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ABSTRACT

We present a fully automated method that identifies attractors and their basins of attraction without approximations of the dynamics. The
method works by defining a finite state machine on top of the dynamical system flow. The input to the method is a dynamical system
evolution rule and a grid that partitions the state space. No prior knowledge of the number, location, or nature of the attractors is required.
The method works for arbitrarily high-dimensional dynamical systems, both discrete and continuous. It also works for stroboscopic maps,
Poincaré maps, and projections of high-dimensional dynamics to a lower-dimensional space. The method is accompanied by a performant
open-source implementation in the DynamicalSystems.jl library. The performance of the method outclasses the naive approach of evolving
initial conditions until convergence to an attractor, even when excluding the task of first identifying the attractors from the comparison.
We showcase the power of our implementation on several scenarios, including interlaced chaotic attractors, high-dimensional state spaces,
fractal basin boundaries, and interlaced attracting periodic orbits, among others. The output of our method can be straightforwardly used to
calculate concepts, such as basin stability and final state sensitivity.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0076568

Basins of attraction play a central role in the study of multi-
stable dynamical systems. They contain the information about the
sets of initial conditions whose trajectories converge to different
asymptotic states. Since the basins of most nonlinear dynamical
systems are impossible to study analytically, numerical simula-
tions are the method of choice for the inquiry. The computation
of the basins implies matching the trajectory of each chosen initial
condition against a collection of known attractors. Our algorithm
not only automatically identifies the attractors of a dynamical
system but also estimates the basins for a given grid of initial
conditions.

I. INTRODUCTION

In the state space of a dynamical system, basins of attraction
are the set of initial conditions that lead to a particular attractor. If
only a single global attractor exists, then every initial condition ends
up there. However, the coexistence of several attractors in the state
space, known as multistability, has been observed in a large array

of different dynamical systems.' The recent advent of the tipping-
point analysis” has enhanced the interest for this phenomenon. In
the presence of multistability, it is thus important to map the ini-
tial conditions to the attractor they end up at, or in other words, to
evaluate the basin of attraction of each attractor.

Estimating the basins has benefits well beyond simply knowing
the long-term behavior of each initial condition. For example, they
can reveal the existence of chaotic transient dynamics before settling
into a non-chaotic attractor.” Some basins have fractal boundaries.
Therefore, it is important to measure how uncertain we are about
the final state of an initial condition. It can be computed via different
tools, e.g., the uncertainty dimension of the boundary (also known
as final state sensitivity)® or the basin entropy.™®

Importantly, the basins of attraction can be used to comple-
ment or extend the traditional linear stability analysis of the attrac-
tors and unveil potential tipping points in a dynamical system.”’ For
example, the basin stability quantifies the robustness of an attractor
relative to a perturbation in a system parameter.” Also leverag-
ing the information carried by the basins, the tipping probabilities
uncover the influence of a parameter drift on the global dynamics.”
Notice that all the methods we have outlined so far assume that
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the basins and the attractors have been estimated correctly before-
hand.

There are several approaches to construct an approximation of
the basins. A brute force method, consisting of evolving initial con-
ditions for long transient and then comparing the last N points of
the trajectory, may work well for fixed point attractors. However, for
anything else, it will fail due to many practical drawbacks regard-
ing, e.g., the variability of integration time-stepping and sampling
of non-fixed-point attractors. An alternative is to compare the Lya-
punov spectrum of each orbit’ to classify the attractors. The benefit
is a simpler comparison between orbits, but it is at the cost of a
precise computation of the Lyapunov exponents. Besides, we can-
not be sure of the uniqueness of the spectrum for different orbits.
For example, two symmetric attractors can possess the same spec-
trum. A third approach relies on recursive subdivision of the state
space with quad tree structures,'’ which has been useful in estimat-
ing basin boundaries of Julia and Mandelbrot sets. However, due to
the memory requirement of the quad tree structure, this method is
inefficient when the boundary occupies a large portion of the state
space or when the state space is higher dimensional. It is unsuitable
for generic dynamical systems.

