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Abstract

Let A = (a1, . . . , an) be a vector of integers with d =
∑n

i=1 ai. By partial
resolution of the classical Abel-Jacobi map, we construct a universal twisted
double ramification cycle DRop

g,A as an operational Chow class on the Picard
stack Picg,n,d of n-pointed genus g curves carrying a degree d line bundle.
The method of construction follows the log (and b-Chow) approach to the
standard double ramification cycle with canonical twists on the moduli space
of curves [39, 41, 58].

Our main result is a calculation of DRop
g,A on the Picard stack Picg,n,d via

an appropriate interpretation of Pixton’s formula in the tautological ring.
The basic new tool used in the proof is the theory of double ramification
cycles for target varieties [45]. The formula on the Picard stack is obtained
from [45] for target varieties CPn in the limit n → ∞. The result may be
viewed as a universal calculation in Abel-Jacobi theory.

As a consequence of the calculation of DRop
g,A on the Picard stack Picg,n,d,

we prove that the fundamental classes of the moduli spaces of twisted mero-
morphic differentials in Mg,n are exactly given by Pixton’s formula (as con-
jectured in [31, Appendix] and [74]). The comparison result of fundamental
classes proven in [42] plays a crucial role in our argument. We also prove the
set of relations in the tautological ring of the Picard stack Picg,n,d associated
to Pixton’s formula.
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0 Introduction

0.1 Double ramification cycles

Let A = (a1, . . . , an) be a vector of n integers satisfying

n∑

i=1

ai = 0 .

In the moduli space Mg,n of nonsingular curves of genus g with n marked points,
consider the substack defined by the following classical condition:

{
(C, p1, . . . , pn) ∈ Mg,n OC

( n∑

i=1

aipi

)
≃ OC

}
. (1)

From the point of view of relative Gromov-Witten theory, the most natural com-
pactification of the substack (1) is the space M

∼

g,A of stable maps to rubber : stable

maps to CP1 relative to 0 and∞ modulo the C∗-action on CP1. The rubber moduli

space carries a natural virtual fundamental class
[
M

∼

g,A

]vir
of (complex) dimension

2g − 3 + n. The pushforward via the canonical morphism

ǫ : M
∼

g,A → Mg,n

is the double ramification cycle

ǫ∗
[
M

∼

g,A

]vir
= DRg,A ∈ CH2g−3+n(Mg,n) .

Double ramification cycles have been studied intensively for the past two decades.
Examples of early results can be found in [17, 18, 21, 28, 36, 38, 57]. A complete
formula was conjectured by Pixton in 2014 and proven in [44]. For subsequent
study and applications, see [4, 16, 20, 29, 31, 39, 40, 41, 60, 64, 68, 74, 78, 79]. Es-
sential for our work is the formula for double ramification cycles for target varieties
in [45].

We refer the reader to [44, Section 0] and [66, Section 5] for introductions to the
subject. For a classical perspective from the point of view of Abel-Jacobi theory,
see [39].

0.2 Twisted double ramification cycles

We develop here a theory which extends the study of double ramification cycles
from the moduli space of stable curves Mg,n to the Picard stack of curves with
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line bundles Picg,n. An object of Picg,n over S is a flat family

π : C → S

of prestable1 n-pointed genus g curves together with a line bundle

L → C .

The Picard stack Picg,n is an algebraic (Artin) stack which is locally of finite type,
see Section 2.1 for a treatment of foundational issues.

Since the degree of a line bundle is constant in flat families, there is a disjoint
union

Picg,n =
⋃

d∈Z

Picg,n,d ,

where Picg,n,d is the Picard stack of curves with degree d line bundles. Let

A = (a1, . . . , an) ,

n∑

i=1

ai = d

be a vector of integers. The first result of the paper is the construction of a
universal twisted double ramification cycle in the operational Chow theory2 of
Picg,n,d,

DR
op
g,A ∈ CHgop(Picg,n,d) .

The geometric intuition behind the construction is simple. Let

π : C → S , p1, . . . , pn : S → C , L → C

be an object of Picg,n,d. The class DR
op
g,A should operate as the locus in the base

S heuristically determined by the condition

OC

( n∑

i=1

aipi

)
≃ L|C .

To make the above idea precise, we do not use the virtual class of the moduli
space of stable maps in Gromov-Witten theory, but rather an alternative approach
by partially resolving the classical Abel-Jacobi map. The method follows the path
of [39, 41] and may be viewed as a universal Abel-Jacobi construction over the

1A prestable n-pointed curve is a connected nodal curve with markings at distinct nonsingular
points. For the entire paper, we avoid the (g, n) = (1, 0) case because of non-affine stabilizers.

2All Chow theories in the paper will be taken with Q-coefficients.
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Picard stack. Log geometry based on the stack of tropical divisors constructed in
[58] plays a crucial role. Our construction is presented in Section 3.8.

The basic compatibility of our new operational class

DR
op
g,A ∈ CHgop(Picg,n,d)

with the standard double ramification cycle is as follows. Let

A = (a1, . . . , an) ,
n∑

i=1

ai = 0 ,

be given. The universal data

π : Cg,n → Mg,n , O → Cg,n (2)

determine a map ϕO : Mg,n → Picg,n,0. The action of DRop
g,A on the fundamental

class of Mg,n corresponding to the family (2) then equals the previously defined
double ramification cycle

DR
op
g,A(ϕO)

(
[Mg,n]

)
= DRg,A ∈ CH2g−3+n(Mg,n) .

More generally, for a vector A = (a1, . . . , an) of integers satisfying

n∑

i=1

ai = k(2g − 2) ,

canonically twisted double ramification cycles,

DRg,A,ωk ∈ CH2g−3+n(Mg,n) ,

related to the classical loci
{
(C, p1, . . . , pn) ∈ Mg,n OC

( n∑

i=1

aipi

)
≃ ωkC

}
,

have been constructed in [37] for k = 1 and in [39, 40, 58] for all k ≥ 1. The
universal data

π : Cg,n → Mg,n , ωkπ → Cg,n (3)

determine a map ϕωk
π
: Mg,n → Picg,n,k(2g−2). Here, ωπ is the relative dualizing

sheaf of the morphism π.

6



The action of DRop
g,A on the fundamental class of Mg,n corresponding to the

family (3) is compatible with the constructions of [37, 39, 40, 58],

DR
op
g,A(ϕωk

π
)
(
[Mg,n]

)
= DRg,A,ωk ∈ CH2g−3+n(Mg,n)

for all k ≥ 1.

The above compatibilities of DRop
g,A with the standard and canonically twisted

double ramification cycles are proven in Section 3.7.

Theorem 1. Let g ≥ 0 and d ∈ Z. Let A = (a1, . . . , an) be a vector of integers
satisfying

n∑

i=1

ai = d .

Logarithmic compactification of the Abel-Jacobi map yields a universal twisted dou-
ble ramification cycle

DR
op
g,A ∈ CHgop(Picg,n,d)

which is compatible with the standard double ramification cycle

DRg,A,ωk ∈ CH2g−3+n(Mg,n)

in case d = k(2g − 2) for k ≥ 0.

0.3 Pixton’s formula

0.3.1 Prestable graphs

We define the set Gg,n of prestable graphs as follows. A prestable graph Γ ∈ Gg,n
consists of the data

Γ = (V , H , L , g : V → Z≥0 , v : H → V , ι : H → H)

satisfying the properties:

(i) V is a vertex set with a genus function g : V → Z≥0,

(ii) H is a half-edge set equipped with a vertex assignment v : H → V and an
involution ι,

(iii) E, the edge set, is defined by the 2-cycles of ι in H (self-edges at vertices are
permitted),

7



(iv) L, the set of legs, is defined by the fixed points of ι and is placed in bijective
correspondence with a set of n markings,

(v) the pair (V,E) defines a connected graph satisfying the genus condition

∑

v∈V

g(v) + h1(Γ) = g .

To emphasize Γ, the notation V(Γ), H(Γ), L(Γ), and E(Γ) will also be used for the
vertex, half-edges, legs, and edges of Γ.

An isomorphism between Γ, Γ′ ∈ Gg,n consists of bijections V → V′ and H → H′

respecting the structures L, g, v, and ι. Let Aut(Γ) denote the automorphism
group of Γ.

While the set of isomorphism classes of prestable graphs is infinite, the set of
isomorphism classes of prestable graphs with prescribed bounds on the number of
edges is finite.

Let Mg,n be the algebraic (Artin) stack of prestable curves of genus g with n
marked points. A prestable graph Γ determines an algebraic stack MΓ of curves
with degenerations forced by the graph,

MΓ =
∏

v∈V

Mg(v),n(v)

together with a canonical3 map

jΓ : MΓ → Mg,n .

Since Mg,n is smooth and the morphism jΓ is proper, representable, and lci, we
obtain an operational Chow class on the algebraic stack of curves,

jΓ∗[MΓ] ∈ CH|E(Γ)|
op (Mg,n) .

Via the morphism of algebraic stacks,

ǫ : Picg,n,d → Mg,n ,

jΓ∗[MΓ] also defines an operational Chow class on the Picard stack,

ǫ∗jΓ∗[MΓ] ∈ CH|E(Γ)|
op (Picg,n,d) .

3To define the map, we choose an ordering on the half-edges at each vertex.
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0.3.2 Prestable graphs with degrees

We will require a refinement of the prestable graphs of Section 0.3.1 which includes
degrees of line bundles.

We define the set Gg,n,d of prestable graphs of degree d as follows:

Γδ = (Γ, δ) ∈ Gg,n,d

consists of the data

• a prestable graph Γ ∈ Gg,n,

• a function δ : V → Z satisfying the degree condition

∑

v∈V

δ(v) = d .

The function δ is often called the multidegree.

An automorphism of Γδ ∈ Gg,n,d consists of an automorphism of Γ leaving δ
invariant. Let Aut(Γδ) denote the automorphism group of Γδ.

For Γδ ∈ Gg,n,k, let MΓ be the algebraic stack of curves defined in Section 0.3.1
with respect to the underlying prestable graph Γ. Let PicΓδ

be the Picard stack,

ǫ : PicΓδ
→ MΓ ,

parameterizing curves with degenerations forced by Γ and with line bundles which
have degree δ(v) restriction to the components corresponding to the vertex v ∈ V.
We have a canonical map

jΓδ
: PicΓδ

→ Picg,n,d .

Since Picg,n,d is smooth and the morphism jΓδ
is proper, representable, and lci, we

obtain an operational Chow class,

jΓδ∗[PicΓδ
] ∈ CH|E(Γ)|

op (Picg,n,d) .

As operational Chow classes, the following formula holds:

ǫ∗jΓ∗[MΓ] =
∑

δ

jΓδ∗[PicΓδ
] ∈ CH|E(Γ)|

op (Picg,n,d) , (4)

9



where the sum4 is over all functions δ : V → Z satisfying the degree condition.
Equivalently, we may write (4) as

1

|Aut(Γ)|
ǫ∗jΓ∗[MΓ] =

∑

Γδ∈Gg,n,d

1

|Aut(Γδ)|
jΓδ∗[PicΓδ

] ∈ CH|E(Γ)|
op (Picg,n,d) ,

where the sum on the right side is now over all isomorphism classes of prestable
graphs of degree d with underlying prestable graph Γ.

0.3.3 Tautological ψ, ξ, and η classes

The universal curve
π : Cg,n → Picg,n

carries two natural line bundles: the relative dualizing sheaf ωπ and the universal
line bundle

L → Cg,n .

Let pi be the ith section of the universal curve, let

Si ⊂ Cg,n

be the corresponding divisor, and let

ωlog = ωπ

( n∑

i=1

Si

)

be the relative log-canonical line bundle with first Chern class c1(ωlog). Let

ξ = c1(L)

be the first Chern class of L.

Definition 2. The following operational classes on Picg,n are obtained from the
universal structures:

• ψi = c1(p
∗
iωπ) ∈ CH1

op(Picg,n) ,

• ξi = c1(p
∗
iL) ∈ CH1

op(Picg,n) ,

• ηa,b = π∗
(
c1(ωlog)

aξb
)
∈ CHa+b−1

op (Picg,n) .

4The sum is infinite, but only finitely many terms are nonzero in any operation.
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For simplicity in the formulas, we will use the notation

η = η0,2 = π∗(ξ
2) .

The standard κ classes are defined by the π pushforwards of powers of c1(ωlog),

ηa,0 = κa−1 .

Definition 3. A decorated prestable graph [Γδ, γ] of degree d is a prestable graph
Γδ ∈ Gg,n,d of degree d together with the following decoration data γ:

• each leg i ∈ L is decorated with a monomial ψai ξ
b
i ,

• each half-edge h ∈ H \ L is decorated with a monomial ψah,

• each edge e ∈ E is decorated with a monomial ξae ,

• each vertex in V is decorated with a monomial in the variables {ηa,b}a+b≥2.

In all four cases, the monomial may be be trivial.

Let DGg,n,d be the set of decorated prestable graphs of degree d. To each
decorated graph of degree d,

[Γδ, γ] ∈ DGg,n,d ,

we assign the operational class

jΓδ∗[γ] ∈ CH∗
op(Picg,n,d)

obtained via the proper representable morphism

jΓδ
: PicΓδ

→ Picg,n,d

and the action of the decorations.

The action of decorations is described as follows. Given Γδ ∈ Gg,n,k, the stack
PicΓδ

admits a morphism5

PicΓδ
→

∏

v∈V(Γδ)

Picg(v),n(v),δ(v)

which sends a line bundle L on a prestable curve C to its restrictions on the various
components,

L|Cv , v ∈ V(Γδ) .

For v ∈ V(Γδ), we define the operational class η(v) on PicΓδ
as the pullback of the

operational class η on the factor Picg(v),n(v),δ(v) above. The operational classes ψ
at the markings and ξ at the half-edges are defined similarly.

5The fibers of the map are torsors under the group G
h1(Γ)
m .
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Definition 4. The tautological classes in CH∗
op(Picg,n,d) consist of the Q-linear

span of the operational classes associated to all [Γδ, γ] ∈ DGg,n,d.

By standard analysis [33], the tautological classes have a natural ring structure.
Our formula for DRop

g,A will be a sum of operational classes determined by decorated
prestable graphs of degree d =

∑n
i=1 ai (and hence will be tautological).

0.3.4 Weightings mod r

Let Γδ ∈ Gg,n,d be a prestable graph of degree d, and let r be a positive integer.

Definition 5. A weighting mod r of Γδ is a function on the set of half-edges,

w : H(Γδ) → {0, 1, . . . , r − 1} ,

which satisfies the following three properties:

(i) ∀i ∈ L(Γδ), corresponding to the marking i ∈ {1, . . . , n},

w(i) = ai mod r ,

(ii) ∀e ∈ E(Γδ), corresponding to two half-edges h, h′ ∈ H(Γδ),

w(h) + w(h′) = 0 mod r ,

(iii) ∀v ∈ V(Γδ), ∑

v(h)=v

w(h) = δ(v) mod r ,

where the sum is taken over all n(v) half-edges incident to v.

We denote by WΓδ,r the finite set of all possible weightings mod r of Γδ. The
set WΓδ,r has cardinality r

h1(Γδ). We view r as a regularization parameter.
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0.3.5 Calculation of the twisted double ramification cycle

We denote by P
c,r
g,A,d ∈ CHcop(Picg,n,d) the codimension6 c component of the tauto-

logical operational class

∑

Γδ∈Gg,n,d

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

[
n∏

i=1

exp

(
1

2
a2iψi + aiξi

) ∏

v∈V(Γδ)

exp

(
−
1

2
η(v)

)

∏

e=(h,h′)∈E(Γδ)

1− exp
(
−w(h)w(h′)

2
(ψh + ψh′)

)

ψh + ψh′

]
.

Several remarks about the formula are required:

(i) The sum is over all isomorphism classes of prestable graphs of degree d in
the set Gg,n,d. Only finitely many underlying prestable graphs Γ ∈ Gg,n
can contribute in fixed codimension c. However, for each such prestable
graph, the above formula has infinitely many summands corresponding to
the infinitely many functions

δ : V → Z

which satisfy the degree condition. The operational Chow class Pc,rg,A,d is nev-
ertheless well-defined since only finitely many summands have nonvanishing
operation on any given family of curves carrying a degree d line bundle over
a base S of finite type.

(ii) Once the prestable graph Γδ is chosen, we sum over all rh
1(Γδ) different weight-

ings w ∈ WΓδ,r.

(iii) Inside the pushforward in the above formula, the first product

n∏

i=1

exp

(
1

2
a2iψhi + aiξhi

)

is over h ∈ L(Γ) via the correspondence of legs and markings.

(iv) The class η(v) is the η0,2 class of Definition 2 associated to the vertex.

6Codimension here is usually called degree. But since we already have line bundle degrees,
we use the term codimension for clarity.
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(v) The third product is over all e ∈ E(Γδ). The factor

1− exp
(
−w(h)w(h′)

2
(ψh + ψh′)

)

ψh + ψh′

is well-defined since

• the denominator formally divides the numerator,

• the factor is symmetric in h and h′.

No edge orientation is necessary.

The following fundamental polynomiality property of Pc,rg,A,d is parallel to Pix-
ton’s polynomiality in [44, Appendix] and is a consequence of [44, Proposition
3′′].

Proposition 6. For fixed g, A, d, and c and a decorated graph [Γδ, γ] of degree d,
the coefficient of jΓδ∗[γ] in the tautological class

P
c,r
g,A,d ∈ CHcop(Picg,n,d)

is polynomial in r (for all sufficiently large r).

We denote by Pcg,A,d the value at r = 0 of the polynomial associated to P
c,r
g,A,d

by Proposition 6. In other words, Pcg,A,d is the constant term of the associated
polynomial in r.

The main result of the paper is a formula for the universal twisted double
ramification cycle in operational Chow.7

Theorem 7. Let g ≥ 0 and d ∈ Z. Let A = (a1, . . . , an) be a vector of integers
with

∑n
i=1 ai = d . The universal twisted double ramification cycle is calculated by

Pixton’s formula:
DR

op
g,A = P

g
g,A,d ∈ CHgop(Picg,n,d) .

Theorem 7 is the most fundamental formulation of the relationship between
Abel-Jacobi theory and Pixton’s formula that we know. Certainly, Theorem 7 im-
plies the double ramification cycle and X-valued double ramification cycle results
of [44, 45] . But since we will use [45] in the proof of Theorem 7, we provide no
new approach to these older results. However, the additional depth of Theorem 7
immediately allows new applications.

7Our handling of the prefactor 2−g in [44, Theorem 1] differs here. The factors of 2 are now
placed in the definition of Pc,r

g,A,d as in [45]
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0.4 Vanishing

From his original double ramification cycle formula, Pixton conjectured an asso-
ciated vanishing property in the tautological ring of the moduli space of curves
which was proven by Clader and Janda [21]. The parallel vanishing statement in
the tautological ring of the moduli space of stable maps to X was proven in [4].
The most general vanishing statement is the following result.

Theorem 8. Let g ≥ 0 and d ∈ Z. Let A = (a1, . . . , an) be a vector of integers
with

∑n
i=1 ai = d. Pixton’s vanishing holds in operational Chow:

Pcg,A,d = 0 ∈ CHcop(Picg,n,d) for all c > g .

Theorem 8 may be viewed as providing relations among tautological classes
in the operational Chow ring of the Picard stack – a new direction of study with
many open questions.8 While Theorem 8 implies the vanishings of [4, 21], we will
use these results in our proof.

0.5 Twisted holomorphic and meromorphic differentials

0.5.1 Fundamental classes

Let A = (a1, . . . , an) be a vector of zero and pole multiplicities satisfying

n∑

i=1

ai = 2g − 2 .

Let Hg(A) ⊂ Mg,n be the quasi-projective locus of pointed curves (C, p1, . . . , pn)
satisfying the condition

OC

( n∑

i=1

aipi

)
≃ ωC .

In other words, Hg(A) is the locus of meromorphic differentials9 with zero and
pole multiplicities prescribed by A. In [31], a compact moduli space of twisted
canonical divisors

H̃g(A) ⊂ Mg,n

is constructed which contains Hg(A) as an open set.

8See [69, 81] for tautological relations on the Picard variety over the moduli space of smooth
curves.

9If all the parts of A are non-negative, then Hg(A) is the locus of holomorphic differentials.
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In the strictly meromorphic case, where A contains at least one strictly negative
part, H̃g(A) is of pure codimension g in Mg,n by [31, Theorem 3]. A weighted

fundamental cycle of H̃g(A),

Hg,A ∈ CH2g−3+n(Mg,n) , (5)

is constructed in [31, Appendix A] with explicit nontrivial weights on the irre-
ducible components. In the strictly meromorphic case, Hg(A) ⊂ Mg,n is also of
pure codimension g. The closure

Hg(A) ⊂ Mg,n

contributes to the fundamental class Hg,A with multiplicity 1, but there are addi-
tional boundary contributions, see [31, Appendix A].

The universal family over the moduli space of stable curves together with the
relative dualizing sheaf,

π : Cg,n → Mg,n , ωπ → Cg,n , (6)

determine an object of Picg,n,2g−2. By [42] and the compatibility of Theorem 1, the

action of DRop
g,A on the fundamental class of Mg,n equals the weighted fundamental

class of H̃g(A),

DR
op
g,A(ϕω)

(
[Mg,n]

)
= Hg,A ∈ CH2g−3+n(Mg,n) .

We can now apply Theorem 7 to prove the following result.

Theorem 9. In the strictly meromorphic case,

Hg,A = P
g
g,A,2g−2[Mg,n]

for the universal family

π : Cg,n → Mg,n , ωπ → Cg,n .

Theorem 9 is exactly equivalent to Conjecture A of [31, Appendix A]. Since

both the moduli space H̃g(A) and the weighted fundamental cycle Hg,A have ex-
plicit geometric definitions, the result provides a geometric representative of Pix-
ton’s cycle class in terms of twisted differentials. Theorem 9 is proven in Section
8.1 where the parallel conjectures [74] for higher differentials are also proven (by
parallel arguments).
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0.5.2 Closures

Let A = (a1, . . . , an) be a vector of integers satisfying

n∑

i=1

ai = 2g − 2 .

A careful investigation of the closure

Hg(A) ⊂ Hg(A) ⊂ Mg,n

is carried out in [8] in both the holomorphic and meromorphic cases. By a simple
procedure presented in [31, Appendix], Theorem 9 determines the cycle classes of
the closures

[Hg(A)] ∈ CH∗(Mg,n) .

for A in both the holomorphic and meromorphic cases.

A similar procedure determines the corresponding classes for k-differentials, see
[74, Section 3.4] for an explanation. In particular, our results imply that the cycle
classes of the closures are tautological10 for all k (as was previously known only
for k = 1 due to [72]).

In the case of holomorphic differentials, another approach to the class of the
closure Hg(A) ⊂ Mg,n is provided by Conjecture A.1 of the Appendix of [67]
via a limit of Witten’s r-spin class. A significant first step in the proof of [67,
Conjecture A.1] by Chen, Janda, Ruan, and Sauvaget can be found in [19]. Further
progress requires a virtual localization analysis for moduli spaces of stable log
maps. An approach to Theorem 9 using log stable maps, virtual localization in
the log context, and the strategy of [44] also appears possible (once the required
moduli spaces and localization formulas are established).

0.6 Invariance properties

The universal twisted double ramification cycle has several basic invariance prop-
erties which play an important role in our study.

Recall that an object of Picg,n,d over S is a flat family of prestable n-pointed
genus g curves together with a line bundle of relative degree d,

π : C → S , p1, . . . , pn : S → C , L → C . (7)

10The precise statement is given in Corollary 64 of Section 8.2.
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Let DRop
g,A,L ∈ CHgop(S) be the twisted double ramification cycle associated to the

above family (7) and the vector

A = (a1, . . . , an) , d =

n∑

i=1

ai .

Invariance I: Dualizing.

A new object of Picg,n,−d over S is obtained from (7) by dualizing L:

π : C → S , p1, . . . , pn : S → C , L∗ → C . (8)

Let DR
op
g,−A,L∗ ∈ CHgop(S) be the twisted double ramification cycle associated to

the new family (8) and the vector −A = (−a1, . . . ,−an). We have the invariance

DR
op
g,−A,L∗ = ǫ∗DRop

g,A,L ,

where ǫ : Picg,n,−d → Picg,n,d is the natural map obtained via dualizing the line
bundle.

Invariance II: Unweighted markings.

Assume we have an additional section pn+1 : S → C of π which yields an object
of Picg,n+1,d,

π : C → S , p1, . . . , pn, pn+1 : S → C , L → C . (9)

Let A0 ∈ Zn+1 be the vector obtained by appending 0 (as the last coefficient) to
A. Let DRop

g,A0,L
∈ CHgop(S) be the twisted double ramification cycle associated to

the new family (9) and the vector A0. We have the invariance

DR
op
g,A0,L

= F ∗DR
op
g,A,L ,

where F : Picg,n+1,d → Picg,n,d is the map forgetting the last marking.

Invariance III: Weight translation.

Let B = (b1, . . . , bn) ∈ Zn satisfy
∑n

i=1 bi = e, then the family

π : C → S , p1, . . . , pn : S → C , L
( n∑

i=1

bipi
)
→ C . (10)
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defines an object of Picg,n,d+e. Let DR
op

g,A+B,L(
∑

i bipi)
∈ CHgop(S) be the twisted

double ramification cycle associated to the new family (10) and the vector A+B.
We have the invariance

DR
op

g,A+B,L(
∑

i bipi)
= DR

op
g,A,L .

