
ar
X

iv
:1

70
2.

06
52

0v
2 

 [
m

at
h.

A
G

] 
 6

 O
ct

 2
02

0

UDK 512.7

NEW MODULI COMPONENTS OF RANK 2 BUNDLES ON PROJECTIVE SPACE

CHARLES ALMEIDA, MARCOS JARDIM, ALEXANDER TIKHOMIROV, AND SERGEY TIKHOMIROV

Abstract. We present a new family of monads whose cohomology is a stable rank two vector bundle on P3. We
also study the irreducibility and smoothness together with a geometrical description of some of these families.
These facts are used to construct a new infinite series of rational moduli components of stable rank two vector
bundles with trivial determinant and growing second Chern class. We also prove that the moduli space of stable
rank two vector bundles with trivial determinant and second Chern class equal to 5 has exactly three irreducible
rational components.
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1. Introduction

In [33] Maruyama proved that the rank r stable vector bundles on a projective schemeX with fixed Chern classes
c1, ..., cr can be parametrized by an algebraic quasi-projective variety, denoted by BX(r, c1, ..., cr). Although this
result has been known for almost 40 years, there are just a few concrete examples and established facts about such
varieties, even for cases like X = P3 and r = 2. For instance, BP3(2, 0, 1) was studied by Barth in [3], BP3(2, 0, 2)
was described by Harthorne in [19], BP3(2,−1, 2) studied by Harthorne and Sols in [22] and by Manolache in
[32], while BP3(2,−1, 4) was described by Banica and Manolache in [1]. This probably happened due to the fact
that the questions of irreducibility (solved in [36] and [37]), and smoothness (answered in [28]) of the so-called
instanton component of the moduli space BP3(2, 0, c2) for all c2 ∈ Z+ remained open until 2014.

In this paper, we continue the study of the moduli space BP3(2, 0, n), which we will simply denote by B(n)
from now on, with the goal of providing new examples of families of vector bundles, and understanding their
geometry. It is more or less clear from the table in [21, Section 5.3] that B(1) and B(2) should be irreducible,
while B(3) and B(4) should have exactly two irreducible components; see [16] and [11], respectively, for the proof
of the statements about B(3) and B(4). As for B(5), a description of all its irreducible components had been a
challenge since 1980ies. In the paper, we give a complete answer to this problem - see Main Theorem 2.

For n ≥ 5, two families of irreducible components have been studied, namely the instanton components, whose
generic point corresponds to an instanton bundle, and the Ein components, whose generic point corresponds to a
bundle given as cohomology of a monad of the form

0→ OP3(−c)→ OP3(−b)⊕OP3(−a)⊕OP3(a)⊕OP3(b)→ OP3(c)→ 0

where b ≥ a ≥ 0 and c > a+ b. All of the components of B(n) for n ≤ 4 are of either of these types; here we focus
on a new family of bundles that appear as soon as n ≥ 5.

More precisely, we study the set of vector bundles in B(a2 + k) for each a ≥ 2 and k ≥ 1 which arise as
cohomologies of monads of the form:

(1) 0→ OP3(−a)⊕ Vk ⊗OP3(−1)→ V2k+4 ⊗OP3 → V ′
k ⊗OP3(1)⊕OP3(a)→ 0

which will be denoted by G(a, k). We provide a bijection between such monads and monads of the form:

0→ OP3(−a)
σ
−→ Ẽ

τ
−→ OP3(a)→ 0

where Ẽ is a symplectic rank 4 instanton bundle of charge k. When k = 1, these facts are used to prove our first
main result. (See Theorem 20 below.)

Main Theorem 1. For each a ≥ 2 not equal to 3, G(a, 1) is a nonsingular dense subset of a rational irreducible
component of B(a2 + 1) of dimension

4 ·

(
a+ 3

3

)
− a− 1.

Our second main result provides a complete description of all the irreducible components of B(5).
1
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Main Theorem 2. The moduli space B(5) has exactly 3 rational irreducible components, namely: the instanton
component, of dimension 37, which is nonsingular and consists of those bundles given as cohomology of monads
of the form

(2) 0→ V5 ⊗OP3(−1)→ V12 ⊗OP3 → V5 ⊗OP3(1)→ 0, and

(3) 0→ V2 ⊗OP3(−2)→ V3 ⊗OP3(−1)⊕ V3 ⊗OP3(1)→ V2 ⊗OP3(2)→ 0;

the Ein component, nonsingular of dimension 40, which consists of those bundles given as cohomology of monads
of the form

(4) 0→ OP3(−3)→ OP3(−2)⊕ V2 ⊗OP3 ⊕OP3(2)→ OP3(3)→ 0;

the closure of the set G(2, 1), of dimension 37, which consists of those bundles given as cohomology of monads of
the form

(5) 0→ OP3(−2)⊕OP3(−1)→ V6 ⊗OP3 → OP3(1)⊕OP3(2)→ 0

and

(6) 0→ OP3(−2)⊕ V2 ⊗OP3(−1)→ OP3(−1)⊕ V6 ⊗OP3 ⊕OP3(1)→ V ′
2 ⊗OP3(1)⊕OP3(2)→ 0.

