
1

Lifelong Learning in Evolving Graphs with Limited
Labeled Data and Unseen Class Detection

Lukas Galke, Iacopo Vagliano, Benedikt Franke, Tobias Zielke, Ansgar Scherp

Abstract—Large-scale graph data in the real-world are often
dynamic rather than static. The data are changing with new
nodes, edges, and even classes appearing over time, such as in
citation networks and research-and-development collaboration
networks. Graph neural networks (GNNs) have emerged as the
standard method for numerous tasks on graph-structured data.
In this work, we employ a two-step procedure to explore how
GNNs can be incrementally adapted to new unseen graph data.
First, we analyze the verge between transductive and inductive
learning on standard benchmark datasets. After inductive pre-
training, we add unlabeled data to the graph and show that
the models are stable. Then, we explore the case of continually
adding more and more labeled data, while considering cases,
where not all past instances are annotated with class labels.
Furthermore, we introduce new classes while the graph evolves
and explore methods that automatically detect instances from
previously unseen classes. In order to deal with evolving graphs
in a principled way, we propose a lifelong learning framework for
graph data along with an evaluation protocol. In this framework,
we evaluate representative GNN architectures. We observe that
implicit knowledge within model parameters becomes more
important when explicit knowledge, i.e., data from past tasks,
is limited. We find that in open-world node classification, the
data from surprisingly few past tasks are sufficient to reach the
performance reached by remembering data from all past tasks.
In the challenging task of unseen class detection, we find that
using a weighted cross-entropy loss is important for stability.

Index Terms—Lifelong Learning, Open-World Learning, Node
Classification, Unseen Class Detection, Evolving Graphs, Graph
Neural Networks, Learning with Limited Labeled Data.

I. INTRODUCTION

A recent study on shortcut learning [1] has brought up a
compelling argument that evaluating learning systems on

standard benchmarks is not sufficient to assess their quality.
Rather, it is necessary to evaluate their performance in more
challenging testing conditions, such as real-world scenarios. In
such scenarios, the assumption of independent and identically
distributed data is immediately violated. This aspect is even
more crucial when dealing with graph data. Apart from
raw conditional distribution, p(y|x), also the graph structure
evolves over time. Even worse, the set of classes itself, Y ,
might change over time with the emergence of entirely new
classes. Thus, building learning systems for graphs that can
work in real-world applications is particularly challenging. At

L. Galke (0000-0001-6124-1092) was with Kiel University and ZBW –
Leibniz Information Centre for Economics, Kiel, Germany while conducting
the research.

I. Vagliano (0000-0002-3066-9464) is with Amsterdam University – Uni-
versity Medical Centre, the Netherlands.

A. Scherp (0000-0002-2653-9245), B. Franke, and T. Zielke are with Ulm
University, Germany.

the same time, having well-performing learning systems for
graphs is extremely valuable because the graph representation
is versatile and needed in many applications [2].

Graph neural networks [3] (GNNs) have emerged as state-
of-the-art methods in numerous tasks on graph-structured data
such as vertex classification [4]–[7], graph classification [8],
link prediction [9], and unsupervised vertex representation
learning [10].

An intriguing property of GNNs is that they are capable
of inductive learning [5]. An inductive model for graph data
only depends on the vertex features and the graph structure
given by its edges. In many cases, such as [5], [11], [12], this
is a major advantage over models that rely on a static vertex
embedding [13], which would need to be retrained [14] as soon
as new data arrives. This is known as the transductive learning
scenario [2]. In contrast, inductively trained GNNs can be
applied to new data – or even a different graph – without any
retraining because of their property of only requiring vertex
features and edges.

However, being able to apply the same model to unseen
data also comes with challenges that have not been sufficiently
addressed in the literature so far. Let us assume that we have
a vertex classification model and new data streams over time,
i. e., new edges and vertices arrive; then even new classes may
arise. This raises several research questions: Do we need to
retrain the model, and when do we need to retrain it? How
much past data should be preserved for retraining? Is it helpful
to preserve implicit knowledge within the model parameters or
should we retrain from scratch? How much new labeled data
is needed for stable training? Lastly, and most importantly,
how can we automatically detect in an unsupervised manner
if a new class has arrived in the dataset.

To answer these questions, we frame the problem as an
instance of lifelong machine learning [15]–[17]. In lifelong
learning, as illustrated in Figure 1, the learner has to perform
a sequence of tasks T1, T2, . . . , Tt, and may use knowledge
K gained in previous tasks to perform task Tt. In our case,
each task consists of classifying vertices given an attributed
graph. Knowledge K may be stored explicitly (the training
data of past tasks) or implicitly within the model parameters.
A particular challenge of lifelong learning in the context of
graph data is that vertices cannot be processed independently
because models typically take connected vertices into account.
We also consider the challenge that the set of classes in task
Tt differs from classes in previous tasks, which is known as
the open-world classification [17] problem.

We address these challenges by introducing a new incre-
mental training method that retrains the model for each task.

ar
X

iv
:2

11
2.

10
55

8v
1

 [
cs

.L
G

]
 2

0
D

ec
 2

02
1

https://orcid.org/0000-0001-6124-1092
https://orcid.org/0000-0002-3066-9464
https://orcid.org/0000-0002-2653-9245

2

Fig. 1. Lifelong Open-World Node Classification. At each time t the learner
has to classify new vertices of task Tt (red). The learner may use knowledge
from previous tasks to adapt to the current task, eventually cut off by a history
size (blue). The current task might come with previously unseen classes, e. g.,
see class “c” that emerged only at task t− 2 and was subsequently added to
the class set. After evaluating each task Tt, we continue with task Tt+1.

In our experiments, we thoroughly evaluate representative
and scalable GNN architectures and a graph-agnostic multi-
layer perceptron. We use a history size that limits the amount
of past data (called here: explicit knowledge) available for
training and compare limited history-size retraining against
unlimited full-history retraining. Furthermore, we compare
reusing model parameters from previous tasks (warm restart)
against retraining from scratch (cold restarts) to analyze the
influence of implicit knowledge.

Apart from this lifelong learning scenario, we consider
two more scenarios that are motivated by challenges of real-
world graph data. In the one case, we limit the number of
training vertices that come with labels. The motivation for this
experiment is that gathering ground truth labels is expensive in
real-world applications. In the other case, the models should
actively detect instances of unseen classes, while classifying
other instances into known classes. Crisp detection of unseen
classes is a particularly challenging problem because it needs
to be conducted unsupervised, e. g., by analyzing the distri-
bution of the logits. In other methods [18], the classes are
balanced. In real-world graphs, however, the class distribution
is skewed and balancing it by under- or oversampling would
be difficult in naturally evolving graphs because vertices are
not independent from each other. Thus, we propose to weight
the binary-cross entropy loss function such that the resulting
logit distribution is more amenable for unsupervised unseen
class detection.

We close our experiments with an ablation study to confirm
that incremental training is necessary to apply GNNs on
evolving graphs as often found in the real-world.

To facilitate our analyses, we provide three new datasets for
lifelong learning; one co-authorship and two citation graph
datasets with different degrees of changes in the class set.
On these datasets, we have experimented with 48 different
incremental training configurations, namely 6 architectures
× 4 history sizes × cold restarts and warm restarts, which
we evaluate on three new datasets. Then we use the best
performing base model and the most challenging dataset to
investigate limited labeled data with 8 different label rates,
and unseen class detection with 4 history sizes.

In summary, the research contributions made by our paper
are the following results:
• Incremental training is a simple yet effective technique

to tackle lifelong learning on graphs. Data from only
few past tasks are sufficient to maintain a high level of
accuracy that matches the accuracy of the same model
retrained using all past data.

• Reusing parameters requires less data. When labeled data
is limited, parameter reuse becomes even more important.

• Unsupervised, crisp detection of unseen classes requires
training with weighted cross-entropy. Using less data
from the past in combination with warm restarts is
beneficial for unseen class detection.

These insights have direct consequences for using GNNs in
practical applications. It allows to decide how much historical
data should be kept to maintain a certain performance versus
having memory available in the GPUs. This is an important
criterion that influences which GNN methods are applica-
ble [12], [19]. We publicly provide the datasets as well as the
evaluation framework to extend our experiments and accelerate
research in lifelong learning on graphs.

This paper extends our earlier experiments (IJCNN 2021
conference [20] and ICLR 2019 workshop paper [21]) by two
new variants of the problem: learning with limited labeled data
and unseen class detection.

In Section II, we discuss the related works and we provide
a problem statement in Section III. We explain our proposed
training procedure, new measure to determine an optimal
history size for graphs, and the employed GNN methods in
Section IV. Our datasets are described in Section V, while
the results of our experiments are reported in Section VI. We
discuss the results in Section VIII, before concluding.

II. RELATED WORK

We discuss the works in lifelong machine learning and es-
pecially lifelong learning on graphs. Subsequently, we discuss
methods for evolving graphs, out-of-distribution detection, as
well as methods regarding history sizes.

a) Lifelong learning: Similarly to us, Wang et al. [22]
decompose lifelong (machine) learning into the subproblems
of rejecting unknown instances, classifying accepted instances,
and reducing the cost of learning. In 2013, Ruvolo and
Eaton [23] introduced a lifelong learning algorithm with con-
vergence guarantees that employs multi-task learning such that
later tasks can improve earlier tasks. In 2016, Fei et al. [16]
analyzed SVMs in a lifelong learning setting and introduce
cumulative learning. Cumulative learning relates to our ap-
proach, as we consider that some data is shared among the
tasks. However, we further investigate how much past data is
necessary to retain accuracy compared to a fully-cumulative
approach. Lopez-Paz & Ranzato [24] have introduced a gra-
dient episodic memory framework for the image domain,
where examples can be processed independently, and tackle
the catastrophic forgetting problem, i. e., the loss of previously
learned information when new information is learned [25].
For an overview of lifelong learning, we refer to a recent
textbook [17].

