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Dynamics of translational and rotational thermalization of AlF molecules
via collisions with cryogenic helium
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We investigated helium-mediated translational and rotational thermalization of the aluminum monofluoride
(AlF) molecule at cryogenic temperatures via an ab initio potential energy surface (PES) and quantum multi-
channel scattering theory. Our examination of the elastic and rotationally inelastic channels revealed that helium
is an efficient quencher of AlF at temperatures relevant to buffer gas cooling experiments (∼1 mK to 10 K). We
also showed that this conclusion is robust against possible inaccuracies of the PES.
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I. INTRODUCTION

The ability to cool gaseous ensembles of molecules to cold
(1 mK to 10 K) and ultracold (�1 mK) temperatures has been
impacting research areas as diverse as testing the standard
model of particle physics [1], quantum-logic spectroscopy
[2–6], action spectroscopy [7–9], chemical reaction dynamics
[10–16], as well as quantum computing [17–19] and quantum
simulation [20,21]. In particular, ultracold polar molecules
afford tunability of interactions, coveted for applications in
quantum information protocols [22,23] and the simulation of
many-body Hamiltonians [24,25].

Ultracold molecules can be produced via direct or indirect
cooling techniques. The indirect techniques rely on photoas-
sociation [26–30] or magnetoassociation [31,32] of a pair of
ultracold atoms and have proved especially successful for gen-
erating bialkali ultracold molecules [33–38]. The yield of the
indirect techniques is limited by the number of available ultra-
cold atoms that serve as precursors of the ultracold molecules.
However, bialkali molecules are prone to undergoing sticky
collisions: these correspond to the formation of an intermedi-
ate complex whose lifetime can be long enough to amount to
a loss of the molecules that are being formed [39–41].

On the other hand, direct cooling techniques are based
on the dissipation of translational—and internal—energy of
preexisting molecules via thermalization with a cryogenic
buffer gas [42], Stark [43] or Zeeman [44,45] slowing of
molecules cooled by a supersonic expansion, and Sisyphus
cooling [46] or, most recently, laser cooling [47–49]. Long
considered impractical if not impossible [10], laser cool-
ing of molecules has led, for the first time, to the creation
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of ultracold molecular ensembles [50–52]. As laser cool-
ing of molecules requires near-unity Franck-Condon factors
between the molecular ground and excited electronic states
[47,53], only a handful of molecules have been laser cooled
so far [52,54–56].

Recently, we identified the aluminum monofluoride (AlF)
molecule as a promising candidate for laser cooling. Its
virtues include a large photon scattering rate and favorable
Franck-Condon factors [57–59]. Moreover, we demonstrated
that AlF molecules can be efficiently produced in a pulsed
buffer-gas source, with a yield of �1012 molecules per stera-
dian per pulse [58]. A high yield of cryogenically thermalized
molecules is a key prerequisite for reaching quantum degener-
acy in a cooling step that follows upon laser cooling, namely,
forced evaporation.

In order to gain insight into the thermalization of AlF
by cryogenic helium, we undertook a study of the quantum
dynamics of the elastic and rotationally inelastic scattering of
AlF by He at collision energies ranging from 1 mK to 10 K.
We made use of an accurate ab initio potential energy surface
(PES) and calculated the relevant scattering observables via
the coupled-channel method. The hyperfine structure of AlF
has been omitted as it is expected to play only a minor role
in the collision dynamics. We also discuss what our findings
about the AlF-He system imply about the thermalization in a
buffer gas of other � diatomic fluoride candidates for laser
cooling, such as MgF and BaF.

We note that following the discovery of its presence in the
envelope of protoplanetary nebulae [60], the AlF molecule
and its spectroscopic properties have been also of astronomi-
cal interest. More recently, the γ -ray emission from 26AlF has
served as a stepping stone to elucidating the Galactic sources
of 26Al [61], which is of consequence for understanding the
frequency of core collapse of supernovae [62].