Hartshorne and Rao proved in [21] that every stable rank 2 bundle E on P3 with Chern classes c1(E) = 0
and c2(E) = 5 is the cohomology of one of the monads listed above. Rao showed in [35] that bundles given as
cohomology of monads of the form (3) lie in the closure of the family of instanton bundles of charge 5, which was
shown to be irreducible firstly by Coanda, Tikhomirov and Trautmann in [13]; see also [36]. The irreducibility of
the family of bundles which arise as cohomology of monads of the form (4) was established by Ein in [15].

The fact that the closure of G(2, 1) is an irreducible rational component of B(5) is the particular case a = 2 of
Main Theorem 1. Finally, we show that the set of bundles given by the monads of the form (6) lies in the closure
of G(2, 1).

We now give a breaf sketch of the contents of the paper. In Section 2 we recall some general properties of
monads and of symplectic instanton bundles on P3. We especially treat the rank 4 symplectic instantons of charge
1. Any such bundle E is described as a middle term of an exact triple with a rank 2 trivial bundle at the left hand
and a null correlation rank 2 sheaf at the right hand. In Section 3 we study the set G(a, k) of (the isomorphism
classes of) the so-called modified instanton bundles which are rank 2 bundles that arise as cohomology bundles
of monads of the form (1) with a ≥ 2 and k ≥ 1. We show that each modified instanton appears as cohomology
bundle of a monad of the form

(7) 0→ OP3(−a)→ E → OP3(a)→ 0

where E is a rank 4 symplectic instanton of charge k. In the case k = 1, this relation will be essential for the
further constructions.

In Section 4 we study the set G(a, 1). We construct three families of symplectic monads of the form (7). The
first one is the universal family, with the base scheme S, of monads with E splitting as E = O⊕2

P3 ⊕N where N

is a null correlation bundle. The second is a family, with the base scheme S̃ containing S as a dense open subset,
of monads E a general symplectic rank 4 instanton of charge 1. The third is a family of monads with E splitting
as in the first one, but with a new base Y . All the three families inherit universal cohomology sheaves, and it is
shown that the images of their corresponding modular morphisms to B(a2+1) have the same closure G(a, 1) - see
Propositions 14 and 15. In Section 5 the three families mentioned above are used to prove the Main Theorem 1 -
see Theorem 20.

Sections 6 and 7 are devoted to the study of the monads of the form (6). In Section 6 we show that the
cohomology sheaves E of those among such monads that are not reduced to the monads of the form (5) are closely
related (by two subsequent elementary transformations - see Proposition 25) to rank 2 reflexive sheaves with
Chern classes (0, 2, 2k), 0 ≤ k ≤ 3. A complete classification of the moduli components of these reflexive sheaves
performed in Section 7 - see Propositions 26 and 27 - leads to the dimension estimate, given in Theorem 21, for
the subset of the bundles E specified above. It follows that this subset is not a component of B(5), and we use
this in Section 8 to prove the Main Theorem 2.
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Notation and Conventions.

• In this work, k is an algebraically closed field of characteristic zero.
• Vn, respectively, Un denotes a k-vector space of dimension n.
• 〈v〉 the 1-dimensional subspace of Vn spanned by a nonzero vector v ∈ Vn.
• P(F ) := Proj(Sym•

OX
F ) the projective spectrum of F , for a coherent OX -sheaf F on a given scheme X .

• OP(F )(1) the Grothendieck sheaf on P(F ).
• V(F ) := Spec(Sym•

OX
F ), for X and F as above.

• P3 := P (U4) the projective 3-space.
• Isom(Vn ⊗OX , F )→ X the principal GL(n,k)-bundle of frames of a rank n locally free OX -sheaf F .
• X := P3 ×X , for a given scheme X .
• pX : X→ X the projection onto the second factor, for X and X as above.
• f : X→ Y the morphism induced by the morphism of schemes f : X → Y .
• FX := f∗F , ϕX := f∗ϕ : FX → GX , EX := f∗E, for a given OY -sheaf F , a given morphism ϕ : F → G
of OY -sheaves, a given OY-sheaf (or, a complex of sheaves) E , and f : X → Y and f : X→ Y as above.
• E(a, 0) := E⊗OP3(a)⊠OX , for X and E as above, and a ∈ Z.

• X
gX
←−− X×ZY

fY
−−→ Y the projections of the fibre productX×ZY induced by the morphismsX

f
−→ Z

g
←− Y .

