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Abstract
Let n be a locally nilpotent infinite-dimensional Lie algebra over C. Let U(n) and S(n) be

its universal enveloping algebra and its symmetric algebra respectively. Consider the Jacobson
topology on the primitive spectrum of U(n) and the Poisson topology on the primitive Poisson
spectrum of S(n). We provide a homeomorphism between the corresponding topological spaces (on
the level of points, it gives a bijection between the primitive ideals of U(n) and S(n)). We also
show that all primitive ideals of S(n) from an open set in a properly chosen topology are generated
by their intersections with the Poisson center. Under the assumption that n is a nil-Dynkin Lie
algebra, we give two criteria for primitive ideals I(λ) ⊂ S(n) and J(λ) ⊂ U(n), λ ∈ n∗, to be
nonzero. Most of these results generalize the known facts about primitive and Poisson spectrum
for finite-dimensional nilpotent Lie algebras (but note that for a finite-dimensional nilpotent Lie
algebra all primitive ideals I(λ), J(λ) are nonzero).
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1. Introduction

We work over the field C of complex numbers. By definition, a locally nilpotent Lie algebra is a direct
limit of nested finite-dimensional nilpotent Lie algebras. In this paper we discuss primitive ideals
(respectively, primitive Poisson ideals) of the universal enveloping algebra U(n) (respectively, of the
symmetric algebra S(n)) of such a Lie algebra n.

The corresponding theory for the finite-dimensional Lie algebras was developed in the mid-end of
20th century by the efforts (and insights) of many brilliant mathematicians. We would like to mention
explicitly J. Dixmier, M. Duflo, A. Joseph, A. Kirillov, B. Kostant, O. Mathieu, M. Vergne among
them. Of course, in the infinite-dimensional situation, we use the power, the intuition and the details
of proofs of the finite-dimensional setting, but the final results are rather different.

It is known that similar questions for the finite-dimensional (nilpotent) Lie algebras boil down to
some questions for the corresponding coadjoint representations. This idea works almost in the same
way for the infinite-dimensional setting. Hence, the new features of the infinite-dimensional setting
are coming from the new features of the corresponding coadjoint representation.

The most straightforward difference is that the dual space of a countable-dimensional space is
uncountable-dimensional. Next, it turns out that many infinite-dimensional locally nilpotent Lie alge-
bras are centerless (and this is completely opposite to the finite-dimensional setting) [DP1]. Moreover,
in many cases even the center of the corresponding universal enveloping algebra consists of the elements
of the ground field [IPe] (we enhance these statements for a class of nil-Dynkin infinite-dimensional
locally nilpotent Lie algebras which will be described later).

The most important tool in the representation theory of finite-dimensional nilpotent Lie algebras
is an algebraic version of the Kirillov’s orbit method. For a given finite-dimensional nilpotent Lie
algebra n, this method establishes a homeomorphism between the space JSpec U(n) of primitive ideals
of U(n) (endowed with the Jacobson topology) and the space of coadjoint orbits on the dual space n∗.
By definition, the latter space is homeomorphic to the space PSpec S(n) of primitive Poisson ideals
of S(n) (endowed with the Poisson topology, see Subsection 2.2). In more details, to each linear form
λ ∈ n∗ one can attach the primitive ideal J(λ) of U(n) and the primitive Poisson ideal I(λ) of S(n),
see Subsection 2.3. It turns out that each primitive ideal of U(n) (respectively, each primitive Poisson
ideal of S(n)) has the form J(λ) (respectively, I(λ)). Furthermore, the map I(λ) 7→ J(λ) provides a
homeomorphism between the spaces PSpec S(n) and JSpec U(n).

Our first main result claims that the orbit method still works in the infinite-dimensional situation
(see Theorem 3.16 for more details).

Theorem. Let n be a countable-dimensional locally nilpotent complex Lie algebra. Then

i) each primitive ideal of U(n) equals J(λ) for a certain λ ∈ n∗;

ii) each primitive Poisson ideal of S(n) equals I(λ) for a certain λ ∈ n∗;

iii) the map I(λ) 7→ J(λ) is a homeomorphism between PSpec (S(n)) and JSpec (U(n)).

In the finite-dimensional setting, given linear forms λ, µ ∈ n∗, the ideals J(λ) and J(µ) coincide
if and only if λ and µ belong to the same coadjoint orbit. We can’t provide an analogue of this result
for a general locally nilpotent Lie algebra. Nevertheless, we can prove a similar result for a properly
chosen group together with its action on n∗ for a certain subclass of locally nilpotent Lie algebras,
see Proposition 3.32. This subclass consists of Lie algebras n which can be exhausted by its finite-
dimensional nilpotent ideals; such a Lie algebra is called socle. For example, the countable-dimensional
Heisenberg algebra is socle. We also establish a version of Dixmier–Moeglin equivalence for socle Lie
algebras.

Now, we turn to the results on nil-Dynkin algebras. It is well known that the Dynkin diagrams
of types A, B, C, D, E, F , G provide a description of simple finite-dimensional Lie algebras. As a
byproduct of this procedure the same diagrams give a very detailed description of maximal nilpotent
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subalgebras of these simple Lie algebras. The Dynkin diagrams of types A, B, C, D has countable
analogues and every such an analogue defines the infinite-dimensional Lie algebra together with its
maximal locally nilpotent subalgebra [DP1]. This construction defines a wide variety of infinite-
dimensional locally nilpotent Lie algebras, see Section 4. We refer to all Lie algebras defined by the
above construction as nil-Dynkin algebras.

If n is a finite-dimensional nilpotent Lie algebra then almost all primitive ideals of U(n) are centrally
generated, i.e., are generated as ideals by their intersections with the center Z(n) of U(n), see, e.g.,
Theorem 2.19. (Moreover, if n is a maximal nilpotent subalgebra of a simple finite-dimensional Lie
algebra then the centrally generated ideals of U(n) can be described explicitly [IPe].) Similarly, almost
all primitive Poisson ideals of S(n) are generated as ideals by their intersections with the Poisson
center Y (n) of S(n), see Theorem 2.20. This result is a form of a “generic reducibility” of fibers of
maps between algebraic varieties in characteristic 0. In our second main result we generalize the latter
facts to the case of nil-Dynkin algebras, see Theorem 4.5.

Theorem. Let n be a nil-Dynkin algebra.There exists an open dense (with respect to the countable-
Zariski topology defined in Subsection 3.1) subset of n∗ such that I(λ) is generated as an ideal by its
intersection with the Poisson center Y (n) of S(n) for each λ from this subset.

Using this theorem, we establish two criteria for a primitive Poisson ideal I(λ) to be nonzero: one
with a hint of linear algebra and another one with a hint of commutative algebra, see Theorem 4.9.
We consider these criteria as our third main result. In [IPe], the explicit description of Z(n) and Y (n)
was given. Of course, if Y (n) 6= C then each I(λ) is nonzero, so we focus on the case when Y (n) = C.
The first criterion says that there exists an explicitly described countable collection {̃Ξk}k of countable
collections of polynomials from S(n) such that I(λ) 6= 0 if and only if there exists k for which λ(ξ) = 0
for all ξ ∈ Ξk. It might be interesting to work out a larger class of Lie algebras in which this fact
holds. The second criterion is given in terms of “minors” in all cases and it can be considered as a
statement of the form “a certain infinite submatrix of matrix defined by λ is of finite nonmaximal
rank”, see Example 4.13.

Note that it can be easily deduced from [IPe] that the center of n is zero if and only if Z(n) and
Y (n) equal C. Note also that in this case almost all ideals I(λ) are zero. This is completely opposite
to the finite-dimensional case. Indeed, if n is finite-dimensional then I(λ) is the annihilator in S(n) of
the coadjoint orbit of λ. Hence, the condition I(λ) = 0 means that the corresponding orbit is dense
in n∗, but all coadjoint orbits are proper closed subvarieties of n∗.

This article can be considered as a part of the project researching the coadjoint representations of
infinite-dimensional Lie algebras, see [PP1] for the case of limits of simple Lie algebras, [IPe] for the
case of nil-Dynkin Lie algebras, [PS] for the case of Witt Lie algebra.

The paper is organised as follows. In Section 2 we present preliminary facts and results (mostly,
for finite-dimensional Lie algebras). In Subsection 2.1 (respectively, 2.2), we recollect the definition
of the Jacobson (respectively, Poisson) topology on the space of primitive ideals of an associative
algebra (respectively, on the space of primitive Poisson ideals of a Poisson algebra) together with
a few basic properties of these notions. In Subsection 2.3, we recall how the orbit method works
for finite-dimensional nilpotent Lie algebras. In Subsection 2.4, we discuss an important example of
nilpotent Lie algebras — nilradicals of Borel subalgebras of simple finite-dimensional Lie algebras. In
Subsections 2.5 and 2.6 we prove several auxiliary lemmas about nested finite-dimensional nilpotent
Lie algebras. Subsection 2.7 contains our proof of the fact that almost all primitive (Poisson) ideals
are generated by their intersections with the (Poisson) center.

Section 3 is devoted to the proof of the first main result. In Subsection 3.1 we recall the definition
of pro-variety together with some basic properties of this notion. In particular, given a countable-
dimensional vector space V , we define the countable-Zariski topology on its dual space V ∗ and prove
that V ∗ is irreducible with respect to this topology. In Subsection 3.2 we introduce the notion of
locally nilpotent Lie algebra n and establish a bijection between the radical Poisson ideals of S(n)

3



and the radical two-sided ideals of U(n), see Proposition 3.6. Further, given a linear form λ ∈ n∗,
we define the ideal J(λ) of U(n) and check that it is primitive, see Theorem 3.10. The proof of the
first main result (Theorem 3.16) given in Subsection 3.4 is based on an alternative description of
I(λ) presented in Subsection 3.3. In Subsections 3.5 and 3.6 we introduce socle Lie algebras together
with the corresponding “adjoint” (pro-)groups to prove that the primitive ideals are in one-to-one
correspondence with the coadjoint orbits (Proposition 3.32) and show that the corresponding orbit is
closed (Lemma 3.33). We also give a version of Dixmier–Moeglin equivalence for radical ideals in this
subsection (Proposition 3.28).

Section 4 is devoted to nil-Dynkin algebras. In Subsection 4.1 we define nil-Dynkin algebras and,
given such an algebra n, recall the description of Z(n) (or, equivalently, of Y (n)) from [IPe]. Using
this description, in Subsection 4.2 we prove our second main result (Theorem 4.5), which claims that
almost all primitive Poisson ideals in S(n) are generated by their intersections with Y (n). Finally,
in Subsection 4.3 we prove our third main result (Theorem 4.9), two criteria for I(λ) to be nonzero
discussed above. We also apply these criteria to several different nil-Dynkin algebras to give few
pictures which can help to understand the pattern behind this result, see Example 4.13.

Acknowledgements. The first author was supported by the Foundation for the Advancement
of Theoretical Physics and Mathematics “BASIS”, grant no. 18–1–7–2–1. The second author was
supported by RFBR, grant no. 20–01–00091–a. A part of this work was done during our stay at the
Oberwolfach Research Institute for Mathematics (program “Research in pairs”) and the stay of the
first author at the Max Planck Institute for Mathematics in spring 2018. We thank these institutions
for their hospitality. We thank Stephane Launois, Omar Leon Sanchez and Vladimir Zhgoon for useful
discussions.

2. Preliminaries

2.1. Jacobson topology and Jacobson spectrum
In this subsection, we briefly recall the notion of Jacobson topology and present ring-theoretical

preliminaries needed for the sequel. A detailed discussion can be found, e.g., in the classical books [Di1],
[Jo2], [MCR]. Throughout the paper the ground field will be the field C of complex numbers (except
Remark 2.8). Let A be an associative algebra (possibly, infinite-dimensional). Denote by Cent(A) the
center of A.

Definition 2.1. A (two-sided) ideal J of A is prime if J 6= A and, given two-sided ideals J ′, J ′′

of A with J ′, J ′′ 6⊂ J , one has J ′J ′′ 6⊂ J . An ideal J is called completely prime if there are no zero
divisors in the quotient algebra A/J . An ideal J is called primitive if it is the annihilator of a simple
(left) A-module (equivalently, if J is the largest ideal in a maximal left ideal of A).

It is not hard to check that

J is maximal =⇒ J is primitive =⇒ J is prime. (1)

Note also that J is completely prime =⇒ J is prime.
One can attach to A the topological space JSpecA. The construction of JSpecA is as follows:

i) the points of JSpecA are the primitive ideals of A;

ii) to any set of elements S ⊂ A we attach the subset XS of JSpecA by putting

XS = {J ∈ JSpecA | S ⊂ J}.

By definition, every closed set of JSpecA has the form XS for a certain S ⊂ A. We call the space
JSpecA the Jacobson (or, equivalently, primitive) spectrum of A. If A is commutative, then the
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primitive ideals of A are nothing but the maximal ideals of A, so JSpecA is the usual Zariski maximal
spectrum.

Let S be a subset of A. Put √
S =

⋂
J∈XS

J.

It is clear that S ⊂
√
S, XS = X√S and that

√
S is a two-sided ideal of A. Ideal

√
S is called the

Jacobson radical of S.

Definition 2.2. We say that an ideal I of A is radical if
√
I = I. Evidently, an ideal is radical if

and only if it is the intersection of a family of primitive ideals.

Obviously,
√
S is a radical ideal for any S ⊂ A and the closed subsets of JSpecA can be identified

with the radical ideals of A. This identification reverses the inclusions.
If A is a commutative algebra then we have

f ∈
√
S if and only if fk ∈ (S) for some k ∈ Z>0,

where (S) is the ideal generated by S (in other words, fk belongs to the ideal generated by S for
certain k > 0). It is well known that, for an arbitrary finite- or countable-dimensional associative
algebra A (not necessarily commutative), one has

f ∈
√
S if and only if, for any g ∈ A, (fg)k ∈ (S) for some k ∈ Z>0, (2)

where (S) is the two-sided ideal generated by S, see, e.g., [PP1, Lemma 4.4]. This means that, given
g ∈ A, (fg)k belongs to the two-sided ideal generated by S for certain k > 0.

Lemma 2.3. Let A be an associative algebra and I, J be two-sided ideals of A. Then

√
IJ =

√
I ∩ J.

Proof. Pick a primitive ideal P of A. It is enough to show that the following conditions are
equivalent:

i) I ⊂ P or J ⊂ P ;

ii) I ∩ J ⊂ P ;

iii) IJ ⊂ P .

It is clear that (i) =⇒ (ii) =⇒ (iii). The implication (i) =⇒ (iii) follows from (1). �

The next lemma is a useful and straightforward generalization of Schur’s lemma.

Lemma 2.4. Let A be a finite- or countable-dimensional associative algebra, and J be a primitive
ideal of A. Then the center of A/J consists of scalars.

Proof. It is easy to deduce this statement from [MCR, Corollary 1.8, Chapter 9]. �

Corollary 2.5. Let A be a a finite- or countable-dimensional commutative associative algebra,
and M be a maximal ideal of A. Then dimCA/M = 1.

2.2. Poisson topology and Poisson spectrum
Here we recall basic facts and notions for Poisson algebras, see, f.e., [BG], [Go2] for the details. Let

A be a commutative (possibly, infinitely generated) algebra endowed with a polylinear skew-symmetric
map

{·, ·} : A×A → A.
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The pair (A, {·, ·}) is a Poisson algebra if {·, ·} satisfies the Jacobi identity

{x, {y, z}} = {{x, y}, z}+ {y, {x, z}} for all x, y, z ∈ A,

and the Leibnitz rule
{x, yz} = {x, y}z + y{x, z} for all x, y, z ∈ A.

In this case {·, ·} is called the Poisson bracket on A. Denote by PCent(A) = {f ∈ A | {f,A} = 0}
the Poisson center of A.

Definition 2.6. We say that an ideal I of A is Poisson if {A, I} ⊂ I. A Poisson ideal I of A is
called primitive if there exists a maximal ideal I ′ of A such that I is the largest Poisson ideal in I ′.
(For example, any maximal Poisson ideal is primitive.)

It is well known that a primitive Poisson ideal is prime, see, f.e., [Oh, Proposition 1.4]. One can
attach to A the topological space PSpecA. The construction of PSpecA is similar to the construction
of the Jacobson spectrum:

i) the points of PSpecA are the primitive Poisson ideals of A;

ii) to any set of elements S ⊂ A we attach the subset ZS of PSpecA by putting

ZS = {I ∈ PSpecA | S ⊂ I}.

By definition, every closed set of PSpecA has the form ZS for a certain S ⊂ A. We call the space
PSpecA the Poisson spectrum of A and the corresponding topology is called the Poisson topology. It
is a subspace of the usual Zariski spectrum.

Let S be a subset of A. Put
P√
S =

⋂
I∈ZS

I.

It is clear that S ⊂ P√S, ZS = Z P√S and that P√S is a Poisson ideal of A. The ideal P√S is called

the Poisson radical of S. We say that a Poisson ideal I of A is radical if P√I = I. It turns out that,
for any Poisson ideal I of A, one has

√
I = P√I. It is clear that the closed subsets of PSpecA can be

identified with the radical Poisson ideals of A. This identification reverses the inclusions.

2.3. The orbit method
Kirillov’s orbit method appears in a wide variety of contexts in representation theory. In this

subsection we describe the algebraic version of the orbit method for Lie algebras, see, e.g., the classical
Dixmier’s book [Di1] for the details. Let n be a finite-dimensional Lie algebra. Its symmetric algebra
and its universal enveloping algebra are denoted by S(n) and U(n) respectively. Observe that S(n) is
a Poisson algebra with respect to the Poisson bracket defined by

{x, y} = [x, y], x, y ∈ n.

We will now recall how the orbit method works for nilpotent n, i.e., we will establish a homeomorphism
between topological spaces JSpec U(n) and PSpec S(n) in this case.

For the rest of the subsection we assume that n is nilpotent. (In fact, the orbit method also works
for solvable Lie algebras, but we will consider only nilpotent case.) It is well known that there exists
a unique (up to isomorphism) unipotent algebraic group N such that n is the Lie algebra of N . We
will write N = Exp(n). Let n∗ be the dual space of n. The group N acts on n by the adjoint action;
the dual action of N on n∗ is called coadjoint. We will denote the result of this action by g.λ, g ∈ N ,
λ ∈ n∗. Given λ ∈ n∗, we denote by N.λ its coadjoint orbit.

To each linear form λ ∈ n∗ one can assign a bilinear form βλ on n by putting

βλ(x, y) = λ([x, y]).
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A subalgebra p ⊆ n is called a polarization of n at λ if it is a maximal βλ-isotropic subspace. There
is a nice construction of polarizations due to M. Vergne. Namely, let

n1 ⊂ n2 ⊂ . . . ⊂ nk = n, dim n = k, dim ni = i for 1 ≤ i ≤ k, (3)

be a complete flag of ideals of n (clearly, n admits such a flag). Denote by ri the kernel of the restriction
of βλ to ni, and put

p =

k∑
i=1

ri.

