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Homotopy classification of 4–manifolds
whose fundamental group is dihedral

DANIEL KASPROWSKI

JOHN NICHOLSON

BENJAMIN RUPPIK

We show that the homotopy type of a finite oriented Poincaré 4–complex is determined
by its quadratic 2–type provided its fundamental group is finite and has a dihedral
Sylow 2–subgroup. By combining with results of Hambleton and Kreck and Bauer,
this applies in the case of smooth oriented 4–manifolds whose fundamental group is
a finite subgroup of SO.3/. An important class of examples are elliptic surfaces with
finite fundamental group.

57K40; 16E05, 57N65, 57P10

Introduction

Recall that a finite oriented Poincaré 4–complex is a finite CW–complex with a funda-
mental class ŒX� 2H4.X IZ/ such that

�\ ŒX� W C 4��
�
X IZŒ�1.X/�

�
! C�

�
X IZŒ�1.X/�

�
is a chain homotopy equivalence; see Wall [26]. Every closed topological 4–manifold
has the structure of a finite Poincaré 4–complex, but there are finite Poincaré 4–
complexes which are not homotopy equivalent to any closed topological 4–manifold;
see Hambleton and Milgram [10].

In 1988, Hambleton and Kreck [6, Theorem 1.1] proved that an oriented Poincaré
4–complex X with finite fundamental group �1.X/ is determined up to homotopy
equivalence by three invariants, including the isometry class of its quadratic 2–type, ie
the quadruple

Œ�1.X/; �2.X/; kX ; �X �;

where �2.X/ is considered as a ZŒ�1.X/�–module, kX 2H 3.�1.X/I�2.X// is the k–
invariant determining the Postnikov 2–type of X and �X is the equivariant intersection
form on �2.X/.
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Moreover, for oriented Poincaré 4–complexes whose fundamental group has 4–periodic
cohomology, the quadratic 2–type is actually a complete homotopy type invariant (see
Hambleton and Kreck [6, Theorem A]). This was improved upon by Bauer [1], who
showed this was true under the weaker assumption that �1.X/ is a finite group whose
Sylow 2–subgroup has 4–periodic cohomology, ie is isomorphic to a cyclic group Z=2n

or a generalized quaternion group Q2n .

Recently, it was shown by Kasprowski, Powell and Ruppik [16] that this is also true
when the Sylow 2–subgroup of �1.X/ is abelian with two generators, ie of the form
Z=2n �Z=2m. The aim of this article will be to extend this to the case where the
Sylow 2–subgroup of �1.X/ is dihedral, ie is isomorphic to the dihedral group D2n of
order 2n for some n� 2.

Theorem A Let � be a finite group whose Sylow 2–subgroup is dihedral. Then the
homotopy type of a finite oriented Poincaré 4–complex with fundamental group � is
determined by the isometry class of its quadratic 2–type. That is , every isometry of the
quadratic 2–types of M and N is realized by a homotopy equivalence M !N.

By Hambleton and Kreck [6, Theorem 1.1 and Remark 1.2] and Teichner [25] (see
Kasprowski and Teichner [17, Corollary 1.6]), in order to prove that the homotopy type
of a finite oriented Poincaré 4–complex X is determined by its quadratic 2–type, it
suffices to show that Z˝ZŒ�1.X/� �.�2.X// is torsion-free as an abelian group, where
� denotes Whitehead’s quadratic functor (see Section 1).

For a finitely presented group � and n � 1, recall that the nth stable syzygy �n.Z/,
which we also write as ��n .Z/, is the set of Z�–modules J for which there exists an
exact sequence

0! J ! Fn�1! � � � ! F0! Z! 0;

where the Fi are finitely generated free Z�–modules. It follows from Bauer [1] (see
also Corollary 2.7 and Lemma 2.8) that Z˝ZŒ�1.X/��.�2.X// is torsion-free provided
Z˝Z� �.J / and Z˝Z� �.J

�/ are torsion-free for some J 2��3 .Z/ where � is the
Sylow 2–subgroup of �1.X/ and J � D HomZ.J;Z/ is the dual of J.

In order to prove that Z˝ZŒ�1.X/� �.�2.X// is torsion-free, it therefore suffices to
accomplish the following two tasks for the finite 2–group � which arises as the Sylow
2–subgroup of �1.X/:

(1) Find an explicit parametrization for ��3 .Z/, ie give an explicit description of a
Z�–module J such that J 2��3 .Z/.

(2) Show that Tors.Z˝Z� �.J //D 0 and Tors.Z˝Z� �.J
�//D 0.
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Recall that, ifK is a finite 2–complex with fundamental group � , then �2.K/2��3 .Z/.
It is still an open problem — though it is a consequence of an affirmative solution to
Wall’s D2 problem; see Johnson [13] — to determine whether or not every J 2��3 .Z/
arises as �2.K/ for a finite 2–complex K with fundamental group � . It is therefore not
surprising that the existing literature on Wall’s D2 problem contains many computations
of ��3 .Z/; see Johnson [14].

More specifically, the case of dihedral groups was explored by Mannan and O’Shea [19]
and also independently by Hambleton [5], building upon earlier work with Kreck [8].
Both sources contain suitable parametrizations for ��3 .Z/ albeit of different forms.

After recalling basic facts about Whitehead’s � functor and Tate cohomology in
Section 1, we will then give an overview of the theory of syzygies of finite groups in
Section 2. In Section 3, we will make use of the result of Hambleton and Kreck [8] to
obtain an explicit parametrization for some J 2��3 .Z/ in the case where � DD4n
is the dihedral group of order 4n, and Section 4 will then be dedicated to the proof
that Tors.Z˝Z� �.J //D 0. In Section 5, we will obtain an explicit parametrization
for J � and, finally, in Section 6 we will prove also that Tors.Z˝Z� �.J

�//D 0.

We conclude by noting that every finite subgroup of SO.3/ has a cyclic or dihedral Sylow
2–subgroup. In particular, by combining our result with Bauer [1] and Hambleton and
Kreck [6], we get that Theorem A also holds in the case where � is a finite subgroup of
SO.3/. This makes possible a complete homotopy classification of 4–manifolds whose
fundamental group is � . The study of these manifolds was one of the motivations for
the original results of Hambleton and Kreck [8] as they contain all elliptic surfaces
with finite fundamental group (see, for example, Hambleton and Kreck [7, page 81]).
These were the subject of a subsequent paper [7], where they studied exotic smooth
structures on elliptic surfaces.

Note also that, if � is a fixed-point-free finite subgroup of SO.4/, then � has 4–periodic
cohomology and so the results of Hambleton and Kreck [6] imply that finite oriented
Poincaré 4–complexes with fundamental group � are also determined by the isometry
class of their quadratic 2–type.

However, it is not clear whether or not this holds for all finite subgroups of SO.4/.
For example, let � D D8 � Z=2. Then � is a finite subgroup of SO.4/ since it
is contained in the central product Q8 ı Q8 as the image of Q8 � Q8 under the
double cover S3 � S3 ! SO.4/. On the other hand, if J 2 ��3 .Z/, then it follows
from computations of Ruppik [23] and Hennes [12] that Tors.Z˝Z� �.J //D 0 and
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Tors.Z˝Z� �.J
�// ¤ 0. For a finite 2–complex K with �1.K/ Š � , let X be the

boundary of a smooth regular neighbourhood of an embedding of K in R5. Then X is
a 4–manifold with �1.X/Š � and �2.X/Š J0˚J �0 , where J0 D �2.K/ 2��3 .Z/;
see Hambleton and Kreck [6, page 95]. It follows that Tors.Z˝Z� �2.X//¤ 0 and so
the proof of Theorem A does not extend to this case.

It is still not known whether or not the homotopy type of a finite oriented Poincaré 4–
complex with arbitrary finite fundamental group � is determined by the isometry class
of its quadratic 2–type, though we do not expect this to be true when � DD8 �Z=2

(as above) or � D .Z=2/3 (as discussed by Kasprowski, Powell and Ruppik [16]). In
the case where X is nonorientable, this was shown by Kim, Kojima and Raymond [18]
to be false even for smooth 4–manifolds in the case � D Z=2.
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1 Preliminaries

The aim of this section will be to define Whitehead’s � functor and Tate homology,
and recall a few of their basic properties which we will use in the rest of the article.
From now on, all modules will be assumed to be finitely generated left modules.

The following was first defined by Whitehead [27]:

Definition 1.1 (�–groups) Let A be an abelian group. Then �.A/ is an abelian
group with generators the elements of A. We write a as v.a/ when we consider it as
an element of �.A/. The group �.A/ has the relations

fv.�a/� v.a/ j a 2 Ag

and

fv.aC bC c/� v.bC c/� v.cC a/� v.aC b/C v.a/C v.b/C v.c/ j a; b; c 2 Ag:

In particular, v.0A/D 0�.A/.
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We will be interested in the case where A is a free abelian group, in which case �.A/
has the following simple description:

Lemma 1.2 [27, page 62] If A is free abelian with basis B, then �.A/ is free abelian
with basis

fv.b/; v.bC b0/� v.b/� v.b0/ j b ¤ b0 2Bg:

Recall that a Z�–lattice is a Z�–module A whose underlying abelian group is finitely
generated torsion-free, and so is of the form Zn for some n� 0. For example, if X is a
finite oriented Poincaré 4–complex with finite fundamental group � , then

�2.X/ŠH2. zX IZ/ŠH
2. zX IZ/Š Hom.H2. zX IZ/;Z/

is finitely generated and torsion-free as an abelian group and so �2.X/ is a Z�–lattice.