II. POTENTIAL ENERGY SURFACE

The potential energy surface of the
27Al

19
F(X 1�+)+4He(1S) system was calculated by treating

AlF(X 1�+) like a vibrationless rigid rotor. Thus, the
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FIG. 1. Potential energy surface (PES) of the AlF(X 1�+)–
He(1S) system. The contours show fixed electronic energies in cm−1

of the system as a function of R and θ , whose meaning is defined in
the inset. See, also, the text.

PES only depends on two parameters: the distance R = |R|
between the center of mass of the molecule and the atom,
and the angle θ between R and the internuclear axis r of
the AlF molecule; see the inset in Fig. 1. The PES was
calculated at the spin-restricted open-shell coupled-cluster
level of theory (RCCSD(T)) as implemented in MOLPRO

[63], including single and double excitations with the
triples excitations being treated perturbatively. We used the
standard aug-cc-pv5Z basis set of Dunning [64]. The Al-F
equilibrium distance was fixed to that accurately determined
in a recent experiment [57,65], Re = 1.654 369 Å. The basis
set superpostion error was corrected using the counterpoise
method. A contour plot of the PES is shown in Fig. 1.
Note that the AlF-He attraction is quite weak, as it arises from
the van der Waals interaction between a closed-shell atom and
a closed-shell molecule. The PES exhibits a global minimum
of ∼22 cm−1 close to the F atom, lending it a high anisotropy
characteristic of fluorine-containing heteronuclear molecules
interacting with He [66].

The PES was calculated for 1500 geometries including
20 angles, 18 of which corresponded to the Gauss-Legendre
quadrature points and to θ = 0 and θ = π , and 75 radial
points between 1.6 and 30 Å with a larger density of points
for R between 3 and 5 Å. The global minimum of the PES
was found at θ = π and R = 3.8 Å, in close agreement with
previously reported calculations [67]. The technical details of
calculating the PES will be published elsewhere.

For scattering calculations, it is advantageous to expand the
PES in a Legendre series,

V (R, θ ) =
λmax∑
λ=0

Vλ(R)Pλ(cos θ ), (1)

with Pλ(cos θ ) Legendre polynomials of degree λ and expan-
sion coefficients

Vλ(R) =
(

2λ + 1

2

) ∫ π

0
V (R, θ )Pλ(cos θ ) sin θdθ, (2)

which depend solely on the radial distance R. Note that V0(R)
represents the only isotropic (spherical) contribution to the
PES, whereas all other contributions are anisotropic. The in-
tegral in Eq. (2) was performed using the Gauss-Legendre

FIG. 2. The first five radial terms Vλ(R) of the potential energy
surface of the AlF(X 1�+)-He(1S) system; see text.

quadrature scheme employing 18 quadrature points. The de-
pendence of the first five Vλ(R) terms on R is shown in Fig. 2.
As expected, the most significant radial term is the spherical
one, V0(R). By including radial terms with up to λmax = 12 in
the Legendre series expansion of Eq. (1), we ensured a relative
error of the Legendre expansion of only 0.1% with respect to
the ab initio PES.

For cold and ultracold collisions, the long-range tail of the
PES plays a critical role for evaluating the scattering cross sec-
tions. Therefore, we chose a certain Rmid for each Vλ beyond
which the radial coefficient was replaced by the long-range
dipole-induced dipole interaction,

Vλ(R � Rmid) = Cλ
6

R6
. (3)

The values of Cλ
6 were obtained by fitting the numerical

values from Eq. (2) between Rmid and 30 Å. Additionally, a
polynomial interpolation was used to ensure the continuity of
the potential and its first derivative at Rmid.

III. COLLISION DYNAMICS

In evaluating the quantum dynamics of the AlF+He
collisions, we make use of the framework developed by
Arthurs et al. [68] for rigid rotor-atom collisions, omitting the
hyperfine structure.

