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On the Potential of Sentinel-2 for Estimating
Gross Primary Production

Daniel E. Pabon-Moreno ™, Mirco Migliavacca, Markus Reichstein, and Miguel D. Mahecha

Abstract— Estimating gross primary production (GPP), the
gross uptake of CO, by vegetation, is a fundamental prerequisite
for understanding and quantifying the terrestrial carbon cycle.
Over the last decade, multiple approaches have been developed
to derive spatiotemporal dynamics of GPP combining in situ
observations and remote sensing data using machine learning
techniques or semiempirical models. However, no high spatial
resolution GPP product exists so far that is derived entirely
from satellite-based remote sensing data. Sentinel-2 satellites
are expected to open new opportunities to analyze ecosystem
processes with spectral bands chosen to study vegetation between
10- and 20-m spatial resolutions with five-day revisit frequency.
Of particular relevance is the availability of red-edge bands that
are suitable for deriving estimates of canopy chlorophyll content
that are expected to be much better than any previous global
mission. Here, we analyzed whether red-edge-based and near-
infrared-based vegetation indices (VIs) or machine learning tech-
niques that consider VlIs, all spectral bands, and their nonlinear
interactions could predict daily GPP derived from 58 eddy covari-
ance sites. Using linear regressions based on classic VIs, including
near-infrared reflectance of vegetation (NIRv), we achieved
prediction powers of Rlzo_fold = 0.51 and an RMSEy_toqa =
2.95 [umol CO, m~2s7!] in a 10-fold cross validation. Chloro-
phyll index red (CIR) and the novel kernel NDVI (kNVDI)
achieved significantly higher prediction powers of around
R120—fold ~ (.61 and RMSE]O—fold ~ 2.57 [pmol COZ m_zs_l].
Using all spectral bands and VIs jointly in a machine learning
prediction framework allowed us to predict GPP with R}, ;. =
0.71 and RMSE y_toq = 2.68 [umol CO, m~2s~!]. Despite the
high-power prediction when machine learning techniques are
used, under water-stress scenarios or heat waves, optical infor-
mation alone is not enough to predict GPP properly. In general,
our analyses show the potential of nonlinear combinations of
spectral bands and VIs for monitoring GPP across ecosystems
at a level of accuracy comparable to previous works, which,
however, required additional meteorological drivers.

Index Terms— Gross primary production, red edge, Sentinel-2.
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I. INTRODUCTION

ROSS primary production (GPP), the amount of carbon
Gabsorbed by the ecosystem via plant photosynthesis,
is the largest single flux in the global carbon cycle [1].
GPP varies in response to several abiotic (e.g., radiation,
temperature, and precipitation; 2 and 3) and biotic factors
(e.g., metabolic pathway, vegetation type, leaf chemical traits,
and species composition: 4). However, GPP cannot be directly
observed and needs to be derived from in situ measurements of
net CO, exchanges using the eddy covariance (EC) technique
over canopies [5], [6]. Using different flux partitioning meth-
ods, it is possible to estimate the amount of carbon that is taken
up by the ecosystem (GPP) or released through ecosystem res-
piration (RECO) [7]-[11]. Nevertheless, EC can only measure
the exchange of energy and matter between the ecosystem and
the atmosphere at the scale of the climatology footprint, which
can vary between a few hundred meters to a few kilometers
(e.g., 12). Today, EC data are available globally in multiple
regional networks (Integrated Carbon Observation System:
ICOS, The National Ecological Observatory Network: NEON,
AmeriFlux, AsiaFlux) and the meta-network Fluxnet [13],
[14]. The flux database networks enable studies into local
processes understanding [6], [15]-[17], evaluating biotic and
abiotic relationships on multiple time scales (e.g., 18 and 19),
and evaluating terrestrial biosphere models [20]-[23].

In the last decades, many process-based, semiempirical,
and data-driven models have been developed to upscale GPP
using remote sensing data, and climate information, in order
to understand the spatiotemporal dynamics of the global
carbon cycle [3], [24]-[26]. For instance, the MODIS MOD17
product is based on a semiempirical model that estimates
GPP as the product between the light-use efficiency and the
absorbed photosynthetically active radiation (APAR) [27].
The maximum light-use efficiency is a plant functional-type-
dependent parameter, and it is downregulated by stress factors
that depend on temperature and vapor pressure deficit that need
to be parameterized. The Breathing Earth System Simulator
(BESS) [28] is a process-based approach, which relies on a
radiative-transfer model coupled with several remote sensing
products to predict GPP and evapotranspiration (ET) at
a global scale with a temporal resolution of eight days.
Jung et al. [29] showed that machine learning methods can
likewise efficiently upscale fluxes from in situ data to the
globe. Building on this work, Tramontana et al. [30] used the
FLUXNET dataset and MODIS remote sensing information to
train multiple machine learning techniques to predict monthly
GPP at a global scale. Later, Bodesheim et al. [31] produced
GPP global products at half-hour temporal resolution using
different settings, but of low spatial resolution (0.5°). The
state-of-the-art machine learning-based upscaling of GPP is
described in [26].
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A more direct approach to predicting GPP is to identify veg-
etation indices that are highly correlated with GPP dynamics.
Badgley et al. [32], for instance, found that the near-infrared
reflectance of vegetation (NIRv) index strongly correlates with
monthly estimates of sun-induced chlorophyll fluorescence
(SIF), rendering it a potential predictor for GPP at the global
scale. Later on, Badgley er al. [33] showed that NIRv can
explain 68% of the monthly GPP variability at the FLUXNET
sites. Recently, Camps-Valls et al. [34] presented a nonlinear
version of the normalized difference vegetation index (NDVI)
based on kernel methods (kNDVI) that correlates better with
GPP and SIF products than NIRv and NDVI. The advantage of
such approaches is that they rely purely on remote sensing data
and circumvent the parameterization of light-use efficiency
models. However, relying on reflectance values alone means
that the detection of physiological regulation of photosynthesis
via meteorological conditions is not detectable unless they last
long enough to affect vegetation pigments and structure.