• Hi(F ) the i-th cohomology group of the sheaf F on P3.
• Gr(n, Vk) the grassmannian variety of n-dimensional subspaces of Vk.
• Variety means an integral (i. e., reduced and irreducible) scheme.
• Since we are working with rank 2 vector bundles on P3, and Gieseker stability is equivalent to µ−stability,
we will not make any distinction between these two concepts.
• We will not make any distinction between vector bundles and locally free sheaves.
• [E] the isomorphism class of a given sheaf on P3; in case E is a rank 2 stable sheaf on P3, [E ] is also
considered as a point in the moduli space M of stable rank 2 sheaves on P3.
• ΦX : X →M, x 7→ [E|P3×{x}] the morphism defined by the OX-sheaf E which is a family of stable rank

2 vector bundles on P3 with base X , for M as above. We call ΦX the modular morphism defined by the
family E.
• R(e, n,m) the set of isomorphism classes of rank 2 reflexive sheaves on P3 with Chern classes (c1, c2, c3) =
(e, n,m).
• ℓ(Y ) := h0(OY ) the length of a 0-dimensional scheme Y .
• H1

∗(E) =
⊕

i∈Z
H1(E(i)) the graded cohomologymodule over the graded ring Γ∗(OP3) :=

⊕
j≥0 H

0(OP3(j)).

• (s)0 := {x ∈ X |s(x) = 0} the scheme of zeroes of a section s of a given vector bundle on a scheme X .
• Sp(E) the spectrum of a vector bundle [E ] ∈ B(5), i. e., the nondecreasing sequence of integers (a1, a2, a3, a4, a5)
uniquely defined by E - see [5], [20, Section 7].
• All the commutative diagrams of sheaves below which do not contain monads are assumed to have exact
rows and columns. In these diagrams, the arrows F ֌ G, resp., F ։ G are shortenings for 0→ F → G,
resp., F → G→ 0.

2. Monads and symplectic instanton bundles

Recall that a monad is a complex of vector bundles of the form:

(8) 0 // A
α

// B
β

// C // 0

such that α is injective, and β is surjective. We call the sheaf E := kerβ/ imα the cohomology of the monad (8).
When α is locally left invertible (i. e., it is a subbundle morphism), then E is a vector bundle.

The notion of monad is important in the study of vector bundles on P3 because Horrocks proved in [23] that
every vector bundle on P3 is cohomology of a monad of the form (8) with A, B and C being sums of line bundles.

For completeness, we include in this section some useful results about monads that will be required in this
work. The following lemma gives a relation between isomorphism classes of monads and its cohomology vector
bundles; a proof can be found in [34, Lemma 4.1.3].

Lemma 1. Let E and E′ be, respectively, cohomology of the following monads:

(9) M : 0 // A
a

// B
b

// C // 0 ,
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(10) M ′ : 0 // A′ a′
// B′ b′

// C′ // 0 .

If one has that Hom(B,A′) = Hom(C,B′) = Ext1(C,A′) = Ext1(B,A′) = Ext1(C,B′) = Ext2(C,A′) = 0, then
there exists a bijection between the set of all morphisms from E to E′ and the set of all morphisms of monads
from (9) to (10).

The following important corollary will be used several times in what follows, and a proof can also be found in
[34, Lemma 4.1.3, Corollary 2].

Corollary 2. Consider the monad M and its dual monad M∨, where:

M : 0 // A
a

// B
b

// C // 0 , M∨ : 0 // C∨ b∨
// B∨ a∨

// A∨ // 0.

If these monads satisfy the hypothesis of Lemma 1, and there exists an isomorphism f : E → E∨ between its
cohomology bundles such that f∨ = −f , then there are isomorphisms h : C → A∨, and q : B → B∨, such that
q∨ = −q, and h ◦ b = a∨ ◦ q.

Recall that every locally free sheaf E on P3 is the cohomology of a monad of the form [23]:

(11) 0→ ⊕ri=1OP3(ai)→ ⊕
s
j=1OP3(bj)→ ⊕

t
k=1OP3(ck)→ 0.

In this work we will be interested in rank 2 locally free sheaves with vanishing first Chern class. Under these
conditions, we have E∨ ≃ E, and this implies that t = r, s = 2r + 2, and {ai} = {−ck}. In addition, the middle
entry of the monad is also self dual, so that (11) reduces to

0→ ⊕ri=1OP3(ai)→ ⊕
r+1
j=1 (OP3(bj)⊕OP3(−bj))→ ⊕

r
i=1OP3(−ai)→ 0.

Finally, recall also that r coincides with the number of generators of H1
∗(E) =

⊕
p∈Z

H1(E(p)) as a graded module

over the ring of homogeneous polynomials in four variables, while ai are the degrees of these generators, cf. [27,
Thm. 2.3].

Instanton bundles are a particularly important class of stable rank 2 vector bundles due to their many remark-
able properties and applications in mathematical physics. Besides this, instanton bundles form the only known
irreducible component of the moduli space B(c) for every c ∈ N.

In the remaining part of this section we will present the main results concerning instanton sheaves that will
be used below. We start by recalling the definition of instanton sheaves on P3; see [25, Introduction] for further
information on these objects.

Definition 3. An instanton sheaf on P3 is a torsion free coherent sheaf E with c1(E) = 0 satisfying the following
cohomological conditions:

(12) h0(E(−1)) = h1(E(−2)) = h2(E(−2)) = h3(E(−3)) = 0.

The integer n := c2(E) is called the charge of E. When E is locally free, we say that E is an instanton bundle.