Then p is a polarization of n at λ [Ve]. (Note that if all ni’s in (3) are just subalgebras of n, then p is
a maximal βλ-isotropic subspace of n, but, possibly, not a subalgebra.) Denote by P(λ) the set of all
polarizations of n at λ, and pick p ∈ P(λ).

Denote by Lλ the one-dimensional representation of p defined by

p 3 x 7→ λ(x) ∈ C.

Further denote by V = V (n, p, λ) the induced representation of n, i.e.,

V = U(n)⊗U(p) Lλ.

It turns out that J(λ) = AnnV (the annihilator of V in U(n)) depends only on λ, not on the choice
of p. Moreover, if p is obtained by Vergne’s construction, then V is simple, so J(λ) is a primitive
two-sided ideal of U(n). Further, J(λ) = J(µ) if and only if the coadjoint N -orbits of λ and µ coincide.
Finally, the Dixmier map

D : n∗ → JSpec(U(n)), λ 7→ J(λ),

induces a homeomorphism between the topological spaces

n∗/N ≈ JSpec(U(n)),

see [Di1], [BGR]. Here the space of coadjoint orbits n∗/N is endowed with the quotient topology
derived from the Zariski topology on n∗.

On the other hand, radical Poisson ideals in S(n) are in one-to-one correspondence with Zariski
closed N -stable subsets of n∗, where we interpret S(n) as C[n∗]: to such a subset of n∗ we attach
its annihilator in S(n). Furthermore, maximal Poisson ideals correspond to minimal closed N -stable
subsets. Since the group N is unipotent, all N -orbits on n∗ are closed, which means that each
primitive Poisson ideal of S(n) is in fact maximal Poisson. It follows that PSpecS(n) and n∗/N are
homeomorphic.

More precisely, given λ ∈ n∗, one can consider the maximal ideal Iλ of S(n) consisting of all
polynomials from S(n) vanishing at λ. There is the unique largest Poisson ideal I(λ) inside Iλ, see
Subsection 2.2. Clearly, I(λ) is exactly the radical Poisson ideal of S(n) annihilating the coadjoint
N -orbit of λ. In particular, I(λ) = I(µ) if and only if λ and µ belong to the same N -orbit. Thus, the
map λ 7→ I(λ) induces the above homeomorphism n∗/N ≈ PSpec S(n). Combining it with the home-
omorphism between n∗/N and JSpec U(n), we obtain a required homeomorphism from PSpec S(n) to
JSpec (U(n)). Note that the latter homeomorphism preserves inclusions, because both of the homeo-
morphisms from n∗/N to PSpec S(n) and to JSpec U(n) reverse inclusions. This implies that there is
a one-to-one correspondence between radical ideals of U(n) and radical Poisson ideals of S(n).

Notation 2.7. If J is a radical two-sided ideal of U(n), we denote by I(J) the corresponding
radical Poisson ideal of S(n). If I is a radical Poisson ideal of S(n) we denote by J(I) the corresponding
radical two-sided ideal of U(n).

Note that I ⊂ S(n) is prime if and only if J(I) ⊂ U(n) is prime [Di1, Proposition 6.3.5].

Remark 2.8. In this remark the ground field can be an arbitrary field of zero characteristic.
For U(n), one can say more about two-sided ideals. Namely, recall that the Weyl algebra As of 2s
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variables is the unital associative algebra with generators pi, qi for 1 ≤ i ≤ s, and relations [pi, qi] = 1,
[pi, qj ] = 0 for i 6= j, [pi, pj ] = [qi, qj ] = 0 for all i, j. Now, if J is a two-sided ideal of the enveloping
algebra U(n), then the following conditions are equivalent [Di1, Proposition 4.7.4, Theorem 4.7.9]:

• J is primitive;

• J is maximal;

• the center of U(n)/J is trivial;

• U(n)/J is isomorphic to the Weyl algebra As.

(Here 2s is the dimension of the orbit of λ given J = J(λ).) An ideal in U(n) is prime if and only if it is
completely prime [Di1, Theorem 3.7.2]. Furthermore, for any ideal J there exist finitely many minimal
pairwise distinct prime ideals J1, . . ., Jr of U(n) containing J . None of Ji contains the intersection of
the others, and

√
J = J1 ∩ . . . ∩ Jr, see [Di1, Proposition 3.1.10]. It follows that any prime ideal is

radical and the intersection of any family of radical ideals is radical. The straightforward analogues
of the above statements hold for the radical Poisson ideals of S(n).

Remark 2.9. Here we collect some facts from linear algebra about polarizations. First, note that,
given a linear form λ ∈ n and p ∈ P(λ), one has

dim p = dim n− rkβλ/2 = rkβλ/2 + dim Kerβλ,

where Kerβλ = {x ∈ n | βλ(x, n) = 0} is the kernel of βλ, and rkβλ is the rank of the form βλ.
Next, assume that n is a subalgebra of a nilpotent finite-dimensional Lie algebra m of codimension

one (then n is in fact an ideal of m). Pick a linear form λ ∈ m∗. Then the following alternative occurs:
either rkβλ|n = rkβλ− 2 (in this case each polarization of n at λ|n is in fact a polarization of m at λ),
or rkβλ|n = rkβλ. In the latter case, for any p ∈ P(λ), we have that p∩ n ∈ P(λ|n). Indeed, p∩ n is a
subalgebra of n and a βλ|n-isotropic subspace of n. Further, dim(p∩n) ≥ dim p−1, but the dimension

of a maximal βλ|n-isotropic subspace of n equals dim n− 1

2
rkβλ|n = dimm− 1− 1

2
rkβλ = dim p− 1.

Hence p ∩ n is a maximal βλ|n-isotropic subspace of n.

Example 2.10. (Heisenberg Lie algebra) Pick n ≥ 1. Let n = hein(C) be the Lie algebra with
generators z, xi, yi, 1 ≤ i ≤ n, and relations

[xi, yi] = z for all i, [xi, yj ] = 0 for i 6= j, [xi, z] = [yi, z] = 0 for all i.

We call n the Heisenberg Lie algebra. There are two classes of coadjoint orbits on n∗:
i) if λ(z) = α 6= 0 then N.λ = {µ ∈ n∗ | µ(z) = α}.
ii) if λ(z) = 0 then N.λ = {λ}.
In a similar way, there are two classes of primitive ideals of U(n) and S(n):
i) every α ∈ C× = C \ {0} defines the two-sided (respectively, Poisson) ideal of U(n) (respectively,

of S(n)) generated by z − α. It is easy to verify that the quotient of U(n) by this ideal is a Weyl
algebra and hence is simple (a similar argument is applicable to the Poisson side). Thus, this ideal is
maximal and hence primitive (respectively, Poisson primitive).

ii) every λ ∈ n∗ with λ(z) = 0 defines the ideal J(λ) generated by

xi − λ(xi), yi − λ(yi), 1 ≤ i ≤ n, and z.

It is easy to verify that the quotient by J(λ) is isomorphic to C. Thus J(λ) is maximal and hence
primitive.

The bijection between coadjoint orbits and primitive ideals is clear from these descriptions.
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2.4. Nilradicals of Borel subalgebras
In this subsection, we briefly recall definitions of classical finite-dimensional simple Lie algebras

and fix notation for the nilradicals of their Borel subalgebras. These nilradicals (and their infinite-
dimensional analogues defined in Subsection 4.1) provide one of the main examples of nilpotent Lie
algebras for our purposes.

Pick n ∈ Z>0. Let g denote one of the Lie algebras sln(C), so2n(C), so2n+1(C) or sp2n(C).
The algebra so2n(C) (respectively, so2n+1(C) and sp2n(C)) is realized as the subalgebra of sl2n(C)
(respectively, sl2n+1(C) and sl2n(C)) consisting of all x such that

β(u, xv) + β(xu, v) = 0

for all u, v in C2n (respectively, in C2n+1 and C2n), where

β(u, v) =


∑n

i=1(uiv−i + u−ivi) for so2n(C),

u0v0 +
∑n

i=1(uiv−i + u−ivi) for so2n+1(C),∑n
i=1(uiv−i − u−ivi) for sp2n(C).

Here for so2n(C) (respectively, for so2n+1 and sp2n(C)) we denote by e1, . . . , en, e−n, . . . , e−1 (respec-
tively, by e1, . . . , en, e0, e−n, . . . , e−1 and e1, . . . , en, e−n, . . . , e−1) the standard basis of C2n (respec-
tively, of C2n+1 and C2n), and by xi the coordinate of a vector x corresponding to ei.

The set of all diagonal matrices from g is a Cartan subalgebra of g; we denote it by h. Let Φ be
the root system of g with respect to h. Note that Φ is of type An−1 (respectively, Dn, Bn and Cn)
for sln(C) (respectively, for so2n(C), so2n+1(C) and sp2n(C)). The set of all upper-triangular matrices
from g is a Borel subalgebra of g containing h; we denote it by b. Let Φ+ be the set of positive roots
with respect to b. As usual, we identify Φ+ with the following subset of Rn:

A+
n−1 = {εi − εj , 1 ≤ i < j ≤ n},
B+
n = {εi − εj , 1 ≤ i < j ≤ n} ∪ {εi + εj , 1 ≤ i < j ≤ n} ∪ {εi, 1 ≤ i ≤ n},

C+
n = {εi − εj , 1 ≤ i < j ≤ n} ∪ {εi + εj , 1 ≤ i < j ≤ n} ∪ {2εi, 1 ≤ i ≤ n},

D+
n = {εi − εj , 1 ≤ i < j ≤ n} ∪ {εi + εj , 1 ≤ i < j ≤ n}.

(4)

Here {εi}ni=1 is the standard basis of Rn.
Denote by n the algebra of all strictly upper-triangular matrices from g. Then n has a basis

consisting of root vectors eα, α ∈ Φ+, where

eεi =
√

2(e0,i − e−i,0), e2εi = ei,−i,

eεi−εj =

{
ei,j for An−1,

ei,j − e−j,−i for Bn, Cn and Dn,

eεi+εj =

{
ei,−j − ej,−i for Bn and Dn,

ei,−j + ej,−i for Cn,

and ei,j are the usual elementary matrices. For so2n(C) (respectively, for so2n+1(C) and sp2n(C)) we
index the rows (from left to right) and the columns (from top to bottom) of matrices by the numbers
1, . . . , n,−n, . . . ,−1 (respectively, by the numbers 1, . . . , n, 0,−n, . . . ,−1 and 1, . . . , n,−n, . . . ,−1).
Note that g = h ⊕ n ⊕ n−, where n− = 〈e−α, α ∈ Φ+〉C, and, by definition, e−α = eTα . (The
superscript T always indicates matrix transposition.) The set {eα, α ∈ Φ} can be uniquely extended
to a Chevalley basis of g. Clearly, n is the nilradical of the Borel subalgebra b.

Since n is nilpotent, the space JSpec U(n) can be described in terms of the coadjoint orbits on n∗.
But a classification of the coadjoint orbits on n∗ itself is an extremely hard problem. For instance,
for An−1 a complete classification is known only for n ≤ 8 [IPa]. On the other hand, almost all orbits
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on n∗ has maximal possible dimension (such orbits are called regular), and for An−1 all regular orbits
were in fact described in the pioneering Kirillov’s work [Ki1] on the orbit method in 1962. Let us
briefly recall this description.

Example 2.11. Let Φ = An−1. We put m = [n/2] and define the regular functions ξi, 1 ≤ i ≤ m,
on n∗ by the following rule:

ξi(λ) =

∣∣∣∣∣∣∣∣∣
λ(e1,n−i+1) . . . λ(e1,n−1) λ(e1,n)
λ(e2,n−i+1) . . . λ(e2,n−1) λ(e2,n)

... . .
. ...

...
λ(ei,n−i+1) . . . λ(ei,n−1) λ(ei,n)

∣∣∣∣∣∣∣∣∣ , λ ∈ n∗.

It is easy to see that ξi ∈ PCent(S(n)) for all i, so ξi(µ) = ξi(λ) = ci for all µ ∈ N.λ (for certain
ci ∈ C). It turns out that the coadjoint N -orbit of λ has maximal possible dimension

dimN.λ = 2((n− 2) + (n− 4) + . . .)

if and only if ci 6= 0 for all i for odd n, and ci 6= 0 for all i < m for even n. In this case, I(λ) is
generated by ξi − ci, 1 ≤ i ≤ m.

2.5. Induction through bimodules
In this subsection we introduce a series of bimodules which will allow us to construct infinite-

dimensional simple modules.

Theorem 2.12. Let m be a finite-dimensional nilpotent Lie algebra, n be a subalgebra of m,
λ ∈ m∗ be a linear form. Then there exists a (U(m)/J(λ))−(U(n)/J(λ|n))-bimodule mFn together with
a U(n)−U(n) morphism

φ : U(n)→ mFn

such that
i) the functor F : V 7→ mFn ⊗U(n) V from the category of U(n)/J(λ|n)-modules to the category of
U(m)/J(λ)-modules is exact and sends simple modules to simple modules;
ii) the induced map φ⊗ id : V ∼= U(n)⊗U(n) V → F (V ) is injective for any (U(n)/J(λ|n))-module V .

Our proof of Theorem 2.12 is based on the following lemma.

Lemma 2.13. The statement of Theorem 2.12 holds under the assumption that dimm = dim n+1.

Proof of Theorem 2.12. Pick a sequence of Lie algebras

n = n0 ⊂ n2 ⊂ ... ⊂ ns = m

such that dim ni = dim n0 + i. Let ni+1Fni be the module defined by Lemma 2.13 for ni, ni+1, λ|ni+1

with 0 ≤ i < s. Set

mFn := (nsFns−1)⊗U(ns−1) ...⊗U(n1) (n1Fn0)

and set φ to be the composition of the maps φi for all the above pairs. Then it is clear that mFn and φ
satisfy all the conditions of Theorem 2.12. �

Proof of Lemma 2.13. Consider βλ together with the restriction βλ|n of βλ to n. Then, by
Remark 2.9, either (1) or (2) holds:

(1) rk(βλ|n) = rkβλ;
(2) rk(βλ|n) + 2 = rkβλ.

If (1) holds then [Di1, Lemma 6.5.6] implies that

U(m)/J(λ) = U(n)/(J(λ) ∩U(n)) ∼= U(n)/J(λ|n).
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The algebra U(m)/J(λ) is a U(m)−U(m)-bimodule in a natural way. Thus U(m)/J(λ) is also a
U(m)−U(n)-bimodule. Put mFn = U(m)/J(λ) and set φ to be the natural map U(n) → U(m)/J(λ).
It is clear that mFn satisfies the required conditions.

Assume that (2) holds. Then we put mFn = U(m)⊗U(n) (U(n)/J(λ|n)). The natural map

U(n)→ U(m)⊗U(n) (U(n)/J(λ|n)), a 7→ a⊗ 1,

defines the desired map φ.
The functor F : V 7→ mFn ⊗U(n) V is clearly exact and sends simple objects to simple objects by

[Di1, 5.3]. As the next step we show that all modules in the image of F are annihilated by J(λ).
Thanks to [Di1, 5.2.6, 5.1.7] we have that the annihilators of all modules in the image of F are all the
same. We wish to show that this annihilator is J(λ).

Indeed, let p be a polarization of n at λ|n. Then dim p + 1
2rk (βλ|n) = dim n and hence

dim p +
1

2
rkβλ = dimm.

Therefore p is a polarization of m at βλ.
Thus M := U(n)⊗U(p)Lλ is annihilated by J(λ|n) and F (M) ∼= U(m)⊗U(p)Lλ (recall the definition

of Lλ from Subsection 2.3). The latter module is annihilated by J(λ). �

2.6. Embeddings of nilpotent Lie algebras
In this subsection, we consider embeddings of finite-dimensional nilpotent Lie algebras in more

details. This is needed for the subsequent consideration of locally nilpotent infinite-dimensional Lie
algebras. Let m be a (finite-dimensional) nilpotent Lie algebra and n be a subalgebra of m. Recall the
homeomorphism JSpec U(m) ≈ PSpec S(m) from Subsection 2.3:

S(m) ⊃ I 7→ J(I) ⊂ U(m), U(m) ⊃ J 7→ I(J) ⊂ S(m).

Let I be a radical Poisson ideal of S(m). The intersection S(n)∩ I is a radical Poisson ideal of S(n)
and it is natural to expect that, in some sense,

J(I ∩ S(n)) “≈” J(I) ∩U(n).

In this subsection we will prove that the answer to the question

What does “≈” mean here?

is as nice as possible. Precisely, we will prove the following theorem.

Theorem 2.14. Let n,m be as above. Then J(I ∩ S(n)) = J(I) ∩U(n).

As a first step, we will prove the following lemma.

Lemma 2.15. The ideal J(I) ∩U(n) is radical.
Proof. The ideal J(I) is radical and hence, by Remark 2.8, there exist prime ideals J1, ..., Js

of U(m) such that
J(I) = J1 ∩ . . . ∩ Js.

Next, we have
J(I) ∩U(n) = (J1 ∩U(n)) ∩ . . . ∩ (Js ∩U(n)).

An ideal of U(m) is prime if and only if it is completely prime (see Remark 2.8). The intersection of a
completely prime ideal with a subalgebra is completely prime. An intersection of prime ideals of U(n)
is a radical ideal. This completes the proof. �
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Therefore we left to show that I(J(I) ∩ U(n)) = I ∩ S(n). We start with a particular case of
Theorem 2.14. Namely, assume that dimm = dim n + 1.

Proposition 2.16. Let n,m be as above and assume that dimm = dim n + 1, I = I(λ) for some
λ ∈ m∗. Then

J(I ∩ S(n)) = J(I) ∩U(n).

Proof. Consider βλ together with the restriction βλ|n of βλ to n. Then, by Remark 2.9, either
(1) or (2) holds:

(1) rk(βλ|n) = rkβλ;
(2) rk(βλ|n) + 2 = rkβλ.

If (1) holds then [Di1, Lemma 6.5.6] says that J(λ) ∩ U(n) = J(λ|n) and I(λ) ∩ S(n) = I(λ|n). This
implies the required equality.

Assume that (2) holds. Set M = Exp(m). Since n is an ideal of m, [Di1, Lemma 6.5.1] states that

J(λ) ∩U(n) =
⋂
g∈M

J(g.λ|n).

We left to show that
I(λ) ∩ S(n) =

⋂
g∈M

I(g.λ|n).

This equality is a very straightforward exercise in commutative algebra and therefore the proof is
complete. �

Corollary 2.17. Let n, m be as above and I be a radical Poisson ideal of S(m). Assume that
dimm = dim n + 1. Then

J(I ∩ S(n)) = J(I) ∩U(n).

Proof. Note that
I =

⋂
λ∈S

I(λ)

for some subset S ⊂ m∗. Hence
J(I) =

⋂
λ∈S

J(λ).