A. State-to-state integral cross sections

The state-to-state integral scattering cross section for col-
lisions leading from an initial state j of the rotor to its final
state j′ is given by

σ j→ j′ (Ek ) = 4π

k2(2 j + 1)

∑
Jll ′

(2J + 1)
∣∣T JM

j,l; j′l ′
∣∣2

, (4)
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where Ek is the collision energy, k the wave number of the rel-
ative atom-molecule motion, k2 = 2μEk , with μ the reduced
mass of the atom-molecule system, and T JM

j,l; j′l ′ is the transition
matrix that encapsulates the transition probabilities between
different scattering channels characterized by the rotational
quantum numbers j and j′ and partial waves l and l ′ before
and after the collision. In the absence of external fields, only
those channels ( j, l ) and ( j′, l ′) are coupled that conserve the
total angular momentum J and its projection M on the quan-
tization axis (scattering coordinate R). Note that throughout
this section, we use atomic units.

In the center-of-mass frame, the Hamiltonian of the atom-
molecule system is given by

H = − 1

2μ
∇2

R + l̂2

2μR2
+ V (R, θ ) + Hrot, (5)

where the first term represents the radial kinetic energy opera-
tor along the scattering coordinate R, the second term denotes
the centrifugal term of the kinetic energy operator, V (R, θ )
the atom-molecule PES (cf. Sec. II), and Hrot the rotational
Hamiltonian of the molecule. The last is given by

HrotY
mj

j (r̂) = [B0 j( j + 1) − Dj ( j( j + 1))2]Y mj

j (r̂), (6)

with Y
mj

j (r̂) the spherical harmonics, B0 the rotational con-
stant of the vibrational ground state of the molecule, Dj the
centrifugal distortion constant, j the rotational quantum num-
ber, and mj its projection on the direction of the molecular
axis, r̂ = r

|r| .
The total energy of the rotor is comprised of its kinetic

energy and the internal energy of the fragment [69] it corre-
sponds to:

Ej = Ek + B0 j( j + 1) − Dj[ j( j + 1)]2, (7)

which is an eigenvalue of the Schrödinger equation

H�JM
jl = Ej�

JM
jl . (8)

In the coupled basis, preferable in the absence of external
fields, the eigenfunctions of Eq. (8) are given by

�JM
jl =

∑
j′l ′

gJM
jl, j′l ′ (R)

R
IJM

j′l ′ (r̂, R̂), (9)

with

IJM
jl (r̂, R̂) =

∑
mj ml

CJM
jmj lml

| jm jlml〉 (10)

the angular part of the wave function that entails the coupling
of the molecule-fixed coordinate r̂ to the scattering coordinate
R̂ = R

|R| via the Clebsch-Gordan coefficients CJM
jmj lml

.
By substituting Eq. (9) into Eq. (8), we obtain[

− d2

dR2
+ k2

j′ + l ′(l ′ + 1)

R2

]
gJM

jl, j′l ′ (R)

= 2μ
∑
j′′l ′′

V J
j′′l ′′; j′l ′ (R)gJM

jl, j′′l ′′ (R), (11)

where

k2
j′ = 2μ{Ek + B0 j( j + 1) − Dj[ j( j + 1)]2

− B0 j′( j′ + 1) + Dj[ j′( j′ + 1)]2} (12)

is the wave number squared pertaining to the ( j, j′)
channel, and

V J
j′l ′; jl (R) =

∫∫
IJM∗

j′l ′ (r̂, R̂)V (R, θ )IJM
jl (r̂, R̂)d	r (13)

are the potential matrix elements. By substituting from
Eq. (1), we obtain

V J
j′l ′; jl (R) =

λmax∑
λ

Vλ(R)(−1)J+l ′+l

×
√

(2 j + 1)(2l + 1)(2 j′ + 1)(2l ′ + 1)

×
(

l λ l ′
0 0 0

)(
j λ j′
0 0 0

){
j λ j′
l ′ J l

}
,

(14)

with (·) and {·} the 3j and 6j symbols, respectively. Thus the
simple form of Eq. (14) results by virtue of the Legendre
expansion of the PES, introduced in Sec. II.