3

b) Lifelong Learning on Graphs: Related works on life-
long learning on graphs are very limited. Concurrent with our
research, there is one recent work by Wang et al. [26] that
also use GNNs on lifelong learning problems. The authors
focus on catastrophic forgetting and explore a method to
cast vertex classification as a graph classification task by
transforming each vertex into a feature graph. Thus, vertices
become independent such that they can follow the streaming
setup from [24].

c) Graph Neural Networks: Dwivedi et al. [27] distin-
guish between isotropic and anisotropic GNN architectures.
In isotropic GNNs, all edges are treated equally. Apart from
graph convolutional networks [4], examples of isotropic GNNs
are GraphSAGE-mean [5], DiffPool [8], and GIN [28]. In
anisotropic GNNs, the weights for edges are computed dynam-
ically. Instances of anisotropic GNNs include graph attention
networks [6], GatedGCN [29], and MoNet [30]. There are
further approaches, which have been specifically proposed
to scale GNNs to large graphs. These approaches fall into
two categories: sampling [5], [12], [31], [32], and separating
neighborhood aggregation from the neural network [19], [33],
[34]. From each of these four categories (anisotropic versus
isotropic GNNs, and preprocessing versus sampling), we select
one representative for our experiments (see Section IV-E).

d) Evolving Graphs: Different methods for evolving
graphs have been proposed. Those include dynamic embed-
ding methods [35], [36], autoencoder-based methods [37],
[38], GNNs for graphs with fixed vertex set [39]–[45], and
inductive GNN methods that can deal with previously unseen
vertices [11], [46]. These methods focus on the case with
dynamic outputs. That means a vertex can be in class a at
time t and in class b in time t+ 1. However, in our case the
output variable is static but the graph as a whole is evolving.

e) Unseen Class Detection: Numerous approaches have
been proposed for out-of-distribution detection. A key chal-
lenge is that the softmax activation, often used as final layer
for classification, leads to highly confident mispredictions even
when the input data is far away from the training distribution.
To address this, Liang et al. [47] resort to temperature scaling,
while Lee et al. [48] propose to use Mahalanoubis distance.
Both combined with dedicated preprocessing of the input.
Macedo et al. [49], [50] replace the softmax activation by
an entropy-aware IsoMax activation. Other approaches rely
on explicit outlier data that can be used for training [51],
[52]. However, we are particularly interested in methods
that emit a crisp decision whether the classification of an
instance should be rejected. In that regard, there are several
approaches for detecting new classes with classic machine
learning methods [16], [53], [54]. Wu et al. [55] have used
variational graph autoencoders for uncertain vertex represen-
tation learning. They generate multiple versions of features and
test the certainty of a vertex belonging to a known class. In
Deep Open Classification (DOC) [18], the authors propose the
final softmax activation of a neural network by elementwise
sigmoid activation. Then, they derive a threshold for unseen
class detection. Their experiments on datasets with balanced
classes indicate that DOC is preferable over OpenMax [54]

and cbsSVM [16]. Thus, we employ a DOC-inspired module
on-top of graph neural networks for unseen class detection.

f) History sizes in Data Streams: Regarding finding the
optimal history size in data streams, Fish and Caceres [56]
treated the window size as a hyperparameter and proposed
an optimization algorithm which requires multiple runs of the
model. This is a rather costly procedure and the study does not
yield insights on how much predictive power can be preserved
when selecting a near-optimal but much smaller, and thus more
efficient, window size. Other works, e. g., [57], indicate that
smaller history sizes might be beneficial in some scenarios.
However, there is no systematic study of the influence of
history sizes in lifelong learning on graphs.

g) Summary: To summarize, lifelong learning on graphs
is, so far, an unexplored topic. In particular, none of the
discussed works analyzes the problem of open-world clas-
sification in graph data and how much past training data
is necessary – or how few is enough – to maintain good
predictive power.

III. PROBLEM FORMULATION

We define our problem of open-world classification of graph
vertices as a form of lifelong learning [15], [17], [58].

Definition 1 (Lifelong Learning [17]). At any time t,
the learner has performed a sequence of t learning tasks,
T1, T2, . . . , Tt and has accumulated the knowledge K learned
in these past tasks. At time t+1, it is faced with a new learning
task Tt+1. The learner is able to make use of past knowledge
to help perform the new learning task Tt+1.

We cast this definition into a lifelong graph learning
problem by considering each task Tt := (Gt,X(t),y(t)) to
be a vertex classification task with graph Gt = (Vt, Et),
corresponding vertex features X(t) ∈ R|Vt|×D, and vertex
labels y(t) ∈ N|Vt|. We denote the set of all classes at time t as
Yt. To ensure that past knowledge is helpful to perform Tt, we
impose Gt−1∩Gt 6= ∅. We assume that the features and labels
of the vertices do not change: X(t−1)

u = X
(t)
u ,y

(t−1)
u = y

(t)
u

if u ∈ Vt−1 ∩ Vt. Such changes can still be modeled by
inserting a new vertex and removing the old one. The task
is to predict the class labels for new vertices Vt \Vt−1. Please
note that these vertices may come with new unseen classes
as Yt may differ from Yt−1. Furthermore, we analyze the
effect of a history size c, which limits the available past data.
We call this past data explicit knowledge. In this case, we set
T̃t := (G̃t, X̃(t), ỹ(t)) with G̃t := Gt \ (G1 ∪ G2 · · · ∪ Gt−c−1),
and remove corresponding features and labels to construct X̃t

and ỹt. Still, implicit knowledge acquired in past tasks, e. g.,
within the model parameters, may be used for task T̃t.

We further distinguish between several variants of this
problem statement:

a) One-step setting: A simplified setting with only two
tasks on standard benchmark datasets. We use this setup for
experiments comparing transductive and inductive learning in
Section VI-A.

b) Standard setting: We have a sequence of tasks that is
based on real-world data. All past vertices have ground truth

4

labels, which can be used for training. Unseen classes are
present and also considered in the evaluation, but no special
methods are employed to actively detect unseen classes. This
setting is reflected in the experiments of Section VI-B.

c) Limited labeled data: In this variant of the standard
setting, only a fraction of ground truth labels becomes avail-
able for training, rather than the labels of all past vertices.
This setting is reflected in the experiments of Section VI-C.

d) Unseen class detection: In the final variant, we seek
to analyze the models’ capabilities to actively detect unseen
classes. In addition to the classification, the models now need
to emit a binary decision per vertex, whether it belongs to a
previously known class or to a new, unseen class. This setting
is reflected in the experiments of Section VI-D.

IV. METHODS

In the following, we introduce our proposed incremental
training procedure as well as our method to harmonize window
sizes. Finally, we briefly describe the base GNN models that
we incrementally train for our experiments.

A. Incremental Training for Lifelong Learning on Graphs

Without loss of generality, we assume to have a finite
sequence of T tasks T1, . . . , TT and a model f with pa-
rameters θ. During the tasks, the graph changes, including
its vertices, edges, as well as the set of classes. To address
these changes, we explore a simple yet effective incremental
training technique for adapting neural networks to new graph-
structured tasks. As a preparation for task Tt+1, we retrain
f on the labels of Tt to obtain θ(t). Whenever l new classes
appear in the training data, we add a corresponding amount
of parameters to the output layer of f (t). Therefore, we
have |θ(t)output weights| = |θ(t−1)output weights| + l and |θ(t)output bias| =

|θ(t−1)output bias| + l. Those parameters that are specific to new
classes are newly initialized. For the other parameters, we
consider two options in our incremental training procedure:
warm restarts and cold restarts. With cold restarts, we re-
initialize θ(t) and retrain from scratch. In contrast, when using
warm restarts, we initialize the parameters for training on
task Tt with the final parameters of the previous task θ(t−1).
Algorithm 1 outlines our incremental training procedure.

B. Self-Detection of Unseen Classes

A successful model for lifelong learning would not only
classify new data into known classes, but also detect when
an instance belongs to a previously unseen class. We seek
to develop a generic method that is not specific to any
particular GNN architecture. Thus, we take inspiration from
the Deep Open Classification (DOC) [18] approach that has
been proposed for text classification. The key idea is to replace
the final softmax activation by elementwise sigmoid activation.
Hence, the training objective becomes binary cross-entropy
rather than categorical cross-entropy. Finally, a threshold is
necessary to emit a crisp decision at test time. When the output
for all classes fall below the threshold, the classification of that
instance gets rejected.

Algorithm 1: Incremental training for lifelong graph
learning under cold-start vs. warm-start condition

Input : Sequence of tasks T̃0, · · · , T̃T , model f with
parameters θ, flag for cold or warm restarts

Output: Predicted labels for new vertices of each task
1 known classes ← ∅;
2 θ ← initialize parameters();
3 for t← 1 to T do
4 new classes ← set(ỹ(t−1)) \ known classes;
5 if new classes 6= ∅ then
6 θ′ ← expand output layer(θ, |new classes|);
7 end
8 θ′ ← initialize parameters();
9 if t > 1 and do warm restart = TRUE then

10 θ′ ← copy existing parameters(θ);
11 end
12 θ′ ← train(θ′, G̃t−1, X̃(t−1), ỹ(t−1));
13 ỹpred ← predict(θ′, G̃t, X̃(t)) for vertices Vt \ Vt−1;
14 known classes ← known classes ∪ new classes;
15 θ ← θ′;
16 end

Such thresholds can be either global or class-specific. A
natural choice for a global threshold is the inflection point
of the sigmoid function: τ = 0.5. However, estimating class-
specific thresholds might further reduce the risk of wrongly
rejecting the classification of a known class [18]. A strategy
for estimating class-specific thresholds is consulting the stan-
dard deviation across the training data [18]. To determine a
threshold for class i, we collect all model outputs for instances
of class i. For all these outputs ŷ ∈ [0, 1], we create a mirror
point 1 + ŷ, assuming a Gaussian distribution with mean 1.
On this distribution, we estimate the standard deviation SDi

and assign the new class specific threshold

τi := max{τmin, 1− α · SDi}

where α is a scaling factor for the standard deviation and τmin

is the minimum threshold. The original DOC [18] has used a
fixed minimum threshold of τmin = 0.5, while we leave it
open to investigate upon different values for τmin. For α, the
original work suggests a value of 3.

This generic method can be used for self-detection of unseen
classes in conjunction with any GNN model for vertex clas-
sification. In this work, we further experiment with adjusting
the loss scaling of binary cross-entropy to account for class
imbalance, which is inevitable in real-world graph data. This
is particularly important for unseen class detection because,
here, the magnitude of all outputs is relevant for the final
decision, rather than only their maximum value. We denote
this variant as gDOC. In detail, if class i appears n+ times
in the training data, we multiply the loss of output i with the
factor n−n+

n+ . This is a standard weighting procedure for binary
cross-entropy that increases the loss according to the fraction
of positive versus negative examples within the training data.

5

C. k-Neighborhood Time Differences

Real-world graphs grow and change at a different pace [59].
Some graphs change quickly within a short time like social
networks, while others evolve rather slowly such as citation
networks. Furthermore, graphs show different change behav-
ior, i. e., different patterns in how vertices and edges are added
and removed over time. Therefore, depending on the specific
graph data, a different history of the data must be used for
training to take these factors into account.