In this article, we solve the problem of the computation of the
basins by utilizing the only property of an attractor that is always
guaranteed to identify it uniquely: its location in the state space. Our
approach is inspired by a method described by Nusse and Yorke
in Chap. 7 of Ref. 11. Our algorithm relies on the Poincaré recur-
rence theorem, which states that a trajectory on an attracting set
will sooner or later visit the same regions of the state space. The
algorithm first locates the attractors by searching for recurrences
on a discretized state space grid. The second step is to match ini-
tial conditions with attractors, which can be done efficiently both
during and after the attractors have been located and labeled. These
tasks are executed by pairing the dynamical system with a finite state
machine.

We have implemented the algorithm on top of the Dynam-
icalSystems.jl software library,'* written entirely in the Julia pro-
gramming language. The algorithm implementation is user-friendly,
requiring approximately ten lines of input code (these include actu-
ally defining the dynamical system).

In Sec. 11, we explain the details and potential drawbacks of the
algorithm, and in Sec. 11, we apply it successfully on a wide range
of different scenarios, from interlaced chaotic attractors to high-
dimensional dynamical systems. In Sec. IV, we showcase the code
implementation, its computational aspects, as well as the advan-
tages of making it part of a general purpose library. In Sec. V, we
summarize and conclude.

II. DESCRIPTION OF THE ALGORITHM
A. Attractor identification via recurrences

Identifying attractors using recurrences is a central part of our
algorithm and thus we describe it first here in isolation, before
moving onto the main algorithm presentation in Sec. II B.

A portion of the state space of the dynamical system is dis-
cretized in the form of a regular grid of initial conditions. An array
with the same size as the grid is defined for the storage of the infor-
mation regarding basins and attractors. Each element of this array
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will hold the information about a cell that is centered around a sin-
gle initial condition. This information will be called the label n of
the cell. The size of the cell is determined by the grid step along each
dimension. The other component is an integrator that progresses a
state space point forward in time along the flow of the dynamical
system.

For the task of attractor identification, we track the successive
steps of the dynamical system evolution on the grid starting from
an initial condition. Each visited cell is labeled v for “visited” [red
color in Fig. 1(a)], and an internal counter registers the sequential
events. The trajectory will eventually step mx_chk_fnd_att con-
secutive times into such v-cells. At this point, we have found an
attractor since there are sufficient recurrences on the grid [green
color in Fig. 1(b)]. Note that labels, states, and parameters of the
algorithm will be denoted with typewriter characters. Afterward, the

EEE s

FIG. 1. Attractor identification on the grid. The intersections of the grid corre-
spond to the initial conditions. Black dots correspond to states of the dynamical
system during integration, and solid lines are a guide the eye (only the black dots
are known during the process). The colored areas centered around the intersec-
tions are the boxes or cells that will be used for the identification of the attractors
and basins. (a) As the trajectory evolves, the algorithm leaves a mark on each
visited cell (red squares). (b) When the orbit visits a cell already marked in (a), the
algorithm begins counting the recurrences (green squares). When the trajectory
visits mx_chk_fnd_att = 3 consecutive green cells, we consider that we
have found a new attractor. (c) The algorithm proceeds to locate the attractor cor-
rectly. From this moment, every visited cell is marked as a part of the attractor (blue
squares), and the process goes on until we have visited mx_chk_loc_att
blues squares in a row. (d) At this point, the algorithm erases the marks (red
squares) and labels the cell of the initial condition as part of the basin of the
attractor (the magenta square).
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algorithm proceeds to locate the rest of the attractor as precisely as
possible (the internal counter is reset to 0 here). From this moment
on, all visited cells will be marked as containing an attractor point
[blue color in Fig. 1(c)]. This encoding goes on until the internal
counter reaches mx_chk_loc_att. This ensures that we find as
much cells as desired with attractor points. At the end of the pro-
cess, the algorithm marks the initial condition as part of the basin
of the found attractor [magenta color in Fig. 1(d)]. Finally, it dis-
cards the labeling v on all other cells visited by the transient of the
trajectory.

B. The finite state machine

To estimate the full basins of attraction, the algorithm must
identify all attractors contained in the defined grid, detect which grid
cells belong to which basins, and handle the cases when a trajectory
diverges or stays outside the grid. To achieve this, we propose a finite
state machine (FSM) formalism built on top of the dynamical system
trajectory. It coordinates the tasks of the algorithm in a systematic
way and provides a flexible framework that permits new functional-
ities if necessary. The overall algorithm and behavior of the FSM is
presented in Fig. 2 and in the ensuing description.