If A is a Z�–lattice, then we can view �.A/ as a Z�–module as follows. Firstly, by
Lemma 1.2, we can take �.A/ to be the subgroup of symmetric elements of A˝A
given by sending v.a/ to a˝ a. Observe that v.bC b0/� v.b/� v.b0/ corresponds to
the symmetric tensor b˝b0Cb0˝b. We can now let the group � act on �.A/�A˝A
via

g �
X
i

.ai ˝ bi /D
X
i

.g � ai /˝ .g � bi /:

For a; b 2 A, we will write

a b D a˝ bC b˝ a 2 A˝A

and we will also often write a˝2 D a˝ a 2 A˝A to shorten many expressions. We
will continue to use that a b D b a, a aD 2a˝ a and a bC c b D .aC c/ b

for a; b; c 2 A. For a map f W A ! B of Z�–modules we have the induced map
f� W �.A/! �.B/ with f�.a˝ a/D f .a/˝f .a/ and f�.a b/D f .a/ f .b/.

To compute �–groups we will make frequent use of the following lemma:

Lemma 1.3 [1, Lemma 4] Let � be a group. If 0!A!B!C! 0 is a short exact
sequence of Z�–lattices , then there exists a Z�–lattice D and short exact sequences
of Z�–modules

0! �.A/! �.B/!D! 0 and 0! A˝Z C
f
�!D! �.C /! 0:

If faig; fcj g and fai ; Qcj g are bases for A, C and B as free abelian groups , respectively ,
where Qcj is a lift of cj , then the map f is defined by

f .ai ˝ cj /D Œai ˝ Qcj C Qcj ˝ ai �D Œai Qcj � 2D Š �.B/=�.A/:
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Remark 1.4 For the direct sum of Z�–lattices A and B, these short exact sequences
split, and so �.A˚B/Š �.A/˚�.B/˚A˝ZB.

The second key definition we require is as follows. See [2] for a convenient reference.

Definition 1.5 (Tate homology) Given a finite group � and a Z�–module A, the
Tate homology groups yHn.� IA/ are defined as follows. Let N W A� ! A� denote
multiplication with the norm element from the orbits A� WD Z˝Z� A of A to the �–
fixed points ofA, that is,N.1˝a/D

P
g2� ga. This is well defined sinceN.1˝ga/D

N �gaDN � aDN.1˝ a/. Then

yHn.� IA/ WDHn.� IA/ for n� 1;

yH0.� IA/ WD ker.N /;

yH�1.� IA/ WD coker.N /;

yHn.� IA/ WDH
�n�1.� IA/ for n� �2:

We can similarly define Tate cohomology groups by, for example, letting yHn.� IA/D

yH�n�1.� IA/.

We will require the following properties of Tate homology, and we will use them
throughout the article without further mention.

Lemma 1.6 [2, VI.5.1] If 0 ! A ! B ! C ! 0 is a short exact sequence of
Z�–modules , then there is a long exact sequence of Tate homology groups

� � � ! yHn.� IA/! yHn.� IB/! yHn.� IC/! yHn�1.� IA/! � � � :

Lemma 1.7 [2, VI.5.2] If A is a free Z�–module , then yHn.� IA/D 0 for all n 2 Z.

For a Z�–module A, let Tors.A/ denote the torsion subgroup of A as an abelian group.
The following lemmas are elementary and we refer to [16] for proofs.

Lemma 1.8 [16, Lemma 3.2] If � is a finite group and A is a Z�–lattice , then there
is an isomorphism of abelian groups

yH0.� IA/Š Tors.Z˝Z� A/:

Remark 1.9 As an abelian group, we have Z˝Z� A Š A=� , where � acts on A
by left multiplication. We will therefore also often use a 2 A to refer to the element
1˝ a 2 Z˝Z� A.
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While we defined yHn.� IA/ as abelian groups in Definition 1.5, it will be useful to fix
more explicit descriptions when nD 0;˙1. The following will be in place from now on:

Convention 1.10 Throughout the rest of this article, A will be a Z�–lattice. Following
Definition 1.5 and Remark 1.9, we will use a 2 A to denote elements of both the
homology groups

yH0.� IA/D Tors.Z˝Z� A/D Tors.A=�/;

yH�1.� IA/D coker.N /D A�=.N �A�/:

Furthermore, we will write

yH1.� IA/D
ker.d1˝ idA W C1˝Z� A! C0˝Z� A/

im.d2˝ idA W C2˝Z� A! C1˝Z� A/
;

where C2
d2
�! C1

d1
�! C0! Z! 0 is a choice of free Z�–resolution for the trivial

Z�–module Z.

Convention 1.11 We adopt the following notation convention for maps g W A! B

between Z�–modules, which can also occur in various combinations:

� A subscript � as in g� W �.A/! �.B/ denotes the induced map between �–
groups.

� A hat as in Og W yHi .�; A/! yHi .�; B/ denotes the map on Tate homology.

For a Z�–moduleA, let ŒA�s denote the equivalence class ofA up to stable isomorphism,
ie up to the relation where A�s B for a Z�–module B if there exist i; j � 0 for which
A˚Z� i Š B ˚Z�j. For later purposes, it will often be convenient to view this as
the set ŒA�s D fB W A�s Bg.

We conclude this section with the following observation:

Lemma 1.12 [16, Lemma 4.2] Let A be a Z�–lattice. Then yH0.� I�.A// only
depends on the stable isomorphism class ŒA�s , ie if A�s B for a Z�–module B, then
there is an isomorphism of abelian groups yH0.� I�.A//Š yH0.� I�.B//.

In particular, in order to determine yH0.� I�.A// for a Z�–module A, it suffices to
consider yH0.� I�.B// for any B inside the stable class ŒA�s .
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2 Syzygies of finite groups

In this section, we will recall the basic theory of syzygies of finite groups. This offers
an alternative perspective to some of the results which were discussed in [16].

Recall that, for a finitely presented group � , a Z�–module A and n� 1, the nth stable
syzygy �n.A/, which we also write as ��n .A/, is defined as the set of Z�–modules B
for which there exists an exact sequence

0! B! Fn�1! � � � ! F0! A! 0;

where the Fi are free Z�–modules.

The following was first shown by Swan in [24, Corollaries 1.1 and 2.1]. For a more
recent reference, and a different proof, see [13, Theorem 30.1].

Lemma 2.1 Let � be a finite group , let A be a Z�–lattice and let n � 2. Then
�n.A/D ŒB�s for any B 2�n.A/, ie if B 2�n.A/, then B 0 2�n.A/ if and only if
B and B 0 are stably isomorphic.

The following is also immediate by noting that the exact sequence for A and B defined
above is split when restricted to the underlying abelian groups providedA is torsion-free.

Lemma 2.2 Let � be a finite group , letA be a Z�–lattice and let n�1. If B 2�n.Z/,
then B is a Z�–lattice.

It is often useful to take the perspective (see [14, Preface]) that the syzygy �n.A/ is, in
some sense, the nth derivative of the module A. This is already mentioned by R H Fox
in his definition of the Fox derivative in 1960 [4]. We will now recall this definition for
use in the following section.

Definition 2.3 (Fox derivative) If F is a free group with generators gi , then the Fox
derivative with respect to gi is the Z–module homomorphism

@gi W ZF ! ZF

which is defined by the requirements that @gi .gj /D ıij , where ıij is the Kronecker
delta, @gi .1/D 0, and the product rule @gi .xy/D @gi .x/C x@gi .y/ for x; y 2 F. If
� WF � � is a surjection of groups, then we can view @gi as a map @gi WZF !Z� by
postcomposition with �. In particular, @gi maps words in the generators of � to Z� .
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The main result on Fox derivatives that concerns us is as follows. A detailed account
can be found, for example, in [11, Section 1.2].

Proposition 2.4 Let P D hx1; : : : ; xn j r1; : : : ; rmi be a group presentation with corre-
sponding presentation complex XP , and � W F D hx1; : : : ; xni� � the corresponding
surjection. Then the cellular chain complex of zXP is given by

C�. zXP/ W C2. zXP/D

mM
iD1

Z�hri i

d2
��! C1. zXP/D

nM
iD1

Z�hxi i

d1
�! C0. zXP/;D

Z�h1i

where the maps (of left Z�–modules) are given on the basis vectors as d2.ri / DPn
jD1 �.@xj .ri // � xj and d1.xj /D �.xj /� 1 for all i and j.

If P is a presentation for � , then ker.d2/ 2��3 .Z/. Hence, in order to find an explicit
parametrization of ��3 .Z/, it remains to compute ker.d2/ for some presentation P .

Remark 2.5 Whilst this method works to obtain a parametrization for �3.Z/, it
is currently not known whether or not this method can always be used to find a
representative whose abelian group has minimal rank. For example, it was noted by
the second author in [21] that there is a family of groups � D P 0048�n for n� 3 odd with
4–periodic cohomology over which there exists J 2�3.Z/ with rankZ.J /D j�j � 1

but for which every known presentation P D hx1; : : : ; xn j r1; : : : ; rmi has m�n� 1
and so has rankZ.ker.d2//� 2j�j � 1.

For a Z�–module A, define the dual A� D HomZ.A;Z/ which has left Z�–action
given by sending ' 7! g �', where .g �'/.x/D '.g�1 �x/ for x 2A. By, for example,
Lemma 1.5 of [20], this coincides with the usual dual of Z�–modules HomZ�.A;Z�/.
From our definition it is clear that, for � finite, if A is a Z�–lattice, then A� is also a
Z�–lattice.