To make absolute history sizes more comparable across
different datasets, we introduce a dataset-level measure that
depends on the time differences within the k-hop neighorhood
of each node.

The k-Neighborhood Time Difference Distribution tdiffk

enumerates the distribution of time differences within the k-
hop neighborhood of each vertex, which corresponds to the
receptive field of a GNN with k graph convolutional layers.

Intuitively, we collect the time differences of all node
pairs reachable which are connected by at most k edges. We
aggregate these time differences such that we obtain number
of times a certain time difference has occurred in the dataset.
Then we form a distribution (a multiset) over these time
differences, whose percentiles we use as candidate history
sizes.

Definition 2 (k-Neighborhood Time Difference Distribution).
Given graph G and let N k(u) be the k-hop neighborhood
of u, i. e., the set of vertices that are reachable from u by
traversing at most k edges. Let time : V → N be a function
that gives the time information for each vertex, e. g., the year
of a publication. We define tdiffk(G) to be the multiset of time
differences, computed over all vertices u ∈ V to their k-distant
neighboring vertices v ∈ N k(u) that occurred before u.

tdiffk(G) :={{d#(time(u)−time(v)=d) |
u ∈ V ∧ v ∈ N k(u) ∧ time(v) ≤ time(u)}}

where # (time(u)− time(v) = d) gives the multiplicity
with which time difference d has occurred.

We interpret the multiset tdiffk as a distribution over time
differences, that is used to further analyze a dataset’s temporal
distribution (percentiles) and to make datasets comparable.

In our experiments, we compare models trained with a
limited history size against models trained with the full history.
We use the 25th, 50th, and 75th percentiles of this distribution
as history sizes versus the 100th percentile to model the full
graph to analyze the influence of explicit knowledge.

D. Properties of k-Neighborhood Time Differences

Given a graph G = (V,E) with E ⊆ V × V and the time
t : V → N at which a vertex appears in G. A “good” measure
to determine history sizes c : (V,E, t) 7→ N in evolving graphs
would be equivariant to granularity. That means:

c(V,E, a · t± a) ∈ a · c(V,E, t)± a (1)

with a ∈ R+ and a · t ± a being a shorthand for a function
t′ that satisfies a · t(u) ∈ t′(u) ± a for all u ∈ V . We

show that tdiffk fulfills this property in Appendix A of the
supplementary material.

Recall that we select the history size according to a per-
centile of tdiffk. Our datasets have the granularity of years.
Thus, the history size we compute is measured in years. If
we changed the granularity to months on the same underlying
data, we would end up with the same history sizes multiplied
by a factor of 12. Still, we would obtain (nearly) the same ver-
tices within the history as before. Furthermore, equivariance
to granularity is the minimum requirement to make history
sizes comparable across datasets. We cannot assume that any
absolute history size on dataset A would be comparable to
the same history size on dataset B. But, if we derive our
measure from tdiffk, e. g., the median of tdiff2, we have a
strategy to find comparable history sizes across datasets, even
if they come from different domains, e. g., social graphs with
postings on minute level vs. citation graphs with data on at
least daily level. This is because the measure is equivariant
to granularity and it solely relies on time differences between
connected vertices.

To summarize, the k-Neighborhood time differences are a
measure that we only need to compute once per dataset before
training. It captures the granularity and temporal connectivity
patterns of the given graph. It allows us to derive history sizes
that are comparable across datasets.

E. Graph Neural Network Base Models

The previously described techniques can be applied to
arbitrary base models. In the following, we describe the base
models that we considered for our experiments. The success
of graph convolution [4] has triggered a resurgence of interest
in graph neural networks [3]. In a generic formulation, the
hidden representation of vertex i in layer l is defined as:

h
(l+1)
i = σ

 ∑
j∈N (i)

1

cij
W (l)h

(l)
j

where N (·) refers to the set of adjacent nodes and σ is a non-
linear activation function. The normalizing factor cij depends
on the respective model: the original Graph Convolutional
Networks (GCN) [4] use cij =

√
|N (i)| ·

√
|N (j)|.

For our experiments, we systematically select representative
GNN architectures as well as scalable GNN techniques for our
experiments on lifelong learning. For this, we consider the
different types of GNNs anisotropic vs. isotropic and standard
vs. scalable approaches, as outlined in Section II. Our goal
is to understand how different approaches of GNNs react to
situations of changing graphs and new classes.

We select Graph Attention Networks (GATs) [6] as
representative for the class of anisotropic GNNs. In GATs, the
representations in layer l+ 1 for vertex i are computed as fol-
lows: ĥl+1

i = αl
iih

l
i+
∑

j∈N (i) α
l
ijh

l
j and hl+1

i = σ(U lĥl+1
i),

where N (i) is the set of adjacent vertices to vertex i, U l are
learnable parameters, and σ is a nonlinearity. The edge weights
αij are computed by a self-attention mechanism based on hi
and hj , i. e., the softmax of a(U lhi||U lhj) over edges, where
a is an MLP and ·||· is the concatenation operation.

6

We select GraphSAGE-Mean [5] as a representative for
isotropic GNNs because its special treatment of the vertices’
self-information has shown to be beneficial [27]. The repre-
sentations of self-connections are concatenated with averaged
neighbors’ representations before multiplying the parameters.
In GraphSAGE-Mean, the procedure to obtain representations
in layer l + 1 for vertex i is given by the equations: ĥl+1

i =
hl
i|| 1

degi

∑
j∈N (i) h

l
j and hl+1

i = σ(U lĥl+1
i),

We select Simplified GCN [19] as a representative for
shifting the neighborhood aggregation into preprocessing.
Simplified GCN is a scalable variant of Graph Convolutional
Networks (GCN) [4] that admits regular mini-batch sam-
pling. Simplified GCN removes nonlinearities and collapses
consecutive weight matrices into a single one. Thus, the
simplified GCN can be described by the equation ŶSGC =
softmax(SKXΘ), where S is the normalized adjacency matrix
and Θ is the weight matrix. The hyperparameter K has a
similar effect as the number of layers in regular GCNs. Instead
of using multiple layers, the k-hop neighbourhood is computed
by SK , such that SKX can be precomputed. This makes
Simplified GCN efficient, while not necessarily harming the
performance [19].

We use GraphSAINT [12] as state-of-the-art subgraph
sampling technique. In GraphSAINT, entire subgraphs are
sampled for training GNNs. Subgraph sampling introduces
a bias which is counteracted by normalization coefficients
for the loss function. We use the best-performing random-
walk sampling for our experiments. The underlying GNN
is exchangeable, yet the authors suggest to use Jumping
Knowledge networks (JKNets) [60]. JKNets introduce skip-
connection to GNNs: each hidden layer has a direct connection
to the output layer, in which the representations are aggregated,
e. g., by concatenation. To isolate the effect of GraphSAINT
sampling, we also include JKNets in our experiments.

V. DATASETS

Adapting models to new data is an important problem when-
ever machine learning models are deployed in production.
However, many graph benchmark datasets are stripped off
any temporal data, which is needed to divide the data into
realistic partitions, i. e., tasks. We scanned the literature (e. g.,
[11], [27], [46]) and common collections (OpenGraphBench-
mark [61], KONECT1, and PyTorch Geometric Temporal2) for
datasets meeting the following criteria:
• Attributed vertices
• Vertex labels
• Time information on the vertices
• Evolving set of vertices (and thus, also edges) over time
• Evolving set of classes over time

Surprisingly, graph datasets meeting these criteria are rare.
In those datasets with time information, either the graph is
static, or the set of classes is static. Concurrent work on
lifelong learning synthesizes an ordering of the vertices in
standard datasets [26]. In this work, we seek to understand
how our methods deal with naturally evolving datasets. For

1http://konect.cc/
2https://pytorch-geometric-temporal.readthedocs.io/

TABLE I
STATISTICS FOR TRAIN-TEST SPLITS: FEW-MANY (A) AND MANY-FEW (B)

SETTINGS ON THE CITATION NETWORKS DATASETS: CORA, CITESEER,
AND PUBMED. THE UNSEEN VERTICES AND EDGES ARE AVAILABLE ONLY

AFTER THE TRAINING EPOCHS. THE TEST SAMPLES FOR MEASURING
ACCURACY ARE A SUBSET OF THE UNSEEN VERTICES. THE LABEL RATE IS

THE PERCENTAGE OF LABELLED VERTICES FOR TRAINING.

Dataset Cora Citeseer Pubmed

Classes 7 6 3
Features 1,433 3,703 500
Vertices 2,708 3,327 19,717
Edges 5,278 4,552 44,324
Avg. Degree 3.90 2.77 4.50

Setting A B A B A B

Train Vertices 440 2,268 620 2,707 560 19,157
Train Edges 342 3,582 139 2,939 34 41,858
Unseen Vertices 2,268 440 2,707 620 19,157 560
Unseen Edges 4,936 1,696 4,413 1,613 44,290 2,466
Test Samples 1,000 440 1,000 620 1,000 560
Label Rate 16.2% 83.8% 18.6% 81.4% 2.8% 97.2%

our first experiment, we use two different splits on standard
benchmark datasets, which are described next. For the other
three experiments on lifelong learning, we construct three
entirely new datasets that we describe thereafter.

A. Standard Datasets

We use standard citation datasets: Cora, Citeseer, and
Pubmed [62] for our first experiments on transductive versus
inductive learning. Vertices are research papers represented
by textual features and annotated with a class label. Edges
resemble citation relationships, which are represented as bidi-
rectional edges. These datasets are often used in transductive
setups [4], [6], [13]. In our experimental setup with unseen
vertices, however, we cast these datasets to be inductive.

We use two different train-test splits for each dataset. Setting
A is derived from the train-test split for transductive tasks [4].
It consists of few labeled vertices that induce our training
set and many unlabeled vertices. Setting B instead comprises
many training vertices and few test nodes. We set it up by
inverting the train-test mask of Setting A and assign the
edges accordingly. Setting B is motivated from applications, in
which a large graph is already known and incremental changes
occur over time, such as for citation recommendations, link
prediction in social networks, and others [59], [63]. We refer
to Table I for the details of the datasets and the two settings.
We use these three datasets with two different train-test splits
in our first experiment described in Section VI-A.

