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Radiation reaction (RR) is the oldest still-unsolved problem in electrodynamics. In addition to
conceptual difficulties in its theoretical formulation, the requirement of exceedingly large charge
accelerations has thus far prevented its unambiguous experimental identification. Here, we show
how measurable RR effects in a laser-electron interaction can be achieved through the use of flying
focus pulses (FFPs). By allowing the focus to counterpropagate with respect to the pulse phase
velocity, a FFP overcomes the intrinsic limitation of a conventional laser Gaussian pulse (GP) that
limits its focus to a Rayleigh range. For an electron initially also counterpropagating with respect to
the pulse phase velocity, an extended interaction length with the laser peak intensity is achieved in
a FFP. As a result, the same RR deceleration factors are obtained, but at FFP laser powers orders
of magnitude lower than for ultrashort GPs with the same energy. This renders the proposed setup
much more stable than those using GPs and allows for more accurate in situ diagnostics. Using
the Landau-Lifshitz equation of motion, we show numerically and analytically that the capability
of emerging laser systems to deliver focused FFPs will allow for a clear experimental identification
of RR.

Radiation reaction (RR), i.e., the energy and momen-
tum loss of an accelerated charge as it emits radiation,
remains an outstanding issue in the formulation of clas-
sical electrodynamics [1–3]. The classical equation of
motion accounting for RR, the Lorentz-Abraham-Dirac
equation (LAD) [4], suffers from causality issues, run-
away solutions, and/or problems with initial conditions.
The Landau-Lifshitz (LL) equation [1] is free from these
shortcomings, but it is derived from the LAD equation.
Thus, experimentally testing the classical RR equation
is still an outstanding and important problem. Alter-
native classical RR equations, such as the Eliezer-Ford-
O’Connell equation, are indistinguishable at the classical
level from the LL equation, because they differ by terms
smaller than quantum corrections [5–7]. To this day, RR
remains an active area of investigation highlighted by a
number of research [8–23] and review articles published
over the last decade [24–28], as well as in recent experi-
mental efforts to measure the effects of RR on electrons
interacting with aligned crystals [29, 30] and ultrastrong
laser fields [31, 32]. Apart from its fundamental impor-
tance, relating, e.g., to intrinsic properties of elementary
particles like the mass of the electron, RR plays a cru-
cial role in several fields of physics, such as astrophysics,
plasma, and accelerator physics.

Progress in RR research is mainly hindered by the
experimental difficulty of its detection. A number of
experimental facilities, including synchrotrons, wigglers,
and x-ray free electron lasers, employ an external elec-
tromagnetic field to wiggle an electron and produce ra-
diation. However, because the emitted energy is much
smaller than the electron energy, even when accounting
for electron beam coherence effects, the effect of RR on
the electron trajectory is negligible. Furthermore, recent
experiments utilizing high-intensity lasers [31, 32] oper-
ated in a regime where quantum effects “interfered” with

classical RR, complicating their physical interpretation.

The flying focus is a newly developed technique for
controlling the trajectory of peak laser intensity over dis-
tances much longer than the Rayleigh range [33, 34]. In
the original experimental demonstrations, the peak in-
tensity was made to travel at any desired velocity by ad-
justing the chirp and using a chromatic lens to indepen-
dently set the time and location at which each frequency
within the pulse came to focus [33, 34]. More recent im-
plementations have proposed axiparabola-echelon optics
[35] and ‘space-time light sheets’ [36, 37] to achieve the
same effect. Building on this capability, several stud-
ies have illustrated the advantage of flying focus pulses
(FFPs) for a wide range of laser-based applications, in-
cluding ionization waves in plasma [38, 39], photon ac-
celeration [40], laser wakefield acceleration [35], vacuum
electron acceleration [41], and nonlinear Thomson scat-
tering [42].

In the present Letter we show that FFPs lower the
laser power required for significant RR deceleration of
electrons (charge e < 0 and mass m) by orders of mag-
nitude compared to conventional ultrashort Gaussian
pulses (GPs). The high-intensity region of a GP is set
to the Rayleigh range which defines a limited spatial do-
main through which an ultrarelativistic electron quickly
passes. This is especially true for ultrashort GPs, which
have their pulse energy concentrated to a fraction of the
Rayleigh range. In contrast, the peak intensity of a FFP
can move at the speed of light and in the opposite di-
rection of its laser phase velocity (Fig. 1). Thus, an
ultrarelativistic electron traveling in the opposite direc-
tion of the phase fronts can remain in the ‘focus’ of a
FFP for extended interaction times limited only by the
total pulse energy. In order to clearly compare the perfor-
mances of both field configurations, we first analytically
calculate the electron energy loss. Then, we validate the
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FIG. 1. Schematic representation of an ultrarelativistic elec-
tron counterpropagating with respect to a Gaussian beam
(top panel) and to a flying focus beam with focal velocity
equal and opposite to the phase velocity (bottom panel). For
the sake of clarity the laser-pulse envelope is not included (see
the text and SM [43] for details). The axes are not to scale.

FFP results numerically by simulating the electron tra-
jectories using the LL equation for RR [1]. The lower
power and peak intensity required by FFPs minimize the
quantum effects, provide additional control, and improve
diagnostic access to unambiguously identify this elusive
phenomenon in experiments.