Today, new satellite missions have increased the information
available to characterize vegetation properties and ecosystem
processes [35], [36]. Specifically, the satellite missions from
the Copernicus program have opened new ways to monitor
ecosystem processes with unprecedented spatial, temporal, and
spectral resolution [37], [38]. For instance, it has been shown
that Copernicus missions allow deriving plant traits such as
chlorophyll and nitrogen content along with other biophysical
parameters [39]-[42]. To the best of our knowledge, only
three studies have evaluated the prediction capacities of
GPP using Sentinel-2: Wolanin et al. [43] used the SCOPE
model and machine learning techniques to predict GPP of
C3 crops. Lin et al. [44] evaluated the potential prediction
of GPP as a function of the vegetation index multiplied by
the incident photosynthetic active radiation (PARin). They
analyzed the performance of five red-edge vegetation indices
and three nonred-edge vegetation indices. They found that
chlorophyll index red (CIR) showed the highest correlation
with GPP from the EC tower for two grassland sites. Finally,
Cai et al. [45] compared GPP predictions using Sentinel-2
and MODIS for several EC-sites in Northern Europe. The
authors did not find any improvement for the prediction of
GPP when using Sentinel-2 compared to MODIS using the
enhanced vegetation index (EVI2). Despite these advances,
there is a lack of systematic comparison between novel
red-edge vegetation indices and vegetation indices based
on the classic red and NIR bands (i.e., NDVI, kNDVI,
and NIRv) in terms of their predictive power regarding
GPP. Likewise, the question of whether a machine learning
approach considering all Sentinel-2 bands could improve the
satellite-based predictions of GPP remains unresolved.

In this study, we aim at understanding the potential of
Sentinel-2 mission for monitoring GPP across European and
North American major biomes at high spatial resolution. First,
we want to understand, which vegetation indices or spectral
bands available from Sentinel-2 are the most relevant for
predicting GPP. Second, we investigate what is the difference
in prediction performance between different approaches based
on state-of-the-art vegetation indices (e.g., NIRv, kKNDVI, red-
edge based, and nonred-edge indices) and machine learning
using all spectral bands.
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II. METHODS

A. Eddy Covariance Sites

We used 58 EC sites compiled by the ICOS
Drought 2018 Team (49 sites) and the Ameriflux/ONEFLUX
(9 sites) initiatives from 2015 to 2018 (Appendix A). We used
half-hourly GPP data (GPP_NT_VUT_USTARS50) estimated
using the FLUXNET2015 workflow [14]. GPP is calculated in
FLUXNET with the night-time partitioning method [8] using
a variable u* threshold for each year. The annual u* threshold
is derived from the 50" percentile of u* threshold distribution
obtained by bootstrapping the original night-time net
ecosystem exchange data [14]. Daily GPP values are estimated
as the mean of the half-hourly values where net ecosystem
exchange is observed or gap-filled with good quality (e.g.,
NEE_VUT_USTARS50_QC = 0 and 1). In our analysis, days
with less than 70% of good quality half-hourly data were
set to “NA.” Finally, we smoothed the time series using a
moving window mean with a window size of seven days.

The EC sites span across Europe and United States from
a latitude of 34.3°N to 67.8°N and include a variety of
vegetation types: croplands (9 sites), deciduous broadleaf
forests (9 sites), evergreen needleleaf forests (18 sites),
grasslands (7 sites), mixed forest (4 sites), open shrublands
(2 sites), savannas (4 sites), and wetlands (5 sites). The sites’
locations represent a variety of climatic regimes, including
Mediterranean, humid subtropical, temperate oceanic, humid
continental, subarctic, and tundra (Appendix A).

B. Sentinel-2 Imagery

We downloaded Sentinel-2 L1C products for the EC sites
from 2015 to 2018 using the Scihub Copernicus portal
(https://scihub.copernicus.eu/, last accessed October 2020).
We performed atmospheric corrections for all products using
Sen2Cor 2.5.5 [46]. All bands were resampled to 20-m
resolution using the nearest neighbor approach for upsam-
pling and median for downsampling. Finally, we computed
several vegetation indices (see Supplementary Material 9) such
as NDVI, kNDVI, NIRv, and multiple red-edge vegetation
indices as the inverted red-edge chlorophyll index (IRECI)
and CIR. Among these indices, KNDVI requires a specific
parameterization of the kernel width o, which was here set
to the median distance between the near-infrared band (NIR)
and the red band per spatial pixel; for Sentinel-2, ¢
median(0.5 x (B8 + B4)). Postprocessing of the images was
performed using SNAP v7.0 [47] and automatized using the
graph processing framework and the graph processing tool.
The scripts for the postprocessing of the products are available
at a Zenodo repository (see code availability).