The FSM has a state and an internal counter c. At each step of
the main algorithm loop (Fig. 2), the dynamical system is evolved for
At time, and its location in the state space is mapped to the enclosing
grid cell. The cell label is given as the input to the FSM as shown in
Fig. 2.

A cell label n is encoded using integers. Initially, every cell of
the grid is labeled 1, meaning that there is an unknown basin or
attractor in this cell. The cells containing attractor points receive
an even number 2k, and cells with basin points are given an odd
number 2k+1 with k>0. Conveniently, attractors and their corre-
sponding basins are labeled using the same k value; i.e., they form an
even-odd pair. If the dynamical system evolution brings it outside
the defined grid, -1 is used as a cell label. Last, cells labeled 1 that
are visited by the trajectory during the algorithm loop are labeled as
v. We always use the next unused odd number for v since it may
encode the basin of attraction of a yet-to-be-identified attractor.

After receiving the cell label n as input, the FSM will either
change its state according to the first two columns of the table of
Fig. 2 and set c=0 or stay in the same state as before and set c=c+1.
After configuring its state and counter value, the FSM may “write”
a value to the initial condition’s cell (Fig. 2) if its internal counter
crosses a threshold value. After writing, the initial grid cell of the
algorithm has been labeled correctly. If there are still cells labeled 1,
the process repeats with a new initial condition; otherwise, the whole
process terminates.

The general operation of the FSM is as follows: (1) reset counter
if state/input changed, (2) increment counter while in the same state,
and (3) write final label to the initial grid cell once the counter is
high enough (see Fig. 2). This operation is independent of the actual
state of the FSM. The state determines the threshold the counter
must exceed for writing and the label written in the initial cell. The
default values for counter thresholds are listed in Table I, while the
values to be written are contained in the last column of the table
of Fig. 2. The FSM has five possible states (notice that the sequence
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Algorithm Flowchart
( start grid with n=1, set first DS IC, set FSM state = att_search )

~a
( cleanup and return ) evolve DS map DS state
for At to cell on grid
set new ‘
DSIC input cell label
n to FSM
(then set label
main to v ifit was 1)

writes?
(see table)

| while lost,
| <z—|

=t

freeze c counter,
start t counter

States and actions of the FSM
Cell label n decides FSM state. Current state (29 column)
and counters c, t decide if an action will be taken.

n set state given FNS state, if action

i att_search | c>mx_chk_find_att zetttitﬁsjn:
att_found c>mx_chk_loc_att write v

2k att_hit c>mx_chk_att write 2k+1

2k+1 | bas_hit c>mx_chk_hit_bas write 2k+1

-1 lost t>mx_chk_lost write -1

FIG. 2. Flow diagram of our algorithm and states and actions of the finite state
machine. While the FSM is on state at t_found, it always labels current cell
as v—1 (not shown in the flow chart). DS, dynamical system; FSM, finite state
machine; and IC, initial condition for DS.

of att_search — att_found has been described precisely in
Sec. [T A):

e att_search: This is also the initial state of the machine, and it
stands for searching for an attractor.

« att_found: We have found a new attractor. This is the only
state that cannot be reached via the cell label input but rather via

TABLE I. Default values for the counter thresholds of each of the states of the finite
state machine; see also the discussion in Sec. || D.

Parameter Value
mx_chk_att 2
mx_chk_fnd_att 100
mx_chk_loc_att 100
mx_chk_lost 20
mx_chk_hit_bas 10
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the state at t_search. In this state, the FSM does not care about
the input cell label. The only difference in the FSM operation is
that while on state at t_found, the current cell is always labeled
as v—1, which is the next unused even number, which is also the
newest identified attractor. Obviously, after the end of operation
of att_found, the numeric value for v is changed to v=v+2 as
we have one more new attractor in the grid.

o att_hit: The current trajectory point is in a cell containing an
identified attractor point. Notice that att_hit is an umbrella
term: each unique attractor corresponds to a different state for
the FSM and similarly with bas_hit.