It was shown in Ref. [44] that the exact solution
of Maxwell’s equations given in Ref. [45] describes a
monochromatic flying focus beam (FFB) with a fixed fo-
cal velocity vf = −1 = −vp, with vp being the beam
phase velocity (units with ~ = c = ε0 = 1 are used
throughout). Here, we refer to “beams” (GBs/FFBs)
in the infinite, monochromatic case and to “pulses”
(GPs/FFPs) in the finite, time-localized case. We em-
ploy this solution to model the FFBs because (i) it sat-
isfies the vacuum wave equation exactly; (ii) the elec-
tric and magnetic fields can be expressed analytically in
closed form; (iii) its exponential drop-off in the trans-
verse direction assures a finite beam power, which is
important for a direct comparison with GBs. We in-
dicate as Aµ(x) the four-vector potential of either the
FFB or the GB and we work within the Lorenz gauge
∂ ·A = 0. In the FFB case we impose the additional con-
dition A+(x) = A0(x) + Az(x) = 0 [44]. We consider an
expression of the four-vector potential, which is an exact
solution of the vacuum wave equation ∂2Aµ = 0, in the
case of a monochromatic spectral profile (see Ref. [44] for
the case of the Gaussian spectral profile and the Supple-

mental Material (SM) [43]). For a FFB polarized along
the x-axis with a wave-vector pointing in the direction of
the positive z-axis, the independent four-potential com-
ponents are

Ax = A0
σ0

σ(η, η0)
e−r

2/σ2(η,η0) cos[Ψ(0, η, η0)] , (1a)

A0 =
A0

ω0

x

σ2(η, η0)
e−r

2/σ2(η,η0) sin[Ψ(1, η, η0)] . (1b)

Here, we have introduced the four-potential amplitude
A0, the spot radius σ0, the angular frequency ω0 =
2π/λ0, and the laser wavelength λ0 as the main quanti-
ties characterizing the beam. Also, we employ light-cone
coordinates φ = t − z, η = t + z, and r = (x, y), such

that r =
√
x2 + y2 is the distance from the z-axis, and

σ(η, η0) = σ0
√

1 + η2/η20 , η0 = ω0σ
2
0 . This implies that

the focus of the FFB is placed at η = t+ z = 0, i.e., the
focal velocity is −1, opposite to the propagation direc-
tion of the phase fronts. Finally, the phase Ψ(a, η, η0) is
defined as

Ψ(a, η, η0) = ω0φ−
r2

σ2(η, η0)

η

η0
+ (1 + a) arctan

(
η

η0

)
.

(2)
For the GBs we employ the solution within the paraxial

approximation in which the diffraction angle θ = σ0/z0
is the small parameter [46]. Here, z0 = ω0σ

2
0/2 is the

Rayleigh length. We again consider a linearly polarized
field in the x-direction with the wave vector pointing
along the positive z-axis. The solution of the paraxial
equation within the Lorenz gauge and with Az = 0 is
given by

Ax = A0
σ0

σ(z, z0)
e−r

2/σ2(z,z0) cos[Ψ(0, z, z0)] , (3a)

A0 =
A0

ω0

2x

σ2(z, z0)
e−r

2/σ2(z,z0) sin[Ψ(1, z, z0)] , (3b)

which places the stationary focus of the GB at z = 0.
The time-averaged power of the GB going through the

xy-plane can be expressed in the paraxial approximation
as [47]

Pave =
π

4
A2

0ω
2
0σ

2
0 ≈ 21.5 GW

(
ξ0
σ0
λ0

)2

, (4)

where ξ0 = |e|A0/m is the dimensionless normalized am-
plitude, which is related to the laser peak intensity I0 as
I0(W/cm2) = 1.37× 1018ξ20(λ0[µm])−2. The correspond-
ing expression for the FFB is the same (see the SM [43]).
The time-averaged power in both cases is derived under
the assumption that the Rayleigh length is much larger
than the laser wavelength.

In order to transition from monochromatic beams to
pulses of finite energy, we employ a slowly varying enve-
lope g(φ) with a constant flat-top profile (see SM [43]).
We work in an approximation of long pulses and neglect



3

any derivatives of the envelope g(φ). For a total pulse
energy Etot and average power Pave, the pulse length is
given by τ = Etot/Pave. If spatial focusing effects are ig-
nored, i.e., for a plane wave characterized by the envelope
g(φ), and if a pulse counterpropagating with respect to
an ultrarelativistic electron is considered, then the wave-
electron interaction time tint is approximately given by
τ/2.

Since we are going to consider ultrarelativistic elec-
trons at the focus of the laser field, for the sake of
analytical estimations, we assume that the latter can
be locally approximated as a plane wave with the di-
mensionless amplitude ξ(t) given by the field value at
r = 0. Also, in the ultrarelativistic limit the electron en-
ergy loss can be directly computed from the relativistic
Larmor formula PL = −(2/3)mreu̇

2 of the electromag-
netic radiated power [we use the diagonal metric tensor
(+1,−1,−1,−1)]. Here, re = e2/(4πm) is the classical
electron radius and u̇µ is the proper-time derivative of the
four-velocity uµ = (γ,uuu). This corresponds to the energy
loss dγ/dt = (2/3)reu̇

2, where u̇2 = −ξ2(t)(k0 · u)2 in a
plane-wave with four-wave-vector kµ0 = (ω0,k0). For an
ultrarelativistic electron moving in the direction opposite
the wave vector k0, k0 · u ≈ 2ω0γ and φ ≈ 2t along the
electron trajectory. Thus, the differential equation for
the electron gamma factor γ(t) with the initial condition
γ(0) = γ0 has the approximate solution [48]

γ(t) ≈ γ0
1 + κ(t)

, (5)

where κ(t) = 4
3γ0reω

2
0

∫ t
0
g2(t′)ξ2(t′)dt′ represents the de-

celeration factor after a time t and where the integral is
taken over the slowly varying amplitude function ξ(t) and
envelope g(t) to be computed along the electron trajec-
tory at r = 0. For the analytical estimates, we assume
a unit rectangular envelope g(t) = 1 for t ∈ (0, tint) and
zero elsewhere.