We defined a buffer area of 100 m radius around the
EC towers to ensure that the flux footprint climatology lies
within this area (Supplementary Material 1). We used the
scene classification generated by Sen2Cor to filter out images
with: “no data,” “saturated or defective pixels,” “dark areas,”
“cloud shadows,” “water,” “cloud,” “thin cirrus,” and “snow.”
To reduce the effect of shadows or saturated pixels that
are not correctly classified by Sen2Cor, we implemented
an outlier detection approach that consists of three steps.
First, we computed z-scores (data centered and scaled to
unit variance) per image and removed pixels of the buffer
area with an absolute residual value higher than quantile
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0.99 [48]. Second, to detect potential images with clouds,
we used the time series of the spectral bands per site. We then
estimated the average of the buffer area for each image/band
and decomposed the time series of each band into a seasonal
and a trend component using locally estimated scatterplot
smoothing [LOESS 49]. Next, we applied an inner quantile
range technique over the residual of the time series decom-
position [50]. Residuals with values higher or lower value
than three times the quantiles 0.25 and 0.75, respectively, were
also classified as outliers. This analysis was performed using
the “anomalize” R package [50]. Third, we defined a bigger
buffer area of 900 m, where we estimated the percentage of
clouds. We removed observations where the percentage of
clouds was above 70%. We also identified 16 additional images
with clouds by visual inspection (Supplementary Material 3).
We present the complete description of the time series decom-
position and the outlier detection in Supplementary Material 2
(the R scripts are available in the Zenodo repository, see code
availability). The minimum number of images per site detected
as an outlier is 1, the maximum is 20, and the mean across
sites is 6 images. Finally, we selected the daily GPP values
for the days when we also have valid images from Sentinel-2.

C. Dataset Balancing

The imbalanced representation of different categories in a
dataset can influence the weighting of the observations during
the training process and consequently in the quality of the
prediction [51]. In the last decades, several methods have
been developed to solve this issue, mainly for classifications
problems, but recently also for regression analysis [52], [53].
To address this problem for the prediction of GPP through
different vegetation types that are not all equally represented
(Fig. 1), we implemented three methods to balance the dataset
given the differences in the number of observations per

vegetation type.
1) Undersampling Balancing: All observations are grouped

by vegetation type and are resampled without replace-
ment, to the number of observations of the vegetation
type with the least observations.

2) Oversampling Balancing: All observations are again
grouped by vegetation type. Each category is com-
pleted until reaching the number of observations of the
maximum category (sampling with replacement). The
replacement technique is only applied when the total
observations of the category are less than the difference
between the number of observations of the category
with the maximum number of observations and the total
number of observations of the current vegetation type.

3) Synthetic Minority Oversampling TEchnique for Regres-
sion (SMOTER) Balancing: It is a balancing technique
proposed by Torgo et al. [52], where the idea behind
the method is to undersample observations with high
frequency. In contrast, values with a low frequency (rare
observations) are oversampled. In this form, rare obser-
vations will have a higher weight during the training. All
the following analyzes were applied considering all three
balancing techniques as well as to the imbalanced case.

D. Linear Regression-Based GPP Prediction
We evaluated the performance of red-edge vegetation
indices to predict GPP using linear regression using the
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Fig. 1. Number of Sentinel-2 images used for the prediction of GPP
(2015-2018) per vegetation type. Each observation corresponds to a Sentinel-2
image at a 100 m radius around the EC tower. Red color indicates the images
with no data, saturated or defective pixels, dark areas, cloud shadows, water,
clouds, thin cirrus, or snow effects that were removed. Blue color represents
the number of valid images. Evergreen needleleaf forests (ENF), croplands
(CRO), deciduous broadleaf forests (DBF), grasslands (GRA), wetlands
(WET), mixed forest (MF), savannas (SAV), and open shrublands (OSH).

balanced and imbalanced datasets. We compared the perfor-
mance of NDVI, NIRv, and kNDVI [34], as well as red-edge
vegetation indices such as IRECI and CIR (for an overview,
see Supplementary Material 9). All evaluations were based
on leave-location-and-time-out tenfold cross validation as pro-
posed by Meyer et al. [54] and implemented in the “CAST”
R package [55]. To increase the robustness of the analysis, the
generation of tenfolds was repeated 50 times. In this approach,
the partitions for the cross validation are semirandomly
generated to minimize spatial and temporal autocorrelation.
We evaluated the performances of the different models using
the coefficient of determination (R?) of the linear regression
between observed and predicted GPP, the root-mean-square
error (RMSE), and the mean absolute error (MAE). Finally,
we compared the distributions of the model evaluation metrics
between the vegetation indices using the Wilcoxon test [56].

E. Machine Learning-Based GPP Prediction

We used random forests [57] as prediction approach for GPP
for each balanced and imbalanced dataset. A detailed descrip-
tion of how to use RF for upscaling land surface fluxes can be
found in [31]. We explored what variables are the most rele-
vant for predicting GPP. For this, we evaluated the radiometric
indices presented in Supplementary Material 9, additionally to
the spectral bands B1, B2, B3, B4, BS5, B6, B7, BS, B8A,
B9, B11, and B12 (Supplementary Material 8) resulting in a
total of 35 predictor variables. KNDVI was not included here
since it is a nonlinear transformation of the NDVI using kernel
methods, and its inclusion would have added no information
when applying machine learning techniques. We performed a
forward feature selection as suggested by Meyer et al. [58],
where the models are generated based on the pairs’ combi-
nation of predictors, allowing us here to compare nonlinear
combinations of spectral bands and vegetation indices, as we
may expect that they could reduce model complexity. The
power prediction of each model was estimated using a tenfold
leave-location-and-time-out cross validation [54], where the
tenfolds were generated 50 times to increase the robustness
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of the analysis. The idea is that the model with highest R>
is selected first, and then, new variables are iteratively added
to this initial model. The process finishes when none of the
remaining variables increases model performance.

