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ABSTRACT

Carnivorous plants reverse the order we expect in nature: here, animals do not feed on plants, but
plants hunt and feed on animal prey, primarily insects, thereby enabling these plants to survive in
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nutrient-poor environments. In addition to this strategy, some carnivorous plants also form unique

symbiotic relationships with animals other than insects to access nutrients. Other important
interactions of carnivorous plants with insects, such as pollinators and herbivores, have received
far less attention or have been largely neglected. This review describes and summarizes various
ecologically relevant biotic interactions between carnivorous plants and other organisms reported
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in recent studies. In particular, our understanding on how carnivorous plants, for example, handle
the pollinator-prey-conflict or interact with and respond to herbivores is still incomplete.
Strategies and mechanisms on how carnivorous plants address these challenges are presented.
Finally, future directions in carnivorous plant research are proposed.

1. Introduction

Plants have adapted to utilize all available habitats, from tro-
pical to arctic climates, arid to semi-arid zones, damp to
waterlogged areas, and maximum sunshine to full shade.
Therefore, as an adaptation to nutrient-poor environments,
insectivory — or in a broader sense carnivory - may have
evolved in some plants to compensate for shortages in soil
composition (Juniper et al. 1989; Ellison and Adamec
2018a). Catching and digesting prey, mainly insects, by
using specialized traps (Figure 1) is considered as an alter-
nate mechanism for acquiring supplemental nutrients such
as nitrogen, phosphorus, and potassium (Ellison 2006;
Mithofer 2011). Since all carnivorous plants can still fix car-
bon dioxide and absorb inorganic and organic nutrients
from captured prey, they are mixotrophic. The ‘carnivorous
syndrome’ refers to development by changes in anatomical
structure, glandular structure, gene expression, and evol-
utionary characteristics (Pavlovi¢ et al. 2007). About 810 of
the 250,000 flowering plants species are carnivorous, mostly
belonging to Nepenthales and Lamiales (Adamec et al. 2021).
The carnivorous syndrome in plants has developed indepen-
dently in the plant kingdom at least 11 times and can be
found in 13 different plant families including a recently
described new species (Triantha occidentalis; Tofieldiaceae)
(Fleischmann et al. 2018; Lin et al. 2021). Therefore, carni-
vorous plants are a polyphyletic group with distinct features
and prey-capturing abilities.

Charles Darwin was the first one who experimentally
proved the fact of plant carnivory and laid the foundation
for all subsequent research related to this topic in his book
‘Insectivorous Plants’ (Darwin 1875). Darwin described the
traps structures in eight different plant genera (Drosophyl-
lum, Drosera, Dionaea, Aldrovanda, Roridula, Pinguicula,
Utricularia, and Byblis), all being able to catch insects or
other prey. He further described the structure of sticky,

hinged, and suction traps in detail, but also mentioned glid-
ing traps. Darwin noted that pepsin-like enzymes directly
digest the animal proteins (Darwin 1875; also in Hepburn
1922; Hepburn et al. 1927). Francis Darwin (1878) further
concluded that the plant absorbs these nutrients, which con-
tribute to the plant growth and development. In the last 25
years, molecular and all “~omics’ approaches provided deep
insight into the biology, physiology, and evolution of carni-
vorous plants. In particular, intensive work on Darwin’s
‘most wonderful plant of the world,” the Venus flytrap (Dio-
naea muscipula), gained fascinating insights into the molecu-
lar physiology and origin of plant carnivory and contributed
significantly to our understanding of carnivorous syndrome
in this particular plant and also in general (for review, see
Hedrich and Fukushima 2021). In addition, comprehensive
publications recently covered the systematics, evolution,
and (eco)physiology of carnivorous plants (Ellison and Ada-
mec 2018a; Adamec et al. 2021). In this article, I provide an
overview on the various biotic interactions of carnivorous
plants (Figure 2). Besides summarizing their interactions
with prey and addressing the related question whether carni-
vorous plants are predators, I focus, in particular, on the
often neglected interactions with pollinators and herbivores,
emphasizing the signals involved in attraction and defense
responses.

