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ESTIMATES OF CUSP FORMS FOR CERTAIN COCOMPACT

ARITHMETIC SUBGROUPS

ANILATMAJA ARYASOMAYAJULA AND BASKAR BALASUBRAMANYAM

Abstract. In this article, we compute estimates of Hecke eigen cusp forms, associated to a
certain cocompact Fuchsian subgroup. Let Γ ⊂ PSL2(R) be a co-compact Fuchsian subgroup
associated to a division quaternion algebra A defined over Q. Let X := Γ \H denote the quotient
space, which admits the structure of a compact hyperbolic Riemann surface. Let Sk(Γ) denote
the complex vector space of cusp forms of weight-k with respect to Γ, and let | · |pet denote then
point-wise Petersson norm on Sk(Γ). Then, for k ≫ 1, and any f ∈ Sk(Γ), a Hecke eigen cusp
form, which is normalized with respect to the Petersson inner-product on Sk(Γ), and for any
ǫ > 0, we derive the following estimate

sup
z∈X

∣

∣f(z)
∣

∣

pet
= OA,ǫ

(

k
1

2
− 1

12
+ǫ

)

,

where the implied constant depends on the quaternion algebra A, and on the choice of ǫ > 0.

1. Introduction

1.1. History and Background. Estimates of automorphic forms has been a subject of great
interest in the recent past. In this article, we derive estimates of holomorphic Hecke eigen cusp
forms, and improve upon existing estimates of Das and Sengupta from [DS15].

We now briefly elucidate the history of the problem. Let Γ be a co-compact arithmetic subgroup
arising from the unit group of a quaternion division algebra (see section 2.1 for precise definition
of Γ). Let X := Γ \H be the quotient space, which admits the structure of a hyperbolic Riemann
surface of finite hyperbolic volume, and let Dhyp denote the hyperbolic Laplacian on X, which
acts on smooth functions defined on X.

Let ϕ be a Hecke eigen Maass form with Laplacian eigenvalue λ, and we assume that ϕ is L2-
normalized. With hypothesis as above, for any ǫ > 0, in a seminal article [IS95], Iwaniec and
Sarnak proved the following estimate

sup
z∈X

∣

∣ϕ(z
∣

∣ = OΓ,ǫ

(

λ
5
24

+ǫ
)

,(1)

where the implied constant depends on the Fuchsian subgroup Γ, and on the choice of ǫ > 0.

Let hypothesis be as above, i.e., Γ is a co-compact arithmetic subgroup as described above, or a
congruence subgroup of level N , and let ϕ be a Hecke eigen Maass form, which is L2-normalized.
Then, in 2004, in a famous letter [Sa04], for and any ǫ > 0, Sarnak conjectured the following
estimate

sup
z∈X

∣

∣ϕ(z)
∣

∣ = OΓ,ǫ

(

λǫ
)

,(2)

where the implied constant depends on the Fuchsian subgroup Γ, and on the choice of ǫ > 0.

In 2018, in [RW18], Ramacher and Wakatsuki have extended estimate (1) to compact arithmetic
quotients of semi simple Lie groups.
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Sarnak’s conjecture (2) has inspired and instigated deep investigations on estimates of Hecke
eigen Maass forms and holomorphic Hecke eigen cusp forms. Let | · |pet denote the point-wise
Petersson norm on Sk(Γ), which is given by equation (10).

One of the first investigations of estimates of holomorphic cusp forms was initiated by Jorgenson
and Kramer in [JK04]. Let Γ := Γ0(N), and let Sk (Γ) denote the complex vector space of cusp
forms of weight-k with respect to Γ. Let

{

f1, . . . , fdk
}

be an orthonormal basis of Sk (Γ), with

respect to Petersson inner-product on Sk (Γ). For any z, w ∈ H, the Bergman kernel associated
to Sk (Γ) is given by the following formula

Bk

Γ(z, w) :=

dk
∑

j=1

fj(z)fj(w).

Then, in 2004, for k = 2, Jorgenson and Kramer established the following estimate
∣

∣B2
Γ(z, z)

∣

∣

pet
:= y2

∣

∣B2
Γ(z, z)

∣

∣ = O(1),

and the implied constant is independent of the level of the arithmetic subgroup Γ0(N).