We remark that instanton bundles of rank r > 2 and non locally free instanton sheaves of rank r ≥ 2 on P3

are not µ-semistable in general, and also the vanishing of h1(E(−2)) does not imply the vanishing of h2(E(−2)).
The definition above is the right generalization of the usual definition of an instanton vector bundle in the sense
that, applying the Beilinson spectral sequence [34, Ch. II, Thm. 3.1.4]

(13) Epq1 = Hq(E(−p− 1)⊗ Ω−p
P3 )⊗OP3(p+ 1)⇒ Ep+q∞ =

{
E, p+ q = 0,
0, p+ q 6= 0,

to an arbitrary rank r instanton sheaf E of charge k, the vanishing (12) yields that E is the cohomology of a
monad of the form

(14) 0→ Vk ⊗OP3(−1)→ Vr+2k ⊗OP3 → V ′
k ⊗OP3(1)→ 0.

Note that, conversely, the cohomology of a monad as above is an instanton sheaf as defined in Definition 3, see
[25, Thm. 3].

The cokernel N of any monomorphism of sheaves OP3(−1)→ Ω1
P3(1) is called a null correlation sheaf :

(15) 0→ OP3(−1)
s
−→ Ω1

P3(1)→ N → 0.

Such sheaves are precisely the rank 2 instanton sheaves of charge 1, and are parametrized by the projective space
PH0(Ω1

P3(2)) ≃ P5. If N is locally free, we say that N is a null correlation bundle. The set of non locally free null
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correlation sheaves are parametrized by the Grassmanian of lines in P3: given a line l ⊂ P3 the corresponding
null correlation sheaf Nl is defined up to an isomorphism by the exact sequence

(16) 0→ Nl → V2 ⊗OP3

ε
−→ Ol(1)→ 0.

For the purposes of this paper, it is important to study rank 4 instanton bundles of charge 1. Some of the
following facts might be well known, but for lack of a reference we include proofs here.

Lemma 4. Every rank 4 instanton bundle E of charge 1 over P3 fits into an exact sequence:

(17) 0→ V2 ⊗OP3 → E → N → 0,

where N is a null correlation sheaf. If N is a null correlation bundle, then sequence (17) splits. In addition,

(18) h0(E) = 2, hi(E) = 0, i ≥ 1.

Proof. As observed in the paragraph right below Definition 3, E can be obtained as cohomology of a monad (14)
for r = 4 and k = 1:

(19) ME : 0 // OP3(−1)
α

// V6 ⊗OP3

β
// OP3(1) // 0.

Without loss of generality, we can choose homogeneous coordinates [x : y : z : w] in P3 and a basis in V6, such
that the map β can be written as

(20) β :=
(
x y z w 0 0

)
.

Hence using the display of the above monad, we have that E fits into the following short exact sequence

(21) 0→ OP3(−1)→ V2 ⊗OP3 ⊕ Ω(1)→ E → 0.

From the above short exact sequence we can build up the following commutative diagramm

V2 ⊗OP3
��

��

V2 ⊗OP3

����

OP3(−1) // // V2 ⊗OP3 ⊕ Ω1(1) // //

����

E

����

OP3(−1) // // Ω1(1) // // N.

The rightmost column is the desired sequence.
If N is locally free, then Ext1(N,OP3) ≃ H1(N) = 0, so the sequence in display (17) splits. The equality (18)

follows from (17). �

Remark. Assume that a bundle E is the cohomology bundle of the monad (19). Then an easy cohomological
computation shows that E is a rank 4 instanton bundle of charge 1.

Note that, substituting N instead of E into the Beilinson spectral sequence (13) yields the monad for N :

(22) MN : 0→ OP3(−1)
α
−→ V4 ⊗OP3

β
−→ OP3(1)→ 0, N = kerβ/im α,

fitting together with the monad (19) in the commutative diagram

(23) V2 ⊗OP3
��

��

OP3(−1) //
α

// V6 ⊗OP3

β
// //

����

OP3(1)

OP3(−1) //
α

// V4 ⊗OP3

β
// // OP3(1).

In this diagram the exact middle column is obtained from the exact triple 0→ V2 → V6 → V4 → 0 arising as the
cohomology sequence of the exact triple 0→ V2 ⊗ΩP3 → E ⊗ΩP3 → N ⊗ΩP3 → 0 induced by the triple (17). In
addition, from (23) and (20) we obtain

(24) β =
(
x y z w

)
.
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Proposition 5. Let E be a rank 4 instanton bundle E of charge 1 over P3, then h0(S2E) = 3, h1(S2E) =
5, h2(S2E) = 0.

Proof. Taking the symmetric power of the sequence in display (21), we obtain that S2E fits into the following
short exact sequence:

0 // V2 ⊗OP3(−1)⊕ Ω // (S2V2 ⊗OP3)⊕ (V2 ⊗ Ω(1))⊕ S2Ω(2) // S2E // 0.

From the long exact sequence of cohomology we have

0→ S2V2 → H0(S2E)→ k→ Λ2W∨ → H1(S2E)→ 0,

where W is the 4-dimensional k−vector space such that P3 = P(W ), and

0→ H2(S2E)→ 0.