2. What makes a carnivorous plant?

There are several definitions for the term ‘carnivory’ in the
plant kingdom. The basic definition implies that a carnivor-
ous plant has the ability to absorb products of prey decompo-
sition. This is done either directly through the leaves or
through the roots, and increases fitness and seed production
at the same time (Chase et al. 2009). Accordingly, all plants
can be carnivorous to some degree, but only those that can
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Figure 1. Carnivorous plant species with typical traps. (A) Utricularia spec. (bladder-trap); (B) Dionaea muscipula (snap-trap); (C) Genlisea spec. (eel-trap); (D) Drosera
sessifolia (flypaper-trap); (E) Cephalotus follicularis (pitfall-trap); (F) Nepenthes x ventrata (pitfall-trap). (A-E, Copyright ©: A. Fleischmann; F, Copyright ©:

A. Mithofer).

be referred to as ‘true’ carnivores (or holocarnivores) should
have the ability to (1) specifically attract, (2) capture, and (3)
digest prey and utilize the metabolic products for their own
growth (Lloyd 1942; Chase et al. 2009). Recently, Ellison and
Adamec (2018b) have rephrased the definition for holocar-
nivory. They postulated five essential characteristics for the
carnivorous syndrome: (1) capture of prey in specialized
(and attractive) traps, (2) killing, (3) digesting, (4) absorption
of nutrients from the digested prey, and (5) utilizing nutri-
ents for plant growth and development. In holocarnivorous
plants such as Nepenthes and Drosera, endogenous, specific
hydrolytic enzymes can facilitate digestion. Plants that do
not meet all the requirements are to be recognized as holo-
carnivorous, or those that cannot supply the enzymes needed
for digestion are called hemicarnivorous (Ellison and Ada-
mec 2018b; Adamec et al. 2021). Most Heliamphora species
are an example of this, which require the assistance of
microbes living in passive traps, but can absorb the resulting
nutrients itself (Chase et al. 2009). However, these classifi-
cations are not fixed but are very dynamic and depend on
new findings.

Traps and trapping strategies can be divided into active
and passive traps according to their potential of mobility of
the evolved trapping mechanisms (Krdl et al. 2012). Mor-
phological changes or metamorphoses of leaf structures
have produced the different trap types involved in prey
capture (Figure 3) (Fukushima et al. 2015; Dkhar and Par-
eek 2019; Dévila-Lara et al. 2020; Whitewoods et al. 2020).
Interestingly, certain traps are often the result of convergent
evolution, for example, pitcher traps in the families
Nepenthaceae, Cephalotaceae, and Sarraceniaceae (Thoro-
good et al. 2017). Altogether, there are five different trapping
mechanisms, three of which are active, two are passive traps
(Figure 1). An active trap is the one in which accelerated
trapping motion is an integral feature of the trapping pro-
cess; for example, the snap-trap of Dionaea muscipula
(Venus flytrap), the flypaper-traps of Drosera (sundew) and
Pinguicula (butterwort), or the sucking bladder-traps of
Utricularia (bladderwort). In passive traps, accelerated
movement is absent in the trapping mechanism surface

(Pietropaolo and Pietropaolo 2001). The eel-trap of Genlisea
(corkscrew plant) is one example; others are pitfall (pitcher)
traps of Cephalotus follicularis (Albany pitcher plant), Dar-
lingtonia californica (cobra lily), and species of the genera
Sarracenia (trumpet pitchers), Heliamphora (sun pitchers),
and Nepenthes (tropical pitcher plants or monkey cups).
Strikingly, many of the genes triggered in traps after prey
capture and involved in carnivore processes appear to have
evolved or been reassigned from herbivore defense mechan-
isms. Among those are genes encoding various hydrolytic
enzymes involved in prey digestion (for a detailed overview,
Ravee et al. 2018), ion channels, and transporters, as well as
defense-related proteins and biosynthetic enzymes for sig-
naling and defensive compounds. It is now generally
accepted that the plant carnivore syndrome evolved from
plant defense mechanisms, and the tools available to combat
attackers were now used to capture, digest, and exploit prey
(Mithofer 2011; Pavlovi¢ and Saganova 2015; Bemm et al.
2016; Fleischmann et al. 2018; Hedrich and Fukushima
2021).

It is worth to mention that attributes that differentiate
carnivorous plants are also present in plants not considered
to be carnivorous (Porembski and Barthlott 2006), such as
visual and odiferous lures, directional guides, secreting
glands, trapping, absorbing glands, and rapid movement.
For example, some non-carnivorous plants like Arum species
arrest visiting flies within the inflorescence during the male
phase of anthesis, in order to secure pollen export (Broder-
bauer et al. 2013). Some leaves display fast motion in plants
like Mimosa pudica and Desmodium spp (Paudel and
Shrestha 2018). Secreted sticky material (mucilage) can pro-
vide various functions such as modifying soil structures,
attracting microbes, or helping climbing (Galloway et al.
2020). While all the individual characteristics of carnivorous
plants can also be found in other plants, only the organism
that has integrated all these characteristics into one plant is
special: a carnivorous plant whose adapted leaves can attract,
capture, and digest prey as an additional nutrient source to
eventually derive benefit resulting in growth, survival, or
reproduction (Brownlee 2013).
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Figure 2. Scheme of carnivorous plant (sundew, flypaper-trap) and its typical interaction with invertebrates. Created with ‘BioRender.com’.