Invariance IV: Twisting by pullback.

Let B → S be any line bundle on the base. By tensoring (7) with π∗B, we
obtain a new object of Picg,n,d over S:

π : C → S , p1, . . . , pn : S → C , L ⊗ π∗B → C . (11)

Let DRop
g,A,L⊗π∗B ∈ CHgop(S) be the twisted double ramification cycle associated to

the new family (11) and the vector A. We have the invariance

DR
op
g,A,L⊗π∗B = DR

op
g,A,L .

Invariance V: Vertical twisting.

Consider a partition of the genus, marking, and degree data,

g1 + g2 = g , N1 ⊔N2 = {1, . . . , n} , d1 + d2 = d , (12)

which is not symmetric.11 Such a partition defines a divisor

∆1 ∈ CH1(Cg,n,d)

in the universal curve over Picg,n,d by twisting by the (g1, N1, d1)-component of a
curve with a separating node with separating data (12).

By tensoring (7) with OC(∆1), we obtain a new object of Picg,n,d over S:

π : C → S , p1, . . . , pn : S → C , L(∆1) → C . (13)

Let DRop

g,A,L(∆1)
∈ CHgop(S) be the twisted double ramification cycle associated to

the new family (13) and the vector A. We have the invariance

DR
op

g,A,L(∆1)
= DR

op
g,A,L . (14)

11We require (g1, N1, d1) 6= (g2, N2, d2) so that the two sides of a separating node with sepa-
rating data (12) can be distinguished.
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For symmetric separating data (12), equality (14) holds with ∆1 ⊂ Cg,n,d de-
fined as the full preimage of the locus ∆ ⊂ Picg,n,d of curves with a separating
node (12). Then, equality (14) follows from Invariance IV with B = O(∆).

Invariance VI: Partial stabilization.

Consider a second family of prestable n-pointed genus g curves over S,

π′ : C′ → S , p′1, . . . , p
′
n : S → C′ ,

together with a birational S-morphism

f : C′ → C , f ◦ p′i = pi .

A line bundle of relative degree d is defined on C′ by

f ∗L → C′ .

We require the following property to hold: if the section p′i meets the exceptional
locus of f , then ai = 0.

Let DRop
g,A,f∗L ∈ CHgop(S) be the twisted double ramification cycle associated to

the new family

π′ : C′ → S , p′1, . . . , p
′
n : S → C′ , f ∗L → C′ (15)

and the vector A. We have the invariance

DR
op
g,A,f∗L = DR

op
g,A,L .

Theorem 7 provides two paths to viewing the above invariance properties. The
invariances can be seen either from formal properties of the geometric construction
of the universal twisted double ramification cycle or from formal symmetries of
Pixton’s formula. In fact, all invariances hold not only for the codimension g part
P
g
g,A,d which computes the double ramification cycle, but for the full mixed-degree

class P•
g,A,d.

For example, Invariance VI on the formula side says that for the maps

ϕL, ϕf∗L : S → Picg,n,d

obtained from the families (7) and (15), we have

ϕ∗
f∗LP

g
g,A,d = ϕ∗

LP
g
g,A,d ∈ CHgop(S)
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for Pgg,A,d ∈ CHgop(Picg,n,d).

Proofs of all of the invariances will be presented in Section 7. The above
invariances (together with geometric definitions when transversality to the Abel-
Jacobi map holds) do not characterize12 DRop.

0.7 Universal formula in degree 0

The most efficient statement of the double ramification cycle formula on the Picard
stack of curves occurs in the degree d = 0 case with no markings. In order to
avoid13 the unpointed genus 1 case, let g 6= 1.

The specialization of Theorem 7 to d = 0 calculates DRop

g,∅ as the value at r = 0
of the degree g part of

exp

(
−
1

2
η

) ∑

Γδ∈Gg,0,0

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

[
∏

e=(h,h′)∈E(Γδ)

1− exp
(
−w(h)w(h′)

2
(ψh + ψh′)

)

ψh + ψh′

]

as an operational Chow class on

Picg = Picg,0,0 .

The full statement of Theorem 7 can be recovered from the above d = 0 special-
ization via pullback under the map

Picg,n,d → Picg , (C, p1, . . . , pn,L) 7→

(
C,L

(
−

n∑

i=1

aipi

))
.

Indeed, the above map is the composition of the morphism

τ−A : Picg,n,d → Picg,n,0, (C, p1, . . . , pn,L) 7→

(
C, p1, . . . , pn,L

(
−

n∑

i=1

aipi

))

with the morphism
F : Picg,n,0 → Picg

forgetting the markings p1, . . . , pn.

• For the DR
op
g,A side of Theorem 7, Invariance II implies

F ∗DR
op

g,∅ = DR
op
g,0

12Further geometric properties are required, see Section 1.6 of [43] for a discussion.
13For g = 1, a parallel formula holds for n = 1 and A = (0).
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for the zero vector 0 ∈ Zn. Furthermore, Invariance III implies

τ ∗−ADR
op
g,0 = DR

op
g,A .

• For the P
g
g,A,d side of Theorem 7, the corresponding invariance properties of

Pixton’s formula (discussed in Section 7) yield the parallel transformation

τ ∗−AF
∗P

g
g,∅,0 = P

g
g,A,d .

Therefore, the equality in Theorem 7 for general A and d follows from the spe-
cialization to A = ∅ and d = 0. For certain steps in our proof of Theorem 7, the
A = ∅ and d = 0 geometry is advantageous and is used.

By restricting to suitable open subsets of Picg, we can simplify the d = 0
formula even further. Let

Picctg ⊂ Picg

be the locus where the curve C is of compact type. We obtain

DR
op

g,∅|Picctg
=
θg

g!
, for θ = −

1

2

(
η +

∑

∆

d2∆[∆]

)
, (16)

where the sum is over the boundary divisors ∆ ⊂ Picg on which generically the
curve splits into two components carrying line bundles of degrees d∆ and −d∆.
The class θ here may be viewed as a universal theta divisor on Picctg .

Formula (16) was first written on the moduli space of stable curves of compact
type in [36, 38]. The operational Chow class DR

op

g,∅ on Picg, however, is not the
power of a divisor.
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1 Notation, conventions, and the plan

1.1 Ground field

In the Introduction, the ground field was the complex numbers C. However, for the
remainder of the paper, we will work more generally over a field K of characteristic
zero. We will make essential use of the results of [45] which are stated over C, but
also hold over Q by the following standard argument:

(i) Both the DR cycle (via the b-Chow approach [39]) and Pixton’s class are
defined over Q.

(ii) Rational equivalence of cycles uses finitely many subschemes and rational
functions and hence descends to a finitely generated Q-subalgebra of C. A
non-empty scheme of finite type over Q has points over some finite extension,
hence the rational equivalence descends to a finite extension of Q.

(iii) The rational equivalence descends (via a Galois argument) further to Q since
we work in Chow with rational coefficients.

By similar arguments, our results are in fact true over Z[1/N ] for a positive integer
N depending on the ramification data. Understanding what happens at small
primes (or integral Chow groups) is an interesting question.

1.2 Basics

Let K be a ground field of characteristic zero. When we work in the logarithmic
category, we assume SpecK to be equipped with the trivial log structure.

We write M for the stack of all stable (ordered) marked curves over K and
M for the stack of all prestable curves with ordered marked points. Both come
with natural log structures, and the universal marked curves over these spaces are
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naturally log curves. For M, the log structure is described in [46]. The same
construction applies unchanged to M, see [35, Appendix A]. The natural open
immersion

M → M

is strict (though, in contrast to [35, 46], we order the markings of our log curves).
We use subscripts g and n to fix the genus and number of markings when necessary.

Let C be the universal prestable curve over M. For efficiency of notation, we
will also denote by C the universal curve over the various other moduli stacks of
curves with additional structure which will appear in the paper. These universal
curves are always obtained by pulling-back C over M.

For the convenience of the reader, we provide here a table of the key symbols.

Table 1: Key notation

Mg,n stack of prestable marked curves of genus g with n markings

Mg,n stack of stable marked curves of genus g with n markings

C universal prestable curve over M

A = (a1, . . . , an) A ∈ Zn with
∑n

i=1 ai denoted by d

Picg,n Picard stack, Section 2.1

Picrelg,n relative universal Picard stack, Section 2.1

CHop operational Chow group, Section 2.2

ξi tautological class on Picg,n, Section 0.3.3

ηa,b tautological class on Picg,n, Section 0.3.3

ψi tautological class on Picg,n, Section 0.3.3

Pcg,A,d Pixton’s cycle, Section 0.3.5

c(ϕ) homomorphisms c(ϕ) : CH∗(B) → CH∗−p(B) given by an operational

class c ∈ CHpop(X) and ϕ : B → X with B finite type scheme, Section 2.2

DR
op
g,A operational DR cycle, Section 3

24



1.3 Plan of the paper

Section 2 concerns the treatment of several technical issues related to operational
Chow groups of the Picard stack Pic. In fact, we develop a general theory of
operational Chow groups of algebraic stacks which are locally of finite type over
K. The theory is certainly known to experts, but for our later results, we will
require the precise definitions. In particular, to a proper representable morphism
of algebraic stacks, we associate an operational class, which will be the key to
constructing the operational double ramification cycle.

The core of the paper starts in Section 3 where we give three equivalent defi-
nitions of the universal double ramification cycle on Pic. Our first definition is by
taking a closure in the spirit of [40] which is simple, but rather difficult to work
with. The second is via logarithmic geometry following [58]. The third is a b-Chow
definition along the path of [41]. In Section 3.5, we give an explicit description of
the set-theoretic image of the double ramification cycle in Pic. We prove Theorem
1 in Section 3.7.

In Section 4, we discuss properties of Pixton’s cycle Pcg,A,d defined Section
0.3.5. In particular, formal properties of Pixton’s cycle parallel to the invariances
of the double ramification cycles are proven. Compatibilities with definitions in
previously studied cases are also proven.

Section 5 contains the proof of Theorem 7, the main result of the paper, by an
eventual reduction to the formula of [45] in the case of target Pn for large n. A
crucial step in the proof is the matching of the double ramification cycle defined in
[45] via rubber maps with our new universal definition on Pic in a suitable sense
when the target is Pn. The matching is verified in Section 6 where we follow the
pattern of the proof given in [58] in case the target is a point.

In Section 7, we prove the invariance properties of Section 0.6. Theorems 8
and 9 are proven as a consequence of Theorem 7 in Section 8. The connections
between the vanishing result of Theorem 8 and past (and future) work is discussed
in Section 8.5.

2 Picard stacks and operational Chow

2.1 The Picard stack and relative Picard space

Our stacks will be with respect to the fppf topology ([65, Definition 9.1.1]). We
define the Picard stack Picg,n as the fibred category over Mg,n whose fibre over a
scheme T → Mg,n is the groupoid of line bundles on Cg,n×Mg,n

T with morphisms
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given by isomorphisms of line bundles, see [52, 14.4.7]. We define the relative Pi-
card spacePicrelg,n/Mg,n to be the quotient ofPicg,n by its relative inertia over Mg,n.

Equivalently Picrelg,n is the fppf-sheafification of the fibred category of isomorphism
classes of line bundles on Cg,n ×Mg,n

T , see [14, Chapter 8] and [30, Chapter 9].

Relative representability of Picrelg,n/Mg,n by smooth algebraic spaces can be
checked locally on Mg,n. It then follows from [3, Appendix] as the curve

Cg,n → Mg,n

is flat, proper, relatively representable by algebraic spaces, and cohomologically
flat in dimension 0 (reduced and connected geometric fibers). The Picard stack
Picg,n is a Gm-gerbe over Picrelg,n, hence is a (smooth) algebraic stack. In particular,

Picg,n is smooth over K of pure dimension 4g − 4 + n, and Picrelg,n is smooth over
K of pure dimension 4g − 3 + n.

Remark 10. We will moreover assume (g, n) 6= (1, 0). Then, Mg,n and hence
Picrel, Pic, and anything of Deligne-Mumford type over them, has affine stabilisers,
and so is therefore stratified by global quotient stacks in the sense of [50]. The
latter property will be important for some intersection-theoretic computations, in
particular the proof of Proposition 25.

2.2 Operational Chow groups of algebraic stacks

Our goal here is to define the operational Chow group of Picg,n, following [32,
Chapter 17]. In fact, we construct an operational Chow group for any algebraic
stack locally of finite type over a field. The definition is a simple generalisation of
[32].

Definition 11. Let Y be a locally finite type algebraic stack over K. Let p be
an integer. A bivariant class c in the pth operational Chow group CHpop(Y) is a
collection of homomorphisms

c(ϕ)m : CHm(B) → CHm−p(B)

for all maps ϕ : B → Y where B is a scheme of finite type over K, and for all
integers m, compatible with proper pushforward, flat pullback, and Gysin homo-
morphisms for regular embeddings (conditions (C1)-(C3) in [32, Section 17.1]).

For a class α ∈ CHm(B), we will sometimes write c(α) in place of c(ϕ)m(α), if
the morphism ϕ is clear.

Such a definition for the operational Chow group of a Deligne-Mumford stack
is given in [27]. To be able to use Chow groups on algebraic stacks as defined in
[50] for algebraic stacks of finite type over a field, we will use the following result.
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Lemma 12. Let f : A → B be a morphism over a field K where B is an algebraic
stack locally of finite type over K and A is an algebraic stack of finite type over
K. Then there exists a factorisation of f via a commutative diagram

A B

B′

f

where B′ → B is an open immersion and B′ is quasi-compact (and hence of finite
type).

Proof. We cover B by affine flat finite presentation morphisms {Vi → B}i∈I . Let
Ui be the image of the Vi in B. The Ui are open, and the f−1(Ui) cover A. As A
is quasi-compact, there is a finite subset J ⊂ I such that {f−1(Ui)}i∈J covers A.
Then B′ = ∪i∈JUi defines the required factorisation. ♦

For representable morphisms (representable by algebraic spaces) f : X → Y,
we can also define the operational Chow group CHpop(X → Y) as a collection of
morphisms

c(ϕ)m : CHm(B) → CHm−p(B ×Y X)

for all maps ϕ : B → Y where B is a scheme of finite type over K, and for all
integers m, compatible with proper pushforward, flat pullback, and Gysin homo-
morphisms. We have

CHpop(X) = CHpop(id : X → X) .

We have products, pullbacks, and proper representable pushforwards on these
operational Chow groups of algebraic stacks as described in [32, chapter 17.2]
satisfying the properties described there.

Remark 13. Even for B a scheme and π : X → Y representable, the fibre product
B×YX can be an algebraic space. Therefore, some care is needed when generalizing
classical constructions such as the product

CHaop(X)× CHbop(π : X → Y) → CHa+bop (π : X → Y).

Indeed, for c ∈ CHaop(X) and d ∈ CHbop(π : X → Y) we want to define

c · d ∈ CHa+bop (π : X → Y) .
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For a map ϕ : B → Y with B a finite type scheme fitting in a pullback diagram

B ×Y X X

B Y

ϕ′

π

ϕ

we want to define the induced map

(c · d)(ϕ)m : CHm(B) → CHm−a−b(B ×Y X)

as the composition

CHm(B)
d(ϕ)m

−−−→ CHm−b(B ×Y X)
c(ϕ′)m−b

−−−−−→ CHm−a−b(B ×Y X) .

But, a priori, the map c(ϕ′)m−b does not make sense since the domain B ×Y X of
ϕ′ is an algebraic space. However, given a collection

c = c(ϕ′)n : CHn(B
′) → CHn−a(B

′)

for all finite type schemes B′ with ϕ′ : B′ → X, we can construct a collection of
maps

c(ϕ′)n : CHn(B
′) → CHn−a(B

′)

for ϕ′ : B′ → X with B′ a finite type algebraic space via [80, Section 5.1]. Indeed,
for each integral closed substack Z ⊂ B′, [80, Section 5.1] defines an action of c on
[Z] which is independent of the chosen cover of the algebraic space by a scheme.
This action induces a map CHn(B

′) → CHn−a(B
′) which commutes with proper

pushforward and flat morphisms via [80, Lemma 5.3] and is compatible with Gysin
homomorphisms. Applying this to

ϕ′ : B′ = B ×Y X → X

with n = m− b gives the desired map c(ϕ′)m−b.

For a proper representable morphism π : X → Y which is flat of relative di-
mension q, the pushforward

CH∗
op(π : X → Y) → CH∗

op(Y)

can be extended to a pushforward

CHpop(X) → CHp−qop (Y)
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as follows. Because π is flat, the pullback π∗ gives a natural element in

CH−q
op (π : X → Y)

and then we can compose

CHpop(X) → CHpop(X)× CH−q
op (π : X → Y)

given by c 7→ (c, π∗) with the product and the pushforward maps

CHpop(X)× CH−q
op (π : X → Y) → CHp−qop (π : X → Y) → CHp−qop (Y),

yielding the desired pushforward map π∗ : CH
p
op(X) → CHp−qop (Y). This may for

example be applied to the universal curve π : Cg,n → Picg,n. A similar construction
also works for π proper representable and lci. This pushforward map commutes
with pullback of operational classes.

2.3 Relationship to usual Chow groups

Let Y be a locally finite type algebraic stack over K, and (Ui)i∈N an increasing
sequence of finite type open substacks of Y with

⋃

i

Ui = Y .

In particular, for a finite type scheme B/K, every map B → Y factors via some
Ui. We have pullback maps

CH∗
op(Y) → CH∗

op(Ui) (17)

which induce a map
Φ: CH∗

op(Y) → lim
i
CH∗

op(Ui) (18)

to the inverse limit of the CH∗
op(Ui), with transition maps given by pullback of

operational classes along open immersions.

Lemma 14. The map Φ: CH∗
op(Y) → limi CH

∗
op(Ui) is an isomorphism of abelian

groups.

Proof. We first show injectivity. Let c in CH∗
op(Y) with Φ(c) = 0. For every

B → Y with B/K of finite type, we get a map

c(B/Y) : CH∗(B) → CH∗(B) .
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There exists i such that the map B → Y factors via Ui. Then Φ(c) = 0 implies
that

c(B/Ui) : CH∗(B) → CH∗(B)

is the zero map. By definition of the pullback, c(B/Y) = c(B/Ui).

Next we show surjectivity. Suppose we have a compatible collection

ci ∈ CH∗
op(Ui) .

We will build c ∈ CH∗
op(Y) as follows. Let B → Y with B/K of finite type. There

exists N such that for all i ≥ N , the map B → Y factors via Ui. Then for all
i ≥ N , we have maps

c(B/Ui) : CH∗(B) → CH∗(B) ,

and the compatibly means ci(B/Ui) = cj(B/Ui) for all i, j ≥ N . We define c = cN ,
which clearly is sent by Φ to the ci.

To conclude, we must check that c satisfies the axioms of an operational class.
This follows easily from the fact that each B → Y factors via some Ui. ♦

Lemma 15 (Proposition 5.6 of [80]). Let Y be a smooth finite type Deligne-
Mumford stack over K of pure dimension d, and let ι : Y → Y be the identity.
Then for m ≥ 0 the map

CHmop(Y) → CHd−m(Y) , α 7→ α(ι)([Y]) (19)

is an isomorphism.

Combining Lemmas 14 and 15, we immediately obtain the following result.

Corollary 16. Let Y be a smooth Deligne-Mumford stack over K of pure dimen-
sion d, and let Ui be a sequence of finite type open substacks with

⋃
I Ui = Y. Then

the natural map
Φ: CHmop(Y) → lim

I
CHd−m(Ui) (20)

obtained by combining (18) and (19) is an isomorphism.

As a final remark14, we note that there exists a map of Chow groups in the
opposite direction of (19) in greater generality. Let Y be a smooth algebraic
stack of finite type over K and of pure dimension d which has a stratification15 by
quotient stacks. Then, there exists a map

Ψ : CHd−m(Y) → CHmop(Y)

14We thank A. Kresch for related discussion.
15See [50] for the precise definition. The property is always satisfied for Deligne-Mumford

stacks.
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from the Chow group CH∗(Y) constructed in [50] to the operational Chow group
of Y defined as follows. Given ϕ : B → Y with B a finite type scheme, let

ϕB : B → B ×Y

be the diagonal morphism. Since Y is smooth, ϕB is representable and is a local
complete intersection of codimension d. For β ∈ CHd−m(Y), we define

Ψ(β)(ϕ) : CH∗(B) → CH∗−m(B) α 7→ ϕ!
B(α× β) ,

where α × β ∈ CH∗+d−m(B ×Y) is the exterior product of α and β as defined in
[50, Section 3.2]. The collection of maps Ψ(β)(ϕ) defines an element

Ψ(β) ∈ CHmop(Y) .

For Y a Deligne-Mumford stack, the map Ψ is the inverse of the map (19). How-
ever, for an arbitrary smooth algebraic stack Y, we do not know whether Ψ is
injective or surjective.

2.4 Constructing an operational Chow class

2.4.1 Overview

Given a vector A ∈ Zn of ramification data satisfying

n∑

i=1

ai = d ,

we will construct in Section 3.3 a stackDivg,A together with a proper representable
Abel-Jacobi map

Divg,A → Picg,n,d .

We wish to define the twisted universal double ramification cycle DR
op
g,A as the

pushforward of the fundamental class of Divg,A to Picg,n,d. However, two basic
issues must be settled to carry out the construction:

• The stack Divg,A is not Deligne-Mumford and is not quasi-compact, so the
existence of a well-behaved fundamental class in the operational Chow group
is not clear.

• The proper representable pushforward of [6, Appendix B] is only defined
between finite-type stacks, and so cannot be applied directly. 16

16Chow theory of non-finite type algebraic stacks will be developed in [6, Appendix A].
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To solve these problems, we provide here a very general construction which
associates to a suitable proper morphism

a : X → Y

an operational Chow class on Y which plays the role of the pushforward of the
fundamental class of X. In Section 3.3, we will apply the result to construct the
universal twisted double ramification cycle DR

op
g,A. We also verify certain basic

properties such as invariance of the class under proper birational maps which will
be important in Section 6.

2.4.2 Construction

Let X and Y be algebraic stacks locally of finite type over a field K and suppose
we have a proper morphism

a : X → Y

of Deligne-Mumford type. Suppose further that Y is smooth of pure dimension
dimY over the field, and X is of pure dimension dimX. Let

e = dimY− dimX .

We will construct an operational Chow class associated to X in CHeop(Y).

For all finite type schemes B with a morphism ϕ : B → Y, and for all integers
m, we must define maps

c(ϕ)m : CHm(B) → CHm−e(B)

which are compatible under proper pushforward and flat pullback and satisfy com-
mutativity (properties (C1), (C2), (C3) of [32, Section 17.1]).

Let [V ] ∈ CHm(B) be an irreducible cycle, and let iV : V → B be the inclusion.
Let V → B → Y be factored as in Lemma 12 into V → Y′ → Y where Y′ is of
finite type and Y′ → Y is an open immersion.

We form the diagram

X′ ×Y′ V X′ × V

V Y′ × V

ψV a×id

ϕV

(21)

where X′ is the inverse image of Y′ under a. Each stack in this diagram is of finite
type, and therefore has a Chow group in the sense of [50]. Since Y is smooth
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over K, the map ϕV is a regular embedding of codimension dimY. Also ϕV is
unramified and hence a regular local embedding, so Kresch’s contruction yields a
map

ϕ!
V : CHm(X

′ × V ) → CHm−dimY(X
′ ×Y′ V ) .

In particular, [X′ × V ] is a class in dimension dimX+m, so the class ϕ!
V ([X× V ])

lies in CHm−e(X×YV ). The morphism ψV is proper and of Deligne-Mumford type,
and so by [6, Appendix B] we have a pushforward ψV ∗.

Definition 17. We define a class aop[X] ∈ CHop(Y) via the formula

c(ϕ)m : Zm(B) → CHm−e(B) (22)

[V ] 7→ iV ∗ψV ∗ϕ
!
V ([X

′ × V ]) .

We must verify that this construction passes to rational equivalence, is inde-
pendent of the choices made, and satisfies the properties (C1), (C2), and (C3).
After verifying in Lemma 18 independence on the choice of factorisation, we fol-
low the logic in [32]: we verify in Lemmas 20, 21, and 22 of Section 2.4.3 that the
properties (C1), (C2), and (C3) hold on the level of cycles, and finally in Lemma 24
we use these to show that the construction passes to rational equivalence.

Lemma 18. The class c(ϕ)m([V ]) defined above is independent of the chosen fac-
torisation V → Y′ → Y.

Proof. Let V → Y′ → Y and V → Y′′ → Y be two such factorisations. By
considering Y′ ∩Y′′ inside Y, we may restrict to the case where one is contained
in the other. So we suppose there is an open immersion

ι : Y′′ → Y′ .