Furthermore, in 2013, in [FJK13], Friedman, Jorgenson, and Kramer, extended their results to
higher weights. For Γ any cocompact Fuchsian subgroup, they proved the following estimate

∣

∣Bk

Γ(z, z)
∣

∣

pet
= OΓ(k);

and when Γ is noncompact, they proved the following estimate
∣

∣Bk

Γ(z, z)
∣

∣

pet
= OΓ

(

k
3
2
)

.

Moreover, the implied constants in both the above estimates were proved to be stable in covers.

In 2007, for f ∈ Sk(SL2(Z)), a Hecke eigen cusp form, which is normalized with respect to the
Petersson inner-product, for any ǫ > 0, in [Xi07], Xia proved the following estimate

sup
z∈SL2(Z)\H

∣

∣f(z)
∣

∣

pet
= Oǫ

(

k
1
4
+ǫ
)

,(3)

where the implied constant depends only on the choice of ǫ > 0. Furthermore, the above estimate
is proved to be optimal.

In 2010, in [BH11], Blomer and Holowinsky have derived estimates of holomorphic Hecke eigen
cusp forms and Hecke eigen Maass forms associated to the arithmetic subgroup Γ0(N), in terms
of both the level aspect, and the weight aspect. Let N ∈ N be square-free, and let f ∈ Sk(Γ0(N))
be a Hecke eigen cusp form of weight-k, which is normalized with respect to the Petersson inner-
product. Blomer and Holowinsky then show that

sup
z∈Γ0(N)\H

∣

∣f(z)
∣

∣

pet
= Ok

(

N− 1
37
)

,(4)

where the implied constant depends only on k. The above estimate also holds true for any
Hecke eigen Maass form, which is L2-normalized, and the implied constant depends only on λ,
the Laplacian eigenvalue of the Maass form.

With hypothesis as above, for any ǫ > 0, Blomer and Holowinsky made the following conjecture

sup
z∈Γ0(N)\H

∣

∣f(z)
∣

∣

pet
= Oǫ

(

k
1
4
+ǫ ·N− 1

2
+ǫ
)

where the implied constant depends only on the choice of ǫ > 0.

We now introduce our main result. Sarnak’s conjecture on Hecke eigen Maass forms is also ex-
pected to hold true for holomorphic Hecke eigen cusp forms associated to a co-compact Fuchsian
subroup Γ, which is as described above.



ESTIMATES OF CUSP FORMS 3

Let f ∈ Sk (Γ) be a Hecke eigen cusp form, which is normalized with respect to the Petersson
inner-product. Then, the holomorphic version of Sarnak’s conjecture is the following estimate

sup
z∈X

∣

∣f(z)|pet = Oǫ

(

kǫ
)

,(5)

where the implied constant depends only on the choice of ǫ > 0.

For any general f ∈ Sk (Γ), which is normalized with respect to the Petersson inner-product,
the following estimate is the convexity estimate

sup
z∈X

∣

∣f(z)|pet = OΓ

(

k
1
2
)

,

and if f is not Hecke, then the above estimate is optimal.

The first known estimate in the cocompact setting is derived by Das and Sengupta. Let Γ be a
cocmpact Fuchsian subgroup associated to a quaternion division algebra A defined over Q (see
section 2.1 for details). Let f ∈ Sk (Γ) be a Hecke eigen cusp form, which is normalized with
respect to the Petersson inner-product. Then, for any ǫ > 0, Das and Sengupta derived the
following sub-convexity bound in [DS19]

sup
z∈X

∣

∣f(z)|pet = OA,ǫ

(

k
1
2
− 2

131
+ǫ
)

,(6)

where the implied constant depends on the quaternion algebra A, and on the choice of ǫ > 0.
Das and Sengupta emulated and adapted the amplification technique from [IS95], and combined
it with estimates of the Bergman kernel, to derive the above estimate. The authors claim

OΓ,ǫ

(

k
1
2
− 1

33
+ǫ
)

in [DS15], however, after minor corrections, the authors eventually arrived at
estimate (6) in an erratum [DS19], which is available on the first author’s homepage.