3. Carnivorous plants - prey interaction

A comprehensive analysis by Ellison and Gotelli (2009), cov-
ering 30 studies on 8 carnivorous genera (46 species)
between 1923 and 2007, suggested that carnivorous plants
are not selective predators concerning prey composition.
The main prey of carnivorous plants are invertebrates, i.e.
arthropods, mainly insects. This holds true, in particular,
for terrestrial carnivorous plants. Due to their aquatic (Utri-
cularia spp) and wet-terrestrial (Utricularia and Genlisea
spp) lifestyle, these plants also catch, for example, nematodes
and protozoa. Submerge living Utricularia catch all kind of
aquatic invertebrates, mainly copepods and water fleas (Cla-
docera) (Ellison and Gotelli 2009; Horstmann et al. 2019),
but anecdotally also small young fish and even tadpoles
(Lloyd 1942) (given that the trap is big enough). A zooplank-
ton prey spectrum can be found for the aquatic Aldrovanda
vesiculosa (Horstmann et al. 2019; Poppinga et al. 2019).
Among terrestrial carnivorous plants, ants and flies domi-
nate captured prey (Figure 4). Pitcher plants

(Nepenthes and Sarracenia) showed the highest proportions
of ants in their diets, while flies (Diptera) dominated in
plants with flypaper traps (Drosera, Pinguicula) (Ellison
and Gotelli 2009). These findings reflect that besides the
trap size, the different morphological trap specializations in
these genera are also prey selection criteria (Darnowski
et al. 2018).

Some pitchers of Nepenthes and Sarracenia are so big that
larger prey, such as frogs, rats, or lizards are found to be par-
tially digested inside the pitcher (Adlassnig et al. 2011; Wells
et al. 2011). This phenomenon shows that prey of carnivor-
ous plants is not restricted to invertebrates only. Whether
these catches really contribute regularly to the life style of
carnivorous plants or represent accidents remains to be
solved. It is also worth mentioning that few carnivorous
plants can be seen as herbivores or omnivores. In particular,
N. ampullaria plants possess large pitchers sitting on the
ground with wide openings waiting for leaves and other
organic material falling down, which can be digested
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Figure 3. Metamorphosis of a Nepenthes leaf. Typical foliage leaves (upper), Nepenthes leaf (lower). In italics, the leaf parts developed in Nepenthes as result of

metamorphosis of the typical leaf parts (CC-BY 4.0, S. Zunk).

(Moran et al. 2003; Pavlovi¢ et al. 2011). In addition,
adhesive traps, e.g. from Pinguicula and Drosera, in general,
are suitable not only to capture small animals but also for the
collection of plant-derived organic particles like pollen
grains (Juniper et al. 1989; Adlassnig et al. 2010). However,
most carnivorous plants consume a wide range of prey.
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Figure 4. Prey distribution in selected terrestrial carnivorous plant genera.
Slices of each ‘star’ plot are scaled to the average proportion of each prey
taxon (order except for ants — family Formicidae). Only the 12 most common
prey orders are shown. Color key is given in the lower right. Figure was
modified after Ellison and Gotelli (2009), with permission of the authors.

Generally, in order to capture and digest prey, the plants
face the challenge to attract prey. For aquatic carnivorous
plants, the mode of attraction is unknown. However, for
Genlisea, results of behavioral experiments showed that
prey move to the traps by accident. The plant does not
need special mediators for its attraction (Plachno et al.
2008). Very likely, the same counts for the free-floating Utri-
cularia species, although chemical attractants are discussed
as well (Albert et al. 2010). For carnivorous terrestrial plants,
three main strategies for attracting prey are most likely
important: (i) visual stimuli, (ii) olfactory stimuli, and (iii)
extrafloral nectar (EFN) as a reward. Combinations of
these strategies are also conceivable.

3.1. Visual cues - colors

Visual signals seem to be important in the attraction of diur-
nal prey. It is obvious that the traps of many carnivorous
plants (Droseraceae, Nepenthaceae, and Sarraceniaceae)
have an intensive red color, due to the presence of anthocya-
nins (Davila-Lara et al. 2021b). Red coloration increases cap-
ture efficiency of Nepenthes traps by providing attractive
visual signals, i.e. the rates of caught insects positively corre-
late with levels of red pigmentation (Schaefer and Ruxton
2008). Thus, red color may directly enhance the trap
efficiency or indirectly provide a useful background for bet-
ter recognition. However, the relative importance of visual
cues has been a pivotal point of debate. While Schaefer and
Ruxton (2008) considered red coloration of pitcher plant
traps serving as an attractant, Bennett and Ellison (2009)
questioned the conclusion. Instead, they suggested that the
pitcher color patterns do not provide important signals for