From which we conclude that H2(S2E) = 0. The map k→ Λ2W∨ is given by the skew-form corresponding to the
morphism OP3(−1)→ Ω(1), in the definition of E, and in particular is non-zero, which implies that k → Λ2W∨

is injective, and therefore

H0(S2E) ≃ S2V2 and H1(S2E) ≃ Λ2W∨/k

from which our result follows. �

In the remaining part of this section we will discuss the existence of a symplectic structure on an arbitrary rank
4 instanton bundle of charge 1. Recall that a locally free sheaf E is said to be symplectic if it admits a symplectic
structure, that is, there exists an isomorphism ϕ : E → E∨, such that ϕ∨ = −ϕ. A symplectic instanton bundle
is a pair (E,ϕ) consisting of an instanton bundle E together with a symplectic structure ϕ on it; two symplectic

instanton bundles (E,ϕ) and (E′, ϕ′) are isomorphic if there exists a bundle isomorphism g : E
∼
→ E′ such that

ϕ = g∨ ◦ ϕ′ ◦ g.

Proposition 6. Any rank 4 instanton bundle E of charge 1 admits a symplectic structure. In particular, if E
splits as E = V2 ⊗OP3 ⊕N where N is a null correlation bundle, then any symplectic structure ϕ on E splits as
ϕ = ϕ1 ⊕ ϕ2 where ϕ1 and ϕ2 are symplectic structures on V2 ⊗OP3 and N , respectively.

Proof. Let E be an instanton rank 4 bundle. If E splits as E = V2⊗OP3⊕N , where N is a null correlation bundle,
then det(V2 ⊗OP3) = detN = OP3 , hence both rank 2 bundles V2 ⊗OP3 and N admit symplectic structures, say,

(25) ϕ1 : V2 ⊗OP3

≃
−→ V ∨

2 ⊗OP3 , ϕ2 : N
≃
−→ N∨.

Then

(26) ϕ = ϕ1 ⊕ ϕ2 : E
≃
−→ E∨

is a symplectic structure on E. Since

(27) Hom(V2 ⊗OP3 , N) = Hom(N, V2 ⊗OP3) = 0,

it follows immediately that any symplectic stucture on E splits as in (26).
Note also that, in view of (15)

(28) Exti(V2 ⊗OP3 , N) = Exti(N, V2 ⊗OP3) = 0, i ≥ 1.

Now let E be a non-splitting instanton, i. e. E/V2 ⊗ OP3 is a null correlation sheaf Nl which is not locally
free at the points of the line l given by the equations, say, {x = y = 0}. This means that the morphism α in the
monad (22) for N = Nl is vanishes at l, so that

(29) α = A

(
x

y

)
, A = (αij), 1 ≤ i ≤ 4, 1 ≤ j ≤ 2,

where A is a (4 × 2)-matrix of rank 2. The condition that β ◦ α in (22) is the zero morphism together with (29)
and (24) implies that all the coefficients αij of the matrix A, except α12 and α21, vanish and α12+α21 = 0. Thus,
taking without loss of generality α12 = 1, we obtain

(30) α =




y
−x
0
0


 .
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Since the cohomology sheaf of the middle monad in (23) is locally free, the morphism α in that diagram is
a subbundle morphism. This together with (30) implies, again without loss of generality, that there exists a
(2× 2)-matrix C = (cij) such that

(31) α =




y
−x
0
0

c11x+ c12y + z
c21x+ c22y + w



.

It now follows from (31) and (20) that the skew-symmetric (6× 6)-matrix J of the following (2× 2)-block form

J =




Q O −Ct

O O −1
C 1 O


 , where Q =

(
0 −1
1 0

)

satisfies the condition α = Jβt. This means that, taking −J for the matrix of the symplectic form q : V6 → V ∨
6

with respect to the above choice of the basis in V6, we obtain that α and β as morphisms satisfy the condition
β = α∨ ◦ q. In other words, the monad (19) is symplectic. Then by Corollary 2 its cohomology bundle E also
admits a symplectic structure. �

3. Modified instanton monads

We will now study monads of the form (1), with a ≥ 2 and k ≥ 1:

(32) 0→ OP3(−a)⊕ Vk ⊗OP3(−1)
α
−→ V2k+4 ⊗OP3

β
−→ OP3(a)⊕ V ′

k ⊗OP3(1)→ 0,

which we call modified instanton monads. The set of isomorphism classes of bundles arising as cohomology of
such monads will be denoted by G(a, k). Note that, so far, G(a, k) could possibly be empty.

Proposition 7. For each a ≥ 2 and k ≥ 1, the family G(a, k) is non-empty and contains stable bundles, while
every [E ] ∈ G(a, k) is µ-semistable. In addition, every [E ] ∈ G(a, 1) is stable.