The set of coupled differential equations (11) is solved
numerically. In the asymptotic region where the interaction
potential is negligible compared to the collision energy, the
numerical results can be matched to the expected analytic
asymptotic behavior,

gJM
jl, j′l ′ (R → ∞) ∼ δ j j′δll ′ sin

(
k j′R − l ′π

2

)

+eı(k j′ R−l ′π/2)√
k j′

T JM
jl, j′l ′ , (15)

leading to the numerical transition matrix and thus, via Eq. (4),
to the state-to-state cross section.

B. Diffusion and viscosity transport cross sections

The diffusion and viscosity cross sections are defined
by [70]

σD(Ek ) =
∫

dσel(Ek )

d	
(1 − cos θ )d	 (16)

and

ση(Ek ) =
∫

dσel(Ek )

d	
(1 − cos2 θ )d	, (17)

where dσel (Ek )
d	

is the elastic differential cross section, d	 =
2π sin θdθ the solid angle element, and θ the scattering angle.
Quantum mechanically, these cross sections evaluate to [70]

σD(Ek ) = 4π

k2

∞∑
l=0

(l + 1) sin2 [δl+1(Ek ) − δl (Ek )] (18)

and

ση(Ek ) = 4π

k2

∞∑
l=0

(l + 1)(l + 2)

2l + 3
sin2 [δl+2(Ek ) − δl (Ek )],

(19)

respectively, wherein δl (Ek ) is the phase shift for a given
partial wave l and collision energy Ek . The quantum elastic
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scattering cross section expressed in terms of the phase shifts
boils down to

σel(Ek ) = 4π

k2

∞∑
l=0

(2l + 1) sin2 δl . (20)

Classically, the transport cross sections are given by
[71,72]

σ cl
D (Ek ) = 2π

∫ ∞

0
{1 − cos [χ (Ek, b)]}b db, (21)

σ cl
η (Ek ) = 2π

∫ ∞

0

{
1 − cos2 [χ (Ek, b)]

}
b db, (22)

with χ the deflection angle and b the impact parameter:

χ (Ek, b) = π − 2b
∫ ∞

Rc

R−2dR√
1 − V0(R)/Ek − b2/R2

, (23)

where Rc is the distance of closest approach in the collision,
obtained by solving

1 − V0(Rc)/Ek − b2/R2
c = 0. (24)

Integration of χ over all impact parameters then yields σD and
ση, as given above by Eqs. (21) and (22).

The expressions for the transport cross sections can be
thermally averaged, resulting in

σ cl
D (T ) = 1

2(kBT )3

∫ ∞

0
σD(Ek ) exp

[
− Ek

kBT

]
E2

k dEk (25)

and

σ cl
η (T ) = 1

6(kBT )4

∫
ση(Ek ) exp

[
− Ek

kBT

]
E3

k dEk, (26)

with kB the Boltzmann constant and T the temperature. These
thermally averaged cross sections occur in the kinetic theory
of gas transport [72].

IV. COMPUTATIONAL DETAILS

A. Classical cross sections

The classical cross sections were calculated by solving
Eqs. (21) to (24) numerically using PYTHON. Only the spheri-
cal component of the PES, V0(R), was taken into account; cf.
Eqs. (23) and (24).

B. Quantum elastic cross sections

The quantum elastic cross sections were obtained by solv-
ing the single-channel Schrödinger equation using Numerov’s
method. We employed 105 steps between 3.6 a0 and Rmax

(300 a0 for the lowest collision energy and 60 a0 for the
highest) including an appropriate number of partial waves to
guarantee a convergence better than 1%. And, as in the case of
the classical calculations, only the spherical component V0(R)
of the potential was used.