prey attraction but EFN. In addition, for Drosera rotundifo-
lia, it was demonstrated that the red trap color was not
involved in prey attraction (Foot et al. 2014). It should be
mentioned here that most insect taxa found as prey are
red-blind or at least cannot perceive all wavelengths that
constitute the color ‘red’ to our human perception (Briscoe
and Chittka 2001). Even if red traps reflect wavelengths in
blue or green-yellow wavelengths (Moran et al. 1999), their
visibility to a red-blind insect would depend on the contrast
against the background of the surrounding green vegetation
(Jurgens et al. 2009). Other studies suggested an impact of
visual cues within the UV light range, which is visible for
insects, rather than within the longer wavelength range
(Joel et al. 1985; Kurup et al. 2013). Thus, to what extent
any trap coloration is involved in prey attraction remains
an open question. Another possible strategy to attract and
guide prey into a trap is realized by the presence of (semi)-
translucent areas in pitcher plants with hooded traps.
Nepenthes aristolochoides has a translucent dome at the
rear of the pitcher (Moran et al. 2012). Other pitcher plants
have spots in the back of the hood tissues, so-called fenestra-
tions, or areoles in case these fenestrations contain a white pig-
ment (Darlingtonia californica and Sarracenia species)
(Schaefer and Ruxton 2014; McGregor et al. 2016). For insects,
these transparent windows mimic exits of the pitchers; how-
ever, they ultimately guide the prey deeper into the trap.

3.2. Olfactory cues - scent

Many carnivorous plants from various taxa are capable of
releasing volatile compounds from trapping leaves. For
example, various Sarracenia species, N. rafflesiana (here the
pitchers from the upper, climbing part), and D. muscipula
emit volatiles mimicking flower or fruit scents (Di Giusto
et al. 2008; Jirgens et al. 2009; Kreuzwieser et al. 2014).
Much lower scent and less compounds are released from Dro-
sera binata and S. purpurea; here, the emitted compounds are
more comparable with typical leaf volatiles (Jiirgens et al.
2009). By using choice assays in the absence of any visual
cue, in N. rafflesiana, the scents of the nectariferous peristome
were particularly attractive to ants and flies, and those of
upper pitchers were more attractive to flies than those of
lower pitchers (Di Giusto et al. 2010). This study supported
the finding of Moran (1996) who found more flying prey in
the upper pitchers than in the lower ones. Unique in the car-
nivorous plant kingdom is the specialization of
N. albomarginata, whose food source is restricted to only
one prey taxon. With a wreath of white feeding hairs (tri-
chomes) directly under the peristome, it attracts exclusively
termites of the subfamily Nasutitermitinae (predominantly
Hospitalitermes spp.), which are virtually blind. The termites
congregate there in massive quantities, consequently fall into
the pitcher and are digested (Merbach et al. 2002). Some
species of carnivorous plants emit a different blend of volatiles
from their flowers and traps to attract, on the one hand, the
prey insect species and, on the other hand, repel pollinators
from the traps (El-Sayed et al. 2016). All these studies support
the role of olfactory cues in the attraction process.

3.3. Extrafloral nectar - a reward

Many insects are attracted by sweet extrafloral nectar, in par-
ticular ants. The presence of nectaries and the production of
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EFN has been shown for almost all carnivorous plant taxa but
the focus of studies was on pitcher plants (Plachno 2007). In
N. bicalcarata, EFN is involved in a very special myrmecophilic
interaction (see subsequently). In S. purpurea, Bennett and
Ellison (2009) demonstrated the attractiveness of EFN for
insects, mainly ants. For some Nepenthes species, it has been
shown that the EFN on the peristome is part of the trapping
mechanism because water droplets spread rapidly and form
homogeneous thin films, which make the peristome extremely
slippery for insects that finally fall into the trap (Bohn and
Federle 2004). The EFN production in carnivorous plants
occurs close to or within the trapping zones; thus, the insects
reaching for the nectar need to enter and remain in a highly
dangerous area. This will definitely increase the probability of
being captured - but not for sure. Therefore, escaped, but EFN-
rewarded, social insects such as ants will tell others in their colony
and many more will return (Bauer et al. 2015). However, it is
unknown how prey finds the EFN, whether just accidently
when passing by or if there is something attractive. Altogether,
with few exceptions, under natural conditions, there is usually
a high variability of prey composition making conclusions
on its specificity for most carnivorous plants difficult.