IIT1. RESULTS AND DISCUSSION

In the following, we first report the results of the GPP
prediction using different vegetation indices in linear regres-
sions, where we specifically discuss the performance of GPP
estimates based on red-edge vegetation indices compared with
the ones based on NIRv, NDVI, and kNDVI. We also discuss
the effect of the balancing techniques on the performance
of the prediction. Second, we present the results of the
GPP prediction using Sentinel-2 spectral bands and vegetation
indices using random forests, where we present examples of
the prediction for different EC sites and an entire Sentinel-2
tile. Finally, we discuss the possibilities and limitations of
predicting GPP using remote sensing information only and
how such prediction can be improved in the future and provide
globally continuous flux estimates.

A. GPP Prediction Using Linear Regressions

In Fig. 2, we compare the performance of linear GPP predic-
tions using red-edge-based vegetation indices (CIR and IRECI,
see Supplementary Material 9), NIRv, NDVI, and kNDVI.
Red-edge vegetation indices perform better than NDVI and
NIRv in all considered metrics (Fig. 2), while KNDVI performs
as well as IRECI. According to the Wilcoxon test, the differ-
ences in the performance distribution of each index are statisti-
cally significant. In general, CIR explains on average 3% more
of the GPP variance than kNDVI, 4% more than IRECI, 10%
more than NIRv, and 11% more variance than NDVI. kKNDVI
explains an average 1% more than IRECI, 7% more than NIRv,
and 8% more than NDVI. The prediction of GPP using IRECI
shows that 6% more variance in GPP is explained compared
to NIRv and 7% more than NDVI. NIRv only explains 1%
more of the GPP variance than NDVI. The RMSE shows
smaller errors in GPP estimated with CIR, kNDVI, and IRECI
compared to the estimates based on NIRv and NDVI (Fig. 2).
As expected, when balanced datasets are used, the explained
variance increases 2% for CIR, from 2% to 4% for IRECI,
from 2% to 5% for NIRv, from 1% to 3% for kNDVI, and from
2% to 3% for NDVI (Table I and Supplementary Material 4).

Badgley et al. [32] introduced the NIRv as an alternative to
SIF for the estimation of monthly GPP. Compared to machine
learning products or radiative-transfer models, the advantage
of this approach is that it could be used to estimate global GPP
easily using global and long-term time series products such
as MODIS. However, our results suggest that the red-edge
vegetation index CIR yields significantly higher prediction
powers of GPP compared to NIRv. This finding could be
interpreted as an important argument for relying on the novel
Sentinel-2 data for GPP prediction.

Red edge is the region around 710 nm, which marks the
sharp transition between the red region (700 nm), where the
absorption of chlorophyll occurs, and the near-infrared region
(730 nm), where the reflectance is produced by the internal
structures of the leaf [59, p. 180]. This region is highly
sensitive to the leaf chlorophyll content [60], [61]. At the
same time, chlorophyll content is a controlling factor of the
fraction of photosynthetically active radiation absorbed by

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

MAE i RMSE
1007 e | 125 L
e 1 | 291 rrrran e
754 ] — 10.04 Fooe|
La—- 1.54 L L
<5}
=
@ 5.0+
=
254/
CIR ' KNDVI  NIRv CIR ' KNDVI = NIRv CIR ' KNDVI ' NIRv
IRECI  NDVI IRECI  NDVI IRECI  NDVI
Vegetation Index
Fig. 2. Prediction of GPP using linear regression and different vegetation

indices (CIR: chlorophyll index red, IRECI: inverted red-edge chlorophyll
index, NIRv: near-infrared vegetation, and NDVI: normalized difference veg-
etation index) as predictors. Results are shown for the imbalanced (original)
dataset only. The vertical lines correspond to the results of the Wilcoxon test
in pairs, where ns is the nonsignificant differences, *: p < 0.05, **: p < 0.01,
and ***: p < (0.001.

plants (APAR). This is one possible explanation why CIR is
strongly correlated with GPP [62], even if it cannot reflect the
fast variations of the photosynthesis itself. For these reasons,
VIs based on red-edge bands might generally have advantages
for estimating GPP over VIs that do not rely on the red edge.
Lin et al. [44] found that CIR multiplied by PAR can explain
slightly more variability of GPP than NIRv multiplied by PAR
for two grasslands sites. However, we would argue that the
PAR effect could be dominant in their study, while our aim
here was to focus on the spectral information only.

We also tested the predictive performance of kKNDVI [34],
which was reported to predict monthly GPP better than NIRv.
The idea behind kNDVI is to solve the saturation problem
of NDVI at high values by exploring the nonlinear relations
of the two bands of the NDVI. Even though no red-edge
information is used, we found that kKNDVI performed at the
level of IRECI in our study. One interpretation of this finding
is that most of the information contained in the red-edge
bands can be captured by an appropriate transformation of the
distance between near-infrared and red bands. However, there
is no direct mechanistic argument, and it is unclear to what
extent this observation is general and further research will be
necessary. However, our results may imply that kernel versions
of classical vegetation indices could derive relevant informa-
tion from satellite missions that do not have red-edge indices.