C. Quantum multichannel calculations

Throughout this study, we made use of the spectroscopic
constants summarized in Table III of Ref. [57] (i.e., B0 =
16 488.3548 MHz and D0 = 0.0312 MHz) to calculate the ro-
tational levels of the AlF rotor in its electronic and vibrational

TABLE I. Summary of parameters used for the quantum
coupled-channel calculations. Here, DR denotes the step size for
integration, OTOL and DTOL the off-diagonal and diagonal cross-
section tolerance thresholds for convergence, and NLEVEL the
number of angular momentum quantum levels used to construct the
basis set.

μ (a.m.u.) 3.68207364173

BAlF
0 (cm−1) 0.5499923150168107

DAlF
j (cm−1) 0.000001040719977

Rmin (Å) 1.6
Rmax (Å) 120
DR (Å) 0.008
OTOL (Å2) 0.001
DTOL (Å2) 0.1
NLEVEL 12

ground state. We used the MOLSCAT software package [73]
to perform quantum multichannel scattering calculations of
the rotationally inelastic cross sections based on the coupled-
channel approach of Dalgarno et al. described in Sec. III.
The coupled-channel equations were solved using the log-
derivative method of Manolopoulos [74] between 1.6 and
120 Å with a step size of 0.008 Å. This method is an improved
version of the Johnson’s log-derivative algorithm [75], which
propagates the log-derivative matrix Y (R) = � ′(R)[�(R)]−1

instead of the wave function. The maximum total angular
momentum of the system required to reach convergence is
automatically decided by the code by setting the parameter
JTOTU1 � 999999, and is found not to exceed a maximum
value of 50. In addition, all the multichannel calculations
comprised 12 rotational states with j = 0–11. A summary of
the parameters used for the scattering calculations is given
in Table I.

V. RESULTS AND DISCUSSION

The calculated quantum elastic and transport cross sections
are shown in Fig. 3(a) as functions of collision energy. The
cross sections are seen to exhibit three shape resonances,
which occur at collision energies between 0.5 and 10 K, which
happens to be the energy range relevant for buffer-gas cooling
experiments. At collision energies below 0.1 K, one can see
the emergence of the Wigner threshold behavior. This is con-
sistent with the value of the van der Waals energy [16,28],

EvdW =
(

2h̄6

μ3C0
6

)1/2

, (27)

which, for the AlF+He system, evaluates to EvdW = 0.168 K,
where we made use of the ab initio value of the C0

6 per-
taining to the spherical component V0 of the potential,
C0

6 = −24.6 a.u.

1JTOTU is a software specific keyword (Molscat) that refers to
the upper limit of the total angular momentum required to achieve
convergence based on a given value of the threshold. The built-in
loop over JTOT (total angular momentum) runs from JTOTL to
JTOTU.
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(a)

(b)

FIG. 3. Transport cross sections for AlF in cryogenic helium.
(a) The elastic, diffusion, and viscosity cross sections as functions
of the collision energy; cf. the 0 → 0 elastic cross section in Fig. 5
(thick blue). (b) The temperature-averaged quantum transport cross
sections (full curves) on temperature. The corresponding classical
cross sections are shown by dashed curves.

In the ultracold regime which, for the system considered,
sets in below 100 mK, the diffusion cross section is seen
to converge to the elastic one, whereas the viscosity cross
section converges to a limit of its own. This behavior is due
to the s-wave scattering that dominates the ultracold collision
regime. For s-wave scattering, the phase shift is related to the
scattering length a via

lim
k→0

δ0(k) → −ka. (28)

By substituting this result into Eqs. (18)–(20), we obtain

lim
k→0

σD(Ek ) → 4πa2,

lim
k→0

ση(Ek ) → 2

3
4πa2,

lim
k→0

σel(Ek ) → 4πa2, (29)

which confirms the numerically found convergence behav-
ior of the diffusion and viscosity cross sections displayed in
Fig. 3(a).