Let j : X′′ → X′ be the induced map. Consider the diagram

X′′ ×Y′′ V X′′ × V

V Y′′ × V

X′ ×Y′ V X′ × V

V Y′ × V

j×id

ψ′′

V

a×id
j×id

ϕ′′

V

id
ι×id

ψ′

V

a×id

ϕ′

V

(23)

where X′′ ×Y′′ V → X′ ×Y′ V is an isomorphism. We must show

ψ′
V ∗ϕ

′
V
!
([X′ × V ]) = ψ′′

V ∗ϕ
′′
V
!
([X′′ × V ]) .
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Because ϕ′′
V and ϕ′

V are both regular embeddings of the same codimension and
the front square commutes, by the same proof as for [32, Theorem 6.2(c)], we
obtain ϕ′′

V
!([X′′ × V ]) = ϕ′

V
!([X′′ × V ]). Therefore,

ψ′′
V ∗ϕ

′′
V
!
([X′′ × V ]) = ψ′′

V ∗ϕ
′
V
!
([X′′ × V ]) = ψ′′

V ∗ϕ
′
V
!
((j × id)∗[X′ × V ]) (24)

as j × id is an open immersion so in particular flat, and the flat pullback of
the fundamental class is the fundamental class. By the compatibility of the flat
pullback and Gysin maps [50, Section 3.1], we obtain that (24) is equal to

ψ′′
V ∗(j × id)∗ϕ′

V
!
([X′ × V ]) .

By commutativity of the left side of the cube and because of the pullback push-
forward formula, we obtain

ψ′′
V ∗ϕ

′′
V
!
([X′′ × V ]) = ψ′′

V ∗(j × id)∗ϕ′
V
!
([X′ × V ]) = ψ′

V ∗ϕ
′
V
!
([X′ × V ])

as required. ♦

2.4.3 Compatibility

We will now check that the maps c(ϕ)m defined in Section 2.4.2 are compatible
under proper pushforward and flat pullback and satisfy commutativity (properties
(C1), (C2), (C3) of [32, Section 17.1]).

The proper pushforward along DM-type maps between finite type algebraic
stacks over a field which are stratified by global quotient stacks is defined in [6,
Appendix B]. We cannot use the results of [50] for compatibility with the proper
pushforward since Kresch discusses only projective pushforward. Nevertheless, we
now show that the proper pushforward for DM-type maps of finite type algebraic
stacks over a field as defined in [6, Appendix B] is compatible with the Gysin maps
of [50].

Proposition 19. For a pullback diagram of algebraic stacks of finite type over K,

X′′ Y′′

X′ Y′

X Y ,

i′′

q p

i′

g f

i
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where i is a regular local embedding of codimension d, p is a proper DM-type
morphism, and Y′ is stratified by global quotient stacks, we have

i!p∗(α) = q∗(i
!α)

for all α ∈ CH∗(Y
′′).

Proof. A class α on Y′′ is represented by a projective map z′′ : Z ′′ → Y′′, a vector
bundle E ′′ → Z ′′ and a class [V ] in the naive Chow group of E ′′ represented by
V ⊂ E.

We want to push α forward via the construction of [6, Appendix B]: by [6,
Theorem B.17], it suffices to treat the case where E ′′ → Z ′′ → Y′′ fits in a pullback
diagram of the form

E ′′ Z ′′ Y′′

E ′ Z ′ Y′

p′′

z′′

p′ p

z′

(25)

where z′ is projective. Then the pushforward is defined by simply pushing forward
on the level of bundles, so

p∗(z
′′, [V ]) = (z′, p′′∗([V ])) .

If W = p′′(V ), then p′′∗([V ]) = deg(V/W )[W ].

Let N be the normal bundle NXY. The Gysin maps constructed in [50, Section
3.1] are described explicitly on level of representatives as follows: i!(z′, [W ]) is
represented by [CW×YXW ] as a class on the bundle N|Z′×YX ⊕ E ′

|Z′×YX with the

projective map z̃′ : Z ′ ×Y X → X′ induced by z′. Hence,

i!p∗(z
′′, [V ]) = (z̃′, deg(V/W )[CW×YXW ]) .

Next, we study q∗i
!(z′′, [V ]). To start, i!(z′′, [V ]) is represented by [CV×YXV ] as

class on the bundle N|Z′′×YX ⊕ E ′′
|Z′′×YX with the projective map Z ′′ ×Y X → X′′

induced by z′′. We push i!(z′′, [V ]) forward via the construction of [6, Appendix
B]. We complete the diagram

N|Z′′×YX ⊕ E ′′
|Z′′×YX Z ′′ ×Y X X′′

X′

z̃′′

q

to a pullback diagram so that we can pushforward on the levels of bundles:
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E ′′ Z ′′ Y′′

N|Z′′×YX ⊕ E ′′
|Z′′×YX Z ′′ ×Y X X′′

E ′ Z ′ Y′

N|Z′×YX ⊕ E ′
|Z′×YX Z ′ ×Y X X′

Y

X

p′′

z′′

p′ p
z̃′′

p̃′

i′′

q

z′

f
z̃′

g

i′

i

The map p′ : Z ′′ → Z ′ induces a map p̃′ : Z ′′×YX → Z ′×YX, and the square with
q, p̃′, z̃′ and z̃′′ is a pullback (as the pullback of a pullback square).

There is a map q′′ : N|Z′′×YX ⊕ E ′′
|Z′′×YX → N|Z′×YX ⊕ E ′

|Z′×YX induced by p′′

such that it forms a pullback square, and so the pushforward along q is simply

q∗(i
!(z′′, [V ])) = q∗(z̃

′′, [CV×YXV ]) = (z̃′, q′′∗([CV×YXV ])) .

The proof then reduces to comparing q′′∗ ([CV×YXV ]) and deg(V/W )([CW×YXW ]),
which follows from [80, Lemma 3.15]. The result is a completely local state-
ment and therefore extends from the setting of schemes to the setting of Deligne-
Mumford stacks which we need here. ♦

Let ϕ : B → Y and ϕ′ : B′ → Y be morphisms from finite-type schemes, and
let

h : B′ → B

be a Y-morphism. By Definition 17, we have morphisms

c(ϕ)m : Zm(B) → CHm−e(B) and c(ϕ′)m : Zm(B
′) → CHm−e(B

′) .

If h is proper, we have a pushforward map17

h∗ : Zm(B
′) → Zm(B)

which descends to Chow.

Lemma 20. If h is proper,

c(ϕ)m ◦ h∗ = h∗ ◦ c(ϕh)
m .

17We use the same notation for the proper pushforward on the Chow groups.
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Proof. Let [V ′] ∈ Zm(B
′) for an irreducible cycle V ′. Let V = h(V ′). By definition,

h∗([V
′]) = deg(V ′/V )[V ] .

Let Y′ be a factorisation of V ′ → V → Y. We have

(id×h)∗([X
′ × V ′]) = deg(V ′/V )[X′ × V ] .

Via the commutative diagram

X′ ×Y′ V ′ X′ × V ′

V ′ Y′ × V ′

B′ X′ ×Y′ V X′ × V

V Y′ × V

B

Y

id×h

ψV ′

id×h

iV ′

ϕV ′

h
id×h

h

ψV

iV

ϕV

ϕ

(26)

we compute

c(ϕ)m(h∗(α)) = c(ϕ)m(deg(V ′/V )[V ])

= iV ∗ψV ∗ϕ
!
V (deg(V

′/V )[X′ × V ])

= iV ∗ψV ∗ϕ
!
V ((id×h)∗[X

′ × V ′])

= h∗iV ′∗ψV ′∗ϕ
!
V ′([X′ × V ′])

= h∗c(ϕh)
m(α) ,

where the final line follows from compatibility of the Gysin map with proper rep-
resentable pushforward (Proposition 19). ♦

If h : B′ → B is flat of relative dimension n, we have a pullback map

h∗ : Zm(B) → Zm+n(B
′)

which descends to Chow.

Lemma 21. If h is flat of relative dimension n,

c(ϕh)m+n ◦ h∗ = h∗ ◦ c(ϕ)m.

37



Proof. Let [V ] ∈ Zm(B) for an irreducible cycle V . Let

V ′ = h−1(V ) ,

so [V ′] = h∗([V ]). Let Y′ be a factorisation of V ′ → V → Y. We have

(id×h)∗([X′ × V ]) = [X′ × V ′] .

Via the commutative diagram

X′ ×Y′ V ′ X′ × V ′

V ′ Y′ × V ′

B′ X′ ×Y′ V X′ × V

V Y′ × V

B

Y

id×h

ψV ′

id×h

iV ′

ϕV ′

h
id×h

h

ψV

iV

ϕV

ϕ

(27)

we compute

c(ϕh)m+n([V ′]) = iV ′∗ψV ′∗ϕ
!
V ′([X′ × V ′])

= iV ′∗ψV ′∗ϕ
!
V ′((id×h)∗[X′ × V ])

= h∗iV ∗ψV ∗ϕ
!
V ([X

′ × V ])

= h∗c(ϕ)m([V ]) ,

where the final line follows from the compatibility of the Gysin map with flat
pullback for a morphism of finite type algebraic stacks ([50, Section 3.1]) and the
pullback and pushforward formulas. ♦

Let ϕ : B → Y be a morphism from a finite type scheme as above. Let

g : B → Z

be a morphism of finite type schemes, and let i : Z ′ → Z be a regular embedding
of codimension f . Form the fiber square
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B′ Z ′

B Z

Y.

i′ i

g

ϕ

Let V be an irreducible cycle in B with inverse image V ′ = (i′)−1(V ). We choose
a representative i![V ] =

∑
j nj [V

′
j ] in Zm−f (V

′).

Lemma 22. We have

i!c(ϕ)m([V ]) = c(ϕi′)m−f
(∑

nj[V
′
j ]
)
.

Remark 23. In particular, once we have shown that the maps c(ϕ)m pass to
rational equivalence, Lemma 22 will imply

i!c(ϕ)m(α) = c(ϕi′)m−f (i!α)

for α ∈ CHm(B).

Proof. From the equality i![V ] =
∑
nj[V

′
j ], we deduce

i![X′ × V ] =
∑

nj [X
′ × V ′

j ] .

Via the commutative diagram18

X′ ×Y′ V ′ X′ × V ′

V ′ Y′ × V ′

Z ′ B′ X′ ×Y′ V X′ × V

V Y′ × V

Z B

Y,

id×i′
ψV ′

id×i′

iV ′

ϕV ′

i′
id×i′

i i′

ψV

iV

ϕV

g
ϕ

(28)

18We should also add another layer of the diagram for the V ′

j .
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we compute
i!c(ϕ)m([V ]) = i!iV ∗ψV ∗ϕ

!
V ([X

′ × V ])

and

c(ϕi′)m−f (
∑

nj [V
′
j ]) =

∑
njiV ′

j ∗
ψV ′

j ∗
ϕ!
V ′
j
([X′ × V ′

j ]) = iV ′∗ψV ′∗ϕ
!
V ′(i![X′ × V ]) .

We deduce equality of these expressions by using the compatibility of Gysin maps
with proper pushforward (Proposition 19) and then the commutativity of Gysin
maps from [50] to obtain ϕ!

V ′i! = i!ϕ!
V . ♦

Lemma 24. The morphisms c(ϕ)m from Definition 17 pass to rational equivalence,

c(ϕ)m : CHm(B) → CHm−e(B) .

Proof. The proof is now completely analogous to [32, Theorem 17.1]. ♦

2.4.4 Properties

The class constructed in Definition 17 is invariant under proper birational maps
in the following sense.

Proposition 25. Let f : W → X be a proper DM-type birational morphism of
locally finite type algebraic stacks over K of pure dimension, with X stratified by
global quotient stacks. Then,

(a ◦ f)op[W] = aop[X] ∈ CHeop(Y)

where (a ◦ f)op[W] and aop[X] are the operational classes constructed in Defini-
tion 17 with respect to a ◦ f : W → Y and a : X → Y.

Proof. The proper pushforward of the fundamental class along f is the fundamen-
tal class, as the map f is birational and hence of degree 1.

Choose a factorisation V → Y′ → Y. Denote by X′ the pullback of X along a
and by W′ the the pullback of X′ along f . As in (21), we form a pullback diagram

W′ ×Y′ V W′ × V

X′ ×Y′ V X′ × V

V Y′ × V .

f̃ f×id

ψV a× id

ϕV

(29)
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Proposition 19 then yields

ψV ∗ϕ
!
V ([X

′ × V ]) = ψV ∗ϕ
!
V ((f × id)∗[W

′ × V ])

= ψV ∗f̃∗ϕ
!
V ([W

′ × V ])

= (ψV f̃)∗ϕ
!
V ([W

′ × V ]) ,

which is the required equality. ♦

We will also require a flat pullback property. Let X,Y,Z be pure dimensional
algebraic stacks of locally finite type over K with Y and Z smooth. Suppose we
have a fibre diagram

X×Y Z Z

X Y

ã

f̃ f

a

where a : X → Y is a proper DM-type morphism and f : Z → Y is flat and lci19,
with Z stratified by global quotient stacks.

Lemma 26. In CHop(Z), we have

ãop[X×Y Z] = f ∗aop[X] .

Proof. Let X′,Y′,Z′ denote appropriate finite-type factorisations as in Defini-
tion 17. Then we compare the two operational classes via the following diagram:

(X′ ×Y′ Z′)×Z′ V X′ ×Y′ Z′ × V

X′ ×Y′ V X′ × V

V Z′ × V Y′ × V

B .

∼ f̃×id

ã×id

ψV a×id

iV

ϕV

(f◦ϕ)V

f×id

By definition,

ãop[X×Y Z](ϕ)([V ]) = iV ∗ψV ∗ϕ
!
V ([X

′ ×Y′ Z′ × V ])

19A flat and lci map is called syntomic.

41



and

f ∗aop[X](ϕ)([V ]) = aop[X](f ◦ ϕ)([V ]) = iV ∗ψV ∗(f ◦ ϕ)!V ([X
′ × V ]) .

Since f is lci, the above expression is equal to

iV ∗ψV ∗ϕ
!
V (f × id)!([X′ × V ]) .

Because f is also flat, we see as in [32, Prop 6.6(b)] that we obtain

iV ∗ψV ∗ϕ
!
V (f̃ × id)∗([X′ × V ]) = iV ∗ψV ∗ϕ

!
V ([X

′ ×Y′ Z′ × V ]) .

which yields the required equality. ♦

3 The universal double ramification cycle

3.1 Overview

We fix a genus g, a number of markings n, and a vector A = (a1, . . . , an) ∈ Zn of
ramification data satisfying

n∑

i=1

ai = d .

We define here the associated universal twisted double ramification cycle class in
the operational Chow group of the universal Picard stack Picg,n,d. The operational
class is the class associated to a certain proper representable morphism

Divg,A → Picg,n,d

using the theory of Section 2.4. Our goal here is to define the stack Divg,A over
Picg,n,d.

We will present three essentially equivalent definitions of the universal twisted
double ramification cycle in Sections 3.2–3.4 which yield the same operational
class:

• a definition in Section 3.2 by closing the Abel-Jacobi section which is simple
to state but difficult to handle,

• an intrinsic logarithmic definition in Section 3.3 following Marcus-Wise [58],

• a slight variation of the log definition in Section 3.4 which facilitates com-
parison to the spaces of rubber maps.
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After analyzing the set-theoretic closure of the Abel-Jacobi section in Section 3.5,
the equality of the three resulting classes will be shown in Section 3.6. In Sec-
tion 3.8, we briefly discuss the lift of universal twisted double ramification cycle
to operational b-Chow.

3.2 DR
op
g,A by closure

We define the Abel-Jacobi section σ of Picg,n,d → Mg,n by

σ : Mg,n → Picg,n,d , (C, p1, . . . , pn) 7→ OC

( n∑

i=1

aipi

)
. (30)

The section σ is not a closed immersion (both because of the Gm-automorphism
groups of line bundles and because the image is not closed). However, σ is quasi-
compact and relatively representable by schemes, and hence admits a well-defined
schematic image (we use that the formation of the schematic image is compatible
with flat base-change, see [75, Tag 081I]). The schematic image is the smallest
closed reduced substack through which σ factors.

Since the schematic image σ̄ is a closed substack of pure dimension,

ι : σ̄ → Picg,n,d ,

we obtain an operational class ιop[σ̄] by Definition 17. Our first definition of the
universal twisted double ramification cycles is via the schematic image of σ:

DR
op
g,A = ιop[σ̄] ∈ CHgop(Picg,n,d) . (31)

Let Pic0 →֒ Pic be the open substack consisting of line bundles having degree
0 on every irreducible component of every geometric fibre (multidegree 0), and let
Picrel0 →֒ Picrel be defined analogously. We have a commutative diagram in which
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all squares are pullbacks:

(BGm)Mg,n
Mg,n

σ̄0 σ̄
0
rel

Picg,n,0 Picrelg,n,0

σ̄ σ̄rel

Picg,n,0 Picrelg,n,0 .

e=OC

(32)

Let (C/B, p1, . . . , pn) be a prestable curve over a scheme B of finite type over
K. Let L be a line bundle on C such that L(−

∑n
i=1 aipi) is of multidegree 0 for

A = (a1, . . . , an) ∈ Zn. The data

C → B , L
(
−

n∑

i=1

aipi

)
→ C

determine a map
ϕ : B → Picg,n,0 ,

and we form a pullback diagram

B′ Mg,n

B Picrelg,n,0 .

ψ e

ϕrel

(33)

Since Mg,n is smooth and Picrelg,n,0 is separated, the map e is a regular embedding.

Lemma 27. In the multidegree 0 case, we have

DR
op
g,A(ϕ)([B]) = ψ∗e

![B] . (34)
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Proof. We begin by expanding the diagram (33) to

B′ Mg,n × B Mg,n

B Picrelg,n,0 ×B Picrelg,n,0 .

ψ

f ′

e

ϕ′ f

(35)

Since Picg,n → Picrelg,n is smooth, we deduce from Lemma 26 and diagram (32) that

DR
op
g,A(ϕ)([B]) = ψ∗ϕ

′![Mg,n × B] . (36)

We then compute

DR
op
g,A(ϕ)([B]) = ψ∗ϕ

′![Mg,n × B]

= ψ∗ϕ
′!f ′∗[Mg,n]

= ψ∗ϕ
′!f ′∗e![Picrelg,n,0]

= ψ∗ϕ
′!e!f ∗[Picrelg,n,0]

= ψ∗ϕ
′!e![Picrelg,n,0 × B]

= ψ∗e
!ϕ′![Picrelg,n,0 × B]

= ψ∗e
![B] .

(37)

♦

In particular, if the intersection of B with the unit section inPicrelg,n,0 is transver-

sal, then we simply take the naive intersection in Picrelg,n,0 and push it down to B.

3.3 Logarithmic definition of DRop

3.3.1 Overview of log divisors

We begin by recalling various results and definitions from log geometry. We refer
the reader to [47] for basics on log geometry and [58] for the details of what we do
here. While log geometry will not play a substantial role elsewhere in the paper,
it will reappear in Section 6.

Given a log scheme S = (S,MS), we write

Glog
m (S) = Γ(S,Mgp

S ) and Gtrop
m (S) = Γ(S, M̄gp

S ),

which we call the logarithmic and tropical multiplicative groups. Both can natu-
rally be extended to presheaves on the category LSchS of log schemes over S, and
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both admit log smooth covers by log schemes (with subdivisions P1 and [P1/Gm]
respectively). A log (tropical) line on S is a Glog

m (Gtrop
m ) torsor on S, for the strict

étale topology.

Definition 28. (See [58, Def. 4.6]) Let C be a logarithmic curve over a logarithmic
scheme S. A logarithmic divisor on C is a tropical line P over S and an S-
morphism C → P .

Let Divrel
g be the stack20 in the strict étale topology on logarithmic schemes

whose S-points are triples (C, P, α) where C is a logarithmic curve of genus g over
S, P is a tropical line over S, and

α : C → P

is an S-morphism.

If S is a geometric log point and C/S a log curve, then the set of isomorphism
classes of Divrel

g (S) is given by π∗M̄
gp
C /M̄

gp
S . At the markings, an element of

π∗M̄
gp
C /M̄

gp
S determines an element of the groupified relative characteristic monoid

Z (for those who prefer a tropical perspective, this can be viewed as the outgoing
slope at the marking).

Definition 29. Let Divrel
g,A be the (open and closed) substack of Divrel

g consisting
of those triples where the curve carries exactly n markings and where on each
geometric fibre the outgoing slopes at the markings correspond to A (our log
curves come with an ordering of their markings as explained in Section 1.2).

Remark 30. It is natural to ask for a description of the functor of points of
the underlying (non-logarithmic) stack of Divrel

g,A as a fibred category over Mg,n.
However, we expect that such a description will not be simple. A closely related
problem is solved in [12], and the intricacy of the resulting definition suggests that
the path will not be easy.

3.3.2 Abel-Jacobi map

Given a log curve π : C → S of genus g, the right-derived pushforward to S of the
standard exact sequence

1 → O×
C → Mgp

C → M̄gp
C → 1 , (38)

20The stack Div
rel
g was denoted Divg in [58], but we wish to reserve the latter notation for a

certain Gm-gerbe over Div
rel
g which will play a much more prominent role in our paper.
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yields a natural map
π∗M̄

gp
C → R1π∗O

×
C ,

which factors via the quotient

π∗M̄
gp
C /M̄

gp
S = Divrel

g (S) .

We therefore obtain a relative Abel-Jacobi map

AJ
rel : Divrel

g → Picrelg ,

which restricts to maps
AJ

rel : Divrel
g,A → Picrelg,n,d .

For a first example, suppose S is a geometric log point with M̄S = N. The data
then determines to first order a deformation of the curve over a DVR (which we
take generically smooth), and the section of π∗M̄

gp
C /M̄

gp
S gives the multiplicities of

components in the special fibre and the twists by the markings.

For another example, consider what happens over the locus of (strict) smooth
curves. Writing N/Mlog

g,n for the stack of markings (finite étale), we see Divrel
g is

just the category of locally constant functions fromN to Z – in other words, choices
of outgoing slope/weight on each leg. The Abel-Jacobi map yields OC(

∑n
i=1 aipi)

where the pi are the markings and ai are the weights. In particular, we see

Divrel
g,A → Mlog

g,n

is birational (as we fixed an ordering of the markings) and log étale.

Definition 31. Let Divg be the fibre product

Divrel
g ×Picrelg

Picg . (39)

More concretely, an S-point of Divg is a quadruple (C, P, α,L) where (C, P, α)
is an S-point of Divrel

g and L is a line bundle on C satisfying21

[L] = AJ
rel(C, P, α) ∈ Picrelg (S) .

We will denote by AJ the resulting Abel-Jacobi map

Divg → Picg .

21Here, [ ] denotes the equivalence class under the relations of isomorphism and tensoring with
the pullback of a line bundle from the base.
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Observe that Divg is a Gm-gerbe over Divrel
g , just as Picg,n,d is a Gm-gerbe over

Picrelg,n,d. Analogously, we define

Divg,A = Divrel
g,A ×Picrelg,n,d

Picg,n,d and AJ : Divg,A → Picg,n,d . (40)

We summarise the key properties of the Abel-Jacobi map. These are proven in
[58] for AJ

rel, and are stable under base-change.

Proposition 32. The Abel-Jacobi map

AJ : Divg,A → Picg,n,d

is proper, relatively representable by algebraic spaces, and is a monomorphism of
log stacks.

We obtain an operational class AJop[Divg,A] associated by Definition 17 to the
Abel-Jacobi map AJ. Our second definition of the universal twisted double ramifi-
cation cycles is via AJ:

DR
op
g,A = AJop[Divg,A] ∈ CHgop(Picg,n,d) . (41)

The equivalence of definitions (31) and (41) will be proven in Section 3.6.

3.3.3 Description of Divg with log line bundles

Our approach to Divg in Definition 31 via a fiber product is indirect. While it will
not be used in the paper, a more conceptual path is to consider the stack Div′

g

whose objects are tuples
(C/S,P, α)

where C/S is a log curve, P is a logarithmic line on S (a Glog
m torsor), and α is

a map from C to the tropical line P on S induced from P by the exact sequence
(38). There is a natural map

Div′
g → Divrel

g .

We can see α as a section of the tropicalisation of the pullback of P to C. As such,
by the sequence (38), α induces a Gm-torsor on C, giving us an Abel-Jacobi map
Div′

g → Picg. Together these maps induce a map

Div′
g → Divg

to the fibre product, and a local computation verifies that this is an isomorphism.
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The above discussion points22 towards a definition of the double ramification
cycle via the logarithmic Picard functor of [62] which we hope will be pursued in
future.

3.4 Logarithmic rubber definition of DRop

Marcus and Wise introduce a slight variant Rubrel
g of the stack Divrel

g which
parametrises pairs (C, P, α) where P is a tropical line on S and α : C → P is
an S-morphism such that on each geometric fibre over S the values taken by α on
the irreducible components of C are totally ordered in (M̄gp

S )s, with the ordering
given by declaring the elements of (M̄S)s to be the non-negative elements.

The space Rubg,A, defined via pullback

Rubg,A
∼
= Divg,A ×

Div
rel
g,A

Rubrel
g,A ,

is pure dimensional and comes with a proper birational map

Rubg,A → Divg,A . (42)

The stack Rubg,A will play an important role in the comparison to classes coming
from stable map spaces in Section 6.

We obtain an operational class AJ
rub
op [Rubg,A] associated by Definition 17 to

AJ
rub : Rubg,A → Picg,n,d

obtained by composing (42) with AJ. Our third defintion of the universal twisted
double ramification cycles is via AJ

rub:

DR
op
g,A = AJ

rub
op [Rubg,A] ∈ CHgop(Picg,n,d) . (43)

The equivalence with the first two definitions will be proven in Section 3.6.

