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Twisted loop transgression and higher Jandl gerbes
over finite groupoids

BEHRANG NOOHI

MATTHEW B YOUNG

Given a double cover � W G! yG of finite groupoids, we explicitly construct cochain-
level twisted loop transgression maps, £� and £ref

� , thereby associating to a Jandl
n–gerbe y� on yG a Jandl .n�1/–gerbe £�.y�/ on the quotient loop groupoid of G
and an ordinary .n�1/–gerbe £ref

� .
y�/ on the unoriented quotient loop groupoid of G.

For n D 1; 2, we prove that the character theory (resp. centre) of the category of
Real y�–twisted n–vector bundles over yG admits a natural interpretation in terms of
flat sections of the .n�1/–vector bundle associated to £ref

� .
y�/ (resp. the Real .n�1/–

vector bundle associated to £�.y�/). We relate our results to Real versions of twisted
Drinfeld doubles of finite groups and fusion categories and to discrete torsion in
orientifold string theory and M–theory.

57R56; 19L50, 20C30

Introduction

The goal of this paper is, firstly, to construct and compute twisted versions of loop
transgression maps on the cohomology of finite groupoids and their various loop
groupoids and, secondly, to connect these maps to Real categorical representation
theory, monoidal categories and discrete torsion in orientifold string theory and M–
theory.

To put our results in context, recall that the ordinary loop transgression map £ is a
fundamental construction which associates to a degree n cohomology class on a closed
manifold X a degree n� 1 class on its free loop space Map.S1; X/ using integration
along the S1–fibre of the projection S1 �Map.S1; X/!Map.S1; X/. For a detailed
discussion of loop transgression, see Brylinski [8]. When X is replaced with a finite
groupoid G, which is the focus of the present paper, Willerton [40] constructed and
computed a cochain-level loop transgression map £ W C �.G/! C ��1.ƒG/ for U.1/–
valued simplicial cochains. Here ƒG WD HomCat.BZ;G/ is the loop groupoid of G,
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1664 Behrang Noohi and Matthew B Young

whose geometric realization jƒGj is homotopy equivalent to Map.S1; jGj/. In the
setting of orbifolds, a differential refinement of this map was constructed by Lupercio
and Uribe [31]. The map £ has found applications in many areas of mathematics,
including oriented topological field theory and complex representation theory; see
Freed [19], Brylinski and McLaughlin [9], Willerton [40], Fuchs, Schweigert and
Valentino [22] and Kong, Tian and Zhou [30].

Suppose now that � W yG!BZ2 is a finite Z2–graded groupoid, such as the classifying
space of a Z2–graded finite group yG ! Z2 D f˙1g. Such Z2–gradings arise, for
example, in real versions of representation theory and in mathematical approaches
to unoriented topological field theory and orientifold string theory. Let G ! yG be
the associated double cover and C �C�.yG/ the �–twisted cochain complex of yG. In
Section 1.4 we define quotient loop groupoids ƒ� yG WDƒG==Z2 and ƒref

�
yG WDƒG==Z2

by the Z2–actions on ƒG given by deck transformations of G and the diagonal action
of deck transformations and reflection of the circle BZ, respectively. Our first result is
as follows:

Theorem A (Theorems 2.6 and 2.8) There exist twisted loop transgression maps

£ref
� W C

�C�.yG/! C ��1.ƒref
�
yG/ and £� W C

�C�.yG/! C ��1C�ƒ� yG .ƒ� yG/;

both of which are cochain maps and have explicit combinatorial expressions. Here
�ƒ� yG WƒG!ƒ� yG is the canonical double cover.

For example, let y� 2 C 2C�.yG/. Morphisms 
 W x ! x and ! W x ! y in yG, the
former of degree C1, define a morphism ! W 
 ! !
�.!/!�1 in ƒref

�
yG. Denoting by

Œ!�
 2 C1.ƒ
ref
�
yG/ the associated 1–chain, Theorem A gives

£ref
� .
y�/.Œ!�
/D y�

�
Œ
�1 j 
�

�.�.!/�1/=2 y��Œ!
�.!/!�1 j!��
y�
�
Œ! j 
�.!/�

� :

The map £ref
� has already appeared, in the form of its explicit expressions in low degrees,

in work of Young on unoriented topological field theory [43] and Real 2–representation
theory [44], where its geometry was also foreshadowed. Theorem A gives an a priori
geometric construction of £ref

� and £� , in all degrees, and establishes that they are
cochain maps. The latter fact is crucial for applications in [44; 43] and is difficult
to verify directly in all but the simplest cases. Upon restriction along G ! yG, both
maps £ref

� and £� recover Willerton’s transgression map £, so £ref
� and £� can be viewed

as enhanced versions of £ which take into account certain Z2–actions. However, our
proof of Theorem A is necessarily different from Willerton’s proof for £, since the
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latter relies on an explicit homotopy equivalence jƒGj �Map.S1; jGj/ which is not
equivariant for circle reflection. We instead work in a categorical setting, where all
constructions are equivariant, and do not pass to geometric realizations.

In the remainder of the paper we connect Theorem A to Real (categorical) representation
theory and related areas. Following Atiyah [1], the term “Real” indicates a C–linear
object (or theory) with a C–antilinear involution. We take a geometric approach
and, using terminology of Schreiber, Schweigert and Waldorf [35] and Willerton [40],
interpret a twisted .nC1/–cocycle y�2ZnC1C�yG .yG/ as a flat Jandl n–gerbe on yG, that is,
a U.1/–bundle n–gerbe on G with complex conjugation-twisted equivariance data for the
double cover G! yG. For nD�1; 0; 1, this is a Real U.1/–valued function, a Real U.1/–
bundle and a Jandl (or Real) gerbe on yG, respectively. Jandl gerbes play a central role
in unoriented topological field theory (see Kapustin and Turzillo [26] and Young [43]),
orientifold string theory (see Schreiber, Schweigert and Waldorf [35] and Distler,
Freed and Moore [13]), topological phases of matter with time reversal symmetry (see
Barkeshli, Bonderson, Cheng, Jian and Walker [4]) and Real representation theory [43].
The twisted transgression maps associate to a Jandl n–gerbe y� an ordinary .n�1/–gerbe
£ref
� .
y�/ on ƒref

�
yG and a Jandl .n�1/–gerbe £�.y�/ on ƒ� yG, both of which we regard

as higher holonomy gerbes of y�. Our results indicate that £ref
� .
y�/ and £�.y�/ control

the character theory and centre, respectively, of the category of y�–twisted n–vector
bundles on yG. Here we formulate precisely and prove these statements for n� 2.

In Section 3, after briefly treating the rather trivial case n D 0, we study the case
n D 1. As is well known — see Freed, Hopkins and Teleman [20], Moutuou [32]
and Fok [17] — complex vector bundles over yG can be twisted by a Jandl gerbe
y� 2 Z2C�yG .yG/. The collection of such twisted bundles forms an R–linear category
Vect

y�
C.
yG/ whose Grothendieck group K y� .yG/ is a twisted form of the KR–theory of G.

We prove that the character theory of Vecty�C.yG/ is naturally described in terms of the
transgressed U.1/–bundle £ref

� .
y�/ on ƒref

�
yG.

Theorem B (Theorem 3.12) The Real character map induces an isomorphism of
complex inner product spaces

� WK
y� .yG/˝Z C ��! �ƒref

�
yG.£

ref
� .
y�/C/

with target the space of flat sections of the associated complex line bundle £ref
� .
y�/C .

A key point in the proof of Theorem B is the use of the explicit combinatorial expressions
in Theorem A to identify�ƒref

�
yG.£

ref
� .
y�/C/ as the appropriate space of class functions. For
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certain very simple choices of yG and y� , Theorem B reduces to previously known results
in the real and quaternionic representation theory of finite groups; see Reynolds [33] and
Bröcker and tom Dieck [7]. One benefit of our geometric approach is that Theorem B,
and all other results of this paper, applies uniformly to all Z2–gradings yG and all twists y� .
As an application of Theorem B, we prove in Corollary 3.14 a Real generalization
of a theorem of Schur, computing the number of simple objects of Vecty�C.ByG/ as a
y�–weighted count of Real conjugacy classes of G.

In contrast to the complex (ie non-Real) case, the centreZ.Vecty�C.yG// and Grothendieck
group K y� .yG/ of the category Vect

y�
C.
yG/ are not directly related. Instead, we prove that

Z.Vect
y�
C.
yG// can be understood in terms of the twisted transgression map £� .

Theorem C (Theorem 3.17) There is a canonical R–algebra isomorphism

Z.Vect
y�
C.
yG//' �ƒ� yG.£�.

y�/�1C /;

where the right-hand side is the space of flat sections of the Real line bundle £�.y�/�1C .

In Section 4 we study 2–categorical analogues of the results of Section 3. For simplicity,
we restrict attention to connected groupoids. Fix a Jandl 2–gerbe y� 2 Z3C�.ByG/.
Motivated by Willerton’s interpretation of the twisted Drinfeld double D�.G/ for
�2Z3.BG/, of a finite group G as the £.�/–twisted groupoid algebra of ƒBG [40], we
use £ref

� .y�/ and £�.y�/ to define thickened twisted Drinfeld doubles Dy�.yG/ and Dy�.yG/,
respectively. These are complex vector spaces with possibly sesquilinear associative
multiplications which contain the twisted Drinfeld double of GDker.�/ as a subalgebra.
The methods of Section 3 allow to immediately describe the character theory of
thickened Drinfeld doubles. For example, characters of Dy�.yG/–modules — which,
because of their connection with two-dimensional topological field theory, we call
twisted one-loop characters — are shown in Proposition 4.4 to give an interesting
extension of twisted elliptic characters of G by a Klein bottle sector. Next, we construct
from y� a Real fusion category Vect

y�
C.
yG/, which we view as a categorified twisted Real

group algebra of G, and show in Proposition 4.8 that categories of this form exhaust
Real pointed fusion categories. We also identify their Drinfeld centres, giving the
following 2–categorical version of Theorem C:

Theorem D (Theorem 4.9) There is a canonical R–linear monoidal equivalence

ZD.Vect
y�
C.
yG//' Vect

£� .y�/
�1

C .ƒ�ByG/:

Algebraic & Geometric Topology, Volume 22 (2022)



Twisted loop transgression and higher Jandl gerbes over finite groupoids 1667

Next, we establish a tighter connection between the ordinary Drinfeld double D�.G/
and Dy�.yG/ by giving the latter the structure of a Real quasibialgebra. Moreover, we show
that the category of Real Dy�.yG/–modules is monoidally equivalent to Vect

£� .y�/
C .ƒ�ByG/.

In Section 4.4 we explain that Real Vecty�C.yG/–module categories recover the bicategory
2Vect

y�
C.B
yG/ of y�–twisted 2–vector bundles over ByG, as developed in [44] in the form

of Real 2–representation theory. One of the main results of [44] is the existence of a
Real categorical character theory. This theory is most naturally formulated in terms
of Dy�.yG/–modules and twisted one-loop characters, thereby illustrating the character-
theoretic meaning of £ref

� .y�/. Because of the complicated form of £ref
� .y�/, this result

is a highly nontrivial check of our general proposal that £ref
� controls the character

theory of higher vector bundles. Finally, in Section 4.5 we interpret £ref
� in terms of

discrete torsion phases of nonorientable 2– and 3–manifolds in orientifold string theory
and M–theory. In particular, we provide a representation-theoretic perspective on
computations of Bantay [3] and Sharpe [38].

We have restricted our attention to finite groupoids, both for simplicity and because
of our applications. In work in progress, we study more general twisted transgression
maps in the geometric setting of topological stacks.

Acknowledgements The authors thank Grégory Ginot, Mahmoud Zeinalian and the
referee for helpful comments. Young also thanks Chi-Kwong Fok, Jan-Luca Spellmann,
Konrad Waldorf and Siye Wu for discussions. The authors are grateful to the Max
Planck Institute for Mathematics for its hospitality and financial support during the
preparation of this paper.

1 Loop groupoids and their quotients

1.1 Essentially finite groupoids

We briefly recall some standard material about groupoids.

A groupoid is a category in which all morphisms are isomorphisms. A groupoid G
is said to be essentially finite if its set of connected components, �0.G/, is finite and
each object of G has finitely many automorphisms. Unless mentioned otherwise, all
groupoids in this paper are assumed to be essentially finite.

Example Let G be a group and X a (left) G–set. The action groupoid X==G has
object set X and morphisms HomX==G.x1; x2/D fg 2 G j gx1 D x2g. Morphisms are
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1668 Behrang Noohi and Matthew B Young

composed using multiplication in G. The groupoid X==G is essentially finite if and only
if X has finitely many G–orbits and each orbit has finite stabilizer.

When X consists of a single point, we write BG in place of X==G.

Let C�.G/ WD C�.GIZ/ be the complex of simplicial chains on G. Explicitly, Cn.G/ is
the free abelian group generated by symbols Œgn j � � � jg1�, where x1

g1
�! � � �

gn
�! xnC1

is a diagram in G. The differential of C�.G/ is

@Œgnj� � �jg1�D Œgn�1j� � �jg1�C

n�1X
jD1

.�1/n�j Œgnj� � �jgjC1gj j� � �jg1�C.�1/
nŒgnj� � �jg2�:

Let A be an abelian group, written multiplicatively, and � W G ! BAut.A/ a functor.
The complex of �–twisted cochains on G is the abelian group HomZ.C�.G/;A/. The
differential d sends � 2 HomZ.Cn�1.G/;A/ to the n–cochain d� with values

d�
�
Œgn j � � � jg1�

�
D�.gn/��

�
Œgn�1j� � �jg1�

� n�1Y
jD1

�
�
Œgnj� � �jgjC1gj j� � �jg1�

�.�1/n�j
��
�
Œgnj� � �jg2�

�.�1/n
:

The inclusion of the subcomplex

C �C�.GIA/ WD Homn
Z.C�.G/;A/� HomZ.C�.G/;A/

of normalized cochains is a quasi-isomorphism. Write Z�C�.GIA/ and H �C�.GIA/
for the cocycles and cohomology of C �C�.GIA/, respectively. Write C �C�.G/ for
C �C�.GIA/ if A is fixed and omit � from the notation if it is trivial.