In the GP case the amplitude changes as ξ(t) =
ξ0/
√

1 + z2(t)/z20 . We assume the best-case scenario
where the electron interacts with the pulse while moving
through the region of its highest focus. Thus, the elec-
tron trajectory is approximately given by r(t) = 0 and
z(t) = ρz0−t, where r(0) = 0 and z(0) = ρz0 is the initial
electron position, with ρ being a dimensionless parameter
defined according to the following considerations. We set
the “final” electron position at t = tint, i.e., after mov-
ing through the whole focal region at almost the speed of
light, to the value z(tint) = −ρz0 (see the top panel of Fig.
1). Thus tint = 2ρz0, and the parameter ρ gives half of
the number of Rayleigh lengths z0 over which the electron
interacts with a GP with fixed total pulse energy Etot and
average power Pave: ρ = Etot/(4z0Pave). The integral for

κ(t) can be evaluated as
∫ tint
0

ξ2(t′)dt′ = 2ξ20z0 arctan(ρ).
By using Eq. (4) for the average power Pave, the decel-
eration factor κGP after the interaction time tint can be

expressed as

κGP(tint) =
32

3

EtotE0
m2

(
re
σ0

)2
arctan(ρ)

ρ

≈ 2.0
Etot[J] E0(GeV)

σ2
0 [µm]

arctan(ρ)

ρ
,

(6)

where E0 = mγ0 is the initial electron energy. This means
that at fixed pulse energy Etot the deceleration factor is
larger for smaller focal spot sizes σ0 → 0 and smaller
interaction times ρ → 0. Both of these trends require
increasing the pulse amplitude and power to keep the
total pulse energy Etot fixed. This can be seen from the
relation Pave = Etot/2tint ∼ Etot/σ

2
0ρ and, taking into

account Eq. (4), ξ20 ∼ Pave/σ
2
0 ∼ Etot/σ

4
0ρ.

In principle, the deceleration factor can be arbitrarily
large (until the electron stops) but, as we decrease σ0
to about 2λ0, we run into issues with the paraxial ap-
proximation, with the assumptions for deriving Eqs. (4)
and (5), not to mention the difficulties in the experimen-
tal feasibility of such pulses [49]. For a specified total
pulse energy Etot and average power Pave the interaction
parameter ρ is given by

ρ =
1

2ω0σ2
0

Etot

Pave
≈ 2.4× 10−2Etot[J]λ0[µm]

Pave[PW] σ2
0 [µm]

. (7)

The estimate for the deceleration factor κ is then ob-
tained by substituting this expression into Eq. (6).

For the FFP the situation is considerably simpler be-
cause the electron can co-travel with the moving focus
for the duration of the interaction tint (see bottom panel
of Fig. 1). Then, the integrand in κ(t) is constant and∫ tint
0

ξ2(t′)dt′ = ξ20tint. By using the expression of the
power Pave = Etot/2tint and Eq. (4), we obtain the final
deceleration factor

κFFP(tint) =
32

3

EtotE0
m2

(
re
σ0

)2

≈ 2
Etot[J]E0[GeV]

σ2
0 [µm]

. (8)

We note that this result does not depend on Pave. Thus,
one can obtain the same deceleration effect by decreasing
the average power, provided that the interaction time
tint = Etot/2Pave increases accordingly. In other words,
FFPs allow us to decrease the beam power in a trade-off
for a longer interaction time. At fixed total energy and
spot size the scaling with the interaction time is Pave ∝
ξ20 ∝ t−1int . From Eq. (5) we have

ξ20 =
3

16π2

κFFPλ
2
0

tintre

m

E0
≈ 11.5

κFFPλ
2
0[µm]

tint[ps]E0[GeV]
. (9)

Analogously, for fixed Pave the spot size can grow with
interaction time as σ0 ∝

√
tint while keeping the over-

all deceleration constant. This is not possible for GPs
whose interaction with charged particles is limited by the
Rayleigh length [see Eq. (6)].
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FIG. 2. The necessary average power in tint = 100 ps FFPs
vs the average power in GPs for a desired deceleration and
a given pulse energy. The dashed yellow lines correspond
to log10(PFFP/PGP) ∈ {−3,−2,−1, 0}. The solid blue lines
mark the range σ0 ∈ (2, 10) µm for GPs as indicated. The
same boundaries for FFPs are with ρ = 0.5 almost identical.
The plot is cut off at GP σ0 = 2λ0 = 2 µm [see the discussion
above Eq. (7)].