The following was proven by Hambleton and Kreck [6, Proposition 2.4]:

Proposition 2.6 Let X be a finite oriented Poincaré 4–complex X with finite funda-
mental group � . Then there exists J 2�3.Z/, an integer r � 0 and an exact sequence

0! J ! �2.X/˚Z�r ! J �! 0:
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By the discussion above, we know that J and J � are necessarily Z�–lattices. By
combining Lemmas 1.3 and 1.12, it is straightforward to show the following. See [16,
Corollary 4.5] for a detailed proof.

Corollary 2.7 If Tors.Z˝Z� �.J // D 0 and Tors.Z˝Z� �.J
�// D 0 for some

J 2�3.Z/, then Tors
�
Z˝Z� �.�2.X//

�
D 0.

If A is a Z�–lattice then, by Lemma 1.8, Tors.Z˝Z�A/Š yH0.� IA/. It is well known
(see for example [2, III.10]), that this vanishes if and only if it vanishes over each
Sylow p–subgroup �p.

Using this, Bauer made the following observation [1, page 5] in the case nD 3 (see
[16, Section 6] for additional details). By examining the argument, it is not difficult to
see that this extends to all n� 1 odd.

Lemma 2.8 Let � be a finite group with Sylow 2–subgroup � 0. For n � 1 odd ,
let J 2 ��n .Z/, and let J 0 D Res�� 0.J / 2 �

� 0

n .Z/ denote its restriction to Z� 0. If
Tors.Z˝Z� 0 �.J

0//D 0, then Tors.Z˝Z� �.J //D 0. Similarly, if

Tors
�
Z˝Z� 0 �..J

0/�/
�
D 0;

then Tors.Z˝Z� �.J
�//D 0.

We conclude this section with an overview of the proof of Theorem A. As we mentioned
in the introduction, it is a consequence of [6, Theorem 1.1; 25] (see [17, Corollary 1.5])
that, in order to prove Theorem A, it suffices to prove that Tors

�
Z˝Z� �.�2.X//

�
D 0

when � is a finite group whose Sylow 2–subgroup is dihedral. By Corollary 2.7 and
Lemma 2.8, it suffices to prove that Tors.Z˝Z��.J //D0 and Tors.Z˝Z��.J

�//D0,
where � is the dihedral group of order 2n for n � 1. These results will be shown in
Theorems 4.1 and 6.1, respectively.

3 An explicit parametrization for�3.Z/ over dihedral groups

The aim of this section will be to obtain an explicit parametrization for �3.Z/ in the
case where � D D2n is the dihedral group of order 2n, where n is even. Note that,
if n is odd, then D2n has 4–periodic cohomology and so is dealt with by the results
of Hambleton and Kreck [6]. In fact, it is possible to parametrize all the syzygies
�
D2n
m .Z/ for m� 1 in this case [15].
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Using the presentation

P D hx; y j xny�2; xyxy�1; y2i

for D2n, we obtain the partial free resolution of Z, using Proposition 2.4,

(3-1) C�.P/ W 0!ker.d2/!Z�3
�

 
Nx �.1Cy/
1Cxy x�1
0 yC1

!
�������������!

d2
Z�2

�

�
x�1
y�1

�
�����!
d1

Z� "
�!Z!0;

where Nx D 1C xC � � � C xn�1 and " is the augmentation map. Here the matrices
describing the left Z�–linear differentials d1 and d2 multiply from the right, with the
elements of the free Z�–modules written as row vectors. In particular, the composition
corresponds to the matrix product .d1 ı d2/.v/D v � d2 � d1. Let N D

P
g2� g denote

the group norm. Then:

Lemma 3.1 The following sequence is exact :

0! Z
N
�! Z�

�. x�1 1�xy /
���������! Z�2

�

�
Nx �.1Cy/
1Cxy x�1

�
������������! Z�2:

Proof This can be checked directly. However, let us give a shorter proof imitating [8,
Lemma 2.4]. Consider the 4–periodic resolution

ZQ4n
NQ4n
����! ZQ4n

�. x�1 1�xy /
���������! ZQ24n

�

�
Nx �.1Cy/
1Cxy x�1

�
������������! ZQ24n

�

�
x�1
y�1

�
�����! ZQ4n

of Z over the generalized quaternion group Q4n from [3, page 253]. The beginning of
this resolution corresponds to the presentation hx; y j xny�2; xyxy�1i of Q4n.

Apply the functor �˝ZŒhy2i� Z, where hy2i �Q4n is the cyclic group C2 with two
elements. Since TorZŒhy2i�

3 .Z;Z/ŠH3.C2IZ/Š Z=2, it does not remain exact at the
third term; but, as TorZŒhy2i�

2 .Z;Z/ŠH2.C2IZ/D 0, we conclude that

Z�
�. x�1 1�xy /
���������! Z�2

�

�
Nx �.1Cy/
1Cxy x�1

�
������������! Z�2

is still exact. Note that the kernel of Z� �.
x�1 1�xy /
���������! Z�2 is the set of fixed points

under the �–action and so is the image of the norm map. This implies the lemma.

Lemma 3.2 Let f D .fA; fB/ W A˚B! C be a map between abelian groups. Then
there is an exact sequence

0! ker.fA/
i
�! ker.f / j

�! ker.q ıfB W B! C=im.fA//! 0;

where i W a 7! .a; 0/, j W .a; b/ 7! b and q W C 7! C=im.fA/ is the quotient map.
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Proof It is easy to see that i is injective and that im.i/D ker.j /. To show that j is
surjective, let b 2 ker.q ıfB W B! C=im.fA//. Then fB.b/ 2 im.fA/, so there exists
a 2 A such that fA.a/D fB.b/ and so j.�a; b/D b.

Definition 3.3 We denote the augmentation ideal by I D I� D ker.Z� "
�! Z/ and

the ideal generated by I and 2 by .I; 2/D ker.Z� "
�! Z=2/.

Remark 3.4 Dualizing the exact sequence

0! I ! Z� "
�! Z! 0;

we obtain the exact sequence

0! Z N
�! Z�! I�! 0:

In particular, the dual of I is isomorphic to Z�=N.

Proposition 3.5 With respect to the inclusion ker.d2/ � Z�3, there is an exact
sequence

0! Z�=N
�. x�1 1�xy 0 /
�����������!

i
ker.d2/

�

�
0
0
1

�
����!
j

.I; 2/! 0:

Furthermore , j.1Cy;�Nx; 2/D 2, j.x�1; 0; x�1/Dx�1 and j.0; 0; y�1/Dy�1,
which gives lifts of the Z�–module generators for .I; 2/.

Proof This follows by applying the decomposition in Lemma 3.2 to the d2 differential
in the resolution (3-1) for the dihedral group. Here

fA D �

�
Nx �.1Cy/

1C xy x� 1

�
corresponds to the first two rows of the matrix, and fB D � .0 yC 1/ to the bottom
row. Now use Lemma 3.1 to identify kerfA with Z�=N.

To identify ker.q ıfB W Z�! Z�2=imfA/, consider again the resolution

ZQ4n
NQ4n
����! ZQ4n

�. x�1 1�xy /
���������! ZQ24n

�

�
Nx �.1Cy/
1Cxy x�1

�
������������! ZQ24n

�

�
x�1
y�1

�
�����! ZQ4n

of Z over the generalized quaternion group Q4n from the proof of Lemma 3.1. Since
TorZŒhy2i�

1 .Z;Z/ŠH1.C2IZ/Š Z=2, the sequence

(3-2) Z�2
fAD�

�
Nx �.1Cy/
1Cxy x�1

�
����������������! Z�2

�

�
x�1
y�1

�
�����! Z�
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has homology Z=2. As fB D � .0 yC 1/ composed with �
�
x�1
y�1

�
is trivial, the map

q ıfB W Z�! Z�2=imfA factors through

Z=2D ker
�
Z�2=imfA

�

�
x�1
y�1

�
�����! Z�

�
:

To see that ker.q ıfB WZ�!Z�2=imfA/Š .I; 2/, it remains to show that .0 yC 1/
is nontrivial in Z�2=imfA. Assume that .0 yC 1/ is in the image of fA, then the
exactness of (3-1) implies that (3-2) is exact. But (3-2) has homology Z=2, as mentioned
above.

Remark 3.6 It will also be useful to note that j.0; xy � 1; xy � 1/ D xy � 1. The
following equalities in Z� will be used without comment in our calculations:

� .1C xky/.1� xky/D 0D .1� xky/.1C xky/.

� xky D xky, Nx DNx , 1˙ xy D 1˙ xy and 1Cy D 1Cy.

� .1� xy/.xCy/D 0.

� xy � 1D .x� 1/yC .y � 1/.

Here is the usual involution on the group ring Z� induced by sending g 7! g�1 for
g 2 � .

4 Computing yH0

�
�I�.ker.d2//

�
The aim of this section will be the following theorem, whose proof appears on page 2938:

Theorem 4.1 If � is a dihedral group of order 2n for n even , then

yH0
�
� I�.ker.d2//

�
D 0:

Remark 4.2 Computer-assisted calculations verifying the vanishing of

yH0
�
� I�.ker.d2//

�
for � DD2n and n� 24 can be found at [22].