Currently the best known estimate in the cocompact setting is derived by Khayutin and Steiner.
With hypothesis as above, using theta correspondence, for an any ǫ > 0, Khayutin and Steiner
have proved the following estimate in [KS20]

sup
z∈X

∣

∣f(z)|pet = OA,ǫ

(

k
1
4
+ǫ
)

,(7)

which is as strong as the one derived by Xia (estimate (3)) for SL2(Z).

1.2. Main result. We now state the main result of the article. Let Γ be a Fuchsian subgroup
as in [DS15], and let f ∈ Sk (Γ) be a holomorphic Hecke eigen cusp form, which is normalized
with respect to the Petersson inner-product on Sk (Γ). Then, for k ≫ 1, and for any ǫ > 0, we
have the following estimate

sup
z∈X

∣

∣f(z)|pet = OA,ǫ

(

k
1
2
− 1

12
+ǫ
)

,(8)

where the implied constant depends on the quaternion algebra A, and on the choice of ǫ > 0.

The major difficulty in the co-compact situation is that, unlike in the case of congruence sub-
groups, cusp forms associated to a co-compact subgroups do not admit a Fourier expansion.
Proofs of estimates (3) and (4), heavily rely on the Fourier expansion of cusp forms.

To overcome the absence of Fourier expansion of cusp forms in the co-compact setting, following
[DS15] and [IS95], we apply Jacquet-Langlands correspondence to utilize Deligne’s bound on
Hecke eigen values. As in [DS15], we adapt the amplification technique from [IS95], and combine
it with estimates of the Bergman kernel associated to the complex vector space Sk (Γ), which
we have explicitly computed in this article. Our estimates of the Bergman kernel are optimally
derived, by adapting arguments from [AM17].

Remark 1.1. Estimate (7) is much stronger than our result (8), of which the authors were
unaware, until it was pointed out to them by Simon Marshall. However, the techniques involved
in proving estimates (7) and (8) are very different.
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Organization of the article. In sections 2.1 and 2.2, we set up the basic notation and back-
ground material. In section 2.3, we introduce Hecke operators, and in section 2.4, we introduce
a counting function from [IS95]. In section 3, using the counting function from [IS95] and
combining it with arguments from [DS15], we prove estimate (8).

2. Hyperbolic Riemann surfaces, cusp forms, and Bergman kernel

In this section, we set up the notation, and state results from literature, which are used to prove
estimate (8).

2.1. Preliminaries. Let

H :=
{

z = x+ iy ∈ C
∣

∣ y > 0
}

denote the hyperbolic upper half-plane. Let µhyp denote the hyperbolic metric on H, which is
the natural metric on H, and is of constant negative curvature equal to −1. The hyperbolic
metric µhyp, at the point z = x+ iy ∈ H, is given by the following formula

µhyp(z) :=
i

2
· dz ∧ dz

y2
=

dxdy

y2
.

Let dhyp(·, ·) denote the natural distance function on H, which is induced by the hyperbolic
metric µhyp. Furthermore, we have the following relation

cosh2
(

dhyp(z, w)/2
)

=
|z − w|2
4yv

=
(x− u)2 + (y + v)2

4yv
,(9)

for z = x+ iy, w = u+ iv ∈ H.

We now introduce the Fuchsian subgroup associated to a quaternion division algebra, as in

[IS95]. For any a, b ∈ Z, let A :=
(

a,b
Q

)

be a quaternion division algebra defined over Q, with

the usual norm operator NA. We also assume that A is split at infinity. Then, fix an embedding
φA : A −→ M2

(

Q(
√
a)
)

.

Let R be a maximal order in A. Put

R(1) :=
{

α ∈ A | N (α) = 1
}

,

and let Γ := φA(R(1)) ⊂ SL2(R), which is a co-compact Fuchsian subgroup. The Fuchsian
subgroup Γ acts on H, via fractional linear transformations, and let X := Γ \H denote the
quotient space. The quotient space X admits the structure of a compact hyperbolic Riemann
surface.