4. Are carnivorous plants predators?

When talking about carnivory in plants, it is necessary to take
the next step and ask: Are these plants hunting and are they
predators? Ellison (2020) has recently discussed this deeply.
Including different theories and foraging strategies, he con-
cluded that carnivorous plants are predators that do hunt fol-
lowing the sit-and-wait strategy. While active foraging
involves active searching for suitable patches and for prey, car-
nivorous plants remain rooted to a single location and depend
on the abundance and movement of their prey. Since carni-
vorous plants use traps for capturing prey, probably the sit-
and-wait strategy of spiders hunting with spiderwebs is a com-
parable strategy. However, because carnivorous plants sit and
never move, they can be considered as the purest form of sit-
and-wait predators. Thus, they might be comparable to sessile
filter feeders (e.g. barnacles and mussels).

Interestingly, it was suggested that carnivorous plants
may benefit from group foraging, like a wolf pack (Savage
and Miller 2018). Based on a field experiment, the authors
found that larger groups of S. flava caught a greater mass
of prey. However, the rate of all prey per leaf and the number
of individuals from different insect orders were statistically
indistinguishable between groups of different sizes (Savage
and Miller 2018). In contrast, another field observation
suggested that high neighborhood density in Drosera maki-
noi increased both the number of larger prey (>3 mm)
and the captured prey biomass per plant (Tagawa and Wata-
nabe 2021). Here, however, the explanation might be that
more sticky tentacles from different plants are able to catch
and hold stronger and larger insects, preventing prey from
escaping, than a single plant ever could. Thus, the trapping
mode may contribute to the success of group foraging.
Nevertheless, up to now, there is no clear scientific evidence
that carnivorous plants benefit from group foraging.

5. Carnivorous plants and symbiotic interactions

Knowledge of the mechanisms underlying interactions
between carnivorous plants and arthropod prey contributed
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to the notion of evolutionary associations that reveal new
symbiotic relationships. Some carnivorous plants have
unique mutualistic relationships with other organisms that
contribute to or replace prey capture and digestion, such
as (i) digestive mutualism, (ii) coprophagy, and (iii)
myrmecophily. In these cases, carnivorous plants show
general concepts of coevolution. More examples of other,
non-mutualistic relationships will be presented as follows
as well.

5.1. Digestive mutualism

Digestive mutualism represents an alternative strategy of
prey digestion. Here, the help of other organisms is necess-
ary and involved to digest captured prey. Actually, with
respect to the definition mentioned previously, these plants
are hemicarnivorous. This phenotype can be often found in
new-world pitcher plants of the genus Heliamphora and few
Sarracenia species (S. rosea and S. flava) (Jaffe et al. 1992;
Koller-Peroutka et al. 2019). In these cases, the plants pro-
vide a micro-environment in their pitchers which is colo-
nized by micro-organisms such as protozoa, fungi, and
micro-algae, rotifers, and various taxa of arthropods
(Adlassnig et al. 2011). This is possible because the fluid
in these pitchers is highly diluted and similar to water, in
contrast to the old-world pitcher plants (Nepenthes),
where the fluid is acidic and contains antimicrobial com-
pounds and digestive enzymes (Buch et al. 2013). The
inquilines contribute to the digestion with enzyme
secretion, release of nutrients, mechanical break-up and
remove of excessive prey, and even assimilation of nitrogen
(Adlassnig et al. 2011). However, it is difficult to imagine
that within the same genus, some species can secrete diges-
tive enzymes into the pitcher fluid and others cannot.
Maybe, this trait got lost during evolution. Strikingly, the
presence of inquilines is not fully restricted to the new-
world pitcher plants. Also for Nepenthes, there are examples
where crab-spiders (Thomisidae) or dipteran larvae (Culi-
cidae and Phoridae) somehow can inhabit pitchers (Lam
et al. 2017; Lim et al. 2018). The dipteran larvae contribute
to prey digestion, and the crab-spiders catch flies and defe-
cate into the pitcher, thereby providing nutrients for the
plant.

Another example of a mutualistic digestive mechanism is
the interaction between Roridula gorgonias, an endemic
species in South Africa, and the hemipteran bug Pameridea
roridulae (Ellis and Midgley 1996; Anderson and Midgley
2003). These plants catch insects with their sticky tentacles
(flypaper trap) but cannot digest the trapped insects. Instead,
the bug Pameridea roridulae that lives on the plant sucks out
insect juices and later the plant absorbs nutrients from the
bug’s droppings. Strikingly, Pamerida can only live on Rori-
dula species. Due to their special hairy feet, they are able to
walk on the leaves’ surface without being caught. Although
nutrient absorption in Roridula is an indirect process, it is
extremely effective.

Digestive mutualism may be considered as a specialized
adaptation to the carnivorous syndrome because they reduce
the costs of produce digestive enzyme production. However,
this applies more to Roridula than to the new-world pitcher
plants, since in the latter, sometimes large number of inqui-
lines also absorb the released nutrients.