For GPs with a pulse length longer than their Rayleigh
range (ρ > 1), the factor arctan(ρ)/ρ, by which equa-
tions (6) and (8) differ, goes to zero. At fixed total
pulse energy, electrons in FFPs achieve higher deceler-
ations than in GPs by a factor ρ/ arctan(ρ) > 1. In
state-of-the-art high intensity laser systems, the pulses
are already compressed to a very small fraction of the
Rayleigh range around the focus (ρ → 0) [31, 32] and
at the same total energy the FFP improvement is only
marginal (arctan(ρ)/ρ → 1). In this situation, however,
FFPs can achieve the same deceleration for much lower
laser powers by increasing tint. This is crucial for pre-
cision RR experiments where the lower laser power and
intensity provide better control over the interaction en-
vironment and enables in situ diagnostics, e.g., for the
laser intensity, which are unavailable at ultrahigh fields
[31, 32].

In Fig. 2 we show the improvement in necessary av-
erage power in tint = 100 ps FFPs over compressed GPs
with ρ = 0.5. For such ρ the electron interacts with
exactly one Rayleigh range of the GP. Although the de-
celerations for the same energy and spot size are almost
identical in this example, FFPs can achieve the same with
up to a thousand times less power. As the GPs become
longer (ρ > 1), their power requirements also decrease,
but high decelerations are no longer accessible at given
energy due to the limited extent of their focal region. If
we would increase the energy in the GP to keep the de-
celeration constant (at given σ0) it would grow quickly
with ρ as Etot ∝ ρ/ arctan(ρ) but the necessary power
would decrease slowly as PGP ∝ 1/ arctan(ρ).

In order to demonstrate the cumulative nature of RR
deceleration in a FFP, we have numerically solved for the
electron motion using the LL equation [1]

u̇µ = Fµνuν +
2

3
re

[
Ḟµνuν + (δµν − uµuν)FναFαβuβ

]
,

(10)
where Fµν = e(∂µAν − ∂νAµ)/m. The first term alone
(Lorentz force) would not account for particle deceler-
ation and the electron would not undergo net energy
loss. We have ensured numerically that the term propor-
tional to Ḟµν is negligible, see, e.g., also Refs. [50, 51]
and omitted it from the simulations. The focus of FFPs
was successfully propagated in experiments for distances
∼ 0.5 cm (tint ≈ 16 ps) [34]. In our simulations we fixed
the laser wavelength at λ0 = 1 µm and interaction time
tint = 100 ps ≈ 1.884× 105 1/ω0, which can be achieved
by increasing the chirp relative to a tint ≈ 16 ps. The
total pulse energy was set to Etot = 10, 50, and 200
J, corresponding to Pave = 0.05, 0.25, and 1 TW, re-
spectively, and to ξ0 varying in the range 0.19 - 2.7 (see
SM [43]), i.e., peak intensities I0 = 5 × 1016 − 1 × 1019

W/cm2. The initial electron gamma factor was γ0 = 1000
(E0 = 0.511 GeV) and the laboratory time step was set
to dt = 0.01 1/ω0. The quantum nonlinearity parame-

ter χ0 = 5.9 × 10−2 E0[GeV]

√
I0[1020 W/cm

2
] is in the

range 9.5×10−3−6.7×10−4 justifying the classical treat-
ment of RR [25]. Finally, the above-mentioned envelope
function g(φ) was implemented as a smooth, symmetric,
5th-order polynomial rise and fall surrounding a constant
flat-top profile. The tint = 100 ps pulse is sufficiently long
that the envelope can vary slowly compared to η0 and the
pulse still maintains the approximately rectangular shape
(see SM [43]).

Figure 3 demonstrates that the FFP energy loss esti-
mates from Eq. (8) are in an excellent agreement with
the numerical results except for the highest κFFP(tint).
Once the electron is decelerated to γ . 30, the interac-
tion with the pulse becomes more complicated than our
estimates capture. For example, the electron begins to
lag behind the FFP and experiences additional pondero-
motive deceleration [42]. Further, the transverse oscilla-
tions in the field become important and the approxima-
tion k0 · u ≈ 2ω0γ used for deriving Eq. (5) is no longer
valid.

In conclusion, we have shown that FFPs allow one to
reach significant RR deceleration effects with orders of
magnitude lower laser power than ultrashort Gaussian
pulses currently used in experimental attempts to mea-
sure RR. This was achieved by exploiting the cumulative
nature of RR effects and the unique properties of the
FFPs, for which the peak intensity can move in the op-
posite direction of the phase velocity. In contrast to GPs,
which require a high degree of temporal compression to
reach the necessary intensity, a long FFP pulse can be
used, alleviating technological constraints on the optics
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[52] and allowing for in situ diagnostics.

Previous experiments [34] that have demonstrated
FFPs at intensities of 1014 W/cm2, durations of tens
of picoseconds, and spot sizes of σ0 ∼ 10λ0 along with
rapid developments in laser technology indicate that an
experimental demonstration will be realizable in the near
term. In fact, intensities beyond the relativistic thresh-
old (ξ0 = 1) are already envisaged for other applications
[35].

The technology to place an electron beam within the
several micron volume of the focus already exists and
is regularly used in experiments [53–55]. The pondero-
motive force expelling an off-axis electron from the FFP
can be mitigated by starting with higher γ0 or by filtering
electrons to create a highly collimated beam.

Thus, our present results motivate the forthcoming ex-
perimental implementation of FFPs in applications aim-
ing at measuring the dynamics driven by RR, which is
to this day a contentious topic, with initial laser-based
experiments not yet providing a statistically conclusive
observation of RR [31, 32].
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The purpose of this supplemental document is to introduce the flying focus fields used in the
associated Letter and their properties. We show how to construct flying focus beams and pulses
as an exact solution of Maxwell’s equations with arbitrary orbital angular momentum `. Then,
we explicitly evaluate the electric and magnetic fields for the case ` = 0 and construct their field
invariants. We also present a method of computing the power in the beam going through a transverse
plane under the assumption that the phase oscillations of the fields are faster than the rate of change
of the intensity envelope along the longitudinal direction. Finally, we describe our implementation
of the pulse envelope and the simulation parameters.