Let D D �.ker.d2//=�.Z�=N/, ie so that there is an exact sequence

0! �.Z�=N/
i�
�! �.ker.d2//

q
�!D! 0;
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where q is the quotient map. By Lemma 1.3 applied to the decomposition of ker.d2/
in Proposition 3.5, there is an exact sequence

0! .Z�=N/˝Z .I; 2/
f
�!D

j�
�! �..I; 2//! 0:

By the work done previously, the map f is given by

f W .Z�=N/˝Z .I; 2/!D D �.ker.d2//=�.Z�=N/;

1˝ 2 7! Œ.x� 1; 1� xy; 0/ .1Cy;�Nx; 2/�;

1˝ .y � 1/ 7! Œ.x� 1; 1� xy; 0/ .0; 0; y � 1/�;

1˝ .xy � 1/ 7! Œ.x� 1; 1� xy; 0/ .0; xy � 1; xy � 1/�:

Here we decided to define the map f using lifts of the elements 2, y � 1 and xy � 1
as opposed to 2, y � 1 and x� 1, since the following calculations will be easier with
respect to the generating set fx; xyg consisting of order 2 elements of D2n.

Now consider the long exact sequence on Tate homology coming from the first exact
sequence. By [6, Theorem 2.1] and Remark 3.4, yH0.� I�.Z�=N//D 0 and so

� � � ! 0! yH0
�
� I�.ker.d2//

� yq
�! yH0.� ID/

@
�! yH�1.� I�.Z�=N//! � � � ;

where @ denotes the boundary map in Tate homology.

We will now prepare a sequence of lemmas, which will then lead to a proof of the
following Proposition 4.3 on page 2934. From now on, let

� D .1Cyx/

n=2X
iD1

x2i D .1Cyx/.x2C x4C � � �C xn/

D .1Cyx/.1C x2C x4C � � �C xn�2/:

Proposition 4.3 There is an isomorphism of abelian groups

yH0.� ID/Š Z=2h˛1i˚Z=2h˛2i;

where the images in yH�1.� I�.Z�=N// of the generators ˛1 and ˛2 under the bound-
ary map are

@.˛1/D 2 � .Nx˝Nx/ and @.˛2/D n � .Nx˝Nx/C 2 � .� ˝ �/:

Remember that we use the notation from Convention 1.10 to denote the equivalence
classes of the elements 2 �.Nx˝Nx/; n �.Nx˝Nx/C2 �.�˝�/2 yH�1.� I�.Z�=N//
that live in the cokernel of the norm map.
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We begin by noting that we have the long exact sequence on Tate homology

� � � ! yH0.� I .Z�=N/˝Z .I; 2//
yf
�! yH0.� ID/

yj�
�! yH0

�
� I�..I; 2//

�
! � � � :

Lemma 4.4 For every finite group G of even order , there is an isomorphism of abelian
groups

yH0.GI .ZG=N/˝Z .I; 2//Š Z=2h1˝N i:

Proof First consider the short exact sequence 0! .I; 2/! ZG! Z=2! 0. Since
the order of G is even, the norm map is trivial on Z=2 and hence 1 2Z=2 is nontrivial
in yH0.GIZ=2/. In particular, yH0.GIZ=2/ Š Z=2. By dimension shifting, ie using
that the Tate homology of ZG vanishes, we get yH0.GIZ=2/Š yH�1.GI .I; 2//. The
preimage 12ZG maps toN 2ZG under the norm map and henceN 2 yH�1.GI .I; 2//
is the nontrivial element.

Now consider the short exact sequence

(4-1) 0! Z˝Z .I; 2/
N˝1
���! ZG˝Z .I; 2/

1˝1
��! .ZG=N/˝Z .I; 2/! 0;

where the middle term is free by [16, Lemma 4.3]. By dimension shifting,

yH0.GI .ZG=N/˝Z .I; 2//Š yH�1.GI .I; 2//Š Z=2:

Since N is a fixed point under the G–action, the element 1˝N 2 .ZG=N/˝Z .I; 2/

maps to 0 D N ˝ N under the norm map. Hence, it represents an element of
yH0.GI .ZG=N/˝Z .I; 2//. Under the boundary map induced from the sequence (4-1),

it is mapped to 1˝N 2 yH�1.GIZ˝Z .I; 2//, which is the nontrivial element by
the previous calculation. This implies that 1˝N represents the nontrivial element in
yH0.GI .ZG=N/˝Z .I; 2//.

Lemma 4.5 The map

yH0.� I .Z�=N/˝Z .I; 2//
Of
�! yH0.� ID/

is trivial , ie Of .1˝N/D 0.

Proof A lift of N 2 .I; 2/ in ker d2 is given by
�
N;�1

2
nN;N

�
. Hence,

f .1˝N/D .x� 1; 1� xy; 0/
�
N;�1

2
nN;N

�
:

It is straightforward to verify that there are three decompositions

�
N;�1

2
nN;N

�
DNxv1 D .1C xy/

n=2X
iD1

x2iv2 D .1Cy/

n=2X
iD1

x2iv3;
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where
v1 D

�
xCy � 1

2
n.x� 1/;�yNx �

1
2
n.1� xy/; xCy

�
;

v2 D .1Cy;�Nx; 1Cy/;

v3 D .1Cyx;�Nx; 1Cyx/

are all in ker.d2/. Note that we can also decompose the other factor in ker.d2/ as

.x� 1; 1� xy; 0/D .x� 1; 0; x� 1/C .0; 1� xy; 1� xy/C x.0; 0; y � 1/:

In the situation where Z� acts diagonally on a tensor product L˝ZL of Z�–modules,
in the tensored-down module Z˝Z� .L˝ZL/Š L˝Z� L the relation a˝ .�b/D
.x�a/˝ b holds, where � 2 Z� and a; b 2 L. The elements Nx , 1C xy and 1C y
are invariant under applying the involution , so we use this in D˝Z� D to move
them freely between the factors in the tensor products in the first equalities below. In
yH0.� ID/Š Tors Z˝Z� .�.ker.d2//=�.Z�=N//, the following tensors all vanish:

.x�1; 0; x�1/˝Nxv1 DNx.x�1; 0; x�1/˝v1 D 0;

.0; 1�xy; 1�xy/˝.1Cxy/
P
x2iv2 D .1Cxy/.0; 1�xy; 1�xy/˝

P
x2iv2 D 0;

x.0; 0; y�1/˝.1Cy/
X

x2iv3 D .0; 0; y�1/˝x
�1.1Cy/

X
x2iv3

D .0; 0; y�1/˝.1Cy/
X

x2iC1v3

D .1Cy/.0; 0; y�1/˝
X

x2iC1v3 D 0:

By adding together these expressions, we get .x� 1; 1� xy; 0/
�
N;�1

2
nN;N

�
D 0

in yH0.� ID/.

We will now compute yH0
�
� I�..I; 2//

�
. First note that there is an exact sequence

0! I ,! .I; 2/ "
�! 2Z! 0:

Lemma 4.6 There is an isomorphism of Z�–modules

' W .I; 2/! �..I; 2//=�.I /

given by 2 7! 2˝ 2 and g� 1 7! 2 .g� 1/ for g 2 � .

Proof A Z–basis of .I; 2/ is given by 2 and all g� 1 for g 2 � n f1g. By Lemma 1.2,
a Z–basis for �..I; 2// is thus given by˚

.g� 1/˝ .g� 1/; 2˝ 2; 2 .g� 1/; .g� 1/ .h� 1/ j g; h 2 � n f1g; g ¤ h
	
:
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Doing the same for I, we see that a Z–basis for �..I; 2//=�.I / is given by˚
Œ2˝ 2�; Œ2 .g� 1/� j g 2 � n f1g

	
:

Thus, the map ' is a bijection of Z–modules.

It remains to show that ' is Z�–linear. Let g 2 � be given. Then

.g�1/ �.2˝2/�2.2 .g�1//D g �.2˝2/�2˝2�.2˝2.g�1/C2.g�1/˝2/

D .2g˝2g/�2˝2�2˝2gC2˝2�2g˝2C2˝2

D .2g�2/˝.2g�2/

D 4.g�1/˝.g�1/ 2 �.I /

and so Œ.g� 1/.2˝ 2/�D Œ2.2 .g� 1//� 2 �..I; 2//=�.I /. Hence,

'.2g/D '.2.g� 1//C'.2/D Œ2.2 .g� 1//�C Œ2˝ 2�

D Œ.g� 1/.2˝ 2/�C Œ2˝ 2�D gŒ2˝ 2�D g'.2/:

Similarly, for g; h 2 � we have 2.g� 1/ g.h� 1/ 2 �.I / and hence

Œ2 g.h� 1/�D Œ2g g.h� 1/�D gŒ2 .h� 1/�D g'.h� 1/:

Thus,

'.g.h� 1//D '.gh� 1/�'.g� 1/D Œ2 gh� 1�� Œ2 g� 1�

D Œ2 g.h� 1/�D g'.h� 1/:

Lemma 4.7 For every finite group G there is an isomorphism of abelian groups

Gab
˝Z Z=2Š yH0.GI .I; 2//

sending g˝ 1 to g� 1.