A comparison between the classical and quantum
temperature-averaged transport cross sections is shown in
Fig. 3(b), which reveals that both treatments predict similar
trends in the temperature dependence. For higher temper-
atures, the classical and quantum results are in a better
agreement than at lower temperatures due to the washing out
of contributions from a large number of partial waves. In
the temperature range relevant for buffer-gas cooling exper-
iments, i.e., T � 10 K, the discrepancy between the classical
and quantum mechanical results becomes more significant—
and thus a quantum treatment of the transport cross sections
is desirable.

We have also calculated the classical thermally averaged
diffusion cross section at 20 K in order to compare it with

Bu er gas cell 
regime

p-
w

av
e

d-
w

av
e

f-
w

av
e

g-
w

av
e

h-
w

av
e

FIG. 4. Elastic cross sections and partial wave contributions. The
s-, p-, d-, f-, g-, and h-wave partial contributions explain specific
features of the elastic cross-section curve for the ground state ( j = 0)
of the AlF rigid rotor. The prominent shape resonances around 2.5 K
occur in a buffer-gas cell experiment.

the previously reported results for YbF(2�) in He [76] at that
temperature. It turns out that the diffusion cross section of
AlF in He is 70.13 Å2, which comes quite close to the value
of 79.6 Å2 for YbF in He. This suggests that the transport
cross sections for the two fluoride diatomic molecules could
be independent of either molecular symmetry (2� versus 1�)
or atomic properties (Yb versus Al). However, a more detailed
study of other fluoride diatomic molecules is needed to assess
the relevance of symmetry and atomic properties in order to
come to a definite conclusion.

A molecule injected into a buffer-gas cell also undergoes
relaxation of its internal degrees of freedom, in particular of
molecular rotation. This process, termed rotational quenching,
is driven by rotationally inelastic collisions from a given initial
rotational state. In what follows, we present the results of our
calculations of the rotationally inelastic AlF+ He collisions
that are based on the multichannel coupled-channel approach
described in Sec. III A.

The presence of inelastic channels affects the elastic
cross section via the unitarity of the scattering matrix ([16],
p. 26), leading to a cross-section value significantly differ-
ent from that obtained in a single-channel calculation, as
can be gleaned from Fig. 4. In particular, we find a greater
number of resonances than in the elastic cross section; cf.
Fig. 3(a). In addition, the resonances are often less distinct
than in the single-channel elastic case because of their mutual
proximity. These additional resonances come about for two
main reasons: (1) the availability of more channels and (2)
the anisotropy of the PES. Having more channels increases
the probability of resonances, provided the underlying atom-
molecule interaction couples the channels. After performing
a decomposition of the cross sections into partial waves, we
were able to conclude that barring two resonances at 0.09
and 0.33 K, the s-wave contribution dominates at collision
energies of up to 0.67 K. The remaining partial-wave contribu-
tions account for the first few prominent features of the elastic
cross section. In particular, for collision energies �10 K, the
different partial waves exhibit a rather oscillatory behavior
that is averaged out once the partial waves are summed up
to yield the elastic cross section.
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FIG. 5. Elastic and rotationally inelastic scattering cross sections
for the first three initial rotational states ( j = 0, 1, 2) of the AlF rotor.
For collision energies greater than about 1.7 K, elastic scattering
begins to dominate over all inelastic scattering channels. Note also
the thick gray curve representing the semiclassical elastic scattering
cross section; see text.