5.2. Coprophagy

The former interaction between Roridula-Pamerida is an
example where the plant gets nutrients from feces. This situ-
ation is also realized in three Nepenthes species, N. lowii,
N. rajah, and N. macrophylla; but here the plants interact
with vertebrates (Clarke et al. 2009; Chin et al. 2010; Green-
wood et al. 2011). Actually, the plants benefit from the nitro-
gen in the feces of small mammals that defecate into the
pitchers. Such an animal is the mountain shrew, Tupaia
montana. The shrews are rewarded with nectar from the
lid of the pitcher. To get there, they sit on the pitcher’s open-
ing and relax while feeding (Clarke et al. 2009). In addition,
rats (Rattus baluensis) have been observed to visit N. rajah
and behave similar (Greenwood et al. 2011). Similarly,
while roosting inside, individuals of the bat species Kerivoula
hardwickii defecate into pitchers of N. hemsleyana (Grafe
et al. 2011; Schoner et al. 2017). In this case, the presence
and employment of a tissue-localized urease enables the
plant to efficiently metabolize the bat-derived nitrogen
because it is mainly provided as urea (Yilamujiang et al.
2017). Hence, the visiting activity of mutualistic mamma-
lians can significantly increase nitrogen content in the carni-
vorous host plants. However, these Nepenthes species
retained the ability to catch and utilize prey.

5.3. Myrmecophily

The only known carnivorous plant that lives in a mutualistic
interaction with an ant species is N. bicalcarata (Clarke and
Kitching 1995). The ant species, Camponotus schmitzi, pro-
vides protection against an herbivorous weevil that feeds
on pitcher buds and gets housing in hollow tendrils called
domatia (Merbach et al. 2007). Ant colonies are small, com-
prising only about 30 individuals. C. schmitzi feed on the
nectar excretions from the pitcher but in addition on car-
casses of N. bicalcarata prey, which they remove from the
fluid in the pitcher. Strikingly, these ants can dive and
swim in the pitcher fluid and, furthermore, they can walk
on the slippery wet peristome surface due to their specialized
arolia (adhesive lobes) on their feet (Bohn 2007). This is
almost impossible for all other known insects that encounter
Nepenthes species. However, if some individuals try to
escape, they are attacked by the C. schmitzi ants and forced
back into the pitcher. This is further facilitated by a cleaning
behavior of the ants. In this process, they remove everything
such as particles and hyphae from the peristome to keep it as
slippery as possible (Thornham et al. 2012). Finally, the ants
remove the caught insects and feed on them before they
dropped the remaining uneaten pieces back into the pitcher
(Bonhomme et al. 2011). In addition, they feed the plant with
feces and their dead bodies (Bazile et al. 2012). In this par-
ticular case, the ant—plant interaction could be a nutritional
mutualism consisting of carnivory and myrmecotrophy.

5.4. Non-mutualistic interactions

Other striking interactions are known as kleptoparasitism.
Larvae of the predatory dipteran hoverfly Toxomerus basalis
(Syrphidae) have been found crawling and living the com-
plete larval stage on the sticky leaves of various Drosera
species in Southeast Brazil. This syrphid obviously feeds on
carcasses trapped by Drosera leaves, showing also a



kleptoparasitic behavior (Fleischmann et al. 2016). In con-
trast to the situation in Roridula—Pamerida relationship,
here the syrphine larvae do not defecate during their feeding
period until they pupate. Thus, no nutrient return to the
plant from larval excretions occurs (Fleischmann et al
2016). Similarly, the relationship between Pinguicula vallis-
neriifolia and the slug Deroceras hilbrandi also shows klepto-
parasitic characteristics (Zamora and Gémez 1996). The slug
feeds on old, dry, and fresh carcasses that were captured by
the plant; in the latter case, the plant is derived of nutrients.
This behavior is possible because the slugs are able to crawl
on the leaves without being trapped. In particular during
summer, the slug spends long time periods on the plant.
Recently, a putative commensalistic interaction between
Nepenthes and birds was described. Bauer et al. (2016)
observed a diverse guild of vertebrates consisting of four sun-
bird species and a tree shrew species visiting pitchers of
Nepenthes for nectar robbing. The vertebrates harvested nec-
tar from the peristome of N. rafflesiana and from the lid of
N. gracilis. Being too big to serve as a prey, these visits
were without any obvious benefit for the plants. This inter-
action is more likely to be considered as a form of commens-
alism, because the loss of nectar from occasional visits does
not seem to affect the plant. However, more research is
necessary in order to get deeper insights into this interaction.