1.2 Essentially finite groupoids over BZ2

Let Z2 be the multiplicative group f˙1g. We sometimes denote its nonidentity element
by �.

A groupoid over BZ2, or a Z2–graded groupoid, is a functor �yG W yG! BZ2. Write
� for �yG if it will not cause confusion. The degree of a morphism ! 2 Mor.yG/ is
�.!/ 2 Z2. When �yG is trivial, all results below reduce to known results for ordinary
groupoids. For this reason, we assume that � is strongly nontrivial in the sense that,
for each x 2 yG, there exists a morphism of degree �1 with source x.

There is a canonical decomposition �0.yG/ D �0.yG/�1 t �0.yG/1, with �0.yG/�1 the
subset of connected components of yG consisting of objects which have at least one
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automorphism of degree�1. By strong nontriviality, for each representative x 2�0.yG/1,
we can choose a morphism of degree �1 with source x, whose target we denote by Nx.
Note that x ¤ Nx. Let yGfx; Nxg � yG be the full subcategory on fx; Nxg.

Proposition 1.1 There is an equivalence of Z2–graded groupoids

yG '
G

x2�0.yG/�1

BAutyG.x/t
G

x2�0.yG/1

yGfx; Nxg:

Proof It suffices to prove the statement for connected yG. The case �0.yG/D �0.yG/�1
is left to the reader. Suppose that �0.yG/ D �0.yG/1. For each y 2 yG, there exists a
morphism gy of degree C1 from y to x or from y to Nx, but not both. Fix a choice
of such morphisms. Then the functor yG ! yGfx; Nxg which sends an object y to the
target of gy and a morphism ! W y1! y2 to gy2!g

�1
y1

is quasi-inverse to the inclusion
yGfx; Nxg ,! yG and is compatible with the structure maps to BZ2.

The functor � W yG!BZ2 classifies a double cover of groupoids, denoted by � WG�! yG.
The use of � for both the classifying map and the double cover should not cause
confusion. We often write G for G� . The functor � W G ! yG admits the following
explicit model [21, Section 10.4]. The objects and morphisms of G are Obj.yG/�Z2
and

HomG..x1; �1/; .x2; �2//D f! 2 HomyG.x1; x2/ j �.!/�1 D �2g:

Morphisms are composed as in yG. The functor � sends a morphism .x1; �1/
!
�! .x2; �2/

in G to x1
!
�!x2. The (nontrivial) deck transformation �G WG!G is the strict involution

which sends a morphism .x1; �1/
!
�! .x2; �2/ to .x1;��1/

!
�! .x2;��2/.

Example Let 1!G!yG �
�!Z2!1 be an exact sequence of groups. We call yG a Z2–

graded group. LetX be a yG–set. There is an induced Z2–grading � WX==yG!BZ2. The
choice of an element & 2 yGnG identifies the canonical double cover X==G!X==yG with
.X==yG/� !X==yG. Under this identification, the deck transformation �X==G WX==G!
X==G is the weak involution given on morphisms by

.x1
g
�! x2/ 7! &x1

&g&�1
����! &x2:

The action of &22G defines a natural isomorphism 1X==yG) .�X==G/
2, thereby exhibiting

�X==G as an involution.
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Fix an abelian group A and let Z2 ! Aut.A/ be the morphism determined by the
inversion automorphism of A. A Z2–grading �yG W yG!BZ2 therefore defines a twisted
cochain complex C �C�yG .yG/. A description of C �C�yG .yG/ in terms of the double cover G
is as follows. Let Œ!n j � � � j!1��1 2 Cn.G/ be the chain associated to the diagram

.x1; �1/
!1
�! � � �

!n
�! .xnC1; �nC1/

in G. The notation is unambiguous, since �i D �.!�i�1/�1, where !�i WD !i � � �!1.
The complex C�.G/ is a ZŒZ2�–module via

(1) � � Œ!n j � � � j!1��1 D Œ!n j � � � j!1���1 :

Write A and A� for the trivial and nontrivial ZŒZ2�–module structures on A, respectively.
For example, c0C c1� 2 ZŒZ2� acts on A� by z 7! zc0�c1 .

Lemma 1.2 There are mutually inverse cochain isomorphisms

ˆ� W C
�C�yG .yG/� Homn

ZŒZ2�
.C�.G/;A�/ W‰�

given by
ˆ�.y�/

�
Œ!n j � � � j!1��1

�
D y�

�
Œ!n j � � � j!1�

��nC1
and

‰�.y�/
�
Œ!n j � � � j!1�

�
D y�

�
Œ!n j � � � j!1��.!�n/

�
:

Proof This is a direct calculation.

There is an untwisted version of Lemma 1.2, in which A replaces A� and maps ˆ
and ‰ are defined as for ˆ� and ‰�, but with the signs removed.

1.3 Loop groupoids

Following Willerton [40] (see also [31]), the loop groupoid of an essentially finite
groupoid G is defined to be the functor category

ƒG WD HomCat.BZ;G/:

Objects of ƒG can be identified with loops .x; 
/ in G, that is, morphisms 
 W x! x.
A morphism .x1; 
1/! .x2; 
2/ is then a morphism g W x1! x2 in G which satisfies

2Dg
1g

�1. Composition of morphisms is as in G. Since G is essentially finite, so too
is ƒG. Moreover, ƒG coincides with the inertia groupoid of G, whence our notation.
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Denote by jGj the geometric realization of G. Since G is essentially finite, the sets
�0.jGj/ and �1.jGj/ are finite. In the other direction, any finite homotopy 1–type
can be realized as the geometric realization of an essentially finite groupoid. The
geometric realization of ƒG is homotopy equivalent to the free loop space of jGj; that
is, jƒGj �Map.S1; jGj/. See [40, Theorem 2] or [31, Proposition 6.1.1].

1.4 Quotients of loop groupoids

Let � W yG! BZ2 be an essentially finite Z2–graded groupoid with associated double
cover G! yG. We introduce in this section two quotients of ƒG.

Definition 1.3 The quotient loop groupoid of G is the groupoid ƒ� yG with objects the
loops .x; 
/ of degree C1 in yG and morphisms

Homƒ� yG..x1; 
1/; .x2; 
2//D f! 2 HomyG.x1; x2/ j 
2 D !
1!
�1
g:

There is a strongly nontrivial grading �ƒ� yG Wƒ�
yG!BZ2 which sends a morphism !

to �.!/. To identify the associated double cover, let p W ƒG ! ƒ� yG be the functor
which sends a morphism ..x1; �1/; 
1/

!
�! ..x2; �2/; 
2/ to .x1; 
1/

!
�! .x2; 
2/.

Lemma 1.4 The double cover classified by �ƒ� yG is equivalent to p.

Proof The functor ƒG! .ƒ� yG/�ƒ� yG defined on morphisms by

Œ..x1; �1/; 
1/
!
�! ..x2; �2/; 
2/� 7! ..x1; 
1/; �1/

!
�! ..x2; 
2/; �2/

is an equivalence and is compatible with the structure maps to ƒ� yG.

Because of Lemma 1.4, we henceforth write �ƒ� yG for p. Under the equivalence of
Lemma 1.4 (and its obvious inverse functor), the deck transformation �ƒG WƒG!ƒG
is the strict involution given on objects by ..x; �/; 
/ 7! ..x;��/; 
/ and on morphisms
by the identity. In terms of functors, this reads

�ƒG W HomCat.BZ;G/! HomCat.BZ;G/; F 7! �G ıF:

Next, we define a modification of ƒ� yG which incorporates reflection of the circle.

Definition 1.5 The unoriented quotient loop groupoid of G is the groupoid ƒref
�
yG with

objects the loops .x; 
/ of degree C1 in yG and morphisms

Homƒref
�
yG..x1; 
1/; .x2; 
2//D f! 2 HomyG.x1; x2/ j 
2 D !


�.!/
1 !�1g:

There is a strongly nontrivial grading �ƒref
�
yG Wƒ

ref
�
yG! BZ2. Let pref WƒG!ƒref

�
yG be

the functor given by Œ..x1; �1/; 
1/
!
�! ..x2; �2/; 
2/� 7! .x1; 


�1
1 /

!
�! .x2; 


�2
2 /.

Algebraic & Geometric Topology, Volume 22 (2022)
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Lemma 1.6 The double cover classified by �ƒref
�
yG is equivalent to pref.

Proof The equivalence ƒG! .ƒref
�
yG/�

ƒref
� yG

is defined by

Œ..x1; �1/; 
1/
!
�! ..x2; �2/; 
2/� 7! ..x1; 


�1
1 /; �1/

!
�! ..x2; 


�2
2 /; �2/:

We henceforth write �ƒref
�
yG for pref. Under the equivalence of Lemma 1.6, the deck

transformation � ref
ƒG WƒG!ƒG is the strict involution � ref

ƒG..x; �/; 
/D ..x;��/; 

�1/

or, in terms of functors, � ref
ƒG.F /D �G ıF ıB�, where � W Z! Z is negation.

Example Let yG be a Z2–graded group. The Real conjugation action of yG on G is

! �g D !g�.!/!�1; .!; g/ 2 yG�G:

With this notation, there are equivalences

ƒBG' G==G; ƒ�ByG' G==yG; ƒref
� B
yG' G==RyG;

where the group actions on G are G–conjugation, yG–conjugation and Real yG–conjugation,
respectively. The choice of an element & 2 yG nG identifies the double covers

ƒBG!ƒ�ByG; ƒBG!ƒref
� B
yG

with the canonical functors

G==G! G==yG; G==G! G==RyG:

Under these identifications, the deck transformations are given on objects by

�ƒ�ByG.
/D &
&
�1 and �ƒref

�ByG
.
/D &
�1&�1

and on morphisms by �
ƒ
.ref/
� ByG

.!/D &!&�1.

2 Twisted loop transgression

2.1 Oriented loop transgression

We begin by recalling the ordinary (oriented) loop transgression map in the setting of
essentially finite groupoids. For detailed discussions, the reader is referred to [40], or
[8; 31] in the geometric setting.

Let G be an essentially finite groupoid. The evaluation functor ev W BZ�ƒG! G is
given on morphisms by

Œ.x1; 
1/
.n;g/
��! .x2; 
2/� 7! x1

g
n1D

n
2 g

�������! x2:
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Let prƒG W BZ�ƒG!ƒG be the projection. Consider the span of groupoids

(2)
BZ�ƒG

G ƒG
ev prƒG

Passing to geometric realizations gives a diagram which is homotopy equivalent to the
standard evaluation–projection correspondence for Map.S1; jGj/.

Let Œ1� WD Œ� 1
�! �� 2 C1.BZ/, which we view as a fundamental cycle of jBZj � S1.

The composition

(3) C�.ƒG/ Œ1�˝�����! C1.BZ/˝Z C�.ƒG/ EZ
�! C�C1.BZ�ƒG/ ev��! C�C1.G/

defines the chain-level loop transgression map. Here EZ is the Eilenberg–Zilber shuffle
map. Writing ezŒ1� for the composition EZ ı .Œ1�˝�/, the pushforward along prƒG is
the map

(4) prƒGŠ W C
�.BZ�ƒG/! C ��1.ƒG/; � 7! � ı ezŒ1�:

The loop transgression map is then

£ W C �.G/
prƒGŠıev�
������! C ��1.ƒG/:

The map £ anticommutes with the differentials, d£.�/D £.d�/�1, and so descends to
a map on cocycles and cohomologies.

To compute £, let Œgn j � � � j g1�
 2 Cn.ƒG/ be the chain associated to the diagram

 D 
1

g1
�! 
2

g2
�! � � �

gn
�! 
nC1 in ƒG. Then we have

ezŒ1�
�
Œgn j � � � jg1�


�
D

nX
iD0

.�1/n�i Œgn j � � � jgiC1 j 1 jgi j � � � jg1�
1;

where we have introduced the shorthand gi D .0; gi / and 1D .1; idx/ for morphisms
in BZ�ƒG. The result of applying the map (3) to Œgn j � � � jg1�
 is thus

nX
iD0

.�1/.n�i/Œgn j � � � jgiC1 j 
iC1 jgi j � � � jg1�:

Dualizing and passing to A–coefficients gives for � 2 C nC1.G/ the expression

(5) £.�/
�
Œgn j � � � jg1�


�
D

nY
iD0

�
�
Œgn j � � � jgiC1 j 
iC1 jgi j � � � jg1�

�.�1/n�i
;

which is precisely the result of Willerton [40, Theorem 3].
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Willerton’s derivation of (5) is rather different from that presented here, relying on a
particular homotopy equivalence jƒGj �Map.S1; jGj/, the so-called Parmesan map
[40, Theorem 2]. The Parmesan map is not equivariant for reflection of the circle, and
so is not well suited for the purposes of this paper.

2.2 Twisted pushforwards for groupoids

We begin by generalizing the pushforward map (4) so as to include a twist on the
codomain.

Lemma 2.1 Let G be an essentially finite groupoid and � W G! BAut.A/ a functor.
Then the abelian group homomorphism

prGŠ W C
�Cpr�G�.BZ�G/! C ��1C�.G/; � 7! � ı ezŒ1�;

anticommutes with the differentials.

Proof This follows from the equality @ ı ezŒ1� D�ezŒ1� ı @.

Now let yG be an essentially finite Z2–graded groupoid. Consider the strict Z2–action
on BZ which negates morphisms. Then prG W BZ� G! G is strictly equivariant for
the diagonal Z2–action on BZ�G and so descends to a functor

�prG W BZ�Z2 G! yG:

Write �BZ�Z2G W BZ � G ! BZ �Z2 G WD .BZ � G/==Z2 for the canonical double
cover. The objective of the remainder of this section is to construct a pushforward

�prGŠ W C
�C�BZ�Z2

GC�
�
BZ�Z2

G�.BZ�Z2 G/! C ��1C�.yG/:

Note that we have used �BZ�Z2G to denote both a classifying map, viewed as a
cochain twist, and its associated double cover, used to pull back �. In view of our later
applications, we consider only the case in which � is trivial or � D �yG . In the latter
case, �BZ�Z2G C�

�
BZ�Z2G

� is the trivial twist.