In Fig. 5, we show both elastic and inelastic cross sections
for the first three rotational states of AlF ( j = 0, 1, 2) as
functions of collision energy. At low collision energies (the
left-most regime), quantum behavior dominates the dynamics,
leading to a pronounced state-dependent effect on the elastic
and inelastic cross sections. For instance, the elastic cross
section tends to a different scattering length depending on the
rotational state considered. As a point of reference, we add
the semiclassical elastic cross section to the plot (thick gray
curve), given by

σ semicl
el =

(
6π3C0

6 
[7/2]

hvcoll
[4]

)2/5

, (30)

with vcoll = (2Ecoll/μ)1/2. The positions of the resonances
in both the elastic and inelastic cross sections depend sig-
nificantly on the initial and final rotational states. The
rotational-state dependence of the inelastic cross sections fol-
lows in part from energetic considerations (the larger the
energy gap between different initial and final states, the lower
the transition probability). However, additional features of the
system in question need to be included in order to rationalize
its behavior: For instance, the inelastic cross section σ2→0(Ek )
is less than σ1→0(Ek ) because the two processes are driven,
respectively, by the V2(R) and V1(R) components of the po-
tential and |V2(R)| < |V1(R)|, as revealed by our ab initio PES
calculations.

The transport rate constants of a fluid [72] can be obtained
from the transport cross sections introduced in Sec. III B. In
the absence of molecular vibration, the rotational state-to-state
rate constants are given by [80]

k j→ j′ (T ) = 〈σ j→ j′ (Ek )v〉

=
(

8

πμβ3

)1/2∫ ∞

0
σ j→ j′ (Ek ) exp (−Ek/β )EkdEk,

(31)

with β = kBT . The dependence of the state-to-state rate con-
stants on temperature is displayed in Fig. 6 for a temperature
range relevant to buffer-gas cooling. What we see is a large

FIG. 6. Rate constants for elastic (blue curves) and rotationally
inelastic (black curves) processes as functions of temperature. The
elastic rates dominate over the inelastic ones beyond collision ener-
gies in excess of 0.1 K. For a detailed legend, see Fig. 5.

difference between the rates of elastic and inelastic scattering
in the cryogenic buffer gas. Similarly as in the case of the cross
sections, the rate constants for the exchange of the largest
rotational quanta are suppressed. However, the elastic rate
constants are almost independent of the rotational state, which
reflects the average nature of the rate coefficient.

Figure 6 also reveals that the state-to-state rate constants
corresponding to a relaxation of the rotational degrees of
freedom of the molecule are only weakly temperature depen-
dent. A similar behavior has been reported for other 1�-He
collision systems, as summarized in Table II. The more
efficient relaxation of AlF in He can be rationalized by invok-
ing the adiabaticity parameter, ξ = τcoll/τrot ∝ B0/

√
μ, where

τcoll and τrot are, respectively, the collision time and rotational
period of the molecule; see, also, Table I. For ξ � 1, the colli-
sion time exceeds the rotational period and hence the collision
proceeds adiabatically, without changing the rotational state
of the molecule. On the other hand, for ξ 
 1, the collision
process is nonadiabatic, leading to efficient rotational energy
transfer. Therefore, heavier molecules with smaller rotational
constants, such as AlF compared with CO or HF, lead to small
values of ξ and thus a more nonadiabatic behavior (more
facile rotational quenching). Based on the same argument, we
conclude that the MgF-He system will show relaxation rates
similar to those of the AlF-He system, but that BaF-He (also
see Ref. [81]) will exhibit a more efficient quenching due to
BaF’s smaller rotational constant [65].

Given that the inaccuracy of the ab initio quantum chem-
istry calculations exceeds the collision energies of � 100 K

TABLE II. State-to-state rate constants k1→0(T ) in cm3 s−1 for
different 1�+-He scattering systems. The values of the constants for
the HF-He have been taken from Ref. [77], CO-He from Ref. [78],
and ThO-He from Ref. [79].