The hyperbolic metric induces a metric on X, which is compatible with the natural complex
structure of X, and we again denote it by µhyp. Furthermore, for z, w ∈ X, the geodesic distance
between the points z and w on X, is given by dhyp(z, w). Set

volhyp(X) :=

∫

X
µhyp(x).

2.2. Cusp forms and Bergman kernel. Let N denote the set of positive integers, and for
k ∈ N, let Sk (Γ) denote the complex vector space of holomorphic cusp forms of weight-k, with
respect to the subgroup Γ, and let dk denote the dimension of Sk (Γ), as a complex vector space.

For odd k, as −Id ∈ Γ, Sk (Γ) = ∅, where Id denotes the 2× 2 identity matrix.

For f ∈ Sk (Γ), the point-wise Petersson norm at the point w = u + iv ∈ H, is given by the
following formula

∣

∣f(w)
∣

∣

pet
:= v

k
2 |f(w)|,(10)

which is invariant with respect to the action of Γ, and hence, defines a continuous function on
the Riemann surface X.
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The point-wise Petersson norm induces an inner-product on Sk (Γ). For w = u + iv ∈ H, and
f, g ∈ Sk (Γ), the Petersson inner-product on Sk (Γ), is given by the following integral

〈f, g〉pet :=
∫

F
vkf(w)g(w) µhyp(w),

where F denotes a fixed fundamental domain for Γ in H.

Let {f1, . . . , fdk } denote an orthonormal basis of Sk (Γ), with respect to the Petersson inner-

product on Sk (Γ). Then, for z, w ∈ H, the Bergman kernel associated to Sk (Γ), is given by the
following formula

(11) Bk

Γ(z, w) :=

dk
∑

j=1

fj(z)fj(w).

By Riesz representation theorem, it follows that the definition of the Bergman kernel Bk

Γ, is

independent of the choice of orthonormal basis of Sk (Γ).

For z, w ∈ H, the Bergman kernel Bk
Γ(z, w) is a holomorphic cusp form of weight-k in the z-

variable, and an anti-holomorphic cusp form of weight-k in the w-variable. Hence, the point-wise
Petersson norm of the Bergman kernel at the points z = x+ iy, w = u+ iv ∈ H, is given by the
following formula

∣

∣Bk

Γ(z, w)
∣

∣

pet
= y

k
2 v

k
2

∣

∣Bk

Γ(z, w)
∣

∣,

which is invariant with respect to the action of Γ on both the variables z and w, and hence,
defines a function on X ×X.

Furthermore, Bk

Γ is the generating function for the vector space Sk (Γ), i.e., for f ∈ Sk (Γ), and
z ∈ H and w = u+ iv ∈ F , we have

∫

F
vk Bk

Γ(z, w)f(w)µhyp(w) = f(z),

where as above, F is a fixed fundamental domain of X.

For k ∈ N and k ≥ 3, and z, w ∈ H, the Bergman kernel Bk

Γ(z, w) can also be represented, by
the following infinite series (see Proposition 1.3 on p. 77 in [Fr90])

Bk

Γ(z, w) =
(k − 1)(2i)k

4π

∑

γ∈Γ

1
(

z − γw
)k

· 1

jk(γ,w)
,

where for γ =

(

a b
c d

)

∈ Γ, j(γ,w) := cw + d.(12)

The above formula for the Bergman kernel Bk

Γ(z, w), which is given in [Fr90], is missing a factor

of (2i)k, and that fact is taken into account in the above formula.

2.3. Hecke operators. Recall that we have a fixed embedding φA : A −→ M2

(

Q(
√
a)
)

. With
notation as above, for any n ∈ N, put

R(n) :=
{

α ∈ R | NA(α) = n
}

,

and set Γ(n) := φA
(

R(n)
)

. It is well known that Γ acts on Γ(n) by left multiplication, and for

any ǫ > 0, the cardinality of the set Γ \Γ(n) is Oǫ

(

nǫ
)

, where the implied constant depends only
on the choice of ǫ > 0.