FLYING FOCUS BEAMS AND PULSES

We follow the solution method of Maxwell’s equations presented in Ref. [1], which was shown to describe flying
focus beams only recently [2], for the case of the focus moving at the speed of light in the opposite direction of the
wave fronts. This model is what we use in the Letter and here we extend the solution to arbitrary angular momenta
of the beam.

We define light-cone coordinates φ = t − z, η = t + z for a wave whose wave fronts move at the speed of light in
the direction of the positive z-axis (we work in units ~ = c = ε0 = 1). In terms of these coordinates, we can write the
electromagnetic field four-potential Aµ in general as

Aµ(η, r, φ) =
1

2

∫
dωÃµ(η, r, ω)e−iωφ + c.c. , (1)

which is a Fourier transformation in the variables ω → φ, and r = (x, y) are the transverse coordinates.
The four-potential components A− and A+ are defined as A− = A0 −Az, A+ = A0 +Az. Thus, the Lorenz gauge

condition ∂ ·A = 0 in the light-cone coordinates becomes

∂φA− +∇⊥ ·A⊥ + ∂ηA+ = 0 , (2)

where ∂φ = (∂0 − ∇z)/2 and ∂η = (∂0 + ∇z)/2. We can set A+ = 0 as additional condition to leave us with two
degrees of freedom of the electromagnetic field. By substituting Eq. (1) into Eq. (2), we obtain for the components

of Ãµ the relationship

Ã− = − i
ω
∇⊥ · Ã⊥ . (3)

The wave equation ∂2Aµ = 0 in light-cone coordinates reads

(4∂φ∂η −∇2
⊥)Aµ = 0 , (4)

which gives us in the frequency domain for the Ã⊥ components the equation

−4iω∂ηÃ⊥ −∇2
⊥Ã⊥ = 0 . (5)

This differential equation has exactly the same form of the paraxial equation for the Gaussian beams differing only
by a factor of two in the first term. Thus, any solution of this type of equation in the context of Gaussian beams
within the paraxial approximation represents here an exact solution of Maxwell’s equations in light-cone coordinates.
In cylindrical coordinates (r, θ, η), with r =

√
x2 + y2 being the distance from the z-axis, we can write

(
∂2r +

1

r
∂r +

1

r2
∂2θ + 4iω∂η

)
Ã⊥ = 0 , (6)

which has the analytical solution [3]

Ãn,`,⊥(η, r, θ, ω) = A0f(ω)
σ0

σ[η, η0(ω)]

{ √
2r

σ[η, η0(ω)]

}`
L`n

{
2r2

σ2[η, η0(ω)]

}
e−r

2/σ2[η,η0(ω)]

× exp

{
i

r2

σ2[η, η0(ω)]

η

η0(ω)
− i`θ − i(2n+ `+ 1) arctan

[
η

η0(ω)

]}
,

(7)
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for arbitrary integer n and real `, where σ[η, η0(ω)] relates to the transversal spot size

σ[η, η0(ω)] = σ0
√

1 + η2/η0(ω)2, η0(ω) = ωσ2
0 (8)

and f(ω) is an arbitrary function which specifies the frequency spectrum. Notice that the Rayleigh length equivalent
η0 differs by a factor of two from the Gaussian beam Rayleigh length z0 = ωσ2

0/2. This is a consequence of the factor
of two difference in the first term of Eq. (5). At equal spot sizes σ0, the Gaussian beams are more confined in the
longitudinal direction than the flying focus solutions. Finally, L`n are the associated Laguerre polynomials

L`0(x) = 1 , (9)

L`1(x) = 1 + `− x , (10)

L`n(x) =
x−`ex

n!

dn

dxn
(e−xxn+`) . (11)

Since increasing n generates higher order polynomials, we can restrict ourselves to the simplest n = 0 case and consider
only the `-dependent solution

Ã`,⊥(η, r, θ, ω) = A0f(ω)
σ0

σ[η, η0(ω)]

{ √
2r

σ[η, η0(ω)]

}`
e−r

2/σ2[η,η0(ω)]

× exp

{
i

r2

σ2[η, η0(ω)]

η

η0(ω)
− i`θ − i(`+ 1) arctan

[
η

η0(ω)

]}
.

(12)

By substituting this solution back into Eq. (1), we obtain the exact solution of Maxwell’s equations

A`,⊥(η, r, θ, φ) =
1

2
A0

∫
dωf(ω)e−iωφ

σ0
σ[η, η0(ω)]

{ √
2r

σ[η, η0(ω)]

}`
e−r

2/σ2[η,η0(ω)]

× exp

{
i

r2

σ2[η, η0(ω)]

η

η0(ω)
− i`θ − i(`+ 1) arctan

[
η

η0(ω)

]}
+ c.c.