3.5 The image of the Abel-Jacobi map

The set theoretic image of the Abel-Jacobi map

AJ : Divg,A → Picg,n,d

22The unit section of Pic is given by the stack of Gm torsors on the base. Similarly, the unit

section of the logarithmic Picard stack LogPicg is given by the stack of Glog
m torsors on the base.

The natural map Picg → LogPicg is neither injective nor surjective: a logarithmic line bundle
comes from a line bundle if and only if the associated tropical line bundle is trivial, and a choice
of trivialisation of that tropical line bundle then determines a lift to a line bundle. Hence, we
see that Div

′

g is precisely the pullback of the unit section of LogPicg to Picg.
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can be characterized in terms of a condition on twisted divisors similar to the
conditions of [31] for the moduli spaces H̃g(A) twisted canonical divisors.

Given a prestable graph Γδ of degree d, a twist on Γδ is a function I : H(Γ) → Z
satisfying

(i) ∀j ∈ L(Γδ), corresponding to the marking j ∈ {1, . . . , n},

I(j) = aj ,

(ii) ∀e ∈ E(Γδ), corresponding to two half-edges h, h′ ∈ H(Γδ),

I(h) + I(h′) = 0 ,

(iii) ∀v ∈ V(Γδ), ∑

v(h)=v

I(h) = δ(v) ,

where the sum is taken over all n(v) half-edges incident to v.

(iv) There is no strict cycle23 in Γ.

Let (C, p1, . . . , pn) together with a line bundle L → C of degree d be a geometric
point of Picg,n,d. Let Γδ be the prestable graph of C decorated with the degrees
δ(v) of the line bundle L restricted to the components Cv of C. Given a twist I
on Γδ, let

ηI : CI → C

be the partial normalization of C at all nodes q ∈ C corresponding to edges
e = (h, h′) of Γ with

I(h) = −I(h′) 6= 0 .

Denote by qh, qh′ ∈ CI the preimages of q corresponding to the half-edges h, h′.
Denote by p̂i ∈ CI the unique preimage of the ith marking pi ∈ C.

We say the point (C, p1, . . . , pn,L) of Picg,n,d satisfies the twisted divisor con-
dition for the integer vector A if and only if there exists a twist I on Γδ such that
on the partial normalization CI of C there exists an isomorphism of line bundles

η∗IL
∼= OC




n∑

i=1

aip̂i +
∑

h∈H(Γ)

I(h)qh


 . (44)

23A strict cycle is a sequence ~ei = (hi, h
′

i), i = 1, . . . , ℓ of directed edges in Γ forming a closed
path in Γ such that I(hi) ≥ 0 for all i and there exists at least one i with I(hi) > 0. Condition
(iv) corresponds to the combination of the Vanishing, Sign, and Transitivity conditions for twists
in [31, Section 0.3].
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For L = ωC this exactly corresponds to the notion [31, Definition 1] of a twisted
canonical divisor.

Proposition 33. A geometric point (C, p1, . . . , pn,L) of Picg,n,d lies in the image
of the Abel-Jacobi map AJ : Divg,A → Picg,n,d if and only if the twisted divisor
condition for the vector A is satisfied.

Proof. We may suppose that K is a separably closed field and (C/S, p1, . . . , pn)
is a prestable curve over K. We must show that the twisted divisor condition
is equivalent to the existence of a log structure on C/S satisfying the following
property: C/S is a log curve with markings given by the pi which admits a global
section α of M̄gp

C with outgoing slope at pi given by ai.

Suppose that such a log structure exists. From the log structure, we can deter-
mine a twist. To each leg we associate the outgoing slope of α on the corresponding
leg. For an edge {h, h′}, we define ℓ({h, h′}) to be the element of M̄S associated via
the data of the log morphism C → S to the node of C corresponding to {h, h′}.
If {h, h′} is an edge with half-edge h attached to a vertex u and the opposite
half-edge h′ attached to v, we set the integer I(h) to be the unique integer such
that

α(u) + I(h) · ℓ({h, h′}) = α(v) ∈ M̄gp
S . (45)

That such an I(h) exists follows from the structure of M̄gp
C .

Next, we verify that I is a twist. Conditions (i) and (ii) are immediate from the
construction. We deduce condition (iv) because by following a strict cycle starting
at some vertex u and applying (45) along each edge would yield α(u) < α(u), which
is impossible. Condition (iii) is immediate from the twisted divisor condition (44)
and the fact that isomorphic line bundles have the same degree, so this will be
proven once we have checked the latter condition.

For the latter condition, we must work a little harder. To start, we claim that
there exists a morphism M̄S → N which does not send the label of any edge to 0.
Indeed, M̄gp

s injects into its groupification which is a finitely generated torsion-free
abelian group, hence isomorphic to Zm. Since M̄S is sharp24 and finitely generated,
the non-zero elements of its image in Zm land in some strict half-space of Zm cut
out by a linear equation with integral coefficients. Such a half-space admits a map
to N such that the only preimage of 0 is 0.

After base changing over S along such a map, we may assume that M̄gp
S = N

and that all edges have non-zero label. We obtain a first order map passing through
our given point,

S = SpecK[[t]] → Divg,A

24A monoid is sharp if 0 is indecomposable: a+ b = 0 implies a = b = 0.
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for which the induced prestable curve C/S is generically smooth. On the curve C,
we define a Weil divisor D by assigning to an irreducible component v the integer
α(v). The divisor D is then Cartier by (45), which still applies after base-change,
and hence determines a line bundle OC(−D), which is exactly the image of the
Abel-Jacobi map. In particular, the bundle L is (up to isomorphism) given by
restricting OC(−D) to the central fibre, so it suffices to verify (44) for the latter
bundle, which is a standard local calculation on a prestable curve over a discrete
valuation ring.

Conversely, suppose the twisted divisor condition is satisfied. We must build
a log structure and a suitable section α ∈ M̄gp

C (C). We could try equipping
(C/S, p1, . . . , pn) with its minimal log structure (see Section 1.2), but then the
section α is unlikely to exist – if there are no separating edges then there are
no non-constant sections of M̄gp

C . Instead, we will construct a log structure by
deforming the curve.

First, we claim that there exists an assignment of a positive integer ℓ(e) ∈ Z>0

to each edge and of an integer d(v) ∈ Z to each vertex such that the following
condition is satisfied:

if e = {h, h′} is an edge with h attached to u and h′ to v, then
d(u) + I(h) · ℓ(e) = d(v) .

(*)

A twist I on Γ induces a binary relation � on V (Γ) by

u � v ⇐⇒ there is an edge e = {h, h′} with h at u, h′ at v and I(h) ≥ 0 .

The fact that Γ contains no strict cycles is equivalent by [76] to the existence of
an extension of � to a total preorder on V (Γ) (a reflexive, total, and transitive
binary relation). Hence there exists a level function d0 : V(Γ) → Z such that

u � v ⇐⇒ u, v connected by an edge and d0(u) ≤ d0(v) . (46)

We define
L = lcm(I(h) : h ∈ H(Γ), I(h) > 0) .

Then, d(v) = Ld0(v) still has property (46), and, for any edge e = {h, h′} with h
attached to u and h′ to v, we have two cases:

• I(h) = 0, in which case all edges {h̃, h̃′} connecting u, v must satisfy I(h̃) = 0
(due to the strict cycle condition), so we can set ℓ(e) = 1,

• I(h) 6= 0, in which case the number ℓ(e) = (d(v) − d(u))/I(h) is indeed a
positive integer (since d has values in L · Z).
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Clearly the functions d and ℓ thus constructed satisfy the condition above.

Such d and ℓ are far from unique, but we pick them. Consider then the space
of all smoothings C of C over K[[t]] such that the thickness25 of C at the node
corresponding to edge e is ℓ(e). Given such a smoothing C, we construct a vertical
Weil divisor D by assigning to the irreducible component corresponding to vertex
v the weight d(v). The divisor D is then Cartier by the condition (*). Set

LC = OC(D)|C ⊗OC(
∑

i

aipi) .

The smoothing C also induces a log structure on C by taking the divisorial log
structure of the special fibre. The twist I then determines an element α of
π∗M̄

gp
C /M̄

gp
S . Applying the Abel-Jacobi map to α recovers LC.

One can readily verify that LC satisfies (44) by a local computation, but we
need to show more: the smoothing C can be chosen so that LC is isomorphic to
the line bundle L that we started with. The space of such smoothings C naturally
surjects onto ⊕

e={h,h′}:I(h)6=0

(OCI
(h)⊗OCI

(h′))
⊗ℓ(e)

, (47)

where the 1-dimensional K-vector space (OCI
(h)⊗OCI

(h′))⊗ℓ(e) corresponds ex-
actly to the ways to glueing the two branches of η∗IL together at the points h and h′.

In other words, by moving over the space
⊕

e={h,h′}:I(h)6=0 (OCI
(h)⊗OCI

(h′))⊗ℓ(e) ,
we can recover all ways of glueing η∗IL to a line bundle on C. In particular, we
can recover L, hence we can realise L as LC for some smoothing C, as required. ♦

3.6 Proof of the equivalence of the definitions

The equivalence of the classes coming from Divg,A and from Rubg,A is immediate
by applying Proposition 25. We must compare the latter two with the class defined
by (31) via the schematic image. We will require the following two easy results.

Lemma 34. Let U →֒ Divg,A denote the open locus where the log curve is classi-
cally smooth. Then U is schematically dense in Divg,A.

Proof. Since Divg,A → Mlog
g,n is log étale, we deduce that Divg,A is log regular. In

particular, Divg,A is reduced, and the locus where the log structure is trivial is
dense. ♦

25The local equation of the node is xy = tr for some positive integer r which we call the
thickness of the node.
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Lemma 35. The Abel-Jacobi map AJ : Divg,A → Picg,n,d factors through the
inclusion σ̄ → Picg,n,d, and the induced map

Divg,A → σ̄

is proper and birational.

Proof. ThatDivg,a → Picg,n,d factors through σ̄ → Pic is immediate from Lemma 34
and the definition of the schematic image. The induced map Divg,A → σ̄ is proper
since Divg,A is proper over Picg,n,d and is birational since it is an isomorphism
over the locus of smooth curves. ♦

By another application of Proposition 25, the definitions of DRop via Divg,A
and the schematic image are equivalent. ♦

3.7 Proof of Theorem 1

Let k ≥ 0, and let A = (a1, . . . , an) be a vector of integers satisfying

n∑

i=1

ai = k(2g − 2) .

There are three definitions in the literature for the classical twisted double rami-
fication cycle

DRg,A,ωk ∈ CH2g−3+n(Mg,n)

on the moduli space of stable curves:

• via birational modifications of Mg,n [39],

• via the closure of the image of the Abel-Jacobi section [40],

• via logarithmic geometry and the stack Divrel
g [58].

All three are shown to be equivalent in [39, 40]. For the proof of Theorem 1, we
choose the definition of [58], as this will give the shortest path.

For d = k(2g − 2), let ϕ : Mg,n → Picg,n,d be the morphism associated to the
data

π : Cg,n → Mg,n , ωkπ → Cg,n . (48)

To prove Theorem 1, we must show

DR
op
g,A(ϕ)([Mg,n]) = DRg,A,ωk ,
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where [Mg,n] is the fundamental class.

We form the pullback diagram

Divg,A ×Picg,n,d
Mg,n Divg,A ×Mg,n

Mg,n Picg,n,d ×Mg,n .

ψ a×id

ϕ′=ϕ×id

(49)

Following Definition 17, we have

DR
op
g,A(ϕ)([Mg,n]) = ψ∗(ϕ

′)!([Divg,A ×Mg,n]) .

The construction is equivalent to the definition of the class DRg,A,ωk in [58] af-
ter making the standard translation between the Gysin pullback and the virtual
fundamental class as in [11, Example 7.6].

3.8 The double ramification cycle in b-Chow

The construction of the double ramification cycle in [39] naturally yielded a more
refined object: a b-cycle26 on Mg,n which pushes down to the usual double ramifi-
cation cycle on Mg,n. The refined cycle was shown in [41] to have better properties
with respect to intersection products than the usual double ramification cycle. By
considering rational sections of the multidegree-zero relative Picard space over
Picg,n,d, we can in an analogous way define a b-cycle on Picg,n,d refining the uni-
versal twisted double ramification cycle introduced here. In future work, we will
show that this refined universal cycle is compatible with intersection products in
the sense of [41] and that the toric contact cycles of [70] can be obtained by pulling
back these products.

4 Pixton’s formula

4.1 Reformulation

Recall the cycle Pcg,A,d ∈ CHcop(Picg,n,d) defined in Section 0.3.5. We write

P•
g,A,d =

∞∑

c=0

Pcg,A,d ∈
∞∏

c=0

CHcop(Picg,n,d)

26An element of the colimit of the Chow groups of smooth blowups of Mg,n with transition
maps given by pullback.
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for the associated mixed dimensional class. We will rewrite the formula for P•
g,A,d

in a more convenient form for computation.

Several factors in the formula of Section 0.3.5 can be pulled out of the sum
over graphs and weightings. We require the following four definitions:

• Let Gse
g,n,d be the set of graphs in Gg,n,d having exactly two vertices connected

by a single edge. Such graphs are thus described by a partition

(g1, I1, δ1 | g2, I2, δ2) (50)

of the genus, the marking set, and the degree of the universal line bundle.

• Given a vector A = (a1, . . . , an) ∈ Zn satisfying

n∑

i=1

ai = d

and Γδ ∈ Gse
g,n,d corresponding to the partition (50), we define

cA(Γδ) = −(δ1 −
∑

i∈I1

ai)
2 = −(δ2 −

∑

i∈I2

ai)
2 .

• For Γδ ∈ Gse
g,n,d, we write

[Γδ] =
1

|Aut(Γδ)|
jΓδ∗[PicΓδ

]

for the class of the boundary divisor of Picg,n,d associated to Γδ.

• Let Gnse
g,n,d be the set of graphs in Gg,n,d such that every edge is non-separating.

Proposition 36. The class P•
g,A,d is the constant term in r of

exp


1

2


−η +

n∑

i=1

2aiξi + a2iψi +
∑

Γδ∈G
se
g,n,d

cA(Γδ)[Γδ]




 (51)

∑

Γδ∈G
nse
g,n,d

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

[
∏

e=(h,h′)∈E(Γδ)

1− exp
(
−w(h)w(h′)

2
(ψh + ψh′)

)

ψh + ψh′

]
,

for r ≫ 0.
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In the proof of Proposition 36, we will use the following computation which
provides an interpretation for parts of the formula (51) and which will be used
again in Section 8.

Lemma 37. Let A = (a1, . . . , an) ∈ Zn with
∑n

i=1 ai = d. For the line bundle L
on the universal curve

π : Cg,n,d → Picg,n,d

with universal sections p1, . . . , pn, we define

LA = L
(
−

n∑

i=1

ai[pi]
)
.

Then, we have

−π∗c1(LA)
2 = −η +

n∑

i=1

2aiξi + a2iψi .

Proof. The result follows from the definitions of the classes η and ξi:

−π∗c1(LA)
2 = −π∗

(
c1(L)

2 +

n∑

i=1

−2aic1(L)|[pi] + a2i [pi]
2

)

= −η +
n∑

i=1

2aiξi + a2iψi ,

where, for the self-intersection [pi]
2, we have used that the first Chern class of the

normal bundle of pi is given by −ψi. ♦

Proof of Proposition 36. We denote by

Φa(x) =
1− exp(−a

2
x)

x

=
∞∑

m=0

(−1)m(
a

2
)m+1 1

(m+ 1)!
xm =

a

2
−
a2

8
x+ . . .

the power series appearing in the edge-terms of Pixton’s formula.

As a first step, we show that the constant term in r of

exp


1

2

∑

Γδ∈G
se
g,n,d

cA(Γδ)[Γδ]


·

∑

Γδ∈G
nse
g,n,d

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

∏

e=(h,h′)∈E(Γδ)

Φw(h)w(h′)(ψh+ψh′)

(52)
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and the constant term in r of

∑

Γδ∈Gg,n,d

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

∏

e=(h,h′)∈E(Γδ)

Φw(h)w(h′)(ψh + ψh′) (53)

are equal. The formula (53) is a linear combination of boundary strata decorated
by edge-terms (ψh + ψh′)

m(e) for nonnegative integers m(e), e ∈ E(Γδ) – terms of
the form

jΓδ∗

∏

e=(h,h′)∈E(Γδ)

(ψh + ψh′)
m(e) . (54)

A first consequence of the combinatorial rules for computing intersections in the
tautological ring27 of Picg,n,d is that (52) is also a linear combination of such terms.

The decorations (ψh + ψh′)
m(e) on separating edges e = (h, h′) appear naturally in

the self-intersection formula for the boundary divisors [Γδ] since, for Γδ ∈ Gse
g,n,d,

the Chern class of the normal bundle of jΓδ
is given by −(ψh + ψh′).

We show that the coefficients of the term (54) in (52) and (53) have the same
constant term in r. In (53), the coefficient is given by

∑

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|

∏

e=(h,h′)∈E(Γδ)

(−1)m(e)

(
w(h)w(h′)

2

)m(e)+1
1

(m(e) + 1)!
. (55)

On the other hand, let e1, . . . , eℓ ∈ E(Γδ) be the separating edges of Γδ, and let
Γδ ∈ Gnse

g,n,d be the graph obtained from Γδ by contracting these separating edges.
Each separating edge ej corresponds to a unique graph (Γj)δj ∈ Gse

g,n,d obtained by
contracting all edges of Γδ except for ej .

In the product (52), the intersection rules of the tautological ring of Picg,n,d
imply that we obtain multiples of the term (54) by combining

• for j = 1, . . . , ℓ, a total of m(ej)+1 terms [(Γj)δj ] from expanding the power
series

exp


1

2

∑

Γδ∈G
se
g,n,d

cA(Γδ)[Γδ]


 ,

• the terms associated to Γδ ∈ Gnse
g,n,d in the second factor.

27See [33] for the original treatment of the tautological ring of Mg,n. A corresponding treat-
ment for Mg,n will be given in [6, 7]. See also [45, Sections 1.1, 1.7].
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Let M =
∑ℓ

j=1(m(j) + 1), then (54) appears in (52) with coefficient

1

M !

(
M

m(e1) + 1, . . . , m(eℓ) + 1

)
·

(
ℓ∏

j=1

(
cA((Γj)δj )

2

)m(ej)+1

(−1)m(ej )

)

(56)

·
|Aut(Γδ)|

|Aut(Γδ)|

∑

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|

∏

e=(h,h′)∈E(Γδ)

(−1)m(e)(
w(h)w(h′)

2
)m(e)+1 1

(m(e) + 1)!
.

To show the equality of (55) and (56), we combine a number of observations. First,
for the multinomial coefficients, we have

1

M !

(
M

m(e1) + 1, . . . , m(eℓ) + 1

)
=

ℓ∏

j=1

1

(m(ej) + 1)!
.

Second, for the graph morphism Γδ → Γδ contracting the separating edges:

• we have an equality of Betti numbers h1(Γδ) = h1(Γδ),

• for the separating edges ej = (hj , h
′
j) of Γδ, splitting the graph according to

the partition (g1, I1, δ1 | g2, I2, δ2), the value of every weighting w ∈ WΓδ,r is
uniquely determined on hj, h

′
j since

w(hj) = δ1 −
∑

i∈I1

ai mod r , w(h′j) = δ2 −
∑

i∈I2

ai mod r.

Hence, the constant term in r of w(hj)w(h
′
j) is precisely given by cA((Γj)δj).

• concerning the non-separating edges for fixed Γδ with contraction Γδ → Γδ,
the map WΓδ,r → WΓδ ,r

given by restricting weightings w ∈ WΓδ,r to the

remaining half-edges H(Γδ) ⊂ H(Γδ) is a bijection.

The combination of these facts proves equality of (55) and (56) and hence the
equality of (52) and (53).

To conclude the proof, we must show that the remaining part of the exponential
term of (51) can be drawn into the graph sum. Using the projection formula, this
identity is equivalent to showing

(jΓδ
)∗ exp

(
1

2

(
−η +

n∑

i=1

2aiξi + a2iψi

))
=

∏

v∈V(Γδ)

exp

(
−
1

2
η(v)

) n∏

i=1

exp

(
1

2
a2iψi + aiξi

)
,
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which immediately reduces to showing

(jΓδ
)∗

(
−η +

n∑

i=1

(2aiξi + a2iψi)

)
= −

∑

v∈V(Γδ)

η(v) +
n∑

i=1

(2aiξi + a2iψi) .

By Lemma 37,

−η +
n∑

i=1

(2aiξi + a2iψi) = −π∗c1(LA)
2.

Now consider the diagram of universal curves

∐
v∈V(Γ) Cg(v),n(v),δ(v) C′

Γδ
CΓδ

Cg,n,d

∏
v∈V(Γ) Picg(v),n(v),δ(v) PicΓδ

PicΓδ
Picg,n,d

G

π′

Γδ

JΓδ

πΓδ π

jΓδ

where the left and right square are cartesian and the map G is the gluing map
identifying sections of C′

Γδ
→ PicΓδ

corresponding to pairs of half-edges forming
an edge. This map G is proper, representable, and birational.

The space C′
Γδ

is a disjoint union of universal curves

π′
Γδ ,v

: C′
Γδ,v

→ PicΓδ

for v ∈ V(Γ) and the bundle G∗J∗
Γδ
LA restricted to the component C′

Γδ,v
is equal to

the pullback of the line bundle Lv,Av
from the factor Cg(v),n(v),δ(v) (where Av is the

vector formed by numbers ai for i a marking at v, extended by 0 on the half-edges
at v). Then using the projection formula together with Proposition 25, we have

(jΓδ
)∗π∗c1(LA)

2 = (πΓδ
)∗J

∗
Γδ
c1(LA)

2 = (G ◦ πΓδ
)∗(G ◦ πΓδ

)∗c1(LA)
2

=
∑

v∈V(Γδ)

(π′
Γδ,v

)∗c1(Lv,Av
)2 =

∑

v∈V(Γδ)

η(v) +

n∑

i=1

a2iψi + 2aiξi ,

where for the last equality we again use Lemma 37. ♦

In the case n = 0 and d = 0, the formula P•
g,∅,0 takes a slightly simpler shape:

it is the r = 0 term of the formula

exp

(
−
1

2
η

) ∑

Γδ∈Gg,0,0

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

[
∏

e=(h,h′)∈E(Γδ)

1− exp
(
−w(h)w(h′)

2
(ψh + ψh′)

)

ψh + ψh′

]
.

(57)

As explained in Section 0.7, the full formula P•
g,A,d can be reconstructed from P•

g,∅,0.
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4.2 Comparison to Pixton’s k-twisted formula

Given k ≥ 0 and a vector A = (a1, . . . , an) ∈ Zn satisfying

∑

i

ai = k(2g − 2) ,

let Ã = (ã1, . . . , ãn) be the vector with entries ãi = ai + k. Denote by

P c,k
g (Ã) ∈ CHc(Mg,n)

Pixton’s original formula defined in [44, Section 1.1].

In the k = 0 case, A = Ã, and 2−gP g,0
g (Ã) is the class originally conjectured

by Pixton to equal the double ramification cycle associated to the vector Ã. Com-
patibility with the formula for the universal twisted double ramification cycle is
given by the following result.

Proposition 38. Via the map ϕωk
π
: Mg,n → Picg,n,k(2g−2) associated to the uni-

versal data
π : Cg,n → Mg,n , ωkπ → Cg,n ,

the class Pcg,A,k(2g−2) acts as

Pcg,A,k(2g−2)(ϕωk
π
)([Mg,n]) = 2−cP c,k

g (Ã) (58)

for every c ≥ 0.

Proof. The left-hand side of (58) is obtained from Pcg,A,k(2g−2) by substituting

L = ω⊗k
π (59)

in the formula and taking the action. A factor 2−c arises on the left side since all
terms in Pcg,A,k(2g−2) increasing the codimension of the cycle naturally come with

corresponding negative powers of 2 (which is placed as a prefactor on the right
side in [44, Section 1.1]).

Under the substitution (59), the edge terms and weightings modulo r in the two
formulas naturally correspond to each other. Using Proposition 36 and Lemma 37,
we must show

exp

(
−
1

2
π∗c1(ω

⊗k
π (−

n∑

i=1

ai[pi]))
2

)
= exp

(
−
1

2

(
k2κ1 −

n∑

i=1

ã2iψi

))
,
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where again [pi] denotes the class of the image of the section pi : Mg,n → Cg,n.
Defining ωlog

π = ωπ(
∑

i pi), we see

c1(ω
⊗k
π (−

n∑

i=1

ai[pi]))
2 = (kc1(ωlog)−

n∑

i=1

ãi[pi])
2

= k2c1(ωlog)
2 − 2k

n∑

i=1

ãic1(ωlog)|[pi] +
n∑

i=1

ã2i [pi]
2

After pushing forward, the first term gives k2κ1, the second vanishes (since ωlog

restricts to zero on the section pi), and the third gives −
∑

i ã
2
iψi, as desired. ♦

4.3 Comparison to Pixton’s formula with targets

Let X be a nonsingular projective variety over K. The moduli space Mg,n(X, β)
parametrizes stable maps

f : (C, p1, . . . , pn) → X

from genus g, n-pointed curves C to X of degree β ∈ H2(X,Z). The moduli space
carries a virtual fundamental class

[Mg,n(X, β)]
vir ∈ CHvdim(g,n,β)(Mg,n(X, β))

where

vdim(g, n, β) = (dim X − 3)(1− g) +

∫

β

c1(X) + n .