We begin with some notation. Given morphisms !1; : : : ; !n in yG, set

�!n;:::;!1 D

�
1 if �.!n/D � � � D �.!1/D�1;
0 otherwise.

By convention, �¿ D 1. For each � 2 Z2 and i � 1, let

s�i D Œ� j �� j � � � j .�1/
iC1�� 2 Ci .BZ/:
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Define a Z–linear map

fn W Cn.G/!
nC1M
kD1

Ck.BZ/˝Z CnC1�k.G/

by

fn
�
Œ!n j � � � j!1��1

�
D�nC1s

�nC1
1 ˝Œ!nj� � �j!1��1C

n�1X
iD0

.�1/i�nC1�i�!n;:::;!n�i s
�nC1
iC2 ˝Œ!n�1�i j� � �j!1��1 :

For notational simplicity, we often write sji for s�ji and �n;:::;1 for �!n;:::;!1 .

We regard C�.BZ/˝Z C�.G/ as a ZŒZ2�–module with its standard tensor product
differential. An element of C�.BZ/˝Z C�.G/ is called degenerate if it can be written
in the form

P
i ai ˝bi , where, for each i , at least one of ai or bi is a degenerate chain.

Proposition 2.2 Let c 2 C�.G/. The following equalities hold :

(i) f .� � c/D�� �f .c/.

(ii) f .@c/D�@f .c/C degenerate elements.

Proof The first statement follows from a direct calculation using (1).

Consider then the second statement. To begin, note that

@s�i D s
��
i�1C .�1/

is�i�1C degenerate chains:

Since we are not concerned with degenerate elements, we henceforth omit them
from all equalities. Using this, we find that the terms of @fn

�
Œ!n j � � � j !1�

�
and

�fn�1.@Œ!n j � � � j!1�/ which involve s˙1 are

��nC1s
nC1
1 ˝ @Œ!n j � � � j!1�C �nC1�n.s

�.nC1/
1 C snC11 /˝ Œ!n�1 j � � � j!1�

and

��ns
n
1 ˝ Œ!n�1 j � � � j!1�� �nC1

n�1X
jD1

.�1/n�j snC11 ˝ Œ!n j � � � j!jC1!j j � � � j!1�

� �nC1.�1/
nsnC11 ˝ Œ!n j � � � j!2�;

respectively. The term Œ!n j � � � j!2� appears with coefficient .�1/nC1�nC1snC11 in both
of these expressions while Œ!n�1 j � � � j!1� appears with coefficients

��nC1s
nC1
1 C �nC1�n.s

�.nC1/
1 C snC11 / and � �ns

n
1 :

Algebraic & Geometric Topology, Volume 22 (2022)



1676 Behrang Noohi and Matthew B Young

When �n D 0, these quantities are plainly equal. When �n D 1, the first becomes

�ns
�n
1 � �n.s

n
1 C s

�n
1 /D��ns

n
1 :

Now fix i � 1. The terms of @fn
�
Œ!n j � � � j !1�

�
and �fn�1.@Œ!n j � � � j !1�/ which

involve s˙iC1 are

(6) .�1/i�nC1�i�n;:::;n�i .s
�.nC1/
iC1 C .�1/isnC1iC1 /˝ Œ!n�1�i j � � � j!1�

C �nC2�i�n;:::;nC1�is
nC1
iC1 ˝ @Œ!n�i j � � � j!1�

and

(7) �.�1/i�1�nC1�i�n�1;:::;n�is
n
iC1˝ Œ!n�1�i j � � � j!1�

�.�1/n�1
X
j<n�i

.�1/jCi�n�i�n;:::;nC1�is
nC1
iC1 ˝ Œ!n�i j � � � j!jC1!j j � � � j!1�

�.�1/n�1Ci�j�C2�n;:::;.j�C1/j�s
nC1
iC1 ˝ Œ!j��1 j � � � j!1�

�

X
j>n�i

.�1/n�1CjCi�nC1�i�n;:::;.jC1/j;:::;n�is
nC1
iC1 ˝ Œ!n�i�1 j � � � j!1�;

respectively, where j� D n � i . The coefficients of Œ!n�i j � � � j !kC1!k j � � � j !1�
in (6) and (7) are both .�1/n�i�k�nC2�i�n;:::;nC1�isnC1iC1 while the coefficients of
Œ!n�1�i j � � � j!1� are

(8) .�1/i�nC1�i�n;:::;n�i .s
�.nC1/
iC1 C .�1/isnC1iC1 /C �nC2�i�n;:::;nC1�is

nC1
iC1

and

(9) �.�1/i�1�nC1�i�n�1;:::;n�is
n
iC1� .�1/

n�1CiCj��j�C2�n;:::;.j�C1/j�s
nC1
iC1

�

X
j>n�i

.�1/n�1CjCi�nC1�i�n;:::;.jC1/j;:::;n�is
nC1
iC1 :

The sum (8) is nonzero in exactly two cases:

� �n;:::;n�i D 1, in which case (8) is

.�1/i�nC1�is
n
iC1C .�1/

i�nC1�i ..�1/
i
C .�1/i�1/s�niC1 D .�1/

i�nC1�is
n
iC1;

which is equal to (9).

� �n;:::;nC1�i D 1 and �.!n�i /D 1, in which case (8) is �nC2�isnC1iC1 , which is
equal to (9) (corresponding to the term with j� D n� i ).

It remains to consider the case in which (8) is zero. It suffices to assume that exactly
one of !n; : : : ; !n�i has degree C1, as otherwise (9) is clearly zero. We can also
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assume that �.!n�i /D�1, the case �.!n�i /D 1 having been treated above. We need
to show that (9) is zero. If �.!n/D 1, then (9) is equal to (take j D n� 1)

�.�1/i�1�nC1�is
n
iC1� .�1/

n�1Cn�1Ci�nC1�is
nC1
iC1 D 0:

In all other cases, (9) is equal to

�

X
j>n�i

.�1/n�1CjCi�nC1�i�n;:::;.jC1/j;:::;n�is
nC1
iC1 ˝ Œ!n�i�1 j � � � j!1�:

This sum vanishes, as its two nonzero terms have consecutive j indices.

Let ezf W C�.G/! C�C1.BZ�G/ be the composition EZ ıf.

Proposition 2.3 Let � W yG! BZ2 be either the trivial functor or the Z2–grading �yG .
Then the map

HomZ.C�.BZ�G/;A/! HomZ.C��1.G/;A/; y� 7! y� ı ezf ;

defines an abelian group homomorphism

�prGŠ W C
�C�BZ�Z2

GC�
�
BZ�Z2

G�.BZ�Z2 G/! C ��1C�.yG/

which anticommutes with the differentials.

Proof We consider the case in which � is trivial; the other case is analogous. Let
y� 2 Homn

ZŒZ2�
.C�.BZ�G/;A�/ and c 2 C��1.G/. We compute

�prGŠ.y�/.� � c/D y�
�
EZ.f .� � c//

�
D y�

�
EZ.�� �f .c//

�
D y�

�
�� �EZ.f .c//

�
D y�

�
EZ.f .c//

�
D �prGŠ.y�/.c/:

The second, third and fourth equalities follow from Proposition 2.2(i), the naturality (and
hence Z2–equivariance) of EZ and the ZŒZ2�–linearity of y�, respectively. Lemma 1.2
therefore implies that we obtain a map C �C�BZ�Z2

G .BZ�Z2 G/! C ��1.yG/.

To see that �prGŠ anticommutes with the differentials, we compute

.d�prGŠ.y�//.c/D y�
�
EZ.f .@c//

�
D y�

�
EZ.�@f .c//

�
D y�

�
�@EZ.f .c//

�
D .d y�/

�
EZ.f .c//

��1
D �prGŠ.d y�/.c/

�1:

The second and third equalities follow from Proposition 2.2(ii), the normalization of y�
and the fact that EZ is a chain map which sends degenerate elements to degenerate
chains.
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Remark The map Œ1� ˝ �W C�.G/ ! C1.BZ/ ˝Z C�.G/, used to define prGŠ in
Lemma 2.1, satisfies part (ii) of Proposition 2.2 (without working modulo degenerate
elements), but not part (i). Indeed, Œ�1� and �Œ1� are homologous but not equal.

The map �prGŠ has the expected functorial properties of a pushforward.

Proposition 2.4 Consider a diagram of Z2–graded groupoids

yG �H
BZ2

yF

�yG ��H�

with induced morphism F W G ! H of double covers. Then there is a commutative
diagram

C
�C�BZ�Z2

HC�
�
BZ�Z2

H�.BZ�Z2 H/ C ��1C�.�H/
C
�C�BZ�Z2

GC�
�
BZ�Z2

GF
��
.BZ�Z2 G/ C ��1CF

��.yG/

.idBZ�F /
�

�prHŠ

F ��prGŠ

Proof The natural isomorphism � is a function Obj.yG/! Z2 which satisfies

��H.F.!//�x1 D �x2�yG.!/
for all ! W x1! x2. The induced functor F W G!H is given on a morphism by

Œ.x1; �1/
!
�! .x2; �2/� 7! .F.x1/; �x1�1/

F.!/
��! .F.x2/; �x2�2/:

Direct inspection shows that .idC�.BZ/˝F�/ ı fG D fH ıF�. Now use the naturality
of EZ and Proposition 2.3.

2.3 Twisted loop transgression

We define and compute variants of the loop transgression map £ of Section 2.1, pro-
ducing (possibly twisted) cochains on the (unoriented) quotient loop groupoid ƒ.ref/

�
yG

from cochains on yG.

Let �yG W yG ! BZ2 be an essentially finite Z2–graded groupoid. Consider BZ with
its trivial Z2–action. Then (2) is a diagram of strictly equivariant functors between

Algebraic & Geometric Topology, Volume 22 (2022)



Twisted loop transgression and higher Jandl gerbes over finite groupoids 1679

groupoids with strict Z2–actions. It follows that there is a strictly commutative diagram

(10)

BZ�ƒG

G ƒG

BZ�Z2 ƒG

yG ƒ� yG

ev prƒG

�BZ�Z2
ƒG

�yG �ƒ� yG

�ev �prƒG

whose squares are Cartesian. Under the equivalence BZ�Z2 ƒG ' BZ�ƒ� yG, the
functor �prƒG is identified with prƒ� yG and �BZ�Z2ƒG with idBZ ��ƒ� yG .

Definition 2.5 The twisted loop transgression map is the composition

£� W C
�C�yG .yG/ �ev�

��! C �C�ev��yG .BZ�Z2 ƒG/' C �C�pr�ƒG�ƒ� yG .BZ�Z2 ƒG/�prƒGŠ
���! C ��1C�ƒ� yG .ƒ� yG/;

where the middle isomorphism is constructed using the Cartesian squares of diagram (10)
and the final map �prƒGŠ D prƒ� yGŠ is that of Lemma 2.1.

By construction, the map £� anticommutes with the differentials.

Theorem 2.6 Let y� 2 C nC1C�yG .yG/ and Œ!n j � � � j!1�
 2 Cn.ƒ� yG/. Then

£�.y�/
�
Œ!n j � � � j!1�


�
D

nY
iD0

y�
�
Œ!n j � � � j!iC1 j 
iC1 j!i j � � � j!1�

�.�1/n�i
:

Proof Consider the commutative diagram

Homn
ZŒZ2�

.C�.BZ�ƒG/;A�/

Homn
ZŒZ2�

.C�.G/;A�/ Homn
ZŒZ2�

.C��1.ƒG/;A�/

C
�C�BZ�Z2

ƒG .BZ�Z2 ƒG/

C �C�yG .yG/ C ��1C�ƒ� yG .ƒ� yG/

prƒGŠ

‰�

‰�

ev�

‰�

�prƒGŠ�ev�

Algebraic & Geometric Topology, Volume 22 (2022)



1680 Behrang Noohi and Matthew B Young

The vertical maps are chain isomorphisms by Lemma 1.2. Setting �1 DC1, we find

£�.y�/
�
Œ!n j � � � j!1�


�
D .‰� ı prƒGŠ ı ev� ıˆ�/.y�/

�
Œ!n j � � � j!1�


�
Dˆ�.y�/

�
ev�EZ

�
Œ1�˝ Œ!n j � � � j!1�.
; �nC1/

��
D

nY
iD0

y�
�
Œ!n j � � � j!iC1 j 
iC1 j!i j � � � j!1�

�.�1/n�i
:

The last equality follows from calculations similar to Section 2.1 and the equality
�.!�n/D �nC1, which ensures that the sign introduced by ˆ� cancels with �nC1.

Suppose now that Z2 acts by negation on BZ. Then � 2 Z2 acts on morphisms in
BZ�ƒG by

� � Œ..x1; �1/; 
1/
.n;!/
��! ..x2; �2/; 
2/�D ..x1;��1/; 


�1
1 /

.�n;!/
���! ..x2;��2/; 


�1
2 /:

Again, both functors ev W BZ�ƒG! G and prƒG W BZ�ƒG!ƒG are strictly Z2–
equivariant and we obtain a strictly commutative diagram of Cartesian squares similar
to (10), but with ƒ� yG replaced by ƒref

�
yG. Passing to cochains gives the commutative

diagram

(11)

Homn
ZŒZ2�

.C�.BZ�ƒG/;A�/

Homn
ZŒZ2�

.C�.G/;A�/ Homn
ZŒZ2�

.C��1.ƒG/;A/

C
�C�BZ�Z2

ƒG .BZ�Z2 ƒG/

C �C�yG .yG/ C ��1.ƒref
�
yG/

�prƒGŠ

‰�

‰�

ev�

‰

�prƒGŠ�ev�

By Lemma 1.2, the vertical arrows are isomorphisms. Using Proposition 2.3, we make
the following definition:

Definition 2.7 The reflection twisted loop transgression map £ref
� is the composition

£ref
� W C

�C�G .yG/ �ev�
�! C

�C�BZ�Z2
ƒG .BZ�Z2 ƒG/

�prƒGŠ
���! C ��1.ƒref

�
yG/;

where �prƒGŠ is the map of Proposition 2.3 with trivial twist �.