(13)

This solution allows us to construct spatio-temporally localized pulses of finite energy by tuning the spectral profile
f(ω). For example, for the Gaussian frequency profile f(ω) = (

√
π/τ) exp[−(ω − ω0)2τ2] and for ω0τ � 1, we obtain

approximately a Gaussian pulse profile proportional to exp(−φ2/τ2) (see [2]). In the limit τ → ∞ the frequency
distribution becomes a delta function

f(ω) = δ(ω − ω0) , (14)

which describes a simple monochromatic beam solution with infinite extent in both time and space. For this frequency
distribution, the integration can be carried out explicitly just by replacing ω → ω0

A`,⊥(η, r, θ, φ) =
1

2
A0

σ0
σ[η, η0(ω0)]

{ √
2r

σ[η, η0(ω0)]

}`
e−r

2/σ2[η,η0(ω0)]

× exp

{
−iω0φ+ i

r2

σ2[η, η0(ω0)]

η

η0(ω0)
− i`θ − i(`+ 1) arctan

[
η

η0(ω)

]}
+ c.c. ,

(15)

which can be evaluated in terms of real functions as

A`,⊥(η, r, θ, φ) = A0
σ0

σ[η, η0(ω0)]

{ √
2r

σ[η, η0(ω0)]

}`
e−r

2/σ2[η,η0(ω0)]

× cos

{
ω0φ−

r2

σ2[η, η0(ω0)]

η

η0(ω0)
+ `θ + (`+ 1) arctan

[
η

η0(ω)

]}
.

(16)

From Eq. (2) we have the following expression for A`,−

A`,−(η, r, θ, φ) = −
∫
dφ∇⊥ ·A`,⊥(η, r, θ, φ) . (17)
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If we assume that the field is linearly polarized along the x-axis, i.e., for A0 = A0x̂, we can evaluate

A`,−(η, r, θ, φ) = −`A0

ω0

1

r

σ0
σ[η, η0(ω0)]

{ √
2r

σ[η, η0(ω0)]

}`
e−r

2/σ2[η,η0(ω0)] sin[Ψ`(1, 0)]

+
A0

ω0

x

σ2[η, η0(ω0)]

{ √
2r

σ[η, η0(ω0)]

}`
e−r

2/σ2[η,η0(ω0)] sin[Ψ`(0, 1)] ,

(18)

where the first term vanishes for ` = 0. The phases which appear in the above solution are defined as

Ψ`(a, b) = ω0φ−
r2

σ2[η, η0(ω0)]

η

η0(ω0)
+ (`− a)θ + (`+ 1 + b) arctan

[
η

η0(ω)

]
. (19)

Since A`,+ = A0
` +Az` = 0 and A`,− = A0

` −Az` we can evaluate the A0
` and Az` components as

A0
` = −Az` =

1

2
A`,− . (20)

Note that for any ` > 1, the four-potential on the z-axis (r = 0) vanishes. The case of ` = 1 is special, because
both electric and magnetic fields have only z-component non-zero on the axis. Thus, for ` = 1 and in the case of an
electron entering such field along the z-axis, the motion becomes effectively one-dimensional and radiation reaction
has very little effect on the electron trajectory (at least according to the Landau-Lifshitz equation).

In the following we will restrict our analysis on ` = 0, discussed in the Letter, and simplify the notation. For brevity
we will denote

σ[η, η0(ω0)]→ ση, η0(ω0)→ η0, Ψ0(0, a)→ Ψ(a) , (21)

i.e., we do not indicate explicitly the dependence on ω0, and we drop the index ` = 0. Note that in the Letter Ψ(a)
is called Ψ(a, η, η0) and ση is called σ(η, η0) to emphasize the dependence on η, η0 when comparing with Gaussian
beams.

ELECTRIC AND MAGNETIC FIELDS (` = 0)

The electric and magnetic fields can be calculated from the four-vector potential components as

E = −∇A0 − ∂A

∂t
, B = ∇×A, (22)

which can be evaluated explicitly knowing the solutions in Eqs. (16) and (18) with ` = 0:

Ex = A0e
−r2/σ2

η (T1 + T2), Bx =
2A0xy

ω0σ0σ3
η

e−r
2/σ2

η sin[Ψ(2)], (23a)

Ey =
2A0xy

ω0σ0σ3
η

e−r
2/σ2

η sin[Ψ(2)], By = A0e
−r2/σ2

η (T1 − T2), (23b)

Ez =
2A0x

σ2
η

e−r
2/σ2

η cos[Ψ(1)], Bz =
2A0y

σ2
η

e−r
2/σ2

η cos[Ψ(1)]. (23c)

The two terms T1 and T2 are given by

T1 =
ω0σ0
ση

sin[Ψ(0)], (24)

T2 = − r2

ω0σ0σ3
η

{
2σ2

0η/η0
σ2
η

cos[Ψ(0)] +

(
1− 2σ2

0η
2/η20
σ2
η

)
sin[Ψ(0)]

}
+

2x2

ω0σ0σ3
η

sin[Ψ(2)]. (25)
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FIG. 1: The invariants E ·B (left) and (E2 −B2)/2 (right) at the focus (η = 0) for σ0 = 5 in arbitrary units. The
field is polarized along the x-direction.

We can also explicitly construct the field invariants. The invariant E ·B is given by

E ·B =
4A2

0σ
2
0

σ6
η

xye−2r
2/σ2

η =
2A2

0σ
2
0

σ6
η

r2 sin(2θ)e−2r
2/σ2

η , (26)

which vanishes whenever either x or y is zero. Similarly, for the invariant (E2 −B2)/2, we have

1

2
(E2 −B2) =

2A2
0σ

2
0

σ6
η

(x2 − y2)e−2r
2/σ2

η =
2A2

0σ
2
0

σ6
η

r2 cos(2θ)e−2r
2/σ2

η , (27)

which is zero whenever |x| = |y|. At the position of the focus η = 0 we have σ(η = 0) = σ0, and both invariants no
longer depend on z and t. In Fig. 1 we plot these invariants at focus. Out of the focus η 6= 0 for either η > 0 or
η < 0), both invariants look qualitatively the same as at the focus, and only the spot size ση increases as the beam
defocuses.