See [11] for the construction of virtual fundamental classes.

Given the data of a line bundle L on X and a vector A = (a1, . . . , an) ∈ Zn

satisfying ∫

β

c1(L) =
n∑

i=1

ai ,

a double ramification cycle

DRg,A(X,L) ∈ CHvdim(g,n,β)−g(Mg,n(X, β))

virtually compactifying the locus of maps f : (C, p1, · · · , pn) → X with

f ∗L ∼= OC

(
n∑

i=1

aipi

)

62



is defined in [45]. Furthermore, the authors define the notion of tautological classes
inside the operational Chow ring CH∗

op(Mg,n(X, β)) of Mg,n(X, β). The main
result of [45] is a Pixton formula for a codimension g tautological class whose
action on [Mg,n(X, β)]

vir yields DRg,A(X,L).

We define a morphism

ϕL : Mg,n,β(X) → Picg,A,d , f 7→ (C, p1, . . . , pn, f
∗L) .

The compatibility result here is

DRg,A(X,L) = ϕ∗
LP

g
g,A,d

(
[Mg,n(X, β)]

vir
)
. (60)

The equality follows by an exact matching of the definition of Pgg,A,d in Section
0.3.5 (after pullback by ϕ∗

L) with the Pixton formula in the main result of [45].

In fact, the compatibility (60) represented the starting point for our investiga-
tion of the universal twisted double ramification cycle here.

5 Proof of Theorem 7

5.1 Overview

We prove here the main result of the paper: for A = (a1, . . . , an) ∈ Zn satisfying

n∑

i=1

ai = d ,

the universal twisted double ramification cycle is calculated by Pixton’s formula

DR
op
g,A = P

g
g,A,d ∈ CHgop(Picg,n,d) .

The result is an equality in the operational Chow group, and therefore an
equality on every finite type family of prestable curves. Given C → B a prestable
curve and a line bundle L on C of relative degree d, we obtain a map

ϕL : B → Picg,n,d .

We must prove

DR
op
g,A(ϕL) = P

g
g,A,d(ϕL) : CH∗(B) → CH∗−g(B) . (61)
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As explained in Section 0.7, the result for general A ∈ Zn can be reduced
to the case n = 0, d = 0, though the case of arbitrary A will be important in
the proof as we proceed through a sequence of special cases. We recall that this
reduction used the invariances II and III for the double ramification cycle and
Pixton’s formula. Note that these will be proved separately and independent of
Theorem 7 in Section 7, so no circular reasoning occurs.

5.2 On an open subset of Mg,n(P
l, β)

As before, let A = (a1, . . . , an) ∈ Zn with

n∑

i=1

ai = d .

We consider here the target X = Pl. Let β be the class of d times a line in Pl. Let

C → Mg,n(P
l, β)

be the universal curve over the moduli of stable maps to Pl, let

f : C → Pl

be the universal map, and let L = f ∗OX(1).

We have a tautological map

ϕL : Mg,n(P
l, β) → Picg,n,d. (62)

We would like to prove an equality of operational classes

ϕ∗
LDR

op
g,A = ϕ∗

LP
g
g,A,d ∈ CHgop(Mg,n(P

l, β)) .

We will apply the main result of [45] which relates the double ramification cycle
there to Pixton’s formula. However, only the action of ϕ∗

LP
g
g,A,d on the virtual

fundamental class [Mg,n(P
l, β)]vir is computed in [45]. Since we are interested here

in the full operational class ϕ∗
LP

g
g,A,d, our first idea is to restrict to the open locus

Mg,n(P
l, β)′ →֒ Mg,n(P

l, β)

where (on each geometric fibre) we have H1(C,L) = 0.

Lemma 39. On the smooth Deligne-Mumford stack Mg,n(P
l, β)′, the fundamental

and virtual fundamental classes coincide.
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Proof. It suffices to show that H1(C, f ∗TPl) = 0 on Mg,n(P
l, β)′. Pulling back the

Euler exact sequence on Pl via f yields

0 → OC → ⊕l+1
1 f ∗OPl(1) → f ∗TPl → 0 . (63)

Taking cohomology yields the exact sequence

⊕l+1
1 H1(C, f ∗OPl(1)) → H1(C, f ∗TPl) → H2(C,OC) . (64)

But H1(C, f ∗OPl(1)) = 0 by assumption, and H2(C,OC) = 0 for dimension rea-
sons. ♦

The next Lemma depends on a careful comparison of the logarithmic and rub-
ber approaches to double ramification cycles, which will be postponed to Section
6.

Lemma 40. Let ϕ′
L be the restriction of ϕL to Mg,n(P

l, β)′. We have an equality
of operational classes

ϕ′∗
LDR

op
g,A = ϕ′∗

LP
g
g,A,d ∈ CHgop(Mg,n(P

l, β)′) . (65)

Proof. By Lemma 15, the two sides of (65) are equal if and only if their actions
on the fundamental class [Mg,n(P

l, β)′] are equal in CH∗(Mg,n(P
l, β)′). By (60),

the action of the right side of (65) on

[Mg,n(P
l, β)′] = [Mg,n(P

l, β)′]vir

equals the restriction of DRg,A(P
l,L) to Mg,n(P

l, β)′.

The cycle DRg,A(P
l,L) is defined in [45] as the pushforward of the virtual

fundamental class of the space of rubber maps28. By Proposition 56 of Section 6.5,
the restriction of DRg,A(X,L) to Mg,n(P

l, β)′ is equal to ϕ′∗
LDR

op
g,A([Mg,n(P

l, β)′]).

♦

5.3 For sufficiently positive line bundles

Let π : C → B be an n-pointed prestable curve over a scheme of finite type over
K. Let L on C be a line bundle of relative degree d. Let

A = (a1, . . . , an) ∈ Zn

28Rubber maps will be discussed in Section 6.3.

65



with
∑n

i=1 ai = d. The line bundle L induces a map

ϕL : B → Picg,n,d .

We say L is relatively sufficiently positive if L is relatively base-point free and
satisfies R1π∗L = 0.

Lemma 41. Let L be a line bundle which is relatively sufficiently positive. Then
we have an equality

DR
op
g,A(ϕL) = P

g
g,A,d(ϕL) : CH∗(B) → CH∗−g(B) . (66)

Proof. For any finite-type scheme B the union of irreducible components of B maps
properly and surjectively to B. Thus the pushforward from the Chow groups of
the irreducible components to that of B is surjective, and hence it suffices to show
the equality (66) of maps of Chow groups for B irreducible.

By relative sufficient positivity,

Rπ∗L = π∗L

is a vector bundle on B of rank N . For a positive integer l, we define

El =

l+1⊕

1

Rπ∗L , (67)

a vector bundle on B of rank r = N(l + 1). Let Ul ⊆ El denote the open locus
of linear systems which are base-point free. Via pullback along ψ : Ul → B, we
obtain a map

ψ∗ : CH∗(B) → CH∗+r(Ul) .

We claim that for l > dimB, the pullback (67) is injective. To prove the injec-
tivity, we show that the boundary El\Ul has codimension in El greater than dimB.
Since El → B is flat with irreducible target, it suffices to bound the codimension
on each geometric fibre over B: for a prestable curve C/K and a sufficiently posi-
tive line bundle L on C, we must show that the locus in

⊕l+1
1 H0(C,L) consisting

of base point free linear systems has a complement of codimension greater than
dimB.

Since L is base point free on C, the dimension of the locus in
⊕l+1

1 H0(C,L)
where the linear system has a base point at some given p ∈ C is (N − 1)(l + 1).
Hence, as p varies, the complement of the base point free locus in

⊕l+1
1 H0(C,L)

has dimension at most 1 + (N − 1)(l + 1). So the codimension is at least

N(l + 1)− 1− (N − 1)(l + 1) = l .
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We have a canonical map g : C ×B Ul → Pl with g∗OPl(1) = L which induces
a map

Ul → Mg,n(P
l, β)

which factors via the locus

Mg,n(P
l, β)′ ⊂ Mg,n(P

l, d)

where H1(C, f ∗OPl(1)) = 0. By construction, the composition

Ul
ψ
−→ B

ϕL−→ Picg,n,d

then factors through the map Mg,n(P
l, β)′ → Picg,n,d induced by the line bundle

f ∗OPl(1) as before. In other words, we have a commutative diagram

Ul Mg,n(P
l, β)′

B Picg,n,d .

ψ ϕf∗O
Pl

(1)

ϕL

Lemma 40 then implies that
(
DR

op
g,A − P

g
g,A,d

)
(ϕL ◦ ψ) : CH∗(Ul) → CH∗−g(Ul) (68)

is the zero map, and we conclude the proof of the Lemma from the commutative
diagram

CH∗+r(U) CH∗+r−g(U)

CH∗(B) CH∗−g(B) .

(DR
op
g,A

−P
g
g,A,d)(ϕL◦ψ)

(DR
op
g,A

−P
g
g,A,d)(ϕL)

ψ∗ ψ∗ (69)

♦

5.4 With sufficiently many sections

Let π : C → B be an n-pointed prestable curve with markings p1, . . . , pn over a
scheme of finite type over K. Let L on C be a line bundle of relative degree d. Let

A = (a1, . . . , an) ∈ Zn

with
∑n

i=1 ai = d. The line bundle L induces a map

ϕL : B → Picg,n,d .
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Lemma 42. For every geometric fibre of C/B, suppose the complement of the
union of irreducible components which carry markings is a disjoint union of trees
of nonsingular rational curves on which L is trivial. Then we have an equality

DR
op
g,A(ϕL) = P

g
g,A,d(ϕL) : CH∗(B) → CH∗−g(B) . (70)

Proof. We can choose A′ = (a′1, . . . , a
′
n) with entries

a′i ≫ 0 ,

n∑

i=1

a′i = d′

large enough so that

L′ = L
( n∑

i=1

a′ipi

)

is relatively sufficiently positive (by Riemann-Roch for singular curves).

We obtain an associated map

ϕL′ : B → Picg,n,d+d′ .

By Lemma 41,

DR
op
g,A+A′(ϕL′) = P

g
g,A+A′,d+d′(ϕL′) : CH∗(B) → CH∗−g(B). (71)

Invariance III of Section 0.6 (proven in Section 7) implies

DR
op
g,A+A′(ϕL′) = DR

op
g,A(ϕL) ,

P
g
g,A+A′,d+d′(ϕL′) = P

g
g,A,d(ϕL) ,

which together with (71) finishes the proof. ♦

5.5 Proof in the general case

To conclude the proof of Theorem 7, will use the invariances of Section 0.6 (proven
in Section 7). As discussed in Section 5.1, we can reduce to showing the result in
the case n = 0, d = 0.29

Let B be an irreducible scheme of finite type over K. Let π : C → B a prestable
curve, and let L on C be a line bundle of relative degree 0. The line bundle L
induces a map

ϕL : B → Picg,0,0 .
29In genus g = 1, we follow a slightly modified strategy since there we must avoid the case

n = 0 for technical reasons (see Remark 10). Instead, we can use the invariances to reduce to
the case g = 1, n = 1, and A = (0). All the proofs below generalize in a straightforward way
since the vector A = (0) does not affect the line bundles involved.
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Lemma 43. There exists an alteration30 B′ → B and a destabilisation

C ′ → C ×B B
′ (72)

such that C ′ admits sections p1, . . . , pm and satisfies the following property:

(C ′/B′, p1, . . . , pm)

is a family of m-pointed prestable curves and for every geometric fibre of C ′/B′,
the complement of the union of irreducible components which carry markings is a
disjoint union of trees of nonsingular rational curves which are contracted by the
morphism (72).

Proof. We first claim, after an alteration B̂ → B, there exists a multisection31

Z ⊂ CB̂ = C ×B B̂ → B̂

satisfying the following two conditions:

(i) Over the generic point of B̂, Z is contained in the smooth locus of CB̂ → B̂.

(ii) Every component of every geometric fibre of CB̂ → B̂ carries at least two
distinct étale multisection points in the smooth locus. In other words, the
étale locus of Z → B̂ meets the smooth locus of every component of every
geometric fibre of CB̂ → B̂ in at least two points.

To prove the above claim, we observe that for every geometric point b of B there
exists an étale map Up → B and a factorisation Up → C whose image meets
the smooth locus of every irreducible component of every geometric fibre in some
Zariski neighbourhood Vb ⊆ B of b at least twice. Choose a finite set of b such
that the Vb cover B, define U to be the union of the Ub, and define Z ′ to be the
closure of the image of U in C. Then Z ′ → B is proper and generically finite. Let

B̂ → B

be a modification which flattens Z ′ (see [71]), and let Z be the strict transform of

Z ′ over B̂. Then
Z → B̂

30An alteration here is a proper, surjective, generically finite morphism between irreducible
schemes.

31By a multisection of C
B̂
→ B̂, we mean a closed substack Z ⊂ C

B̂
such that Z → B̂ is finite

and flat.
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is proper, flat, and generically finite, and hence finite – so condition (i) is satisfied.
Moreover, U already satisfies condition (ii), and the strict transform of a flat map
is just the fibre product, hence Z also satisfies condition (ii).

Let B̃ → B̂ be an alteration such that over B̃ the multisection Z becomes a
disjoint union of sections. In other words the pullback

CB̃ = C ×B B̃ → B̃

has sections p̃1, . . . , p̃m such that, as a set, the preimage of Z is given by the union
of the images of sections p̃1, . . . , p̃m. Such a B̃ exists32 by [23, Lemma 5.6]. We

can assume that the sections p̃i are pairwise disjoint over the generic point of B̃.

By assumption (i) above, the family CB̃ → B̃ with sections p̃1, . . . , p̃m is gener-
ically a stable m-pointed curve (since every component has at least two of the
sections). We therefore obtain a rational map

B̃ 99K Mg,m .

Let B′ → B̃ be a blow-up resolving the indeterminacy of this map33

B′ Mg,m

B̃

(73)

and let C ′ → B′ with sections p1, . . . , pm : B′ → C ′ be the pullback of the universal
curve over Mg,n to B′. Let

CB′ = C ×B B
′

be the pullback of C/B under B′ → B̃ → B̂ → B. Then we have a map f : C ′ →
CB′ fitting in a commutative diagram

C ′ CB′

B′

f

pi p̃i

(74)

such that f is a partial destabilization. On geometric fibers of C ′ → B′, f collapses
trees of rational curves to either nodes or coincident sections p̃i on the geometric
fibers of CB′.

32The base B̂ is excellent since it is finite type over a field.
33As usual, this blowup is constructed by taking the closure of the graph and flattening. Then

we check that this ensures the existence of the map to CB′ as written below.
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To conclude, we must show that for every geometric point b ∈ B′ and every
irreducible component D ⊂ C ′

b which is not contracted by f , we can find a marking

pi(b) ∈ D .

The image of D under f is a component of (CB′)b. By condition (ii) above, f(D)
has at least one p̃i(b) in the smooth locus of f(D) pairwise distinct from all other
p̃j(b). Since there are no components of C ′

b which collapse to p̃i(b), we must have
pi(b) ∈ D. ♦

Lemma 44. We have DR
op

g,∅(ϕL) = P
g
g,∅,0(ϕL) : CH∗(B) → CH∗−g(B).

Proof. We apply Lemma 43 to the family C/B to obtain

h : B′ → B , C ′ → CB′ .

Let L′ be the pullback of L to C ′. After applying Lemma 42 with A = 0 ∈ Zm,
we obtain

DR
op
g,0(ϕL′) = P

g
g,0,d(ϕL′) : CH∗(B

′) → CH∗−g(B
′) . (75)

Since h is proper and surjective, for any α ∈ CH∗(B) there exists α′ ∈ CH∗(B
′)

satisfying h∗α
′ = α. If any operational class maps α′ to 0, then it maps α to 0

because the operation commutes with h∗.

It therefore suffices to prove
(
DR

op

g,∅ − P
g
g,∅,0

)
(ϕL) ◦ h∗ (76)

is the zero map on CH∗(B
′). By the compatibilities of operational classes we have

(
DR

op

g,∅ − P
g
g,∅,0

)
(ϕL) ◦ h∗ = h∗

(
DR

op

g,∅ − P
g
g,∅,0

)
(ϕL ◦ h)

and the proof below will in fact show
(
DR

op

g,∅ − P
g
g,∅,0

)
(ϕL ◦ h) = 0.

By (75), we need only show

DR
op

g,∅(ϕL ◦ h) = DR
op
g,0(ϕL′) : CH∗(B

′) → CH∗−g(B
′), (77)

P
g
g,∅,0(ϕL ◦ h) = P

g
g,0,0(ϕL′) : CH∗(B

′) → CH∗−g(B
′) . (78)

For the map F : Picg,n,0 → Picg,0,0 forgetting the markings, Invariance II from
Section 0.6 for the double ramification cycle and the Pixton formula shows that
we have

DR
op
g,0(ϕL′) = DR

op

g,∅(F ◦ ϕL′)

P
g
g,0,0(ϕL′) = P

g
g,∅,0(F ◦ ϕL′)
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So we are reduced to showing

DR
op

g,∅(ϕL ◦ h) = DR
op

g,∅(F ◦ ϕL′) and P
g
g,∅,0(ϕL ◦ h) = P

g
g,∅,0(F ◦ ϕL′) . (79)

The claims (79) follow from Invariance VI of Section 0.6. As before, let CB′ be
the pullback of C under h, and let LB′ be the pullback of L to CB′ . The map

ϕL ◦ h : B′ → Picg,0,0

is induced by the data
CB′ → B′ , LB′ → CB′ ,

whereas F ◦ ϕL′ : B′ → Picg,0,0 is induced by

C ′ → B′ , L′ → C ′ .

By construction, we have a partial destabilization C ′ → CB′ over B′, and the line
bundle L′ is the pullback of LB′ under this map. Hence the equalities (79) follow
from Invariance VI of Section 0.6. ♦

6 Comparing rubber and log spaces

6.1 Overview

Our goal here is to compare the stack of stable rubber maps associated to a line
bundle L on a target X (introduced by Li [55] and studied by Graber-Vakil [34])
to the stack Rubg,A of Marcus-Wise (see Section 3.3) and our operational class
DR

op
g,A. Rubber maps are reviewed in Section 6.3 and connected to the logarithmic

space in Section 6.4. The relationship between the construction of Marcus-Wise
and DR

op
g,A is Lemma 55 of Section 6.5.2. The comparison to the class of Graber-

Vakil is carried out in [58] in the case where the target X is a point. We require
the case where

X = Pl and L = O(1) ,

but only over the unobstructed locus

Mg,n(P
l, d)′ ⊂ Mg,n(P

l, d) ,

see Section 5.2. We will treat the case of a general nonsingular projective target
X since restricting to Pl provides no simplification (though the unobstructed locus
may be rather small for general X). The final comparison result is Proposition 56
in Section 6.5.3.
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6.2 Refined definition of the logarithmic rubber space

As described in Section 3.4, Marcus and Wise define Rubrel
g to be the moduli space

of pairs (C, P, α) where P is a tropical line on S and

α : C → P

is an S-morphism such that on each geometric fibre over S the values taken by α
on the irreducible components of C are totally ordered in (M̄gp

S )s. However, with
the above definition, certain key results of their paper (in particular concerning
the comparison to spaces of rubber maps) are not correct as stated.

To explain the problem, we restrict to the case where the base C is a geometric
log point. Subdividing P at the images of the vertices of C under the map α yields
a divided tropical line Q (in the language of [58]). It is asserted in the discussion
above [58, Proposition 5.5.2] that the fibre product C ×P Q is again a log curve
over S, which, in general, is not true. For example, take M̄S to be the sub-monoid
of Z2 generated by (1, 1), (1, 0), and (1,−1), and C, α to be as illustrated in
Figure 1. In the fibre product, the edge with length (1, 0) must be subdivided into
two shorter edges, but (1, 0) is an irreducible element of M̄S . In fact, failure of
divisibility is the only thing that can go wrong.

Lemma 45. Let (C, P, α) be a point of Rubrel
g over a geometric log point B, and

let Q be obtained from P by subdividing at the image of α. Then the following are
equivalent:

(i) The fibre product C ×P Q is a log curve over B.

(ii) Let e be an edge of ΓC between vertices u and v (satisfying α(v) ≥ α(u))

with length ℓe ∈ M̄S and slope κe =
α(v)−α(u)

ℓe
. Then, for every y ∈ Image(α)

with α(u) < y < α(v), the monoid M̄B contains the element y−α(u)
κe

.

Proof. The characteristic monoid at a singular point with length ℓe is given by the
monoid

{(a, b) ∈ M̄2
b : ℓe | a− b} . (80)

Taking the fibre product over P with Q subdivides the characteristic monoid at
the element

y − α(u)

κe
∈ M̄gp

B ⊗Z Q .

If y−α(u)
κe

lies in M̄B, then the fiber product is easily seen to be a log curve. If not,
then the subdivision is not even reduced. ♦
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(0, 0)

(1, 1)

(2, 0)

(1, 0)

(1,−1)

(1, 1)

α

Figure 1: A point of Rub

Definition 46. We define R̃ub
rel

to be the full subcategory of Rubrel consisting
of objects (C, P, α) which, on each geometric fibre over B, satisfy the equivalent

conditions of Lemma 45. We define R̃ub to be the fibre product of R̃ub
rel

over
Picrel with Pic.

Remark 47. The double ramification cycle DRop can be defined as the operational
class induced by the map Rub → Pic following Definition 17. Applying the same

definition to the composite map R̃ub → Pic yields the same operational class, by
Proposition 25.

6.3 The stack of prestable rubber maps

Let M(X) be the stack of maps from marked prestable curves to X . An S-point
of M(X) is a pair

(C/S, f : C → X)

where C/S is prestable with markings. To simplify notation, we will often suppress
the markings.

The space of rubber maps associated to a line bundle L on X is summarised
in [45]: a map to rubber with target X is a map to a rubber chain of CP1-bundles
P(OX ⊕L) over X attached along their 0 and ∞ divisors.

To facilitate our comparison, we begin by writing the definition explicitly. Let
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P denote the projective bundle P(OX ⊕ L). The map collapsing the fibers,

ρ : P → X (81)

admits two sections r0, r∞ : X → P corresponding to OX and L respectively.

Definition 48. An (X,L)-rubber target (R/S, ρ, r0, r∞) is flat, proper, and finitely
presented

R → S

and a collapsing map ρ : R → XS with two sections

r0, r∞ : XS → R

satisfying the following properties:

(i) Every geometric fiber Rs is isomorphic over Xs to a finite chain

P ∪P ∪ . . . ∪P (82)

with the components attached successively along the respective 0 and ∞
divisors. The collapsing maps (81) on the components together define

ρs : Rs → Xs .

The 0 and∞ sections of ρs are determined by the 0 section of first component
and the ∞ section of last components of the chain (82).

(ii) Étale locally near every point s ∈ S, the data of (R/S, ρ, r0, r∞) is pulled
back from a versal deformation space described by Li [54] with one dimension
for every component of the singular locus of (82).

Definition 49. The stack Rubpre(X,L) of prestable rubber maps to L is a fibred
category over M(X) whose fibre over a map S → M(X) consists of three pieces
of data:

(i) a prestable curve C̃/S and a partial stabilisation34 map τ : C̃ → CS which is
allowed to contract genus 0 components with 2 special points,

(ii) an (X,L)-rubber target (R/S, ρ, r0, r∞),

34CS is not necessarily a stable curve.
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(iii) a map f̃ : C̃ → R for which the following diagram commutes:

C̃ R

CS XS .

f̃

τ ρ

f

(83)

The map f̃ in (iii) is finite over the singularities of R/XS and predeformable35.
Moreover, over each geometric point s ∈ S, the image f̃(C̃s) meets every compo-
nent of Rs.

An isomorphism between two objects

(C̃ → CS, R, r0, r∞, C̃ → R) and (C̃ ′ → CS, R
′, r′0, r

′
∞, C̃

′ → R′)

over S → M(X) is given by the data of isomorphisms

C̃ ′ ∼
−→ C̃

over CS and
R′ ∼

−→ R

over XS, compatible with the markings and such that the diagram

C̃ ′ C̃

R′ R

∼

∼

commutes. We leave the definition of the cartesian morphisms to the careful reader.

Suppose now that we fix a genus g and a vector of integers A of length n. We
define the stack Rub

pre
g,A(X,L) with objects being tuples

(τ : (C̃, p1, . . . , pn) → CS , R/XS , f̃ : C̃ → R) (84)

where (C̃, p1, . . . , pn) is a prestable curve of genus g with n markings. The data
(84) are as for Rubpre(X,L). Moreover,

• if ai > 0, pi ∈ C̃ is mapped to the 0-divisor with ramification degree ai,

• if ai < 0, pi ∈ C̃ is mapped to the ∞-divisor with ramification degree −ai,

• if ai = 0, pi ∈ C̃ is mapped to the smooth locus of R away from the 0 and
∞-divisors.