« bas_hit: The input is an odd number 2k+1 < v. Hence, the
trajectory visits a cell belonging to the basin of an attractor already
found. This state is not necessary for the algorithm to work, but it
speeds up the performance in many cases (see Sec. IV B). It sim-
ply represents that if we are in the basin of attraction of a known
attractor for long enough, we do not have to wait until we actually
converge to the attractor to label the initial grid as belonging to
the basin of the said attractor.

o lost: The trajectory is outside the defined grid. Here, the inter-
nal counter c is frozen. A new counter t starts from t=0 and
is incremented, while the FSM remains in the same state as nor-
mally. The reason for the second counter is purely for a better
user experience and is not actually necessary for the algorithm to
work. The second counter targets scenarios where the trajectory
might slightly depart from the defined grid and return there a cou-
ple of steps later, simply because the user has not defined a large
enough grid. This also means that the first counter c is frozen: it
is not reset to 0 if the FSM returns to its prior state after exiting
the lost state.

The description of the algorithm above does not contain any
reference to the nature of the dynamical system. The only required
input is the time evolution of the state space points. As a conse-
quence, a large variety of possible dynamical systems is admitted:
discrete and continuous ones, Poincaré maps, and stroboscopic
maps. It is also possible to track only the projected state of a dynami-
cal system to lower-dimensional subspace of the full state space. For
example, the basins of a four dimensional system can be analyzed
on a projected plane of, e.g., the first two variables of the system
(see Sec. I1I for examples). This provides a massive computational
performance advantage but is only useful in scenarios where the
attractors either do not span the remaining projected dimensions, or
if they do, they do not intertwine along these projected dimensions.

C. Refinement of basins with known attractors

The attractors must be contained within the limits of the
defined grid when the algorithm computes their basins without
prior knowledge. This is a limitation because often, one wants to
focus on a region of the basins that does not contain the attrac-
tors [e.g., zooming into a part of the basins with strongly fractal
boundaries as in Figs. 3(c) and 3(d)]. To address this, we have added
a second mode of operation to the algorithm, which works with
user-provided already identified attractors. In this second mode,
the algorithm computes the minimum distance of the current state
space point vs all the attractors. When one of these distances falls
bellow a given threshold &, we match the initial condition with the
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corresponding attractor. Of course, the original algorithm can be
used to first detect the attractors on a larger and coarser state space
grid, which will be refined by the second mode of operation.

D. Limitations and problem solving

Our method does not assume any approximations on the esti-
mation of basins or attractors. In this sense, it is arbitrarily precise:
the more refined the grid, the better the basins are estimated. Nev-
ertheless, there are limitations and/or difficulties. The most obvious
one is that localization of all attractors existing in the state space is
not guaranteed for a given grid resolution.

The total extent of the grid should be chosen large enough to
actually contain the attractors fully but also fine enough to sepa-
rate attractors in the state space. The step size At of the integrator
(in the case of continuous time systems) is also critical. It should be
large enough for the trajectory to visit different cells at each step.
If it is too large, we may lose some performance benefits of our
algorithm, but we never lose accuracy in this case. Small At that
makes the trajectory spend several steps in the same cell in the state
space is a bad choice. In the code implementation, we provide an
automatic guess for At equivalent to ten times the average cell cross-
ing time. Regarding the parameters of Table I, their default values
have been chosen to work well with most of the systems we tested.
Obviously, increasing all of them makes the basin estimation more
precise at the cost of computational performance. More specifically,
these parameters should be increased in the following scenarios:
mx_chk_att if attractors in the state space are very close to each
other,mx_chk_hit_lbas if the basin boundaries are strongly frac-
tal, and mx_chk_fnd_att and mx_chk_loc_att if there are
chaotic attractors.

If the algorithm does not seem to find the suspected number of
attractors or never halts because it cannot find any attractor, there
are some possible actions that can help solving the problem. First,
increase the limits of the grid, as transients sometimes stay a long
time outside the defined grid. If the dynamics is continuous, try
adjusting the integrator step size and make sure the orbit visits a
different cell at each step. Also, the solver must be the right one for
your system (e.g., stiff vs non-stiff problems).

Last, let us mention that finding full basins of attraction in
high-dimensional systems is strongly limited by available memory.
The basin array size grows exponentially with dimensionality as
~pP with p being the (average) amount of grid points along each
dimension. Already, a ten-dimensional system may exceed available
memory of a typical computer. The best alternative we can think of is
to not estimate the full basins of attraction but rather their fractions
using random sampling (see discussion at the end of Sec. V).