Proof Consider the exact sequence

0! .I; 2/ ,! ZG
"
�! Z=2! 0:

The boundary map
yH1.GIZ=2/

@
�! yH0.GI .I; 2//

is an isomorphism since yH�.GIZG/D 0. Thus,

yH0.GI .I; 2//Š yH1.GIZ=2/ŠH1.GIZ=2/ŠG
ab
˝Z Z=2:
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We now compute the boundary map explicitly, adopting Convention 1.10 for the notation
in the diagram:

0 C1˝ZG .I; 2/ C1˝ZG ZG C1˝ZG Z=2 0

0 C0˝ZG .I; 2/ C0˝ZG ZG C0˝ZG Z=2 0

d1˝id d1˝id

id˝"

d1˝id

"

For g 2G let cg 2 C1 be a preimage of .g� 1/ 2 C0 Š ZG under d1. Then cg ˝ 1 2
C1˝ZG Z=2 represents g˝ 1 2Gab˝Z=2. Under the boundary map

Gab
˝Z Z=2Š yH1.GIZ=2/

@
�! yH0.GI .I; 2//;

g˝ 1 is sent to d1.cg/˝ 1D 1˝ .g� 1/ 2 C0˝ZG .I; 2/.

Lemma 4.8 There is an isomorphism of abelian groups

yH0
�
� I�..I; 2//

�
Š Z=2h˛xyi˚Z=2h˛yi;

where for g 2 � which satisfy g2 D 1 we introduce the notation

˛g D 2 .g� 1/C 2.g� 1/˝ .g� 1/ 2 yH0
�
� I�..I; 2//

�
:

Remark 4.9 We can also write this as ˛g D 2˝ .g� 1/� .g� 1/˝ 2. For g of order
2, g.g� 1/D�.g� 1/ and .g� 1/2 D�2.g� 1/ in Z� .

Proof We first show that the elements ˛g are torsion in Z˝Z� �..I; 2// and hence
represent elements in yH0

�
� I�..I; 2//

�
. Using that g2 D 1, in �..I; 2// we have

.1Cg/˛g D .1Cg/.2 .g� 1/C 2.g� 1/˝ .g� 1//

D 2 .g� 1/� 2g .g� 1/C 4.g� 1/˝ .g� 1/

D�2.g� 1/ .g� 1/C 4.g� 1/˝ .g� 1/

D�4.g� 1/˝ .g� 1/C 4.g� 1/˝ .g� 1/D 0:

Hence, in Z˝Z� �..I; 2// the elements ˛g are 2–torsion, since multiplication by 2
and by 1Cg are equivalent under the trivial action on the first factor.

Now consider the short exact sequence

0! �.I /! �..I; 2//
 
�! .I; 2/! 0;
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using the isomorphism �..I; 2//=�.I /Š .I; 2/ from Lemma 4.6. Under this isomor-
phism, the elements ˛g map to g� 1. Hence, by Lemma 4.7, the map

yH0
�
� I�..I; 2//

� y 
�! yH0.� I .I; 2//

is surjective. Here we use that the dihedral group � of order 2n for n even is
generated by xy and y, which are both 2–torsion and thus generate the abelianiza-
tion �ab Š Z=2 ˚ Z=2. By [6, Theorem 2.1], yH0.� I�.I // D 0 and so the map
y W yH0

�
� I�..I; 2//

�
! yH0.� I .I; 2// is an isomorphism by the long exact sequence

on Tate homology.

Recall that we defined the element � D .1C yx/
Pn=2
iD1 x

2i . We note the following
properties that we will use in our calculations: x� D x�1� D y� D �x D �x�1 D �y.
The following lemma concerns the images of the maps

yH0.� ID/
O|�
�! yH0

�
� I�..I; 2//

�
and

�.Z�=N/
i�
�! �.ker.d2//

q
�!D D �.ker.d2//=�.Z�=N/:

Lemma 4.10 There exist ˛1; ˛2 2 �.ker.d2// such that :

(i) The corresponding elements in the Tate group yH0.� ID/ map to O|�.˛1/ D
˛xy �˛y and O|�.˛2/D ˛y in yH0

�
� I�..I; 2//

�
.

(ii) N �˛1 D i�.2 � .Nx˝Nx// and N �˛2 D i�.n � .Nx˝Nx/C 2 � .� ˝ �//.

Proof First let

z̨y D .1Cy;�Nx; 2/ .0; 0; y � 1/C 2.0; 0; y � 1/˝2;

z̨xy D .1Cy;�Nx; 2/ .0; xy � 1; xy � 1/C 2.0; xy � 1; xy � 1/˝2

be in �.ker.d2//, so that the corresponding elements in yH0.� ID/ have

O|�.z̨y/D 2 .y � 1/C 2.y � 1/˝ .y � 1/D ˛y ;

O|�.z̨xy/D 2 .xy � 1/C 2.xy � 1/˝ .xy � 1/D ˛xy :

Let us further, in �.ker.d2//, define

˛1 D z̨xy � z̨y �ˇ1; where ˇ1 D .1� x; xy � 1; 0/ .0; xy � 1; xy � 1/;

˛2 D z̨y �ˇ2; where ˇ2 D .x� 1; 1� xy; 0/
�
�;�1

2
nNx; Nx

�
:
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Observe that, in D, we have ˇ1 D f .�1˝ .xy � 1//. It is easy to see that O|�.˛1/D
˛y �˛xy since j� ıf D 0 and O|�.˛2/D ˛y as O|�.ˇ2/D 0, which confirms part (i) of
the lemma.

For part (ii) we make the following computations in �.ker.d2//:

N �ˇ1DNx.1C xy/..1� x; xy � 1; 0/ .0; xy � 1; xy � 1//

DNx
�
..1� xy/.1Cy/; 2.xy � 1/; 0/ .0; xy � 1; xy � 1/

�
;

N � z̨xy DNx.1C xy/

�
�
.1Cy;�Nx; 2/ .0;�x

�1.xy�1/;xy�1/C2.0;�x�1.xy�1/;xy�1/˝2
�

DNx..1� xy/.1Cy/;�NxCyNx; 2.1� xy//

.0; xy � 1; xy � 1/C 2Nx.0; xy � 1; xy � 1/
˝2

DNˇ1CNx.0;�NxCyNx; 0/ .0; xy � 1; xy � 1/

DNˇ1C .0; .y � 1/Nx; 0/ .0; 0; .y � 1/Nx/C 2.0; .y � 1/Nx; 0/
˝2;

N �ˇ2D .1Cy/Nx
�
.x� 1; 1� xy; 0/

�
0;�1

2
nNx; Nx

��
C .1C x/�..x� 1; 1� xy; 0/ .�; 0; 0//

D .1Cy/
�
.0;Nx �yNx; 0/

�
0;�1

2
nNx; Nx

��
C .1C x/

�
.�.x� 1/; 0; 0/ .�; 0; 0/

�
D .0; .y � 1/Nx; 0/ .0; 0; .y � 1/Nx/�n.0; .y � 1/Nx; 0/

˝2

� 2.�.x� 1; 1�yx; 0//˝2;

N � z̨y DNx.1Cy/..1Cy;�Nx; 2/ .0; 0; y � 1/C 2.0; 0; y � 1/˝2/

DNx
�
.0;�.1�y/Nx; 2.1�y// .0; 0; y � 1/C 4.0; 0; y � 1/˝2

�
DNx

�
.0;�.1�y/Nx; 0/ .0; 0; y � 1/

�
D .0;Nx.y � 1/; 0/ .0; 0;Nx.y � 1//:

Hence,

N �˛1D 2.0;Nx.1�y/; 0/
˝2
D i�.2�.Nx˝Nx//;

N �˛2Dn.0;Nx.1�y/; 0/
˝2
C2.�.x�1; 1�xy; 0//˝2D i�.n�.Nx˝Nx/C2�.�˝�//;

since i�.Nx˝Nx/D .0;Nx.1�y/; 0/˝2 and i�.�˝�/D .�.x�1; 1�xy; 0//˝2.

Proof of Proposition 4.3 Let ˛1 and ˛2 be as in Lemma 4.10. We will view them
as elements of Z˝Z� D using the identification D D �.ker.d2//=�.Z�=N/. In
Lemma 4.10(ii), we showed that N �˛1, N �˛2 2 im.i�/ which implies that N �˛1 D
N �˛2 D 0 2D and so ˛1; ˛2 2 yH0.� ID/.
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By Lemma 4.5, the map

O|� W yH0.� ID/! yH0
�
� I�..I; 2//

�
is injective. By Lemma 4.8, yH0

�
� I�..I; 2//

�
is generated by ˛xy and ˛y . By

Lemma 4.10(i), O|�.˛1/ D ˛xy � ˛y and O|�.˛2/ D ˛y . Hence, O|� is bijective, so
yH0.� ID/Š Z=2˚Z=2 and is generated by ˛1 and ˛2.

Now, to compute the boundary map yH0.� ID/
@
�! yH�1.� I�.Z�=N//, consider the

map of short exact sequences

0 �.Z�=N/ �.ker.d2// D 0

0 �.Z�=N/ �.ker.d2// D 0

N

i�

N

q

N

i� q

Since N � ˛1 D i�.2 � .Nx ˝Nx// and N � ˛2 D i�.n � .Nx ˝Nx/C 2.� ˝ �//, the
boundary map @ sends ˛1 and ˛2 to 2 � .Nx ˝Nx/ and n � .Nx ˝Nx/C 2.� ˝ �/,
respectively.

In order to finish the proof of Theorem 4.1, we first need the following two lemmas.

Lemma 4.11 Let G be a finite group and let  W ZG! ZG=N be the quotient map.
For each g 2G of order 2, fix a set of coset representatives fx1; : : : ; xng for G=hgi and
let †G=hgi D

Pn
iD1 xi . Then there is an isomorphism of abelian groups� M

g¤1

g2D1

Z=2

�.
.1; : : : ; 1/Š im

�
 � W yH�1.GI�.ZG//! yH�1.GI�.ZG=N//

�
;

which , on the summand indexed by g, has the form 1 7!  �.†G=hgi � .1 g//.