35See [54].
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6.4 Comparison to the logarithmic space

The pullback of L from X to the universal curve over M(X) induces a map
M(X) → Pic. The key comparison result is the following.

Proposition 50. The stack Rub
pre
g,A(X,L) is naturally isomorphic to the fibre

product of R̃ubg,A over Pic with M(X) along the map induced by L,

Rub
pre
g,A(X,L)

∼
= R̃ubg,A ×Pic M(X) .

Proof. The right hand side comes with a built-in log structure, but the left side
does not. Our isomorphism will be between the underlying stacks. Our proof is
based on the discussion above [58, Proposition 5.5.2], and we will use the language
of divided tropical lines of [58].

We begin by building a map from the right to the left. We are given a log curve
C/S, a tropical line P on S, a map α : C → P whose image is totally ordered, and
a map f : C → X , such that f ∗L lies in the isomorphism class OC(α).

The Gtrop
m -torsor P is rigidified by the least element among the images of the

irreducible components of C (here we use the total ordering condition), and hence
comes with a canonical Gm-torsor P → P (if we use the rigidification to identify
P = Gtrop

m then P = Glog
m ). The pullback α∗P gives a canonical Gm-torsor on C,

which is isomorphic to f ∗L∗ up to pullback from S. In other words, the bundle
α∗P ⊗ f ∗L∨ descends to a line bundle on S which we denote M.

The images of the irreducible components of C yield a subdivision Q of P,
and we define a destabilisation C̃ = C ×P Q of C, which is a log curve over S by
Lemma 45. This Q comes with a canonical Gm-torsor Q by pulling back P from
P; this Q is then a 2-marked semistable genus 0 curve by [58, Proposition 5.2.4].
We define an (X,L)-rubber target R over S by the formula

R = Hom((L ⊗M)∗, Q) .

Here, we pull back and take Gm-equivariant homomorphisms over XS.

Write f̃ : C̃ → X . We need a predeformable map C̃ → R, equivalently an
equivariant logarithmic map f̃ ∗L∗ → Q over XS. It is enough to give a map
f ∗L → P (since then we can tensor over P with Q), which reduces to writing
down an element of

HomC(f
∗(L⊗M), α∗P ) = HomC(f

∗L ⊗ f ∗L∨ ⊗ α∗P, α∗P )

= HomC(α
∗P, α∗P ),

(85)

which contains the identity. The scheme-theoretic map is predeformable as it
comes from a logarithmic map, see [48].
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Finally we check that no component of C̃ is mapped to a non-smooth point of
R and that every component is hit. The target R is constructed by subdividing
f ∗L at images of components of C, and then C̃ is constructed by subdividing C
at points lying over these divisions, so both assertions are clear.

Now we construct a map from left to right. Given a prestable rubber map to
L over a base S, we first need to equip S with a suitable log structure.

The curve R/XS is a map XS → Mss
0,2, giving a (minimal) log structure on XS

by pullback. Lemma 51 below shows that this log structure descends to S. The
curve R/XS now carries the structure of a log curve, and similarly the quotient
[R/Gm] descends to S (again by the Lemma 51), determining our tropical line P
— which evidently satisfies the divisibility condition in Lemma 45.

It remains to verify that the map C̃ → R descends to a map C → P and that
the total ordering condition is satisfied. Write

τ : C̃ → C .

By the proof of [58, Proposition 5.5.2], we see R→ τ∗τ
∗R is an isomorphism, hence

the map descends as required. The condition that no components are mapped to
the nodes implies that the values of α on the irreducible of C are a subset of the
irreducible components of R, in particular are totally ordered. ♦

Lemma 51. Let (R/S, ρ, r0, r∞) be an (X,L)-rubber target. Then there exists a
(minimal) log structure on S such that R/XS can be equipped with the structure
of a log curve making XS strict over S. The quotient log stack [R/Gm] descends
to a divided tropical line on S.

Proof. The curve R/XS with markings ri is prestable and hence admits a minimal
log structure. We must verify that the resulting log structure on XS descends to
S. After a finite extension of K we may assume X has a K point, so that

π : XS → S

admits a section x : S → XS, and we can equip S with the pullback log structure.
It remains to construct an isomorphism π∗x∗MXS

→ MXS
. We start by building

a map from left to right.

We first build a map on the level of characteristic monoids. The characteristic
monoid at a geometric point t ∈ XS is given by Nℓ, where ℓ is the length of the
chain of projective lines of R over t. Crucially, the irreducible elements of Nℓ

come with a total order, given by proximity of the corresponding singularity to
the r0 marking. This rigidifies the characteristic monoid, so as we move along the
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fibre over π(t) the characteristic monoids are canonically identified. We obtain
canonical identifications

(x∗MXS
)π(t)

∼
−→ (M̄XS

)t ,

which give an isomorphism

π∗x∗M̄XS

∼
−→ M̄XS

.

To construct an isomorphism of log structures, we will use the perspective of
[13, Section 3.1] that a log structure is a monoidal functor from the groupified
characteristic monoid to the stack of line bundles. The rubber target is by defi-
nition pulled back from Li’s versal deformation spaces, so it suffices to construct
our map in that setting. We can therefore assume that S is regular and the locus
of non-smooth curves is a reduced divisor in XS. Since our map will be canonical,
we may further shrink S to be atomic36. Then M̄X/S is generated by its global
sections, and there is a natural isomorphism of sheaves on XS

ϕ : Nℓ ∼
−→ M̄X/S

where ℓ is the number of singular points in the fibre of C over any point of XS lying
over the closed stratum of S. Given 1 ≤ i ≤ ℓ, write Di for the Cartier divisor
in XS where the singularity at distance i from the first marking persists. Then
ϕ sends the ith generator of Nℓ to the section corresponding to the line bundle
OXS

(Di). To build the required map of log structures

π∗x∗MXS

∼
−→MXS

,

we must construct an isomorphism

π∗x∗OXS
(Di)

∼
−→ OXS

(Di) .

Condition (i) of the Definition 48 implies that the underlying point set of Di is a
union of fibres of XS/S. Since S is regular and XS is smooth over S, it follows
that

Di = π∗x∗Di

giving the required isomorphism.

The quotient log stack [R/Gm] is a divided tropical line on XS with divisions
coming from the divisorsDi. We can identify the underlying tropical line withGtrop

m

by specifying that the smallest element in the sequence of divisions is mapped to
0. We have already established that these divisions Di descend to S, hence so does
the divided tropical line. ♦

36[1, Definition 2.2.4].
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After restriction to the locus where the infinitesimal automorphisms are trivial,
we obtain a stable version of Proposition 50. Let Mg,n(X, β) denote the stack of
stable maps from n-pointed curves to X representing the class β. The line bundle
L determines a map

Mg,n(X, β) → Pic

and we can pullback R̃ubg,A as before. Let

Rubg,A(X,L) ⊂ Rub
pre
g,A(X,L)

be the locus where the infinitesimal automorphisms are trivial.

Lemma 52. The stack Rubg,A(X,L) is the fibre product of R̃ubg,A over Pic with
Mg,n(X, β) along the map given by L.

Rubg,A(X,L)
∼
= R̃ubg,A ×Pic Mg,n(X, β) .

Next, we will compare the virtual fundamental classes on these spaces. We will
carry out the comparison on a smaller open locus. We define

(i) Mg,n(X, β)
′ is be the open locus of maps (C, f : C → X) in Mg,n(X, β)

where H1(C, f ∗L) = 0.

(ii) Rubg,A(X,L)
′ = Rubg,A(X,L)×Mg,n(X,β)

Mg,n(X, β)
′.

In Section 5.2, we considered the case X = Pl and showed that this unobstructed
locus is large enough to control the cycles relevant to Theorem 7. For general X ,
the unobstructed locus might be very small (and possibly empty).

6.5 Comparing the virtual classes

6.5.1 Overview

We begin by briefly discussing of several spaces which will be relevant in setting
up the obstruction theories. Let

Mss
g,n ⊂ Mg,n

be the semistable locus (where every rational curve has at least two distinguished
points). We write T for the algebraic stack with log structure which parametrises
tropical lines with at least one division. There are natural maps

Mss
0,2 → T and Mss

0,2 → BGm ,
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the former defined by dividing Gtrop
m at 1 and at the smoothing parameters of the

nodes, and the latter defined by the normal bundle at the first marking. The
induced map

Mss
0,2 → T ×BGm (86)

is an isomorphism by [2, Proposition 3.3.3].

As Rubrel is the moduli stack of tuples (C, α : C → P) where P is a tropical
line and the images of the irreducible components of C are totally ordered, there
is a natural map

Rubrel → T (87)

sending (C, α : C → P) to the tropical line P with the division given by the images
of the irreducible components of C.

We will construct a map

Rubg,A(X,L)
′ → Mss

0,2 (88)

lifting the morphism (87) by the following argument. A point of Rubg,A(X,L)
′ is

a tuple (C, α : C → P, f : C → X) where f ∗L lies in the class37 [OC(α)]. However,
as P is divided, there is a unique isomorphism P

∼
−→ Gtrop

m where the smallest
division maps to 0. The universal Gm torsor Glog

m → Gtrop
m pulls back to a well-

defined Gm-torsor O
∗
C(α) on C, and the difference f ∗L∗ ⊗O∗

C
O∗
C(−α) descends to

a Gm-torsor on S by the construction of Rubg,A(X,L)
′ as a fibre product. The

Gm-torsor on S induces a map Rubg,A(X,L)
′ → BGm. Combined with the map

Rubg,A(X,L)
′ → T via (87), we obtain the map (88).

The space Rubg,A(X,L)
′ carries three virtual fundamental classes by the fol-

lowing three constructions:

(i) The class DRop
g,A(ϕL)([Mg,n(X, β)

′]) obtained by applying DR
op
g,A to the (vir-

tual) fundamental class of Mg,n(X, β)
′ via the map ϕL.

(ii) The class obtained from a two-step obstruction theory described by Marcus
and Wise [58] for the map Rubg,A(X,L)

′ → Mg,n × T .

(iii) A class coming from a two-step obstruction theory studied by Graber and
Vakil [34] for the map

Rubg,A(X,L)
′ → Mg,n(X, β)

′ ×Mss
0,2 .

We will prove (i)-(iii) are all equal.

37Here, [OC(α)] is an equivalence class under isomorphisms and tensoring with pullbacks from
S.
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6.5.2 DRop and the obstruction theory of Marcus-Wise

The obstruction theory of Marcus-Wise is a two-step obstruction theory, a notion
which we now recall. Unless otherwise stated, by perfect obstruction theory we
mean an obstruction theory which is perfect in amplitude [−1, 0].

Definition 53. A two-step obstruction theory for a map f : X → S consists of a
factorisation

X → Y → S

together with prefect relative obstruction theories for X/Y and for Y/S.

A two-step obstruction theory induces a virtual pullback by composition.38 If
S has a fundamental class [S], the virtual pullback of [S] is the virtual fundamental
class of X associated to the two-step obstruction theory.

We first recall the two-step obstruction theory of [58] in the case when X is a
point. We have a diagram

Rubg,A(pt,O)′ R̃ubg,A

Mg,n × T .

(89)

A perfect relative obstruction theory for the horizontal map is given in [58, Section
5.6.3], and for the vertical map in [58, Proposition 5.6.5.3]; while the reader might

expect that these arguments apply to Rubg,A rather than the root stack R̃ubg,A,
Marcus and Wise in fact assume in both constructions the divisibility conditions of

Lemma 45, hence their constructions in fact apply to R̃ubg,A (and not to Rubg,A).
This two-step obstruction theory coincides with the rubber theory of Graber-Vakil,
as shown in [58, Section 5.6.6]. Moreover, the virtual fundamental class obtained
equals the operational class of Divg,A, see [58, Theorem 5.6.1]; again, these results

all assume the divisibility condition of Lemma 45, and hence apply to R̃ubg,A in
place of Rubg,A.

Returning to the case of arbitrary (X,L), we can construct a similar commu-
tative diagram

Rubg,A(X,L)
′ R̃ubg,A

Mg,n × T .

(90)

38A two-step obstruction theory also induces a perfect obstruction theory for X/S in amplitude
[−2, 0], but we will not use the latter construction.
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The vertical map is unchanged and so again has a perfect relative obstruction
theory by [58, Proposition 5.6.5.3]; in fact the morphism is a local complete inter-
section, and the obstruction theory of [58, Proposition 5.6.5.3] is just the relative
tangent complex.

We need to supply a perfect obstruction theory for the horizontal map

R̃ubg,A(X,L)
′ → Rubg,A ,

which we can factor as

Rubg,A(X,L)
′ → Mg,n(X, β)

′ ×Mg,n
R̃ubg,A → R̃ubg,A . (91)

The second map is a base change of the unobstructed map Mg,n(X, β)
′ → Mg,n,

hence is unobstructed. For the first map, consider the pullback square

Rubg,A(X,L)
′ Mg,n(X, β)

′

Mg,n(X, β)
′ ×Mg,n

R̃ubg,A Mg,n(X, β)
′ ×Mg,n

Picg,n .

(92)

The right vertical arrow is a section of a base change of the smooth morphism
Picg,n → Mg,n, and as such is lci and has a perfect relative obstruction theory given
by the relative tangent complex R1π∗OC . Pullback yields a corresponding perfect
obstruction theory for the left vertical arrow. This gives a two-step obstruction

theory for the composite map Rubg,A(X,L)
′ → R̃ubg,A, from which we obtain a

virtual fundamental class following [56].

The discussion here is a very slight generalisation of the obstruction theory
constructed in [58, Proposition 5.6.3.1].

Definition 54. The two-step obstruction theory for the diagonal map of (90),

Rubg,A(X,L)
′ → Mg,n × T

is the Marcus-Wise obstruction theory.

Lemma 55. The push forward along

ψ : Rubg,A(X,L)
′ → Mg,n(X, β)

′

of the virtual fundamental class of the Marcus-Wise theory on Rubg,A(X,L)
′

equals the class DR
op
g,A(ϕL)([Mg,n(X, β)

′]) obtained via the map

ϕL : Mg,n(X, β)
′ → Picg,n .
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Proof. From ϕL, we obtain maps

ϕ′
L : Mg,n(X, β)

′ → Mg,n(X, β)
′ ×Mg,n

Picg,n ,

ϕ′′
L : Mg,n(X, β)

′ → Mg,n(X, β)
′ ×Picg,n .

Both are lci morphisms because Picg,n/Mg,n is smooth. By Definition 17 and
Section 3.6 we have

DR
op
g,A(ϕL)([Mg,n(X, β)

′]) = ψ∗(ϕ
′′
L)

![Mg,n(X, β)
′ × R̃ubg,A]

= ψ∗(ϕ
′
L)

![Mg,n(X, β)
′ ×Mg,n

R̃ubg,A] .

The virtual fundamental class of the Marcus-Wise theory is the virtual pullback
of the fundamental class of Mg,n × T along the composition

Rubg,A(X,L)
′ 1
→ Mg,n(X, β)

′ ×Mg,n
R̃ubg,A

2
→ R̃ubg,A

3
→ Mg,n × T . (93)

The map (3) is lci and the obstruction theory is the relative tangent complex, so

the pullback of the fundamental class is the fundamental class of R̃ubg,A. The
map (2) is unobstructed, so the (virtual) pullback of the fundamental class is again
the fundamental class. The obstruction theory of the map (1) is defined by pulling
back the relative tangent complex of the lci morphism

Mg,n(X, β)
′ → Mg,n(X, β)

′ ×Mg,n
Picg,n

via the pullback square

Rubg,A(X,L)
′ Mg,n(X, β)

′ ×Mg,n
R̃ubg,A

Mg,n(X, β)
′ Mg,n(X, β)

′ ×Mg,n
Picg,n ,

ϕ′

L

(94)

so the virtual pullback of the fundamental class of Mg,n(X, β)
′ ×Mg,n

R̃ubg,A is

equal to the Gysin pullback (ϕ′
L)

![Mg,n(X, β)
′ ×Mg,n

R̃ubg,A]. ♦

6.5.3 Marcus-Wise and Graber-Vakil

As recalled above, Marcus-Wise define a two-step obstruction theory for the map

Rubg,A(X,L)
′ → Mg,n × T .
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Graber and Vakil consider an obstruction theory for the map

Rubg,A(X,L)
′ → Mg,n(X, β)

′ ×Mss
0,2 . (95)

We wish to show an equality of the corresponding virtual fundamental classes
on Rubg,A(X,L)

′. Since
Mss

0,2 = T ×BGm ,

and that the maps Mg,n(X, β)
′ → Mg,n and BGm → SpecK are unobstructed,

we have an unobstructed map

Mg,n(X, β)
′ ×Mss

0,2 → Mg,n ×Mss
0,2 → Mg,n × T .

Our final step is therefore to compare the obstruction theories (and thereby the
corresponding virtual pullbacks) between Marcus-Wise and Graber-Vakil [34, 55].
We will match the obstruction spaces when the base S is a point. The full matching
of deformation theories is similar and will be treated in [61]. The claims are also
required for [58].

Suppose we are given the data of a point in Rubg,A(X,L)
′(S),

(τ : C̃ → CS, R/XS, ϕ : C̃ → R, f : CS → XS, p1, . . . , pn, f
∗L

∼
−→ OC(α)) . (96)

Proposition 56. The restriction to Mg,n(X, β)
′ of the class DRg,A(X,L) of [45]

is equal to the class obtained by letting DR
op
g,A act on the fundamental class of

Mg,n(X, β)
′ via the map induced by L.

Proof. The primary obstruction of Graber-Vakil lies in

H0(C̃, ϕ−1Ext1(ΩR/XS
(logD),OR)) . (97)

Here, D is the divisor on R given by the sum of the two markings r0 and r∞, and
ΩR/XS

(logD) is the sheaf of relative 1-forms on R/XS allowed logarithmic poles
along D (a coherent sheaf on R). The obstruction space (97) is isomorphic to
the product of the deformation spaces of the nodes of R and coincides with the
obstruction space for the map

R̃ubg,A → Mg,n × T

the vertical arrow in (90)), coming from [58, Proposition 5.6.5.3] (where they

assume the divisibility conditions of Lemma 45, hence the results apply to R̃ubg,A
and not to Rubg,A).
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Suppose that the primary obstruction vanishes. Denote by

TR/XS
= HomOR

(ΩR/XS
,OR)

the relative tangent sheaf. There is a secondary obstruction in

H1(C̃, ϕ†(TR/XS
)) , (98)

where the ϕ† is the torsion-free part of ϕ∗, see [34] and [58]. The obstruction space
(98) is the image of the obstruction space H1(CS, f

∗TR) = H1(CS,OCS
) for the

map

Rubg,A(X,L)
′ → R̃ubg,A

the horizontal arrow in (90), coming from [58, Proposition 5.6.3.1].

When both of these obstructions vanish, the deformations are a torsor under
H0(C̃, ϕ†TR/XS

), an extension of the first term of the obstruction complex in [58,
Proposition 5.6.5.3] by the first term of the obstruction complex of [58, Proposition
5.6.4.1]. The comparison of the obstruction theories is complete. ♦

7 Invariance properties

7.1 Overview

We prove here the invariance properties of the universal twisted double ramification
cycle as presented in Section 0.6.

We start with an object of ϕL : S → Picg,n,d given by a flat family of prestable
n-pointed genus g curves together with a line bundle of relative degree d,

π : C → S , p1, . . . , pn : S → C , L → C . (99)

Let DRop
g,A,L = ϕ∗

LDR
op
g,A ∈ CHgop(S) be the twisted double ramification cycle asso-

ciated to the above family (99) and the vector

A = (a1, . . . , an) , d =

n∑

i=1

ai .

Theorem 7 asserts that DRop
g,A is equal to the tautological class

P
g
g,A,d ∈ CHgop(Picg,n,d) .

If we assume Theorem 7, we have a choice of proving the invariance properties
either for DRop

g,A or for the formula in tautological classes. In fact, since both sides
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of Invariances II, III and VI are used in the proof of Theorem 7, we will have to
prove these two sides separately in each of these cases. In fact, we will do this for
all the invariances, as each side yields interesting perspectives. Also, we will show
the invariances of Pixton’s formula hold not just for the codimension g part Pgg,A,d,
but for the full mixed degree class

P•
g,A,d ∈

∞∏

c=0

CHcop(Picg,n,d) .

7.2 Proof of Invariance I: Dualizing

We want to show the invariance

DR
op
g,−A,L∗ = ǫ∗DRop

g,A,L ,

where ǫ : Picg,n,−d → Picg,n,d is the natural map obtained via dualizing the line
bundle. It is enough to show the invariance

DR
op
g,−A = ǫ∗DRop

g,A (100)

of the universal twisted double ramification cycles. The invariance (100) can be
deduced by applying Lemma 26 to the following commutative diagram of mor-
phisms, where the horizontal morphisms are the corresponding Abel-Jacobi maps
and the vertical morphisms are isomorphisms

Divg,A Picg,n,d

Divg,−A Picg,n,−d .

ǫ̂ ǫ

Here, in the language of Section 3.3, the morphism ǫ̂ is induced by the natural
map π∗M̄

gp
C /M̄

gp
S → π∗M̄

gp
C /M̄

gp
S given by inversion in M̄gp

C . ♦

We now prove the invariance

P•
g,−A,−d = ǫ∗P•

g,A,d (101)

using the formulas for these cycles from Proposition 36. The equality is then
implied by the following observations:
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• We write LA = L(−
∑n

i=1 aipi) for the twisted universal line bundle on the
universal curve π : C → Picg,n,d, and we use Lemma 37 to obtain

ǫ∗

(
−η +

n∑

i=1

2aiξi + a2iψi

)
= −ǫ∗π∗c1(LA)

2 = −π∗c1((LA)
∗)2

= −π∗(−c1(LA))
2 = −π∗c1(LA)

2

= −η +
n∑

i=1

2aiξi + a2iψi .

• Given a prestable graph Γδ describing a stratum in Picg,n,−d, the map ǫ
sends this stratum isomorphically to the stratum of Γ−δ (with an associated
commutative diagram of gluing morphisms over Mg,n). Combined with the
equality cA(Γδ) = c−A(Γ−δ) for Γδ ∈ Gse

g,n,d , we see that the first line of
formula (51) for P•

g,A,d has the desired invariance.

• For the sum over graphs and weightings, we clearly have h1(Γδ) = h1(Γ−δ)
and Aut(Γδ) = Aut(Γ−δ). Moreover, we have a natural bijection of the
admissible weightings modulo r

WΓδ,r → WΓ−δ,r , w 7→ (h 7→ r − w(h) mod r).

The map of weightings leaves the edge terms of the formula (51) invariant
since they only depend on products w(h)w(h′) for and edge (h, h′) – which
are of the form a(r − a) and thus sent to (r − a)a.

Therefore, the formula of Proposition 36 applied to the two sides of (101) yields
the same result. ♦

7.3 Proof of Invariance II: Unweighted markings

Assume we have an additional section pn+1 : S → C of π which yields an object of
Picg,n+1,d,

π : C → S , p1, . . . , pn, pn+1 : S → C , L → C . (102)

Then, for the vector A0 ∈ Zn+1 obtained by appending 0 (as the last coefficient)
to A, we want to show the invariance

DR
op
g,A0,L

= DR
op
g,A,L . (103)
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For the map Mg,n+1 → Mg,n induced by forgetting the last marking, we have
a diagram of cartesian squares

Divg,A0 Divg,A

Picg,n+1,d Picg,n,d

Mg,n+1 Mg,n ,

F (104)

where the morphism F is syntomic. In particular, for 0 ∈ Zn the zero vector,
the stack Divg,0 can be obtained by pulling back Divg,∅ from Picg,0,0. Then,
as a consequence of the above cartesian square and the definition of the double
ramification cycle, Lemma 26 yields

F ∗DR
op
g,A = DR

op
g,A0

. (105)

Since the morphisms S → Picg,n,d and S → Picg,n+1,d used to define DR
op
g,A,L and

DR
op
g,A0,L

fit in a diagram

S

Picg,n+1,d Picg,n,d
F

the equation (105) immediately proves the invariance (103). ♦

We now prove the corresponding invariance

F ∗P•
g,A,d = P•

g,A0,d (106)

of Pixton’s formula. First, since the map F does not change the curve or the line
bundle, we have a Cartesian diagram

Cg,n+1,d Cg,n,d

Picg,n+1,d Picg,n,d .

F̂

π′ π

F

The universal line bundles Lg,n,d and Lg,n+1,d on Cg,n,d and Cg,n+1,d satisfy

F̂ ∗Lg,n,d = Lg,n+1,d .
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Similarly, for the canonical line bundles of π, π′ we have F̂ ∗ωπ = ωπ′. Combining
these facts, we see that F pulls back the operational classes η, ξi, ψi on Picg,n,d to
the corresponding classes on Picg,n+1,d.

Next, given a graph Γδ ∈ Gg,n,d, we have a fibre diagram

∐
v∈V(Γ) PicΓv,δ

Picg,n+1,d

PicΓδ
Picg,n,d

∐
v jΓv,δ

π

jΓδ

(107)

where, for v ∈ V(Γ), we denote by Γv,δ ∈ Gg,n+1,d the graph obtained from Γδ by
adding marking n+ 1 at v and leaving the remaining data fixed.