We now recall the definition of Hecke action on the space of cusp forms. This action was
originally constructed in [E55] using the theory of correspondences. For any k, n ∈ N, and
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f ∈ Sk (Γ), and w ∈ H, define

T cusp
n f(w) := n

k
2
−1

∑

γ∈Γ \Γ(n)

n
k
2

jk(γ,w)
· f(γw).(13)

A prime ℓ is called a ramified prime (or characteristic prime) for A, if Aℓ := A⊗Qℓ is a division
algebra. It is well-known that the set of ramified primes is finite and its cardinality is even.
There is an integer q such that the Hecke operators T cusp

n , where (n, q) = 1 preserve the space
of cusp forms and are self-adjoint operators on this space (see [E55]). This integer q = q1q2,
where q1 is the product of characteristic primes ℓ for which Rℓ = R⊗Zℓ is a maximal order and

q2 is the product of primes ℓ such that Rℓ is isomorphic to

(

Zℓ Zℓ

ℓZℓ Zℓ

)

. This is the same choice

made in [DS15, §2.2].

With n, q as above, we have T cusp
n T cusp

m =
∑

d|(m,n) dT
cusp
mn

d2
. Therefore, for any k as above, we

can choose a set of orthonormal basis for Sk (Γ) with respect to the Petersson inner-product,
such that all the basis elements are Hecke eigen cusp forms.

Furthermore, let f ∈ Sk (Γ) be a Hecke eigen cusp form with a set of Hecke eigenvalues
{λf (n)}n∈N. Then, from Jacquet-Langlands correspondence (see p. 470 and p. 494 in [JL70]
and [H85]), there exists an integer D ∈ N which depends only on the maximal order R, such
that there exists a cusp form F of weight-k with respect to the arithmetic subgroup Γ0(D), and
the Hecke eigenvalues of F coincide with that of f , for all (n,D) = 1. Note that D is divisible
by all primes q that are ramified primes for A, and no other primes.

Hence, from Deligne’s celebrated estimate, for all (n,D) = 1, for any ǫ > 0, we have the following
estimate

∣

∣λf (n)
∣

∣ = Oǫ

(

n
k−1
2

+ǫ
)

,(14)

where the implied constant depends on the choice of ǫ > 0.

Furthermore, set

ηf (n) :=
λf (n)

n
k−1
2

.(15)

For m,n ∈ N with (m,D) = 1 and (n,D) = 1, the normalized eigenvalues satisfy the following
relation

ηf (m) · ηf (n) =
∑

d |(m,n)

ηf

(

mn

d2

)

.(16)

We now define Hecke action on continuous functions on X. Let C(X) denote the space of
continuous functions on X. For any h ∈ C(X), and w ∈ H, define

T L2

n h(w) :=
∑

γ∈Γ \Γ(n)
h(γw).(17)

2.4. Counting function. For any n ∈ N, from [IS95], we now introduce a counting function,
associated to counting elements of Γ(n) = φA

(

R(n)
)

. With notation as above, for any n ∈ N
and z ∈ H, let

SΓ(n)

(

z; ρ
)

:=
{

γ| γ ∈ Γ(n), u(z, γz) = sinh2
(

dhyp(z, γz)/2
)

≤ ρ
}

.
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Combining Lemma 1.3 and Remark 1.5 in [IS95] (see p. 307 and p. 310), for z ∈ H, and for any
ǫ > 0, we have the following estimates

∑

γ∈SΓ(n)(z;n−3)

1

coshk
(

dhyp(z, γz)/2
) = OA,ǫ

(

nǫ
)

∑

γ∈Γ(n)\ SΓ(n)(z;n−3)

1

coshk
(

dhyp(z, γz)/2
) ≪A,ǫ n

1+ǫ

∫ ∞

n−3

(

1

(1 + u)
k
2

+
1

u
3
4 (1 + u)

k
2

)

du,(18)

where the implied constants in the above estimates depend on S, and on the choice of ǫ > 0.

3. Proof of the estimate (8)

In this section, using estimates from previous sections, we prove estimate (8). We emulate the
proof of Theorem 1.1 from [DS15], which itself is inspired from the proof of Theorem 0.2 in
[IS95].