B. New Datasets for Lifelong Learning on Graphs

We provide three new graph datasets for lifelong learning
on the basis of scientific publications: one new co-authorship
graph dataset (PharmaBio) as well as two newly compiled ci-
tation graph datasets based on DBLP (DBLP-easy and DBLP-
hard). For PharmaBio, the classes are journal categories. For
DBLP, we use the conferences and journals of the published
papers as classes. Since we select those venues with the most

http://konect.cc/
https://pytorch-geometric-temporal.readthedocs.io/

7

publications, this serves as a proxy for a broad categorization.
When new conferences and journals emerge, as they do in
computer science, new classes will be introduced to the data.
The datasets were generated by imposing a minimum threshold
of publications per class per year: 100 for DBLP-easy, 45
for DBLP-hard, and 20 for PharmaBio. For the co-authorship
graph PharmaBio we additionally require a minimum of two
publications per author per year. In all datasets, vertex features
are normalized TF-IDF representations of the publication title.

TABLE II
GLOBAL DATASET CHARACTERISTICS: TOTAL NUMBER OF VERTICES |V |,

EDGES |E|, FEATURES D, CLASSES |Y| ALONG WITH # OF NEWLY
APPEARING CLASSES (IN BRACES) WITHIN THE T EVALUATION TASKS

Dataset |V | |E| D |Y| T

DBLP-easy 45,407 112,131 2,278 12 (4 new) 12
DBLP-hard 198,675 643,734 4,043 73 (23 new) 12
PharmaBio 68,068 2,1M 4,829 7 18

1) Basic Characteristics: Table II summarizes the basic
characteristics of the datasets. DBLP-easy and DBLP-hard are
organized into 12 annual snapshots, while PharmaBio has 18
annual snapshots. DBLP-easy has 45k vertices, 112k edges,
and a feature dimension of 2,278. The nodes are assigned
to one of 12 classes, of which four only appear during the
sequence of snapshots, i. e., they are not present in the first
snapshots. DBLP-hard has 199k classes, 644k edges, and a
feature dimension of 4,043. Twenty-three of the 73 classes
appear only during later snapshots. PharmaBio comes with 68k
vertices, 2.1M edges, feature dimension 4,829, 7 classes and
18 snapshots. The number of edges is much higher than in the
DBLP variants because PharmaBio is a co-authorship graph,
which is more dense than citation graphs. Note that DBLP-
easy is a subset of DBLP-hard as both where generated by
applying a minimum threshold on the number of publications
per class.

We report the datasets’ label distribution, degree distribu-
tion, and the distribution over time in Figure 2. The annual
number of publications grows over time. Only in PharmaBio,
there is a higher amount between 1991-1997 than it is between
1998 and 2003. The global degree distributions of DBLP-easy
and DBLP-hard seem to follow a power-law distribution [64]
as the degree distribution is almost a straight-line except
for the blurry tail. For PharmaBio, the degree distribution
is more blurry, while a trend line can still be identified.
Furthermore, we observe that the number of examples per
class is imbalanced in all three datasets. Even though the three
classes have different numbers of classes, the shape of the label
distributions is similar.

2) Unseen Classes and Distribution Shift: Regarding
changes in the class set, DBLP-easy has 12 venues in total,
including one bi-annual conference and four new venues
appearing in 2005, 2006, 2007, and 2012. DBLP-hard has
73 venues, including one discontinued, nine bi-annual, six
irregular venues, and 23 new venues. To quantify changes in
the class set, we compute the magnitude of the class drift as

total variation distance [65], [66]:

σt−1,t =
1

2

∑
y∈Yt−1∪Yt

|Pt−1(y)− Pt(y)|

where Pt(y) is the observed class probability at time t. We
visualize the drift magnitudes per dataset in Figure 3. An i.i.d
dataset would have a drift magnitude of zero by definition.
As expected, the drift magnitude is high (between 0.12 and
0.16) for the two datasets with new classes: DBLP-easy and
DBLP-hard. On PharmaBio, which has no new classes, the
drift magnitude is consistently lower than 0.07.

3) Analyzing Time Differences: Next, we analyze the k-
neighborhood time differences tdiffk, which we have intro-
duced in Section IV-C. In Figure 4, we show the resulting
distribution for three different values of k = 1, 2, 3. As
expected, the time differences increase if we allow a higher
maximum path length k. For our experiments, we will use
GNN models with 2 layers, i. e., they take the two-hop
neighborhood of each vertex into account. Thus, we use tdiff2

to derive candidate history sizes. As such, we select 1, 3, 6,
25 as history sizes for DBLP-{easy,hard} and 1, 4, 8, 21 as
history sizes for PharmaBio according to the 25th, 50th, 75th,
and 100th percentiles of tdiff2.

4) Setting Up Tasks for Lifelong Learning: For each
dataset, we construct the sequence of tasks T̃1, . . . , T̃T on the
basis of the publication year along with a history size c. For
each task T̃t, we construct a graph with publications from time
[t− c, t], where publications from time t are the test vertices,
and t < c training vertices (transductive). In the inductive
case that is used by GraphSAINT in our experiments, we
train exclusively on T̃t−1, but still evaluate the test vertices
of T̃t. We set the first evaluation task T̃1 to the time, at which
25% of the total number of publications are available. Thus,
mapping the datasets to our problem statement (see Figure 1),
our first evaluation task t = 1 corresponds to year 1999
in PharmaBio (total range: 1985–2016) and 2004 in DBLP-
{easy,hard} (1990-2015). We continue with the next years for
subsequent tasks. We will use these datasets in the experiments
described in Sections VI-B, VI-C, and VI-D.

VI. EXPERIMENTS

In the following, we describe our experiments to analyze
transductive vs. inductive learning, lifelong learning, open-
world learning, and learning with limited labeled data. We
use standard benchmark datasets (described in Section V-A)
for the first experiment VI-A, and then we use our new datasets
(described in Section V-B) for the experiments VI-B – VI-D.

A. Transductive versus Inductive Learning

1) Experimental Setup: We construct a dedicated exper-
imental setup to assess the inference capabilities of graph
neural networks. We include edges in the training set if and
only if its source and destination vertex are both in the training
set. The training process is then split in two steps. First, we
pre-train the model on the labelled training set. Then, we insert
the previously unseen vertices and edges into the graph and
continue training for a limited amount of inference epochs.

8

Fig. 2. Distribution of vertices per year on log scale (left column), degree distributions (middle column), label distributions (right column), for our new
datasets: DBLP-easy (top row), DBLP-hard (middle row), PharmaBio (bottom row)

Fig. 3. Magnitude of the class drift per dataset. The drift within the PharmaBio
dataset (no new classes) is lower than the drift of both DBLP variants.
Independent and identically distributed data would have drift magnitude zero.

The unseen vertices do not introduce any new labels. Instead,
the unseen vertices provide features and may be connected
to known labelled vertices. We evaluate the accuracy on the
test vertices, which are a subset of the unseen vertices, before
the first and after each inference epoch. For each model, we
compare using 200 pretraining epochs versus no pretraining. In
the latter case, the training begins during inference, which is
equivalent to retraining from scratch whenever new vertices
and edges are inserted. This allows us to assess whether

pretraining is helpful for applying graph neural networks on
dynamic graphs.

2) Hyperparameters: All employed graph neural networks
use two graph convolution layers that aggregate neighbor
representations. The output dimension of the second layer
corresponds to the number of classes. Thus, the features within
the two-hop neighborhood of each labeled vertex are taken into
account for its prediction. We adopt the same hyperparameter
values as proposed in the original works. For GCN, we use
16 or 64 (denoted by GCN-64) hidden units per layer, ReLU
activation, 0.5 dropout rate, along with an (initial) learning rate
of 0.005 and weight decay 5 · 10−4 [4]. For GAT, we use 8
hidden units per layer and 8 attention heads on the first layer.
The second layer has 1 attention head (8 on Pubmed). We
set the learning rate to 0.005 (0.01 on Pubmed) with weight
decay 0.0005 (0.001 on Pubmed) [6]. For GraphSAGE, we
use 64 hidden units per layer with mean aggregation, ReLU
activation, and a dropout rate of 0.5. We set the learning rate to
0.01 with weight decay 5·10−4 [5]. Our MLP baseline has one
hidden layer with 64 hidden units, ReLU activation, a dropout
rate of 0.5, learning rate 0.005 and weight decay 5 · 10−4.
In all cases, we use Glorot initialization [67] and Adam [68]
to optimize cross-entropy. We initialize the optimizer at the
beginning of the inference epochs.

3) Results: Figure 5 shows the results of the three models
on the three datasets: Cora, Citeseer, and Pubmed. Pretrained
models score consistently higher than non-pretrained models

9

Fig. 4. Distributions of time differences tdiffk (y-axis) for DBLP-easy (left), DBLP-hard (center) and PharmaBio (right) within the k-hop neighborhood for
k = {1, 2, 3} (x-axis).

Fig. 5. Test accuracy after each inference epoch for the many-few settings A (Top) and few-many setting B (Bottom) on the datasets Cora, Citeseer, and
Pubmed. Each line resembles the mean of 100 runs and its region shows the standard deviation. The dashed lines show the results with 200 pretraining. The
solid lines are the results without prertraining.

while having less variance. The accuracy of the pretrained
models plateaus after a few inference epochs (up to 10 on
Cora-A and Pubmed-B). Without any pretraining, GAT shows
the fastest learning process. The absolute scores of pretrained
graph neural networks are higher than the ones of MLP. From
a broad perspective, the scores of pretrained graph neural
networks are all on the same level. While GCN falls behind
the others on Cora-B, GAT falls behind the others on Pubmed.
The scores of the many-few setting B are higher than the ones
of few-many setting A by a constant margin.

We compare the results of setting A and B by measuring
the Jensen-Shannon divergence [69] between the accuracy
distributions. The Jenson-Shannon divergence between the two
settings is lower with pretraining (between 0.0057 for GAT
and 0.0115 for MLP) than it is without pretraining (between

0.0666 for GraphSAGE and 0.1013 for GCN). This shows that
accuracy distributions are similar in both train-test splits.

In summary, our results show that inductive graph neural
networks perform well even though we insert new unlabeled
vertices and edges after training. For all three considered
in this study, the accuracy plateaus after very few inference
epochs. This observation holds for both train-test split settings:
many-few and few-many. This motivates the warm restart
strategy, i. e., reusing previous parameters, that we use in the
following experiments on lifelong learning. In different terms,
we have not observed any gain from uptraining an inductive
model on extra unlabeled data.