Using the expression (51) given in Proposition 36, we conclude the proof of
(106) by the following observations:

• The invariance of η, ξi, ψi under F implies

F ∗(−η +
n∑

i=1

2aiξi + a2iψi) = −η +
n+1∑

i=1

2aiξi + a2iψi,

where we use an+1 = 0.

• From the fibre diagram (107) and the equality cA(Γδ) = cA0(Γv,δ) for Γδ ∈
Gse
g,n,d and any v ∈ V(Γ), the sum over the terms cA(Γδ)[Γδ] pulls back cor-

rectly.

• For all Γδ ∈ Gg,n,d and v ∈ V(Γ), h1(Γδ) = h1(Γv,δ) since the Betti number is
independent of the position of the markings. Moreover, the automorphism
group Aut(Γδ) acts on V(Γδ) and by the orbit-stabilizer formula, the size of
the orbit Aut(Γδ) · v of v and the size of its stabilizer Aut(Γδ)v satisfy

|Aut(Γδ) · v| =
|Aut(Γδ)|

|Aut(Γδ)v|
. (108)

The stabilizer Aut(Γδ)v is exactly equal to the automorphism group Aut(Γv,δ)
of the graph Γv,δ, since the marking n+1 at v forces this vertex to be fixed.

• As Γδ runs through Gnse
g,n,d, the graphs Γv,δ run through Gnse

g,n+1,d. The equal-
ity (108) precisely implies that the corresponding graph sums (weighted by
the inverse size of automorphism groups) correspond to each other under
pullback by F .
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• Finally, the weightings WΓδ,r and WΓv,δ,r are naturally bijective.

Combining the above observations, we see that also the second line of (51) trans-
forms under pullback of F as expected. ♦

7.4 Proof of Invariance III: Weight translation

Let B = (b1, . . . , bn) ∈ Zn satisfy
∑n

i=1 bi = e, then for the family

π : C → S , p1, . . . , pn : S → C , L
( n∑

i=1

bipi
)
→ C . (109)

defining an object of Picg,n,d+e we want to show the invariance

DR
op

g,A+B,L(
∑

i bipi)
= DR

op
g,A,L . (110)

To show this, consider the smooth map

τB : Picg,n,d → Picg,n,d+e , L 7→ L
( n∑

i=1

bipi
)
. (111)

over Mg,n. We have a natural cartesian diagram

Divg,A Divg,A+B

Picg,n,d Picg,n,d+e .
τB

(112)

In particular, for any ramification data A, we can obtain Divg,A from Divg,0 by
such translations. The diagram above together with Lemma 26 implies

τ ∗BDR
op
g,A+B = DR

op
g,A . (113)

Since the morphisms S → Picg,n,d and S → Picg,n,d+e used to define DR
op
g,A,L and

DR
op

g,A+B,L(
∑

i bipi)
fit in a diagram

S

Picg,n,d Picg,n,d+e
τB

the equation (113) immediately proves the invariance (110). ♦
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Now we prove the invariance

τ ∗BP
•
g,A+B,d+e = P•

g,A,d . (114)

for Pixton’s formula. Recall the notation LA = L(−
∑

i ai[pi]) for the twisted
universal line bundles from Lemma 37, observe that in the Cartesian diagram

Cg,n,d Cg,n,d+e

Picg,n,d Picg,n,d+e

τ̂B

π′ π

τB

we have τ̂ ∗BLA+B = LA. By Lemma 37, we have

τ ∗B(−η +
n∑

i=1

2(ai + bi)ξi + (ai + bi)
2ψi) = −τ ∗Bπ∗c1(LA+B)

2

= −π′
∗c1(LA)

2 = −η +
n∑

i=1

2aiξi + a2iψi ,

which shows the compatibility of the first part of formula (51) for P•
g,A+B,d+e.

For the second part, we can combine the exponential of the graph sum over
Gse
g,n,d+e with the graph sum over Gnse

g,n,d+e in (51) to recover the sum

∑

Γδ∈Gg,n,d+e

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

[
∏

e=(h,h′)∈E(Γδ)

1− exp
(
−w(h)w(h′)

2
(ψh + ψh′)

)

ψh + ψh′

]
(115)

over all graphs in Gg,n,d+e as in the proof of Proposition 36. It will be more
convenient to simply show the compatibility of the full graph sum (115) under
pullback by τB.

Given a graph Γδ ∈ Gg,n,d+e, denote by δB : V(Γ) → Z the map defined by

δB(v) = δ(v)−
∑

i marking
at v

bi .

We have a fibre diagram

PicΓ
δB

Picg,n,d

PicΓδ
Picg,n,d+e .

jΓ
δB

τB

jΓδ

(116)
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The proof that (115) pulls back under τB as desired follows from the following
observations:

• As Γδ runs through Gg,n,d+e, the graphs ΓδB run through Gg,n,d. From the
definitions, we verify that the conditions defining admissible weightings w
mod r for Γδ and ΓδB are identical (the shift from δ to δB cancels the shift
from A +B to A).

• Since the underlying graphs of Γδ and ΓδB agree, we have h1(Γδ) = h1(ΓδB).
Concerning the automorphisms, they appear to take into account the degree
functions δ, δB on the graphs. But any vertex v such that δ(v) 6= δB(v) must
carry a marking and thus must anyway be fixed under an automorphism.
Hence, Aut(Γδ) = Aut(ΓδB ).

• To conclude using the diagram (116), we observe that the map

PicΓ
δB

→ PicΓδ

appearing there is a map over MΓ (since only the line bundle is changed).
Hence, the classes ψh, ψh′ appearing in the edge terms of (115) are invariant.

♦

7.5 Proof of Invariance IV: Twisting by pullback

Let B → S be a line bundle on the base. We obtain a new object of Picg,n,d over
S by tensoring (99) with π∗B:

π : C → S , p1, . . . , pn : S → C , L ⊗ π∗B → C . (117)

We want to show the invariance

DR
op
g,A,L⊗π∗B = DR

op
g,A,L .

The universal twisted double ramification cycle DRop
g,A is the class associated to

the Abel-Jacobi map
AJ : Divg,A → Picg,n ,

and the latter is constructed (Definition 31) by pulling back the morphism

AJ
rel : Divrel

g,A → Picrelg,n .

Thus by Lemma 26, the corresponding cycle DR
op
g,A is a pullback of AJ

rel
op[Divrel

g,A]

from Picrelg,n,d. But twisting the family (99) by a line bundle pulled back from the
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base does not change the map to Picrelg,n,d, and so does not change the resulting
operational class, proving the invariance. ♦

We now prove the invariance

ϕ∗
L⊗π∗BP

•
g,A,d = ϕ∗

LP
•
g,A,d .

Using that P•
g,A,d is a pullback of P•

g,∅,0 as described in Section 0.7, it suffices to
show that the cycle P•

g on Picg,0,0 pulls back to the same expression under the two
maps

ϕLA
, ϕLA⊗π∗B : S → Picg,0,0

induced by LA = L(−
∑n

i=1 aipi) and LA ⊗ π∗B respectively. We will use formula
(57) for P•

g and show that both parts of the formula are invariant separately.

• For the term exp
(
−1

2
η
)
, we use Lemma 37 to obtain

ϕ∗
LA⊗π∗Bη = π∗c1(LA ⊗ π∗B)2

= π∗
(
c1(LA)

2 + 2c1(LA)π
∗c1(B) + π∗c1(B)

2
)

= π∗
(
c1(LA)

2
)
+ 2c1(B) π∗c1(LA)︸ ︷︷ ︸

=0

+c1(B)
2 π∗1︸︷︷︸

=0

= ϕ∗
LA
η,

where π∗c1(LA) vanishes since LA has degree 0, and π∗1 vanishes for dimension
reasons. The vertex term is therefore invariant under twisting by π∗B.

• For the graph sum

∑

Γδ∈Gg,0,0

w∈WΓδ,r

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

[
∏

e=(h,h′)∈E(Γδ)

1− exp
(
−w(h)w(h′)

2
(ψh + ψh′)

)

ψh + ψh′

]
(118)

in (57), we show that it is a pullback under the morphism

Picg,0,0 → Picrelg,0,0 , (119)

which finishes the proof since the compositions of ϕLA
and ϕLA⊗π∗B with the mor-

phism (119) agree. For a prestable graph Γ, we have Cartesian diagrams

∐
δPicΓδ

Picg,0,0

∐
δPicrelΓδ

Picrelg,0,0

MΓ Mg .

∐
δ jΓδ

∐
δ j

rel
Γδ

jΓ

(120)
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In formula (118), the edge terms use only the classes ψh, ψh′, which are pullbacks
from MΓ. Therefore, (118) is the pullback under (119) of the identical formula
with jΓδ

replaced with jrelΓδ
. ♦

7.6 Proof of Invariance V: Vertical twisting

Consider the boundary divisor ∆ of Picg,n,d given by the partition

g1 + g2 = g , N1 ⊔N2 = {1, . . . , n} , d1 + d2 = d

which is not symmetric. In Cg,n,d → Picg,n,d, let ∆1 and ∆2 be the (g1, N1, d1) and
(g2, N2, d2) components respectively of the universal curve over ∆. Then we have
a morphism

Φ∆1 : Picg,n,d → Picg,n,d

associated to the twisted line bundle L(∆1) on the universal curve Cg,n,d → Picg,n,d.

Remark 57. The map Φ∆1 is not an isomorphism. Indeed, the map is equal to
the identity away from ∆ ⊂ Picg,n,d, but it sends the generic point of ∆ to the
generic point of the boundary divisor

∆̃ = ∆(g1, N1, d1 − 1|g2, N2, d2 + 1) ,

which itself is fixed under Φ∆1 . Hence Φ∆1 is not injective, though it is easily seen
to be étale.

We want to show the invariance

Φ∗
∆1
DR

op
g,A = DR

op
g,A . (121)

Using the data

g1 + g2 = g , N1 ⊔N2 = {1, . . . , n} , d1 + d2 = d ,

we will define a map
Φ′ : Divg,A → Divg,A .

In fact, we will define a map Divrel
g,A → Divrel

g,A and then lift it to Divg,A by fibre
product with Pic. The invariance (121) will be deduced from Φ′.

Suppose we are given a map S → Divrel
g,A compatible with C/S defined by a

M̄gp
S torsor P on S and a map α : C → P. The divisor ∆ determines an element

of the characteristic sheaf of the log structure on Picg,n,d, which pulls back under
the composition

S → Divrel
g,A

AJ
−→ Picg,n,d
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to an element δ ∈ M̄S(S). All lifts of δ to MS(S) generate the same ideal sheaf on
S, whose closed subscheme is exactly the pullback ∆S of ∆. We write

∆′
1,∆

′
2 ⊂ C

for the two components of the universal curve over ∆S ⊂ S.

We define a new map (P ′, α′) : S → Divrel
g,A as follows. We take the same torsor

P ′ = P. On the locus C1 →֒ C which is the complement of ∆′
1, we define α′ = α.

On the locus C2 →֒ C which is the complement of ∆′
2 we define α′ = α− δ. Since

δ vanishes on the overlap C1 ∩ C2, we just have to check that the defined section
extends from C1∪C2 to the whole of C (across the separating node ∆′

1∩∆′
2). The

extension can be checked étale locally, and then the claim follows from the local
description of the log structure.

We have defined a map Φ′ : Divg,A → Divg,A, and we verify easily that the
diagram

Divg,A Picg,n,d

Divg,A Picg,n,d

AJ

Φ′ Φ∆1

AJ

(122)

commutes. We will prove (122) is a pullback square which by Lemma 26 yields
the invariance (121).

To prove (122) is a pullback square, since the horizontal arrows are monomor-
phisms, we need to show the following: given (P, α) ∈ Divrel

g,A(S), a line bundle L

on C and an isomorphism AJ(P, α)
∼

−→ Φ∆1(L), there exists (P0, α0) ∈ Divrel
g,A(S)

such that AJ(P0, α0) ∼= L. If the element (P, α) has only one preimage under Φ′, we
are done by commutativity. If there are two preimages (the only other case), the
Abel-Jacobi images differ by a twist by ∆′

1, and the bundle L will determine which
we choose. More formally, by uniqueness, we may assume S to be strictly henselian
local, then Φ′ has exactly one preimage whenever ∆(g1, N1, d1 − 1|g2, N2, d2 + 1)
does not meet S, and the result is clear as the diagram commutes. If on the other
hand ∆(g1, N1, d1 − 1|g2, N2, d2 + 1) does meet S, then the two preimages under
Φ′ will have multidegrees (d1, d2) and (d1 − 1, d2 + 1), and only one of these can
be sent by the Abel-Jacobi map to L. ♦

We now prove the invariance

Φ∗
∆1
P•
g,A,d = P•

g,A,d .

We will use Proposition 36 and prove that the two lines of formula (51) are sepa-
rately invariant.
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• For the exponential term, we must show that the divisor

−η +
n∑

i=1

2aiξi + a2iψi +
∑

Γδ∈G
se
g,n,d

cA(Γδ)[Γδ]

is invariant. By Lemma 37, we see

−π∗c1(LA)
2 = −η +

n∑

i=1

2aiξi + a2iψi .

After pulling back via Φ∆1 , we obtain

−π∗c1(LA(∆1))
2 = −π∗

(
c1(LA)

2 + 2c1(LA)∆1 +∆2
1

)

= −π∗
(
c1(LA)

2
)
)− 2deg (LA|∆1)π∗∆1 − π∗ (∆1 · (π

∗∆−∆2))

= −π∗
(
c1(LA)

2
)
)− 2

(
d1 −

∑

i∈N1

ai

)
∆+∆ .

We have used π∗∆ = ∆1 +∆2 and that the intersection of ∆1 and ∆2 has degree
1 over ∆.

For the pullback of the linear combination

∑

Γδ∈G
se
g,n,d

cA(Γδ)[Γδ]

of boundary divisors, recall the divisor ∆̃ = ∆(g1, N1, d1 − 1|g2, N2, d2 + 1) which
satisfies

∆̃ = ΦΓ1(∆̃) = ΦΓ1(∆) .

We see Φ∗
∆1
[Γδ] = [Γδ] for all boundary divisors [Γδ] different from [∆] and [∆̃].

Moreover,
Φ∗

∆1
[∆̃] = [∆̃] + [∆] , Φ∗

∆1
[∆] = 0 .

Writing Γ∆,Γ∆̃ for the graphs associated to ∆, ∆̃, we see

Φ∗
∆1

∑

Γδ∈G
se
g,n,d

cA(Γδ)[Γδ] =
∑

Γδ∈G
se
g,n,d

cA(Γδ)[Γδ] +
(
cA(Γ∆̃)− cA(Γ∆)

)
[∆] .

After expanding the last term further, we obtain the coefficient

cA(Γ∆̃)− cA(Γ∆) = −(d1 − 1−
∑

i∈I1

ai)
2 + (d1 −

∑

i∈I1

ai)
2 = 2(d1 −

∑

i∈I1

ai)− 1 ,
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which exactly balances out the error term we obtained in the pullback of−π∗c1(LA(∆1))
2.

We have finished the proof of the invariance of the exponential term in (57).

• For the invariance of the sum over Γδ ∈ Gnse
g,n,d, we claim that given any graph

Γδ, we have the diagram

∐
∑

v δ(v)=d
PicΓδ

Picg,n,d

∐
∑

v δ(v)=d
PicΓδ

Picg,n,d

MΓ Mg,n .

∐
δ jΓδ

Φ∆1,Γ
Φ∆1∐

δ jΓδ

jΓ

(123)

The lower and outer diagrams are cartesian as we have seen in Section 0.3.2, thus
the upper diagram is also cartesian. While for a general graph Γδ the map Φ∆1,Γ

induces a nontrivial map on the set of components of
∐

δPicΓδ
, for Γ having only

nonseparating edges, we obtain

Φ∆1,Γ : PicΓδ
→ PicΓδ

over MΓ. The classes ψh (for h ∈ H(Γ)) are pullbacks from MΓ, in particular
Φ∗

∆1,Γ
ψh = ψh for all such h. As a result, each term

jΓδ∗

[
∏

e=(h,h′)∈E(Γδ)

1− exp
(
−w(h)w(h′)

2
(ψh + ψh′)

)

ψh + ψh′

]

in the sum over Γδ ∈ Gnse
g,n,d, w ∈ WΓδ,r in formula (51) is indeed invariant. ♦

7.7 Proof of Invariance VI: Partial stabilization

7.7.1 The stack N

We begin by introducing a stack N that allows us to reformulate Invariance VI as
an equality of operational classes on N. The stack N parametrises data

f : C ′ → C , L/C ,

where f is a map of prestable genus g curves which is a partial stabilisation (a
surjection which contracts some unstable rational components of C ′) and L is a
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line bundle on C of degree 0. By a small extension of the arguments of [51], N is
an algebraic stack and comes with two maps to Picg,0,0 given by:

ℓ : N → Picg,0,0 , (f : C ′ → C,L) 7→ (C,L) ,

ℓ′ : N → Picg,0,0 , (f : C ′ → C,L) 7→ (C ′, f ∗L) .

Lemma 58.

ℓ∗DRop
g,0 = (ℓ′)∗DRop

g,0 , ℓ∗P•
g = (ℓ′)∗P•

g . (124)

This lemma will be proven in the next subsection, but first we show that
Invariance VI is implied by the lemma.

For Invariance VI, we are given the data

C ′ f
−→ C → S , L → C , p1 , . . . , pn : S → C , p′1, . . . , p

′
n : S → C ′

with f a partial stabilization satisfying f ◦ p′i = pi and a vector A ∈ Zn satisfying
ai = 0 if p′i meets the exceptional locus of f . Invariance VI then says that for the
maps

ϕL, ϕf∗L : S → Picg,n,d

induced by
C → S , p1, . . . , pn : S → C , L → C ,

C ′ → S , p′1, . . . , p
′
n : S → C ′ , f ∗L → C,

respectively, we have ϕ∗
LDR

op
g,A = ϕ∗

f∗LDR
op
g,A and ϕ∗

LP
•
g,A,d = ϕ∗

f∗LP
•
g,A,d.

The condition ai = 0 if p′i meets the exceptional locus of f implies the equality

f ∗
(
L
(
−

n∑

i=1

aipi
))

= (f ∗L)
(
−

n∑

i=1

aip
′
i

)

of line bundles on C ′. Denote by f : S → N the map associated to the data

C ′ f
−→ C → S , L

(
−

n∑

i=1

aipi
)
→ C .

Writing LA = L(−
∑n

i=1 aipi) and f
∗LA = (f ∗L)(−

∑n
i=1 aip

′
i), we obtain a com-

mutative diagram

S

N

Picg,0,0 Picg,0,0 .

g

ϕLA
ϕf∗LA

ℓ ℓ′

(125)
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From the arguments presented in Section 0.7 it follows that

ϕ∗
LDR

op
g,A = ϕ∗

LA
DR

op

g,∅ , ϕ∗
f∗LDR

op
g,A = ϕ∗

f∗LA
DR

op

g,∅ ,

with parallel equations for P•
g,A,d and P•

g,∅,0. Assuming (124) we have

ϕ∗
LDR

op
g,A = ϕ∗

LA
DR

op

g,∅ = g∗ℓ∗DRop

g,∅ = g∗ℓ′∗DRop

g,∅ = ϕ∗
f∗LA

DR
op

g,∅ = ϕ∗
f∗LDR

op
g,A ,

and similarly for P•
g,A,d. Thus (124) implies Invariance VI.

7.7.2 Invariance for N

Here we prove Lemma 58; it follows immediately from (124) in Lemmas 60 and 62
below. We start with a preliminary result.

Lemma 59. The map

ℓ : N → Picg,0,0 , (f : C ′ → C,L) 7→ (C,L) ,

is syntomic39, and the map

ℓ′ : N → Picg,0,0 , (f : C ′ → C,L) 7→ (C ′, f ∗L) .

is smooth.

Proof. The stack of partial stabilisations (f : C ′ → C) has smooth charts given by
Mg,n+m, where (C, p1, . . . , pn, q1, . . . , qm) maps to the contraction map from C to
the stabilisation of (C, p1, . . . , pn) by forgetting the q markings. Charts for N are
then given by

Mg,n+m ×Mg,n
PicMg,n+1/Mg,n

G
−→ N.

Charts for the map ℓ are given by the composition of the top horizontal arrows
in the commutative diagram

� PicMg,n+1/Mg,n
Picg

Mg,n+m Mg,n Mg .

ℓ

(126)

39Flat and lci.
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Both squares here are pullbacks, the bottom right horizontal map is smooth, and
the bottom left horizontal map is syntomic. Hence ℓ is syntomic, using that
syntomicity is a flat-local property on the target.

Charts for the map ℓ′ are given by commutative diagrams

Mg,n+m ×Mg,n
PicMg,n+1/Mg,n

PicMg,n+m+1/Mg,n+m

N Picg .

G

F

ℓ′

(127)

The right vertical arrow is a base-change of the smooth map Mg,n+m → Mg, so
once we have shown F to be smooth, we can conclude using that smoothness is a
flat-local property on the target.

In fact, F is an open immersion: F is isomorphic to the inclusion of the locus

U →֒ PicMg,n+m+1/Mg,n+m

of line bundles which are trivial on the contracted rational components. We must
verify the induced map

F ′ : Mg,n+m ×Mg,n
PicMg,n+1/Mg,n

→ U

is an isomorphism. The source and target are smooth over Mg,n+m. On each
geometric fibre over Mg,n+m, the map F ′ is an isomorphism via the explicit de-
scription of the Jacobian of a prestable curve. But then F ′ is flat (by the fibrewise
criterion), is unramified (by a pointwise check), and is universally injective (again
by a pointwise check), and hence is an isomorphism. ♦

Lemma 60. We have ℓ∗DRop
g,0 = (ℓ′)∗DRop

g,0 ∈ CHgop(N).

Proof. The maps ℓ and ℓ′ are syntomic by Lemma 59. It therefore suffices by
Lemma 26 to construct an isomorphism

ϕ : ℓ∗Divg,0
∼

−→ (ℓ′)∗Divg,0

of stacks over N and even to construct the isomorphism on the level of Divrel.

An object of ℓ∗Divrel
g,0 consists of a stabilisation map f : C ′ → C, a line bundle

L on C, a Gtrop
m torsor P on S, and a map α : C → P such that O(α) and L

are isomorphic up to pullback from the base. An object of (ℓ′)∗Divrel
g,0 consists

of almost the same data, but α is replaced by any α′ : C ′ → P, with O(α′) and
f ∗L isomorphic up to pullback. We then define the map ϕ simply by composing,
setting α′ = f ◦ α.
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We must show that ϕ is an isomorphism. Suppose we are given the data
f : C ′ → C, L on C, P, α′ : C ′ → P, with O(α′) ∼= f ∗L up to pullback. Since the
degree of f ∗L vanishes on components contracted by f , we see that the same is true
of the degree of O(α′) – the slopes of the restriction of α′ to the contracted graph
of the curve are linear on edges. In other words, the restriction is still piecewise
linear with integer slopes, hence we can set α to be the restriction. ♦

More work will be required to prove the second equality

ℓ∗P•
g = (ℓ′)∗P•

g .

We start by considering the morphism ℓ. For a prestable graph Γδ of degree 0,
consider the diagram

∏
v∈V(Γ) Ng(v),n(v),δ(v) N′

Γδ
NΓδ

N

∏
v∈V(Γ) Picg(v),n(v),δ(v) PicΓδ

PicΓδ
Picg,0,0

∏
v ℓv

G JΓδ

ℓΓδ
ℓ

jΓδ

(128)

where the left and the right squares are pullbacks and the middle square is com-
mutative:

• The stacks Ng(v),n(v),δ(v) are the natural generalizations of N to the case of
marked curves and line bundles of arbitrary total degrees.

• The stack NΓδ
parametrizes data

(Cv)v∈V(Γ) , L/C , f : C ′ → C

where f is a partial stabilisation and L is a multidegree δ line bundle on
C = ⊔v∈V(Γ)Cv.

• The stack N′
Γδ

parametrizes data

(Cv)v∈V(Γ) , L/C , (fv : C
′
v → Cv)v∈V(Γ) .

• The gluing map G : N′
Γδ

→ NΓδ
sending (fv : C

′
v → Cv)v∈V(Γ) to

f : ⊔vC
′
v = C ′ → C = ⊔vCv

is proper, representable and birational.
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Properness of G can be checked using the valuative criterion. The difference
between NΓδ

and N′
Γδ

is that, in the first space, we have sections of the non-smooth
locus of C for each half-edge (telling us where to cut apart the curve), whereas, for
the second, the sections go to the non-smooth locus of C′. Fibres of G correspond
to choices of lifts of these sections along

f : C′ → C .

Existence and uniqueness of such lifts follows from properness of f and of the
inclusion of the non-smooth locus. Representability of G is a short argument
showing G is injective on stabilizer groups. Birationality follows since G is an
isomorphism over the dense open locus where f is an isomorphism. Let

ĴΓδ
: N′

Γδ
→ N

be the composition of G and JΓδ
.

In the following Lemma, we compare pullback formulas under ℓ and ℓ′ for the
stacks Ng,n,d above. Denote by ψi = ℓ∗ψi and ψ′

i = (ℓ′)∗ψi ∈ CH1
op(Ng,n,d) the

pullbacks of ψ-classes under ℓ and ℓ′ respectively.