Proof. Let F be an rank 2 instanton bundle of charge k. Let a ≥ 2 and take σ ∈ H0(F (2a)) such that its zero
locus X := (σ)0 is a curve; such σ always exists if F is a ’t Hooft instanton bundle, for instance. Let Y be a
complete intersection curve given by the intersection of two surfaces of degree a such that X ∩ Y = ∅. According
to [21, Lemma 4.8], there exists a bundle E and a section τ ∈ H0(E(a)) such that (τ)0 = Y ∪X which is given
as cohomology of a monad of the form (32). In addition, since F is stable, X is not contained in any surface of
degree a, hence neither is Y ∪X , and E is also stable.

It is straightforward to check that every [E ] ∈ G(a, k) satisfies h0(E(−1)) = 0, thus E is µ-semistable.
Now fix k = 1, and assume that there is [E ] ∈ G(a, 1) satisfying h0(E) 6= 0. Setting K := kerβ, it follows that

h0(K) 6= 0, hence the quotient K ′ := K/OP3 fits into the following exact sequence

0→ K ′ → V5 ⊗OP3

β′

−→ OP3(1)⊕OP3(a)→ 0.

By [8, Thm. 2.7] K ′ is µ-stable. However, the monomorphism α : OP3(−a)⊕OP3(−1)→ K induces a monomor-
phism OP3(−1)→ K ′; by the µ-stability of K ′, we should have

−1 < µ(K ′) = −
a+ 1

3
=⇒ a < 2,

providing the desired contradiction. �

Remark. Note that the space X of monads (32) is a locally closed subscheme of the affine space A =
Hom(OP3(−a)⊕Vk ⊗OP3(−1), V2k+4⊗OP3)×Hom(V2k+4⊗OP3 ,OP3(a)⊕V ′

k ⊗OP3(1)) defined as X = {(α, β) ∈
A | α is a subbundle morphism, β is an epimorphism and β ◦ α = 0}, and there is the universal cohomology
bundle E on X. In case k = 1, it follows from Proposition 7 that G(a, 1) is the image of X under the modular
morphism ΦX : X → B(a2 + 1), x 7→ [E|P3×{x}]. Thus, G(a, 1) is a constructible set, i. e., a disjoint union of

locally closed subsets of B(a2 + 1).

Next, we provide a cohomological characterization for modified instanton bundles.

Proposition 8. A vector bundle E on P3 is the cohomology of a monad of the form (32) if and only if H1
∗(E) has

one generator in degree −a and k generators in degree −1, and its Chern classes are c1(E) = 0, and c2(E) = a2+k.



8 C. ALMEIDA, M. JARDIM, A. TIKHOMIROV, AND S. TIKHOMIROV

Proof. The “only if” part is straightforward. If E is a self dual vector bundle on P3 with one generator in degree
−a and k generators in degree −1, then by [27, Thm. 2.3], E is cohomology of a monad of the type:

0→ OP3(−a)⊕ Vk ⊗OP3(−1)
α
−→ ⊕2k+4

i=1 OP3(ki)
β
−→ OP3(a)⊕ Vk ⊗OP3(1)→ 0.

Computing the Chern class give us c2(E) = a2+ k−
∑6
i=1 k

2
i , since c2(E) = a2+ k, we have ki = 0 for all i. �

The modified instanton bundles are also related to usual instanton bundles of higher rank in a very important
way. The precise relationship is outlined in the next couple of lemmas, and then summarized in Proposition 12
below.

Lemma 9. (i) Given a vector bundle [E ] ∈ G(a, k), there exists a rank 4 instanton bundle E of charge k, and
sections σ ∈ H0(E(a)), τ ∈ H0(E∨(a)) such that the complex:

(33) 0→ OP3(−a)
σ
−→ E

τ
−→ OP3(a)→ 0

is a monad whose cohomology coincides with E.
(ii) The construction of the monad (33) is functorial in the sense that, if E

∼
−→ E ′, then the induced isomorphism

E
∼
−→ E′ extends to an isomorphism of monads

(34) OP3(−a) //
σ

//

f≃

��

E
τ

// //

g≃

��

OP3(a)

h≃

��

OP3(−a) //
σ′

// E′ τ ′

// // OP3(a).

Proof. (i) Since a ≥ 2, there is the canonical subbundle morphism i : Vk ⊗OP3(−1)→ OP3(−a)⊕ Vk ⊗OP3(−1)
which, together with the morphisms α and β from the monad (32), yields a subbundle morphism α1 := α ◦ i :
Vk ⊗OP3(−1)→ V2k+4 ⊗OP3 and an epimorphism β1 := i∨ ◦ β : V2k+4 ⊗OP3 → V ′

k ⊗OP3(1). We thus obtain a
new monad of type (14) with r = 4:

(35) 0→ Vk ⊗OP3(−1)
α1−→ V2k+4 ⊗OP3

β1
−→ V ′

k ⊗OP3(1)→ 0

the cohomology bundle

(36) E =
ker(β1)

im(α1)

of which is a rank-4 instanton, according to a remark after (14). The monads (32) and (35) fit in a commutative
diagram with exact columns

(37) Vk ⊗OP3(−1)
��

i

��

))

α1

))❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

OP3(a)
��

��

Vk ⊗OP3(−1)⊕OP3(−a)

����

//
α

// V2k+4 ⊗OP3

β
// //

β1

)) ))❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

V ′
k ⊗OP3(1)⊕OP3(a)

i∨

����

OP3(−a) V ′
k ⊗OP3(1).