TIME AVERAGES OF THE OSCILLATING FUNCTIONS

The oscillatory parts of the fields obtained above are given by the trigonometric functions of the type

cos[Ψ(a)] = cos

[
ω0φ−

r2

σ2
η

η

η0
+ (1 + a) arctan

(
η

η0

)]
, (28a)

sin[Ψ(a)] = sin

[
ω0φ−

r2

σ2
η

η

η0
+ (1 + a) arctan

(
η

η0

)]
. (28b)

We want to examine how products of these functions behave at some fixed z and perform the time average under the
assumption that the oscillations in φ are much faster than how fast the intensity envelope in η varies, i.e., σ2

0 � λ20/π.
By using the angle addition formulas and the averages

〈cos2(ω0φ)〉z =
1

2
, 〈sin2(ω0φ)〉z =

1

2
, 〈sin(ω0φ) cos(ω0φ)〉z = 0, (29)

over time at some fixed z, the time-averages of the products of interest then become

〈sin[Ψ(a)] cos[Ψ(b)]〉z =
1

2
sin

[
(a− b) arctan

(
η

η0

)]
, (30a)

〈sin[Ψ(a)] sin[Ψ(b)]〉z =
1

2
cos

[
(a− b) arctan

(
η

η0

)]
, (30b)

〈cos[Ψ(a)] cos[Ψ(b)]〉z =
1

2
cos

[
(a− b) arctan

(
η

η0

)]
. (30c)
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As it is clear from these expressions, the slowly-varying time dependence in η = t+ z is still kept. Note that the final
formulas can be evaluated in terms of ση, σ0, η, η0 as

sin

[
arctan

(
η

η0

)]
=
σ0η/η0
ση

, cos

[
arctan

(
η

η0

)]
=
σ0
ση
, (31a)

sin

[
2 arctan

(
η

η0

)]
= 2

σ2
0

σ2
η

η

η0
, cos

[
2 arctan

(
η

η0

)]
=
σ2
0

σ2
η

(
1− η2

η20

)
, (31b)

which can be continued for higher (a− b) values using the angle addition formulas.

POWER IN THE FLYING FOCUS BEAM

The average power flowing through the xy plane at a given z can be calculated as the Poynting vector flux

Pave =

∫
dxdy〈E ×B〉z · ẑ, (32)

where ẑ is the unit vector normal to the xy plane, i.e., ẑ = (0, 0, 1). Therefore, we need to evaluate the quantity

Pave =

∫
dxdy〈ExBy − EyBx〉z. (33)

The second term is easily computed as
∫
dxdy〈EyBx〉z =

∫
dxdy

4A2
0x

2y2

ω2
0σ

2
0σ

6
η

e−2r
2/σ2

η 〈sin2[Ψ(2)]〉z =
π

16ω2
0σ

2
0

A2
0. (34)

The first term reads ∫
dxdy〈ExBy〉z =

∫
dxdyA2

0e
−2r2/σ2

η 〈T 2
1 − T 2

2 〉z. (35)

The first part of this expression proportional to T 2
1 can be again directly evaluated, and the result is

∫
dxdyA2

0e
−2r2/σ2

η 〈T 2
1 〉z =

∫
dxdyA2

0e
−2r2/σ2

η
ω2
0σ

2
0

σ2
η

〈sin2[Ψ(0)]〉z =
π

4
A2

0ω
2
0σ

2
0 . (36)

Finally, the last term is given by
∫
dxdyA2

0e
−2r2/σ2

η 〈T 2
2 〉z (37)

and we need to evaluate the square and the time average of the expression (25). After some algebraic manipulations
and using the formulas (30a-30c) for the time averages, we obtain

〈T 2
2 〉z =

2

ω2
0σ

6
ησ

2
0

(
r4/4 + x4 − r2x2

)
. (38)

Now, we can integrate this expression over the transversal plane:
∫
A2

0e
−2r2/σ2

η 〈T 2
2 〉zdxdy =

π

16ω2
0σ

2
0

A2
0 . (39)

We see that in all of the integrals above the dependence on η drops out, as one would expect, and the result is constant
and finite. Altogether for the power we have

Pave =
π

4
A2

0

(
ω2
0σ

2
0 −

1

2ω2
0σ

2
0

)
≈ π

4
A2

0ω
2
0σ

2
0=̇ 21.5[GW]

(
ξ0
σ0
λ0

)2

, (40)

where ξ0 = |e|A0/m is the dimensionless normalized field amplitude. Consistently with our approximations, the
second term in Eq. (40) can be neglected. In fact, already for σ0 = λ0 the error resulting from omitting this
term is ≈ 0.03%. The full expression shows that with decreasing σ0, the power decreases until it would vanish at
σ0/λ0 = 2−5/4π−1 ≈ 0.14. However, for such small value of σ0, our assumption that the field is oscillating much
faster than the envelope no longer applies, and the result for the average beam power is not valid. Finally, we would
like to point out that the resulting expression is the same as the equivalent expression for the Gaussian beams, with
σ0 being the spot size at focus (see for example [4, 5]).
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τ = 2tint

Lr LrLs

FIG. 2: The g(φ) pulse envelope function. Lr is the length of the ramps and Ls the length of the flattop region.

