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MODULAR FORMS, DEFORMATION OF PUNCTURED SPHERES,

AND EXTENSIONS OF SYMMETRIC TENSOR REPRESENTATIONS

GABRIELE BOGO

Abstract. Let X = H/Γ be an n-punctured sphere, n > 3. We introduce and study n−3
deformation operators on the space of modular forms M∗(Γ) based on the classical the-
ory of uniformizing differential equations and accessory parameters. When restricting to
modular functions, we recover a construction in Teichmüller theory related to the defor-
mation of the complex structure of X. We describe the deformation operators in terms
of derivations with respect to Eichler integrals of weight-four cusp forms, and in terms of
vector-valued modular forms attached to extensions of symmetric tensor representations.

Introduction

Elliptic modular forms arise as solutions of linear differential equations related to the uni-
formization of hyperbolic Riemann surfaces. Consider for instance the weight one modular
form f ∈ M1(Γ1(6))

(1) f(q) = 1 + 3q + 3q2 + 3q3 + 3q4 + · · · , q = e2πiτ , τ ∈ H

that plays a role in Apery’s proof of the irrationality of ζ(2) [2]. It is obtained as f(q) =
y(t) ◦ t(q) where y(t) is the holomorphic solution with y(0) = 1 of the Fuchsian differential
equation

(2)
d

dt

(
t(t− 1)(t− 1/9)

d

dt

)
y(t) + (t− ρ)y(t) = 0

with ρ = 1/3, and t(q) is a Hauptmodul for Γ1(6). The differential equation (2) is associated
to the uniformization of the four-punctured sphere P1 r {∞, 1, 0, 1/9}; the parameter ρ is
called accessory parameter.

For every choice of the accessory parameter ρ, let {yρ(t), ŷρ(t)} be a Frobenius basis of
solutions of (2). If Qρ := exp(ŷρ(t)/yρ(t)), one can construct a Q-expansion of the form

(3) fρ(Q) = yρ(t) ◦ tρ(Q), tρ(Q) := Qρ(t)
−1

where tρ(Q) is the compositional inverse of Qρ(t). A consequence of uniformization theory
is that when ρ = 1/3 the function fρ(Q) is precisely f(q) in (1).

We make use of the dependence of fq(Q) on the accessory parameter ρ to define a “de-
formation” (the choice of the name will be explained later) of the Fourier expansion of f(q)
by

(4) ∂0f(q) :=
∂fρ(Q)

∂ρ

∣∣∣
ρ=1/3

= 9q +
153

2
q2 + 105q3 +

543

4
q4 +

36057

200
q5 − 17607

200
q6 + · · · .
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2 GABRIELE BOGO

By looking at the above coefficients one realizes that ∂0f can be written as

∂0f(q) =
(
1 + 3q + 3q2 + 3q3 + · · ·

)(
9q − 9

q

2

2
− 3q3 +

9

4
q4 + · · ·

)

+ 2
(
9q − 9

4
q2 − q3 +

9

16
q4 + · · ·

)(
3q + 6q2 + 9q3 + 12q4 + · · ·

)

= f(q)h̃′(q) + 2h̃(q)f ′(q)

where h(q) = 9q−18q2−27q3+ · · · ∈ S4(Γ1(6)), h̃(q) = 9q−9/2q2−3q3+ · · · is the Eichler
integral of h, and ′ = q d

dq .

More generally, let X = H/Γ be an n-punctured sphere, n ≥ 3. The classical theory
of uniformization attaches to X a family of second-order Fuchsian differential equations
depending on n − 3 accessory parameters ρ0, . . . , ρn−4. As in (3), one can construct a Q-
expansion fρ(Q) for any choice of the accessory parameters ρ = (ρ0, . . . , ρn−4). As follows
from the uniformization theorem, there exists a unique value ρF of these parameters, called
the Fuchsian value, that makes fρF (q) the Fourier expansion at a cusp of a modular form
on the uniformizing Fuchsian group Γ. Analogously to (4), for every i = 0, . . . , n − 4 one
can consider the derivative ∂fρ(Q)/∂ρi and then specialize ρ to the Fuchsian value ρF in
order to define a new holomorphic function on H. This operation extends to a differential
operator ∂i on the space of modular forms M∗(Γ).

In this paper we study the deformation operators ∂i and characterize them in three ways.
We summarize our results in the following theorem.

Theorem. Let H/Γ be isomorphic to an n-punctured sphere n ≥ 4, and let g ∈ Mk(Γ).

(1) There exist a basis {h0, . . . , hn−4} of S4(Γ) such that

∂ig = kgh̃′i + 2h̃ig
′ = [g, h̃i]1 , i = 0, . . . , n− 4 ,

where h̃i is the Eichler integral of the cusp form hi and [ , ]1 is the first Rankin-Cohen
bracket.

(2) Let t be a Hauptmodul for Γ and let νi be the harmonic Beltrami differential dual
to the cusp form hi. Let ε > 0 be such that ‖ενi‖∞ < 1 and let Γενi be the group
obtained by conjugating Γ by a quasiconformal solution of the Beltrami equation
associated to ενi. If tενi is a Hauptmodul for Γενi, then

∂it = 4
∂tενi

∂ε̄

∣∣∣
ε=0

.

(3) The i-th deformation operator ∂i induces a map
→

∂ i : Mk(Γ) → Mk(Γ, v
hi
0,2)

from the space of weight k modular forms to the space of weight k vector-valued mod-
ular forms with respect to an extension vhi0,2 of symmetric tensor representations v0
and v2 of dimension 1 and 3 respectively.