Now a standard diagram chasing with diagram (37) using (36) and the relation E = ker(β)
im(α) yields a subbundle

morphism OP3(−a)
σ
−→ E and an epimorphism E

τ
−→ OP3(a) fitting in the monad (33) with the cohomology bundle

E .
(ii) Again, since a ≥ 2, it follows immediately from (35) and (36) that Hom(OP3(a), E′) = Hom(E,OP3(−a)) =

Ext1(OP3(a),OP3(−a)) = Ext1(E,OP3(−a)) = Ext1(OP3(a), E′) = Ext2(OP3(a),OP3(−a)) = 0 for the rank-4
instanton bundles E and E′ of charge k. The statement (ii) now follows from [34, Lemma 4.1.3]. �

Lemma 10. Given a monad (33) with E being a rank 4 instanton bundle of charge k, there is a monad of the
form (32) whose cohomology coincides with the cohomology of the above monad.

Proof. This is a diagram chasing. Namely, by (14), E is the cohomology of a monad of the form

(38) 0→ Vk ⊗OP3(−1)
α1−→ V2k+4 ⊗OP3

β1
−→ V ′

k ⊗OP3(1)→ 0.

This monad can be splitted to the exact triples of bundles

(39) 0→ E → coker(α1)→ V ′
k ⊗OP3(1)→ 0,
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(40) 0→ Vk ⊗OP3(−1)
α1−→ V2k+4 ⊗OP3

ε
−→ coker(α1)→ 0.

Respectively, the monad (33) splits into the exact triples

(41) 0→ ker(τ)→ E
τ
−→ OP3(a)→ 0, 0→ OP3(−a)→ ker(τ)

δ
−→ E → 0,

where E is the cohomology bundle of the monad (33). The triple (39) and the first triple (41), together with

the vanishing of Ext1(V ′
k ⊗ OP3(1),OP3(a)), yields by push-out the exact triple 0 → ker(τ) → coker(α1)

γ
−→

V ′
k⊗OP3(1)⊕OP3(a)→ 0 which, together with (40), yields a commutative diagram in which we set K := ker(γ◦ε):

Vk ⊗OP3(−1) // // K // //
��

��

ker(τ)
��

��

Vk ⊗OP3(−1) // // V2k+4 ⊗OP3

ε
// //

γ◦ε

����

coker(α1)

γ

����

V ′
k ⊗OP3(1)⊕OP3(a) V ′

k ⊗OP3(1)⊕OP3(a).

Similarly, the upper horizontal triple of this diagram, together with the second triple (41), yield the exact triple
0 → Vk ⊗ OP3(−1) ⊕ OP3(−a) → K → E → 0 which, being combined with the middle vertical triple in this
diagram, yields the monad (32) with the cohomology bundle E . �

Next, we argue that the instanton bundle E obtained in Lemma 9 comes with a natural symplectic structure.

Lemma 11. If E is a rank 4 instanton bundle of charge k that fits in a monad of the form (33), such that its
cohomology sheaf E is a vector bundle, then E admits a symplectic structure, and τ is determined by σ.

Proof. Since E is a rank 2 vector bundle with c1(E) = 0, there is a (unique up to scaling) symplectic isomorphism

ϕ : E
≃
−→ E∨. Now, repeating the proof of Lemma 9(ii) for E ′ = E∨, we obtain an isomorphism of monads:

OP3(−a) //
σ

//

g≃

��

E
τ

// //

ϕ≃

��

OP3(a)

h≃

��

OP3(−a) //
τ∨

// E∨ σ∨

// // OP3(a)

such that ϕ∨ = −ϕ, so (E,ϕ) is a symplectic instanton bundle, and τ = σ∨ ◦ ϕ. �

Putting Lemmas 9, 10 and 11 together, we obtain the following statement.

Proposition 12. A rank 2 bundle E belongs to G(a, k), i. e., E is the cohomology of a monad of the form (32)
if and only if it is also the cohomology E = H0(AE,ϕ,σ) of a monad of the form:

(42) AE,ϕ,σ : 0→ OP3(−a)
σ
−→ E

σ∨◦ϕ
−−−→ OP3(a)→ 0,

where (E,ϕ) is a rank 4 symplectic instanton bundle of charge k.

4. Set G(a, 1) and related families of sheaves

We introduce a piece of notation which we will use below. Denote by I(k) the set of isomorphism classes
of symplectic rank 4 instanton bundles with c2 = k. As before, let Vk and V2k+4 be the fixed vector spaces of
dimensions k and 2k+4, respectively, and let (∧2V ∨

2k+4)
0 be an open subset of the vector space ∧2V ∨

2k+4 consisting
of nondegenerate symplectic forms on V2k+4. Next, for a given morphism α̃ : Vk ⊗ OP3(−1) → V2k+4 ⊗ OP3 we
denote by a the homomorphism Vk ⊗ U4 → V2k+4 corresponding to the morphism α̃ under the isomorphism
Hom(Vk ⊗ OP3(−1), V2k+4 ⊗ OP3) ∼= W := Hom(Vk ⊗ U4, V2k+4), where U4 := H0(OP3(1))∨. We will call α̃ the
morphism associated to a ∈ W .