Ill. RESULTS

To showcase the strengths of the algorithm, we apply it to find
the basins of the following scenarios:

(a) A 2D discrete dynamical system with a chaotic attractor and
orbits escaping to infinity (Hénon map).
(b) A 2D stroboscopic map (Duffing oscillator).
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(a) 2D map & divergence to (b) 2D stroboscopic map (c) 4D system projected to 2D
2

1.0

4 2 0 2 4

(f) 3D basins: chaotic &
periodic & fixed point

-2 -1 0 1 2

(d) Refined basins (from (c))

0.10

0.05

-5
0.00
1.80 1.85 1.90 1.95 -5 0 5
(g) 4D basins of discrete map (h) 6D continuous chaotic
with 25 attractors bistable system 3.0 (i) Riddled & exit basins

300

1.5
275

1.0

2
>0 0.5

-1 0 1 -5 0 5 10 15 -2 -1 0 1 2

FIG. 3. Basins of attraction for the scenarios discussed in Sec. |lI. In the cases of (f}~(h), the basins are 3D, 4D, and 6D, respectively, and the plots only show a slice along
two dimensions. In (a), (g), and (h), the black color corresponds to initial conditions escaping to infinity. White circles correspond to attractors for (a), (b), (c), and (e). In all
plots, the dimensions plotted are the first two of the dynamical system except the panel (h) where it is the last two.
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TABLE II. Dynamical rules and parameters for systems used. For the magnetic pendulum, the magnet locations x; are equispaced on the unit circle. For the coupled logistic

maps, u; denotes the next state and i runs from 1 to D (the state space dimensionality).

System Dynamical rule Parameters
Hénon map'® Xnp1 =1 —ax + Yn, Vo1 = bx, a=14,b=0.3
Duffing oscillator'” X+ dx+ Bx+ x> = feos(wt) w=1.0,f=02,d=0.15=-1.0
N
X —X;
X = —wzx—ak—z o L ox= x)

Magnetic pendulum i=1 i

a=02,0w=1,d=03,N=3

D=\ —x)’ 4+ =y + &

Thomas cyclical

Lorenz84’

X = sin(y) — bx,

Coupled logistic maps'’

) T—T
X=X —xi)xi—x+F|1+8

¥y = sin(z) — by,
x=-y—Z—ax+aF, y=xy—y—bxz+ G, z=bxy+xz—z
ugz)\—uiz—i—kzjii(ujz—uf)

. - &
T= S(l — ay + 0.5a; tanh(T — T)) —oT' -« <%)

b=0.1665
F=6.886,G=1.347,a=0.255,b=4.0
D=4,1=12,k=0.08

z = sin(x) — bz

Ar
N=5F=85=8a =05

a, =04, T=270,Ar = 60,0 = 2,
B=10=1/180

y =0.05%=19,f, =2.3

Lorenz96EBM*’
X
Ex) = N ;xf
X=Vy =7,
Riddled system”' Ve = —y v, — (—4x(1 — &%) + %) + fy sin(wt)xo

w=35x=1y=0

vy = —yv, — (2y(x + X)) + fo sin(wt)y,

(c) A 2D projection of basins of a 4D continuous system with

fixed points as attractors and fractal attractor basins (magnetic

pendulum).

Refining basins of attraction (zooming into the fractal structure)

of the above.

A Poincaré map of a 3D continuous system that has interlaced

attracting periodic orbits (Thomas cyclical with the Poincaré

section defined at z = 0). On the Poincaré map, the periodic

orbits become attracting fixed points.

(f) A 3D continuous dynamical system with the coexistence of a

chaotic attractor, an attracting periodic orbit, and an attracting

fixed point (Lorenz84).

A 4D discrete dynamical system with extreme multi-stability of

~26 coexisting attractors (nonlinearly coupled logistic maps).

A 6D continuous dynamical system with bistability (Lorenz96

coupled with a simple energy balance model, Lorenz96EBM).

One attractor is chaotic and the other periodic.

(i) 2D basins of a stroboscopic map of a forced 4D continuous
system, which has a basin of attraction riddled with an exit
basin.

(d)
(e)

(g)

The output is shown in Fig. 3. The dynamical rule and param-
eters for each dynamical system are shown in Table II.