In Section 1 we collect some basic facts on classical uniformization and modular forms,
symmetric tensor representations, their extensions, and vector-valued modular forms. In
Section 2 we define the deformation operators. Part 1 of the theorem is proven in Sections 2.1
and 2.2; the proof is based on the theory of differential equations. Section 2.3 contains the
proof of the second statement and some background in Teichmüller theory. The result on
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vector-valued modular forms, which follows from the proof of the first point, can be found
in Section 2.4. The last section 2.5 contains some final remarks and open questions.

1. Uniformization, differential equations, symmetric tensor

representations

In this section we recall some basic facts and fix notation.

1.1. Uniformization and accessory parameters. To an n-punctured sphere X = P
1
r

{a1, . . . , an−1 = 0, an = ∞}, n ≥ 3, one can attach a family of second-order Fuchsian
differential equations

(5) LX :=
d

dt

(
P (t)

d

dt

)
+

n−3∑

i=0

ρit
i , P (t) :=

n−i∏

j=1

(t− aj)

depending on n − 3 parameters ρ0, . . . , ρn−4 called accessory parameters. The value of the
parameter ρn−3 = (n/2−1)2 is fixed to make the singular point at ∞ regular singular and for
every choice of ρ1, . . . , ρn−3 all finite singular points are regular with local exponents (0, 0).

This family of differential equations is classically related to the Fuchsian uniformization
of X [8]. From the uniformization theorem it follows that there is a unique choice of
the parameters ρ = (ρ0, . . . , ρn−4) such that the ratio of linearly independent solutions
of (5) lifts to a biholomorphic map between the universal covering of X and the upper half-
plane H. This map gives a universal covering of X. We call this special choice of parameters
the Fuchsian value and denote it ρF . In this special case, the monodromy group Γ of (5)
is the Deck group of the universal covering H → X. This implies that Γ ⊂ SL2(R) is a
Fuchsian group, i.e., discrete and cofinite. A consequence is that a holomorphic solution
of (5) in the case ρ = ρF lifts to a holomorphic function on H that is a (k-th root of a
weight k) modular form on Γ. More details and examples can be found in Chapter 5 of
Zagier’s exposition in [4].

For every choice of ρ in (5) one can construct some power series from a Frobenius basis
of solutions {yρ(t), ŷρ(t)} at t = 0:

Qρ(t) := exp(ŷρ(t)/yρ(t)) =

∞∑

s=1

Qs(ρ)t
s ,(6)

tρ(Q) := Qρ(t)
−1 =

∞∑

s=1

ts(ρ)Q
s ,(7)

fρ(Q) := yρ(tρ(Q)) =

∞∑

s=0

fs(ρ)Q
s ,(8)

where tρ(Q) is the compositional inverse of Qρ(t). In all the above power series the coeffi-
cients are polynomials in the accessory parameters. As recalled in the previous paragraph,
if τ ∈ H, when ρ = ρF we have that ŷρF (t)/yρF (t) = 2πiτ +λ for some λ ∈ C. Consequently

QρF (t) = e2πiτ+λ = c · q, q = e2πiτ , τ ∈ H ,

and

(9) t(τ) := tρF (cq), f(τ) := fρF (cq)
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are holomorphic functions on H. More precisely, t(τ) is a Hauptmodul for Γ and f(τ) is a
root of a modular form. As shown in the appendix of [3], it turns out that f is the square
root of a weight two modular form with all its zeros concentrated in the cusp x where the
Hauptmodul t has its unique pole.

In the following we will assume that f is itself a modular form, i.e., that f ∈ M1(Γ); this
is not always the case, for instance if −I ∈ Γ, but this assumption makes the exposition
smoother and we do not lose much in terms of generality. The reader can check all the
statements in the next sections can easily be adapted to the more general case f2 ∈ M2(Γ).

1.2. Symmetric tensor representations and extensions. Closely related to the differ-
ential equations solved by modular form are certain representations of the Fuchsian group Γ.
Let r ≥ 0 and Vr := Symr(C2) and let vr : SL2(R) → GL(Vr) be the representation defined
by

vr(γ)

(
z1
z2

)r
=

(
γ

(
z1
z2

))r

for every γ ∈ SL2(R), where

(
z1
z2

)r
:= t

(
zr1 , z

r−1
1 z2, . . . , z1z

r−1
2 , zr2

)
∈ C

r+1 .

We denote by Mk(Γ, vr), Sk(Γ, vr) the space of holomorphic vector-valued modular forms
(VVMFs for short) and vector-valued cusp forms with respect to the representation vr.
These VVMFs are strictly related to quasimodular forms; as Kuga-Shimura [6] and Choie-
Lee [5] showed, there is an isomorphism

(10) Mk(Γ, vr) ≃ ⊕r
s=0Mk+r−2s(Γ) ≃ M̃r+k(Γ)

(≤r) , for every k, r ≥ 0 ,

where M̃r+k(Γ)
(≤r) denotes the space of quasimodular forms of weight r+k and depth ≤ r.

The reader may consult [5] for a proof of this result involving Rankin-Cohen brackets, and
as a reference for symmetric tensor representations and modular forms.