System T = 4 K T = 5 K T = 10 K

HF-He 5 × 10−12 5 × 10−12 5 × 10−12

CO-He 3.4 × 10−11 3.2 × 10−11

ThO-He 3 × 10−11

AlF-He 8.79 × 10−11 8.4 × 10−11 7.1 × 10−11
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FIG. 7. Sensitivity to shifts in the PES up (↑) or down (↓) by
5%. The density of resonances essentially remains unchanged within
the collision energy regime accessible to buffer-gas experiments. The
inset shows rate coefficients for rotational quenching as a function of
temperature.

that are at play in cryogenic helium cooling, we tested how
sensitive the elastic scattering cross sections are to changes of
the PES. To this end, the PES was either raised or lowered
throughout by 5% and the calculations repeated. The error
thus simulated overestimates the inaccuracies of our method
in the long-range tail of the potential, but may underestimate
them in the short-range region. The simulations are displayed
in Fig. 7, which attests how the positions and the widths of
the resonances are affected. Nevertheless, the density of the
resonances remains unchanged. The simulation also reveals
that in the thermal regime, for energies greater than 10 K,
the cross sections are less sensitive to changes in the PES,
as expected. The inset of Fig. 7 shows the effects of varying
the PES on the state-to-state rate constants, which are seen to
remain qualitatively unaffected.

Finally, we offer a simple estimate of the time taken to
thermalize AlF molecules in a helium buffer gas via a sim-
ple model [82] based on elastic collisions between two hard
spheres. Consider the following differential equation:

dT

dt
= −R(T − Tbg)/κ, (32)

where R is the collision rate, T is the temperature of the
species being cooled, Tbg is the buffer-gas temperature, and
κ = (mAlF + mHe)2/(2mAlFmHe). The collision rate is the
product of the density of the helium atoms, collision cross
section, and the averaged relative speed (which is nearly the
same as the speed of the helium atoms). Assuming that the
starting temperature of the AlF molecule, after ablation of Al
and reaction with a fluoride donor gas, is around 3000 K, and
a helium density of 1015 cm−3 with an average helium atom
speed of 120 m/s, we arrive at a thermalization time (i.e.,

time taken for the AlF molecule to fall within about 30% of
the helium buffer temperature) of 0.13 ms in a helium buffer
gas at 4 K, requiring about 55 collisions. The thermalization
timescale is expected to be reduced by a factor of two for a
buffer gas at around 2 K, depending on the exact location of
the broad shape resonance, the cross-section resonance that
could be higher than the one at 4 K by as much as a factor of
three.

VI. CONCLUSIONS

We undertook a study of the collisions between aluminum
monofluoride (AlF) molecules and helium (He) atoms at col-
lision energies relevant for buffer-gas cooling by cryogenic
helium. Our study, based on an accurate ab initio potential
energy surface and quantum multichannel scattering theory,
revealed high thermalization rates for both translational and
rotational degrees of freedom of the molecule, on the order of
1010 and 1011 cm3 s−1, respectively.

The large anisotropy of the AlF-He PES (due to the pre-
ferred He-F attraction over that between He and Al) and a
small rotational constant of AlF translates into a complex
resonance structure in elastic and rotationally inelastic scat-
tering cross sections. However, at collision energies �10 K,
the quantum effects are found to average out and most of the
scattering observables become independent of the rotational
state of the molecule. Classical calculations of the transport
cross sections are found to be valid up to temperatures of 5 K
with a relative error � 15%.

Although possible inaccuracies of the PES may affect the
positions of the resonances, their density was found to remain
the same. Moreover, we showed that the state-to-state rate
constants are quite robust against inaccuracies of the PES for
temperatures relevant to buffer-gas cell experiments. These
findings confirm AlF as a suitable candidate for efficient sym-
pathetic cooling.

Our results on the AlF-He system are of a more gen-
eral interest. For one, our classical transport cross sections
benchmark the accuracy of such methods for 1� molecule-He
collisions. Furthermore, considering the adiabaticity param-
eter, we estimate that MgF will be quenched as efficiently
as AlF. Finally, owing to its smaller rotational constant, we
expect BaF to be quenched more efficiently than AlF.
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