For all cases, we applied the algorithm, and the expected basins
have been found easily. It is especially worth highlighting the case of
Lorenz84 [Fig. 3(f)] because two of the three attractors are extremely

close in state space; see Fig. 4(a). We used a grid of 100 x 100 x 100
resolution [only a 2D slice of the full 3D basins is shown, and the
fraction of each basin is &~ (0.55,0.2,0.25)]. Had we used a coarse
grid resolution (less than 100 points per dimension), the two attrac-
tors would not have been separated by the algorithm. Figure 4(b)
shows the three periodic attractors of the Thomas cyclical system
and the plane used to define the Poincaré section. This is the plane

a) Lorenz84

b) Thomas cyclical

FIG. 4. (a) Three attractors of the Lorenz84 system (square marker for the fixed
point). Circular markers are used to denote the attractor points found automatically
by our algorithm. Lines are used to integrate a trajectory and highlight the full
attractor. (b) Three periodic attractors of the Thomas cyclical (fixed point attractors
also exist) and the plane used to define the Poincaré section.
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used to produce the basins of attraction of the Poincaré map in
Fig. 3(e). For the case of the 4D nonlinearly coupled logistic maps,
we do not know for sure whether all attractors were found (given
how many there are). There is no prior work that did a more thor-
ough analysis on this specific system. For the 6D continuous system,
the basin boundary is smooth, and the two attractors are very well
separated in the sixth dimension of the state space (T), which makes
the entire process much simpler. To keep the computation time low,
we used a coarse grid of 10 x 10 x 10 x 10 x 10 x 101 and only
made the gridding of the last variable dense. This required about 1 h
30 m computing time on an average machine. The basin fractions
are &~ (0.61,0.39).

IV. IMPLEMENTATION

Our algorithm is implemented in DynamicalSystems.jl.'* The
strengths of this software, among others, are the simplicity
of use and excellent numerical efficiency. Our implementation
follows these principles and provides a lean interface as well as tight
computational time and memory usage. It is part of the library since
v1.9. From a user perspective, using the algorithm is quite simple,
and in Listing 1, we present its basic application using our analysis
of the Lorenz-84 model as an example.

The user first needs to define a DynamicalSystem instance,
done in lines 3-14 of Listing 1. Then, with the appropriate grid
of initial conditions, the function basins_of_attraction
is called as listed in lines 16-21. The first output of the func-
tion is an array basins with the size identical to the grid. Its
elements are the IDs of the attractor labeling each initial con-
dition. The second output attractors is a dictionary, map-
ping attractor IDs to the automatically estimated attractor points
in the state space. These points have the dimensionality of the
state space, which could be higher than that of the grid. The
function basins_ of_ attraction allows for several key-
words including those of Table I.

A. Integration with DynamicalSystems.jl and the Julia
ecosystem

Implementing our algorithm in DynamicalSystems.jl instead
of an isolated piece of software comes with huge advantages,
the first being simplicity and high-levelness of Listing 1. More
importantly though, our implementation is able to communicate
and be used with the rest of the library, and, in fact, the whole
Julia ecosystem, directly. For example, in lines 24-28 of Listing
1, we reuse the existing defined structures 1o and attractors
to calculate the Lyapunov exponents of each attractor. The out-
put basins can be further used with functions of the library,
such as basin_fractions, tipping_probabilities, or
basin_entropy. These measures are useful in the analysis of
dynamical systems in terms of basin stability,” tipping probabilities,”
or basin entropy.’ Last, DynamicalSystems.jl integrates with the Julia
library DifferentialEquations.jl."” Users can pick any of the hun-
dreds of ODE solvers from this library and adjust on the fly any
accuracy-related option by providing the extra keyword diffeq. In

> L«

our work, we used Verner’s “Most Efficient” 9/8 Runge-Kutta solver
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with strict error tolerances by providing the keyword diffeq as
shown in line 20 of Listing 1.

B. Performance considerations

Julia, its suite of differential equation solvers, and the opti-
mizations of DynamicalSystems.jl provide excellent numeric perfor-
mance that our implementation takes advantage of. For example,
estimating the 3D basins of attraction of the Lorenz-84 system for
a 80x 80 x 80 grid resolution (512 000 initial conditions) requires
3 min on a medium performance computer with CPU AMD Ryzen
53600 6-Core (only one core is used as our method is not paralleliz-
able).