6. Carnivorous plants and pollination

Insects pollinate most carnivorous plant species. That gener-
ates a dilemma between pollination on the one side and prey
capture on the other side, the so-called pollinator-prey-
conflict (PPC) (Zamora 1999; Jiirgens et al. 2012). Interest-
ingly, this obvious conflict is not as relevant as expected.
The reasons are as follows. Actually, the PPC can only
become a dangerous situation for the pollinator insects in
carnivorous taxa with sticky flypaper traps (Drosera,
Pinguicula and Drosophyllum), pitfall traps (Nepenthes,
Heliamphora, Sarracenia, Cephalotus, and Darlingtonia)
and snap-traps (Dionaea). The eel traps of Genlisea and
the suction traps of Utricularia are subterranean or
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submerged, which avoids the PPC. Aldovandra vesiculosa is
obligate autogamous (Cross et al. 2018). For Dionaea musci-
pula, Youngsteadt et al. (2018) recently showed that the
spatial separation of flowers and traps, probably by the
long flower stalk, can help separate pollinators from prey.
This principle of spatial separation can also be found e.g.
in Drosera, Pinguicula, or Sarracenia (Figure 5). In addition,
temporal separation might be another way to reduce PPC.
This can be realized by different seasonal periods for flower-
ing and trap activities, which occurs for example in some
Sarracenia and Pinguicula species (Cross et al. 2018). In
Nepenthes and Heliamphora species, trap activity correlates
with periods of high humidity, which makes the peristome
slippery (Bohn and Federle 2004). This in turn is a time with-
out many flying insects involved in pollination. In addition,
in particular, Nepenthes captures mainly ants as prey while
winged insects act as pollinators (Cross et al. 2018). These
aforementioned examples explain the observation that in pit-
fall traps no obvious pollinator-prey species overlap could be
found, neither in Nepenthes nor in Sarracenia or Heliam-
phora. In addition to the flight ability, the size of the pollinat-
ing insects may often be important. Bees, humblebees, and
moths are involved in pollination, while flies and ants
serve as prey. Of course, bee capture has also been described
for the invasive Africanized honeybees (killer bees) in pitch-
ers of some Heliamphora species in Venezuela, but it remains
the exception. (Fleischmann and McPherson 2010). In carni-
vorous plants with flypaper traps, small dipterans are the
main prey. As reported for Drosophyllum lusitanicum (Bertol
et al. 2015) and various Drosera species, again an overlap of
pollinator and prey taxa is small or even absent (Murza et al.
2006; Anderson 2010; El-Sayed et al. 2016). At least for Pin-
guicula, size matters. The leaves could capture small pollina-
tors, e.g. thrips, but not humblebees. The risk depends on the
size of the pollinators (Zamora 1999). Beyond these findings,
very likely there are additional players involved in pollinator
and prey attraction. Chemical cues such as volatiles (scent)
or floral nectar, as well as visible cues (color), can contribute
and increase the attractiveness of the flower to pollinating
insects and to traps for insect prey (Jirgens et al. 2012).

Figure 5. Flowering carnivorous plants. A: Pinguicula leptoceras (Copyright ©: A. Fleischmann); B: Sarracenia purpurea (Copyright ©: A. Mithofer).
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However, such cues and their specific role still wait for their
identification. As inferred from the low similarity between
insect pollinators and prey in the different taxa of carnivor-
ous plants, the attraction of prey does not seem to be related
to the attraction of pollinators (Jiirgens et al. 2012).

7. Carnivorous plants under insect herbivore
attack

Almost all studies on carnivorous plants focus on the carni-
vorous syndrome. However, plants also face the interaction
with herbivorous insects but herbivory on carnivorous plants
seems rare. In Pinguicula moranensis, more herbivory was
detected in sunny- than in shade-field sites (Suarez-Pifa
et al. 2016). Surprisingly, with respect to the overall perform-
ance, simulated herbivory unraveled a high tolerance to tis-
sue damage in P. moranensis (Ortufio-Mendieta et al.
2021). For the same species, both field and lab experiments
showed that the presence of sticky glandular trichomes,
which are involved in prey capture, also efficiently protect
the plant from herbivory (Alcald et al. 2010). Thus, here
the trichomes have a dual role for the plant and it seems
obvious that an originally defense-related feature was co-
opted during evolution for carnivory. However, it is unlikely
that all putative herbivores are captured and digested. The
genus Pinguicula could be an exception due to its rosette-
like growth habit and the general presence of sticky tri-
chomes. In different Drosera species, sundew plume moth
larvae (Buckleria paludum) were described to live and
develop on the carnivorous plants, feeding on the sticky ten-
tacles, leaf blade, flowers, and fruits or only licking the
secreted mucilage (Eisner and Shepherd 1965; Osaki and
Tagawa 2020). In particular, last instar larvae showed the
licking behavior, very likely to remove sticky mucilage in
order to escape the possibility of being captured (Osaki
and Tagawa 2020). No defensive plant reaction in any of
these interactions have been described so far.