10

B. Lifelong Learning on Graphs
So far, we have added new unlabeled data. Now, we report

the results of our main experiments to explore the standard
lifelong learning setting, as described in Section III. In this
setting, the models have to sequentially adapt to new tasks
with new labeled data including unseen classes.

1) Experimental Setup: We constrain all models to two
graph convolutional layers, a comparable penultimate hidden
dimension (2x32 GraphSAGE, 4x8 GAT, 2x2x16 JKNet, 64
MLP), and a 0.5 dropout rate. We fix an update step budget
of 200 per task and use Adam [68] to optimize cross-entropy.
We implemented GAT, GraphSAGE-mean, Simplified GCN,
and JKNet with dgl [70] and use torch-geometric [71] for
GraphSAINT. We had to disable GraphSAINT’s norm recom-
putation for each task such that our experiments could finish
in a reasonable time. We also optimized weight decay. The
effect of weight decay was negligible. For each combination
of base model, history size, and restart configuration, we tune
the learning rate on DBLP-easy. Thus, we consider DBLP-
easy as our development dataset to tune the learning rate,
which we then apply on DBLP-hard and PharmaBio. We
run our incremental training method for graph learning from
Section IV-A for each of the models under warm restart and
cold restart configurations. The experiments are repeated 10
times with different random seeds.

2) Evaluation Measures: Our primary evaluation measure
for lifelong node classification f is accuracy. With acct(f

(t)),
we denote the accuracy of model f (t) on task Tt. We aggregate
accuracy scores over the sequence of tasks T1, . . . , TT by using
their unweighted average [24]:

acc(f) =
1

T

∑
t∈1,...,T

acct(f
(t))

Following Lopez-Paz & Ranzato [24], we use Forward Trans-
fer (FWT) to quantify the effect of reusing previous pa-
rameters. This is reflected by the accumulated differences in
accuracy between the fwarm and fcold models, defined below:

FWT(fwarm, fcold) =
1

T − 1

∑
t∈2,...,T

acct(f
(t)
warm)− acct(f

(t)
cold)

3) Results: Table III shows the aggregated results of 20,160
evaluation steps (48 configurations with 10 repetitions on two
datasets with 12 tasks each and one dataset with 18 tasks).
We consider method A better than method B when the mean
accuracy of A is higher than the one of B and the 95%
confidence intervals do not overlap [72]. In terms of absolute
best methods per setting (= dataset × history size), we find
that GraphSAGE consistently yields the highest scores except
for DBLP-hard, where it is challenged by Simplified GCN.

Regarding the comparison of history sizes (i. e., explicit
knowledge, see Section I), the highest scores are achieved in
almost all cases by using an unlimited history size, i. e., using
the full graph’s history. However, on all datasets, the scores
for training with limited window sizes larger than 1 are close
to the ones of full-graph training. With history sizes that cover
50% of the GNN’s receptive field, all methods achieve at least
95% relative accuracy compared to the same model under full-
history training. When 75% of the receptive field is covered,

the models yield at least 99% relative accuracy. To compute
these percentages, we have selected the better one of either
cold or warm restarts for each method.

Regarding the influence of implicit knowledge, we find that
reusing parameters (warm restarts) leads to notably higher
scores than retraining from scratch, when the history size is
one (see column FWT with history size c = 1): The average
Forward Transfer across all models and datasets with history
size c = 1 is five accuracy points.

Regarding isotropic vs anisotropic GNNs, we find that GAT
and GraphSAGE perform similarly well on DBLP-easy (on
which the learning rate was tuned). However, GraphSAGE-
mean yields higher scores on DBLP-hard and PharmaBio,
which might indicate that GraphSAGE-mean is more robust
to hyperparameters than GAT.

Regarding memory-efficient methods, we observe that the
scores of Simplified GCN are among the highest of all methods
on DBLP-hard. To understand this result, we recall that
Simplified GCN uses only one single weight matrix of shape
nfeatures×noutputs, which leads to 300,000 learnable parameters
on DBLP-hard, but only 27,000 and 34,000 on DBLP-easy
and PharmaBio, respectively. For comparison, GraphSAGE
has 146,000 learnable parameters on DBLP-easy, 264,000 on
DBLP-hard, and 310,000 on PharmaBio. On the other hand,
GraphSAINT yields high scores on PharmaBio, comparable
to GraphSAGE, but lower scores on both DBLP datasets.

C. Lifelong Learning with Limited Labeled Data

Until now, we have assumed that the true label of each
vertex becomes part of the training data for subsequent tasks.
While this is realistic in some scenarios, there are others in
which we cannot expect to gain access to the true labels after
finishing each prediction task. For this reason, we artificially
limit the amount of labeled data that becomes available for
subsequent tasks.

1) Experimental Setup: To implement the idea of learning
with only a fraction of labeled data, we randomly sample a
subset of vertices, for which the true class label is available
for training. We denote this fraction as the label rate. For
the experiments, it is important to sample globally rather than
on a per-task basis because we would get inconsistencies
otherwise: node i could have a label in task t but not in
task t+ 1. Therefore, we sample on the entire dataset, before
we split it into tasks. This way, the subset of vertices that
comes with classes is fixed for the entire duration of the
experiments. Furthermore, we use the same subset with all
different configurations and all repetitions of the experiment.
We sample uniformly at random on vertex level without any
stratification across classes.

For this experiment, we use GraphSAGE-Mean as GNN
model because it has achieved the best results in the previous
experiment, where the label rate was not restricted. As before,
we evaluate different history sizes (1, 3, 6) and both restart
configurations (warm and cold). As dataset, we chose to use
DBLP-hard because it has the highest number of classes and
is the most challenging one.

11

TABLE III
ACCURACY (WITH 95% CONFIDENCE INTERVALS VIA 1.96 STANDARD ERROR OF THE MEAN) AND FORWARD TRANSFER (AVERAGED DIFFERENCE OF

WARM AND COLD RESTARTS) ON OUR DATASETS WITH DIFFERENT HISTORY SIZES (COLUMN C). THE BEST METHOD PER CASE (= 1 DATASET + 1
HISTORY SIZE) IS MARKED IN BOLD, ALONG WITH METHODS WHERE THE 95% CI OVERLAPS.

GAT GraphSAGE-Mean MLP (Baseline)
avg. accuracy FWT avg. accuracy FWT avg. accuracy FWT

cold warm cold warm cold warm
Dataset c

DBLP-easy

1 60.8± 0.5 64.9± 0.4 +4.5 60.4± 0.5 65.1± 0.4 +5.2 56.1± 0.4 62.2± 0.5 +6.6
3 68.9± 0.3 69.3± 0.3 +0.2 68.7± 0.3 69.3± 0.3 +0.7 61.0± 0.5 62.9± 0.4 +2.0
6 70.3± 0.4 70.2± 0.4 −0.1 71.1± 0.4 70.9± 0.4 −0.3 62.7± 0.3 62.7± 0.4 −0.2
full 70.2± 0.4 70.2± 0.4 +0.1 71.6± 0.4 71.4± 0.3 −0.2 63.4± 0.3 61.9± 0.4 −1.2

DBLP-hard

1 39.4± 0.2 39.1± 0.2 −0.1 34.5± 0.4 40.0± 0.2 +5.9 31.6± 0.3 38.3± 0.3 +7.4
3 44.0± 0.2 43.7± 0.2 −0.4 44.3± 0.2 45.1± 0.2 +0.8 33.7± 0.3 38.9± 0.2 +5.6
6 45.1± 0.3 45.3± 0.3 +0.2 46.5± 0.3 46.7± 0.3 +0.2 39.2± 0.2 38.3± 0.2 −0.7
full 45.6± 0.3 45.6± 0.3 −0.1 46.8± 0.2 47.1± 0.3 +0.4 38.2± 0.2 36.7± 0.2 −1.1

PharmaBio

1 61.6± 0.9 65.4± 0.9 +3.8 65.4± 0.9 68.6± 1.0 +3.3 62.7± 0.9 66.3± 0.9 +3.9
4 64.5± 0.8 65.3± 0.9 +0.9 68.0± 0.8 69.0± 0.8 +1.1 66.3± 0.7 65.7± 0.8 −0.7
8 65.1± 0.8 65.4± 0.8 +0.3 68.8± 0.7 69.0± 0.8 +0.2 64.2± 0.8 65.3± 0.7 +0.9
full 64.3± 0.8 65.4± 0.8 +0.2 69.0± 0.7 68.4± 0.7 −0.7 65.4± 0.8 64.4± 0.6 −1.1

Simplified GCN GraphSAINT Jumping Knowledge
avg. accuracy FWT avg. accuracy FWT avg. accuracy FWT

cold warm cold warm cold warm

DBLP-easy

1 57.1± 0.4 63.7± 0.4 +7.2 62.1± 0.3 63.2± 0.4 +1.2 56.2± 0.5 61.4± 0.5 +5.6
3 66.4± 0.3 67.4± 0.3 +1.2 66.4± 0.4 65.3± 0.5 −0.9 65.2± 0.3 65.9± 0.5 +1.0
6 69.3± 0.4 69.3± 0.4 +0.1 68.1± 0.4 65.5± 0.7 −2.1 68.0± 0.4 66.9± 0.6 −0.7
full 71.0± 0.4 70.0± 0.4 −1.0 68.4± 0.5 65.7± 0.5 −2.8 68.7± 0.4 66.3± 0.4 −2.5

DBLP-hard

1 34.5± 0.3 41.0± 0.3 +7.0 35.9± 0.3 35.6± 0.4 +0.5 33.0± 0.2 35.3± 0.3 +2.9
3 44.1± 0.2 44.8± 0.3 +0.8 39.3± 0.3 38.1± 0.5 −0.6 39.1± 0.3 38.8± 0.4 +0.3
6 46.9± 0.3 46.2± 0.3 −0.4 40.6± 0.3 38.8± 0.6 −1.2 41.0± 0.3 40.1± 0.5 −0.3
full 48.8± 0.4 47.5± 0.3 −1.2 41.0± 0.4 40.7± 0.4 −0.3 41.6± 0.3 40.8± 0.2 −0.9

PharmaBio

1 62.3± 0.9 64.5± 0.8 +2.3 65.7± 0.8 68.6± 0.8 +3.0 64.1± 0.9 68.3± 0.9 +4.3
4 64.4± 0.8 64.4± 0.8 −0.0 67.3± 0.8 68.4± 0.7 +1.0 67.1± 0.8 68.2± 0.8 +1.1
8 65.3± 0.8 64.0± 0.7 −1.4 68.1± 0.8 68.0± 0.7 −0.1 67.8± 0.8 67.7± 0.7 −0.3
full 62.4± 0.8 61.7± 0.6 −0.8 68.2± 0.8 66.1± 0.8 −2.2 66.8± 0.8 64.5± 0.7 −2.6

Fig. 6. Average accuracy of GraphSAGE with warm restarts across tasks on
DBLP-hard under varying label rate

2) Results: In Figure 6, we plot the average accuracy across
tasks as a function of label rate. We confirm that the results
of our previous experiments also hold when labeled data is
limited. Warm restarts yield higher scores than cold restarts.
This is more pronounced when the history size is small. As

Fig. 7. Number of nodes with unseen classes per task on DBLP-hard

expected, the absolute accuracy values decrease when the label
rate becomes smaller.