Lemma 61. We have

(i) ℓ∗η = (ℓ′)∗η,

(ii) ψi = ψ′
i−Di where Di is the class in CH1

op(Ng,n,d) associated to the boundary
divisor of Ng,n,d generically parametrizing a partial stabilisation

(0,0) (g,d)

i ... →

(g,d)

i ... .

Proof. (i) There are two pairs of universal curves with line bundle (C,L) and
(C′,L′)

C′ C

Ng,n,d

π′

f

π

over the stack Ng,n,d with sections σi : Ng,n,d → C and σ′
i : Ng,n,d → C′. Because

f∗[C
′] = [C], we have

ℓ∗η = π∗(c1(L)
2) = π∗(c1(L)

2f∗[C
′]) = π′

∗(c1(f
∗L)2) = (ℓ′)∗η .
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(ii) Let D′
0 be the divisor

(0,0) (g,d)

↓
... →

(g,d)

i ...

in C′, and let D′
i be the divisor

(0,0) (g,d)

i ↓
... →

(g,d)

i ...

in C′. Here, the arrows pointing to the vertices with genus and degree 0 indicate
which component of the universal curve over the corresponding boundary divisor
in Ng,n,d we take. The divisors D′

0, D
′
1, . . . , D

′
n are precisely the divisorial loci in

C′ which are contracted by the map f : C′ → C. Then

ℓ∗ψi = c1(σ
∗
i ωπ) = (σ′

i)
∗c1(f

∗ωπ) = (σ′
i)
∗c1(ωπ′(−D′

0 −
n∑

i=1

D′
i)) = (ℓ′)∗ψi −Di ,

where the sections are denoted by σi. ♦

For the morphism ℓ′, form the fibre diagram

Pic′Γδ
N

PicΓδ
Picg,0,0.

J ′

Γδ

ℓ′

jΓδ

(129)

By definition, the fibre product Pic′Γδ
parametrizes data

(C ′
v)v∈V(Γ) , L

′/C ′ = ⊔vC
′
v , f : C ′ → C , L/C , f ∗L

∼
−→ L′

which simplifies to

(C ′
v)v∈V(Γ) , f : ⊔vC

′
v = C ′ → C , L/C .

On the other hand, the stack N′
Γδ

parametrizes

(Cv)v∈V(Γ) , L/C , (fv : C
′
v → Cv)v∈V(Γ) .
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There is a subtle difference here. For Pic′Γδ
, the map f is allowed to contract entire

components C ′
v to points, whereas in the second case the target Cv is always still

1-dimensional.

Our next step is to show

Pic′Γδ

∼= ⊔Γδ→Γ̃δ
NΓδ→Γ̃δ

. (130)

More precisely, the connected components of Pic′Γδ
are in bijective correspondence

to partial stabilizations
Γδ → Γ̃δ .

We will prove, given a vertex v ∈ V(Γ) which can be contracted (with g(v) = 0,
n(v) ≤ 2, δ(v) = 0), that the locus of points in Pic′Γδ

where f : C ′ → C contracts
C ′
v is open and closed.

For a vertex v with n(v) = 2, the universal curve C′
v → Pic′Γδ

has two sections
(corresponding to the half-edges at v), and the locus where C ′

v is contracted equals
the locus where the sections coincide, which is closed since C′

v → Pic′Γδ
is separated.

To show closedness of the locus where C ′
v is not contracted, assume we have a

family
(C ′

v,S)v∈V(Γ) , f : ⊔vC
′
v,S = C ′

S → CS , L/CS

of Pic′Γδ
over the spectrum S of a strictly henselian DVR such that the fibre C ′

v,η

of C ′
v,S over the generic point η of S is not contracted by f . We want to show

that then also the fibre C ′
v,L over the closed point L of S is not contracted. By

assumption, C ′
v,η maps to a union Cv,η of components of the fibre Cη of CS over

η. Then Cv,η specializes to a union Cv,L of components of CL. Since f is proper,
f maps the closure C ′

v,S of C ′
v,η to the closure of its image Cv,η. Since Cv,L is

still positive-dimensional, the curve C ′
v,L is indeed not contracted. For related

arguments, see the proof of [51, Proposition 2.2].

For a vertex v with n(v) = 1, the universal curve C′
v → Pic′Γδ

has a single
section σh. On the one hand, the locus where C ′

v is contracted is exactly the locus
where f : C′ → C maps σh to the smooth locus of C → Pic′Γδ

, thus it is open. On
the other hand, it is also the preimage under σh of the exceptional locus of C

′ → C,
and thus closed.

We have proven that the connected components of Pic′Γδ
are in bijective cor-

respondence to partial stabilizations Γδ → Γ̃δ. But a point

(C ′
v)v∈V(Γ) , f : ⊔vC

′
v = C ′ → C , L/C

on the corresponding component is equivalent to the data of any collection of
curves C ′

v for v
′ ∈ V(Γ) \ V(Γ̃), which are contracted by f , together with a point

(C ′
v)v∈V(Γ̃) , f : (C ′

v → Cv) , L/C = ⊔v∈V (Γ̃)Cv
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of N′
Γ̃δ
. Hence, we have a isomorphism

NΓδ→Γ̃δ

∼= N′
Γ̃δ

×
∏

v∈V(Γ)\V(Γ̃)

M0,n(v) ,

where, in the last expression, n(v) is necessarily 1 or 2.

For each partial stabilisation Γδ → Γ̃δ, we denote by

JΓδ→Γ̃δ
: NΓδ→Γ̃δ

→ N

the restriction of J ′
Γδ

to NΓδ→Γ̃δ
.

Lemma 62. We have ℓ∗P•
g = (ℓ′)∗P•

g ∈
∏∞

c=0 CH
c
op(N) for all c ≥ 0.

Proof. We will use formula (57) for P•
g. By Lemma 61, the terms exp(−η/2) have

identical pullback under ℓ and ℓ′. We can therefore focus on the sum over graphs
and weighting mod r.

We start with a few remarks about the combinatorial factors in P•
g which will

arise in the proof. Let Γδ → Γ̃δ be a partial stabilization, then the Betti numbers
agree,

h1(Γδ) = h1(Γ̃δ) .

Given r, the map WΓδ,r → WΓ̃δ,r
of admissible weightings mod r (induced by the

inclusion H(Γ̃) → H(Γ) of half-edge sets) is a bijection.

Moreover, if the map Γδ → Γ̃δ only contracts components with

(g(v), n(v), δ(v)) = (0, 2, 0) ,

there is a canonical isomorphism Aut(Γδ) ∼= Aut(Γ̃δ). On the other hand, in the
formula for P•

g, every term such that Γδ has a vertex with

(g(v), n(v), δ(v)) = (0, 1, 0)

necessarily vanishes. Indeed, the half-edge h at this vertex must have w(h) = 0
such that the corresponding edge term vanishes.

To keep the notation concise, we write Φa for the power-series

Φa(x) =
1− exp(−a

2
x)

x

=
∞∑

m=0

(−1)m(
a

2
)m+1 1

(m+ 1)!
xm =

a

2
−
a2

8
x+ . . .
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appearing in the edge terms of P•
g. Moreover, given a graph Γ̃δ with a half-edge

h incident to a vertex v, denote by ψh, ψ
′
h the classes on N′

Γ̃δ
pulled back from

Ng(v),n(v),δ(v) in the diagram (128). Similarly, given a partial stabilization Γδ → Γ̃δ,
the space NΓδ→Γ̃δ

contains N′
Γ̃δ

as a factor, hence the notation also makes sense

on NΓδ→Γ̃δ
(provided h is a half-edge of Γ̃δ).

Let us first compute the pullback of the graph sum in P•,r
g via ℓ′ : N → Picg,0,0.

Using the diagram (129) and the decomposition (130), we see

(ℓ′)∗
∑

Γδ,w

r−h
1(Γδ)

|Aut(Γδ)|
jΓδ∗

[
∏

e=(h,h′)∈E(Γδ)

Φw(h)w(h′)(ψh + ψh′)

]

=
∑

Γδ→Γ̃δ,w

r−h
1(Γδ)

|Aut(Γδ)|
JΓδ→Γ̃δ∗

[
∏

e=(h,h′)∈E(Γδ)

Φw(h)w(h′)(ψ
′
h + ψ′

h′)

]
. (131)

In the second line, the sum is over all partial stabilizations Γδ → Γ̃δ.

Second, we compute the pullback of the graph sum in P•,r
g via ℓ : N → Picg,0,0

ℓ∗
∑

Γ̃δ ,w

r−h
1(Γ̃δ)

|Aut(Γ̃δ)|
jΓ̃δ∗

[
∏

e=(h,h′)∈E(Γ̃δ)

Φw(h)w(h′)(ψh + ψh′)

]

=
∑

Γ̃δ,w

r−h
1(Γ̃δ)

|Aut(Γ̃δ)|
ĴΓ̃δ∗

[
∏

e=(h,h′)∈E(Γ̃δ)

Φw(h)w(h′)(ψh + ψh′)

]
. (132)

We use here the right fibre diagram in (128) together with the fact that G is
proper, representable, and birational. So by Proposition 25, the pushforward of
fundamental classes under JΓ̃δ

and ĴΓ̃δ
agree.

To compare to the formula for the pullback under ℓ′, we use

ψh + ψh′ = ψ′
h −Dh + ψ′

h′ −Dh′

on N′
Γ̃δ

by Lemma 61. The next step of the proof is to use the self-intersection

formula for Dh, Dh′ (similar to the formula described in [33, Appendix A]) to
expand the edge term

Φww′(ψ′
h−Dh+ψ

′
h′ −Dh′) =

∞∑

m=0

(−1)m(
ww′

2
)m+1 1

(m+ 1)!
(ψ′

h−Dh+ψ
′
h′ −Dh′)

m.

For example, (Dh)
2 is equal to

−

(gv,δ(v)) (0,0) (gv′ ,δ(v
′))

h1 h′1 h h′

(ψh1 + ψh′1) ...
... + 2

(gv,δ(v)) (0,0) (0,0) (gv′ ,δ(v
′))

h h′
...

...
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and similarly for (Dh′)
2.

The result will be a linear combination of terms

(gv,δ(v)) (0,0) (0,0) (0,0) (0,0) (gv′ ,δ(v
′))

(ψhL + ψh′
L
)eL(ψh1 + ψh′1)

e1 ψah ψbh′ ...
... (133)

where the edge (h, h′) is at position ℓ in the above chain (1 ≤ ℓ ≤ L). The total

degree of this term (before the pushforward by ĴΓ̃δ
) is

m =
∑

j 6=ℓ

(ej + 1) + a+ b .

The total coefficient of this particular term in Φww′(ψ′
h −Dh + ψ′

h′ −Dh′) is then

(−1)m(
ww′

2
)m+1 1

(m+ 1)!︸ ︷︷ ︸
coeff in Φww′

·

(
m

e1 + 1, . . . , a, b, . . . , eL + 1

)
(−1)L−1

︸ ︷︷ ︸
excess intersection
of −Dh,−Dh′

where the multinomial coefficient comes from the expansion of

(ψ′
h −Dh + ψ′

h′ −Dh′)
m .

Writing eℓ = a + b, we can simplify to obtain

1

m+ 1

(
L∏

j=1

(−1)ej(
ww′

2
)ej+1 1

(ej + 1)!

)(
eℓ
a

)
(eℓ + 1) .

Summing over all choices a + b = eℓ for fixed eℓ, the coefficient of the term

(gv,δ(v)) (0,0) (0,0) (0,0) (0,0) (gv′ ,δ(v
′))

(ψhL + ψh′
L
)eL(ψh1 + ψh′1)

e1 (ψh + ψh′)
eℓ

...
... (134)

is exactly equal to

eℓ + 1

m+ 1

(
L∏

j=1

(−1)ej(
ww′

2
)ej+1 1

(ej + 1)!

)
.

Pushing forward by ĴΓ̃δ
, we forget where in the chain above the edge (h, h′) has

been. Summing over the L possible positions and using m+1 =
∑L

ℓ=1(eℓ+1), we
obtain the coefficient

L∏

j=1

(−1)ej(
ww′

2
)ej+1 1

(ej + 1)!︸ ︷︷ ︸
coefficient of xej in Φww′ (x)

.
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From the above discussion, we see that (132) equals

∑

Γδ→Γ̃δ,w

r−h
1(Γ̃δ)

|Aut(Γ̃δ)|
JΓδ→Γ̃δ∗

[
∏

e=(h,h′)∈E(Γδ)

Φw(h)w′(h)(ψ
′
h + ψ′

h′)

]
.

The sum goes over stabilizations Γδ → Γ̃δ contracting chains of curves with
(g, n, d) = (0, 2, 0). By the previous remarks concerning the combinatorial fac-
tors, we have

h1(Γ̃δ) = h1(Γδ) , |Aut(Γ̃δ)| = |Aut(Γδ)| .

The sum does not change if we allow arbitrary stabilizations Γδ → Γ̃δ, since for
Γδ having a vertex with (g, n, d) = (0, 1, 0), the summand automatically vanishes.
Thus the sum above equals the term computed in (131). ♦

8 Applications

8.1 Proofs of Theorem 9 and Conjecture A

We start by recalling notions presented in Section 0.5, but now in the more gen-
eral setting of k-differentials. Let A = (a1, . . . , an) be a vector of zero and pole
multiplicities satisfying

n∑

i=1

ai = k(2g − 2) .

Let Hk
g(A) ⊂ Mg,n be the closed (generally non-proper) locus of pointed curves

(C, p1, . . . , pn) satisfying the condition

OC

( n∑

i=1

aipi

)
≃ ω⊗k

C .

In other words, Hk
g(A) is the locus of (possibly) meromorphic k-differentials with

zero and pole multiplicities prescribed by A. In [31], a compact moduli space of
twisted k-canonical divisors

H̃k
g(A) ⊂ Mg,n

is constructed extending Hk
g(A) = H̃k

g(A) ∩Mg,n to the boundary of Mg,n.

For k ≥ 1 and A not of the form A = k · A′ with a vector A′ of nonnegative
integers, the locus H̃k

g(A) is of pure codimension g in Mg,n by [31, Theorem 3]
(for k = 1) and [74, Theorem 1.1] (for k > 1). A weighted fundamental cycle of

H̃k
g(A),

Hkg,A ∈ CH2g−3+n(Mg,n) , (135)
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is constructed in [31, Appendix A] and [74, Section 3.1] with explicit nontrivial
weights on the irreducible components. The closure

H
k

g,A ⊂ Mg,n

contributes to the weighted fundamental class Hkg,A with multiplicity 1, but there
are additional boundary contributions, as described in the references above.

The weighted fundamental class Hkg,A was conjectured in [31, 74] to equal the
class given by Pixton’s formula for the double ramification cycle. To state the
conjecture, consider the shifted40 vector Ã = (a1 + k, . . . , an + k).

Conjecture A. For k ≥ 1 and A not of the form A = k · A′ with a vector A′ of
nonnegative integers, we have an equality

Hkg,A = 2−gP g,k
g (Ã) ,

where P g,k
g (Ã) is Pixton’s cycle class defined in [44, Section 1.1].

By combining Theorem 7 with previous results of [42], we can now prove the
conjecture.

Theorem 63. Conjecture A is true.

Proof. By Theorem 1.1 of [42], the weighted fundamental class Hkg,A is equal to the
double ramification cycle DRg,A,ωk constructed in [39]. By Theorem 1, DRg,A,ωk

is in turn given by the action of DRop
g,A on the fundamental class of Mg,n via the

morphism ϕωk
π
: Mg,n → Picg,n,k(2g−2) associated to the family

π : Cg,n → Mg,n , ωkπ → Cg,n .

By Theorem 7, the class DRop
g,A is computed by the tautological class

P
g
g,A,d ∈ CHgop(Picg,n,k(2g−2)) .

By Proposition 38, the action of Pgg,A,d on [Mg,n] is indeed given by Pixton’s original

formula 2−gP g,k
g (Ã), finishing the proof. ♦

40The shift is needed since Pixton’s original formula worked with powers of the log-canonical
line bundle ωlog

C = ωC(
∑n

i=1 pi) instead of ωC .
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The steps of the proof of Theorem 63 are summarized as follows:

Hkg,A = DRg,A,ωk [42,Theorem 1.1]

= DR
op
g,A(ϕωk

π
)([Mg,n]) Theorem 1

= P
g
g,A,d(ϕωk

π
)([Mg,n]) Theorem 7

= 2−gP g,k
g (Ã) Proposition 38 .

The result provides a completely geometric representative of Pixton’s cycle in
terms of twisted k-differentials. Theorem 9 of Section 0.5 is the k = 1 case of
Theorem 63.

8.2 Closures

Let A = (a1, . . . , an) be a vector of integers satisfying

n∑

i=1

ai = k(2g − 2) .

A careful investigation of the closure

Hk
g(A) ⊂ H

k

g(A) ⊂ Mg,n

is carried out in [8, 9]. By a simple method presented in [31, Appendix A] and [74,
Section 3.4], Theorem 63 easily determines the cycle classes of the closures

[H
k

g(A)] ∈ CH∗(Mg,n) .

for the cases

• k = 1 and all ai nonnegative, when H
k

g(A) has pure codimension g − 1 and

• k ≥ 1 and A not of the form A = k · A′ with a vector A′ of nonnegative

integers, when H
k

g(A) has pure codimension g.

In particular, from the recursive formula for [H
k

g(A)] and the fact that Pixton’s

cycle on Mg,n is tautological, the following is immediate.

Corollary 64. The cycles [H
k

g(A)] are tautological classes in CH∗(Mg,n).
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In the case k = 1, Corollary 64 was known by work of Sauvaget [72], who gave

a different approach to [H
1

g(A)] in terms of tautological classes. The recursive

formulas for [H
k

g(A)] from Corollary 64 have been implemented41 in the software

[25] for computations in the tautological ring of Mg,n.

Another application of Conjecture A is presented in the recent paper [73] by
Sauvaget. The paper studies moduli spaces of flat surfaces of genus g with conical
singularities at marked points p1, ..., pn. The singularities have fixed cone angles
2παi, for α1, . . . , αn ∈ R, summing to 2g − 2 + n. If all αi are rational, the spaces
of flat surfaces naturally contain Hk

g(kA), for

A = (αi − 1)ni=1 ,

as closed subsets (for k sufficiently divisibly). These subsets equidistribute (with
respect to natural measures) as k → ∞. Using the equidistribution, Sauvaget is

able to apply the recursive expression for H
k

g(kA) from Conjecture A to derive an
explicit recursion for the volumes of the moduli spaces of flat surfaces.

8.3 k-twisted DR cycles with targets

We define here k-twisted double ramification cycles with targets via the class DRop
g,A.

Let X be a nonsingular projective variety with line bundle L and an effective
curve class β ∈ H2(X,Z). Let

dβ =

∫

β

c1(L) .

Let k ∈ Z and A = (a1, . . . , an) ∈ Zn satisfy

dβ + k(2g − 2 + n) =
n∑

i=1

ai .

Consider the morphism

ϕ : Mg,n(X, β) → Picg,n,dβ+k(2g−2+n)

defined by the universal data

π : Cg,n,β → Mg,n(X, β) , f ∗L ⊗ ω⊗k
log → Cg,n,β , (136)

where f : Cg,n,β → X is the universal map.

41In the ongoing project [22], the authors study formulas for Euler characteristics of strata of
differentials in terms of intersection numbers on the compactification of these strata constructed

in [10]. The implementation of [H
1

g(A)] has played a role in corroborating their formulas.
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Definition 65. The k-twisted X-valued double ramification cycle is defined by

DRkg,n,β(X,L) = DR
op
g,A(ϕ)([Mg,n(X, β)]

vir) ∈ CHvdim(g,n,β)−g(Mg,n(X, β)) .

In the notation of [45, Section 0.4], let Pc,k,rg,A,β(X,L) be the codimension c part
of the following expression

∑

Γ∈Gg,n,β(X)
w∈WΓ,r,k(X)

r−h
1(Γ)

|Aut(Γ)|
jΓδ∗

[
n∏

i=1

exp

(
1

2
a2iψi + aiξi

)

∏

v∈V(Γ)

exp

(
−
1

2
η(v)− kη1,1(v)−

k2

2
η0,2(v)

)

∏

e=(h,h′)∈E(Γ)

1− exp
(
−w(h)w(h′)

2
(ψh + ψh′)

)

ψh + ψh′

]
.

The definition of the admissible k-weightings w ∈ WΓ,r,k(X) is similar to that in
Section 0.3.4 but with the condition (iii) replaced by

k(2g(v)− 2 + n(v)) +

∫

β(v)

c1(L) =
∑

v(h)=v

w(h) for v ∈ V(Γ) .

As in the case k = 0 discussed in [45, Proposition 1], the class P
c,k,r
g,A,β(X,L) is

polynomial in r for all sufficiently large r. Denote by P
c,k
g,A,β(X,L) the value at

r = 0 of this polynomial.

By Theorem 7 and a slight generalization of the procedure for pulling back
Chow cohomology classes from Picg,n,dβ+k(2g−2+n) to Mg,n(X, β) described in [45,
Section 1.5], we have

DRkg,n,β(X,L) = DR
op
g,A(ϕ)([Mg,n(X, β)]

vir)

= P
g
g,A,dβ+k(2g−2+n)(ϕ)([Mg,n(X, β)]

vir)

= P
g,k
g,A,β(X,L) .

8.4 Proof of Theorem 8

For all c > g, we will prove

Pcg,A,d = 0 ∈ CHcop(Picg,n,d) . (137)
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The path is parallel to the proof of Theorem 7.

By definition, the claim is equivalent to showing that the map

Pcg,A,d(ϕ) : CH∗(B) → CH∗−c(B) (138)

is zero for every morphism ϕ : B → Picg,n,d from an (irreducible) finite type
scheme B corresponding to the data

C → B , L → C .

Retracing the steps of Section 5 (and using the invariance Lemma 62 for the
codimension c part Pcg,A,d of Pixton’s formula), we can reduce to the situation
where L on C is relatively sufficiently positive with respect to C → B. As in
Section 5.3, we can then find

ψ : Ul → B

such that ψ∗ is injective on Chow groups and such that the composition

Ul → B → Picg,n,d

factors through Mg,n(P
l, d)′. By Theorem 3.2 of [4], we have the vanishing

Pcg,A,d(P
l,O(1)) = 0 ∈ CHvdim(g,n,d)−c(Mg,n(P

l, d)) .

The same combination of Lemma 15 and the injectivity of ψ∗ then shows the
desired vanishing of the map (138). ♦

8.5 Connections to past and future results

The relations of Theorem 8 generalize several previous results. For g = 0 and c = 1,
the vanishing (137) was observed in [24, Proposition 1.2]. In fact, in genus 0, there
are many connections to past equations, see [4, Section 4] for a full discussion with
many examples including classical equations and the relations of [53].

Randal-Williams [69] proves a vanishing result in cohomology with integral
coefficients on the locus Picsmg,0,d of smooth curves for every d ∈ Z. We can recover
a version of Randal-William’s vanishing in operational Chow with Q-coefficients
which extends to all ofPicg,0,d. By Proposition 36 and Lemma 37, Pixton formula’s
on the locus Picsmg,0,0 takes the simple form

Pcg,∅,0 =
1

c!
(P1

g,∅,0)
c , P1

g,∅,0 = −
1

2
π∗(c1(L)

2)
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for the universal curve and the universal line bundle

π : C → Picg,0,0 , L → C .

We claim, up to scaling, the relation

Ωg+1 = 0

of [69, Theorem A] is exactly the restriction of the pullback of the relation

(P1
g,∅,0)

g+1 = (g + 1)!Pg+1
g,∅,0 = 0 ∈ CHg+1

op (Picg,0,0)

under the morphism

Picg,0,d → Picg,0,0 , (C,L) 7→ (C,L⊗2g−2 ⊗ ω
⊗(−d)
C ) .

Indeed, over the locus of smooth curves, the pullback of P1
g,∅,0 is given by

−
1

2
π∗(c1(L

⊗2g−2 ⊗ ω
⊗(−d)
C )2) =

−
1

2

(
(2g − 2)2π∗(c1(L)

2)− 2d(2g − 2)π∗(c1(L)c1(ωπ)) + d2π∗(c1(ωπ)
2)
)
,

which matches the definition of Ω given in [69, Theorem A] up to scalars.

In Gromov-Witten theory, pulling back (137) under the morphisms

Mg,n(X, β) → Picg,n,d

described in Section 8.3 and capping with the virtual class [Mg,n(X, β)]
vir simply

recovers the known vanishing

P
c,k
g,A,β(X,L) = 0 ∈ CHvdim(g,n,β)−c(Mg,n(X, β)) (139)

for c > g proven in [4]. However, there are new applications for reduced Gromov-
Witten theory. Indeed, for a targetX having a nondegenerate holomorphic 2-form,
the virtual class of Mg,n(X, β) vanishes when β 6= 0. To define invariants for such
targets, the reduced class

[Mg,n(X, β)]
red ∈ CH∗(Mg,n(X, β))

is used instead, see [15, 59]. By pulling back (137) and capping with [Mg,n(X, β)]
red,

we obtain new relations among reduced Gromov-Witten invariants. An applica-
tion to the Gromov-Witten theory of K3 surfaces will appear in [5] related to
conjectures of [63].
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