This together with Proposition 2.16 implies the desired result. �

Proof of Theorem 2.14. We recall that there exists a complete flag of subalgebras in m, i.e., a
chain of nested subalgebras n = n1 ⊂ . . . ⊂ nk = m such that dim ni = i for all i from 1 to k = dimm.
By Corollary 2.17 we have

J(I) ∩U(n) = (J(I) ∩U(nk−1)) ∩U(n) = J(I ∩ S(nk−1)) ∩U(n) =

= (J(I ∩ S(nk−1)) ∩U(nk−2)) ∩U(n) = J(I ∩ S(nk−2)) ∩U(n) = ... = J(I ∩ S(n)).

The result follows. �

2.7. Centrally generated ideals
This subsection is devoted to the special case of primitive ideals, namely, to the centrally generated

ones. Recall that an ideal J of an associative algebra A is called centrally generated if it is generated
as an ideal by its intersection with the center of A. Let n be a finite-dimensional nilpotent Lie algebra
and N = Exp(n). Let P be a prime ideal of U(n). First, we will prove that almost all primitive ideals
of U(n)/P are centrally generated. We start from the following observation.
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For brevity, denote by Z(n;P ) = Cent(U(n)/P ) the center of the quotient algebra U(n)/P . Since
U(n)/P is a domain, Z(n;P ) is also a domain. Let J be a primitive ideal of U(n)/P , then J ∩Z(n;P )
is a maximal ideal of Z(n;P ), because the center of U(n)/J is trivial by Remark 2.8. Note that,
in general, Z(n;P ) is not finitely generated [Di1, 4.9.20]. Nevertheless, one can consider the space
JSpecZ(n;P ), which is in this case nothing but the usual Zariski maximal spectrum of Z(n;P ),
because Z(n;P ) is commutative. We will denote this topological space by MSpecZ(n;P ). (Since
Z(n;P ) is a domain, it is an irreducible space.) In particular, to each f ∈ Z(n;P ) one can assign a
dense open subset of MSpecZ(n;P ) of the form

D(f) = {M ∈ MSpecZ(n;P ) | f /∈M}.

The following proposition seems to be known to the specialists.

Proposition 2.18. There exists an element f ∈ Z(n;P ) such that if M ∈ D(f) then the ideal
of U(n)/P generated by M is primitive.

Proof. Denote by Q the field of fractions of Z(n;P ). One can consider the Lie algebra nQ = n⊗CQ
over the field Q and its universal enveloping algebra U(nQ) ∼= U(n)⊗CQ, which is an associative algebra
over the field Q.

On the other hand, U(n)/P ⊗Z(n;P ) Q is also an associative algebra over Q, and the natural
embedding n ↪→ U(n) induces the following map:

nQ → U(n)/P ⊗Z(n;P ) Q, x⊗ α 7→ x̃⊗ α, x ∈ n, α ∈ Q,

where x̃ denotes the image of x in the quotient algebra U(n)/P . By the universal property of U(nQ),
the latter map can be extended to the unique morphism of associative algebras (over Q)

ϕ : U(nQ)→ U(n)/P ⊗Z(n;P ) Q,

which is clearly surjective (cf. [Di1, 4.1.3]). It is evident that Cent(U(n)/P ⊗Z(n;P ) Q) = Q, hence, by
Remark 2.8, the kernel of ϕ is a primitive ideal of U(nQ)/P .

Denote this primitive ideal of U(nQ)/P by J. Again by Remark 2.8, U(n)/P⊗Z(n;P )Q is isomorphic
to a Weyl algebra As over Q for certain s (as the quotient of U(nQ)/P by the primitive ideal J). Fix
an isomorphism

ψ : As → U(n)/P ⊗Z(n;P ) Q.

Let pi, qi, 1 ≤ i ≤ s, be the standard generators of As. Fix a C-basis ei, 1 ≤ i ≤ n = dimC n, of the
Lie algebra n, then all ẽi ⊗ 1, 1 ≤ i ≤ s, generate U(n)/P ⊗Z(n;P ) Q as a Q-algebra. Hence, ψ(pi) and
ψ(qi) can be expressed as polynomials in ẽi ⊗ 1 with coefficients in Q, and vice versa.

More precisely, given two s-tuples A = (a1, . . . , as), B = (b1, . . . , bs) (respectively, an n-tuple
C = (c1, . . . , cn)) of nonnegative integers, we put

pAqB = ψ(p1)a1ψ(q1)b1 . . . ψ(ps)
asψ(qs)

bs , eC = ẽc11 . . . ẽcnn ⊗ 1.

Then both the sets {pAqB} (where A and B run over all s-tuples independently) and {eC} (where C
runs over all n-tuples) generate U(n)/P ⊗Z(n;P ) Q as a vector space over Q. Hence, for all possible i,
there are finite expressions

ψ(pi) =
∑

C
αi,Ce

C , ψ(qi) =
∑

C
βi,Ce

C , ẽi ⊗ 1 =
∑

A,B
γi,A,Bp

AqB

for certain αi,C , βi,C , γi,A,B ∈ Q. Let f ∈ Z(n) be such that fαi,C , fβi,C , fγi,A,B ∈ Z(n) for all
possible indices (i.e., f is a “common denominator” of these coefficients).

Next, pick a maximal ideal M of Z(n;P ) for which f /∈M and denote by

τ : Z(n;P )→ Z(n;P )/M ∼= C
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the canonical projection. By definition of f one can clearly define the complex numbers τ(αi,C),
τ(βi,C) and τ(γi,A,B). The linear map

ei 7→
∑

A,B
τ(γi,A,B)pa11 q

b1
1 . . . pass q

bs
s

from n to As induces the associative algebra epimorphism U(n) → As. Its kernel K is a primitive
ideal of U(n)/P by Remark 2.8. Note that M ⊂ K.

Now, denote by J the ideal of U(n)/P generated by M , then J ⊂ K and, consequently, J does not
contain f . Consider the quotient algebra A = U(n)/J . Let π be the canonical projection from U(n)
to A. Note that π(f) = c for certain c ∈ C×. Consider the elements p̂i, q̂i, 1 ≤ i ≤ s, of A defined by

p̂i = c−1
∑

C
π
(
fαi,Ce

C
)
, q̂i = c−1

∑
C
π
(
fβi,Ce

C
)
.

It is clear that these elements satisfy the defining relations of the Weyl algebra in 2s variables. On
the other hand, for an arbitrary i from 1 to n,

π(ei) = c−1
∑

A,B
π(fγi,A,B)p̂Aq̂B,

where p̂Aq̂B = p̂a11 q̂
b1
1 . . . p̂ass q̂

bs
s .

It follows that the elements p̂i and q̂i, 1 ≤ i ≤ s, generate A as an algebra, so A is a quotient of
the Weyl algebra As. But the Weyl algebra is simple, so A is isomorphic to As. Thus, Remark 2.8
implies that the ideal J is primitive, as required. �

The following theorem is the main result of this subsection. Recall the definition of the Dixmier
map D : n∗ → JSpec U(n) from Subsection 2.3. Note that if V is an open N -stable subset of n∗ then
D(V ) is an open subset of JSpec U(n), because D induces a homeomorphism between the spaces n∗/N
and JSpec U(n). Note also that the space n∗/N (and, consequently, JSpec U(n)) is irreducible as a
surjective image of the irreducible space n∗.

Theorem 2.19. There exists an open N -stable subset of n∗ such that J(λ) is centrally generated
for each λ from this subset. In other words, there exists an open (dense) subset of JSpec U(n) such
that each primitive ideal from this subset is centrally generated.

Proof. For brevity, denote the Poisson center PCent(S(n)) of S(n) by Y (n). It is well known that
the restriction of the canonical symmetrization map

σ : S(n)→ U(n), xk 7→ xk, x ∈ n, k ∈ Z≥0,

to Y (n) is an algebra isomorphism between Y (n) and Z(n) [Di1, Proposition 4.8.12].
Let f be an element from Proposition 2.18 for P = {0}. Put F = σ−1(f) ∈ Y (n) and set

V = {λ ∈ n∗ | F (λ) 6= 0} ⊂ n∗.

(Here we identify S(n) with the algebra C[n∗] of regular functions on n∗.) Clearly, V is an open subset
of n∗; V is N -stable because F belongs to the Poisson center of S(n) and so is constant on N -orbits.
We will check that J(λ) is centrally generated for all λ ∈ V .

Pick a linear form λ ∈ V and recall the definition of the ideal I(λ) of S(n) from Subsection 2.2.
Since F (λ) 6= 0, we have F /∈ I(λ) ∩ Y (n). By [Di1, 6.6.11], σ(I(λ) ∩ Y (n)) = J(λ) ∩ Z(n). Thus,
f /∈ J(λ) ∩ Z(n). By Proposition 2.18, the ideal J(λ) is centrally generated. �

The following theorem is a Poisson analogue of Theorem 2.19.
Theorem 2.20. There exists an open N -stable subset of n∗ such that I(λ) ∈ PSpec S(n) is

generated as an ideal by its intersection with the Poisson center Y (n) of S(n) for each λ from this
subset.
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Proof. Thanks to Rosenlicht Theorem there exists an open affine subset U of n∗, an algebraic
variety Q and a morphism of algebraic varieties φ : U → Q such that U → Q is the geometric quotient
U/N . Without loss of generality we may assume that Q is affine and provides an isomorphism between
C[Q] and C[U ]N . (Here and below we denote by ·N the set of N -invariant vectors.)

Next, recall that every morphism of algebraic varieties in characteristic 0 is smooth on an open
subset. Thus, there exists U ′ ⊂ U such that the restriction φ′ = φ|U ′ : U ′ → Y is smooth. The
condition of being smooth is local and hence we may replace U ′ by

⋃
g∈N (g.U). This allows us to

assume that U ′ is N -equivariant. We assume further that U = U ′, i.e., that φ is smooth on U .
Next, denote by I the defining ideal of n∗ \ U . Thanks to Lie Theorem we have IN 6= {0}. Fix

f ∈ IN \ {0} and denote by n∗f the principal open subset of n∗ defined by f , and by Qf the principal

open subset of Q defined by f (recall that Y (n) ⊂ C[Q]N ). Finally, note that C[U ] is the localization
S(n)[f−1] of S(n) by f and C[Q] = (S(n)[f−1])N = Y (n)[f−1]. From now on we identify C[Q] with
Y (n)[f−1] ⊂ S(n)[f−1]. Pick a maximal ideal M of C[Q]. Since φ is smooth, the ideal of C[U ]
generated by M is prime and is the defining ideal of a single N -orbit N.λ. It is easy to argue that
S(n)[f−1]/M = S(n)/(M ∩ Y (n)). This implies that U is a required open subset of n∗. �

Example 2.21. In the rest of the subsection we will consider as an example the case of maximal
nilpotent subalgebras of simple finite-dimensional Lie algebras. Let g, h, b, n, Φ be as in Subsection 2.4.
Denote by B the following subset of Φ+:

B =



⋃
1≤i≤[n/2]{εi − εn−i+1} for An−1,⋃
1≤i≤n/2{ε2i−1 − ε2i, ε2i−1 + ε2i} for Bn, n even,⋃
1≤i≤[n/2]{ε2i−1 − ε2i, ε2i−1 + ε2i} ∪ {εn} for Bn, n odd,⋃
1≤i≤n{2εi} for Cn,⋃
1≤i≤[n/2]{ε2i−1 − ε2i, ε2i−1 + ε2i} for Dn.

Note that B is a maximal strongly orthogonal subset of Φ+, i.e., B is maximal with the property that
if α, β ∈ B then neither α − β nor α + β belongs to Φ+. The set B is called the Kostant cascade of
orthogonal roots in Φ+.

The description of generators of Z(n) (or, equivalently, of Y (n)) goes back to J. Dixmier, A. Joseph
and B. Kostant [Di1], [Jo1], [Ko1], [Ko2]. We can consider ZΦ, the Z-linear span of Φ, as a subgroup
of the group X of rational multiplicative characters of H by putting ±εi(h) = h±1

i,i , where H = exp(h)
and hi,i is the i-th diagonal element of a matrix h ∈ H. Recall that a vector λ ∈ Rn is called a weight
of H if 2(α, λ)/(α, α) is an integer for any α ∈ Φ+, where (·, ·) is the standard inner product on Rn. A
weight λ is called dominant if 2(α, λ)/(α, α) ≥ 0 for all α ∈ Φ+. An element a of an H-module is called
an H-weight vector, if there exists ν ∈ X such that h · a = ν(h)a for all h ∈ H. By [Ko2, Theorems
6, 7], every H-weight occurs in Y (n) with multiplicity at most 1. Furthermore, there exist unique (up
to scalars) prime polynomials ξβ ∈ Y (n), β ∈ B, such that each ξβ is an H-weight polynomial of a
dominant weight $β belonging to the Z-linear span ZB of B. A remarkable fact is that ξβ, β ∈ B,
are algebraically independent generators of Y (n), so Y (n) and Z(n) are polynomial rings. We call
{ξβ, β ∈ B} the set of canonical generators of Y (n). The explicit formulas for the weights $β’s can
be found, e.g., in [Pa, Theorem 2.12].

Below we present explicit formulas for ξβ for classical root systems (see [Ig1, Subsection 2.1] for
the details). We will use these formulas in Subsection 4.1 considering infinite-dimensional setting. If
Φ = An−1 then $β = ε1 + . . .+ εi − εn−i+1 − . . .− εn for β = εi − εn−i+1, 1 ≤ i ≤ [n/2], and

ξεi−εn−i+1 =

∣∣∣∣∣∣∣∣∣
e1,n−i+1 . . . e1,n−1 e1,n

e2,n−i+1 . . . e2,n−1 e2,n
... . .

. ...
...

ei,n−i+1 . . . ei,n−1 ei,n

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
eε1−εn−i+1 . . . eε1−εn−1 eε1−εn
eε2−εn−i+1 . . . eε2−εn−1 eε2−εn

... . .
. ...

...
eεi−εn−i+1 . . . eεi−εn−1 eεi−εn

∣∣∣∣∣∣∣∣∣ (5)
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(cf. Example 2.11). For Φ = Cn and β = 2εi, 1 ≤ i ≤ n, one has $β = 2ε1 + . . .+ 2εi and

ξβ =

∣∣∣∣∣∣∣∣∣∣∣

eε1+εi . . . eε1+ε3 eε1+ε2 2e2ε1

eε2+εi . . . eε2+ε3 2e2ε2 eε1+ε2

eε3+εi . . . 2e2ε3 eε2+ε3 eε1+ε3
... . .

. ...
...

...
2e2εi . . . eε3+εi eε2+εi eε1+εi

∣∣∣∣∣∣∣∣∣∣∣
. (6)

Finally, if Φ = Bn or Dn and β = ε2i−1 + ε2i, 1 ≤ i ≤ [n/2], then $β = ε1 + . . .+ ε2i and

ξ2
β = ±

∣∣∣∣∣∣∣∣∣∣∣

eε1+εi+1 . . . eε1+ε3 eε1+ε2 0
eε2+εi+1 . . . eε2+ε3 0 −eε1+ε2

eε3+εi+1 . . . 0 −eε2+ε3 −eε1+ε3
... . .

. ...
...

...
0 . . . −eε3+εi+1 −eε2+εi+1 −eε1+εi+1

∣∣∣∣∣∣∣∣∣∣∣
. (7)

(After a suitable reordering of indices, the matrix in the right-hand side becomes skew-symmetric, so
ξβ is nothing but its Pfaffian.) Our normalization is such that the term eε1+ε2eε3+ε4 . . . eεi+εi+1 enters
ξβ with coefficient 1. (We will not use the canonical generators ξβ for β = ε2i−1 − ε2i for these root
systems.)

Now, let J be a primitive ideal of U(n) (for an arbitrary classical root system). Put ∆β = σ(ξβ).
Thanks to Lemma 2.4 there are unique scalars cβ ∈ C such that ∆β− cβ ∈ J , β ∈ B. Denote by ∆ the
set of simple roots in Φ+. The description of the centrally generated ideals given in [IPe, Theorem 3.1]
and [Ig1, Theorem 2.4] is as follows: J is centrally generated if and only if cβ 6= 0 for all β ∈ B \∆.
In particular, an element f from Proposition 2.18 can be chosen to be of the form

f =
∏

β∈B\∆

∆β. (8)

3. Locally nilpotent Lie algebras

The key results of this section are Theorem 3.16 and Proposition 3.6, which establish a complete
analogue of the orbit method in the infinite-dimensional setting.

We would like to describe the content of this section in more details. Subsection 3.1 contains
necessary definitions and properties of pro-varieties needed for the studying of the dual space of an
infinite-dimensional Lie algebra. Of course, these properties are in some sense “dual” to the properties
of ind-varieties. The only ind-varieties we use are countable-dimensional vector spaces, so we do not
discuss the general theory of ind-varieties in this paper.

In Subsection 3.2, we define the class of infinite-dimensional Lie algebras we are interested in
(namely, locally nilpotent Lie algebras). Then we establish an inclusion-preserving bijection between
radical ideals of U(n) and radical Poisson ideals of S(n) for such an algebra n, see Proposition 3.6.
We also prove that this bijection sends prime ideals to prime Poisson ideals and vice versa. Next,
given a linear form λ ∈ n∗, we construct the ideal J(λ) of U(n) and check that this ideal is primitive,
see Theorem 3.10. After that we present an alternative description of the ideal I(λ) and, using this
description, prove (Subsection 3.4, Theorem 3.15) that each primitive ideal of U(n) has the form J(λ)
for some λ ∈ n∗. This shows that a bijection of Proposition 3.6 gives rise to a homeomorphism between
the space of primitive ideals of U(n) and the space of primitive Poisson ideals of S(n); we consider this
as the first main result, see Theorem 3.16.
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As an example, we discuss in Subsections 3.5 and 3.6 a special class of locally nilpotent Lie algebras,
so-called socle Lie algebras, where the homeomorphism between JSpec U(n) and PSpec S(n) mentioned
above can be obtained via the coadjoint action of a certain pro-group on the dual space n∗ (similarly
to the finite-dimensional case).

3.1. Pro-varieties
In this subsection, we briefly recall basic facts about pro-varieties which are needed for the sequel.

By definition, a pro-variety is the projective limit X = lim←−Xn of a chain of morphisms of algebraic
varieties

X1
ϕ1←− X2

ϕ2←− . . . ϕn−1←− Xn
ϕn←− Xn+1

ϕn+1←− . . . . (9)

Obviously, the projective limit of a chain (9) does not change if we replace the sequence {Xn}n≥1 by
a subsequence {Xin}n≥1, and the morphisms ϕn by the compositions

ϕ̃in = ϕin ◦ ϕin+1 ◦ . . . ◦ ϕin+1−1.

In what follows we only consider chains (9) where the morphisms ϕn are dominant.
The following lemma is very natural and seems to be well known.

Lemma 3.1. If Xn 6= ∅ for all n ≥ 1 then X has at least one point.
Proof. Let X = lim←−Xn be a pro-variety. Then every Xn can be covered by a finite collection of

affine charts. Every such a chart is a union of several irreducible affine varieties. Thus without loss of
generality we can assume that Xn is affine and irreducible for all n.