D. Self-Detection of Unseen Classes

So far, the methods had no chance to predict any of the
previously unseen classes because those have never appeared
in the training data. In previous experiments, unseen new
classes have still been part of the evaluation to ensure a
realistic setup. Now we present an experiment where the

12

models shall actively detect instances from unseen classes,
while classifying the other instances as usual.

1) Experimental Setup: To investigate self-detection of
unseen classes, we use the DBLP-hard dataset as it has
the highest amount of new classes (23 in the course of
the temporal evolution). We use the best-performing model
GraphSAGE-mean along with the DOC extensions for unseen
class detection that we have introduced in Section IV. We op-
timize its hyperparameters on our development dataset DBLP-
easy because of the different loss function. As before, the best
learning rate is selected based on the best accuracy on DBLP-
easy and transferred to DBLP-hard. In Figure 7, we show
how many vertices belong to unseen classes in the DBLP-
hard dataset. We observe that in every task, apart from the
final task, there are vertices with unseen classes. Note that we
do not tune the learning rate for the best detection performance
but for the best accuracy, as in previous experiments. We then
compare DOC with gDOC, where the former is our baseline
and the latter uses our proposed class-weighting loss function.

2) Evaluation Measures: We evaluate how good the models
are at detecting unseen classes. For this purpose we use
two measures: Macro-F1 with a special class for instances
from unseen classes [18] and Matthews correlation coefficient
(MCC). Note that Macro-F1 averages the F1 scores over
classes, such that the effect of the ’unseen’ class is taken into
account like any of the known classes. In detail, we compute
this Open Macro-F1 as follows:

y′pred,i :=

{
’unseen’, if example i is detected as o.o.d.
ypred,i, otherwise

y′i :=

{
yi if class yi is known
’unseen’, otherwise

where ypred are the predicted class labels. The arg max of the
output is replaced by a special symbol when the method has
emitted an ’unseen’ decision for that instance. The true labels
y are pre-processed similarly, such that instances from unseen
classes receive a special class symbol. Then, we average

Open Macro-F1 :=
1

T

T∑
t=1

Macro-F1(y′(t),y′pred(t))

In pre-experiments, we found that the best Open F1-Macro
scores are achieved when the thresholds are high. This is
because we have a high number of classes and the special
class contributes only very little to the overall F1 Macro score.
Thus, a large number of false rejects diminishes the overall
performance in terms of F1-Macro. False rejects are vertices
that should not be rejected (as their true class is known), but
they are rejected.

The F1-Macro score is not helpful for evaluating unseen
class detection, due to the class imbalance (overall there are
only few vertices with an unseen class). Thus, we decided
to report a further score, the Matthews correlation coefficient
(MCC) of the ’unseen’ class vs. all other classes (i. e., the
set of known classes). MCC is a popular measure to evaluate
binary classification that accounts for class imbalance [73].

Fig. 8. Global MCC Macro-F1 of W-GS-DOC (history size 3, warm) as a
function of the SD Factor α in DOC with different minimum threshold values.

Dealing with this class imbalance is important as the number
of vertices from the known classes are much larger than the
number of vertices from the unseen class. It ranges between -1
and 1, where zero corresponds to random prediction. In more
detail, MCC is computed as:

MCC =
TP · TN− FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP are true positives or correctly rejected instances, TN
true negatives, FP false positives and FN false negatives. We
accumulate those numbers over the entire sequence of tasks.

3) Results: The results in Table IV reveal that using class-
weighted binary cross entropy (gDOC) is necessary to achieve
reasonable Open-F1 macro scores. The MCC scores are also
consistently higher for gDOC than for plain DOC. For the
thresholds, we find that using a high threshold (0.75) is
preferable over lower thresholds. We further note that the
combination of warm restarts and a small history size leads to
the highest MCC scores (0.09). We provide the full results of
our experiments in Appendix B of the supplementary material.

In Figure 8, we show that reduction does not help to increase
the performance. When a high minimum threshold is used, risk
reduction only decreases the overall performance.

VII. ABLATION STUDY: INCREMENTALLY-TRAINED VS
ONCE-TRAINED MODELS

We isolate the effect of incremental training and com-
pare once-trained trained models (static) against incrementally
trained models (incremental). We train the static models for
400 epochs on the data before the first evaluation time step,
which comprises 25% of the total vertices. We train incremen-
tal models for 200 epochs with history sizes of 3 time steps
(4 on the PharmaBio dataset) before evaluating each task. We
repeat each experiment 10 times with different random seeds.
In Figure 9, we see that the accuracy of the static models
decreases over time on DBLP-easy and DBLP-hard, where

13

Fig. 9. Results of Ablation Study: Accuracy scores of once-trained, static models (solid lines) are lower than incrementally trained models (dashed lines).

TABLE IV
RESULTS FOR UNSEEN CLASS DETECTION ON DBLP-HARD WITH
GRAPHSAGE AS BASE MODEL (AVERAGE OF 5 REPETITIONS). α

INDICATES THAT RISK REDUCTION IS USED WITH THE RESPECTIVE
FACTOR FOR THE STANDARD DEVIATION, τ IS THE MINIMUM THRESHOLD.

RUNS NAMED GDOC ARE TRAINED WITH WEIGHTED CROSS ENTROPY.
DOC IS OUR BASELINE.

MCC Open F1 Macro
cold warm cold warm

c Open Learning Method

1 DOC (τ = 0.50) .01 .04 .01 .01
DOC (τ = 0.50, α = 3.0) .01 .02 .01 .01
gDOC (τ = 0.50) .04 .05 .13 .13
gDOC (τ = 0.50, α = 3.0) .04 .05 .13 .13
gDOC (τ = 0.75) .04 .09 .13 .13

3 DOC (τ = 0.50) .02 .03 .02 .05
DOC (τ = 0.50, α = 3.0) .02 .03 .02 .05
gDOC (τ = 0.50) .05 .06 .15 .15
gDOC (τ = 0.50, α = 3.0) .05 .06 .15 .15
gDOC (τ = 0.75) .05 .08 .15 .15

6 DOC (τ = 0.50) .02 .03 .05 .08
DOC (τ = 0.50, α = 3.0) .02 .03 .05 .08
gDOC (τ = 0.50) .05 .06 .16 .16
gDOC (τ = 0.50, α = 3.0) .05 .06 .16 .16
gDOC (τ = 0.75) .05 .07 .16 .16

∞ DOC (τ = 0.50) .02 .04 .8 .12
DOC (τ = 0.50, α = 3.0) .02 .04 .08 .12
gDOC (τ = 0.50) .04 .05 .16 .16
gDOC (τ = 0.50, α = 3.0) .05 .05 .16 .16
gDOC (τ = 0.75) .05 .07 .16 .16

new classes appear over time. On PharmaBio (fixed class set),
the accuracy of the static models plateaus, while the accuracy
of incrementally trained models increases.

VIII. DISCUSSION

Our experiments show that incremental training with limited
history sizes is almost as good as using the full history of
the graph. With window sizes of 3 or 4 (50% receptive field
coverage), GNNs achieve at least 95% accuracy compared
to using all past data for incremental training. With window
sizes of 6 or 8 (75% receptive field coverage), at least
99% accuracy can be retained. This result holds for standard
GNN architectures and also for scalable and sampling-based
approaches. This has direct consequences for lifelong learning

of GNNs on evolving graphs, as it impacts how GNNs can be
employed in real-world applications.

We have further investigated on reusing parameters from
previous tasks (warm restarts). Using warm restarts is a
viable strategy, i. e., reusing an “old” model, even though
new classes appear during the sequence of tasks. We have
shown that reusing parameters from previous tasks becomes
more important when the history sizes are small. This is
because less explicit knowledge is available. It is noteworthy
that Simplified GCNs perform surprisingly well on DBLP-
hard. There, the model yields the highest absolute scores, on
par with GraphSAGE, despite the simplicity of the approach.
Furthermore, we have shown that the methods work well, even
when labeled data is limited. This is important for real-world
applications because annotating data is expensive.

We acknowledge that crisp, unsupervised unseen class de-
tection is extremely challenging. We have conducted the first
step by combining graph neural networks with a DOC [18]
module. Our results show that it is necessary to adjust the
weights of binary cross entropy training (gDOC), when the
label distribution is imbalanced. Contrary to the original DOC,
we have not observed any improvements when risk reduction
(via standard deviation of logits) was used. Instead, the best
results were achieved with an appropriate threshold (τ = 0.75)
regardless of the risk reduction factor α.

Another interesting result is that the combination of warm
restarts with small history sizes have led to increased MCC
scores. It seems that omitting old data helps to better detect
out-of-distribution examples. This might be an interesting
direction of future work and might spur the development
of new specialized techniques for lifelong and open-world
learning in evolving graphs.

To reflect our work in the broader context of lifelong
or continual learning, we reconsider the gradient episodic
memory framework [24] for image data, in which examples are
independent. To cast graph data into independent examples for
vertex classification, certain preprocessing steps are required,
such as transforming each vertex into a graph [26]. This
increases the number of inference steps by O(|V |) compared
to our approach.

Furthermore, we have shown that our approach of incre-
mental training can be applied to various GNN architectures

14

and is orthogonal to sampling and preprocessing approaches.
In general, our incremental training procedure can be applied
to any GNN architecture with few caveats: If the GNN
architecture depends on transductive learning, this constraint
needs to be considered during incremental training. Similarly,
any precomputation steps, such as computing normalizing
constants like in GCN [4] or GraphSAINT [12], have to be
performed again when adapting the model to a new task.

IX. CONCLUSION

We have created a new experimental framework for lifelong
learning in evolving graphs, for which we contribute three
new datasets. We have investigated four variants of lifelong
learning in graph-structured data including learning with lim-
ited labeled data and unseen class detection. These different
settings reflect numerous difficulties that practitioners face
when using graph neural networks in real-world applications.
In this setup, we have evaluated five representative GNN
architectures as well as an MLP baseline under an incremental
training procedure.