B. GPP Prediction Using Random Forest

Another question of this study was whether machine learn-
ing could outperform even the new generation of vegetation
indices. In Table II, we present the results of the variable
selection analysis where a different number of predictors are
selected depending on the balancing technique. From 35 pre-
dictors that included Sentinel-2 spectral bands (Supplementary
Material 8) and derived vegetation indices (Supplementary
Material 9), CIR, S2REP, and B1 are selected for all datasets,
while GNDVI, PSSRA B3, and B4 are selected at least in
three cases. ARVI, MTCI, MCARI, B2, and B5 are selected
at least in two datasets. IRECI, NDI45, RVI, TNDVI, TSAVI,
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TABLE I
AVERAGE PERFORMANCE OF THE GPP PREDICTION USING LINEAR REGRESSION (TENFOLD TEMPORAL—SPATIAL CROSS VALIDATION) WITH
RED-EDGE AND NONRED-EDGE VEGETATION INDICES. THE COLUMN DATASET REFERS TO THE BALANCING TECHNIQUE USED
TO BALANCE THE REPRESENTATION OF DIFFERENT VEGETATION TYPES

Red-edge Vegetation indices Non Red-edge vegetation indices
IRECI CIR NIRv NDVI KNDVI
Dataset R?2 RMSE MAE | R? RMSE MAE | R? RMSE MAE | R? RMSE MAE | R? RMSE MAE
Imbalanced 0.57 277 223 | 0.61 257 198 | 051 295 236 | 050 298 234 | 058 2.65 1.97
Undersampling | 0.61 251 205 | 0.62 243 1.91 0.56  2.70 215 | 053 284 2.31 0.61 248 1.91
Oversampling | 0.59 2.63 209 | 061 251 1.93 | 053 2.80 220 | 050 295 236 | 059 259 1.94
SMOTER 0.60  3.29 275 | 062 3.19 264 | 055 345 284 | 052 374 307 | 054 353 2.83
TABLE I1

VARIABLES SELECTED FOR THE PREDICTION OF GPP USING THE FORWARD FEATURE SELECTION PRESENTED BY MEYER et al. [58]. THE DATASET

COLUMN REPRESENTS THE BALANCING TECHNIQUE USED TO BALANCE THE DIFFERENT VEGETATION TYPES IN THE ORIGINAL (IMBALANCED)
DATASET. A TENFOLD CROSS VALIDATION IS PERFORMED TO ESTIMATE: RZ, RMSE, AND MAE. THE OPTIMUM NUMBER OF VARIABLES
RANDOMLY SAMPLED AS CANDIDATES FOR EACH SPLIT (MTRY) IS ALSO SHOWN. THE INCREASE OF R? AND THE DECREASE IN
THE STANDARD ERROR WHEN EACH VARIABLE IS ADDED TO THE INITIAL MODEL ARE SHOWN, WHERE THE FIRST VALUE
CORRESPONDS TO THE MODEL USING THE FIRST TWO PREDICTORS IN THE COLUMN VARIABLES SELECTED AND
THE LAST VALUE CORRESPONDS TO THE VALUE OF THE FINAL MODEL. RED-EDGE CHLOROPHYLL INDEX
(CIR), SENTINEL-2 RED-EDGE POSITION INDEX (S2REP), ATMOSPHERICALLY RESISTANT VEGETATION
INDEX (ARVI), MERIS TERRESTRIAL CHLOROPHYLL INDEX (MTCI), GREEN NORMALIZED DIFFERENCE
VEGETATION INDEX (GNDVI), TRANSFORMED NORMALIZED DIFFERENCE VEGETATION INDEX
(TNDVI), NORMALIZED DIFFERENCE INDEX 45 (NDI45), INFRARED PERCENTAGE VEGETATION
INDEX (IPVI), PIGMENT SPECIFIC SIMPLE RATIO (PSSRA), TRANSFORMED SOIL ADJUSTED
VEGETATION INDEX (TSAVI), MODIFIED CHLOROPHYLL ABSORPTION RATIO INDEX
(MCARI), AND GREEN CHLOROPHYLL INDEX (CIG)

. Number of Number of RZ, _ RMSE19_foia MAFE10—_fold Variables 5

Dataset observations _ variables selected _final raodel _final model * final model MY elected 10— fora  Standard Error

CIR, Bl 0.593 0.008

B3 0.632 0.008

B4 0.649 0.008

B2 0.653 0.008

Imbalanced 2636 9 0.66 2.34 1.76 2 Bs 0655 0.008

PSSRA 0.655 0.008

S2REP 0.657 0.008

GNDVI 0.659 0.007

CIR, B1 0.620 0.010

B5 0.652 0.009

TNDVI 0.664 0.009

PSSRA 0.669 0.009

NDVI45  0.671 0.009

Undersampling 1264 12 0.68 2.20 1.68 2 GNDVI 0.671 0.009

IRECI 0.671 0.009

MTCI 0.673 0.009

RVI 0.674 0.009

S2REP 0.674 0.009

ARVI 0.675 0.009

CIR, Bl 0.582 0.008

B3 0.632 0.008

B4 0.656 0.007

. GNDVI 0.661 0.007

Oversampling 4288 9 0.67 2.28 1.70 2 PSSRA 0.665 0.007

S2REP 0.668 0.007

MCARI 0.669 0.007

ARVI 0.670 0.007

CIR, B4, 0.635 0.009

B3 0.664 0.009

B2 0.685 0.008

MTCI 0.690 0.008

S2REP 0.697 0.008

SMOTER 2635 11 0.71 2.68 2.10 2 B12 0.700 0.008

Bl 0.702 0.008

TSAVI 0.703 0.008

MCARI 0.705 0.008

CIG 0.706 0.008

CIG, and BI12 are selected at least once (Table II). The
variable selection analysis shows that even when nonlinear
combinations of spectral bands are possible, vegetation indices
are still selected as they probably would simplify the machine
learning model. Yet, not all information required for predict-
ing GPP seems to be encoded in vegetation indices alone.
Bands B1, B2, B3, B4, BS5, and B12 also appear to provide

information that is useful for the predictions. A surprising
result is the selection of band B1. This band is typically used
for aerosol detection and correction purposes. We speculate
that B1 is a proxy for radiation dynamics (e.g., direct and
diffuse radiation) that are important for GPP. However, we note
that Penuelas et al. [63] had considered this spectral region
earlier in their structure insensitive pigment index (SIPI)