Set Rn := C[Xn] to be the algebra of regular functions on the affine variety Xn. This defines a
sequence R1 → R2 → . . . of monomorphisms which is dual to the sequence X1 ← X2 ← . . .. Put
R := lim

n→∞
Rn. Pick a maximal ideal M of R. It is clear that R is at most countable-dimensional and

hence by Corollary 2.5 we have R/M ∼= C. A maximal ideal of R with this property defines a point
of X in a straightforward way. �

Example 3.2. Let V be a countable-dimensional complex vector space with a fixed basis
E = {e1, e2, . . .}. Set Vn = 〈e1, . . . , en〉C, then V = lim−→Vn. Let V ∗ and V ∗n be the dual spaces of V
and Vn, n ≥ 1, respectively. Then V ∗ is the projective limit V ∗ = lim←−V

∗
n where morphisms V ∗n ←− V ∗n+1

are nothing but the restrictions of linear functions from V ∗n+1 to Vn. Thus, V ∗ is a pro-variety.

In this special case we will consider two different topologies on V ∗. First, let S(V ) be the symmetric
algebra of the space V . The points of JSpec S(V ) = MSpec S(V ) of S(V ) can be identified with V ∗.
This introduces the first topology on V ∗; we call the topology induced by this construction the S(V )-
Zariski topology on V ∗.

Second, we say that a subset Z of V ∗ is closed in countable-Zariski topology if Z is a union of
countably many S(V )-Zariski closed subsets of V . One can immediately see that it is again a topology
on V ∗, which is finer than the S(V )-Zariski topology. Some properties of this topology are “strange”
even in the finite-dimensional case: for example, Q is a closed subset of C in this topology. On the
other hand, we have the following property needed in Subsection 4.2.

Proposition 3.3. Let V be a countable-dimensional C-vector space. Then V ∗ is irreducible with
respect to the countable-Zariski topology.

Proof. Assume to the contrary that V ∗ can be represented as a union of two proper nonempty
countable-Zariski closed subsets. This implies that there exist nonempty proper S(V )-Zariski closed
subsets Zn of V ∗, n ≥ 1, such that V ∗ =

⋃
n Zn. We may assume without loss of generality that each

Zn has the form
Zn = {λ ∈ V ∗ | fn(λ) = 0}

for certain fn ∈ S(V ).
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Consider the localisation S(V )[f−1
n , n ≥ 1] of S(V ) by fn, n ≥ 1. Pick a maximal ideal M of

S(V )[f−1
n , n ≥ 1]. It is evident that S(V )[f−1

n , n ≥ 1] is countable-dimensional and hence M is of
codimension 1 in S(V ). Let λ be the point of V ∗ corresponding to M . By definition we have that
fn(λ) 6= 0 for all n ≥ 1. Therefore, λ /∈

⋃
n Zn and, consequently, V ∗ 6=

⋃
n Zn. �

Note that the proof of Proposition 3.3 is very similar to the proof of Lemma 3.1

3.2. Locally nilpotent Lie algebras
Now we will introduce the main definition of the paper.

Definition 3.4. Let n be a countable-dimensional Lie algebra expressed as an inductive limit of
its nested finite-dimensional nilpotent subalgebras

n1 ⊂ n2 ⊂ . . . ⊂ nk ⊂ . . . .

Then n is called locally nilpotent.

From now on, assume that n is locally nilpotent. The definitions of U(n) and S(n) coincide with
the definitions of these algebras in the finite-dimensional case. It is clear that U(n) and S(n) are
also countably-dimensional, and S(n) is a Poisson algebra. Below we will prove that, for the Lie
algebra n, we still have a bijection between radical ideals of U(n) and radical Poisson ideals of S(n),
see Proposition 3.6. Furthermore, it defines a homeomorphism between JSpec U(n) and PSpec S(n)
thanks to Theorem 3.16.

We need to set up the notation. Pick a Poisson ideal I of S(n) and an ideal J of U(n). Put

Jk = J ∩U(nk), Ik = I ∩ S(nk)

for k ≥ 1. Clearly, each Ik is a Poisson ideal of S(nk) and each Jk is a two-sided ideal of U(nk).
Moreover, I is the inductive limit I = lim−→ Ik, and J is the inductive limit of the respective sequence
of the ideals Jk, k ≥ 1.

Lemma 3.5. The ideal I (respectively, J) is radical if and only if each Ik (respectively, each Jk)
is radical.

Proof. For I, this is a simple exercise in commutative algebra, so we will proceed for J . If all
Jk’s are radical then J is radical by (2). Assume now that J is radical. Formula (2) implies that

J ∩U(nk) =
√
J ∩U(nk) =

⋂
l≥k

√
J ∩U(nl) ∩U(nk).

It follows from Remark 2.8 that
√
J ∩U(nl) is an intersection of several completely prime ideals

of U(nl). Thus
√
J ∩U(nl) ∩ U(nk) is an intersection of several completely prime ideals of U(nk).

Hence
√

(J ∩U(nl)∩U(nk) is an intersection of several prime ideals. Therefore J ∩U(nk) is a radical
ideal. The result follows. �

Proposition 3.6. i) Let I be a radical Poisson ideal of S(n). Set J(I) =
⋃
k J(Ik). Then J(I)

is a radical ideal of U(n). ii) Let J be a radical ideal of U(n). Set I(J) =
⋃
k I(Jk). Then I(J) is

a radical Poisson ideal of S(n). iii) The maps I 7→ J(I), J 7→ I(J) provide an inclusion-preserving
bijection between the radical Poisson ideals of S(n) and the radical ideals of U(n).

Proof. All the parts are implied by a combination of Lemma 3.5 and Theorem 2.14. �

Corollary 3.7. A radical Poisson ideal I ⊂ S(n) is prime if and only if J(I) is prime. Moreover,
if J(I) is prime then J(I) is completely prime.

Proof. Fix a radical Poisson ideal I ⊂ S(n). Assume I is prime. Then Ik = I ∩ S(nk) is a
prime ideal of S(nk) for all k ≥ 1, and hence J(Ik) is prime for all k ≥ 1, see [Di1, Proposition 6.3.5].
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Hence J(Ik) is completely prime for all k ≥ 1, see Remark 2.8. This implies that J(I) is prime and
completely prime.

Assume that I is not prime. Then there exist a, b ∈ S(n) with ab ∈ I and a, b /∈ I. To proceed we
use notation of [PS]. Set

Ib := (I : a) := {f ∈ S(n) | af ∈ I}, Ia := (I+̂a) :=
⋂

c∈(I:a)

(I : c).

Thanks to [PS, Lemma 2.1] both Ia and Ib are radical Poisson ideals. Moreover, [PS, Lemma 2.1]
implies that b ∈ Ib (therefore Ib 6⊂ I), a ∈ Ia (therefore Ia 6⊂ I), and by [PS, Lemma 2.3] we have
Ia ∩ Ib ⊂

√
I = I. From Proposition 3.6 we have

J(Ia) 6⊂ J(I), J(Ib) 6⊂ J(I), J(Ia) ∩ J(Ib) = J(Ia ∩ Ib) ⊂ J(I). (10)

Thanks to Lemma 2.3 we have
√
J(Ia) ∩ J(Ib) =

√
J(Ia)J(Ib) and hence J(Ia)J(Ib) ⊂ J(I). This

together with (10) implies that J(I) is not prime. �

Definition 3.8. Pick λ ∈ n∗. Assign to λ the primitive Poisson ideal I(λ) of S(n), which is by
definition the largest Poisson ideal in Iλ, where Iλ is the kernel of the evaluation map

S(n)→ C : f 7→ f(λ).

Corollary 2.5 implies that I(λ), λ ∈ n∗, are all the primitive Poisson ideals of S(n). Set J(λ) := J(I(λ)).

Remark 3.9. For a Noetherian associative algebra it is known that a prime ideal is radical. We
do not know whether or not this holds in our setting.

It is natural to expect that J(λ), λ ∈ n∗, are all the primitive ideals of U(n). We first show that
each J(λ), λ ∈ n∗, is primitive. The proof is based on Theorem 2.12.

Theorem 3.10. For every λ ∈ n∗ the ideal J(λ) is primitive.
Proof. Without loss of generality assume that dim n1 = 1. The restriction λ|n1 is a character

of n1 and hence it defines a one-dimensional n1-module M1. Set Mi+1 = ni+1Fni ⊗U(ni)Mi for all i ≥ 1
where ni+1Fni is a U(ni+1)−U(ni) bimodule defined by Theorem 2.12. Theorem 2.12 also implies that
Mi is a simple ni-module for all i ≥ 1. Then the map φ from Theorem 2.12 defines the ni-embedding
Mi → Mi+1 for all i ≥ 1. Let M = lim−→Mi. It is clear that M is a limit of simple ni-modules with
AnnU(n)M = J(λ). This immediately implies that M is a simple n-module and J(λ) is primitive. �

3.3. An alternative description of I(λ)
In this subsection we provide an alternative characterisation of ideals of the form I(λ). Such a

characterisation will be used to show that every primitive ideal of U(n) is of the form J(λ) for a locally
nilpotent Lie algebra n, see Theorem 3.15.

Let n be a locally nilpotent Lie algebra together with an exhaustion n1 ⊂ n2 ⊂ . . . of n by its finite-
dimensional nilpotent subalgebras. Pick a radical Poisson ideal I ⊂ S(n) of S(n), and let J := J(I)
be the corresponding radical two-sided ideal of U(n). As above, set Jn := J ∩ U(nn), In := I ∩ S(nn).
For every ideal I ′ ⊂ S(nn) we let Var(I ′) ⊂ n∗n to be the set of common zeros of I ′ in n∗n, and put
Vn := Var(In). Recall that Nl = Exp(nl) denotes the unipotent group attached to nl. Set φl→n to be
the canonical Nn-equivariant projection n∗l → n∗n. The description of Vn for I = I(λ) is given in the
following lemma.

Lemma 3.11. Pick λ ∈ n∗ and assume I = I(λ). Further, set O(λ; l) = Nl.λ|nl to be the coadjoint
Nl-orbit of the linear form λ|nl ∈ n∗l . Then

(1) φl→nO(λ; l) ⊂ φl+1→nO(λ; l + 1) for all l ≥ n;
(2) φl→nO(λ; l) = φl+1→nO(λ; l + 1) for all l� n;
(3) Vn =

⋃
l≥n φl→nO(λ; l) and Vn = φl→nO(λ; l) for all l� n.
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Proof. By definition, φl+1→l(λ|nl+1
) = λ|nl and hence O(λ; l) ⊂ φl+1→lO(λ; l + 1). Therefore

φl→nO(λ; l) ⊂ φl+1→nO(λ; l) for all l ≥ n. This proves (1).
Each variety φl→nO(λ; l) is irreducible because it is the closure of an image of the irreducible (i.e.,

connected) group Nl. Therefore the sequence of varieties φl→nO(λ; l) stabilizes for l � n because all
these varieties are contained in n∗n. This proves (2).

We left to show (3). Thanks to (1) and (2) it is enough to show that Vn = φl→nO(λ; l) for all
l � n. It is equivalent to the condition In = I(λ|nl) ∩ S(nn) for all l � n. (Recall that I(λ|nl) is the
annihilator of O(λ; l) in S(nl).) It is enough to show that In ⊂ I(λ|nl)∩S(nn) and I(λ|nl)∩S(nn) ⊂ In
for all l� n. The first inclusion is trivial because I(λ|nl) is the largest Poisson ideal of S(nl) contained

in the maximal ideal attached to λ|nl . For the second inclusion set Ĩn :=
⋂
l≥n I(λ|nl) and note that

thanks to step (2) we have Ĩn = I(λ|nl) ∩ S(nn) for all l� n. This implies that there exists a Poisson

ideal Ĩ of S(n) such that Ĩ ∩ S(nn) = Ĩn for all n ≥ 1; then we have Ĩ ⊂ I = I(λ) and thus Ĩn ⊂ In for
all n ≥ 1. �

The map φl→n is (by definition) a moment map with respect to the action of Nn on Vl; a well-known
feature of a moment map implies the following [Vi, the last paragraph of §2.5].

Lemma 3.12. Let Ol be a Nl-coadjoint orbit of n∗l . Set dn(Ol) to be the maximal dimension of
an Nn-orbit on Ol. Then dimφl→n(Ol) = dn(Ol). �

Let I again be an arbitrary Poisson ideal of S(n). Set dl→n = dn(Vl) to be the maximal dimension
of an Nn-orbit on Vl. Fix n ≥ 1 and consider the sequence dn→n, dn+1→n, dn+2→n, . . .. It is clear
that this sequence is nondecreasing and that it is bounded by dimNn = dim nn. This implies that
this sequence stabilizes from some point and we denote the stable value of this sequence by dn(I).

Now we have enough tools to provide an alternative characterization of ideals of the form I(λ).

Proposition 3.13. Assume I is prime. Then I = I(λ) for some λ if and only if dn(I) = dimVn
for all n ≥ 1.

Proof. It is clear from Lemmas 3.11, 3.12 that if I = I(λ) for some λ ∈ n∗ then dn(I) = dimVn
for all n ≥ 1. Thus we left to check the opposite statement.

From now on we assume that dimVn = dn(I) for all n ≥ 1. This implies that for every n ≥ 1 there
exists l ≥ n such that dn(Vl) = dimVn. In more details, this means that there exists an Nl-coadjoint
orbit Ol ⊂ n∗l such that dn(Ol) = dimVn.

General arguments imply that there exists a nonempty open Nn-stable subset V ◦l of Vl such that
the dimensions of all Nn-orbits from V ◦l equal dn(Vl). The complement to V ◦l in Vl can be described as
the zero set of a finite collection of polynomials. The union of all such finite collections of polynomials
for all suitable pairs l, n is at most countable and we denote them f1, f2, . . ..

Consider the localization (S(n)/I)[f−1
1 , f−1

2 , . . .] of S(n)/I and a maximal ideal

M ⊂ (S(n)/I)[f−1
1 , f−1

2 , . . .]

inside it. Corollary 2.5 implies that M has codimension 1 in (S(n)/I)[f−1
1 , f−1

2 , . . .]. Hence M defines
a homomorphism of rings

(S(n)/I)[f−1
1 , f−1

2 , . . .]→ C.
Denote by λ ∈ n∗ the linear form defined by M . By definition we have I ⊂ I(λ).

We left to show that I(λ) ⊂ I, i.e., that I = I(λ). The definition of λ implies that

dn(I(λ)) = dimVn. (11)

On the other hand both Vn and Var(I(λ)n) are irreducible and Var(I(λ)n) ⊂ Vn. Together with (11)
this implies the desired result. �

Corollary 3.14. Let I be a prime Poisson ideal of S(n). Assume that, for every n ≥ 1, there
exist l ≥ n and a coadjoint Nl-orbit Ol ⊂ Vl ⊂ n∗l such that the canonical map Ol → Vn is dominant.
Then I = I(λ) for some λ ∈ n∗.
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Proof. Thanks to Lemmas 3.11 and 3.12 we have dn(Vl) ≥ dn(Ol) = dimVn. Hence

dn(I) = dimVn.

This together with Proposition 3.13 implies the desired result. �

3.4. The orbit method for locally nilpotent Lie algebras
In this subsection we will freely use notions, definitions and conventions related to skew fields of

associative (noncommutative) algebras. A very basic introduction to this subject is given in [Di1], and
there are quite a lot of books in the area of skew fields with no focus on Lie algebras, see, f.e., [Cn1],
[Cn2], [Cn3].

Let n = lim−→ nn be a locally nilpotent Lie algebra and let J be a radical two-sided ideal of U(n).
Set Jn := J ∩ U(nn). Whenever J is prime it is completely prime (Corollary 3.7) and we set Q(n; J)
to be the limit of the quotient skew fields Q(nn; Jn) of U(nn)/Jn.

In this subsection we prove that there is a bijection between the primitive ideals of U(n) and the
primitive ideals of S(n) which extends to the homeomorphism between JSpec U(n) and PSpec S(n), cf.
Corollary 3.7. In fact, the only thing which remains to be checked is the following theorem.

Theorem 3.15. The following conditions are equivalent :

i) J equals J(λ) for some λ ∈ g∗;

ii) J is primitive;

iii) J is prime and radical and Q(n; J) has trivial center.

Proof. Thanks to Theorem 3.10, (i) implies (ii). It is also clear that (ii) implies that J is prime
and radical. The last condition of (iii) is implied by a minor modification of [Di1, Lemma 4.1.6, Proposi-
tion 4.1.7]. (The only fact about U(n) and J needed for [Di1, Lemma 4.1.6] is the existence of Q(n; J).)
Therefore we left to show that (iii) implies (i). The proof of this implication is given by Proposition 3.17
below. �

As an immediate corollary we obtain the following result (which we consider as the first main
results of the paper).

Theorem 3.16. Let n be a countable-dimensional locally nilpotent complex Lie algebra. Then

i) each primitive ideal of U(n) equals J(λ) for a certain λ ∈ n∗;

ii) each primitive Poisson ideal of S(n) equals I(λ) for a certain λ ∈ n∗;

iii) the map I(λ) 7→ J(λ) is a homeomorphism between PSpec (S(n)) and JSpec (U(n)).

Proposition 3.17. Assume J is prime and radical in U(n). If Q(n; J) has trivial center then
J = J(λ) for some λ ∈ n∗.

From now on we assume that J is prime and radical ideal of U(n) and that Q(n; J) has trivial
center. To prove Proposition 3.17 we need more notation. Set Rn := U(nn)/Jn. Corollary 3.7 implies
that Jn is a prime ideal of U(nn) and hence Rn is a (noncommutative) domain for all n. Denote by Zn
the center of Rn and by Qn the quotient field of Zn. It is clear that

U(n)/J ∼= lim−→Rn

and that the center of R := U(n)/J equals
⋂
n Zn. Recall that I(Jn) denotes the prime Poisson ideal

of S(nn) corresponding to Jn, see Notation 2.7. Further, Vn stands for the set of common zeros of
I(Jn) in n∗n and Var(I ′) ⊂ n∗n is the set of common zeros of an ideal I ′ ⊂ S(n∗n).
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Recall the notion of linear disjointness, see, e.g., [Bou, Chapter 5, §2.5]. It is easy to deduce
Proposition 3.17 from Corollary 3.14 and the following propositions.

Proposition 3.18. Assume J is prime and radical in U(n). If Q(n; J) has trivial center then, for
every n ≥ 1, there exists l > n such that Zn and Zl are linearly disjoint.

Proposition 3.19. Consider n ≥ 1 and l ≥ n. If Zn and Zl are linearly disjoint then there exists
a primitive ideal P of Rl such that the canonical map Rn → Rl/P is injective.

Proposition 3.20. Consider n ≥ 1 and l ≥ n together with a primitive ideal P of Rl. If the
canonical map Rn → Rl/P is injective then Vl contains a coadjoint Nl-orbit Ol such that the canonical
map Ol → Vn is dominant.

Proposition 3.20 is relatively simple and quite straightforward and we give the proof of it first.
Propositions 3.18 and 3.19 are more involved and the rest of this section is devoted to their proofs.