We have combined graph neural networks with a generic
module for unseen class detection to tackle open-world learn-
ing problems. We have further introduced a new measure for
k-neighborhood time differences tdiffk that captures temporal
connectivity patterns in graphs. By using percentiles of these
time differences, we can select history sizes that are equivari-
ant to the temporal granularity of the datasets.

Our results show that high levels of accuracy can be pre-
served, even when training only on a fraction of past data. In
particular, using warm restarts becomes more important when
few past data are available, or when few vertices are annotated
with labels. Surprisingly, our results suggest that using less
past data might even be beneficial for unseen class detection.
As such, our work sets the ground for the development of
further techniques that enhance lifelong learning on evolving
graphs and close the gap between research and application.

Data Availability and Reproducibility
We published our lifelong graph learning datasets
(zenodo.org/record/3764770#.YCQUOHWYXmg) along
with an implementation of our experimental framework
(github.com/lgalke/lifelong-learning).

ACKNOWLEDGMENT

Parts of this research were carried out on the computing
infrastructure bwCloud of the State of Baden-Würtemberg
and the Bioinformatics and Systems Biology group at Ulm
University.

REFERENCES

[1] R. Geirhos, J. Jacobsen, C. Michaelis, R. S. Zemel, W. Brendel,
M. Bethge, and F. A. Wichmann, “Shortcut learning in deep neural
networks,” Nat Mach Intell, vol. 2, 2020.

[2] W. L. Hamilton, Graph Representation Learning, ser. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2020.

[3] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Networks,
vol. 20, no. 1, 2009.

[4] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[5] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NeurIPS, 2017.

[6] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[7] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate:
Graph neural networks meet personalized pagerank,” in ICLR, 2019.

[8] Z. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
in NeurIPS, 2018.

[9] M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” in NeurIPS, 2018.

[10] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax,” in ICLR, 2019.

[11] X. Da, R. Chuanwei, K. Evren, K. Sushant, and A. Kannan, “Inductive
representation learning on temporal graphs,” in ICLR, 2020.

[12] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. K. Prasanna,
“Graphsaint: Graph sampling based inductive learning method,” in ICLR,
2020.

[13] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-
supervised learning with graph embeddings,” in ICML, 2016.

[14] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning of
social representations,” in KDD. ACM, 2014.

[15] S. Thrun and T. M. Mitchell, “Learning one more thing,” in IJCAI.
Morgan Kaufmann, 1995.

[16] G. Fei, S. Wang, and B. Liu, “Learning cumulatively to become more
knowledgeable,” in KDD. ACM, 2016.

[17] Z. Chen and B. Liu, Lifelong Machine Learning, Second Edition, ser.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2018.

[18] L. Shu, H. Xu, and B. Liu, “DOC: deep open classification of text
documents,” in EMNLP, M. Palmer, R. Hwa, and S. Riedel, Eds. ACL,
2017.

[19] F. Wu, A. H. S. Jr., T. Zhang, C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying graph convolutional networks,” in ICML. PMLR, 2019.

[20] L. Galke, B. Franke, T. Zielke, and A. Scherp, “Lifelong learning of
graph neural networks for open-world node classification,” in Interna-
tional Joint Conference on Neural Networks. IEEE, 2021.

[21] L. Galke, I. Vagliano, and A. Scherp, “Can graph neural networks go
“online”? an analysis of pretraining and inference,” in Representation
Learning on Graphs and Manifolds, ICLR Workshop, 2019.

[22] B. Wang, Y. Chen, X. Li, and J. Chen, “Lifelong classification in open
world with limited storage requirements,” Neural Comput., vol. 33, no. 7,
pp. 1818–1852, 2021.

[23] P. Ruvolo and E. Eaton, “ELLA: an efficient lifelong learning algorithm,”
in ICML. JMLR.org, 2013.

[24] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual
learning,” in NIPS, 2017.

[25] A. V. Robins, “Catastrophic forgetting, rehearsal and pseudorehearsal,”
Connect. Sci., vol. 7, no. 2, 1995.

[26] C. Wang, Y. Qiu, and S. A. Scherer, “Lifelong graph learning,” CoRR,
vol. abs/2009.00647, 2020.

[27] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson,
“Benchmarking graph neural networks,” CoRR, 2020, abs/2003.00982.

[28] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in ICLR, 2019.

[29] X. Bresson and T. Laurent, “Residual gated graph convnets,” CoRR, vol.
abs/1711.07553, 2017.

[30] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M.
Bronstein, “Geometric deep learning on graphs and manifolds using
mixture model CNNs,” in CVPR. IEEE, 2017.

[31] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling towards
fast graph representation learning,” in NeurIPS, 2018.

[32] W. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C. Hsieh, “Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional
networks,” in KDD. ACM, 2019.

[33] E. Rossi, F. Frasca, B. Chamberlain, D. Eynard, M. M. Bronstein, and
F. Monti, “SIGN: scalable inception graph neural networks,” CoRR, vol.
abs/2004.11198, 2020.

[34] A. Bojchevski, J. Klicpera, B. Perozzi, A. Kapoor, M. Blais,
B. Rózemberczki, M. Lukasik, and S. Günnemann, “Scaling graph
neural networks with approximate pagerank,” in KDD. ACM, 2020.

[35] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and S. Kim,
“Continuous-time dynamic network embeddings,” in WWW, 2018.

https://zenodo.org/record/3764770#.YCQUOHWYXmg
https://github.com/lgalke/lifelong-learning

15

[36] J. B. Lee, G. Nguyen, R. A. Rossi, N. K. Ahmed, E. Koh, and S. Kim,
“Dynamic node embeddings from edge streams,” IEEE Transactions on
Emerging Topics in Computational Intelligence, 2020.

[37] P. Goyal, N. Kamra, X. He, and Y. Liu, “Dyngem: Deep embedding
method for dynamic graphs,” CoRR, vol. abs/1805.11273, 2018.

[38] P. Goyal, S. R. Chhetri, and A. Canedo, “dyngraph2vec: Capturing net-
work dynamics using dynamic graph representation learning,” Knowl.-
Based Syst., vol. 187, 2020.

[39] R. Trivedi, H. Dai, Y. Wang, and L. Song, “Know-evolve: Deep temporal
reasoning for dynamic knowledge graphs,” in ICML, 2017.

[40] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured
sequence modeling with graph convolutional recurrent networks,” in
ICONIP. Springer, 2018.

[41] S. Kumar, X. Zhang, and J. Leskovec, “Learning dynamic embeddings
from temporal interactions,” arXiv preprint arXiv:1812.02289, 2018.

[42] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “Dyrep: Learning
representations over dynamic graphs,” in ICLR, 2019.

[43] F. Manessi, A. Rozza, and M. Manzo, “Dynamic graph convolutional
networks,” Pattern Recognition, vol. 97, 2020.

[44] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks,”
in WSDM, 2020.

[45] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. M.
Bronstein, “Temporal graph networks for deep learning on dynamic
graphs,” CoRR, vol. abs/2006.10637, 2020.

[46] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,
T. Kaler, T. B. Schardl, and C. E. Leiserson, “Evolvegcn: Evolving graph
convolutional networks for dynamic graphs,” in AAAI, 2020.

[47] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-
of-distribution image detection in neural networks,” in ICLR 2018.
OpenReview.net, 2018.

[48] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework
for detecting out-of-distribution samples and adversarial attacks,” in
NeurIPS, 2018.

[49] D. Macêdo, T. I. Ren, C. Zanchettin, A. L. Oliveira, and T. Ludermir,
“Entropic out-of-distribution detection,” in IJCNN, 2021.

[50] D. Macêdo and T. Ludermir, “Improving entropic out-of-distribution
detection using isometric distances and the minimum distance score,”
arXiv preprint arXiv:2105.14399, 2021.

[51] A. R. Dhamija, M. Günther, and T. E. Boult, “Reducing network
agnostophobia,” in NeurIPS, 2018.

[52] D. Hendrycks, M. Mazeika, and T. G. Dietterich, “Deep anomaly
detection with outlier exposure,” in ICLR. OpenReview.net, 2019.

[53] M. M. Masud, J. Gao, L. Khan, J. Han, and B. M. Thuraisingham,
“Classification and novel class detection in concept-drifting data streams
under time constraints,” IEEE Trans. Knowl. Data Eng., 2011.

[54] A. Bendale and T. E. Boult, “Towards open set deep networks,” in CVPR.
IEEE, 2016.

[55] M. Wu, S. Pan, and X. Zhu, “Openwgl: Open-world graph learning,” in
ICDM. IEEE, 2020.

[56] B. Fish and R. S. Caceres, “A task-driven approach to time scale
detection in dynamic networks,” in Workshop on Mining and Learning
with Graphs, 2017.

[57] D. Ersan, C. Nishioka, and A. Scherp, “Comparison of machine learning
methods for financial time series forecasting at the examples of over 10
years of daily and hourly data of DAX 30 and S&P 500,” J Comput Soc
Sc, vol. 3, 2020.

[58] S. Thrun, “Lifelong learning algorithms,” in Learning to learn.
Springer, 1998.

[59] C. Aggarwal and K. Subbian, “Evolutionary network analysis: A survey,”
ACM Comput. Surv., vol. 47, no. 1, May 2014.

[60] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in ICML, 2018.

[61] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” in NeurIPS, 2020.

[62] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-
Rad, “Collective classification in network data,” AI Magazine, vol. 29,
no. 3, 2008.

[63] L. Galke, F. Mai, I. Vagliano, and A. Scherp, “Multi-modal adversarial
autoencoders for recommendations of citations and subject labels,” in
26th Conference on User Modeling, Adaptation and Personalization.
ACM, 2018.

[64] M. E. Newman, “Power laws, pareto distributions and zipf’s law,”
Contemporary physics, vol. 46, no. 5, 2005.

[65] G. I. Webb, R. Hyde, H. Cao, H. L. Nguyen, and F. Petitjean, “Charac-
terizing concept drift,” Data Mining and Knowledge Discovery, vol. 30,
no. 4, 2016.

[66] G. I. Webb, L. K. Lee, B. Goethals, and F. Petitjean, “Analyzing
concept drift and shift from sample data,” Data Mining and Knowledge
Discovery, vol. 32, no. 5, 2018.

[67] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in AISTATS. JMLR.org, 2010.