We will be interested in extensions of symmetric tensor representations, i.e., elements
of Ext1Γ(vl, vr) for some l, r ≥ 0. We can describe the space Ext1Γ(vl, vr) in terms of quasi-
modular forms and VVMFs as follows. From the identity Ext1Γ(vl, vr) = H1(Γ, vl ⊗ vr), to-
gether with the Clebsch-Gordan decomposition of vl ⊗ vr and the classical Eichler-Shimura
isomorphism one can prove that, if r ≤ l,

(11) 0 −→
r⊕

s=0

Ml+r+2−2s(Γ) −→ Ext1Γ(vl, vr) −→
r⊕

s=0

Sl+r+2−2s(Γ) −→ 0

is a short exact sequence. Together with (10) this implies that

0 −→ Mr+2(Γ) −→ Ext1Γ(vl, vr) −→ Sr+2(Γ) −→ 0

is exact.
If vl,r is an extension of vr by vl we denote by Mk(Γ, vl,r) the space of holomorphic

modular forms with respect to the representation vl,r. Examples of these VVMFs have been
studied, among other things, in a recent paper by Mertens and Raum [7].
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2. Deformation operators

Let Γ ⊂ SL2(R) be a torsion-free genus zero Fuchsian group, t : H/Γ → X a Hauptmodul
and let f ∈ M1(Γ) be the modular solution of the differential equation (5) in the case ρ = ρF .
Recall from the last section that f = fρ(q)|ρ=ρF , t = tρ(q)|ρ=ρF where

fρ(q) =
∞∑

n=0

fn(ρ)q
n, tρ(q) =

∞∑

n=0

tn(ρ)q
n, ρ = (ρ0, . . . , ρn−4)

and ρF is the Fuchsian parameter. For i = 0, . . . , n− 4 we consider the partial derivatives

∂fρ(q)

∂ρi
:=

∞∑

n=0

∂fn(ρ)

∂ρi
qn,

∂tρ(q)

∂ρi
:=

∞∑

n=0

∂tn(ρ)

∂ρi
qn .

Recall from the discussion in Section 1.1 that every g ∈ Mk(Γ) is of the form g = fkR(t)
where R ∈ C[t].

Definition 1. Let k ≥ 0 and g ∈ Mk(Γ), g = fkR(t). For i = 0, . . . , n− 4, define the i-th
deformation ∂ig of g by

∂ig(q) :=
∂fρ(q)R

(
tρ(q)

)

∂ρi

∣∣∣∣
ρ=ρF

.

For every i = 0, . . . , n− 4,, the i−th deformation operator ∂i defines a derivation on the
space of modular forms. It can be described in terms of the first Rankin-Cohen bracket and
Eichler integrals of weight four cusp forms as follows.

Theorem 1. Let H/Γ be isomorphic to an n-punctured sphere, and let g ∈ Mk(Γ). There
exist a basis {h0, . . . , hn−4} of S4(Γ) such that

∂ig = kgh̃′i + 2h̃ig
′ = [g, h̃i]1 , i = 0, . . . , n− 4 ,

where h̃i denotes the Eichler integral of the cusp form hi.

The proof of the theorem is given in the next two subsections. We study first the effect of
the partial derivation ∂/∂ρi on the solution yρ(t) of the differential equation (5); it turns out
that ∂yρ(t)/∂ρi satisfies an higher-order Fuchsian differential equation whose shape depends
on i. The solutions of these higher-order ODEs have an integral representation in terms
of the function yρ(t). Second, we show that these solutions give rise to Eichler integrals of
cusp forms (and higher iterated integrals of modular objects) as functions on the universal
covering H.

2.1. Deformation of differential equations.

Proposition 1. Let {yρ(t), ŷρ(t)} be a fundamental system of solution of (5). Then for
every i = 0, . . . , n− 4 and r ≥ 0, the functions

∂ryρ(t)

∂ρri

∣∣∣
ρ=ρF

,
∂rŷρ(t)

∂ρri

∣∣∣
ρ=ρF

are solutions of an order 2(r+1) Fuchsian differential equation with the same singular points
as (5). The associated monodromy representation : π1(X,x0) → GL2(r+1)(C) is an iterated
extension of representations π1(X,x0) → Γ ⊂ SL2(R).

The first claim of the theorem is independent on the choice of the accessory parameters.
In fact, a more general result holds.
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Proposition 2. Let {yρ, ŷρ} be a fundamental system of solutions of (5). Then for every i =
0, . . . , n− 4 and r ≥ 0 the functions ∂ryρ(t)/∂ρ

r
i and ∂rŷρ(t)/∂ρ

r
i satisfy an order 2(r + 1)

Fuchsian differential equation with the same singular points as (5).

Proof. We work with a Frobenius basis of solutions {yρ(t), ŷρ(t) = log(t)yρ(t) + ỹρ(t)} near
the regular singular point t = 0. Consider the deformed Fuchsian operator

(12) LX,ǫ :=
d

dt

(
P (t)

d

dt

)
+

n−3∑

i=0

(ρi + ǫi)t
i

where ρn−3 = (1 − n/2)2 as before and ǫn−3 = 0. We do not deform ρn−3 in order to
preserve the regular singularity at ∞.

Let m := n− 4 and let

As(ρ, ǫ) :=
∑

j∈Zm
≥0

A(j)
s (ρ)ǫj , ǫj := ǫj00 · · · ǫjmm ,

be the solution of the homogeneous recursion associated to the differential operator LX,ǫ
with initial values (A3−n, . . . , A−1, A0) = (0, . . . , 0, 1). Finally, consider the power series

Φj(ρ, t) :=
∞∑

s=0

A(j)
s (ρ)ts, Φ(ρ, ǫ, t) :=

∑

j∈Zm
≥0

Φj(ρ, t)ǫ
j .

We have the following identity

(13)

(
∂

∂ǫi
− ∂

∂ρi

)
Φ(ρ, ǫ, t) = 0 ,

which can be proved from the definition of the deformed operator LX,ǫ. In fact, the linear
recursion associated to (12) is of the form

(14) P̂n−2(s)As+1(ρ, ǫ) =

n−3∑

i=0

Pi(s, ρ, ǫ)As−i(ρ, ǫ), Pi(s, ρ, ǫ) := ρi + ǫi + P̂i(s)

where P̂i(s), i = 0, . . . , n − 2 is a quadratic polynomial in s that does not depend on ρ, ǫ

and P̂n−2(s) = (s+ 1)2
∏n−2
j=1 (−aj). By induction on s we see that

P̂n−2(s)
∂As+1(ρ, ǫ)

∂ρi0
= As−i0(ρ, ǫ) +

n−3∑

i=0

Pi(s, ρ, ǫ)
∂As−i(ρ, ǫ)

∂ρi0
= P̂n−2(s)

∂As+1(ρ, ǫ)

∂ǫi0
,

which immediately implies (13). In particular, we get

∂Φ(j0,...,ji,...,jm)(ρ, t)

∂ρi
= (ji + 1)Φ(j0,...,ji+1,...,jm)(ρ, t) .