By construction, £ref
� anticommutes with the differentials.
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To compute £ref
� , we introduce some notation. For each 1� i �nC1, let Si;nC1�SnC1

be the subset of .i; nC1�i/–shuffles. Given s2Si;nC1, denote by s � Œ!n j � � � j!1�
 the
.nC1/–simplex of yG whose s.j /th entry for 1 � j � i is 
 .�1/

jC1�.!�n/
s.j /�j

and whose
remaining entries are !n�iC1; : : : ; !1, with !kC1 appearing after !k . In symbols,

s � Œ!n j � � � j!1�
 D Œ� � � j 

��.!�n/

s.2/�2
j!s.2/�2 j � � � j!s.1/ j 


�.!�n/

s.1/�1
j!s.1/�1 j � � � j!1�:

Given y� 2 C nC1C�yG .yG/, put

shi .y�/
�
Œ!n j � � � j!1�


�
WD

Y
s2Si;nC1

y�.s � Œ!n j � � � j!1�
/
sgn.s/:

The map £ref
� can now be computed as follows:

Theorem 2.8 Let y� 2 C nC1C�yG .yG/ and Œ!n j � � � j!1�
 2 Cn.ƒref
�
yG/. Then

(12) £ref
� .
y�/
�
Œ!n j � � � j!1�


�
D

nY
jD0

�
shnC1�j .y�/

�
Œ!n j � � � j!1�


��.�1/nCj�n;:::;n�j :
Proof Setting �1 DC1, we have

£ref
� .
y�/
�
Œ!n j � � � j!1�


�
D .‰ ı�prƒGŠ ı ev� ıˆ�/.y�/

�
Œ!n j � � � j!1�


�
Dˆ�.y�/

�
ev�EZ

�
fn
�
Œ!n j � � � j!1�.
; �1/

���
;

where

fn
�
Œ!n j� � �j!1�.
; �1/

�
D �nC1s

nC1
1 ˝Œ!n j� � �j!1�.
; �1/

C

n�1X
iD0

.�1/i�nC1�i�n;:::;n�is
nC1
iC2 ˝Œ!n�1�i j� � �j!1�.
; �1/:

The definition of ˆ� shows that the first term of the right-hand side contributes to
£ref
� .
y�/
�
Œ!n j � � � j!1�


�
with an overall sign of �2nC1 D 1, yielding the j D n factor of

the product (12), while the i th term of the sum contributes, if at all, with an overall sign
of

.�1/i�nC1�i�n�i D .�1/
i�.!n�i /D .�1/

iC1:

This gives the j D n� 1� i factor of the product (12). In each of these statements
we have used that the map sh is defined exactly so that it realizes the composition
ev� ıEZ.
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For example, when y̨ 2 C 1C�yG .yG/, Theorem 2.8 gives £ref
� .y̨/.Œ � �
/ D y̨.Œ
�/. If

instead y� 2 C 2C�yG .yG/ and y� 2 C 3C�yG .yG/, then

£ref
� .
y�/.Œ!�
/D y�

�
Œ
�1 j 
�

���! y��Œ!
�.!/!�1 j!��
y�
�
Œ! j 
�.!/�

�
while £ref

� .y�/
�
Œ!2 j!1�


�
is equal to

y�
�
Œ
 j 
�1 j 
�

��!2;!1
�

�
y�
�
Œ!1


��.!1/!�11 j!1

�.!1/!�11 j!1�

�
y�
�
Œ!1 j 


��.!1/ j 
�.!1/�
�

y�
�
Œ!1
��.!1/!

�1
1 j!1 j 


�.!1/�
� ���!2

�
y�
�
Œ!2 j!1 j 


�.!2!1/�
�
y�
�
Œ!2!1


�.!2!1/!�11 !�12 j!2 j!1�
�

y�
�
Œ!2 j!1
�.!2!1/!

�1
1 j!1�

� :

It follows immediately from Theorem 2.8 that there is a commutative diagram

(13)
C �C�yG .yG/ C ��1.ƒref

�
yG/

C �.G/ C ��1.ƒG/

��
yG

£ref
�

��
ƒref
� yG

£

This allows us to interpret the terms involving �n;:::;n�j for 1 � j � n in (12) as
corrections to Willerton’s expression (5) which take into account the failure of the map�prƒG to be orientable.

Continuing, we define a third twisted loop transgression map.

Definition 2.9 The reflection twisted loop transgression map z£ref
� is the composition

z£ref
� W C

�.yG/ �ev�
�! C �.BZ�Z2 ƒG/' C �C2�BZ�Z2

ƒG .BZ�Z2 ƒG/�prƒGŠ
���! C

��1C�
ƒref
� yG .ƒref

�
yG/;

where the final map is that of Proposition 2.3 with � D �ƒref
�
yG .

Again, z£ref
� anticommutes with the differentials.

Theorem 2.10 Let z� 2 C nC1.yG/ and Œ!n j � � � j!1�
 2 Cn.ƒref
�
yG/. Then

z£ref
� .
z�/
�
Œ!n j � � � j!1�


�
D

nY
jD0

�
shnC1�j .z�/

�
Œ!n j � � � j!1�


���n;:::;n�j :
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Proof Set �1 DC1. The obvious analogue of diagram (11) gives

z£ref
� .
z�/
�
Œ!n j � � � j!1�


�
D .‰� ı�prƒGŠ ı ev� ıˆ/.z�/

�
Œ!n j � � � j!1�


�
Dˆ.z�/

�
ev�EZ

�
fn
�
Œ!n j � � � j!1�.
; �nC1/

���
;

where, because of the initial object .
; �nC1/, we have

fn
�
Œ!n j � � � j!1�.
; �nC1/

�
D s11 ˝ Œ!n j � � � j!1�.
; �nC1/

C

n�1X
iD0

.�1/i�.!�n�iC1/�n;:::;n�is
�.!�n�iC1/

iC2 ˝ Œ!n�1�i j � � � j!1�.
; �nC1/:

After noting that if �n;:::;n�i ¤ 0 then �.!�n�iC1/ D .�1/i , the remainder of the
proof is similar to that of Theorem 2.8.

For example, when z� 2Z2.yG/, Theorem 2.10 gives

z£ref
� .
z�/.Œ!�
/D z�

�
Œ
�1 j 
�

��! z��Œ!
�.!/!�1 j!��
z�
�
Œ! j 
�.!/�

� :

3 Jandl twisted vector bundles

Throughout this section, G is an essentially finite groupoid and yG is an essentially finite
groupoid over BZ2. If yG is the object of interest, then G is its associated double cover.
The coefficient group is AD U.1/.

Given a complex vector space V, let V be its complex conjugate. Set C1V WD V and
�1V WD V, with similar notation �z for z 2 C. A map ' W V !W between complex
vector spaces is called �–linear if ' W �V !W is C–linear.

3.1 Real functions and Real line bundles

Following Willerton [40], we describe simple geometric interpretations of Z0C�yG .yG/
and Z1C�yG .yG/.

A 0–cocycle ˇ 2 Z0.G/ is a locally constant U.1/–valued function on (the objects
of) G. The integral of ˇ isZ

G
ˇ WD

X
x2G

ˇ.x/

jx!j
D

X
x2�0.G/

ˇ.x/

jAutG.x/j
;
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where jx!j is the number of morphisms in G with source x. The equality follows
from the closedness of ˇ.

Similarly, y̌ 2Z0C�yG .yG/ is a Real U.1/–valued function on yG, that is, a U.1/–valued
function which satisfies y̌.x2/D y̌.x1/�.!/ for each morphism ! W x1! x2.

As explained in [40, Section 2.2], a 1–cocycle ˛ 2 Z1.G/ defines a trivialized flat
complex line bundle ˛C over G. This is the data of complex lines Lx DC for x 2 G
and linear (multiplication) maps

˛.x1
g
�! x2/ W Lx1 ! Lx2 ; g 2Mor.G/;

which satisfy the obvious associativity constraints. Note that ˛C is also the associated
complex line bundle of a U.1/–bundle with connection on G determined by ˛. Similar
comments apply below. Flat sections of ˛C , that is, collections of complex numbers
fsx 2Lxgx2G satisfying ˛.x1

g
�!x2/sx1 D sx2 for g 2Mor.G/, form a complex vector

space �G.˛C/. Given s1; s2 2 �G.˛C/, the fibrewise product Ns1s2 is in Z0.G/. Using
this observation, define an inner product on �G.˛C/ by

hs1; s2i D

Z
G
Ns1s2:

Similarly, y̨ 2Z1C�yG .yG/ defines a trivialized flat Real line bundle y̨C over yG. This is
the data of trivialized complex lines Lx for x 2 yG and linear maps

y̨.x1
!
�! x2/ W

�.!/Lx1 ! Lx2 ; ! 2Mor.yG/;

which satisfy the associativity condition

y̨.x1
!2!1
���! x3/D y̨.x2

!2
�! x3/ �

�.!2/ y̨.x1
!1
�! x2/:

A flat section of y̨C is a collection of complex numbers fsx 2 Lxgx2yG which satisfies

y̨.x1
!
�! x2/.

�.!/sx1/D sx2 ; ! 2Mor.yG/:

Flat sections of y̨C form a real inner product space �yG.y̨C/ with hs1; s2i D
R
yG Ns1s2.

Proposition 3.1 For each y̨ 2Z1C�yG .yG/, there is an equality

1
2

dimR �yG.y̨C/D

Z
ƒref
�
yG
£ref
� .y̨/:

Proof As both sides of the claimed equality are additive with respect to disjoint union
and equivalence of groupoids over BZ2, it suffices to consider the model cases of
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Proposition 1.1. When yGDByG, a section s2Cn0 of y̨C is flat if and only if y̨.Œg�/sD s
for g 2 G and y̨.Œ!�/Ns D s for ! 2 yG n G. The first condition implies y̨jG D 1. The
cocycle condition implies that y̨jyGnG is constant. The second condition is

Arg.s/� 1
2

Arg.y̨jyGnG/ mod �Z:

It follows that �ByG.y̨C/ is f0g unless y̨jG D 1, in which case �ByG.y̨C/' R. On the
other hand, Theorem 2.8 givesZ

ƒref
�ByG

£ref
� .y̨/D

X

2G

y̨.Œ
�/

2jGj
:

As in [40, Theorem 6], the sum is zero unless y̨jG D 1, in which case it is 1
2

.

When yG D yGfx; Nxg, a flat section of y̨C consists of sx; s Nx 2C. Now y̨.x !
�! Nx/Nsx D s Nx

for �.!/ D �1 implies that, if the section is nonzero, both sx and s Nx are nonzero.
Hence, y̨ is the identity on degree 1 morphisms and constant on degree �1 morphisms
and �yG.y̨C/'C. On the other hand,Z

ƒref
�
yG
£ref
� .y̨/D

X

2Aut1

yG
.x/

y̨.Œ
�/

2jAut1
yG
.x/j
C

X

2Aut1

yG
. Nx/

y̨.Œ
�/

2jAut1
yG
. Nx/j

is zero unless y̨ is the identity on degree 1 morphisms, in which case it is one.

Remark (i) As an alternative proof of Proposition 3.1, it can be shown that �yG.y̨C/
defines a real structure on �G.˛C/, in that �yG.y̨C/˝R C ' �G.˛C/. It follows
that dimR �yG.y̨C/D dimC �G.˛C/, the right-hand side of which is computed in
[40, Theorem 6]. This strategy is used in Proposition 3.19 below.

(ii) For later comparison, observe that Proposition 3.1 can also be stated as the
equality 1

2
dimR �yG.y̨C/ D

R
ƒ� yG £�.y̨/

�1. The freedom to use £�.y̨/�1 or
£ref
� .y̨/ is an artefact of the low cohomological degree of y̨.

3.2 Jandl twisted vector bundles

We explain how elements of Z2C�yG .yG/ can be used to twist complex vector bundles
over yG, following the non-Real [40] and continuous cases [35; 23; 32; 21]. Since our
groupoids are essentially finite, we are able to give a simplified treatment.

Let y� 2Z2C�yG .yG/. Define a groupoid y� yG by

Obj.
y� yG/D Obj.yG/; Homy� yG.x; y/D U.1/�HomyG.x; y/:
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Morphisms in y� yG are composed according to the rule

.a2; !2/ ı .a1; !1/D
�
y�
�
Œ!2 j!1�

�
a2a

�.!2/
1 ; !2!1

�
:

Associativity of composition follows from the cocycle condition on y� . The category y� yG
is a twisted central extension of yG by BU.1/. Compare with [21, Section 1.2]. More
precisely, there are canonical functors

Obj.yG/�BU.1/ i
�!

y� yG p
�! yG

with p surjective on objects and full and i an isomorphism onto the subgroupoid of
morphisms which map to an identity in yG. The twisted centrality condition is

! ı i.x1
a
�! x1/D i.x2

a�.!/
���! x2/ ı!;

where a 2 U.1/ and ! W x1! x2 in yG. Following the geometric case [35], a twisted
central extension of yG by BU.1/ is called a Jandl gerbe over yG. In the language of [32]
(which would also be consistent with that of Section 3.1), this is a Real gerbe. By
choosing sections of p, we verify that any Jandl gerbe over yG is equivalent to y� yG for
some y� 2 Z2C�yG .yG/. Moreover, such a y� is well defined up to exact 2–cocycles. In
this way, H 2C�yG .yG/ classifies equivalence classes of Jandl gerbes over yG.

Consider VectC as the defining 2–representation of BU.1/. The (antilinear) complex
conjugation functor VectC!VectC is compatible with the complex conjugation action
on BU.1/. We can therefore associate to y� yG a Real 2–line bundle p W y�C ! yG as
follows. Let RVectC be the category of finite-dimensional complex vector spaces and
their complex linear or antilinear maps. There is a natural functor RVectC ! BZ2
which records the linearity of morphisms. Then y�C is the category with objects
Obj.RVectC/�Obj.yG/, morphisms

Homy�C
..V1; x1/; .V2; x2//

D f.'; !/ 2 HomRVectC .V1; V2/�HomyG.x1; x2/ j ' is �.!/–linearg

and composition law

.'2; !2/ ı .'1; !1/D .y�
�
Œ!2 j!1�

�
'2'1; !2!1/:

The functor p W y�C! yG sends an object .V; x/ to x and a morphism .'; !/ to !.