4409412

Imbalanced

204 count
125

100
75
50
25

R 10 =066

GPP [pmolCOzm'zs'1] (Observed)
>

0 5 10 15
GPP [umolCO,m™2s™"] (Predicted)

Undersampling

254

20 count

40
30
20

R =0.68

2
10-fold

GPP [pmolCOzm'zs'1] (Observed)

0 5 10 15
GPP [umolCO,m %s™"] (Predicted)

Oversampling

=)
2
2
o count
0O 20
= 200
]
N 150
o% 104 100
9 5
g Rfu—oum =0.67
a 07
o
o
0 5 10 15 20
GPP [umolCO,m 2s™"] (Predicted)
SMOTER
count

204

90

60

30

R 0.71

2 =
10-fold

GPP [umolCOzm'zs'ﬂ] (Observed)

0 10 20
GPP [umolCO,m™%s™"] (Predicted)

Fig. 3. Prediction of GPP using different data balancing techniques. In each
case, the observed values are shown on the y-axis, and the predicted values are
shown on the x-axis. The red line represents the 1:1 line. Imbalanced makes
reference to the original dataset. Undersampling, oversampling, and SMOTER
make reference to each technique used to balance the dataset (see Section II
for further details).

that has, however, not been developed further for vegetation
monitoring. The additional selection of bands B2 (blue), B3
(green), B4 (red), and B5 (vegetation red-edge) suggests that
there is space for the development of new vegetation indices
that can capture the GPP variability beyond the existing
indices.

In Fig. 3, we present the prediction of GPP using ran-
dom forest regression, where GPP can be predicted with
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Fig. 4. Observed and predicted GPP values at selected EC sites representing
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Models were trained using a leave-one-site-out cross-validation strategy.
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Fig. 5. GPP product for a Sentinel-2 tile, over the Ballons des Vosges

Regional Nature Park (France, June 23, 2020). The land cover classification
generated by Sen2cor was applied before the prediction, where pixels
considered as nonvegetation are encoded as NAs.

R}y_to1a = 0.66 and RMSE(_go1q = 2.34 [umol CO; m~2s™!]
for the imbalanced dataset. There are improvements
in the variance explained using the balanced dataset.
Rfoffold = 0.68 and RMSEy_foig = 2.20 [umol CO, m2s7!]
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using undersampling, R7)_;,q = 0.67 and RMSE;o_foq =
2.28 [umol CO, m~2s~!] using oversampling technique, and
R%O—fold = 0.71 and RMSE¢_foig = 2.68 [umol CO, m 257!
using the SMOTER technique (Table II). The comparison
between the distribution of the metrics shows that there are
significant differences between the imbalanced and balanced
datasets (Supplementary Material 10). The results of the cross
validation for each fold and balancing technique are presented
in Supplementary Material 7. Tramontana et al. [30] reported
that spectral information with machine learning techniques can
explain around 78% of the GPP variability across sites. One
of the advantages of our approach is that it does not require
a previous vegetation-type classification [64]. In comparison
with the estimation of GPP using biophysical parameters as,
e.g., in [44], we show that it GPP can be estimated more
directly with high accuracy.

In Fig. 4, we present the examples of predicted and observed
GPP representing different vegetation types. The prediction for
each site is presented in Supplementary Material 5. Despite
the overall high variances explained by random forests, there
are indeed cases when GPP cannot be predicted correctly.
For instance, the maximum GPP is underestimated in savan-
nas and evergreen needleleaf forest ecosystems. Our study
period covers the 2018 heat wave, an extreme event where
northwestern Europe vegetation was highly affected [65]-[67].
We find, however, that the reduction in CO, uptake during
this event was not well captured for mixed forest and decid-
uous broadleaf forest (Fig. 4). This can also be seen when
comparing the time series of 2016 and 2017 to 2018 (see
Fig. 4). This means that the prediction of ecosystem fluxes
during extreme events remains an open issue that needs to
be addressed with high priority as discussed in [68]. How-
ever, our finding that GPP dynamics during drought events
cannot be well represented is in-line with earlier findings.
For instance, Bodesheim ef al. [31] showed that GPP was not
properly predicted during dry summers for several EC sites and
attributed this to the poor representation of water availability
in their dataset. Different from our study, their study also used
climate information, which, in theory, increases the model
performance for water-stress scenarios. One general problem
could be the time lag between the change of photosynthesis
rates and the decline in the concentration of the pigments,
including chlorophyll content, in the leaves. However, given
that the data generated here are based on vegetation reflectance
properties only, it is expected that they can only pick up
changes in GPP that are primarily driven by changes in APAR
and pigment concentrations but are not apt to capture the fast
response of photosynthesis mediated, e.g., by stomatal closure.
This limitation is inherent to all reflectance-based methods and
the reason why, in some sites, we are not able to reproduce
GPP dynamics under stress.

Nevertheless, the overall seasonal dynamics are represented
very well in our GPP estimates across sites and vegetation
types. Future studies should investigate whether the inclusion
of thermal information from Sentinel-3 or radar information
from Sentinel-1 can help to indirectly address the water deficit
in the ecosystems during drought periods [69] and lead to
the next generation of operational GPP products based on
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remote sensing data only. In addition, the unique combination
of red-edge vegetation indices in Sentinel-2, radar information
from Sentinel-1, or multispectral and thermal information from
the bands available in Sentinel-3 may open unprecedented
possibilities for vegetation monitoring in the near future [35].