[68] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[69] J. Lin, “Divergence measures based on the Shannon entropy,” IEEE
Trans. Information Theory, vol. 37, no. 1, 1991.

[70] M. Wang, et al., “Deep graph library: Towards efficient and scalable
deep learning on graphs,” arXiv preprint arXiv:1909.01315, 2019.

[71] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[72] I. J. Goodfellow, Y. Bengio, and A. C. Courville, Deep Learning, ser.
Adaptive computation and machine learning. MIT Press, 2016.

[73] D. Chicco and G. Jurman, “The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification
evaluation,” BMC genomics, vol. 21, no. 1, 2020.

16

APPENDIX A
PROOF: MEASURE tdiffk IS EQUIVARIANT TO TEMPORAL

GRANULARITY

Consider the point in time of an event as a continuous
function t : V → R. Then, we consider a measurement
tg : V → N that map the time into a discrete space with
granularity g. For example, when t(u) provides the time in
(continuous) seconds, then a measurement with the precision
of one minute would be tminutes(u) : b t(u)60 c. A measurement
with the precision of one hour would be thours(u) = b t(u)3600c.
We call these measurements with fixed precision granularity
functions. If we only had the granularity of minutes, we could
still obtain the granularity of hours: thours(u) = b tminutes(u)

60 c
because hours are coarser than minutes. In fact, any two
measurements differ by a constant factor with one being more
coarse-grained (larger denominator) than the other, or both
being equal.

a) Theorem: tdiffk is equivariant to different temporal
granularity of the underlying data.

tdiffk(V,E, a · t± a) ∈ a · tdiffk(V,E, t)± a (2)

with a ∈ R+ and a · t± a being a shorthand for a function t′

that satisfies a · t(u) ∈ t′(u)± a∀u ∈ V .
b) Proof: Let ty, tm : V → N>0 be two functions whose

values differ by a constant factor a ∈ R+, such that ty(u) =

b tm(u)
a c∀u ∈ V . Here, we assume without loss of generality

that tm is more fine-grained than ty , i. e., a > 1. Otherwise,
we could swap ty and tm and proceed with the reciprocal of
a. We will show that a · tdiff

(ty)
k = tdiff

(tm)
k ± a, or more

precisely:

∀u, v ∈ V : a · |ty(u)− ty(v)| ∈
]|tm(u)− tm(v)| − a, |tm(u)− tm(v)|+ a[

while recalling that tdiffk is a multi-set of time differences.
We start by transforming the prerequisite:

ty(u) =

⌊
tm(u)

a

⌋
(3)

⇒ tm(u)

a
≤ ty(u) <

tm(u)

a
+ 1 (4)

⇒ tm(u) ≤ a · ty(u) < tm(u) + a (5)

Using this, we now show that:

a · |ty(u)− ty(v)| > |tm(u)− tm(v)| − a (6)
a · |ty(u)− ty(v)| < |tm(u)− tm(v)|+ a (7)

We first prove the lower bound (Inequality 6) in two cases:
Case 1a: ty(u) = ty(v). Then the left-hand side becomes

zero and it remains to show that |tm(u)−tm(v)| < a. We apply
Inequality 5 to find the highest possible value for |tm(u) −
tm(v)| with respect to ty , which is |ty(u)+a−ε− ty(v)| with
ε > 0. Now as ty(u) = ty(v), we obtain a− ε < a.

Case 1b: ty(u) 6= ty(v). We transform the left-hand side
of Inequality 6 to |aty(u)− aty(v)|, while recalling that ty ∈
N>0. Then we use Inequality 5 to obtain |tm(u) − tm(v)|

as smallest possible value of the left hand side. As a > 1,
Inequality 6 holds.

Now, we prove the upper bound (Inequality 7) analogously
in two cases:

Case 2a: ty(u) = ty(v). The left-hand side becomes zero
and 0 < |tm(u)− tm(v)|+ a is trivial as a > 1.

Case 2b: ty(u) 6= ty(v). Again, we transform the left-
hand side of Inequality 7 to |aty(u) − aty(v)|. This time,
we are interested in the highest possible value with respect
to Inequality 5, which is |tm(u) + a− ε− tm(v)| with ε > 0.
Since |a− ε| ≥ 0, we obtain

|tm(u) + a− ε− tm(v)| ≤ |tm(u)− tm(v)|+ a− ε
< |tm(u)− tm(v)|+ a

which concludes the proof.

APPENDIX B
EXTENDED RESULTS FOR UNSEEN CLASS DETECTION

In Table V, We report the extended results of our experi-
ments on unseen class detection. The measures we report are
rejection MCC and Open F1 Macro. The MCC score reflects
the capabilities to detect unseen classes. The Open F1 Macro
score that reflects all classes including a special class for
instances from unseen classes.

17

TABLE V
EXTENDED RESULTS FOR UNSEEN CLASS DETECTION ON DBLP-HARD WITH GRAPHSAGE AS BASE MODEL (AVERAGE OF 5 REPETITIONS). α

INDICATES THAT RISK REDUCTION IS USED WITH THE RESPECTIVE FACTOR FOR THE STANDARD DEVIATION, τ IS THE MINIMUM THRESHOLD. RUNS
NAMED DOC-w ARE MODELS WITH WEIGHTED TRAINING.

MCC Open F1 Macro
cold warm cold warm

c Open Learning Method

1 DOC (τ = 0.50) .01 .04 .01 .01
DOC (τ = 0.25) .01 .02 .04 .04
DOC (τ = 0.50, α = 3.0) .01 .02 .01 .01
DOC (τ = 0.50, α = 1.5) .01 .02 .01 .01
DOC (τ = 0.25, α = 1.5) .01 .04 .04 .04

gDOC (τ = 0.75) .04 .09 .13 .13
gDOC (τ = 0.50) .04 .05 .13 .13
gDOC (τ = 0.25) .01 - .13 .13
gDOC (τ = 0.50, α = 3.0) .04 .05 .13 .13
gDOC (τ = 0.50, α = 1.5) .05 .05 .13 .13
gDOC (τ = 0.25, α = 1.5) .05 .00 .13 .13
gDOC (τ = 0.75, α = 3.0) .04 .09 .13 .13
gDOC (τ = 0.75, α = 1.5) .04 .09 .13 .13

3 DOC (τ = 0.50) .02 .03 .02 .05
DOC (τ = 0.25) .02 .04 .06 .12
DOC (τ = 0.50, α = 3.0) .02 .03 .02 .05
DOC (τ = 0.50, α = 1.5) .02 .03 .02 .05
DOC (τ = 0.25, α = 1.5) .02 .04 .06 .12
gDOC (τ = 0.75) .05 .08 .15 .15
gDOC (τ = 0.50) .05 .06 .15 .15
gDOC (τ = 0.25) .01 .00 .15 .15
gDOC (τ = 0.50, α = 3.0) .05 .06 .15 .15
gDOC (τ = 0.50, α = 1.5) .06 .06 .15 .15
gDOC (τ = 0.25, α = 1.5) .06 .04 .15 .15
gDOC (τ = 0.75, α = 3.0) .05 .08 .15 .15
gDOC (τ = 0.75, α = 1.5) .05 .08 .15 .15

6 DOC (τ = 0.50) .02 .03 .05 .08
DOC (τ = 0.25) .02 .05 .11 .14
DOC (τ = 0.50, α = 3.0) .02 .03 .05 .08
DOC (τ = 0.50, α = 1.5) .02 .03 .05 .08
DOC (τ = 0.25, α = 1.5) .02 .05 .11 .14
gDOC (τ = 0.75) .05 .07 .16 .16
gDOC (τ = 0.50) .05 .06 .16 .16
gDOC (τ = 0.25) .02 .02 .16 .15
gDOC (τ = 0.50, α = 3.0) .05 .06 .16 .16
gDOC (τ = 0.50, α = 1.5) .06 .06 .16 .16
gDOC (τ = 0.25, α = 1.5) .06 .07 .16 .16
gDOC (τ = 0.75, α = 3.0) .05 .07 .16 .16
gDOC (τ = 0.75, α = 1.5) .05 .07 .16 .16

∞ DOC (τ = 0.50) .02 .04 .08 .12
DOC (τ = 0.25) .03 .06 .13 .16
DOC (τ = 0.50, α = 3.0) .02 .04 .08 .12
DOC (τ = 0.50, α = 1.5) .02 .04 .08 .12
DOC (τ = 0.25, α = 1.5) .04 .06 .13 .16
gDOC (τ = 0.75) .05 .07 .16 .16
gDOC (τ = 0.50) .04 .05 .16 .16
gDOC (τ = 0.25) .02 .01 .16 .16
gDOC (τ = 0.50, α = 3.0) .05 .05 .16 .16
gDOC (τ = 0.50, α = 1.5) .06 .06 .16 .16
gDOC (τ = 0.25, α = 1.5) .06 .06 .16 .16
gDOC (τ = 0.75, α = 3.0) .05 .07 .16 .16
gDOC (τ = 0.75, α = 1.5) .05 .07 .16 .16

	I Introduction
	II Related Work
	III Problem Formulation
	IV Methods
	IV-A Incremental Training for Lifelong Learning on Graphs
	IV-B Self-Detection of Unseen Classes
	IV-C k-Neighborhood Time Differences
	IV-D Properties of k-Neighborhood Time Differences
	IV-E Graph Neural Network Base Models

	V Datasets
	V-A Standard Datasets
	V-B New Datasets for Lifelong Learning on Graphs
	V-B1 Basic Characteristics
	V-B2 Unseen Classes and Distribution Shift
	V-B3 Analyzing Time Differences
	V-B4 Setting Up Tasks for Lifelong Learning

	VI Experiments
	VI-A Transductive versus Inductive Learning
	VI-A1 Experimental Setup
	VI-A2 Hyperparameters
	VI-A3 Results

	VI-B Lifelong Learning on Graphs
	VI-B1 Experimental Setup
	VI-B2 Evaluation Measures
	VI-B3 Results

	VI-C Lifelong Learning with Limited Labeled Data
	VI-C1 Experimental Setup
	VI-C2 Results

	VI-D Self-Detection of Unseen Classes
	VI-D1 Experimental Setup
	VI-D2 Evaluation Measures
	VI-D3 Results

	VII Ablation Study: Incrementally-Trained vs Once-Trained Models
	VIII Discussion
	IX Conclusion
	References
	Appendix A: Proof: Measure tdiffk is Equivariant to Temporal Granularity
	Appendix B: Extended Results for Unseen Class Detection