Definition 3.2 A y�–twisted vector bundle over yG is a functor F W y� yG ! RVectC

over BZ2 such that, for each .a; x/ 2 U.1/� yG, the map F.a; idx/ W F.x/! F.x/ is
multiplication by a.
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Let Vecty�C.yG/ be the category of y�–twisted vector bundles over yG and their C–linear
natural transformations. The category Vect

y�
C.
yG/ is R–linear and additive.

Lemma 3.3 An object F 2 Vecty�C.yG/ is equivalent to each of the following data:

(i) Complex vector spaces F.x/ for x 2 yG together with complex linear maps

F.x1
!
�! x2/ W

�.!/F.x1/! F.x2/; ! 2Mor.yG/;

which satisfy F.idx/D idF.x/ for x 2 yG and

(14) F.!2/F.!1/D y�
�
Œ!2 j!1�

�
F.!2!1/; .!1; !2/ 2Mor.2/.yG/;

where Mor.2/.yG/ is the set pairs of composable morphisms in yG.

(ii) A section F W yG! y�C of p W y�C! yG.

Proof That the first data is equivalent to a y�–twisted vector bundle is a direct verifica-
tion. The second data is clearly equivalent to the first.

In view of Lemma 3.3(ii), we can regard Vect
y�
C.
yG/ as the category of sections of

p W y�C! yG.

Example Let yG D G � Z2 with � the projection. Then Vect
y�
C.B
yG/ is equivalent

to the category of real (resp. quaternionic) representations of G when y� D 1 (resp.
y�
�
Œ!2 j!1�

�
D e�i�!2;!1 ). Similarly, Vecty�D1C .ByG/ consists of Real representations

of G (with respect to Z2–graded group yG), in the sense of Atiyah and Segal [2] and
Karoubi [27]. In general, Vecty�C.ByG/ consists of y�–projective Real representations of G.
For this reason, we often refer to y�–twisted vector bundles as y�–twisted representations.

To give a module-theoretic interpretation of Vecty�C.yG/, let C
y� ŒyG� be the complex vector

space with basis fl!g!2Mor.yG/ and associative C–semilinear product

.c2l!2/ � .c1l!1/D

�
c2.

�.!2/c1/y�
�
Œ!2 j!1�

�
l!2!1 if .!1; !2/ 2Mor.2/.yG/;

0 otherwise:

We call C
y� ŒyG� the y�–twisted Real groupoid algebra of yG. We define a Real repre-

sentation of C
y� ŒyG� to be a complex vector space V together with a C–linear map

� WC
y� ŒyG�! EndR.V / which is an R–algebra homomorphism and is such that �.l!/ is

�.!/–linear. The collection of Real representations and their C–linear C
y� ŒyG�–module

homomorphisms form an R–linear category C
y� ŒyG�–modR.
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Proposition 3.4 There is an R–linear equivalence Vect
y�
C.
yG/'C

y� ŒyG�–modR.

Proof This follows from Lemma 3.3(i).

Proposition 3.5 (see [40, Theorem 18]) Fix an equivalence as in Proposition 1.1.
The restriction along this equivalence defines an equivalence

Vect
y�
C.
yG/ ��!

M
x2�0.yG/�1

Vect
y� jx
C .BAutyG.x//˚

M
x2�0.yG/1

Vect
y� jfx; Nxg
C .yGfx; Nxg/:

Proof As in Proposition 3.1, it suffices to prove the statement for connected yG. Suppose
that �0.yG/D �0.yG/�1 and let � 2 Vect

y� jx
C .BAutyG.x// with fibre Vx . For each y 2 yG,

fix a degree 1 morphism gy W y! x and define a F� 2 Vect
y�
C.
yG/ by F�.y/D Vx for

y 2 yG and (see [40, Section 2.4.1])

(15) F�.y
!
�! z/D

y�
�
Œgz j!�

�
y�
�
Œgz!g�1y jgy �

��.gz!g�1y /:

This defines a functor Vect
y� jx
C .BAutyG.x// ! Vect

y�
C.
yG/ which is quasi-inverse to

restriction to fxg. Indeed, let F 2 Vect
y�
C.
yG/ with F jx D �. Then ˆy D F.gy/

are the components of a natural isomorphism ˆ W F ) F�.

If instead �0.yG/ D �0.yG/1, let � 2 Vect
y�fx; Nxg
C .yGfx; Nxg/ with fibres Vx and V Nx . Using

notation from the proof of Proposition 1.1, define F 2 Vecty�C.yG/ by F�.y/D Vtarget.gy/

for y 2 yG with F�.y
!
�! z/ as in (15). The resulting functor

Vect
y� jfx; Nxg
C .yGfx; Nxg/! Vect

y�
C.
yG/

is quasi-inverse to restriction to fx; Nxg.

Proposition 3.6 The category Vect
y�
C.
yG/ is semisimple.

Proof This can be proved in the two model cases by first employing a variation of
Weyl’s unitary trick to unitarize a y�–twisted vector bundle and then taking orthogonal
complements of subbundles. Since semisimplicity is preserved under equivalences, the
general case then follows from Proposition 3.5.

We end this section with a fixed-point interpretation of Vect
y�
C.
yG/. For simplicity,

take yG D ByG. Each & 2 yG n G determines an antilinear involution .Q& ; ‚& / of the
C–linear category Vect�C.BG/ of �–twisted vector bundles over BG. The functor
Q& W Vect�C.BG/! Vect�C.BG/ is given on objects by Q& .V; �/ D .V ; �& /, where

Algebraic & Geometric Topology, Volume 22 (2022)



Twisted loop transgression and higher Jandl gerbes over finite groupoids 1689

�& .g/D £�.y�/.Œ&�g/ � �.&g&�1/. That Q& .V; �/ is indeed a �–twisted representation
follows from the identity

(16)
y�
�
Œ!g2!

�1 j!g1!
�1�
�

y�
�
Œg2 jg1�

��.!/ D
£�.y�/.Œ!�g2/£�.y�/.Œ!�g1/

£�.y�/.Œ!�g2g1/
; gi 2 G; ! 2 yG:

This identity can be verified directly or, more conceptually, using the method of
proof of [29, Proposition 8.1]. The natural isomorphism ‚& W 1Vect� .G/ ) .Q& /2

has components ‚&� D y�
�
Œ& j &�

��2
�.&�2/ and satisfies Q& .‚�/ D ‚Q& .�/. Up to

equivalence of categories with involution, .Vect�C.BG/;Q& ; ‚& / depends only on the
pair .yG; y�/.

Proposition 3.7 There is an equivalence Vect�C.BG/h.Q
& ;‚& / ' Vect

y�
C.B
yG/ of R–

linear categories , where the left-hand side denotes the homotopy fixed-point category.

Proof At the level of objects, the equivalence Vect�C.BG/h.Q
& ;‚& / ! Vect

y�
C.BG/

assigns to a homotopy fixed point � W .V; �/!Q& .V; �/ the y�–twisted representation �
which is equal to � as a �–twisted representation and has

�.!/D y�
�
Œ! j &�1�

�
�.!&�1/ ı �; ! 2 yG nG:

On morphisms, F & is the identity.

Using Proposition 3.7, define the hyperbolic induction (or Realification) functor

HIndyGG W Vect
�
C.BG/! Vect

y�
C.B
yG/

so that it assigns to .V; �/ 2 Vect�C.BG/ the y�–twisted representation with underlying
�–twisted representation V ˚Q& .V / and on which ! 2 yG nG acts on by

�HInd.�/.!/.v1; v2/D
�
y�
�
Œ! j &�1�

�
�.!&�1/v2; y�

�
Œ& j!�

�
�.&!/v1

�
:

3.3 The character theory of Vecty�
C. yG/

We continue to work in the setting of Section 3.2.

Definition 3.8 The y�–twisted K–theory of yG is the Grothendieck group K y� .yG/ WD
K0.Vect

y�
C.
yG//.

This is a special case of the twisted K–theory studied in [21] and reduces to the KR–
theory of [2; 27] when y� is trivial. By Proposition 3.6, K y� .yG/ is the free abelian group
on isomorphism classes of simple y�–twisted vector bundles.
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The next result is crucial to what follows.

Proposition 3.9 The assignment of an object F 2 Vecty�C.yG/ to the function

�F W Obj.ƒref
�
yG/!C; .x; 
/ 7! trF.x/F.
/;

defines an abelian group homomorphism � WK
y� .yG/! �ƒref

�
yG.£

ref
� .
y�/C/.

Proof Let ! W x1! x2 be a morphism in yG. Equation (14) and the twisted 2–cocycle
condition on y� imply

(17) F.!
�.!/!�1/D
y�
�
Œ!
�.!/!�1 j!�

�
y�
�
Œ! j 
�.!/�

� F.!/F.
�.!//F.!/�1:

When �.!/D�1, we can use (14) to replace F.
�1/ with y�
�
Œ
 j
�1�

�
F.
/�1. Doing

so and taking the trace of (17) gives

trF.x2/F.!

�.!/!�1/D £ref

� .
y�/.Œ!�
/ trF.x2/.F.!/F.
/

�.!/F.!/�1/:

Since F.!/ is �.!/–linear and trF.x1/.F.
/
�1/D trF.x1/F.
/ (see the proof of [40,

Proposition 10]), we arrive at

trF.x2/F.!

�.!/!�1/D £ref

� .
y�/.Œ!�
/ trF.x1/F.
/I

that is, �F 2�ƒref
�
yG.£

ref
� .
y�/C/. Since �F1˚F2 D�F1C�F2 , this completes the proof.

We call �F the Real character of F. The pullback of �F along ƒG ! ƒref
�
yG is

the character of the �–twisted vector bundle which underlies F, as defined in [40,
Section 2.3.3]. Proposition 3.9 is a twisted reality condition on �F . Indeed, when
yG D ByG with yGD G�Z2 and y� jG D 1, Proposition 3.9 reduces to the reality of the
character of a real or quaternionic representation of G.

Given a trivially twisted vector bundle F 2 Vecty�D1C .yG/, let �yG.F / be the real vector
space of its flat sections. The following result generalizes Proposition 3.1:

Proposition 3.10 (see [40, Proposition 7]) The equality 1
2

dimR �yG.F /D
R
ƒref
�
yG �F

holds.

Consider the Hom bifunctor

h�;�iW Vect
y�
C.
yG/op
�Vect

y�
C.
yG/! VectR; .F1; F2/ 7! Hom

Vect
y�
C.
yG/
.F1; yF2/;
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which we regard as a categorical inner product on Vect
y�
C.
yG/. There is a canonical real

vector space isomorphism

(18) hF1; yF2i ' �yG.F
_
1 ˝F2/;

the right-hand side being the space of flat sections of the trivially twisted bundle
F _1 ˝F2 2 Vect

1
C.
yG/.

Lemma 3.11 Let F1; F2 2 Vect
y�
C.
yG/. The equality dimRhF1; yF2i D

1
2
h�F1 ; �F2i

holds.

Proof The proof is as in [40, Proposition 10]. We compute

dimRhF1; yF2i D dimR �yG.F
_
1 ˝

yF2/ (by (18))

D
1

2

Z
ƒref
�
yG
�
F _1 ˝

yF2
(by Proposition 3.10):

Since �
F _1 ˝

yF2
D x�F1 �� yF2

, the right-hand side is equal to 1
2
h�F1 ; �F2i.

It is proved in [40, Theorem 11] that, for any � 2Z2.G/, the (ordinary) character map
induces an isomorphism

(19) � WK� .G/˝Z C ��! �ƒG.£.�/C/:

The next result is a Real generalization of this isomorphism. Special cases of this result,
in terms of projective representations of G over R twisted by Z2.BGIR�/, can be
found in [33, Theorem 6; 28, Section 10.2].

Theorem 3.12 The Real character map induces an isomorphism

� WK
y� .yG/˝Z C ��! �ƒref

�
yG.£

ref
� .
y�/C/

of complex inner product spaces.

Proof Proposition 3.5 gives an isomorphism of abelian groups

(20) K
y� .yG/'

M
x2�0.yG/�1

K
y� jx .BAutyG.x//˚

M
x2�0.yG/1

K
y� jfx; Nxg.yGfx; Nxg/:

Lemma 3.11, together with Schur’s lemma for y�–twisted vector bundles, then implies
that � is injective.
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In view of the isomorphism (20), it suffices to prove surjectivity of � in the two model
cases. Suppose that yG D ByG. Let Irr� .G/ be the set of isomorphism classes of simple
objects of Vect�C.BG/. Let s 2 �ƒref

�ByG
.£ref
� .
y�/C/. Using the isomorphism (19), we can

write
s D

X
V 2Irr� .G/

h�V ; si�V :

The additional symmetry conditions describing the subspace �ƒref
�ByG

.£ref
� .
y�/C/ �

�ƒBG.£�.�/C/ give

s.!
�1!�1/D £ref
� .
y�/.Œ!�
/s.
/; 
 2 G; ! 2 yG nG:

It follows that, for any & 2 yGnG, the function V 7! h�V ; si descends to the orbit space
Irr� .G/=hQ& i of Irr� .G/ under the action of the functor Q& . Hence, we have

s D
X

O2Irr� .G/=hQ& i

aO
X
V 2O

�V D
1

2

X
O2Irr� .G/=hQ& i

aO
X
V 2O

.�V C�& �V /

for some aO 2 C. Noting that �HIndyGG.V /
D �V C �& �V , we see that

P
V 2O �V ,

and hence s, is in the image of K y� .ByG/˝Z C.

Suppose instead that yG D yGfx; Nxg and let s 2 �ƒref
�
yG.£

ref
� .
y�/C/� �ƒG.£.�/C/. Write

s D
X

V 2Irry�jx .AutyG.x//

h�V ; si�V C
X

V 02Irry�j Nx .AutyG. Nx//

h�V 0 ; si�V 0 :

Fix a morphism & Wx! Nx of degree �1 and use the isomorphism AutyG.x/
��!AutyG. Nx/,


 7! &
&�1, to identify Irry� jx .AutyG.x// and Irry� j Nx .AutyG. Nx//. The additional symmetry
condition on s implies that

s D
X

V 2Irry�jx .AutyG.x//

h�Vx ; si.�Vx C�V Nx /;

where V Nx 2 Vect
y� j Nx
C .BAutyG. Nx// is the pullback of V along & . Explicitly, a loop &
&�1

at Nx acts on V Nx D Vx by
y�
�
Œ& j 
�

�
y�
�
Œ&
 j &�1�

�
y�
�
Œ&
&�1 j &�

� �.
/:

The sum Vx˚V Nx becomes a y�–twisted vector bundle by taking �.&/ W Vx! V Nx to be
the identity map (which is C–antilinear) and setting �.&
/ WD y�

�
Œ& j 
�

��1
�.&/�.
/.