Proof of Proposition 3.20. Let P̃ be the full preimage of P under the canonical map

U(nl)→ Rl.

The assumptions of Proposition 3.20 imply that Jn = P̃ ∩ U(nn). This together with Theorem 2.14
implies the desired condition for Ol = Var(I(Pl)). �

Now we proceed to the proofs of Propositions 3.18 and 3.19.

Lemma 3.21. We have Zn ∩ Zl = C for all l� n.
Proof. The algebras Rn, n ≥ 1, are domains and therefore Zn, n ≥ 1, are commutative domains.

For a commutative domain A we use notions of the transcendence degree A 7→ trdeg(A) and the
Gelfand–Kirillov dimension A 7→ GKdim(A), see [KL] for more details. We have

GKdim(Zn ∩ Zi) = trdeg(Zn ∩ Zi) ≥ trdeg(Zn ∩ Zj) = GKdim(Zn ∩ Zj)

whenever i < j. The transcendence degree is always a nonnegative integer and hence trdeg(Zn ∩ Zl)
is equal to the same d ∈ Z≥0 for all l� n.

The desired statement is equivalent to the condition d = 0. This can be deduced from the following
lemma.

Lemma 3.22. Let n0 be a finite-dimensional nilpotent Lie algebra and J0 be a prime ideal of U(n0).
Denote by Z(n0; J0) the center of U(n0)/J0 and by QZ(n0; J0) the quotient field of Z(n0; J0). Then
the following conditions are equivalent :

i) f ∈ Z(n0; J0);

ii) f ∈ U(n0)/J0 is algebraic over QZ(n0; J0);

Proof. According to [Di1, Proposition 4.7.1, Lemma 6.4.5] we have that

(U(n0)/J0)⊗Z(n0;J0) QZ(n0; J0)

is isomorphic to the Weyl algebra over QZ(n0; J0). Thus it is enough to check a similar statement for
the Weyl algebra. See [Go1, p. 295] for the latter fact. �

Pick i with trdeg(Zi ∩ Zn) = d and i ≥ n. Then trdeg(Zi ∩ Zn) = trdeg(Zj ∩ Zn) for all j > i.
Fix j > i. The above condition implies that every element of Zi ∩ Zn is algebraic over Zj . Hence
Lemma 3.22 implies that Zi ∩Zn ⊂ Zj for all j ≥ i. Thus all elements of Zi ∩Zn belong to the center
of U(n)/J and therefore Zn ∩ Zi = C. �

22



Proof of Proposition 3.19. Pick a C-basis z1, z2, . . . of Zn with z1 = 1 and extend it to a
C-basis c1, c2, . . . of Rl. Thanks to the assumption that Zn and Zl are linearly disjoint, we have that
z1, z2, . . . are Ql-linearly independent. Hence we can choose a subset {c′1, c′2, . . .} of the set {c1, c2, . . .}
such that all zi are among c′i and {c′1, c′2, . . .} is a Ql-basis of Rl ⊗Zl

Ql. For every i, j ≥ 1 we have

c′ic
′
j =

∑
k

αijkc
′
k, ci =

∑
k

βikc
′
k (12)

for the unique constants αijk, βik ∈ Ql (here the right-hand sums are always finite). These constants
are fractions of elements of Zl and we denote the corresponding denominators by γ1, γ2, . . .. Pick f as
in Proposition 2.18. We add f to the sequence of constant γ1, γ2, . . .. It is easy to verify that γ1, γ2, . . .
considered as a set is at most countable. Pick a maximal ideal M of Zl such that

γ1, γ2, . . . 6∈M, Zl/M ∼= C

(such an ideal exists thanks to Corollary 2.5). We wish to show that P := MRl is a maximal two-sided
ideal of Rl (and hence primitive).

Denote by ψ the homomorphism Zl → Zl/M ∼= C. Thanks to the definition of ψ, we can extend ψ
to αijk and βik. Set ᾱijk := ψ(αijk), β̄ik := ψ(βik). Then we define algebra R̄l as a C-vector space with
basis c̄′1, c̄

′
2, . . . and the multiplication law completely analogoues to (12). This algebra is associative

because the multiplication law (12) is associative. We also can define a linear map ψ̃ : Rl → R̄l by
formulas

ci 7→
∑
k

β̄ik c̄
′
k,

and it is easy to check that this linear map is a morphism of associative algebras such that

ψ̃(M) = 0, ψ̃(1) = ψ̃(z1) = 1.

Hence M is a subset of the kernel of ψ̃. The latter kernel is nonzero and thanks to Proposition 2.18 we
have that this kernel is generated by M (i.e., is equal to P ) and is primitive. We have that c̄′i = ψ̃(c′i)

form a basis of R̄l and hence the restriction ψ̃
∣∣∣
Zn

is injective. Thus P ∩Zn = ∅ and P satisfies all the

desired properties. �

Lemma 3.23. Let K1 ⊃ K2 ⊃ . . . be a sequence of fields such that, for all n ≥ 1, Kn is algebraically
closed in K1. Pick n ≥ 1 and x1, . . . , xd ∈ Kn such that x1, . . . , xd are algebraically dependent over Kl

for all l. Then x1, . . . , xd are algebraically dependent over K =
⋂
n≥1 Kn.

Proof. If x1, . . . , xd−1 are algebraically dependent over Kl for all l then we can replace x1, . . . , xd
by x1, . . . , xd−1. Thus we can assume that x1, . . . , xd−1 are algebraically independent over Kl for all
l ≥ l′ for a positive integer l′ ≥ n.

Hence xd is algebraic over Kl(x1, . . . , xd−1) for all l ≥ l′. Denote by pl the minimal monic polyno-
mial of xd over Kl(x1, . . . , xd−1) for all l ≥ l′. Denote by Rtsl the set of roots of pl in Kl(x1, . . . , xd−1).
It is clear that pl | pl+1 and hence Rtsl ⊂ Rtsl+1. This implies that

Rtsl ⊂ Kl+1(x1, . . . , xd−1).

Therefore the coefficients of pl belong to Kl(x1, . . . , xd−1) ∩ Kl+1(x1, . . . , xd−1). This together with
Lemma 3.24 implies that the coefficients of pl belong to (Kl ∩ Kl+1)(x1, . . . , xd−1). The assumption
that Kl+1 is algebraically closed in K1 implies that Kl ∩Kl+1 = Kl+1. Therefore the coefficients of pl
belong to K(x1, . . . , xd−1). This implies the desired result. �
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Lemma 3.24. Let K1 ⊂ K2 be a nested pair of fields. Fix d′ ≥ 0 and a collection x1, . . . , xd′ of
algebraically independent over K2 variables. Identify K1(x1, . . . , xd′) with its image under the canon-
ical embedding of K1(x1, . . . , xd′) into the algebraic closure K2(x1, . . . , xd′) of K2(x1, . . . , xd′). Then
K1(x1, . . . , xd′) ∩K2(x1, . . . , xd′) = (K1 ∩K2)(x1, . . . , xd′).

Proof. We will explicitly prove the statement of Lemma 3.24 under the assumption that d′ = 1
and it is easy to deduce the general case from this one by induction.

Fix q ∈ K2(x1) ∩ K1(x1). It is enough to show that q ∈ (K2 ∩ K1)(x1). If q = 0 then the latter
statement is trivial. Assume q 6= 0. Then q can be expressed as f/g where f , g are relatively prime
polynomials over K2 and g is monic. The fact that q is algebraic over K1(x1) implies that there exists
a finite set S such that q(a) is well-defined and q(a) ∈ K1 for all a ∈ K1 \ S.

Consider the set of all pairs (f ′, g′) ∈ K1[x]⊕K1[x] such that f ′(a) = q(a)g′(a) for all a ∈ K1\S. It is
clear that the set of these pairs form a K1[x]-submodule of K1[x]⊕K1[x]; we denote this submodule M .
Let M ′ be the projection of M on the second summand. It is clear that (f, g) ∈M and thus that M ′

is a nonzero ideal of K1[x] and hence it is generated by a single monic polynomyal mg ∈ K1[x]. Pick
mf ∈ K1[x] such that (mf ,mg) ∈M .

We have (f, g) ∈M and thus there exists l ∈ K1[x] such that g = mgl. Next, we have

f(a) = q(a)mg(a)l(a) = mf (a)l(a)

for all a ∈ K1 \ S. This implies that f −mf l has at infinitely many roots and hence f = mf l. Recall
that f and g are relatively prime and hence l ∈ K1. Next, both g and mg are monic and hence l = 1.
This implies that f, g ∈ (K2 ∩K1)[x] and therefore q ∈ (K1 ∩K2)(x1). �

The last ingredient in the proof of Proposition 3.18 uses the skew field Q(n; J) of U(n)/J . Set Tl
to be the subfield of Q(n; J) generated by Zl, Zl+1, . . . for all l ≥ 1. It is clear that Tl is commutative
for all l. Further, put T̃l to be the algebraic closure of Tl in T1. We will need the following lemma.

Lemma 3.25. If Q(n; J) has trivial center then
⋂
l T̃l = C.

Proof. Assume to the contrary that
⋂
l T̃l 6= C and fix f ∈

⋂
l T̃l \ C. Also fix a, b ∈ U(n)/J with

f = a−1b. There exists l′ such that a, b ∈ U(nl′)/Jl′ . Consider l ≥ l′. Recall that Ql is the quotient
field of Zl and that U(nl)/Jl ⊗Zl

Ql is isomorphic to the Weyl algebra An(Ql) over the field Ql for a
positive integer n ≥ 0, see [Di1, Proposition 4.7.1, Lemma 6.4.5]. Thus we have a map

An(Tl) ∼= An(Ql)⊗Ql
Tl → Q(n; J).

The first algebra is simple and therefore we can identify it with its image. It is clear that f belongs
to the quotient skew field of An(Tl). Also, f is algebraic over Tl and hence f ∈ Tl [Go1, p. 295].
Therefore f ∈ Tl for all l ≥ l′.

This implies that f commutes with the image of nl for all l ≥ l′ and hence f belongs to the center
of Q(n; J), i.e., f ∈ C. This contradicts our assumption. �

Proof of Proposition 3.18. Assume to the contrary that Zn and Zl are not linearly disjoint
for all l > n. Pick a transcendence basis x1, x2, . . . of Zn. Thanks to the inequality

GKdim(Zn) ≤ GKdim(U(nn)) = dim nn,

this set is finite and we denote by d the number of its elements. Then Lemma 3.23 applied to Kl = T̃l
implies that x1, . . . , xd are algebraically dependent over

⋂
l T̃l = C, see Lemma 3.25. This contradicts

our assumption. �
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3.5. Socle Lie algebras
In this subsection we consider in details a special class of locally nilpotent Lie algebras, namely,

socle Lie algebras. This class is much “nicer” then the class of all locally nilpotent Lie algebras. In
particular, we can show in this case that there is a bijection between the set of orbits of a properly
chosen (pro-)group and PSpec (S(n)) ≈ JSpec (U(n)). Also, in this case all such orbits are S(n)-Zariski
closed and a version of Dixmier–Moeglin equivalence holds, see Proposition 3.28.

Definition 3.26. A locally nilpotent Lie algebra n is called socle if it admits an exhaustion by
its finite-dimensional nilpotent ideals.

To state the above mentioned equivalence in a proper form we need a notion of a locally closed
ideal both in Poisson and noncommutative setting.

Definition 3.27. Let I (respectively, J) be a Poisson (respectively, two-sided) ideal of S(n)
(respectively, of U(n)). We denote by cl(I) (respectively, by cl(J)) the intersection of all radical
Poisson (respectively, radical two-sided) ideals strictly containing I. We say that I (respectively, J)
is locally closed if I 6= cl(I) (respectively, if J 6= cl(J)). For the topological meaning of locally closed
ideals see [BGo, Lemma II.7.7].

We consider the following proposition as a Dixmier–Moeglin equivalence for the Poisson ideals
of S(n).

Proposition 3.28. (cf. [Di1, Proposition 4.8.5]) Let n be a socle Lie algebra and I ⊂ S(n) be a
Poisson ideal. Then the following conditions are equivalent :

i) I is maximal in the class of Poisson ideals;

ii) I is primitive;

iii) the Poisson center of S(n)/I equals C;

iv) I is prime and the Poisson center of the field of fractions of S(n)/I coincides with C;

v) I is prime and locally closed.

Proof. Given a module V of an arbitrary locally nilpotent Lie algebra n, on which n acts locally
nilpotently, we denote by V n the submodule of n-invariants, i.e.,

V n = {v ∈ V | x(v) = 0 for all x ∈ n},

where by x(v) we denote the image of v under the linear operator corresponding to x. We note that
V n 6= {0} for a finite-dimensional V . Indeed, the image of n in End(V ) is finite-dimensional and
hence there exists a finite-dimensional subalgebra nk of n which maps onto that image. By the Engel
theorem we immediately obtain V n = V nk 6= 0.

The implications (i) =⇒ (ii), (iv) =⇒ (iii) are trivial. Next, (i) implies (v) by [Oh, Proposi-
tion 1.4]. Also (v) implies (ii) by [Oh, Proposition 1.7]. Further, a minor modification of the proof
of [BLSR, Theorem 3.2] shows that (ii) =⇒ (iv). Thus it is enough to show that (iii) implies (i) in
our case.

Indeed, assume to the contrary that there exists a Poisson ideal I ′ ⊂ S(n) with I ( I ′ then the
image Ī ′ of I ′ in S(n)/I is a nontrivial Poisson ideal. Fix 0 6= f ∈ Ī ′. Then there exists a finite-
dimensional n-submodule Mf of S(n)/I with f ∈Mf . The condition that n is a limit of nilpotent Lie
algebras implies that Mn

f 6= 0. This contradicts (iii). �

Remark 3.29. Fix an exhaustion of n by its finite-dimensional ideals nk and a linear form λ ∈ n∗.
We may assume without loss of generality that n1 ⊂ n2 ⊂ . . . and dim nk = k for all k ≥ 1. Denote
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by λk the restriction of λ to the ideal nk for k ≥ 1. Denote by rk ⊂ nk the kernel of the bilinear
from βλk , see Section 2.3: βλk(x, y) = λk([x, y]), x, y ∈ nk. Put

p =
∑
k≥1

rk, pk =
k∑
i=1

ri = p ∩ nk for each k ≥ 1.

Then each pk is a polarization at λk, see Subsection 2.3. Moreover, set Vk = V (nk, pk, λk), then each
Vk is a simple nk-module, and one can easily see that the natural map Vk → Vk+1 is injective, and the
corresponding simple n-module V = lim−→Vk coincides with the n-module V (n, p, λ) induced from the
one-dimensional representation x 7→ λ(x) of p.

3.6. The adjoint (pro-)group for a socle Lie algebras
Our next goal is to involve coadjoint orbits into the picture. First, one can consider the groups

the Nk such that Nk = Exp(nk) and, for each k, the embedding nk ⊂ nk+1 induces the embedding
Nk ⊂ Nk+1. Hence, we have the inductive limit N = lim−→Nk, and the group N acts naturally on n
and on n∗. The point is that the group N is “too small” for our purposes.

Example 3.30. (The countable-dimensional Heisenberg Lie algebra, cf. Example 2.10.) Let
n = hei∞(C) be the Lie algebra with generators z, xi, yi, i ≥ 1, and relations

[xi, yi] = z for all i, [xi, yj ] = 0 for i 6= j, [xi, z] = [yi, z] = 0 for all i.

We call n the countable-dimensional Heisenberg Lie algebra. Clearly, n is socle, because the subalge-
bra nk generated by z and xi, yi for 1 ≤ i ≤ k is an ideal.

There are two classes of primitive ideals of U(n) and S(n).
i) Every α ∈ C× = C \ {0} defines the two-sided (respectively, Poisson) ideal Jα (respectively, Iα)

of U(n) (respectively, S(n)) generated by z − α. It is easy to verify that

Jα = J(λ) ⇐⇒ Iα = I(λ) ⇐⇒ λ(z) = α.

One can check that the quotient of U(n) by this ideal is a limit of Weyl algebras and hence is
simple (a similar argument is applicable to the Poisson side). Thus, this ideal is maximal and hence
primitive (respectively, Poisson primitive).

ii) Every λ ∈ n∗ with λ(z) = 0 defines the ideal J(λ) generated by

xi − λ(xi), yi − λ(yi), i ≥ 1, and z.

It is easy to verify that the quotient by J(λ) is isomorphic to C. Thus J(λ) is maximal and hence
primitive. Similar facts hold true in the Poisson case. It is easy to verify that, for µ ∈ n∗,

J(λ) = J(µ) ⇐⇒ I(λ) = I(µ) ⇐⇒ λ = µ.

The bijection between primitive Poisson ideals of S(n) and primitive ideals of U(n) is clear from
these descriptions.

The adjoint group N of hei∞(C) (which is the injective limit of the adjoint groups of nk) together
with the action of N on n∗ can be defined in a natural way. The group N fixes all linear forms of
type (ii) and this matches the finite-dimensional case.

On the other hand, consider a linear form λ ∈ n∗ with λ(z) 6= 0, i.e., of type (i). Then the
N -orbit N.λ of λ consists of linear forms µ ∈ n∗ such that

λ(z) = µ(z) and λ(xi) = µ(xi), λ(yi) = µ(yi) for all i� 0,
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i.e., the action of N can change only finitely many coefficients λ(xi), λ(yi). Recall that I(µ) = I(λ)
if and only if µ(z) = λ(z). This implies that N.λ is much smaller than the set of linear forms µ for
which I(λ) = I(µ).

To fix this issue we construct out of N a larger pro-group N̂ ⊂ GL(n∗) such that the action of N̂
can change all the coefficients λ(xi), λ(yi) (using essentially the same formula for the adjoint action).
Thus it is quite clear how to define such a group for Heisenberg Lie algebra and the construction
suitable for every socle Lie algebra is given next.

To define the pro-coadjoint action, we need some more notation. Since each Nl acts on each n∗k,
we can denote by ρlk the morphism from Nl to GL(n∗k) which sends an element g to the corresponding
linear operator on n∗k for l ≥ k. Note that ρlk(Nl) ⊂ ρl+1

k (Nl+1) for each l ≥ k. Now, we put

N̂k =
⋃
l≥k

ρlk(Nl).

Since each ρlk(Nl) is irreducible, there exists the minimal number l(k) such that

N̂k = ρ
l(k)
k (Nl(k)).

Obviously, there is the projection πk+1 : N̂k+1 → N̂k for each k.

Definition 3.31. We set N̂ := lim←− N̂k.

Note that N̂ is assembled out of the pieces of Nks and therefore N̂ acts on n and thus on n∗. It is
easy to verify that this construction does not depend on a choice of the sequence of ideals n1 ⊂ n2 ⊂ . . ..
Thus we consider N̂ as “the true adjoint group of n”. We claim that N̂ is well-tailored for the orbit
method and supplement this claim by Proposition 3.32 and Lemma 3.33.