Previous studies used plant functional classes as a spatial
feature to upscale GPP [30], [70]. To use vegetation types as a
predictor of GPP, a necessary step will be to improve the land
cover maps to match the resolution of Sentinel-2. The ESA
WorldCover consortium gave the first steps, producing the
first global land cover map at 10-m resolution for 2020 using
radar information from Sentinel-1 and optical information
from Sentinel-2 [71]. Future research will have to test the
added value of these upcoming products for predicting carbon
fluxes at high spatial resolution.

To give a taste of what the mapping of carbon fluxes
might look like in the future, in Fig. 5, we present an
example of the upscaling of GPP for a Sentinel-2 tile over the
Ballons des Vosges Regional Nature Park (France, June 23,
2020; Supplementary Material 6). The area contains different
types of deciduous broadleaf forest, weatlands, grasslands, and
croplands. Even though our model does not use vegetation
type as a predictor, it does clearly differentiate GPP dynamics
of crops, weatlands, and forests. The high spatial resolution
of Sentinel-2 could be a nice avenue to monitor forests with
a high degree of fragmentation [72] or even green areas
in cities [73]. A tutorial of how to use the final models
produced in our study to upscale GPP using any Sentinel-2
L2A product provided by Copernicus-ESA is presented in the
code repository.

IV. CONCLUSION

In this study, we explore how remote sensing information
provided by Sentinel-2 can be used to predict GPP across
a variety of vegetation types. We find that the CIR explains
an average 10% more of the variability of GPP at daily scale
than NIRv and 11% more than NDVI using linear regressions.
The high correspondence between kKNDVI and IRECI is unan-
ticipated and requires further physical exploration. The predic-
tion power of vegetation indices can be slightly outperformed
using machine learning: using random forests, the spectral
information provided by Sentinel-2 alone can predict an aver-
age 68% of GPP variability (cross-validated). However, under
extreme climate conditions such as the 2018 drought/heat
wave, meteorological data or thermal information might be
necessary to improve the prediction of short-term reduction
of GPP that is not associated with changes in APAR or
the decline of chlorophyll content. From a methodological
point of view, we also explored whether balancing techniques
can help to represent vegetation types and rare observations.
Furthermore, we found that improvements in the prediction
accuracy of GPP are associated with the use of balanced
datasets for training. Overall, our study presents a first attempt
to assess the capability of Sentinel-2 data alone to predict
GPP. Despite the discussed limitations, Sentinel-2 generally
offers a highly relevant perspective to map fluxes at high
spatial resolution, opening new ways to understand ecosystem
processes and responses from local to global scale.
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APPENDIX A: EDDY COVARIANCE SITES

SITES FROM THE ICOS DROUGHT 2018 TEAM AND ONEFLUX INITIATIVES USED IN THIS STUDY. THE NUMBER OF OBSERVATIONS CORRESPONDS TO
THE NUMBER OF VALID SENTINEL-2 IMAGES RECOVERED FOR THE SITE DURING THE TIME PERIOD. THE VEGETATION TYPE FOR EACH SITE IS
PRESENTED: MF = MIXED FORESTS, CRO = CROPLANDS, GRA = GRASSLANDS, ENF = EVERGREEN NEEDLELEAF FORESTS,

DBF = DECIDUOUS BROADLEAF FORESTS, WET = WETLANDS, SAV = SAVANNAS, AND OSH = OPEN SHRUBLANDS

Site name  Vegeta- Number Years DOI Reference
tion of obser-
type vations

BE-Bra MF 56 2015-2018  https://doi.org/10.18160/F738-634R [74]
BE-Lon CRO 21 2015-2018 https://doi.org/10.18160/6SMO-NFES [75]
BE-Vie MF 12 2016-2018 https://doi.org/10.18160/MK3Q-BBEK [76]
CH-Aws GRA 31 2016-2018 https://doi.org/10.18160/3YQE-7BRS§ NA
CH-Cha GRA 98 2015-2018  https://doi.org/10.18160/GMMW-5E2D [77]
CH-Dav ENF 13 2015-2018 https://doi.org/10.18160/R86M-H3HX [78]
CH-Fru GRA 79 2015-2018 https://doi.org/10.18160/J938-0MKS [79]
CH-Lae MF 80 2015-2018 https://doi.org/10.18160/FABD-SVIJ [80]
CH-Oe2 CRO 44 2015-2018  https://doi.org/10.18160/N01Y-R7DF [81]
CZ-BKl1 ENF 22 2015-2018 https://doi.org/10.18160/7QXR-AYEE [82]
CZ-Lnz MF 84 2015-2018 https://doi.org/10.18160/84SN-YBSD NA
CZ-RAJ ENF 50 2015-2018  https://doi.org/10.18160/HFS9-IBTG NA
CZ-Stn DBF 22 2015-2018 https://doi.org/10.18160/V2IN-DQPJ NA
CZ-wet WET 68 2015-2018  https://doi.org/10.18160/W4Y S-463W [83]
DE-Akm  WET 39 2015-2018 https://doi.org/10.18160/24B5-J44F NA
DE-Geb CRO 60 2015-2018  https://doi.org/10.18160/ZK18-3YW3 [84]
DE-Gri GRA 73 2015-2018  https://doi.org/10.18160/EN60-T3FG [85]
DE-Hai DBF 48 2015-2018  https://doi.org/10.18160/DAET-BFPS [86]
DE-HoH  DBF 37 2015-2018  https://doi.org/10.18160/J1YB-YEHC NA
DE-Hte WET 44 2015-2018  https://doi.org/10.18160/J1YB-YEHC NA
DE-Hzd DBF 28 2015-2018  https://doi.org/10.18160/PJEC-43XB NA
DE-Kli CRO 56 2015-2018  https://doi.org/10.18160/STT9-TBJZ [85]
DE-Obe ENF 6 2015-2018 https://doi.org/10.18160/FSM3-RC5F NA
DE-RuR GRA 39 2015-2018 https://doi.org/10.18160/HPV9-K8R1 [87]
DE-RuS CRO 28 2015-2018 https://doi.org/10.18160/A2TK-QD5U [88]
DE-RuW  ENF 20 2015-2018  https://doi.org/10.18160/H7Y6-2R1H NA
DE-Tha ENF 45 2015-2018 https://doi.org/10.18160/BSE6-EMV]J [89]
DK-Sor DBF 53 2015-2018  https://doi.org/10.18160/BFDT-7THYE [90]
ES-Abr SAV 171 2015-2018 https://doi.org/10.18160/11TP-MX4F [91]
ES-LM1 SAV 80 2015-2018 https://doi.org/10.18160/FDSD-GVRS [92]
ES-LM2 SAV 92 2015-2018  https://doi.org/10.18160/3SVJ-XSB7 [92]
FI-Hyy ENF 22 2015-2018  https://doi.org/10.18160/0JHQ-BZMU