Moreover, �Vx˚V Nx D �VxC�V Nx , whence s is in the image of K y� .yG/˝Z C.

The statement about inner products follows from Lemma 3.11.
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Corollary 3.13 The category Vect
y�
C.
yG/ has exactly

R
ƒƒref

�
yG ££

ref
� .
y�/ simple objects.

Proof By Proposition 3.6, the rank of K y� .yG/ equals the number of simple y�–twisted
vector bundles. The corollary now follows from Theorem 3.12 and the equalityR
ƒƒref

�
yG ££

ref
� .
y�/D dimC �ƒref

�
yG.£

ref
� .
y�/C/, which is implied by [40, Theorem 6].

Specializing Corollary 3.13 to yG D ByG gives the following result:

Corollary 3.14 The number of simple y�–twisted representations of yG is

(21)
Z
ƒƒref

�ByG

££ref
� .
y�/D

1

2jGj

X
(
;!/2G�yG


D!
�.!/!�1

y�
�
Œ
�1 j 
�

���! y�
�
Œ
 j!�

�
y�
�
Œ! j 
�.!/�

� :
The right-hand side of (21) decomposes into two sums, corresponding to �.!/D 1 and
�.!/D�1. The former sum is one half the number of simple �–twisted class functions
of G, which, by a theorem of Schur (see [28, Section 3.6]), is one half the number of
simple �–twisted representations. The latter sum is one half the number of Real simple
�–twisted class functions, where Real means that �.!
�.!/!�1/D £ref

� .
y�/.Œ!�
/�.
/

for some, and hence any, ! 2 yG n G. Corollary 3.14 is therefore a Real version of
Schur’s result. When yG D G�Z2 and y� jG D 1, this recovers standard results in the
real/quaternionic representation theory of G. See for example [7, Theorem II.6.3].

3.4 The centre of Vecty�
C. yG/

The centre Z.Vect�C.G//, that is, the algebra of natural transformations of the identity
functor of the category Vect�C.G/, is isomorphic to �ƒG.£.�/

�1
C / [40, Section 2.3.4].

In fact, the map

K� .G/�Z.Vect�C.G//!C; .V; �/ 7! trV �V ;

induces a perfect pairing betweenK� .G/˝ZC andZ.Vect�C.G//, giving a compatibility
between two decategorifications of Vect�C.G/. There is no analogous compatibility in

the Real setting. Instead, in this section we will see that Z.Vecty�C.yG// can be described
using £� .

Consider the R–linear embedding

�ƒ�G.£�.
y�/�1C /!C

y� ŒyG�; s 7!
X


2ƒ� yG

s
 l
 :
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Its image is stable under multiplication of C
y� ŒyG�, as follows from (16). In this way

�ƒ�G.£�.
y�/�1C / inherits the structure of an R–algebra.

Proposition 3.15 The centre of the R–algebra C
y� ŒyG� is isomorphic to �ƒ� yG.£�.

y�/�1C /.

Proof For each morphism ! W x1! x2 in yG and cx1 2C, we have equalities

l!.cx1lidx1 /D
�.!/cx1l! ; .cx1lidx1 /l! D ıx1;x2cx1l!

in C
y� ŒyG�. Elements of the centre Z.Cy� ŒyG�/ are therefore of the form

P

2ƒ� yG c
 l
 .

Requiring this element to commute with l! gives

l!
X


2ƒ� yG

c
 l
 D

� X

2ƒ� yG

c
 l


�
l! D

X
ı2ƒ� yG

y�
�
Œ!ı!�1 j!�

�
y�
�
Œ! j ı�

� c!ı!�1l!lı

D l!
X

ı2ƒ� yG

�.!/

�
y�
�
Œ!ı!�1 j!�

�
y�
�
Œ! j ı�

� c!ı!�1

�
lı :

It follows that

(22) c
 D
�.!/

�
y�
�
Œ!
!�1 j!�

�
y�
�
Œ! j 
�

� c!
!�1

�
; 
 2ƒ� yG:

Conversely, the equalities (22) ensure that
P

2ƒ� yG c
 l
 commutes with l! . The map

Z.C
y� ŒyG�/! �ƒ� yG.£�.

y�/�1C /;
X


2ƒ� yG

c
 l
 7! .
 7! c
 /;

is therefore well defined and gives the desired isomorphism.

The R–algebra Z.Cy� ŒyG�/ is isomorphic to the centre of C
y� ŒyG�–mod, the category of

modules over the R–algebra C
y� ŒyG�. We want to relate this to the centre of the R–linear

category C
y� ŒyG�–modR. To do so, let A be a finite-dimensional Real algebra, that is, a

Z2–graded complex vector space which has the structure of a unital R–algebra which
satisfies

.c2a2/ � .c1a1/D c2.
�.a2/c1/a2a1

for all ci 2C and homogeneous ai 2A. LetZ.A/1 be the degree 1 subalgebra ofZ.A/,
the centre of A considered as an R–algebra.

Lemma 3.16 There is an R–algebra isomorphism Z.A–modR/'Z.A/1.

Proof This is a straightforward variation of the proof that the centre of the category
of modules over a unital algebra is isomorphic to the centre of the algebra.
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Theorem 3.17 There is a canonical R–algebra isomorphism

Z.Vect
y�
C.
yG//' �ƒ� yG.£�.

y�/�1C /:

Proof By Proposition 3.4, the categories C
y� ŒyG�–modR and Vect

y�
C.
yG/ are R–linearly

equivalent. Proposition 3.15 and Lemma 3.16 then give algebra isomorphisms

�ƒ� yG.£�.
y�/�1C /'Z.C

y� ŒyG�/DZ.Cy� ŒyG�/1 'Z.Vect
y� .yG//;

the middle equality following from the explicit description of Z.Cy� ŒyG�/.

Corollary 3.18 For any finite Z2–graded group yG, there is an equality

dimRZ.Vect
y�
C.B
yG//D

1

jGj

X
(g1;g2/2G2
g1g2Dg2g1

y�
�
Œg1 jg2�

�
y�
�
Œg2 jg1�

� :
Proof This follows by combining Proposition 3.1 and Theorem 3.17.

In particular, the dimension ofZ.Vecty�C.ByG// is independent of the lift .yG; y�/ of .G; �/.
In fact, by [40, Theorem 6] we have

dimRZ.Vect
y�
C.B
yG//D dimC Z.Vect

�
C.BG//:

A conceptual explanation of this equality is as follows:

Proposition 3.19 For each & 2 yG n G, the pair .Q& ; ‚& / induces a &–independent
C–antilinear algebra involution

q WZ.Vect�C.BG//!Z.Vect�C.BG//

whose fixed-point set is Z.Vecty�C.ByG//.

Proof Under the equivalence Vect�C.BG/'C� ŒBG�–mod, the functor Q& becomes
the antilinear algebra automorphism

q& WC� ŒBG�!C� ŒBG�;
P
g2G

cg lg 7!
P
g2G

£�.y�/.Œ&�g/
�1
Ncg l&g&�1 :

Closedness of £�.y�/ implies that q& squares to Adl
&2

. It follows that q& restricts to
an antilinear algebra involution q W �ƒBG.£.�/

�1
C /! �ƒBG.£.�/

�1
C / which, again by

the closedness of £�.y�/, is independent of & . The explicit form of q& shows that the
fixed-point set of q is �ƒ�ByG.£�.

y�/�1C /. To finish the proof, apply Theorem 3.17.
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4 Jandl twisted 2–vector bundles

We study representation-theoretic aspects of Z3C�yG .yG/ and the corresponding 2–
categorical analogues of the results of Section 3. For simplicity, we restrict attention in
this section to Z2–graded groupoids of the form yG D ByG.

4.1 Thickened Drinfeld doubles

Let G be a finite group with 3–cocycle � 2Z3.BG/. The �–twisted Drinfeld double
D�.G/ is a quasi-Hopf algebra with explicitly defined product and coproduct, introduced
by Dijkgraaf, Pasquier and Roche in their study of orbifolds of rational conformal
field theory [12]. The starting point of this section is Willerton’s algebra isomorphism
between D�.G/ and the twisted groupoid algebra C£.�/ŒƒBG� [40, Section 3.1]. This
isomorphism both provides a conceptual definition of the algebra D�.G/ and leads to
short proofs of a number of its fundamental properties, such as a description of the
characters of its finite-dimensional modules [40].

Turning to the Real setting, fix a finite Z2–graded group yG. We use the notion of
twisted Real groupoid algebras introduced in Section 3.2.

Definition 4.1 Let y� 2Z3C�yG.ByG/ and z� 2Z3.ByG/ be lifts of � 2Z3.BG/. Define

(i) Real algebras by Dy�.yG/ WDC£� .y�/Œƒ�ByG� and Dz�.yG/ WDCz£
ref
� .z�/Œƒref

� B
yG�;

(ii) a C–algebra by Dy�.yG/ WDC£ref
� .y�/Œƒref

� B
yG�.

In particular, Dy�.yG/ and Dz�.yG/ are R–algebras. Compatibility of the oriented and
twisted loop transgression maps, as in diagram (13) for £ref

� , implies that D�.G/
embeds into each of Dy�.yG/, Dz�.yG/ and Dy�.yG/ as the complex subalgebra of degree 1
morphisms. For this reason, we refer to any of the algebras in the above definition as
twisted thickened Drinfeld doubles.

The results of Section 3.3 can be applied to the representation theory of thickened
Drinfeld doubles. To begin, we identify their representation groups. Motivated by [40,
Section 3.2], we view these results as Real counterparts of the Freed–Hopkins–Teleman
theorem [20, Theorem 1] in our (much simpler) finite setting. For a Real analogue for
compact, connected and simply connected Lie groups, see [18, Theorem 5.12].

Proposition 4.2 There are isomorphisms of abelian groups

(i) K£
ref
� .y�/.G==RyG/'K0.D

y�.yG/–mod/,
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(ii) Kz£
ref
� .z�/.G==RyG/'K0.Dz�.yG/–modR/, and

(iii) K£� .y�/.G==yG/'K0.Dy�.yG/–modR/.

Proof Recall that ƒref
� B
yG' G==RyG and ƒ�ByG' G==yG. The first isomorphism then

follows from the equivalence Vect
£ref
� .y�/

C .ƒref
� ByG/ ' C£ref

� .y�/Œƒref
� B
yG�–mod (see [40,

Proposition 8]) and the second from Vectz£
ref
� .z�/

C .ƒref
� B
yG/'Cz£

ref
� .z�/Œƒref

� B
yG�–modR (see

Proposition 3.4). The third isomorphism is proved in the same way as the second.

Only the final two isomorphisms of Proposition 4.2 involve a form of Real equivariant
K–theory of G. The first isomorphism still has a Real flavour, however, as it involves
the unoriented loop groupoid ƒref

� B
yG. The second isomorphism is the finite analogue

of the result of Fok [18]. It would be interesting to combine these results to describe
the twisted yG–equivariant K–theory of G for yG an arbitrary Z2–graded compact Lie
group.

Writing the appropriate loop groupoid as a disjoint union of standard models, as in
Proposition 1.1, leads to a decomposition of the representation categories of thickened
Drinfeld doubles. In this way we obtain Real generalizations of Dijkgraaf–Pasquier–
Roche induction [12, Section 2.2; 40, Section 3.3]. For example,

Dy�.yG/–mod'
M

g2�0.G==RyG/

Vect
£ref
� .y�/jg

C .BZR
yG
.g//;

where ZR
yG
.g/ D f! 2 yG j !g�.!/!�1 D gg is the Real centralizer of g. Simple

Dy�.yG/–modules are therefore labelled by a Real conjugacy class of G and a simple
twisted representation of its Real centralizer. Similarly, Proposition 3.5 shows that
Dz�.yG/–modR decomposes asM
g2�0.G==RyG/�1

Vect
z£ref
� .z�/jg

C .BZR
yG
.g//˚

M
fg; Ngg2�0.G==RyG/1

Vect
z£ref
� .z�/jfg; Ngg

C .G==RyGjfg; Ngg/:

The first sum is over conjugacy classes of G which are fixed by the involution determined
by yG and the second is over the Z2–quotient of its complement. The previous two
decompositions, and the quasi-inverse from the proof of Proposition 3.5, therefore yield
a construction of a representation of the thickened Drinfeld double from a collection of
twisted (Real) representations of the groupoids appearing on the right-hand side.

4.2 Twisted one-loop characters

The next definition is motivated by the definition of twisted elliptic characters of [40,
Section 3.4], or [25, Section 6] in the untwisted case.
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Definition 4.3 Let y� 2 Z3C�yG.ByG/. Elements of �ƒƒref
�ByG

.££ref
� .y�/C/ are called

y�–twisted one-loop characters of G.

To make this definition explicit, let G.2/ � G2 be the set of commuting pairs in G and
let

yGh2i WD f.g; !/ 2 G� yG j g! D !g�.!/g

be the set of graded commuting pairs in G. Then a twisted one-loop character is a
function � W yGh2i!C which satisfies

�.�g�.�/��1; �!��1/D ££ref
� .y�/.Œ��g

!
�! g/�.g; !/; � 2 yG:

Here Œ��g !
�! g denotes the 1–chain on ƒƒref

� B
yG corresponding to the morphism �

with source .g !
�! g/ 2 Obj.ƒref

� B
yG/.

The relevance of this definition to the representation theory of Dy�.yG/ is as follows:

Proposition 4.4 The character map is an isometry

� WK0.D
y�.yG/–mod/˝Z C ��! �ƒƒref

�ByG
.££ref

� .y�/C/:

Proof Since Dy�.yG/DC£ref
� .y�/Œƒref

� B
yG�, this follows from [40, Theorem 11].