By applying the above identity r times to the function Φ(0,...,0)(ρ, t) = yρ(t) we find

∂ryρ(t)

∂ρri
=

∂rΦ0(ρ, t)

∂ρri
= (r + 1)!Φ(0,...0,r,0,...,0)(ρ, t) .

This shows that ∂/∂ρi acts on Φj(ρ, t) by raising the i-th index.
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On the other hand, the Fuchsian operator LX acts by lowering the indices of Φj(ρ, t). In
fact, from the definition of LX,ǫ we see that

(15) LXΦ(ρ, ǫ, t) = −Φ(ρ, ǫ, t)

m∑

i=0

ǫit
i ,

which implies

(16) − LXΦ(j0,...,jk,...,jm)(ρ, t) = Φ(j0−1,...,jk,...,jm)(ρ, t) + · · ·+ tmΦ(j0,...,jk,...,jm−1)(ρ, t) .

The idea is to contrast the action of ∂/∂ρi (raising indices) by applying the differential
operator LX (lowering indices) but, as we see from (16), some powers of t appears. To deal
with this, we introduce new second-order differential operators LX,r, r ≥ 1 by

(17) LX,r
(
trY
)

= tr+1LX
(
Y
)
, r ≥ 1 .

It is easy to see that LX,r is a Fuchsian operator with the same singular points as L for
every r ≥ 1 (but not with the same local exponents). It follows immediately from (17)
and (15) that LX,r

(
trΦ(ρ, ǫ, t)

)
= −Φ(ρ, ǫ, t)

∑m
i=0 ǫit

i+r+1 and in particular
(18)
−LX,r

(
trΦ(j0,...,jr,...,jm)(ρ, t)

)

tr+1
= Φ(j0−1,...,jr,...,jm)(ρ, t) + · · · + tmΦ(j0,...,jr,...,jm−1)(ρ, t) .

If Φri(ρ, t) denotes the function Φ(0,...,0,r,0,...,0) where the unique non-zero index r is at the i-
th place, from (16) and (18) we conclude that

{(
Lr+1
X

)
Φri(ρ, t) = 0 i = 0 ,(

LX,r(i+1)−1 ◦ · · · ◦ LX,2i+1 ◦ LX,i ◦ LX
)
Φri(ρ, t) = 0 i = 1, . . . ,m ,

from which the statement for ∂ryρ(t)/∂ρ
r
i = Φri(ρ, t) follows.

The same argument, with the same differential operators, works for ∂rŷρ(t)/∂ρ
r
i by de-

forming the recursion giving the coefficients of the holomorphic part ỹρ(t) of ŷρ(t). �

In order to discuss the monodromy, we need the following lemma.

Lemma 1. Let M1,M2 be linear differential operators with the same set of singular points
in P

1 and let M := M2 ◦M1 . The monodromy representation associated to a fundamental
system of solutions of MY = 0 is an extension of monodromy representations associated to
solutions of M1Y = 0 and M2Y = 0 respectively.

Proof. Let D := P
1
r {singular points of M1}. Without loss of generality, we can choose a

fundamental system of solution YM of MY = 0 of the form

YM =
(
u0, . . . , uk, v1, . . . , vl

)

where YM1
= (u0, . . . , uk) and YM2

= (M1v1, . . . ,M1vl) are fundamental system of solutions
of M1Y = 0 and M2Y = 0 respectively. If ρ∗ : π1(D, d0) → GL∗∗(C) denotes the monodromy
representation associated to Y∗, ∗ = M,M1,M2, it is easy to verify that the sequence
of π1(D, d0)-modules

0 (SM1
, ρ1) (SM , ρ) (SM2

, ρ2) 0 ,
φ ψ

where S∗ = Span(Y∗), is exact. �
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proof of Proposition 1. We need only to prove the statement about the monodromy repre-
sentation. When ρ = ρF a basis of solutions of LXY = 0 is given locally on the universal
covering H by {

√
f, τ

√
f}, where f ∈ M2(Γ) is a weight two modular form and Γ ⊂ SL2(R)

is the Deck group of the covering H → X. It follows from the definition (17) that for
every r ≥ 1 a basis of solutions of LX,rY = 0 is given locally on H by {tr

√
f, τtr

√
f}, i.e.,

that LX,rY = 0 has (meromorphic) modular solutions.
By Proposition 2, ∂ryρ(t)/∂ρ

r
i , i = 0, . . . , n − 4, is annihilated by a composition of the

differential operators LX and LX,j , j = 1, . . . , r(i+1)−1. It follows from Lemma 1 that the
monodromy of the associated differential equation is an (iterated) extension of monodromy
representations of LX , LX,j . It is a general fact that the monodromy group of a second-
order differential equation with modular solutions in M∗(Γ) is conjugated to Γ (see Chapter
5 of Zagier’s exposition in [4]). �

Corollary 1. The following recursive formula holds for r ≥ 0, i = 0, . . . , n− 4:

∂r+1yρ(t)

∂ρr+1
i

= yρ(t)

∫ t

0

1

y2ρ(t)P (t)

∫ t1

0

yρ(t2)
∂ryρ(t2)

∂ρri
dt2 dt1 .