Proof Let S be the set given by a representative of g and g�1 for each g 2G with
g2 ¤ 1. By [6, Lemma 2.2],

ZG˚
M
S

ZG˚
M
g¤1

g2D1

ZG=.1�g/ZG Š �.ZG/:

On the first summand the isomorphism is given by h 7! h˝ h and on a summand
corresponding to g 2 G with g ¤ 1 the isomorphism sends h to hg˝ hC h˝ hg.
On ZG, the norm map Z! .ZG/G is an isomorphism, on ZG=.1�g/ZG with g2D 1
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and g ¤ 1, the norm map Z! .ZG=.1� g/ZG/G is injective with cokernel Z=2.
The cokernel is generated by summing over some set of representatives of G=hgi. As
yH�1.GIZG/D 0 and yH�1.GIZG=.1�g/ZG/Š yH�1.hgiIZ/Š Z=2, this implies

that there is an isomorphismM
g¤1

g2D1

Z=2Š
M
g¤1

g2D1

yH�1.GIZG=.1�g/ZG/Š yH�1.GI�.ZG//:

It can be shown (see [9, page 529]) that, on the summand indexed by g, this map is
given by

1 7!†G=hgi 7!†G=hgi � .1 g/:

Now note that there is an exact sequence 0! Z! ZG ! ZG=N ! 0, which has
associated sequences, from Lemma 1.3,

0! �.Z/

Š

Z

! �.ZG/!D0! 0;

0! Z˝Z .ZG=N/Š

ZG=N

!D0! �.ZG=N/! 0:

We have that yH�1.GIZG=N/ Š yH�2.GIZ/ Š H 1.GIZ/ D 0 and so the two long
exact sequences for Tate homology can be combined at the yH�1.GID0/ term to give
an exact sequence

yH�1.GIZ/Š

Z=jGj

1 7!N˝N
������! yH�1.GI�.ZG//

 �
�! yH�1.GI�.ZG=N//:

By exactness,

im
�
 � W yH�1.GI�.ZG//! yH�1.GI�.ZG=N//

�
Š yH�1.GI�.ZG//=N ˝N:

Let fx1.g/; : : : ; xn.g/g be coset representatives for G=hgi, where g ¤ 1 and g2 D 1.
It can be shown (again, see [9, page 529]) that

N ˝N DN � 
 C
X
g¤1

g2D1

†G=hgi � .1 g/

for some 
 2 �.ZG=N/, and so N ˝ N maps to the diagonal element under the
isomorphism described above.
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In the case where � is the dihedral group of order 2n for n even, the nontrivial order 2
elements are

fyxi W 0� i < ng[ fxn=2g

and we can take †�=hyxi iDNx for all 0� i < n and †�=hxn=2iD .1Cy/
Pn=2�1
iD0 xi .

Lemma 4.12 The elements 2�.Nx˝Nx/, 2�.�˝�/2 yH�1.� I�.Z�=N// are linearly
independent.

Proof Consider the exact sequence Z ! Z� ! Z�=N and the associated exact
sequences �.Z/! �.Z�/!D0 and Z˝Z Z�=N !D0! �.Z�=N/. A preimage
of 2.Nx˝Nx/ 2D0 in �.Z�/ is given by

2.Nx˝Nx/�N Nx D�yNx Nx :

Note that on yNx ˝Nx 2 Z� ˝Z Z� the element x acts trivially and yNx ˝Nx is
mapped to Nx˝yNx under y. Hence, �yNx Nx is a fixed point in �.Z�/ and thus
represents an element of yH�1.� I�.Z�//.

Under the isomorphism from Lemma 4.11, the element

yNx Nx DNx yNx D
X
i;j

xj yxiCj D
X
i

Nx � .1 yxi /

maps to 1 in all summands indexed by yxi for some i and to 0 in all other summands.
In particular, 2.Nx˝Nx/ is nontrivial in yH�1.� I�.Z�=N//.

With our usual notation � D .1Cyx/
Pn=2
iD1 x

2i ,

2.� ˝ �/�N ˝N CN x� D � ˝ � C x� ˝ x�;

which is a fixed point in �.Z�/. We claim that under the isomorphism from Lemma 4.11
this element maps to 1 in all summands indexed by yx2iC1 for some i and to 0 in all
summands indexed by yx2i for some i . It also maps to 1 in the summand indexed
by xn=2 if and only if 1

2
n is even. Let Nx2 WD

Pn=2
iD1 x

2i , so that � D .1C yx/Nx2 .
Then

� ˝ � C x� ˝ x� D .1C x/.� ˝ �/

D .1C x/.Nx2 ˝Nx2 CyxNx2 ˝yxNx2 CNx2 yxNx2/:

We have

.1C x/.Nx2 yxNx2/DNx.1 yxNx2/D

n=2X
iD1

Nx.1 yx2iC1/:
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Furthermore,

.1C x/.Nx2 ˝Nx2 CyxNx2 ˝yxNx2/D .1C x/.1Cyx/.Nx2 ˝Nx2/

DN.1˝Nx2/D

n=2X
iD1

N.1˝ x2i /:

Note that N.1˝ x2i /DNxn�2i .1˝ x2i /DN.xn�2i ˝ 1/ and thus

N.1˝ x2i C 1˝ xn�2i /DN.1 x2i /:

Hence, if 1
2
n is odd,

n=2X
iD1

N.1˝ x2i /D

.nC2/=4X
iD0

N.1 x2i /;

which is trivial in yH�1.� I�.Z�=N//. If 1
2
n is even,

n=2X
iD1

N.1˝ x2i /DN.1˝ xn=2/C

n=4�1X
iD0

N.1 x2i /:

The last summand is again trivial in yH�1.� I�.Z�=N// and

N.1˝ xn=2/D .1Cy/

n=2�1X
iD0

xi .1 xn=2/;

which maps to the summand indexed by xn=2 under the isomorphism from Lemma 4.11.
This proves the claim. As 2.Nx˝Nx/ maps to 1 in all summands indexed by yxi for
all i , the two elements are linearly independent.

Proof of Theorem 4.1 We showed previously that there is an exact sequence

0! yH0
�
� I�.ker.d2//

� Oq
�! yH0.� ID/

@
�! yH�1.� I�.Z�=N//! � � � :

By Proposition 4.3, yH0.� ID/ is generated by ˛1 and ˛2 with @.˛1/D 2 � .Nx˝Nx/
and @.˛2/D n � .Nx˝Nx/C 2 � .� ˝ �/. As n is even, n � .Nx˝Nx/ is a multiple of
2 � .Nx˝Nx/. By Lemma 4.12, 2 � .Nx˝Nx/ and 2 � .�˝�/ are linearly independent
and so @ is injective. By exactness, this implies that yH0

�
� I�.ker.d2//

�
D 0.
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5 An explicit parametrization for�3.Z/

Since coker.d2/Š ker.d2/�, from dualizing Proposition 3.5 there is an exact sequence
of left Z�–modules

0! .I; 2/�
j�
�! coker.d2/ i

�

�! .Z�=N/�! 0I

recall that the original maps from the kernel sequence were

i D � .x� 1 1� xy 0/ and j D �

 
0
0
1

!
:

Dualizing preserves exactness of the sequence since all modules are Z�–lattices, as
discussed for example in [20, Remark 1.8]. Our aim will now be to simplify each of
the terms in the sequence above.

We first note that d2 as the dual of d2 is given by transposing the matrix for d2 and
applying the involution. That is,

d2 D �

�
Nx 1C xy 0

�.1Cy/ x�1� 1 1Cy

�
:

With the same procedure, the dual of Z�=N �. x�1 1�xy 0 /
�����������!

i
ker.d2/ is given by

i� D �

 
x�1� 1
1� xy
0

!
:

To reduce the number of inverses in the following computation, we substitute x�1 by x
and obtain

d2 D �

�
Nx 1Cyx 0

�.1Cy/ x� 1 1Cy

�
;

and the map coker.d2/! .Z�=N/� is given by

i� D �

 
x� 1
1�yx
0

!
:

This gives the exact sequence

(5-1) 0! .I; 2/�
�. 0 0 1 /
�����! coker.d2/

�

�
x�1
1�yx
0

�
������! .Z�=N/�! 0:

Lemma 5.1 There is an isomorphism of Z�–modules

' W .N; 2/! .I; 2/�

which sends 2 7! i.I;2/IZ� and N 7! p, where i.I;2/IZ� W .I; 2/ ,!Z� is inclusion and
p W .I; 2/! Z� is given by p.�/DN � 1

2
".�/.
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Remark 5.2 The definition of the map p makes sense since "..N; 2//� 2Z. By abuse
of notation, we could also write p D 1

2
N".

Proof First recall that Z�=N ŠI� which sends 1 to the inclusion map iI IZ� WI ,!Z� ,
and so I� as a Z�–module is generated by iI IZ� . By dualizing the exact sequence
0! I ,! .I; 2/ "

�! 2Z! 0, we get

0! Z 1 7!p
���! .I; 2/�

.�iI IZ� 7!�/ıiI I.I;2/
��������������! Z�=N ! 0;

where iI I.I;2/ W I ,! .I; 2/ is the inclusion map. Since .i.I;2/IZ� W .I; 2/ ,! Z�/ 7!