Proposition 3.32. Pick λ, µ ∈ n∗. Then I(λ) = I(µ) iff N̂ .λ = N̂ .µ.
Proof. First, we need to check that I(g.λ) = I(λ) for each g ∈ N̂ . Thanks to Lemma 3.11 we have

that I(λ) can be constructed out of I(λk) ⊂ S(nk) with λk = λ|nk . It is clear that I(λk) = I((g.λ)k).

It remains to show that if I(λ) = I(µ) then there exists g ∈ N̂ such that λ = g.µ. As above, set
λk := λ|nk , µk := µ|nk for all k ≥ 1. Next, put N̂k(λk → µk) := {g ∈ N̂k | g.λk = µk}. It is clear that,

for all l ≥ k ≥ 1, φl,k : N̂l → N̂k maps N̂l(λl → µl) to N̂k(λk → µk), where φl,k = πl ◦ πl−1 ◦ . . . ◦ πk+1.

This implies that N̂k(λk → µk) together with maps φk,l form a pro-variety; we denote this pro-variety

by N̂(λ → µ). Clearly, each N̂k(λk → µk) is nonempty and thus by Lemma 3.1 the pro-variety
N̂(λ→ µ) has at least one point g. Evidently, g ∈ N̂ and g.λ = µ. �

We hope that an analogue of N̂ can be constructed for every Lie algebra of a larger class of Lie
algebras (say locally nilpotent Lie algebras) but we was not able to work out a relevant construction
together with a relevant proof. Recall the definition of S(n)-Zariski topology from Subsection 3.1. We
conclude this section by the following lemma.

Lemma 3.33. Let Ω be a coadjoint N̂ -orbit on n∗. Then Ω is a closed (in the S(n)-Zariski
topology) pro-subvariety of n∗, i.e., Ω equals to the common set of zeros in n∗ of I(λ).

Proof. Pick a linear form µ ∈ Ω. Assume to the contrary that Ω is not closed and pick µ′ ∈ Ω\Ω.
Then we have I(µ) ⊂ I(µ′). Thanks to Proposition 3.28 we have that I(µ) is a maximal Poisson ideal
of S(n) and hence I(µ) = I(µ′). Thus by Proposition 3.32 we have µ′ ∈ Ω. This contradicts our
assumption. �
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4. Nil-Dynkin algebras

This section is devoted to an important class of locally nilpotent Lie algebras, which we call
nil-Dynkin algebras and consider as the most natural infinite-dimensional analogues of maximal nilpo-
tent subalgebras of simple finite-dimensional Lie algebras from Subsection 2.4. For such algebras, the
results of the previous section can be substantially improved.

More precisely, in Subsection 4.1 we recall the definition of simple finitary infinite-dimensional
Lie algebras and present a classification of their (splitting) Borel subalgebras due to I. Dimitrov and
I. Penkov. The splitting Borel subalgebras can be parametrized by linear orders on certain countable
sets. To the contrary with the finite-dimensional setting, there are uncountably many nonisomorphic
splitting Borel subalgebras. Next, we present the description of the center of U(n) of a nil-Dynkin
algebra n obtained by I. Penkov and the first author. This description is based on the infinite analogues
of Kostant cascades and is similar to the finite-dimensional one from Example 2.21.

First, we prove an analogue of Theorem 2.20 for nil-Dynkin algebras using the description of the
center of U(n), see Theorem 4.5 in Subsection 4.2. Next, in Subsection 4.3, we deduce from this
analogue a criterion for an ideal I(λ) (or, equivalently, J(λ)) to be nontrivial. This criterion is given
in terms of ranks of a certain “submatrix” of λ, see Theorem 4.9 and Example 4.13.

4.1. Splitting Borel subalgebras of simple finitary Lie algebras
Let sl∞(C), so∞(C), sp∞(C) be the three simple complex finitary countable-dimensional Lie al-

gebras as classified by A. Baranov [Ba1]. Each of them can be described as follows (see for example
[DP2]). Consider an infinite chain of inclusions

g1 ⊂ g2 ⊂ . . . ⊂ gn ⊂ . . .

of simple Lie algebras, where all gn are of the same type A, B, C or D, and rk gn = n for types B,
C, D, while rk gn = n− 1 for type A. We fix such a chain in the following way. Let gn be the algebra
denoted by sln(C), so2n+1(C), sp2n(C) or so2n(C) in Subsection 2.4. The inclusions are trivial: they
send the (i, j)th entry of a matrix to the (i, j)th entry of its image.

Then the union g =
⋃
gn is isomorphic to sl∞(C), so∞(C) or sp∞(C). We choose the nested

Cartan subalgebras hn ⊂ gn, hn ⊂ hn+1, as in Subsection 2.4: hn is the set of all diagonal matrices
from gn. Then each root space of gn is mapped to exactly one root space of gn+1. The union h =

⋃
hn

acts semisimply on g, and it is by definition a splitting Cartan subalgebra of g [DPSn, Section 3]. We
have a root decomposition g = h ⊕

⊕
α∈Φ gα where Φ ⊂ h∗ is the root system of g with respect to h

and gα are the root spaces. The root system Φ can be thought as the union of the root systems of gn
and equals one of the following infinite root systems:

A∞ = ±{εi − εj , i, j ∈ Z>0, i < j},
B∞ = ±{εi − εj , i, j ∈ Z>0, i < j} ∪ ±{εi + εj , i, j ∈ Z>0, i < j} ∪ ±{εi, i ∈ Z>0},
C∞ = ±{εi − εj , i, j ∈ Z>0, i < j} ∪ ±{εi + εj , i, j ∈ Z>0, i < j} ∪ ±{2εi, i ∈ Z>0},
D∞ = ±{εi − εj , i, j ∈ Z>0, i < j} ∪ ±{εi + εj , i, j ∈ Z>0, i < j}.

Here we first present a classification of splitting Borel subalgebras of g, which is due to I. Penkov
and I. Dimitrov [DP1]. A splitting Borel subalgebra of g is a subalgebra b such that, for every n,
bn = b ∩ gn is a Borel subalgebra of gn. It is well known that any splitting Borel subalgebra is
conjugate via Aut g to a splitting Borel subalgebra containing h. Therefore, in what follows we
restrict ourselves to considering only such Borel subalgebras b.

Recall [DP1] that a linear order on {0} ∪ {±εi} is Z2-linear if multiplication by −1 reverses the
order. By [DP1, Proposition 3], there exists a bijection between splitting Borel subalgebras of g
containing h and certain linearly ordered sets as follows.
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For A∞: linear orders on {εi};
for B∞ and C∞: Z2-linear orders on {0} ∪ {±εi};
for D∞: Z2-linear orders on {0} ∪ {±εi} with the property that

a minimal positive element (if it exists) belongs to {εi}.

In the sequel we denote these linear orders by �. To write down the above bijection, denote ϑi = εi, if
εi � 0, and ϑi = −εi, if εi ≺ 0 (for A∞, ϑi = εi for all i). Then put b = h⊕ n, where n =

⊕
α∈Φ+

gα and

A+
∞ = {ϑi − ϑj , i, j ∈ Z>0, ϑi � ϑj},

B+
∞ = {ϑi − ϑj , i, j ∈ Z>0, ϑi � ϑj} ∪ {ϑi + ϑj , i, j ∈ Z>0, ϑi � ϑj} ∪ {ϑi, i ∈ Z>0},

C+
∞ = {ϑi − ϑj , i, j ∈ Z>0, ϑi � ϑj} ∪ {ϑi + ϑj , i, j ∈ Z>0, ϑi � ϑj} ∪ {2ϑi, i ∈ Z>0},

D+
∞ = {ϑi − ϑj , i, j ∈ Z>0, ϑi � ϑj} ∪ {ϑi + ϑj , i, j ∈ Z>0, ϑi � ϑj}.

.

Actually, we are interested only in isomorphism classes of these subalgebras. Consequently, we will
assume without loss of generality that ϑi = εi, i.e., that εi � 0 for all i and all Φ. This is possible
because each Z2-linear order on {0}∪{±εi} is clearly isomorphic to a Z2-linear order with the property
εi � 0 for all i.

Definition 4.1. The Lie algebras n defined above are called nil-Dynkin Lie algebras.

Our next goal is to recall the description of the center Z(n) of the enveloping algebra U(n)
from [IPe]. Fix n, i.e., fix an order � as above. Define the subset N ⊆ Z>0 by setting N =

⋃
k≥0Nk,

where N0 = ∅ and Nk for k ≥ 1 is defined inductively in the following table.

Φ Nk
A∞ Nk−1 ∪ {i, j} if there exists a maximal element εi

and a minimal element εj of {εs, s ∈ Z>0 \ Nk−1},
Nk−1 otherwise

C∞ Nk−1 ∪ {i} if there exists a maximal element εi of {εs, s ∈ Z>0 \ Nk−1},
Nk−1 otherwise

B∞, Nk−1 ∪ {i, j} if there exists a maximal element εi of {εs, s ∈ Z>0 \ Nk−1}
D∞ and a maximal element εj of {εs, s ∈ Z>0 \ (Nk−1 ∪ {i})},

Nk−1 otherwise

Example 4.2. Let Φ = A∞. If ε1 � ε3 � . . . � ε4 � ε2, then N = Z>0. If ε1 � ε2 � ε3 � . . ., then
N = ∅. On the other hand, if Φ 6= A∞ and ε1 � ε2 � . . . � 0 � . . . � −ε2 � −ε1, then N = Z>0.

Now we can define the (possibly infinite) Kostant cascade corresponding to n. Namely, to each Nk
such that Nk−1 ( Nk, we assign the following root:

βk =


εi − εj , if Φ = A∞ and Nk \ Nk−1 = {i, j}, εi � εj ,
εi + εj , if Φ = B∞ or D∞ and Nk \ Nk−1 = {i, j}, εi � εj ,
2εi, if Φ = C∞ and Nk \ Nk−1 = {i}.

Definition 4.3. Put B = {βk, k ≥ 1, Nk−1 ( Nk}. The subset B is called the Kostant cascade
corresponding to n.

Note that B is a strongly orthogonal subset of Φ+; however it is not necessarily maximal with
this property (cf. Example 2.21). For instance, if Φ = A∞ and ε1 � ε3 � . . . � ε4 � ε2, then
B = {ε1 − ε2, ε3 − ε4, ε5 − ε6, . . .}; if Φ 6= A∞ and ε1 � ε2 � . . . � 0 � . . . � −ε2 � −ε1, then

B =

{
{ε1 + ε2, ε3 + ε4, ε5 + ε6, . . .} for B∞ and D∞,

{2ε1, 2ε2, 2ε3, . . .} for C∞.
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To each finite nonempty subset M ⊂ Z>0, one can assign a root subsystem ΦM of Φ and a
subalgebra nM of n by putting

ΦM = Φ ∩ 〈εi, i ∈M〉R,

nM =
⊕
α∈Φ+

M

gα, Φ+
M = ΦM ∩ Φ+.

Then the subsystem ΦM is isomorphic to the root system Φn of gn for n = |M |; we fix the isomorphism
jM : Φn → ΦM induced by εi 7→ εai , where M = {a1, . . . , an}, εa1 � . . . � εan . Put nn to be the
maximal nilpotent subalgebra of gn considered in Subsection 2.4; then nM ∼= nn.

Note also that n = lim−→ nM . Here, for M ⊆ M ′, the monomorphism iM,M ′ : nM ↪→ nM ′ is just the
inclusion. Further, our chain of embeddings of gn automatically inherits the basis {eα, α ∈ Φ+} of n
consisting of root vectors eα defined in Subsection 2.4. The linear map φM : nn → nM , eα 7→ ejM (α),
M ⊂ Z>0, n = |M |, is the isomorphism of Lie algebras. Consider a finite subset M ′ ⊂ Z>0 with
M ⊂ M ′ and n′ := |M ′|. The inclusion iM,M ′ : nM ↪→ nM ′ induces the unique embedding of Lie
algebras κM,M ′ : nn ↪→ nn+1 such that the following diagram is commutative.

nn
κM,M′−−−−→ nn′

φM

y yφM′
nM

iM,M′−−−−→ nM ′

We are now ready to write down a set of generators of Z(n). To each root β from the Kostant
cascade B we will attach an element of Z(n) and altogether these elements will be the free generators
of Z(n). Pick k ≤ |B| and β = βk. Let M be a finite subset of Z>0 such that Nk ⊆ M . The
isomorphism φM gives rise to an isomorphism φM : U(nn)→ U(nM ), n = |M |. Put

∆β := φM (σ(ξj−1
M (β))),

see Example 2.21 for the notation. Observe that ∆β ∈ U(nM ) is given by one of formulas (5), (6) or
(7) with ejM (α) instead of eα. It is important that ∆β ∈ U(nM ) depends only on β but not on M .
Moreover, it follows from the finite-dimensional theory that ∆β belongs to the center of U(n). The
next theorem was proved in [IPe, Theorem 2.6].

Theorem 4.4. If Φ = A∞, C∞, B∞ or D∞, then ∆β, β ∈ B, are algebraically independent and
generate Z(n) as an algebra. In particular, Z(n) is a polynomial ring in |B| variables.

4.2. Centrally generated Poisson ideals
One can easily deduce from Theorem 4.4 that the Poisson center Y (n) of S(n) is generated as an

algebra by σ−1(∆β) for β ∈ B. This follows immediately from the fact that, given a finite subset
M ⊂ Z>0, one has

Y (n) ∩ S(nM ) =
⋂

M ′⊇M
Y (nM ′), Z(n) ∩U(nM ) =

⋂
M ′⊇M

Z(nM ′),

and the fact that the restriction of σ to Y (n′M ) is an algebra isomorphism onto Z(n′M ).
In Subsection 2.7 we have showed that, for a finite-dimensional nilpotent Lie algebra, almost all

primitive ideals in U(n) are centrally generated. Similarly, all primitive Poisson ideals in S(n) are
generated as ideals by their intersections with the Poisson center of S(n), see Theorem 2.20. Below
we will prove an analog of this result for the class of nil-Dynkin algebras.

Theorem 4.5. There exists an open dense (with respect to the countable-Zariski topology)
subset of n∗ such that I(λ) is generated as an ideal by its intersection with the Poisson center Y (n)
of S(n) for each λ from this subset.
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Proof. Pick a root β ∈ Φ+ (possibly, not from B) and a finite subset M ⊂ Z>0 for which
β ∈ ΦM . Let |M | = n, then we have the isomorphisms jM : Φn → ΦM and φM : nn → nM . Assume
in addition that j−1

M (β) belongs to the Kostant cascade of Φn and denote by ξMβ the image in S(nM )
of the corresponding canonical generator of Y (nn) under the isomorphism S(nn) → S(nM ) induced
by φM . From now on we will consider ξMβ as an element of S(n). Note that this element depends

on M , not only on β, but for a given β there exist only countably many possibilities for ξMβ . For
example, if Φ = A∞, β = εi − εj for some εi � εj and M = {i1, . . . , ik, i, j, jk, . . . , j1}, where
εi1 � . . . � εik � εi � εj � εjk � . . . � εj1 , then one has

ξMβ =

∣∣∣∣∣∣∣∣∣∣∣

ei1,j ei1,jk . . . ei1,j1
ei2,j ei2,jk . . . ei2,j1

...
... . .

. ...
eik,j eik,jk . . . eik,j1
ei,j ei,jk . . . ei,j1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

eεi1−εj eεi1−εjk . . . eεi1−εj1
eεi2−εj eεi2−εjk . . . eεi2−εj1

...
... . .

. ...
eεik−εj eεik−εjk . . . eεik−εj1
eεi−εj eεi−εjk . . . eεi−εj1

∣∣∣∣∣∣∣∣∣∣∣
.

For other root systems, ξMβ can be defined by formulas (6) and (7), see Example 2.21.

Denote by A the subset of n∗ consisting of all λ such that ξMβ (λ) 6= 0 for all β ∈ Φ+ and all M ⊂ Z>0

for which ξMβ exists. Evidently, A is open (and so dense by Proposition 3.3) in the countable-Zariski
topology on n∗. Hence it is enough to check that I(λ) is generated by I(λ) ∩ Y (n) for each λ ∈ A.

Pick a linear form λ ∈ A, an element t′ ∈ I(λ) and a finite subset M ⊂ Z>0 such that t′ ∈ S(nM ). If
n = |M |, we denote by t the preimage of t′ in S(nn) under the isomorphism S(nn)→ S(nM ) induced by
φM : nn → nM . Denote by BM the preimage in Φn of B ∩ΦM under the isomorphism jM : Φn → ΦM .
Denote also by Bn the Kostant cascade of Φn. Without loss of generality we can enlarge M in such
a way that B ∩ ΦM = {β1, . . . , βk} for some k (if not, we will just add the required indices to M).
Then, clearly, BM ⊂ Bn. Denote by ξβ, β ∈ Bn, the canonical generators of Y (nn). Since λ ∈ A, we
have ξβ(φ∗M (λ|nM )) = cβ 6= 0 for all β ∈ Bn. According to (8) and Theorem 2.20, t belongs to the
(Poisson) ideal of S(nn) generated by ξβ − cβ for β ∈ Bn. It is enough to prove that t belongs to the
ideal of S(nn) generated by ξβ − cβ for β ∈ BM . (Note that, for β ∈ BM , the image of ξβ in S(n)
depends only on β, not on the choice of a sufficiently large subset M .)

Let β0 be the minimal root from Bn \ BM (if Bn \ BM is empty then there is nothing to prove).
Note that

jM (β0) =


εi0 − εj0 for Φ = A∞,

2εi0 for Φ = C∞,

εi0 + εj0 for Φ = B∞ or D∞

for certain i0, j0 ∈ Z>0. We will proceed case by case.
Case Φ = A∞. Here j−1

M (βs) = εs − εn−s+1 and βs = εis − εjs for certain is, js, 1 ≤ s ≤ k.
Since β0 /∈ BM , at least one of the following two conditions is satisfied: εi0 is not the maximal element

(with respect to the partial order �) of the set
{
εi, i ∈ Z>0 \

⋃k
s=1{is, js}

}
, or εj0 is not the minimal

element element of this set. Suppose that εi0 is not maximal (the case when εj0 is not minimal can be
considered similarly). Let i′ ∈ Z>0 be such that εik � εi′ � εi0 (note that i′ /∈M). Put M ′ = M ∪{i′},
then ΦM ⊂ ΦM ′ . We can fix the embedding j−1

M ′

∣∣
ΦM
◦ jM : Φn ↪→ Φn+1. This induces the embeddings

κM,M ′ : nn ↪→ nn+1 and S(nn) ↪→ S(nn+1), hence we can consider t as an element S(nn+1). We denote
also by Bn+1 the Kostant cascade of Φn+1, then Bn ∩ Bn+1 = BM .

For example, let n = 8 and the root vectors from nn+1 \ nn be marked gray in the picture below.
Then Bn+1 ∩ Bn = BM = {ε1 − ε9, ε2 − ε8} (the corresponding root vectors are marked by ⊗),
Bn+1 \ Bn = {ε3 − ε7, ε4 − ε6} (marked by •) and Bn \ Bn+1 = {ε4 − ε7, ε5 − ε6} (marked by �).
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Denote by λ′ the image of λ|nM′ under the isomorphism φ∗M ′ : n
∗
M ′ → n∗n+1. Put N ′ = Exp(nn+1).