Proof. For every holomorphic function u one has

(19) LX

(
yρ(t)

∫ t

0

1

y2ρ(t)P (t)

∫ t1

0

yρ(t2)u(t2) dt2 dt1

)
= u ,

as follows from a straightforward computation. From the definition (17) it follows moreover
that, if i > 0,

(20) LX,r(i+1)−1 ◦ · · · ◦ LX,2i+1 ◦ LX,i ◦ LX(u) = tr(i+1)LX ◦ LX
ti

◦ LX
ti

◦ · · · ◦ LX
ti︸ ︷︷ ︸

r−1

(u) .

Now let vi(t) be such that LX,r(i+1)−1 ◦ · · · ◦LX,2i+1 ◦LX,i ◦LX(vi) = 0. Then the function

(21) wi(t) := yρ(t)

∫ t

0

1

y2ρ(t)P (t)

∫ t1

0

yρ(t2)t
ivi(t2) dt2 dt1

is such that LX,(r+1)(i+1)−1 ◦ · · · ◦ LX,i ◦ LX(wi) = 0 if i ≥ 1. We have in fact

LX,(r+1)(i+1)−1 ◦ · · · ◦ LX,i ◦ LX(wi) = t(r+1)(i+1)LX ◦ LX
ti

◦ · · · ◦ LX
ti︸ ︷︷ ︸

r

(wi) =

t(r+1)(i+1)LX ◦ LX
ti

◦ · · · ◦ LX
ti︸ ︷︷ ︸

r−1

vi(t)t
i

ti
= 0 ,

where the first identity follows from (20), the second identity from (19) and the definition
of wi, and the last identity again from (20) and the assumption on vi(t).

The analogous statement in the case i = 0, i.e., for solutions of LrXY = 0, can be proven
by using (19).

Proposition 1 implies that
∂r+1yρ
∂ρr+1

i

is the sum of a multiple of wi, with vi in (21) replaced

by
∂ryρ
∂ρr

i
, and a holomorphic solution of LX,r(i+1)−1 ◦ · · · ◦ LX,2i+1 ◦ LX,i ◦ LX(u) = 0. To
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prove the corollary we should determine this linear combination. We do it by looking at the

coefficients of the local expansion in t = 0 of wi(t) and
∂r+1yρ(t)

∂ρr+1

i

.

A closer look to the recursion formula (14) for the coefficients of yρ(t) = Φ0(ρ, t) =∑∞
s=0A

(0)
s (ρ)ts reveals that A

(0)
s (ρ) is a polynomial in ρi of degree

⌊
s
i+1

⌋
and that the

coefficient of ρri in A
(0)
r(i+1)(ρ) is (−1)nrκ−rr!−2(i + 1)−2r, where κ :=

∏n−2
j=1 aj , as follows

from the explicit expression for P̂n−2 given after (14). This implies that the local expansion

of
∂r+1yρ
∂ρr+1

i

in t = 0 is given by

(22)
∂r+1yρ(t)

∂ρr+1
i

=
t(r+1)(i+1)

(r + 1)!2(i+ 1)2(r+1)κr+1(−1)n(r+1)
+O(t(r+1)(i+1)+1) .

On the other hand, from the definition (21) with vi(t) =
∂ryρ
∂ρri

is it easy to see that the

expansion of wi(t) in t = 0 is also of the form (22). Since every other solution of LX,r(i+1)−1◦
· · · ◦ LX,i ◦ LX(u) = 0 contains smaller powers of t in its local expansion, this concludes
the proof of the corollary. �

2.2. Deformation of modular forms. We complete the proof of Theorem 1. Recall that
the Hauptmodul t gives the identification H/Γ ≃ P

1
r {a1, . . . , an−2, an−1 = 0, an = ∞}

and that we denote P (t) :=
∏n−1
j=1 (t− aj).

Proof. The result for a modular form g ∈ Mk(Γ) follows easily from the computation of ∂if
and ∂it since ∂i is a derivation and g = fkR(t). By definition fρ = yρ

(
tρ(Q)

)
so then

∂if(q) =
∂fρ(Q)

∂ρi
=

∂tρ(Q)

∂ρi

∂yρ(t)

∂t
+

∂yρ(t)

∂ρi
◦ tρ .

We only need to express the above function as a function of Qρ = exp
(
ŷρ(t)/yρ(t)

)
and then

specialize to the Fuchsian value ρ = ρF . In order to do that, consider the change of variable
formula

(23)
1

Qρ
dQρ =

κ

P (t)yρ(t)2
dt, κ = (−1)n

n−2∏

j=1

aj.

This identity follows from well-known properties of the Wronskian W (t) of the differential
equation (5), namely W (t) = κ/P (t) and yρ(t)

2dQρ(t)/dt = W (t).

Consider ∂yρ(t)/∂ρi ◦ tρ(Q). By using Corollary 1 (with r = 0) and (23) we get

∂yρ(t)

∂ρi
◦ tρ(Q) = fρ(Q)

∫ Q

0

∫ Q1

0
hρ,i(Q2)

dQ2

Q2

dQ1

Q1
,

where hρ,i(Q) = κ−2f4
ρ (Q)tiρ(Q)P (tρ(Q)). When we specialize to the Fuchsian value ρF we

see that hi(τ) := hρF ,i(q) is a weight four cusp form. In fact, it is of weight four since f
is of weight one, it is holomorphic because the pole of ti is killed by the zeros of f4 (see
the end of Section 1.1), and it is zero at every cusp cj because t(cj) = aj , j = 1, . . . , n,
up to reordering the indices (a different proof that hi(τ) is a cusp form will be given in

Section 2.3). This proves that ∂yρ(t)/∂ρi ◦ tρ(Q)
∣∣
ρ=ρF

= fh̃′i
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The relation tρ(Qρ(t)) = t implies

∂tρ(Q)

∂ρi
= −Q

∂tρ(Q)

∂Q
· ∂
(
ŷρ(t)/yρ(t)

)

∂ρi
◦ tρ(Q) .