PULSE ENVELOPE

As we described in the Letter we implemented the pulse envelope g(φ) on the level of a multiplicative factor modi-
fying the fields (23a-23c). In doing so, the fields no longer satisfy the Maxwell equations exactly, but as long as the
derivatives of the function g(φ) are small compared to the derivatives of the fields itself, the error is not large and
is confined to ramp on/off regions. The functional prescription of the function g(φ) is given by 5th order polyno-
mials ensuring smooth transition between the regions where g(φ) = 0 and g(φ) = 1 including the first derivatives.
Specifically, we have

g(φ) =





−10
(
φ
Lr

)3
− 15

(
φ
Lr

)4
− 6

(
φ
Lr

)5
−Lr < φ ≤ 0 ,

1 −Lr − Ls < φ ≤ −Lr ,
10
(
φ+2Lr+Ls

Lr

)3
− 15

(
φ+2Lr+Ls

Lr

)4
+ 6

(
φ+2Lr+Ls

Lr

)5
−2Lr − Ls ≤ φ ≤ −Lr − Ls ,

0 otherwise ,

(41)

where Lr indicates the length of the ramps and Ls is the length of the flattop region. We set the length of the pulse
τ to be equal to τ = Ls + Lr to minimize the effect of the ramps. We refer to Fig. 2 for illustration. The whole
pulse envelope can be also displaced by replacing φ→ φ+ φ0 ensuring the correct timing of the electron interaction
with Gaussian/flying focus pulses. Finally, we chose the length of the ramp Lr to be equal to five Rayleigh ranges
(5η0 for FFPs) consistently for all simulations. This length is arbitrary as long as it is not too short (to violate the
slowly-changing pulse envelope approximation) or too long (to significantly affect the pulse length). We compare
the simulations with analytical estimates assuming rectangular pulse approximation and the results are robust with
respect to ramp length variations.

SIMULATION PARAMETERS

In the numerical simulation examples discussed in the Letter, the flying focus pulses were kept at total energy Etot

= 10, 50, and 200 J. Since the laser wavelength was set to λ0 = 1 µm the interaction time of 100 ps corresponds to
tint = 188, 400 1/ω0 in laser units. This means that the average power is Pave = 0.05, 0.25, and 1 TW respectively.
The time of the free propagation of the electron before encountering the envelope g(φ) was set to tfree = 7.5 1/ω0.
The integration step was chosen to be dt = 0.01 1/ω0 which gives us about 300 steps per one laser wavelength. All
other simulation parameters which are function of the spot size σ0 are summarized in the Table I.

In our simulation examples the pulse length τ = Ls + Lr = 2tint ≈ 376, 8001/ω0 which is many times longer than
the Rayleigh range. The largest Rayleigh range we consider is for σ0/λ0 = 8 when the envelope is stil about 150 times
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pulse geometry ξ0

σ0/λ0 η0(1/ω0) Ls(105 1/ω0) Lr(1/ω0) Etot = 10 J Etot = 50 J Etot = 200 J

2.50 246.7 3.756 1234 0.6100 1.364 2.728

2.75 298.6 3.753 1493 0.5545 1.240 2.480

3.00 355.3 3.750 1777 0.5083 1.137 2.273

3.25 417.0 3.747 2085 0.4692 1.049 2.098

3.50 483.6 3.744 2418 0.4357 0.9743 1.949

3.75 555.2 3.740 2776 0.4067 0.9093 1.819

4.00 631.7 3.736 3158 0.3812 0.8525 1.705

4.25 713.1 3.732 3565 0.3588 0.8023 1.605

4.50 799.4 3.728 3997 0.3389 0.7578 1.516

4.75 890.7 3.723 4454 0.3210 0.7179 1.436

5.00 987.0 3.719 4935 0.3050 0.6820 1.364

5.25 1088 3.714 5441 0.2905 0.6495 1.299

5.50 1194 3.708 5971 0.2773 0.6200 1.240

5.75 1305 3.703 6526 0.2652 0.5930 1.186

6.00 1421 3.697 7106 0.2542 0.5683 1.137

6.25 1542 3.691 7711 0.2440 0.5456 1.091

6.50 1668 3.685 8340 0.2346 0.5246 1.049

6.75 1799 3.678 8994 0.2259 0.5052 1.010

7.00 1934 3.671 9672 0.2179 0.4871 0.9743

7.25 2075 3.664 10380 0.2103 0.4703 0.9407

7.50 2221 3.657 11100 0.2033 0.4547 0.9093

7.75 2371 3.649 11860 0.1968 0.4400 0.8800

8.00 2527 3.642 12630 0.1906 0.4262 0.8525

TABLE I: FFP simulation parameters for Etot =10, 50 and 200 J and interaction time tint = 100 ps ≈ 188, 400 1/ω0

longer. As indicated above, the pulse ramps vary on the Rayleigh range scale as well and at most entail ∼ 3% of the
total pulse length. This justifies the use of rectangular pulse approximation in our analytical estimates.

From the Table I we see that the requirements on the pulse amplitude ξ0 with given parameters lie between 0.2 -
2.7, intensities which are already envisaged for flying focus pulses [6]. From the spot sizes in the first column of Table
I the laser’s f−numbers can be calculated to lie in range f# ∈ (4, 12.5), avoiding micro-focusing regime.
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