One can consider S(nn+1) as the algebra C[n∗n+1] of polynomial functions on n∗n+1. Since t′ ∈ I(λ),
one has t(g.λ′) = 0 for all g ∈ N ′, where g.λ′ denotes the result of the coadjoint action. It follows,
e.g., from [Ko2, Theorems 4, 8] and [IPe, Theorem 3.1] (see also Example 2.11) that λ ∈ A implies
that the coadjoint N ′-orbit N ′.λ′ of the linear form λ′ contains the unique linear form µ ∈ n∗n+1 such
that, given β ∈ Φ+

n+1, µ(eβ) 6= 0 if and only if β ∈ Bn+1.
We will need the exponential map

exp: nn+1 → N ′, x 7→
∞∑
i=0

xi

i!
.

The coadjoint action is defined by the formula

((expx).f)(y) =
∞∑
i=0

f((−adx)i(y))

i!
, x, y ∈ nn+1, f ∈ n∗n+1,

where adx(y) = [x, y]. Now, put m = |Bn| and pick numbers gi ∈ C× for k + 1 ≤ i ≤ m. Set

g = exp(gmeεn−m+1−εn−m+2) . . . exp(gk+1eεn−(k+1)+1−εn−(k+1)+2
) ∈ N ′.

Put also ν = g.µ, then one can easily deduce that, for all α ∈ Φ+
n+1,

ν(eα) =

{
giµ(εi − εn−i+1), if α = εi − εn−i+2 for i > k,

µ(α) otherwise.
(13)

Note that εi − εn−i+2, k + 1 ≤ i ≤ m, are exactly the roots from Bn \ BM considered as a subset of
the root system Φn+1.

We see that ξβi(ν) = ξβi(µ) = ξβi(λ
′) = cβi for 1 ≤ i ≤ k, i.e., for βi ∈ BM . At the same time, since

gi are arbitrary nonzero numbers, formula (5) implies that the values of all other canonical generators
of Y (nn) on ν can be arbitrary nonzero. Now, denote by R the subset of n∗n consisting of all linear
forms f ∈ n∗n such that the values of all canonical generators of S(nn) on f are nonzero. By [Ko2,
Theorems 4, 8] and [IPe, Theorem 3.1], R is an open dense Exp(nn)-stable subset of n∗n. Furthermore,
each coadjoint Exp(nn)-orbit in R contains exactly one element of the form

∑
β∈Bn rβe

∗
β, rβ 6= 0, where

{e∗α, α ∈ Φ+
n } is the dual basis for the basis {eα, α ∈ Φ+

n } of nn. Now, set

Z = {f ∈ n∗n | ξβ(f) = cβ for all β ∈ BM}.

Obviously, Z is a closed Exp(nn)-stable subset of n∗n. It is clear from (5) that Z is isomorphic to
an affine space (and so is irreducible), ν ∈ Z and that when gi’s run over C× independently, ν runs
over a complete system or representatives of Exp(nn)-orbits in Z ∩ R. Since t′ ∈ I(λ), one has
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t(ν) = t(µ) = t(λ′) = 0. It follows that t|Z∩R ≡ 0 and thus t vanishes on Z. But the latter condition
means exactly that t belongs to the ideal of Z in S(nn), i.e., to the ideal of S(nn) generated by ξβ− cβ,
β ∈ BM , as required.

Case Φ = C∞. The idea is similar to the case A∞, but the technical details differ slightly. Here
j−1
M (βs) = 2εs and βs = 2εis for certain is, 1 ≤ s ≤ k. Since β0 /∈ BM , εi0 is not maximal (with

respect to the partial order �) in the set {εi, i ∈ Z>0 \ {i1, . . . , ik}}. Let i′ ∈ Z>0 be such that
εik � εi′ � εi0 (note that i′ /∈ M). Now we define M ′, ΦM ′ , nn+1, Bn+1, the group N ′, the linear
form λ′ and the embeddings κM,M ′ : nn ↪→ nn+1, S(nn) ↪→ S(nn+1) as in the previous case. Note that
Bn+1 = Bn ∪ {2εk+1}. Again, [IPe, Theorem 3.1] shows that N ′.λ′ contains a linear form µ such that,
given β ∈ Φ+

n+1, µ(eβ) 6= 0 if and only if β ∈ Bn+1.
Now, we pick numbers gi ∈ C×, k + 2 ≤ i ≤ n+ 1, and put

g =

n+1∏
i=k+2

exp(gieεk+1−εi) ∈ N
′

(i runs from k + 2 to n + 1), ν = g.µ ∈ n∗n+1. Using the formula for the coadjoint action, one can
easily check that, given α ∈ Φ+

n+1,

ν(eα) =


giµ(2εk+1), if α = εk+1 + εi, k + 1 ≤ i ≤ n+ 1,

gigjµ(2εk+1), if α = εi + εj , k + 2 ≤ i < j ≤ n+ 1,

g2
i µ(2εk+1) + µ(2εi), if α = 2εi, k + 1 ≤ i ≤ n+ 1,

µ(α) otherwise

(cf. (13)). Hence, using formula (6), one can calculate by the induction on i, k + 1 ≤ i ≤ n, that the
value of the ith canonical generator of Y (nn) on ν is equal up to a sign to

k∏
s=1

µ(2εs)

 i+1∏
j=k+2

µ(2εj) + µ(2εk+1)
i+1∑

j=k+2

g2
j

∏
k+2≤r≤i+1, r 6=j

µ(2εr)

 .

Since gi are arbitrary nonzero numbers, we see that the values of all these canonical generators of
Y (nn) on ν can be arbitrary nonzero. Thus, one can complete the proof arguing literally as in the last
paragraph of the case A∞ (with formula (6) instead of (5)).

Case Φ = D∞. Here j−1
M (βs) = ε2s−1 + ε2s and βs = εis + εjs for certain is, js, 1 ≤ s ≤ k. Since

β0 /∈ BM , there exists i′ ∈ Z>0\{i1, . . . , ik} such that either εik � εi′ � εi0 or εi0 � εi′ � εj0 (note that
i′ /∈ M). Now we define M ′, ΦM ′ , nn+1, Bn+1, the group N ′, the linear form λ′ and the embeddings
κM,M ′ : nn ↪→ nn+1, S(nn) ↪→ S(nn+1) as in the case of A∞. Note that Bn+1 ∩ Bn = BM . It follows
from [Ig1, Theorem 2.4] that N ′.λ′ contains a linear form µ such that, given β ∈ Φ+

n+1, µ(eβ) 6= 0 if
and only if β ∈ Bn+1.

Now, we pick numbers gi ∈ C×, k + 1 ≤ i ≤ [n/2] = |Bn|, and put

g = g′
[n/2]∏
i=k+2

exp(gieε2i−1−ε2i+1) ∈ N ′

(i runs from [n/2] to k + 1), ν = g.µ ∈ n∗n+1, where

g′ =

{
exp(gk+1eε2k+1−ε2k+1

), if εik � εi′ � εi0 ,
exp(gk+1eε2k−ε2k+1

), if εi0 � εi′ � εj0 .
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Using the formula for the coadjoint action, one can easily check that, given α ∈ Φ+
n+1,

ν(eα) =


giµ(ε2i−1 + ε2i), if α = ε2i + ε2i+1, k + 2 ≤ i ≤ [n/2],

gk+1µ(ε2k−1 + ε2k), if α = ε2k + ε2k+1 and εik � εi′ � εi0 ,
or α = ε2k−1 + ε2k+1 and εi0 � εi′ � εj0 ,

µ(α) otherwise

(cf. (13)). It is clear from formula (7) that the value of the ith canonical generator of Y (nn) on ν,
k + 1 ≤ i ≤ [n/2], is equal up to a sign to

∏k
s=1 µ(ε2s−1 + ε2s)

∏i
j=k+1 gjµ(ε2j−1 + ε2j) and so can be

arbitrary nonzero. Thus, one can complete the proof arguing literally as in the last paragraph of the
case A∞ (with (7) instead of (5)).

Case Φ = B∞. The proof for B∞ is completely similar to the case D∞, so we omit it. �

4.3. Nontriviality criterion for primitive ideals
In this subsection, we fix a nil-Dynkin algebra n together with the corresponding partial order �

as in Subsection 4.1. For such a Lie algebra n we provide a necessary and sufficient condition for
a primitive Poisson ideal I(λ) to be nontrivial (Theorem 4.9). There are two ways to state this
condition. The first one is as follows: there exists a countable collection {̃Ξk}k of countable collections
of polynomials from S(n) such that I(λ) 6= 0 if and only if there exists k for which λ(ξ) = 0 for all
ξ ∈ Ξk. The advantage of this form is that it is quite believable that the result in this form can
be generalized to a larger class of Lie algebras (probably, to the entire class of locally nilpotent Lie
algebras). The second form is based on the structure of nil-Dynkin Lie algebras and, in particular, on
the fact that all Ξk can be chosen in such a way that all ξ ∈ Ξk are “minors” in an appropriate sense.
Moreover, the condition λ(ξ) = 0 for all ξ ∈ Ξk is a degeneration condition for a certain submatrix of
the infinite matrix defined by λ, see Example 4.13. Note that I(λ) 6= 0 if and only if J(λ) 6= 0 and
hence the criterion also is a nontriviality criterion for primitive ideals of U(n). To proceed, we need
more notation related to the above mentioned minors.

First, let Φ = A∞. Pick two sequences of positive integers I = {i1, . . . , ik} and J = {j1, . . . , jk}
so that εi1 � . . . � εik � εjk � . . . � εj1 . We denote by ξJI the element of the symmetric algebra S(n)
defined by the following rule:

ξJI =

∣∣∣∣∣∣∣∣∣
ei1,jk . . . ei1,j2 ei1,j1
ei2,jk . . . ei2,j2 ei2,j1

... . .
. ...

...
eik,jk . . . eik,j2 eik,j1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
eεi1−εjk . . . eεi1−εj2 eεi1−εj1
eεi2−εjk . . . eεi2−εj2 eεi2−εj1

... . .
. ...

...
eεik−εjk . . . eεik−εj2 eεik−εj1

∣∣∣∣∣∣∣∣∣ . (14)

For instance, let βs = εis−εjs , 1 ≤ s ≤ k, be the first k roots of the Kostant cascade of the Lie algebra n.
Then, clearly, ∆βk = σ(ξJI ) belongs to the set of generators of Z(n) defined by Theorem 4.4.

Next, assume Φ = C∞. Consider I = {i1, . . . , ik}, J = {j1, . . . , jk} with εi1 � . . . � εik and
εj1 � . . . � εjk . If i 6= j for all i ∈ I, j ∈ J , then we put

ξJI =

∣∣∣∣∣∣∣∣∣
eεi1+εjk

. . . eεi1+εj2
eεi1+εj1

eεi2+εjk
. . . eεi2+εj2

eεi2+εj1
... . .

. ...
...

eεik+εjk
. . . eεi2+εjk

eεi1+εjk

∣∣∣∣∣∣∣∣∣ .
If i = j for some pairs i ∈ I, j ∈ J then we use a modification of this formula in which we replace
eεi+εj by 2e2εi . For instance, let βs = 2εis , 1 ≤ s ≤ k, be the first k roots from the Kostant cascade
of n. Then ∆βk = σ(ξII ) belongs to the set of generators of Z(n) from Theorem 4.4.
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Finally, for Φ = B∞ or D∞, given a sequence I = {i1, . . . , i2k} with εi1 � . . . � εi2k , we denote
by ξI the unique element of S(n) such that

ξ2
I = ±

∣∣∣∣∣∣∣∣∣∣∣

eεi1+εi2k
. . . eεi1+εi3

eεi1+εi2
0

eεi2+εi2k
. . . eεi2+εi3

0 −eεi1+εi2
eεi3+εi2k

. . . 0 −eεi2+εi3
−eεi1+εi3

... . .
. ...

...
...

0 . . . −eεi3+εi2k
−eεi2+εi2k

−eεi1+εi2k

∣∣∣∣∣∣∣∣∣∣∣
.

(After suitable reordering of indices, the matrix in the right-hand side becomes skew-symmetric, so
ξI is nothing but its Pfaffian. Our normalization is such that the term eεi1+εi2

eεi3+εi4
. . . eεi2k−1

+εi2k

enters ξI with coefficient 1.) For instance, let βs = εi2s−1 + εi2s , 1 ≤ s ≤ k, be the first k roots from the
Kostant cascade of n. Then ∆βk = σ(ξI) belongs to the set of generators of Z(n) from Theorem 4.4.

Given an upper-right pair p and a positive integer k, we define the ideal I(p, k) in the following
table. Note that if Φ = B∞ or D∞ and i = m 6= −j then only k = 1 is allowed.

Type of Φ Upper-right pair p Generators of I(p, k) as an ideal

A∞ (i, j) ξJI , |I| = |J | = k, εik � εi, εj � εjk
C∞ (i,−i) ξJI , |I| = |J | = k, εik � εi, εjk � εi
B∞ or D∞ (i,−i) ξI , |I| = 2k, εi2k � εi
B∞ or D∞ (i, j), i = m 6= −j ξ{m,s} = eεm+εs , εs � εj

The ideals I(p, k) might seems artificial from the first look but their zeroes sets are quite conceptual,
see Corollary 4.7.

Note, however, that I(p, k) may be zero. Namely, for A∞, the ideal I(p, k) is zero if and only if the
partial order � has the maximal element εi0 or the minimal element εj0 and at least one of the numbers
|{s ∈ Z>0 | εi0 � εs � εi}|, |{s ∈ Z>0 | εj � εs � εj0}| is finite and less than k. Similarly, for C∞,
I(p, k) = {0} if and only if � has the maximal element i0 and the number |{s ∈ Z>0 | εi0 � εs � εi}|
is finite and less than k. Finally, for B∞ and D∞, I(p, k) = {0} if and only if � has the maximal
element, p = (i,−i) and the number |{s ∈ Z>0 | εi0 � εs � εi}| is finite and less than 2k.

Proposition 4.6. The ideal I(p, k) is prime and Poisson.
Proof. Pick a finite set M ⊂ Z>0, |M | = n, containing all positive entries of p. Assume in addition

that n ≥ k for Φ = A∞ or C∞, and n ≥ 2k for Φ = B∞ or D∞. For A∞ and C∞ (respectively, B∞
and D∞), we denote by IM (p, k) the ideal of S(nn) generated by the preimages in S(nn) under the
isomorphism S(nn)→ S(nM ) of all ξJI with I, J ⊆M (respectively, of all ξI with I ⊆M). It is enough
to check that the ideal IM (p, k) of S(nn) is prime and Poisson for all such M . Indeed, after identifying
IM (p, k) with its image in S(nM ) one has

I(p, k) ∩ S(nM ) =
⋃

M ′⊇M
(IM ′(p, k) ∩ S(nM )).

Note that nn is a subspace of the space u of all strictly upper-triangular matrices with zeroes on
the diagonal (in particular, for Φ = A∞, nn = u); see Subsection 2.4 for the details. Furthermore,
the group Nn = Exp(nn) = {exp(x), x ∈ nn} is a subgroup of the group U of all upper-triangular
matrices with units on the diagonal, where exp(x) =

∑∞
l=0 x

l/l! (in particular, for Φ = A∞, Nn = U).
On the other hand, n∗n can be identified with the space nTn (the superscript T stands for the

transposed matrix) by putting µ(x) = tr (µx) for µ ∈ nTn , x ∈ nn. It is easy to check (see, e.g.,
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[Ki2, Lecture 7, Section 1]) that under this identification the coadjoint action has the form
g.µ = (gµg−1)low, where, given a matrix x,

(xlow)i,j =

{
0, if i ≤ j,
xi,j , if i > j.

Recall the basis {e∗α, α ∈ Φ+
n } of n∗n and the numeration of rows and columns of matrices from

Subsection 2.4. Under the identification n∗n
∼= nTn ,

e∗α =


eTα if Φ = A∞, or Φ = C∞ and α = 2εi,

eTα/4 if Φ = B∞ and α = εi,

eTα/2 otherwise.

(15)

Given a matrix µ from nTn , we denote by [µ]ij the submatrix of µ which entries are situated nonstrictly

to the South-West from the (j, i)th position. Then, for B∞ and D∞ (respectively, for C∞), [µ]i−i is
antisymmetric (respectively, symmetric) with respect to the antidiagonal.

Now, denote by uij the Zariski closed subset of uT consisting of all matrices f from uT such that

rk [f ]ij < 2k (respectively, rk [f ]ij < k) if Φ = B∞ or D∞ and j = −i (respectively, otherwise). One can
easily check that this subset is invariant under the coadjoint action of U (see, e.g., the proof of [Ig2,
Lemma 2.2]). Indeed, U is generated as a group by elements of the form x = exp(tea,b) = 1 + tea,b,
where a < b, t ∈ C, and 1 denotes the identity matrix. Given f ∈ uT , one can easily deduce that

(x.f)r,s =


fa,s + tfb,s, if r = a and 1 ≤ s < a,

fr,b − tfr,a, if s = b and b < r ≤ n,
fr,s otherwise.

Hence if r > a and s < b, then [x.f ]sr = [f ]sr. If r ≤ a (and so s < r ≤ a < b), then the ath row of
[x.f ]sr is obtained from the ath row of [f ]sr by adding the bth row of [f ]sr multiplied by t. Similarly, if
s ≥ b (and so r > s ≥ b > a), then the bth column of [x.f ]sr is obtained from the bth column of [f ]sr by
subtracting the ath column of [f ]sr multiplied by t. In both cases, rk [x.f ]sr = rk [f ]sr.

Next, denote by Z the set of common zeroes of polynomials from IM (p, k) in n∗n. We claim that
Z is an Nn-invariant subset of n∗n (i.e., that

√
IM (p, k) is Poisson). To prove this fact it is enough to

note that Z = nTn ∩ uij if p = (i, j). (Here we replace the entries of p by the corresponding integers

from −n to n). For A∞ and C∞, µ ∈ Z if and only if all k × k minors of [µ]ij are zero, as required.

For B∞ and D∞, if i = m 6= −j then the equality Z = nTn ∩ uij is obvious; in other cases, [µ]i−i is
antisymmetric with respect to the antidiagonal, and all its principal (with respect to the antidiagonal)
k × k minors are zero. The expansion formula for Pfaffians shows that all principal minors of [µ]i−i of
size at least k are zero. By the well-known Principal Minor Theorem, we see that rk [µ]i−i < k.