Since ŷρ(t)/yρ(t) =
∫ t
0 κ/(y

2
ρ(t1)P (t1)) dt, and again using Corollary 1 and formula (23), we

finally get

∂
(
ŷρ(t)/yρ(t)

)

∂ρi
◦ tρ(Q) =

∫ tρ(Q)

0

∂

∂ρi

κ

y2ρ(t1)P (t1)
dt1

= −2

∫ Q

0

∫ Q1

0

∫ Q2

0
hρ,i(Q3)

dQ3

Q3
· · · dQ1

Q1
.

By specializing to the Fuchsian parameter ρF we find that ∂it = 2t′h̃i which, combined
with ∂yρ(t)/∂t ◦ tρ(Q)|ρ=ρF = f ′/t′, concludes the proof. �

The same techniques can be used to show that the higher-order derivatives ∂ri g are de-
scribed by combinations of iterated integrals of Rankin-Cohen brackets of g and h. As r
grows their modular properties became weaker, but they may still be of some interest (see
the third remark in Section 2.5).

2.3. Teichmüller theory. In this section we restrict to the case of modular functions and
describe the deformation operators in terms of the deformations of the underlying punctured
sphere. This gives an alternative explanation for the appearance of Eichler integrals of
weight four cusp forms. We start by recalling few basic facts about Teichmüller theory.

Let Γ be a Fuchsian group such that H/Γ is isomorphic to a punctured sphere X and
let t : H/Γ → X be a Hauptmodul. Let T (Γ) denote the Teichmüller space of Γ. It is well
known that the holomorphic cotangent space at the point Γ ∈ T (Γ) is the space Q(Γ) =
S4(Γ) of quadratic differentials on H/Γ. There exists a linear isomorphism between Q(Γ)

and the space D2(X) of rational functions on Ĉ with at most simple poles at the finite
punctures of X and order O(|z|3) as z → ∞ (see Section 2.5 in [9]). This map can be
explicitly given in terms of the Hauptmodul t by

(24) R(z) 7→ q(τ) := R
(
t(τ)

)
· t′(τ)2 , z ∈ Ĉ, τ ∈ H .

The holomorphic tangent space to T (Γ) at Γ is the space H(Γ) of harmonic Beltrami
differentials. The tangent and cotangent spaces are related by the linear map

(25) Λ∗ : Q(Γ) → H(Γ), q 7→ Im(τ)2q̄(τ) τ ∈ H .

Harmonic Beltrami differentials of bounded norm can be used to describe deformations of
the punctured sphere X as follows. Let ν ∈ H(Γ) with ‖ν‖∞ < 1 and denote by µν : C → C

the measurable function obtained by extending ν to C by reflection across the real line.
Consider the Beltrami differential equation

(26) fz̄ = µν(z)fz, z ∈ C.

It is well known that (26) has a unique normalized solution f ν that is a homeomorphism
of C and fixes the points 0, 1,∞. The restriction of f ν to H is still a homeomorphism by
construction and the conjugate group Γν := f νΓ (f ν)−1 is Fuchsian. It follows that the
quotient Xν := H/Γν is a Riemann surface homeomorphic to X (check Ahlfors’s book [1]
for more details and proofs of these statements).
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As the above paragraph shows, one may construct deformations of X starting with a
rational function in D2(X) by composing the maps in (24) and (25) (but this map in
general do not give Beltrami differentials with the required norm). The coefficient of the
accessory parameter ρi in the differential equation (5) in normal form is Ri(t) = ti/P (t) ∈
D2(X). The quadratic differential associated to Ri via the map (24) is precisely the cusp
form hi(τ) appearing in Theorem (1), as follows from the identity t′ = P (t)f2κ−2. In
this way, using (25), we can associate to every accessory parameter ρi, i = 0, . . . , n − 3 a
harmonic Beltrami differential νi := Λ∗(hi(τ)). Moreover, ν0, . . . , νn−4 form a basis of H(Γ).

Now fix 0 ≤ i ≤ n − 4 and let 0 6= ε ∈ C be such that ‖ενi‖∞ < 1. Denote by f νi the
normalized homeomorphic solution of the Beltrami equation (26) with µν = µενi . As above,
one obtains a Fuchsian group Γi := f ενiΓ(f ενi)−1 and an n-punctured sphere Xi := H/Γi.
The situation, for every i = 0, . . . , n− 4, is summarized in the following diagram

(27)

H
fενi−−−−→ H

t

y
ytενi

X −−−−→
F ενi

Xi

where tενi : H → Xi is a Hauptmodul for Γi normalized by tενi(∞) = t(∞), tενi(0) = t(0)
as follows from the normalization of f ενi.

It is known ([1],[9]) that F ενi is a quasiconformal map of Riemann sufaces and is holo-
morphic in ε, while both f ενi and tενi are real-analytic non holmorphic functions in ε. In
particular, it makes sense to consider the derivatives of the above functions with respect
to ε and ε̄. From a well-known formula of Ahlfors (see formulae 3.9 and 4.3 in [9]) it follows
that, for 0 ≤ i ≤ n− 4,

(28)
∂tενi

∂ε̄

∣∣∣
ε=0

=
1

2
h̃it .

The right hand-side of (28) reminds the statement Theorem 1 in the case of a modular
function (weight k=0). The reason is the following.

Theorem 2. Let X be an n-punctured sphere, and let t : H/Γ → X be a Hauptmodul.
For i = 0, . . . , n − 4, let νi = Λ∗(hi) ∈ H(Γ) and let ∂i be the i-th deformation operator
on M∗(Γ). Then

∂it = 4
∂tενi

∂ε̄

∣∣∣
ε=0

.

