mathematics & Applied Mathematics, Virginia Commonwealth University, Richmond,

VA 23284, USA
Email address: moorea14@vcu.edu


	1. Introduction
	1.1. Organization

	2. Background Material
	2.1. Geodesic Metric Spaces
	2.2. Graphs as Geodesic Metric Spaces
	2.3. Quasi-isometries and hyperbolicity
	2.4. Knot Graphs
	2.5.  H(n)-moves
	2.6. Bounds on dn coming from cyclic branched covers
	2.7. Homology of Brieskorn manifolds

	3. Geodesic Triangles in Knot Graphs
	3.1.  H(n)-Gordian Knot Graphs
	3.2. Concordance Knot Graphs

	4. Quotient Knot Graphs
	4.1. Quotients with respect to a single unknotting operation and knot invariant
	4.2. Quotients with respect to a single operation and two knot invariants

	5. Hyperbolicity and Homogeneity in Knot Graphs
	5.1. Proof of Theorem 1.1
	5.2. Proof of Theorem 1.2
	5.3. Proof of Theorem 1.3
	5.4. Homogeneity and Links, and the Proof of Theorem 1.4

	Acknowledgements
	References