Theorem 3.1. With notation as above, let f ∈ Sk (Γ) be a Hecke eigen cusp form, which is

normalized with respect to the Petersson inner-product on Sk(Γ). Then, for k ≫ 1, and for any

ǫ > 0, we have the following estimate

sup
z∈X

∣

∣f(z)|pet = OA,ǫ

(

k
1
2
− 1

12
+ǫ
)

,(19)

where the implied constant depends on the quaternion algebra A, and on the choice of ǫ > 0.

Proof. We now fix an orthonormal basis of Hecke eigen cusp forms
{

f1 := f, . . . , fdk
}

for Sk (Γ).
For a fixed N ∈ N, let

S :=
{

α1, . . . , αN

∣

∣n ∈ N, αn = 0, if q|n
}

,

be a set of constants, and q is the prime associated to the order R.

For any z = x + iy ∈ H, and from the definitions of the Bergman kernel, Hecke operator, and
normalized Hecke eigenvalues from equations (11), (13), and (15), respectively, and combining
it with the Hecke relation (16), we derive

dk
∑

j=1

∣

∣fj(z)
∣

∣

2 ·
∣

∣

∣

∣

∑

αn∈S
αnηfj (n)

∣

∣

∣

∣

2

=
∑

αm,αn∈S
αnαm

( dk
∑

j=1

fj(z)fj(z)ηfj (m)ηfj (n)

)

=
∑

αm,αn∈S

dk
∑

j=1

αnαm

∑

d|(m,n)

ηfj

(

mn

d2

)

(

fj(z)fj(z)
)

=
∑

αm,αn∈S
αnαm

∑

d |(m,n)

(

d2

mn

)
k−1
2

· T cusp
mn

d2
,2 Bk

Γ(z, z),(20)

where T cusp
mn

d2
,2 denotes the Hecke operator for cusp forms acting on the second variable. For any

γ ∈ Γ
(

mn/d2
)

, observe that

Im(γz) =
mnv

d2
∣

∣j(γ, z)
∣

∣

2 .



8 ANILATMAJA ARYASOMAYAJULA AND BASKAR BALASUBRAMANYAM

Combining the above observation with the definition of Hecke operators for cusp forms and L2

functions, which are as defined in equations (13) and (17), respectively, we deduce that
∣

∣

∣

∣

yk
(

d2

mn

)
k−1
2

· T cusp
mn

d2
,2 Bk

Γ(z, z)

∣

∣

∣

∣

≤

∑

γ∈Γ \Γ(mn/d2)

d√
mn

·
(

y Im(γz)
)

k
2
∣

∣Bk

Γ(z, γz)
∣

∣ =
d√
mn

· T L2
mn

d2
,2

∣

∣Bk

Γ(z, z)
∣

∣

pet
,(21)

where T L2
mn

d2
,2 denotes the Hecke operator for cusp forms acting on the second variable.

Using estimates (18), we now estimate T L2
mn

d2
,2

∣

∣Bk

Γ(z, z)
∣

∣

pet
. For brevity of exposition, set

n :=
mn

d2
.

For z ∈ H, and for any ǫ > 0, from the definitions of the Hecke operator and that of the Bergman
kernel from equations (12) and (17), respectively, and applying formula (9) and estimate (18),
we compute

T L
2

mn

d2
,2

∣

∣Bk

Γ(z, z)
∣

∣

pet
=

∑

γ∈Γ \Γ(n)

∣

∣Bk

Γ(z, γz)
∣

∣

pet
≤

k − 1

4π

∑

γ∈Γ \Γ(n)

∑

γ′∈Γ

1

cosh2
(

dhyp(z, γ′γz)/2
) =

k − 1

4π

∑

γ∈Γ(n)

1

cosh2
(

dhyp(z, γz)/2
) ≪A,ǫ

n
ǫk + n

1+ǫk

∫ ∞

n
−3

(

1

(1 + u)
k
2

+
1

u
3
4 (1 + u)

k
2

)

du.(22)

We now estimate the second term on the right hand-side of the above inequality. For n ≫ 0, we
derive

n
1+ǫk

∫ ∞

n
−3

(

1

(1 + u)
k
2

+
1

u
3
4 (1 + u)

k
2

)

du ≪A,ǫ n
13
4
+ǫ

(

n
3

n
3 + 1

)
k
2

= n

13
4
+ǫ

(

1− 1

n
3 + 1

)
k
2

.