Proof. Let X = P
1
r {a1, . . . , an = ∞}. Fix 0 ≤ i ≤ n − 4, let 0 6= ε ∈ C be such

that ‖ενi‖∞ < 1 and consider the n-punctured sphere Xi = P
1
r {aενj1 , . . . , a

ενj
n = ∞}

where aενij := F ενi(aj), j = 1, . . . , n (see (27)).

To the Fuchsian uniformization of Xi is associated a differential equation (5) with sin-
gular points aενij and accessory parameters ρενi0 , . . . , ρενin−4. These accessory parameters are
continuously differentiable in ε since they are coefficients of the q-expansion of tενi and
this function is real-analytic in ε. The theorem is a consequence of the identity 4.6 of [9],
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namely1

(29)
∂ρενij

∂ε̄

∣∣∣
ε=0

=

{
1
4 i = j ,

0 i 6= j .

The reason is the following. Let tενi(τ) =
∑∞

s=1 t
ενi
s qs be the q-expansion at ∞ of the

normalized Hauptmodul tενi of Γi. If the q-expansion of the Hauptmodul t of Γ is t(τ) =∑∞
s=1 ts(ρ, a)q

s , a = (a1, . . . , an−1), then the Fourier coefficients of tενj are of the form

t
ενj
s = ts(ρ

ενj , aενj ) , aενj = (a
ενj
1 , . . . , a

ενj
n−1) .

Now, aενij is holomorphic in ε; this follows from the definition aενij = F ενi(aj) and the fact

that F ενi is holomorphic in ε. This implies that the derivative of αενij with respect to ε̄ is
zero and then

(30)
∂tενi

∂ε̄

∣∣∣
ε=0

=

∞∑

s=1

(
n−4∑

k=0

∂ts(ρ
ενi , aενi)

∂ρενik

∣∣∣
ε=0

∂ρενik

∂ε̄

∣∣∣
ε=0

)
qs.

On the other hand, the action of ∂i on t is, by definition,

(31) ∂it =

∞∑

s=1

∂ts(ρ, a)

∂ρi
qs .

By comparing the q-expansions (30) and (31) and using the identity

∂ts(ρ
ενi , aενi)

∂ρενik

∣∣∣
ε=0

=
∂ts(ρ, a)

∂ρk

∣∣∣
ρ=ρF

, s ≥ 1, k = 0, . . . , n− 4 ,

together with (29), the statement of the theorem follows. �

The above proposition together with (28) gives another proof of Theorem 1 in the case
of (meromorphic) modular forms of weight zero.

2.4. Vector-valued modular forms. In this final section we reformulate the results of 2.1
and 2.2 in terms of vector-valued modular forms. From this perspective, we shall consider
two situations: the action of ∂/∂ρi on the space of solutions of LX and the action of ∂i
on M∗(Γ) induce different maps between spaces of modular forms and VVMFs attached to
certain extensions.

In Section 1.2 we showed that extensions of symmetric tensor representations can be
described in terms of quasimodular forms. Let h ∈ S4(Γ) and let ph(γ, τ) := rh,2(γ)τ

2 +
rh,1(γ)τ + rh,0(γ) be its period polynomial. From (11) it follows that h induces exten-

sions [vh0,2] ∈ Ext1Γ(v0, v2) and [vh1,1] ∈ Ext1Γ(v1, v1). We can describe explicitly a represen-

tative of each class in terms of ph(γ, τ) as follows

(32) γ =

(
a b
c d

)
7→ vh0,2(γ) =




1 rh,2(γ) rh,1(γ) rh,0(γ)
0 a2 2ab b2

0 ac ad+ bc bd
0 c2 2cd d2


 ,

1The identity we refer to in [9] is stated for accessory parameters c1, . . . , cn of a differential equation pro-
jectively equivalent to (5). A straightforward computation shows that those are related to the accessory

parameters ρ0, . . . , ρn−4 by ci = Rest=αi

(

4
∑n−3

i=0
ρit

i
− P ′′(t)

)

/2P (t). This leads to the identity in (29).
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γ =

(
a b
c d

)
7→ vh1,1(γ) =




a b
c d

γ ·Bh(γ)

0 0
0 0

a b
c d


 , Bh(γ) :=

(
rh,1(γ) −2rh,0(γ)
2rh,2(γ) −rh,1(γ)

)
.

The action of ∂/∂ρi on the space of solutions of LX is related to extensions vhi1,1 of two-
dimensional symmetric tensor representations of Γ.

Proposition 3. For every i = 0, . . . , n− 4, r ≥ 0, the derivative (∂ryρ/∂ρ
r
i ) lifts to a com-

ponent of a vector-valued modular form with respect to a r-iterated extension of symmetric
tensor representations of dimension 2. When r = 1 the derivation ∂/∂ρi on yρ(t) induces a
map

Mk(Γ) → Mk(Γ, v
hi
1,1), g 7→




τgh̃′i − gh̃i
gh̃′i
τg
g


 ,

for every k ≥ 0, where hi ∈ S4(Γ) is as in Theorem 1.

Proof. The result follows from Proposition 1. Recall that ∂ryρ(t)/∂ρ
r
i is a solution of a

Fuchsian equation obtained as the composition of (r + 1) second-order Fuchsian operators.
The vector of solutions of this equation composed with t(τ) gives a vector of holomorphic
functions on H. Its transformation property follows from the fact that the monodromy of
the differential equation is an iterated extension of symmetric tensor representations.

In the case r = 1, the proof of Theorem 1 shows that ∂yρ(t)/∂ρi lifts to fh̃′i and a

similar computation shows that ∂ŷρ(t)/∂ρi lifts to τf h̃′i−fh̃i. The modular transformation

properties of these functions show that the extension has to be vhi1,1. �

The deformation operator ∂i is related to extensions in Ext1Γ(v0, v2).