It remains to show that IM (p, k) is a prime ideal. For A∞, see, e.g., [MS, Corollary 16.29]. For
B∞ and D∞, if i = m 6= −j then it is evident; otherwise it was proved in [Av]. For C∞, see, e.g.,
[Ku, Theorem 1]. �

Pick a linear form λ ∈ n∗ and an upper-right pair p. Denote by [λ]p the matrix defined by the
following rule. For A∞ and p = (i, j), the rows and the columns of this matrix are indexed by the
numbers i′ ∈ Z>0, εi′ � εi and j′ ∈ Z>0, εj′ � εj respectively (it is possible that this matrix has
infinite sizes). For other root systems and p = (i, j), the rows and the columns of this matrix are
indexed by the numbers i′ ∈ Z>0, εi′ � εi and −j′ ∈ Z<0, εj′ � ε−j respectively. By definition, if
Φ = A∞ then the (i′, j′)th entry of [λ]p equals λ(eεi′−εj′ ). For other root systems, the (i′, − j′)th
entry equals λ(eεi′+εj′ ) if i′ 6= j′. Finally, put

([λ]p)i′,−i′ =

{
2λ(e2εi′ ) for Φ = C∞,

0 for Φ = B∞ and D∞.
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For A∞ (respectively, C∞), ξJI (λ) is exactly the minor of the matrix [λ]p with the set of rows I and
the set of columns J (respectively, −J), while for B∞ and D∞, if j = −i then ξ2

I (λ) equals the minor
of [λ]p with the row set I and the column set −I.

We define the rank of [λ]p as the cardinality of a maximal set of linearly independent rows
(columns), written rk [λ]p. It is clear that [λ]p < k if and only if the rank of each submatrix of [λ]p of
finite sizes is less than k. If rk [λ]p <∞, then we say that the rank of [λ]p is finite.

Corollary 4.7. The set of common zeroes of an ideal I(p, k) has the form {λ ∈ n∗ | rk [λ]p < k′},
where

k′ =

{
2k for B∞, D∞ with p = (i,−i),
k otherwise.

Proof. A minor modification of the proof of Proposition 4.6 provides the desired fact. �

Definition 4.8. We say that rk [λ]p is not maximal if rk [λ]p is finite and either both of the sizes
of [λ]p are infinite, or one of the sizes is finite and the least size is greater than rk [λ]p.

Our next main result is as follows.
Theorem 4.9. Pick a linear form λ ∈ n∗. If B 6= ∅ then I(λ) 6= 0. If B = ∅ then the following

conditions on I(λ) are equivalent :

i) I(λ) 6= 0;

ii) I(λ) ⊇ I(p, k) for some upper-right pair p and some k ∈ Z>0 such that I(p, k) 6= 0;

iii) rk [λ]p is not maximal for some upper-right pair p.

Proof. According to Theorem 4.4, if B 6= ∅ then Y (n) 6= C. Denote by

evλ : S(n)→ C, n 3 z 7→ λ(z)

the evaluation map at λ. Then z − λ(z) ∈ I(λ) for z ∈ Y (n) \ C and hence I(λ) 6= 0. So, we will
consider the case when B = ∅ and Z(n) = Y (n) = C (see the first paragraph of Subsection 4.2).
Implication (ii) =⇒ (i) is evident. Implication (iii) =⇒ (ii) follows immediately from Corollary 4.7. It
remains to check that (i) =⇒ (iii).

For A∞ (respectively, for C∞; for B∞ and D∞), denote by F ⊂ S(n) the set of all ξJI (respectively,
of all ξII ; of all ξI); clearly, F is countable. Further, a linear form µ ∈ n∗ belongs to the dense open
set A from the proof of Theorem 4.5 if and only if f(µ) 6= 0 for all f ∈ F. Assume that K is a
prime Poisson ideal of S(n) such that K ∩ F = ∅. The fact that K is prime implies that S(n)/K is
a domain. Since K ∩ F = ∅, we see that S′ = (S(n)/K)[f−1, f ∈ F] is nonzero. Hence, there exists
a nontrivial maximal ideal M ′ of S′. It is evident that S′ is countable-dimensional and hence M ′ is
of codimension 1 in S′ by Corollary 2.4. Let µ ∈ n∗ be the point corresponding to M ′. Then we have
f(µ) 6= 0 for all f ∈ F. But Theorem 4.5 implies that I(µ) = 0. On the other hand we have K ⊂ I(µ)
and hence K = 0. In particular, we conclude from I(λ) 6= 0 that f ∈ I(λ) for some f ∈ F.

Case Φ = A∞. We have ξJI ∈ I(λ) for some sequences I, J of the same size k. The proof depends
on the structure of the partial order � defining n. Since B = ∅, we conclude that this partial order
can not have both the minimal and the maximal elements.

Consider the case when it has neither minimal nor maximal element. Since {eεa−εb , eεb−εc} = eεa−εc
for distinct indices a, b, c, the row expansion formula for determinants implies that {eεa−εb , ξJI } = 0
except the case when either b ∈ I (and then a /∈ J) or a ∈ J (and then b /∈ I). If b ∈ I and a /∈ J then

{eεa−εb , ξ
J
I } = ±ξJI′ , (16)

where I ′ is obtained from I by replacing b by a and reordering the indices. Similarly, if a ∈ J and
b /∈ I then {eεa−εb , ξJI } = ±ξJ ′I , where J ′ is obtained from J by replacing a by b and reordering the
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indices. We conclude that ξJ
′

I′ ∈ I(λ) and so ξJ
′

I′ (λ) = 0 for all I ′, J ′ such that |I ′| = |J ′| = k and
εi′k � εi1 , εj1 � εj′k , because I(λ) is a Poisson ideal. But this means exactly that the rank of [λ]p is
less than k, where p = (i1, j1), i.e., rk [λ]p is finite and so is not maximal.

Next, consider the case when the maximal element exists, and so the minimal element does not.
(The case when the minimal element exists can be considered similarly.) We denote the maximal
element by εm1 . Let M be the subset of Z>0 consisting of positive integers m such that the set
{m′ ∈ Z>0 | εm1 � εm′ � εm} is finite. Suppose M is infinite and m1, . . . , mk ∈ M are such that
εm1 � . . . � εmk

are the largest k elements among all εs, s ∈ Z>0. It is clear that applying (16) we
can obtain ξJM0

∈ I(λ), where M0 = {m1, . . . , mk}. It follows that ξJ
′

M0
∈ I(λ) for all J ′ such that

εj1 � εj′k . This means that the rank of [λ]p, p = (mk, j1), is less than k and so is not maximal.
Suppose now that M = {m1, . . . , mk′} is finite and εm1 � . . . � εmk′ . If k′ ≥ k then the proof

is similar to the previous case, so let k′ < k. Arguing as above, we see that ξJ
?

I? ∈ I(λ) for all I?, J?

of cardinality k such that εi?k � εi1 , εj1 � εj?k , and i?s = ms for 1 ≤ s ≤ k′. If there exists j0 such

that ξJ
′
M(λ) = 0 for all J ′ of cardinality k′ with εj0 � εj′

k′
, then the rank of [λ]p, p = (mk′ , j0), is less

than k′ and so is not maximal. Thus, we may assume that, given j0, there exists J ′ of cardinality k′

such that ξJ
′
M(λ) 6= 0 and εj0 � εj′k . But in this case the standard methods of matrix rank calculation

show that the rank of a submatrix of [λ]p, p = (i1, j1), with the rows I? and the columns J? such
that |I?| ≥ k, |J?| = k + k′, εi?k � εi1 , εj1 � εj?k , and j?k+s = j′s, i

?
s = ms for 1 ≤ s ≤ k′, is less than k.

Thus, rk [λ]p is less than k and so is not maximal.
Case Φ = C∞. Let ξII ∈ I(λ) for some I of cardinality k. Pick a root α = εi − εj . We claim that

if i ∈ I, j /∈ I then there exists a nonzero scalar c ∈ C× such that {ξII , eα} = cξII[i→j], where I[i→ j]

is obtained from (I \ {i}) ∪ {j} by reordering the indices. Pick a finite subset M ⊂ Z>0 containing I
and j. Let nn, u, etc. be as in the proof of Proposition 4.6. Similarly, we identify n∗n with nTn and u∗

with uT ; we also identify α and ξII with their images in Φn and S(nn) respectively. Note that n∗n can
be now considered as a subspace of u∗. Assume for simplicity of notation that α = εi − εj ∈ Φn (i.e.,
that the indices i and j did not change after passing from ΦM to Φn).

Let sp2n(C) ⊂ sl2n(C) be as in Subsection 2.4, so that nn and u are the nilradicals of the Borel
subalgebras of sp2n(C) and sl2n(C) respectively consisting of all upper-triangular matrices from these
Lie algebras. The natural embedding nTn ↪→ uT together with the isomorphisms (nTn )∗ ∼= (n∗n)∗ ∼= nn
and (uT )∗ ∼= (u∗)∗ ∼= u define the projection u → nn and, consequently, the surjective morphism of
associative algebras ζ : S(u)→ S(nn). According to (15), given ep,q ∈ u, one has

ζ(ep,q) =


e2εp if p = −q > 0,

eεp−εq/2 if 0 < p < q,

eεp+εq/2 if 0 < p < −q.

(Recall that we index the rows and the columns of matrices by the numbers 1, . . . , n, −n, . . . , −1.)
It is well known that the trace form is nn-invariant and this provides an nn-module isomorphism of u
and the quotient of sl2n(C) by the corresponding Borel subalgebra. In a similar way we have that ζ is
in fact a morphism of nn-modules.

Next, given two sequences I ′, J ′ of cardinality k, denote by κJ
′
I′ the element of S(u) defined by

formula (14) with i′s, −j′s instead of is, js respectively, 1 ≤ s ≤ k. It follows from the previous
paragraph that ζ(κII) = ξII/2

k and

ζ(κII[i→j]) = ζ(κ
I[i→j]
I ) = ξII[i→j]/2

k.

Further, ζ is a morphism of nn-modules, hence ζ({κII , ei,j − e−j,−i}) = {ζ(κII), ζ(ei,j)} = {ξII , eα}/2k.
It remains to note that, thanks to the row expansion formula for determinants, {κII , ei,j} = ±κII[i→j]
and {κII , e−j,−i} = ∓κI[i→j]I .
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Now we turn again from nn to n. We have just checked that, up to a nonzero scalar, {ξII , eα}
coincides with ξII[i→j]. It is clear from the row expansion formula for the determinants that, up to

a nonzero scalar, {ξII[i→j], eα} is equal to ξ
I[i→j]
I[i→j] . It is easy to deduce from this fact that ξJ

′
I′ ∈ I(λ)

for all I ′, J ′ of cardinality k such that εi′k � εi1 , εj′1 � εi1 and either I ′ = J ′ or |I ′ \ J ′| = 1. In
[FMR], such minors of our matrix (after reordering the indices making the matrix symmetric) are
called quasiprincipal. In other words, we have proved that all k × k quasiprincipal minors of the
matrix [λ]p, p = (i1,−i1), are zero. It follows from [FMR, Theorem 2.6] that all quasiprincipal minors
of [λ]p of size at least k are zero. By the Principal Minor Theorem, the rank of [λ]p is less than k,
hence is finite and so is not maximal.

Case Φ = D∞. (The proof for B∞ is completely similar, so we omit it.) Pick ξI ∈ I(λ) for some I
of cardinality 2k. Such an element ξI ∈ I(λ) exists according to the third paragraph of the proof.
Recall that B = ∅. First, assume that the linear order � does not have the maximal element. It
follows immediately from the row expansion formula for Pfaffians that if i ∈ I and j /∈ I then

{ξI , eεi−εj} = ±ξI[i→j].

Hence, arguing as above, we conclude that ξI′ ∈ I(λ) for all I ′ of cardinality 2k with εi′2k � εi1 .
Applying again the row expansion formula for Pfaffians and the Principal Minor Theorem, we see that
rk [λ]p < k <∞ is not maximal, where p = (i1, − i1).

Finally, assume that the linear order � has the maximal element εm. Since B = ∅, the order �
does not have the second maximal element. If there exists j′ ∈ Z>0, j′ 6= m, such that

λ(eεm+εj′′ ) = 0

for all εj′′ � εj′ then rk [λ]p = 0 < 1, p = (m,−j′), is not maximal. Hence, given j′ ∈ Z>0, j′ 6= m,
there exists j′′ ∈ Z>0, j′′ 6= m, such that εj′′ � εj′ and λ(eεm+εj′′ ) 6= 0.

Arguing as above, we see that ξI′ ∈ I(λ) for all I ′ of cardinality 2k such that εi′2k � εi1 and i′1 = m.
We will show that the rank of [λ]p is less than 2k (and so finite and not maximal), where p = (i1, −i1).
It is enough to check that the rank of each its square submatrix with the row set I ′ and the column
set −I ′ is less than 2k, where I ′ is a sequence of cardinality 2k′ ≥ 2k with εi′

2k′
� εi1 and i′1 6= m.

Assume to the contrary that its rank is at least 2k. As we noticed, there exists j′ ∈ Z>0 such that
εj′ � εi′1 and

λ(eεm+εj′ ) = ξm,j′(λ) 6= 0.

Clearly, the rank of the submatrix of [λ]p with the row set I ′′ = {m, j′} ∪ I ′ and the column set −I ′′
is at least 2k. According to [Th, Theorem 6], there are sequences

I1 = {m, j′} ( I2 ( . . . ( Ik

contained in I ′′ such that |Is| = 2s for 1 ≤ s ≤ k and ξIs(λ) 6= 0. But all these sequences contain m,
so ξIk(λ) = 0. This contradicts our assumption and hence we have finished the proof. �

We would like to discuss two Corollaries of Theorem 4.9. The first one is as follows.
Corollary 4.10. Let n be the nil-Dynkin Lie algebra. Then there exists a countable collection

{̃Ξk}k of countable collections of polynomials from S(n) such that I(λ) 6= 0 if and only if there exists
k for which λ(ξ) = 0 for all ξ ∈ Ξk. �

Of course, Corollary 4.10 is much weaker then Theorem 4.9. Nevertheless, it allows to state the
following conjecture.

Conjecture 4.11. Let n be a locally nilpotent Lie algebra with Y (n) = C. Then there exists a
countable collection {̃Ξk}k of countable collections of polynomials from S(n) such that I(λ) 6= 0 if and
only if there exists k for which λ(ξ) = 0 for all ξ ∈ Ξk.
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The following corollary provide an interesting enhancement of Theorem 4.9 under the assumption
that B = ∅.

Corollary 4.12. Let n be a nil-Dynkin Lie algebra and let I ⊂ S(n) be a nonzero prime Poisson
ideal. If B = ∅ then I ⊇ I(p, k) for some upper-right pair p and some k ∈ Z>0 such that I(p, k) 6= {0}.

Proof. Denote by A the quotient S(n)/I. Assume to the contrary that I 6⊃ I(p, k) for all p, k
with nonzero I(p, k). This implies that for each such a pair there exists fp,k ∈ I(p, k) \ I. It is clear
that the collection of such polynomials fp,k is at most countable and we form a sequence f1, f2, . . .
out of them. Denote by f̄1, f̄2, . . . the images of f1, f2, . . . in A. Thanks to the definition of f1, f2, . . .
we have f̄k 6= 0 for all k ≥ 1. This allows us to consider the localization of A[f̄−1

1 , f̄−1
2 , . . .] of A at

f̄1, f̄2, . . .. Let M be a maximal ideal of A[f̄−1
1 , f̄−1

2 , . . .] and M̃ be the preimage of M in S(n). Thanks

to Corollary 2.5 we have that M̃ has codimension 1 in S(n) and thus M̃ is the maximal ideal attached
to a properly chosen λ ∈ n∗. The definition of λ and f1, f2, . . . implies that I(λ) ⊃ I and thus I(λ) 6= 0
and that I(λ) 6⊃ I(p, k) for all (p, k). This contradicts Theorem 4.9. �

Example 4.13. Below we draw schematically matrices [λ]p for different choices of λ and p.
i) First, let Φ = A∞. Taking into account our speculations from the proof of Proposition 4.6,

it would be more natural to draw n∗ as the set of infinite lower-triangular matrices. Assume, for
example, that ε1 � ε2 � . . ., and p = (2, 4). Below we marked in gray boxes (j′, i′) for which εi′ � ε2
and εj′ � ε4 (i.e., i′ ≤ 2, j′ ≥ 4), so that λ(eεi′−εj′ ) is the (i′ , j′)th entry of [λ]p. (For A∞, the picture
for other choices of p looks essentially like this.)

ii) Another example: let Φ = C∞ or D∞, εi+1 � εi for all i ≥ 1, and p = (2, − 2). Given
i, j ∈ Z>0, εi � εj , it is convenient to identify the box (i, j) (respectively, (i,−j)) with the root εi−εj
(respectively, εi + εj). Besides, the box (i, − i) corresponds to the root 2εi or is filled by zero for
Φ = C∞ or D∞ respectively. Below we marked in gray boxes (−j′, i′) for which εi′ � ε2 and εj′ � ε2,
i.e., boxes corresponding to roots α such that λ(eα) is involved in [λ]p.
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iii) Finally, let Φ = D∞, ε1 � εi and εi+1 � εi for all i ≥ 2, and p = (1,−3). Below we marked
in gray the boxes (−j′, 1) and (−1, j′) for which εj′ � ε2, so that λ(eε1+εj′ ) is the (1, −j′)th entry
of [λ]p.

We hope that these pictures explain why we call p “an upper-right pair”: in fact, the entries of [λ]p
equal λ(eα), where α is the root corresponding to a gray box situated nonstrictly to the South-West
from the box corresponding to p. (On the last picture we also marked in gray boxes in the bottom
row to stress that the picture is antisymmetric with respect to the antidiagonal.)
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163–174.

42



[KL] G. Krause, T. Lenagan. Growth of algebras and Gelfand–Kirillov dimension. AMS Grad.
Studies in Math. 22, 2000.

[Ku] R.E. Kutz. Cohen–Macaulay rings and ideal theory in rings of invariants of algebraic groups.
Trans. AMS 194 (1974), 115–129.

[MCR] J. McConnell, J. Robson. Noncommutative Noetherian rings. AMS Grad. Studies in
Math. 30, 1987.

[MS] E. Miller, B. Sturmfels. Combinatorial commutative algebra. Grad. Texts in Math. 227,
Springer, 2005.

[Oh] S.-Q. Oh. Symplectic ideals of Poisson algebras and the Poisson structure associated to
quantum matrices. Comm. Algebra 27 (1999), no. 5, 2163–2180.

[Pa] A.N. Panov. Reduction of spherical functions (in Russian). Vestnik SamGU. Estestv. Ser.
2010, no. 6(80). English transl.: arXiv: math.RT/0911.2369.

[PP1] I. Penkov, A. Petukhov. Primitive ideals of U(sl(∞)). Bulletin of LMS 50 (2018), 435–448;
arXiv: math.RT/1608.08934.

[PS] A.V. Petukhov, S.J. Sierra. Ideals in the enveloping algebra of the positive Witt algebra. Alge-
bras and Representation Theory (2019), https://doi.org/10.1007/s10468-019-09896-2;
arXiv: math.RT/1710.10029.

[Th] R.C. Thompson. Principal submatrices V: some results concerning principal submatrices of
arbitrary matrices. Journal of Research of the National Bureau of Standards — B. Mathe-
matical Sciences 72B (1968), no. 2, 115–126.
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