To obtain a language-agnostic performance estimate of our
algorithm, we will compare the computation of Fig. 3(c) using our
algorithm against the naive approach where each initial condition
is integrated until convergence to a fixed point and later mapped to
one of the known three attracting fixed points. The case of Fig. 3(c)
is, by choice, the most unfair case we could have chosen for such
a comparison: (i) the attractors are fixed points, the easiest (and
perhaps only) kind of attractors the naive approach can find and
(ii) the basins of attraction are strongly fractal, which reduces some
of our algorithm’s performance benefits. Nevertheless, as we can see
in Fig. 5, our method outperforms the naive approach even when
excluding any time necessary to actually find the attractors (which
could well be the hardest step depending on the occasion).

One of the reasons for this improvement is the use of the
information already stored in the grid. The algorithm checks if
the trajectory visits cells labeled as basins. If it is the case for
mx_chk_hit_bas times in a row for the same basin, the ini-
tial condition belongs to this basin. As the grid is filled, this event
becomes more and more frequent and shortens the time of identifi-
cation.

--our algorithm
=naive
10
0
()
o,
Q
£
- 5_
0_

1.0x10* 2.0x10* 3.0x10* 4.0x10°

# of initial conditions

FIG. 5. Benchmark comparison of creating Fig. 3(c) using our algorithm or the
naive approach. The timings of the latter do not include any consideration of the
time needed to identify and catalog the attractors while this is included in our
algorithm.
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1 using DynamicalSystems, OrdinaryDiffEqg
2 # Create instance of ‘DynamicalSystem‘:
3 function lorenz84 (u, p, t)

4 F, G, a, b =p

5 X, YV, z = U

6 dx = -y"2 —-z72 —a*x + axF

7 dy =
8 dz = bxxxy + x*z — z

9 return SVector (dx, dy, dz)
10 end

1 F, G, a, b = 6.886,
2 p = [F, G, a, b]

13 u0 = rand(3)

xX*xy — y — bxxxz + G

1.347, 0.255, 4.0

14 1o = ContinuousDynamicalSystem(lorenz84, u0,

15 # Calculate basins of attraction
length = 100)
length 100)
length = 100)

16 xg = range (-1, 3;
17 yg = range (-2, 3;
18 zg = range (-2, 2.5;
v grid = (xg, yg, zg)
0 diffeqg = (alg = Vern9(),

reltol = le-9,

ARTICLE scitation.org/journal/cha

# initial condition doesn’t matter
p)

abstol = 1le-9)

21 basins, attractors = basins_of_attraction(grid, lo; diffeq)
2 # Further use output for e.g., Lyapunov exponents or basin fractions:

23 fracs = basin_fractions (basins)

and fraction: $(fracslkey]l)™")

2 for (key, att) in attractors

25 u0 = att[1l] # First found point of attractor
26 ls = lyapunovspectrum(lo, 10000; u0)

27 println ("Attractor $(key) has spectrum: $(1ls)
28 end

Listing 1 Basic usage of our basins of attraction implementation. The listing is runnable Julia code.

V. CONCLUSIONS

The automatic estimation of attractors and their basins of
attraction is not an easy task for nonlinear dynamical systems. In
this work, we presented an algorithm that does better than previous
solutions. It is based on a definition of an appropriate finite state
machine on the state space, whose desired operation is guaranteed
by the Poincaré recurrence theorem. The algorithm is straightfor-
ward to use, computationally performant, and is implemented in the
general purpose library DynamicalSystems.jl. In Sec. 111, we applied
our algorithm to a large array of different scenarios and demon-
strated its success with all of them. We cannot underestimate the
importance of numerical methods in the field of nonlinear dynam-
ics. Our paper aims at completing the basic toolbox of researchers
with a ready-to-use and versatile tool for estimating attractors and
their basins of attraction.

In the near future, we will enrich this functionality with a recent
approach for the estimation of the basin fractions without com-
puting the full basins of attraction from Stender and Hoffmann,"
called bSTAB. This method transforms a trajectory into a vector
of features, for example, the mean and the variance of the time-
series, for its later classification in the feature space. It is an inter-
esting technique that does not require a huge in-memory matrix

initialization, but it requires the user to have a basic idea of the
attractors already, as well as which features can be used to distin-
guish between them. We plan to implement this method in Dynam-
icalSystems.jl soon, leveraging our existing algorithm to estimate the
basins of attraction.
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