1 2 Z�=N under the second map and hence is a generator, this implies that .I; 2/� D
hi.I;2/IZ� ; pi. To see that ' is well-defined, note that N � i.I;2/IZ� D 2 �p. Hence, ' is
a surjective Z�–module homomorphism and so it remains to show injectivity.

To see this, note that the underlying abelian groups of .N; 2/ and .I; 2/ are both torsion-
free and have rank j�j since Q˝Z .N; 2/ D Q˝Z .I; 2/ D Q� . This implies that
the underlying abelian group of .I; 2/� is also torsion-free of rank j�j. Hence, ' is
bijective since every surjection ' W Zj�j! Zj�j is also a bijection.

Lemma 5.3 There is an isomorphism of Z�–modules .Z�=N/� Š�! I which sends
the map f 2 .Z�=N/� to f .1/ 2 I.

Proof To show this we can, for example, dualize the isomorphism Z�=N Š I� which
sends 1 to the inclusion map I ,! Z� .

We can now substitute .I; 2/� Š .N; 2/ and .Z�=N/� Š I in (5-1). For this we need
to find an element in coker.d2/ which becomes .0; 0;N / under multiplication by 2.
We compute

2.Nx; 0; 0/� .0; 0;N /D .1�yx/.Nx; 1Cyx; 0/�Nx.�.1Cy/; x� 1; 1Cy/

in Z�3. Since .Nx; 1Cyx; 0/ and .�.1Cy/; x�1; 1Cy/ are in the image of d2, this
implies .0; 0;N /D 2.Nx; 0; 0/ 2 coker.d2/. Thus, the following proposition follows
from applying Lemmas 5.1 and 5.3 to (5-1).

Proposition 5.4 With respect to the above identification of coker.d2/, there is an
exact sequence

0! .N; 2/

2 7!.0;0;1/
N 7!.Nx ;0;0/
���������!

i 0
coker.d2/

��

�
x�1
1�yx
0

�
��������!

j 0
I ! 0:

Furthermore , j 0.1; 0; 0/ D x � 1 and j 0.�y;�1; 0/ D y � 1, which gives lifts of the
Z�–module generators for I.
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6 Computing yH0

�
�I�.coker.d2//

�
At the end of this section on page 2947 we will prove the following:

Theorem 6.1 If � is a dihedral group of order 2n for n even , then

yH0
�
� I�.coker.d2//

�
D 0:

Let E D �.coker.d2//=�..N; 2//, so that there is an exact sequence

0! �..N; 2//
i 0��! �.coker.d2// q0

�!E! 0;

where q0 is the quotient map. By Lemma 1.3, there is an exact sequence

0! .N; 2/˝Z I
f 0
�!E

j 0��! �.I /! 0:

By Proposition 5.4, the map f 0 is defined by

f 0 W .N; 2/˝Z I !E D �.coker.d2//=�..N; 2//;

2˝ .x� 1/ 7! Œ.0; 0; 1/ .1; 0; 0/�;

N ˝ .x� 1/ 7! Œ.Nx; 0; 0/ .1; 0; 0/�;

2˝ .y � 1/ 7! Œ.0; 0; 1/ .�y;�1; 0/�;

N ˝ .y � 1/ 7! Œ.Nx; 0; 0/ .�y;�1; 0/�:

By the long exact sequence for Tate homology applied to the first exact sequence,

(6-1) � � � ! yH0
�
� I�..N; 2//

� yi 0�
�! yH0

�
� I�.coker.d2//

� yq0
�! yH0.� IE/! � � � :

We will now aim to show the following:

Proposition 6.2 yH0.� IE/D 0:

We begin by noting that yH0.� I�.I // D 0 by [6, Theorem 2.1]. By the long exact
sequence on Tate homology for the second exact sequence, we thus have an exact
sequence

� � � ! yH1.� I�.I //
@
�! yH0.� I .N; 2/˝Z I /

yf 0
�! yH0.� IE/! 0! � � � ;

where @ denotes the boundary map. Hence, in order to show Proposition 6.2, it will
suffice to prove that @ is surjective.
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Lemma 6.3 For every finite group G there is an isomorphism of abelian groups

Gab
˝Z Z=2! yH0.GI .N; 2/˝Z I /

given by g 7!N ˝ .g� 1/.

Proof Similarly to the proof of Lemma 4.4, we consider the following two exact
sequences: firstly, the sequence 0! I ! ZG "

�! Z! 0 tensored with .N; 2/˝Z�,

0! .N; 2/˝Z I ! .N; 2/˝Z ZG id˝"
��! .N; 2/˝Z Z! 0;

where the middle term is free by [16, Lemma 4.3]; and, secondly,

0! ZG
�2
�! .N; 2/ N 7!1���! Z=2! 0:

This is exact since N � ZG D N � Z and, by the second isomorphism theorem for
modules, 1

2
.N; 2/ �ZG ŠN �Z=.2 �ZG \N �Z/DN �Z=2N �ZŠ Z=2.

By applying dimension shifting twice, we get

yH0.GI .N; 2/˝Z I /Š yH1.GI .N; 2//Š yH1.GIZ=2/

and yH1.GIZ=2/ŠGab˝Z Z=2.

Under the isomorphism Gab˝Z Z=2Š yH1.GIZ=2/Š yH1.GI .N; 2//, and adopting
Convention 1.10, the element g maps to Œcg˝N�, where cg 2C1 is such that d1.cg/D
g� 1 2 C0. Under the boundary map yH1.GI .N; 2//! yH0.GI .N; 2/˝Z I / induced
by the first exact sequence above, the element maps to N ˝ .g� 1/, as claimed.

We can now show the following, which completes the proof of Proposition 6.2. Recall
that, for the presentation P D hx; y j xny�2; xyxy�1; y2i, we obtained a partial free
resolution C�.P/ using Fox derivatives. In what follows, we will write .C�; d�/ D
.C�.P/; d�/ for 0��� 2 and will adopt Convention 1.10 using this specific resolution.

Lemma 6.4 The boundary map @ W yH1.� I�.I //! yH0.� I .N; 2/˝Z I / is surjective.

Proof For each g 2 � of order 2, let cg 2 C1 be such that d1.cg/D 1�g. Note that
the map

d1˝ id�.I/ W Z�
2
˝Z� �.I /! Z� ˝Z� �.I /Š �.I /

sends cg ˝ ..1�g/˝2/ 7! .1�g/ � .1�g/˝2 D 0 and so we have defined an element


g D Œcg ˝ .1�g/
˝2� 2 yH1.� I�.I //:
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Now note that @.
g/ 2 yH0.� I .N; 2/˝Z I / is defined by a diagram chase on the
diagram

0 C1˝Z� ..N; 2/˝Z I / C1˝Z� E C1˝Z� �.I / 0

0 .N; 2/˝Z I E �.I / 0

d1˝id

id˝f 0

d1˝id

id˝j 0�

d1˝id

f 0 j 0�

where we use the identification C0˝Z�M ŠM in the bottom exact sequence.

It will be useful to note that, if wg 2 coker.d2/ is a lift of 1�g 2 I, then

.id˝j 0�/.cg˝Œwg˝wg �/D
g and .d1˝id/.cg˝Œwg˝wg �/D .1�g/�Œwg˝wg �:

We will now show that @.
yx/DN ˝ .yx�1/ and @.
y/DN ˝ .y�1/. This finishes
the proof since, by Lemma 6.3 and the fact that � is generated by yx and y, the
elements N ˝ .yx� 1/ and N ˝ .y � 1/ are generators for yH0.� I .N; 2/˝Z I /.

We will begin by computing @.
yx/. Since wyx D .0; 1; 0/ 2 coker.d2/ is a lift of
1�yx 2 I, it suffices to prove that f 0.N ˝ .yx�1//D .1�yx/ � Œ.0; 1; 0/˝ .0; 1; 0/�.
Firstly, since .0; yx; 0/2coker.d2/maps to yx�12I, we can take f 0.N˝.yx�1//D
Œ.Nx; 0; 0/ .0; yx; 0/�. Secondly, note that .Nx; 1Cyx; 0/D 0 2 coker.d2/ and so

.0; 1; 0/D�.Nx; 0; 0/� .0; yx; 0/ 2 coker.d2/:

By using this repeatedly inside E, we get

.1�yx/ � Œ.0; 1; 0/˝ .0; 1; 0/�D Œ.0; 1; 0/˝ .0; 1; 0/�� Œ.0; yx; 0/˝ .0; yx; 0/�

D�Œ.0; 1; 0/˝ .Nx; 0; 0/�C Œ.Nx; 0; 0/˝ .0; yx; 0/�

D Œ.Nx; 0; 0/
˝2�C Œ.Nx; 0; 0/ .0; yx; 0/�

D Œ.Nx; 0; 0/ .0; yx; 0/�;

where we have used for the last equality that Œ.Nx; 0; 0/˝2� D 0 2 E since i 0.N / D
.Nx; 0; 0/.