Few studies that investigated the attack of insects on car-
nivorous pitcher plants where lepidopteran herbivory was
described for Sarracenia species are published (Carmickle
and Horner 2019; Lamb and Kalies 2020). One study showed
infestation of N. bicalcarata by a weevil (Alcidodes spec.) but
also protection by Camponotus schmitzi ants that attack this
herbivore (Merbach et al. 2007); in N. gracilis, a higher her-
bivory level for green than for red, anthocyanin-containing
pitchers, was detected (Gilbert et al. 2018). In contrast, for
P. moranensis, such a correlation was not found (Ayestaran
and Alcald 2016). Recently, herbivore treatment with the
generalist lepidopteran moth, Spodoptera littoralis, was
investigated in N. x ventrata and the defense responses
were analyzed (Davila-Lara et al. 2021a). In that study, at
least for N. x ventrata leaves, efficient chemical defenses
against herbivores were identified - on the one hand, the
induced trypsin protease inhibitor activities, which are well
known in plant defense (Mithofer and Boland 2012) and,
on the other hand, the constitutive presence of naphthoqui-
nones such as plumbagin (Figure 6), acting as a phytoantici-
pin. For plumbagin, its anti-feeding and growth-inhibiting
activities were demonstrated (Rahman-Soad et al. 2021;
Davila-Lara et al. 2021a); moreover, naphthoquinones
seem to be widespread among the taxa of carnivorous plants
belonging to the Caryophyllales (Droseraceae, Nepentha-
ceae, and Drosophyllum) (Schlauer et al. 2005; Devi et al.

(@)
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OH O
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R; = H; R, = CH;; ramentaceone

Figure 6. Structure of the naphthoquinone plumbagin, acting as phytoantici-
pin in many carnivorous plants of the order Caryophyllales, and related
derivatives.

2016). Strikingly, in N. x ventrata, only the induction of
the trypsin inhibitor activity was jasmonate-mediated. In
general, these phytohormones are well-known key-players
in the defense regulation against herbivores in plants (Mitho-
fer and Boland 2012; Pavlovi¢ and Mithofer 2019). Both
inducibility of jasmonates and their downstream signaling
pathways in various carnivorous plants, e.g. Drosera capensis
(Nakamura et al. 2013; Mithofer et al. 2014), D. muscipula
(Libiakova et al. 2014; Bemm et al. 2016), and Nepenthes
spp. (Yilamujiang et al. 2016; Davila-Lara et al. 2021a), indi-
cate the presence and a function of typical defense responses
in carnivorous plants. This has been reviewed recently in
depth (Pavlovi¢ and Mithofer 2019).

8. Concluding remarks

After more than 150 years of research on carnivorous plants,
they have not lost their fascination, and ongoing research on
carnivorous plants is yielding many fascinating results. In
addition to the new species discovered each year, novel inter-
actions with other organisms, including vertebrates, are often
examples of unexpected and exciting symbiotic relationships.
For instance, based on similar traits, the genus Nepenthes
exhibits many intriguing ecological specializations related
to nutrient acquisition and seems to be a playground for coe-
volution — but why Nepenthes in particular? What makes this
genus so special and adaptable to new symbiotic inter-
actions? Studies of the genetic and physiological factors
that determine the carnivorous syndrome will provide dee-
per insights into its ecology and evolution, and to address
the question of how did plant carnivory evolve several
times convergently in the plant kingdom, thereby indepen-
dently evolving very similar traits.

However, as shown in this review, these plants should not
be reduced to their carnivorous syndrome. Studies of their
pollination have revealed interesting aspects of the pollina-
tor-prey conflict that is not yet fully understood. Recently,
carnivorous plants and their abilities to defend and repel
insect herbivores, a long-ignored interaction, have been
studied. It is tempting to speculate that many secondary
metabolites involved in plant defense await identification;
not least, because tropical carnivorous plants in particular
are commonly used in traditional medicine. Interactions
with pathogens are also still waiting to be discovered and
studied. Why are only so few known? How could these plants
co-opt molecular tools for defense against pathogens and
herbivores for carnivory? Are carnivorous plants per se better
protected against biotic attackers?

All of these interactions are in a different ecological con-
text, but they interact and influence each other in a common



network that is far from known. Therefore, these plants and
their biotic partners represent very special organisms that are
of particular interest to the entire field of plant biology and
ecology. In the future, interdisciplinary and ‘-omics’
approaches will be able to address such questions and under-
stand all the features of plant carnivory.
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