Combining estimates (20), (21), and (22) with the above inequality, we arrive at the following
inequality

yk
dk
∑

j=1

∣

∣fj(z)
∣

∣

2 ·
∣

∣

∣

∣

∑

αn∈S
αnηfj(n)

∣

∣

∣

∣

2

≤
∑

αm,αn∈S

∣

∣αnαm

∣

∣

∑

d |(m,n)

d√
mn

· T L2
mn

d2
,2

∣

∣Bk

Γ(z, γz)
∣

∣

pet

≪A,ǫ

∑

αm,αn∈S

∣

∣αnαm

∣

∣

∑

d |(m,n)

((

d2

mn

)
1
2
−ǫ

k +
(mn

d2

)
11
4
+ǫ

(

1− 1
(

mn/d2
)3

+ 1

)
k
2
)

.(23)

From computations in the proof of Theorem 0.1(a) from [IS95] (see p. 310), for any ǫ > 0, we
have the following estimates for the two terms on the right hand-side of above inequality

∑

αm,αn∈S

∣

∣αnαm

∣

∣

∑

d |(m,n)

(

d2

mn

)
1
2
−ǫ

k ≪ǫ N
ǫ

(

∑

αn∈S

∣

∣αn

∣

∣

2
)

k;(24)

∑

αm,αn∈S

∣

∣αnαm

∣

∣

∑

d |(m,n)

(mn

d2

)
11
4
+ǫ

(

1− 1
(

mn/d2
)3

+ 1

)
k
2

≪ǫ

(

∑

α∈S

∣

∣αn

∣

∣

)2

N
11
2
+ǫ

(

1− 1

N3 + 1

)
k
2

.(25)
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Now, as in [DS15] and [IS95], we choose

αn :=











ηf (p) if p ∤ D and n = p ≤
√
N,

−1 if p ∤ D and n = p2 ≤ N,

0 otherwise.

From the discussion in section 2.3, under the Jacquet-Langlands correspondence, there exists
a cusp form F of weight-k, with respect to the arithmetic subgroup Γ0(D), with D as in the
above section, such that Hecke eigenvalues of F coincide with the Hecke eigenvalues of f , for all
(n,D) = 1. So from Deligne’s estimate (14)

∣

∣ηf (n)
∣

∣ = Oǫ

(

nǫ
)

,(26)

where the implied constant depends only on the choice of ǫ > 0. Furthermore, for primes p ∤ D,
we have

η2f (p)− ηf (p
2) = 1.(27)

Applying Deligne’s estimate (26), we have
∑

n∈S

∣

∣αn

∣

∣

2 ≪ǫ N
1
2
+ǫ(28)

(

∑

α∈S

∣

∣αn

∣

∣

)2

≪ǫ N
1+ǫ.(29)

Combining estimates (23)–(29), we arrive at the following estimate

∣

∣f(z)
∣

∣

2

pet
·
(

∑

p≤
√
N

p∤q

1

)2

≪A,ǫ N
1
2
+ǫk +N

13
2
+ǫ

(

1− 1

N3 + 1

)
k
2

,

which implies that

∣

∣f(z)
∣

∣

2

pet
≪A,ǫ

k

N
1
2
−ǫ

+N
11
2
+ǫ

(

1− 1

N3 + 1

)
k
2

,(30)

Substituting 12N3 logN = k, for N ≫ 1, we have the following the asymptotic
(

1− 1

N3 + 1

)
k
2

=

(

1− 1

N3 + 1

)6N3 logN

=
1

N6
+O

(

logN

N9

)

.

For red k ≫ 1, substituting 12N3 logN = k, and the above asymptotic in estimate (30), we
arrive at the following estimate

∣

∣f(z)
∣

∣

2

pet
≪A,ǫ N

5
2
+ǫ +

1

N
1
2
−ǫ

≪A,ǫ k
5
6
+ǫ +

1

k
1
6
−ǫ

= OA,ǫ

(

k
5
6
+ǫ
)

,

which completes the proof of the theorem. �
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