We will now compute @.
y/. Similarly, we can take wy D .y; 1; 0/ to be a lift of
y � 1 2 I, so that f 0.N ˝ .y � 1//D Œ.Nx; 0; 0/ .y; 1; 0/�. We now compute

.1�y/ � Œ.y; 1; 0/˝ .y; 1; 0/�

D Œ.y; 1; 0/˝ .y; 1; 0/�� Œ.1; y; 0/˝ .1; y; 0/�

D Œ.y; 1; 0/˝ .y; 1; 0/�C Œ.1; y; 0/˝ .y; 1; 0/�� Œ.1; y; 0/˝ .1Cy; 1Cy; 0/�
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D Œ.1Cy; 1Cy; 0/˝ .y; 1; 0/�� Œ.1; y; 0/˝ .1Cy; 1Cy; 0/�

D Œ.1Cy; 1Cy; 0/ .y; 1; 0/�� Œ.1Cy; 1Cy; 0/˝2�

D Œ.1Cy; 1Cy; 0/ .y; 1; 0/�;

where the last step uses that Œ.1Cy; 1Cy; 0/˝2�D 02E since j 0.1Cy; 1Cy; 0/D 0
and so .1Cy; 1Cy; 0/ 2 im.i 0/. Now note that

.yC1; yC1; 0/D .0; yCx; 1Cy/D .�yNx; 0; 1Cy/D .�Nx; 0; 1Cy/2 coker.d2/;

where the first uses that .�1�y; x� 1; 1Cy/ is trivial, the second uses that yC x D
y.1 C yx/ and that .Nx; 1 C yx; 0/ is trivial, and the last equality uses that 0 D
.1�yx/.Nx; 1Cyx; 0/D .Nx �yNx; 0; 0/. In particular, this shows that

.1�y/ � Œ.y; 1; 0/˝ .y; 1; 0/�D f 0.N ˝ .y � 1//C Œ.0; 0; 1Cy/ .y; 1; 0/�:

Now note that .id˝j 0�/
�
cy ˝ Œ.0; 0; 1/ .1; y; 0/�

�
D 0 and

.d1˝ id/
�
cy ˝ Œ.0; 0; 1/ .1; y; 0/�

�
D .1�y/ � Œ.0; 0; 1/ .1; y; 0/�

D�Œ.0; 0; 1Cy/ .y; 1; 0/�C Œ.0; 0; 1/ .1Cy; 1Cy; 0/�

D�Œ.0; 0; 1Cy/ .y; 1; 0/�

since j 0.0; 0; 1/D 0 and j 0.1Cy; 1Cy; 0/D 0 implies that .0; 0; 1/; .1Cy; 1Cy; 0/2
im.i 0/ and so Œ.0; 0; 1/ .1Cy; 1Cy; 0/�D 0 2E.

Hence, if we take z
y D cy˝ Œ.0; 0; 1/ .1; y; 0/�Ccy˝ Œ.y; 1; 0/˝ .y; 1; 0/� 2C1˝E

to be our lift of 
y 2 C1 ˝ �.I /, then .d1 ˝ id/.z
y/ D f 0.N ˝ .y � 1// and so
@.
y/DN ˝ .y � 1/, as required.

In order to prove Theorem 6.1, we will now calculate yH0
�
� I�..N; 2//

�
. Recall that

there is an exact sequence

0! Z N
�! .N; 2/ 27!1��! Z�=N ! 0:

Let F D �..N; 2//=�.Z/, so that

(6-2) 0! �.Z/

Š

Z

N�
�! �..N; 2//

q0
�! F ! 0;

where q0 is the quotient map.
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By Lemma 1.3 again, we get the exact sequence

0! Z˝Z .Z�=N/Š

Z�=N

f0
�! F ! �.Z�=N/! 0;

where f0 W Z�=N ! F sends 1 7! Œ2 N �.

Lemma 6.5 yH0.� IF / is generated by Œ2 N �.

Proof First note that Z˝Z� Z�=N Š Z=j�j Š Z=2n and so

yH0.� IZ�=N/D Tors.Z˝Z� Z�=N/Š Z=2n:

By [6, Theorem 2.1], yH0.� I�.Z�=N//D 0 and so the map

Of0 W Z=2nŠ Tors.Z˝Z� Z�=N/! Tors.Z˝Z� F /

is surjective. Hence, Of0.1/D 2 N is a generator of yH0.� IF /.

Lemma 6.6 yH0
�
� I�..N; 2//

�
D Tors

�
Z˝Z� �..N; 2//

�
is generated by

˛ D 1
2
n � .2 N /�N ˝N:

Proof Since Z ˝Z� �.Z/ Š Z is torsion-free, the long exact sequence on Tate
homology coming from the exact sequence (6-2) is

0! yH0
�
� I�..N; 2//

� Oq0
�! yH0.� IF /

@
�! yH�1.� I�.Z//! � � � :

By dimension shifting,

yH�1.� I�.Z//Š yH�1.� IZ/Š yH0.� IZ�=N/Š Z=2n

and, with respect to the identification yH�1.� I�.Z//D �.Z/�=im.N /, it is generated
by 1˝ 1. It follows from a straightforward diagram chase that @.Œ2 N �/D 4 � .1˝ 1/.
Since Œ2 N � 2 yH0.� IF / is a generator by Lemma 6.5, this implies that ker.@/ D˝
1
2
n � Œ2 N �

˛
.

Let ˛ D 1
2
n � .2 N /�N ˝N 2 Z˝Z� �..N; 2//. Then

4˛ D 2.N N/� 4.N ˝N/D 0

and so ˛ 2 Tors
�
Z˝Z� �..N; 2//

�
. Since Oq0.˛/ D 1

2
n � Œ2 N �, this implies that ˛

generates yH0
�
� I�..N; 2//

�
.
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Remark 6.7 We were not able to detect whether the generator ˛ is nonzero in
yH0
�
� I�..N; 2//

�
, and hence we do not know whether the module yH0

�
� I�..N; 2//

�
is trivial. Nevertheless, we can finish the proof of Theorem 6.1 by showing that the
generator ˛ maps to zero under the map yi 0� W yH0

�
� I�..N; 2//

�
! yH0

�
� I�.coker.d2//

�
in the long exact sequence (6-1).

Lemma 6.8 yi 0� D 0, ie yi 0�.˛/D 0 2 yH0
�
� I�.coker.d2//

�
.

Proof By Lemma 6.6, we know that yH0
�
� I�..N; 2//

�
is generated by ˛ and so

im. yi 0�/ is generated by

y̨ D yi 0�.˛/D
1
2
n � ..0; 0; 1/ .Nx; 0; 0//� .Nx; 0; 0/

˝2:

We will now show that y̨ is trivial. Consider the elements, in �.coker.d2//,

c1 D .Nx; 0; 0/
˝2
C .Nx; 0; 0/ .0; yx; 0/D .1�yx/ � .0; 1; 0/˝2

and

c2 D .�Nx; 0; 0/ .y; 1; 0/� .�Nx; 0; 1Cy/
˝2
C .0; 0; 1/ .�Nx; 0; 1Cy/

D .1�y/ � ..0; 0; 1/ .1; y; 0/C .y; 1; 0/˝2/;

where the second equalities follow from the calculations in Lemma 6.4. Hence, the
classes represented by c1; c2 2 yH0

�
� I�.coker.d2//

�
are trivial.

Since .Nx; 0; 0/D .yNx; 0; 0/ 2 coker.d2/, we have, in coker.d2/,

yx � c1C c2

D .�Nx; 0; 0/ .y; 0; 0/C .�Nx; 0; 1Cy/ .0; 0; 1/C .Nx; 0; 0/
˝2

� .�Nx; 0; 1Cy/
˝2

D .�Nx; 0; 0/ .y; 0; 0/C .Nx; 0; 0/ .0; 0; y/C .0; 0; 1Cy/ .0; 0; 1/

� .0; 0; 1Cy/˝2

D .�Nx; 0; 0/ .y; 0; 0/C .Nx; 0; 0/ .0; 0; y/� .0; 0; y/˝2C .0; 0; 1/˝2:

Let v1 D .�Nx; 0; 0/ .y; 0; 0/C .Nx; 0; 0/ .0; 0; y/. Since

c3 D�.0; 0; y/
˝2
C .0; 0; 1/˝2 D 0 2 yH0

�
� I�.coker.d2//

�
;

the above implies that v1 D yx � c1C c2� c3 D 0 2 yH0
�
� I�.coker.d2//

�
.

Let S WD
Pn=2�1
iD0 xi and let v2 D .1� xn=2/ � .S; 0; 0/˝2, so that

v2 D 0 2 yH0
�
� I�.coker.d2//

�
:
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Now,

v2 D .S; 0; 0/
˝2
� .Nx �S; 0; 0/

˝2
D .Nx; 0; 0/ .S; 0; 0/� .Nx; 0; 0/

˝2:

Using .Nx; 0; 0/D .yNx; 0; 0/ 2 coker.d2/ again,

Sy � v1C v2 D .�yNx; 0; 0/ .S; 0; 0/C .yNx; 0; 0/ .0; 0; S/C v2

D .�Nx; 0; 0/ .S; 0; 0/C .Nx; 0; 0/ .0; 0; S/C v2

D .Nx; 0; 0/ .0; 0; S/� .Nx; 0; 0/
˝2

D S.Nx; 0; 0/ .0; 0; 1/� .Nx; 0; 0/
˝2

D S.0; 0; 1/ .Nx; 0; 0/� .Nx; 0; 0/
˝2:

Finally, note that y̨ D Sy � v1C v2 D 0 2 yH0
�
� I�.coker.d2//

�
, as required.

Proof of Theorem 6.1 We showed previously that there was an exact sequence

yH0
�
� I�..N; 2//

� yi 0�
�! yH0

�
� I�.coker.d2//

� yq0
�! yH0.� IE/:

By Proposition 6.2, yH0.� IE/ D 0, and, by Lemma 6.8, yi 0� D 0. By exactness, this
implies that yH0

�
� I�.coker.d2//

�
D 0.
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