FI-Let ENF 17 2017-2018  https://doi.org/10.18160/0JHQ-BZMU [93]
FI-Sii WET 23 2016-2018  https://doi.org/10.18160/0RE3-DTWD NA
FI-Var ENF 38 2016-2018  https://doi.org/10.18160/NYH7-5JEB NA

FR-EM2 CRO 59 2017-2018 https://doi.org/10.18160/HC1V-8VKJ NA




PABON-MORENO et al.: ON POTENTIAL OF SENTINEL-2 FOR ESTIMATING GROSS PRIMARY PRODUCTION

4409412

(Continued.) SITES FROM THE ICOS DROUGHT 2018 TEAM AND ONEFLUX INITIATIVES USED IN THIS STUDY. THE NUMBER OF OBSERVATIONS

CORRESPONDS TO THE NUMBER OF VALID SENTINEL-2 IMAGES RECOVERED FOR THE SITE DURING THE TIME PERIOD. THE VEGETATION
TYPE FOR EACH SITE IS PRESENTED: MF = MIXED FORESTS, CRO = CROPLANDS, GRA = GRASSLANDS, ENF = EVERGREEN

NEEDLELEAF FORESTS, DBF = DECIDUOUS BROADLEAF FORESTS, WET = WETLANDS, SAV = SAVANNAS,

AND OSH = OPEN SHRUBLANDS

FR-Hes DBF 76 2015-2018  https://doi.org/10.18160/WTYC-IJVQV NA
IT-BCi CRO 38 2015-2018  https://doi.org/10.18160/T25N-PDIH [94]
IT-Lsn OSH 113 2016-2018 https://doi.org/10.18160/RTKZ-VTDIJ NA
IT-Tor GRA 68 2015-2018  https://doi.org/10.18160/ERMH-PSVW [95]
NL-Loo ENF 43 2015-2018  https://doi.org/10.18160/MV3K-WM09 [96]
RU-Fy2 ENF 44 2015-2018  https://doi.org/10.18 160/ WEV2-WQXY [97]
RU-Fyo ENF 46 2015-2018  https://doi.org/10.18160/4J2N-DY7S [98]
SE-Deg WET 46 2015-2018  https://doi.org/10.18160/0T47-MEEU NA
SE-Htm ENF 35 2015-2018  https://doi.org/10.18160/17FF-96RT NA
SE-Lnn CRO 45 2015-2018  https://doi.org/10.18160/5GZQ-S6Z0 NA
SE-Nor ENF 37 2015-2018 https://doi.org/10.18160/K57M-TVGE NA
SE-Ros ENF 58 2015-2018  https://doi.org/10.18160/ZF2F-82Q7 NA
SE-Svb ENF 38 2015-2018 https://doi.org/10.18160/X57W-HWTE NA
US-ARM  CRO 53 2016-2018  https://doi.org/10.17190/AMF/1246027 [99]
US-Bar DBF 4 2016-2018  https://doi.org/10.17190/AMF/1246030 [100]
US-Hol ENF 14 2015-2018  https://doi.org/10.17190/AMF/1246061 [101]
US-MMS  DBF 8 2015-2018  https://doi.org/10.17190/AMF/1246080 [102]
US-Seg GRA 45 2015-2018  https://doi.org/10.17190/AMF/1246124 [103]
US-Ses OSH 45 2016-2017  https://doi.org/10.17190/AMF/1246125 [104]
US-UMB  DBF 14 2015-2017  https://doi.org/10.17190/AMF/1246107 [105]
US-Vem ENF 10 2016-2017  https://doi.org/10.17190/AMF/1246121 [106]
US-Wjs SAV 20 2015-2017  https://doi.org/10.17190/AMF/1246120 [107]

CODE AVAILABILITY

Code is available under GPL-3 license at: https://github.
com/dpabon/Sentinel-2_GPP.

DATA AVAILABILITY

ICOS data are available on the web-site: https://www.icos-
cp.eu/data-products/Y VR0-4898. Ameriflux data are available
on the website: https://ameriflux.lbl.gov/data/download-data-
oneflux-beta/.
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