Corollary 4.5 The number of simple Dy�.yG/–modules is
R
ƒ2ƒref

�ByG
£2£ref

� .y�/.

Proof Proposition 4.4 implies that

rankK0.Dy�.yG/–mod/D dimC �ƒƒref
�ByG

.££ref
� .y�/C/:

By [40, Theorem 6], the right-hand side is equal to
R
ƒ2ƒref

�ByG
£2£ref

� .y�/.

The term one-loop character is motivated by two-dimensional unoriented topological
(or conformal) field theory. The closed one-loop sector of such a theory comprises the
2–torus T2 and the Klein bottle K. Consider the decomposition

(23) �ƒƒref
�ByG

.££ref
� .y�/C/D �

T2

ƒƒref
�ByG

.££ref
� .y�/C/˚�

K
ƒƒref

�ByG
.££ref

� .y�/C/;

where the first and second summands consist of suitably yG–equivariant functions on
the subsets G.2/ and .G� .yG nG//\ yGh2i of yGh2i D Obj.ƒƒref

� B
yG/, respectively. The

first summand in (23) is a subspace of the space �ƒ2BG.£
2.�/C/ of �–twisted elliptic

characters. Note that
ƒ2BG' BunG.T

2/;
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the groupoid of principal G–bundles over T2. The equivalence assigns to an element
.g1; g2/ 2 G

.2/ DObj.ƒ2BG/ the G–bundle whose holonomies along the two standard
1–cycles of T2 are g1 and g2. In this way, the first summand in (23) admits a natural
interpretation in terms of BunG.T2/. The second summand in (23) consists of what we
call y�–twisted Klein characters. To explain its moduli-theoretic meaning, let orK!K

be the orientation double cover of K, so that orK ' T . Let Bunor
yG
.K/ be the groupoid

of principal yG–bundles P ! K together with the data of an isomorphism of double
covers

(24) P �yG Z2 ' orK:

We refer to such bundles as orK–twisted G–bundles. Using holonomies, Bunor
yG
.K/

is seen to be equivalent to the full subgroupoid of ƒƒref
� B
yG on .G� .yG nG//\ yGh2i.

At the level of objects, a point .g; !/ 2 .G� .yG nG//\ yGh2i defines a homomorphism

�1.K/' ha; b j ab
�1aD bi ! yGh2i; a 7! g; b 7! !;

which we interpret as the holonomy of a yG–bundle P !K. That �.!/D�1 ensures
that the isomorphism (24) holds. In this way, �K

ƒƒref
�ByG

.££ref
� .y�/C/ is identified with the

space of flat sections of a complex line bundle over Bunor
yG
.K/. Groupoids of orientation

twisted G–bundles are developed in detail in [43, Section 3.2], uniformly for all compact
manifolds, in the context of unoriented Dijkgraaf–Witten theory. See Section 4.5 below
for another appearance of these groupoids.

Straightforward modifications of the previous discussion apply to Dy�.yG/ and Dz�.yG/.
We limit ourselves to describing the character theory of Dy�.yG/, which is rather different
from that of Dy�.yG/. Theorem 3.12 gives

K0.D
y�.yG/–modR/˝Z C ' �ƒref

�ƒ�ByG
.£ref
� £�.y�/C/:

The right-hand side is the set of functions � W G.2/!C which satisfy

�.�g1�
�1; �g

�.�/
2 ��1/D £ref

� £�.y�/.Œ��g1
g2
�! g1/ ��.g1; g2/; � 2 yG:

Characters of Real Dy�.yG/–representations therefore form a subspace of the space of
�–twisted elliptic characters. In particular, there is no Klein bottle sector in the character
theory of Dy�.yG/.

4.3 Real pointed fusion categories and their Drinfeld centres

In this section, we define a categorical version of the y�–twisted Real groupoid algebra
C
y� ŒyG� of Section 3.2. We use coefficients ADC�. We could also use U.1/–coefficients
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at the expense of incorporating unitary structures in what follows. For background on
monoidal categories, the reader is referred to [16].

To begin, we introduce a Real version of monoidal categories.

Definition 4.6 A Real monoidal category is a C–linear abelian category C with

(i) a decomposition C D C.1/˚ C.�1/ into full abelian subcategories;

(ii) an additive functor ˝W C � C! C which restricts to C–bilinear functors

˝W C.i/ � iC.j /! C.ij /; i; j 2 Z2;

where C1C.j / D C.j / and �1C.j / is the complex conjugate category of C.j /;

(iii) an object 1 2 C, together with left and right unitors; and

(iv) for homogeneous objects Xk 2 C for k D 1; 2; 3, natural C–linear associativity
isomorphisms ˛X3;X2;X1 W .X3˝X2/˝X1

��!X3˝ .X2˝X1/

such that the evident triangle and pentagon axioms hold.

In particular, underlying a Real monoidal category C is an R–linear monoidal category.
Moreover, the subcategory C.1/ � C is a C–linear monoidal category which contains 1.
The Real monoidal category C can therefore be understood as a twisted Z2–graded
extension of C.1/, where the twist involves complex conjugation.

Definition 4.7 (i) A Real fusion category is a finite semisimple Real monoidal
category which is rigid and has a simple monoidal unit.

(ii) A Real fusion category is called pointed if its simple objects are invertible.

Real pointed fusion categories and their C–linear monoidal equivalences form a
groupoid RPFus.

Example Let yG be a finite Z2–graded group with twisted 3–cocycle y� 2Z3C�yG.ByG/.
Let Vecty�C.yG/ be the C–linear category of finite-dimensional yG–graded complex vec-
tor spaces. We write objects of Vect

y�
C.
yG/ as V D

L
!2yG V! . Given ! 2 yG, let

C! 2 Vect
y�
C.
yG/ be the simple object which is a copy of C in degree !. Any simple

object of Vecty�C.yG/ is isomorphic to one of this form. The Z2–grading �yG induces a
decomposition

Vect
y�
C.
yG/D Vect

y�
C.
yG/.1/˚Vect

y�
C.
yG/.�1/:
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Define a Real monoidal structure ˝ on Vect
y�
C.
yG/ by

.V .2/˝V .1//! D
M

!1;!22yG
!D!2!1

V .2/!2
˝C

�.!2/V .1/!1
;

with a similar formula for morphisms. The associator component

.V .3/!3
˝C

�.!3/V .2/!2
/˝C

�.!3!2/V .1/!1
! V .3/!3

˝C .
�.!3/V .2/!2

˝C
�.!3!2/V .1/!1

/

is y�
�
Œ!3 j!2 j!1�

�
times the canonical associator. The pentagon axiom is equivalent to

the twisted 3–cocycle condition on y�. Let 1DCe with right and left unitors

�V WV˝Ce!V; v!˝c 7!
�.!/cv! ; and �V WCe˝V !V; c˝v! 7!cv! :

Define the dual V � of V by .V �/! D �.!/V _
!�1

. The nonstandard evaluation and
coevaluation maps are

�ev W V ˝V �!Ce; v! ˝
�.!/f� 7! ı!;��1y�

�
Œ! j!�1 j!�

�
f� .v!/;

where ı‹;‹ is a delta function, and

coev! WCe!C! ˝C�! ; 1 7! y�
�
Œ! j!�1 j!�

��1coev.1/; ! 2 yG:

Then Vect
y�
C.
yG/ is a Real pointed fusion category. The subcategory Vect

y�
C.
yG/.1/ '

Vect
�
C.G/ is the C–linear pointed fusion category associated to G and the restricted

3–cocycle � 2Z3.BG/, as described in [16, Example 2.3.8].

The group AutGrp=Z2
.yG/ of Z2–graded group automorphisms of yG acts by pullback on

H 3C�yG.ByG/. The following result, which we include for completeness, describes the
category RPFus. The corresponding C–linear result is well known.

Proposition 4.8 (i) Any object of RPFus is equivalent to a Real pointed fusion
category of the form Vect

y�
C.
yG/.

(ii) There is a short exact sequence of groups

1!H 2C�yG.ByG/! �0AutRPFus.Vect
y�
C.
yG//! StabAutGrp=Z2

.yG/.y�/! 1;

where �0AutRPFus.Vect
y�
C.
yG// is the group of isomorphism classes of autoequiv-

alences of Vect
y�
C.
yG/ 2 RPFus.
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Proof Let C 2 RPFus. Its group yG of isomorphism classes of simple objects inherits
a natural Z2–grading from the ˝–compatible decomposition C D C.1/˚ C.�1/. After
choosing a representative simple object for each element of yG, the components of
the associator at triples of simple objects define a cocycle y� 2Z3C�yG.ByG/. By finite
semisimplicity of C, the full inclusion Vect

y�
C.
yG/ ,! C is an equivalence.

Consider the second statement. Any element ˆ 2 AutRPFus.Vect
y�
C.
yG// preserves the

set of simple objects with its Z2–grading. Using this observation, it easy to see that the
sequence is right exact. Suppose then that ˆ is the identity on objects. The component
of the monoidal data

ˆ.C!2/˝ˆ.C!1/
��!ˆ.C!2 ˝C!1/; !i 2 yG;

is an endomorphism of C!2!1 and so is multiplication by a complex number, say
y�
�
Œ!2 j !1�

�
. Compatibility of the monoidal data with the associator is the cocycle

condition y� 2Z2C�yG.ByG/. Changing ˆ within its isomorphism class changes y� by an
exact 2–cocycle. This completes the proof.

We can now prove a 2–categorical analogue of Theorem 3.17.

Theorem 4.9 There is an R–linear equivalence of categories

ZD.Vect
y�
C.
yG//' Vect

£� .y�/
�1

C .ƒ�ByG/;

where the left-hand side is the Drinfeld centre of Vect
y�
C.
yG/.

Proof Let .V; ˇ/2ZD.Vect
y�
C.
yG//, so that V 2Vecty�C.yG/ and ˇ W �˝V )V ˝� is a

C–linear natural isomorphism which satisfies a hexagon axiom; see [16, Section 7.13].
The component of ˇ at C! is the data of C–linear isomorphisms

ˇı;! WC! ˝C
�.!/Vı

��! V!ı!�1 ˝C
�.ı/C! ; ı 2 yG:

If Vı is nonzero for some ı 2 yGnG, then ˇı;e.c˝vı/D vı˝ Nc. Consider the morphism
m� W Ce ! Ce given by multiplication by � 2 C. Naturality of ˇ in Ce requires
commutativity of the diagram

Ce˝C Vı Vı ˝C Ce

Ce˝C Vı Vı ˝C Ce

ˇı;e

m�˝idVı idVı˝ Nm�

ˇı;e
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which is the case if and only if �2R. It follows that V is supported on G. The hexagon
axiom for .V; ˇ/ implies that the remaining structure maps ˇg;! for .g; !/ 2 G� yG,
give V the structure of a £�.y�/�1–twisted vector bundle over ƒ�ByG.

Being a Drinfeld double, ZD.Vect
y�
C.
yG// has canonical R–linear monoidal structure.

The category Vect
£� .y�/

�1

C .ƒ�ByG/ then inherits a monoidal structure via Theorem 4.9.
For ease of notation, we replace � with ��1 in what follows. Under the equivalence
Vect

£� .y�/
C .ƒ�ByG/'Dy�.yG/–modR, the monoidal structure of Vect£� .y�/

�1

C .ƒ�ByG/ is
induced by a quasi-coassociative coproduct

� WDy�.yG/!Dy�.yG/˝C Dy�.yG/:

To describe this, first recall that the subgroup Inn.yG/ � AutGrp=Z2
.yG/ of inner auto-

morphisms acts trivially on H 3C�yG.ByG/. More precisely, for gi 2 G and ! 2 yG, we
have

(25)
y�
�
Œ!g3!

�1 j!g3!
�1 j!g3!

�1�
�

y�
�
Œg3 jg2 jg1�

��.!/ D dc!
�
Œg3 jg2 jg1�

�
;

where c! 2 C 2.BG/ is given by (see [29, Proposition 8.1])

c!
�
Œg2 jg1�

�
D

y�
�
Œ!g2!

�1 j! jg1�
�

y�
�
Œ! jg2 jg1�

�
y�
�
Œ!g2!�1 j!g1!�1 j!�

� :
Let lg!! 2Dy�.yG/ be the basis vector corresponding to the morphism ! W g! !g!�1

in ƒ�ByG. Define

�.lg!!/D
X

g1;g22G
g2g1Dg

c!
�
Œg2 jg1�

�
lg2

!
!
˝ lg1

!
!

with associator

ˆD
X

g1;g2;g32G

y�
�
Œg3 jg2 jg1�

�
lg3

e
!
˝ lg2

e
!
˝ lg1

e
!
:

Formally, these are the same definitions as for the quasibialgebra D�.G/ [12]. The
defining equation (25) implies that ˆ is an associator; that is, � is coassociative up to
conjugation by ˆ. The equation

£�.y�/
�
Œ!2 j!1�g2

�
£�.y�/

�
Œ!2 j!1�g1

�
£�.y�/

�
Œ!2 j!1�g2g1

�
D

c!2!1
�
Œg2 jg1�

�
c!1

�
Œg2 jg1�

��.!2/
� c!2

�
Œ!1g2!

�1
1 j!1g1!

�1
1 �

� ;
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which can be proved in the same way as [29, Corollary 8.3], implies that � is a
morphism of Real algebras. We summarize the above structure by saying that Dy�.yG/ is
a Real quasibialgebra. Note that D�.G/ is a complex subquasibialgebra of Dy�.yG/R. In
this way, we obtain a quasibialgebraic interpretation of ZD.Vect

y�
C.
yG// and its C–linear

monoidal subcategory ZD.Vect
�
C.G//.

4.4 Twisted loop transgression and Real 2–representation theory

We use the categorified Real group algebra Vect
y�
C.
yG/ of Section 4.3 to formulate the

Real 2–representation theory of G. The latter theory, which concerns the 2–categorical
generalization of Sections 3.2 and 3.3, is developed in detail in [44], so we limit
ourselves to explaining the connection to the twisted transgression map £ref

� .