Proposition 4. For every i = 0, . . . , n− 4 the i-th deformation operator ∂i induces a map

→

∂ i : Mk(Γ) = Mk(Γ, v0) → Mk(Γ, v
hi
0,2) g 7→

→

∂ ig :=




∂ig
τ2g′ + 2τg
τg′ + g

g′


 ,

for every k ≥ 0, where hi ∈ S4(Γ) is as in Theorem 1.

Proof. To check that
→

∂ig is a VVMF with respect to vhi0,2 we split the vector into the lower

part (g′, τg′+ g, τ2g′+ τg)t and the upper part (∂ig) and check that they transform accord-
ingly under the action of Γ.

The vector (g′, τg′ + g, τ2g′ + τg)t is a weight k VVMF for the symmetric tensor repre-
sentation v2 associated to the quasimodular form g′, as Choie-Lee’s paper [5] or a simple
check shows. On the other hand, from Theorem 1 it follows that

∂ig
∣∣
k
γ = [g, h̃i]

∣∣
k
γ = [g, h̃i] + [g, phi(γ, τ)] ,

and an easy computation shows [g, phi(γ, τ)] = rhi,2(τ
2g+2τg)+ rhi,1(τg

′+ g)+ rhi,0g
′. By

comparing these transformations with the explicit description of vhi2,0 in (32) the statement
follows. �
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2.5. Final remarks.

(1) It should be possible, by considering differential equations of higher order satisfied
by g′ and ∂ig, to prove Proposition 4 by a monodromy argument like Proposition 3.
The reason why the same argument does not work is related to the appearance of g′

in
→

∂ ig : the non-trivial depth of this quasimodular form does not permit to reduce
to second order differential equations as happens for modular forms.

(2) A related problem is to extend the map
→

∂ i to a map on M∗(Γ, vl) for every l > 0.
It follows from (10) that this is equivalent to define the deformation operators on
quasimodular forms. As quasimodular forms does not fit into the classical picture
of uniformizing differential equations, they are not a priori related with the ac-
cessory parameters. Nevertheless, by writing quasimodular forms as weight zero
VVMFs, one can argue as in Chapter 5 of [4] and find differential equations solved
by quasimodular forms. If these differential equations are special members of a fam-
ily depending on some parameters, then one can define deformations with respect

to those parameters. This may give a reasonable way to extend the maps
→

∂ i.
(3) By using Corollary 1 it is possible to compute higher deformations ∂ri g as well as

mixed derivatives in terms of iterated integrals of modular forms. More generally,
given a genus zero group Γ with n-cusps it may be interesting to consider the ex-
pansion of a modular form f ∈ M∗(Γ) around the Fuchsian value of the accessory
parameter

f̂(τ) =

∞∑

J∈Zn−4

∂Jf(τ)(ρ− ρF )
J , ∂J := ∂j11 · · · ∂n−4

n−4 ,

and to investigate its modular properties with respect to the usual action of Γ.

Acknowledgments

The paper was written while I was a graduate student at SISSA (International School
for Advanced Studies) in Trieste and a visiting student of the IMPRS graduate school in
the Max Planck Institute for Mathematics in Bonn. I want to thank both institutions for
the excellent working conditions. I want to thank my advisers Don Zagier and Fernando
Rodriguez Villegas for their suggestions and support, and Vasily Golyshev for very useful
conversations.

References

[1] L.Ahlfors, ‘Lectures on quasiconformal mappings’, with additional chapters by C.J. Earle and I.Kra,
M. Shishikura, and J.H.Hubbard, University Lecture Series, American Mathematical Society 38 (2006).

[2] F. Beukers, ‘Irrationality proofs using modular forms’, Journées Arithmétiques de Besancon, Astérisque

147-148. (1987), 271-283.
[3] G.Bogo, ‘Accessory parameters for four-punctured spheres’, arXiv:2004.02971.
[4] J. Bruinier, G. Harder, G. van der Geer, D. Zagier, ‘The 1-2-3 of Modular Forms: Lectures at a Summer

School in Nordfjordeid, Norway’ (ed. K. Ranestad), Universitext, Springer-Verlag, Berlin-Heidelberg-
New York (2008).

[5] Y.Choie, MH.Lee, ‘Symmetric tensor representations, quasimodular forms and weak Jacobi forms’,
Advances in Mathematics, 287 (2016) 567-599.

[6] M.Kuga, G. Shimura, ‘On vector differential forms attached to automorphic forms’, J. Math. Soc. Japan

12 3 (1960) 258-270.

http://arxiv.org/abs/2004.02971


MODULAR FORMS AND DEFORMATION OF PUNCTURES SPHERES 15

[7] M.Mertens, M. Raum, ‘Modular forms of virtually real-arithmetic type I: Mixed mock modular forms
yield vector-valued modular forms’, Mathematical Research Letters 28 (2021), 511-561.

[8] H.P. de Saint-Gervais, ‘Uniformization of Riemann Surfaces: revisiting a hundred-year-old theorem’,
European Mathematical Society (2016).

[9] L.Takhtajan, P. Zograf, ‘On the Liouville equation, accessory parameters and the geometry of the
Teichmüller space for the Riemann surfaces of genus 0’, Mathematics of the USSR-Sbornik 60 (1988)
143-161.

Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstrasse 7, 64289

Darmstadt, Germany

Email address: bogo@mathematik.tu-darmstadt.de


	Introduction
	1. Uniformization, differential equations, symmetric tensor representations
	1.1. Uniformization and accessory parameters
	1.2. Symmetric tensor representations and extensions

	2. Deformation operators
	2.1. Deformation of differential equations
	2.2. Deformation of modular forms
	2.3. Teichmüller theory
	2.4. Vector-valued modular forms
	2.5. Final remarks

	Acknowledgments
	References