We require a Real generalization of the bicategory of module categories over a C–
linear monoidal category, as described in [16, Section 7.2]. Let Vecty�C.yG/–modR be
the bicategory whose objects are left Real Vecty�C.yG/–module categories, that is, pairs
.F;M/ consisting of a finite semisimple C–linear category M and a C–linear monoidal
functor F W Vecty�C.yG/! EndR.M/ such that each functor

F.C!/ W
�.!/M!M; ! 2 yG;

is C–linear. The 1–morphisms of Vect
y�
C.
yG/–modR are C–linear functors with in-

tertwining natural isomorphisms for the Vect
y�
C.
yG/–actions while 2–morphisms are

their compatible C–linear natural transformations. With these definitions, there is an
R–linear biequivalence

(26) Vect
y�
C.
yG/–modR

' 2Vect
y�
C.B
yG/;

where the right-hand side is the bicategory of y�–twisted Real 2–representations of
G on Kapranov–Voevodsky 2–vector spaces, as defined in [44, Section 5.4]. The
biequivalence (26), which restricts to the previously known C–linear biequivalence
Vect

�
C.G/–mod' 2Vect�C.BG/, is the 2–categorical analogue of Proposition 3.4.

One of the main outcomes of [44] is the existence of a categorified character theory for
2Vect

y�
C.B
yG/. Its basic structure is summarized by the following theorem:

Theorem 4.10 [44] A Real 2–representation � 2 2Vecty�C.ByG/ has

(i) a Real categorical character Tr� 2 Vect
£ref
� .y�/

C .ƒref
� B
yG/, and

(ii) a Real 2–character �� 2 �ƒƒref
�ByG

.££ref
� .y�/C/.
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The proof of Theorem 4.10(i) can be seen as a 2–categorical upgrade of the proof
of Proposition 3.9. In particular, £ref

� .y�/ arises through its explicit expression from
Section 2.3. Part (ii) follows from part (i) once it is known that £ref

� .y�/ is closed.
While it is possible (but unpleasant) to verify closedness of £ref

� .y�/ directly, this follows
immediately from Section 2.3. Finally, we note that the naive 2–categorical analogue
of Theorem 3.12 fails, so that the equivalence class of a Real 2–representation is not,
in general, determined by its Real categorical character and 2–character. A different
description of equivalence classes of objects of 2Vecty�C.ByG/ is given in [34]. It should
be noted that this description involves, in a nonobvious way, Real 2–characters.

Remark It can be shown that there is an R–linear monoidal equivalence

(27) Z.2Vect
y�
C.B
yG//'ZD.Vect

y�
C.
yG//;

the left-hand side being the monoidal category of pseudonatural transformations of
the identity pseudofunctor of 2Vecty�C.ByG/. In view of (26), the equivalence (27) can
be proved in the same way as [5, Corollary 5.3]. The equivalence (27) leads to a
reformulation of Theorem 4.9 as a direct 2–categorical analogue of Theorem 3.17.

4.5 Discrete torsion in string theory and M–theory with orientifolds

In this section, we show that £ref
� encodes one-loop discrete torsion phases in orientifold

string theory and M–theory. At a practical level, the fact that £ref
� is a chain map

implies the (higher) gauge invariance of explicit discrete torsion phases, something
which is verified by hand in physical approaches. The appearance of £ref

� is natural
from the geometric picture of discrete torsion, reviewed below, in which the B–field
amplitude is interpreted as a pushforward in differential cohomology. Moreover, our
results suggest new representation-theoretic structures in M–theory. There is a well-
established connection between discrete torsion in orbifold string theory on X==G
and twisted representations of G on (the vector space fibres of) Chan–Paton bundles
on D–branes [15; 37, Section V]. In the setting of orientifold strings, Real twisted
representations of G, as discussed in Section 3.2, are instead relevant [6, Section 3.4].
The 3–form C–field, which plays the role of the 2–form B–field in string theory, leads
to a categorification of the string theory setting, in which M2–branes are endowed with
2–vector bundles [10]. The appearance of £ref

� in M–theory discrete torsion, explained
below, together with the central role of £ref

� in Real categorical representation theory,
recalled in Section 4.4, suggests that forM–theory orbifolds the fibres of these 2–vector
bundles carry the structure of a twisted Real categorical representation.
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To begin, we recall the definition of the B–field amplitude in oriented string theory and
its relation to discrete torsion. For detailed treatments, see [37; 14]. The oriented case
is well studied in both mathematics and physics and forms the basis for the orientifold
generalizations which follow.

The spacetime of oriented string theory is an orbifold X; there are additional data
and conditions on X, depending on the form of string theory under consideration, but
we do not require these for the present discussion. A worldsheet with target X is a
closed oriented surface † and a smooth map ' W†! X. A (gauge equivalence class
of a) B–field on X is a differential cohomology class {B 2 {H 3.X/. Schematically, the
partition function of the worldsheet theory takes the form

Z D

Z
'2Map.†;X/

exp
�
2�i

Z
†

'� {B

�
� � �D';

where
R
† W
{H 3.†/ ! {H 1.pt/ ' R=Z is pushforward along † ! pt. The omitted

terms in Z are not required in what follows. While Z is not mathematically defined,
the B–field amplitude exp

�
2�i

R
† '
� {B
�

is; it is this quantity which leads to discrete
torsion.

Let XD X==G be the orbifold quotient of a smooth manifold X by a finite group G.
Postcomposition with the canonical map p WX==G! BG defines

(28) p ı .�/ WMap.†;X==G/!Map.†;BG/:

The connected components �0Map.†;BG/ label isomorphism classes of G–bundles
over†. Given f 2�0Map.†;BG/, the subgroupoid Map.†;X==G/f �Map.†;X==G/
of maps ' W†!X==G for which p ı' is in the component f is called the f –twisted
sector. Maps in this sector can be interpreted as G–equivariant maps Pf !X, where
Pf ! † is a G–bundle classified by f. In particular, when f classifies the trivial
G–bundle, this is a map †! X, that is, a worldsheet in the theory with target X. A
special class of B–fields on X==G arises from classes � 2H 2.BG/ via the composition

(29) H 2.BG/
p�
�!H 2.X==G/ ,! {H 3.X==G/; � 7! {B� ;

where the second map is the inclusion of flat B–fields. Then exp
�
2�i

R
† '
� {B�

�
is

constant on Map.†;X==G/f and independent ofX. The partition functionZ is therefore
expected to decompose as

(30) Z D
X

f 2�0Map.†;BG/

exp
�
2�i

Z
†

f ��

�Z
'2Map.†;X/f

� � �D':
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In this way, the discrete torsion phases exp
�
2�i

R
† f
��
�

modify the contribution of
each twisted sector to the partition function Z. Expressions for exp

�
2�i

R
† f
��
�

for
simple surfaces are given in [37; 31; 24].

Remark The discovery [39] of discrete torsion was via algebraic, rather than geometric,
techniques. Indeed, discrete torsion was discovered as modularity-preserving phase
ambiguities in the torus (or one-loop) partition function in orbifold conformal field
theory. In the unoriented setting, the one-loop sector, which now includes a Klein bottle
worldsheet, again plays a distinguished role [3].

Our interest is in discrete torsion in orientifold string theory. For detailed discussions of
orientifold strings, see [38; 14; 23]. The spacetime in an orientifold theory is an orbifold
double cover � W X! yX. A worldsheet is a closed surface †, not assumed oriented
or orientable, a smooth map ' W†! yX and a lift of ' to double covers z' W or†! X.
Denote by Mapor.†; yX/ the space of worldsheets. The B–field {B 2 {H 3C�.yX/ lies in
the differential cohomology of yX twisted by the double cover X. The partition function
of the worldsheet theory takes the schematic form

Z D

Z
'2Mapor.†;yX/

exp
�
2�i

Z
†

'� {B

�
� � �D';

where now
R
† is the twisted pushforward {H 3Cor†.†/! {H 1.pt/ and z' is used to

identify {H 3C'��.†/ with {H 3Cor†.†/.

The global quotient setting is a double cover � WX==G!X==yG arising from the action
of a finite Z2–graded group yG on X. The map Op WX==yG! ByG defines

Op ı .�/ WMapor.†;X==yG/!Mapor.†;ByG/:

A component f 2�0Mapor.†;ByG/ classifies an object Pf 2Bunor
yG
.†/, in the notation

of Section 4.2, and maps in the f –twisted sector admit an interpretation in terms
of yG–equivariant maps Pf ! X. In other words, topological types of or†–twisted
G–bundles label orientifold twisted sectors. The twisted analogue of the sequence (29)
associates to a class y� 2H 2C�yG.ByG/ a flatB–field {By� 2

{H 3C�.X==yG/whose amplitude
exp

�
2�i

R
† '
� {By�

�
is constant on each twisted sector and independent of X, leading to

a decomposition of Z analogous to (30).

Let y� 2Z2C�yG.ByG/. Computations using conformal field theory [3, (16)] or equivariant
structures on gerbes with connection [38, Section 5.1] give, for the Klein bottle discrete
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torsion phase,

(31) y�
�
Œg�1 jg�

��1 y��Œg j!��
y�
�
Œ! jg�1�

� ;
where g 2 G and ! 2 yGnG satisfy !g�1!�1D g. This expression is recovered, and its
meaning clarified, by twisted transgression. The iterated transgression ££ref

� .
y�/ is the

locally constant function on ƒƒref
� B
yG whose value on .g; !/ 2 Obj.ƒƒref

� B
yG/D Gh2i

is
y�
�
Œg�1 jg�

���! y�
�
Œg j!�

�
y�
�
Œ! jg�.!/�

� :
This specializes to (31) when �.!/ D �1 and to the well-known expression for the
discrete torsion phases of T2 when �.!/D 1 [39; 36, Section IV.B]. In other words,
by interpreting ƒƒref

� B
yG as BunG.T2/tBunor

yG
.K/, as described below Corollary 4.5,

we see that the function ££ref
� .
y�/ simply records to the discrete torsion phase associated

to each one-loop orientifold twisted sector.

The discussion for M–theory is formally similar to that for string theory. We refer the
reader to [36; 38; 11; 42, Section IV] for details and subtleties in the definition of a
C–field. We take as the M–theory spacetime an orbifold Y. A basic field in M–theory
is the C–field, (to a first approximation1) a class {C 2 {H 4CorY.Y/. An M2–brane is a
closed 3–manifold W with a smooth map ' WW !Y and a lift z' of ' to orientation
double covers. Among other factors, the integrand of the partition function of the
M2–brane theory on W contains the C–field amplitude exp

�
2�i

R
W '� {C

�
.

In the global quotient setting, let Y be an oriented manifold on which a finite Z2–graded
group yG acts by orientation-preserving/reversing diffeomorphisms according to the
grading � W yG!Z2. Then YD Y==yG is an M–theory spacetime and {C 2 {H 4C�.Y==yG/

is twisted by the double cover � W Y==G! Y==yG. Associated to a class y�2H 3C�yG.ByG/

is a flat C–field {Cy� 2 {H 4C�.Y==yG/, leading to discrete torsion phases in the M2–brane
partition function.

Consider y� 2 Z3C�yG.ByG/ and its iterated transgression £2£ref
� .y�/, a locally constant

function on ƒ2ƒref
� B
yG. There is a bijection of Obj.ƒ2ƒref

� B
yG/ with

yGh3i WD f.g; !1; !2/ 2 G� yG
2
j .g; !i / 2 yG

h2i; .!1; !2/ 2 yG
.2/
g:

1Depending on the topology of Y, it may only be the difference of two C–fields that lies in {H4CorY.Y/;
see [41, (1.2); 11, Section 2; 42, Section IV.A]. In this case, we would consider below the translate of a
background C–field by y� 2H3C�yG.ByG/. The element y� is still the source of discrete torsion.
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The set yGh3i decomposes according to the degrees of its elements. Holonomy considera-
tions, analogous to those discussed in the dimensional case, interpret this decomposition
as orientation twisted G–bundles over a closed 3–manifold W whose orientation double
cover is T3tT3 or T3. We view this manifold as comprising anM–theoretic analogue
of the one-loop sector in string theory. When �.!1/D �.!2/D 1, we have W ' T3

and the value of £2£ref
� .y�/ on .g; !1; !2/ 2 yGh3i is

(32)
y�
�
Œ!2 jg j!1�

�
y�
�
Œ!1 j!2 jg�

�
y�
�
Œg j!2 j!1�

�
y�
�
Œ!2 j!1 jg�

�
y�
�
Œg j!2 j!1�

�
y�
�
Œ!1 jg j!2�

� :
The remaining cases, in which at least one !i has degree �1, have W 'K�S1. For
example, when �.!1/D 1D��.!2/, the value of £2£ref

� .y�/ on .g; !1; !2/ is

(33)
y�
�
Œg�1 jg j!1�

�
y�
�
Œ!1 jg

�1 jg�
�

y�
�
Œg�1 j!1 jg�

� y�
�
Œ!1 j!2 jg

�1�
�
y�
�
Œg j!1 j!2�

�
y�
�
Œ!2 jg

�1 j!1�
�

y�
�
Œ!1 jg j!2�

�
y�
�
Œ!2 j!1 jg�1�

�
y�
�
Œg j!2 j!1�

� :
The function £2£ref

� .y�/ is a geometric encoding of one-loop discrete torsion phases
in M–theory. Indeed, the phases (32) and (33) appear in the work of Sharpe2 [38,
Section 6.2] as discrete torsion phases of T3 and K�S1, where they were derived using
a Čech description of equivariant structures on 2–gerbes with connection. Since £ref

� is a
chain map, it is immediate that (32) and (33) depend only on the class Œy��2H 3C�yG.ByG/.
In Sharpe’s approach, this higher gauge invariance must be verified by lengthy direct
calculations.

Discrete torsion phases for general 3–manifolds are computed by the three-dimensional
unoriented Dijkgraaf–Witten theory associated to the pair .yG; y�/ [43]; in the string-
theoretic setting, one considers instead the two-dimensional theory associated to .yG; y�/.
These computations can be formulated in terms of orientation-twisted transgression
along the 3–manifold [43, Section 4.2]. Only in particular geometric settings, such as
the one-loop case considered above or 3–manifolds arising as S1–fibrations, can one
formulate the computations in terms of iterated transgression along simpler manifolds.
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