Recall the description of symplectic rank 4 instantons (E,ϕ) in terms of symplectic monads (43) below. Namely,
for a given point

m = (a, q) ∈W × (∧2V ∨
2k+4)

0

consider the monad (38) in which α̃ the morphism associated to the homomorphism a, and the morphism β̃ is

such that β̃ = α̃t(q), where α̃t(q) is the composition V2k+4 ⊗OP3

q⊗idO
P3−−−−−→ V ∨

2k+4 ⊗OP3

α̃∨

−−→ V ∨
k ⊗OP3(1):

(43) Am : 0→ Vk ⊗OP3(−1)
α̃
−→ V2k+4 ⊗OP3

α̃t(q)
−−−→ V ∨

k ⊗OP3(1)→ 0.
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We call Am a symplectic monad. We also will denote by H0(Am) the cohomology bundle of the monad Am.
Consider the setM(k) of symplectic monads (43):

(44) M(k) = {(a, q) ∈W × (∧2V ∨
2k+4)

0 | (a, q) satisfies the conditions (i)-(ii)}

where:
(i) the morphism α̃ associated to a is a subbundle morphism,
(ii) the composition α̃t(q) ◦ α̃ is the zero morphism.
Since W is a vector space, and the condition (i), resp., (ii) is an open, resp., closed condition on the point a ∈ W ,
it follows thatM(k) has a natural structure of a locally closed subscheme of the affine space W × ∧2V ∨

2k+4.

From now on we will restrict to the case k = 1. Set M̃ := M(1). Note that the condition (i) of the
definition of M(k) is empty in the case k = 1, since in this case the the vanishig of ∧2(V ∨

1 ⊗ OP3(1)) clearly

implies αt(q) ◦ α = 0. Hence, M̃ is a nonempty open (hence dense) subset of the affine space W × ∧2V ∨
6 , where

W = Hom(V1 ⊗ U4, V6) ≃ k24. In particular, M̃ is irreducible and

(45) dim M̃ = dimW + dim∧2V ∨
6 = 45.

Proposition 13. Any rank 4 instanton of charge 1 appears as a cohomology bundle of a symplectic monad

(46) Am : 0→ OP3(−1)
α̃
−→ V6 ⊗OP3

α̃t(q)
−−−→ OP3(1)→ 0.

for some m ∈ M̃ .

Proof. Let E be a rank 4 instanton of charge 1. According to Proposition (6), E admits a symplectic structure

ϕ : E
∼
−→ E∨. It then known from [10, Section 3] that, under the condition h0(E) = h1(−2) = 0 on a symplectic

bundle E, this bundle is a cohomology of a symplectic monad from M̃ . However, the proof given therein, works
without changes under the slightly weaker conditions (12) used in the Definition 3. �

On M̃ = P3×M̃ there is the universal symplectic monad A
M̃

: 0→ O
M̃
(−1, 0)

α
−→ V6⊗OM̃

α
t

−−→ O
M̃
(1, 0)→ 0

with the cohomology sheaf Ẽ = kerαt/imα. Here αt = α∨◦q
M̃

and q
M̃

: V6⊗OM̃

∼
−→ V ∨

6 ⊗OM̃
is the tautological

symplectic structure on V6 ⊗OM̃
. From now on we fix an isomorphism of the monad A

M̃
with its dual monad

A∨
M̃

by the following diagram:

A
M̃

: O
M̃
(−1, 0) //

α
//

−id ≃

��

V6 ⊗OM̃

α
t

// //

q
M̃ ≃

��

O
M̃
(1, 0)

id ≃

��

A∨
M̃

: O
M̃
(−1, 0) //

(αt)∨
// V ∨

6 ⊗OM̃

α
∨

// // O
M̃
(1, 0).

This isomorphism induces the symplectic structure

(47) ϕ
M̃

: Ẽ
≃
−→ Ẽ∨, and Em = Ẽ|P3×{m}, ϕm = ϕ

M̃
|P3×{m} : Em

∼
−→ E∨

m, m ∈ M̃,

i. e. (Em, ϕm) is a symplectic rank 4 instanton of charge 1. Note that, by the universality of the space M̃ , for

any symplectic rank 4 instanton (E,ϕ), there exists a unique point m ∈ M̃ such that (E,ϕ) = (Em, ϕm), where

Em and ϕm are given by (47). It follows from (18) and the Base Change that the O
M̃
-sheaf Ũ := p

M̃∗
Ẽ is a rank

2 locally free sheaf and there is an exact triple on M̃, where ev is the canonical morphism:

(48) 0→ Ũ
M̃

ev
−→ Ẽ→ Ñ→ 0, Ñ := coker(ev),

and, for anym ∈ M̃ , the restriction of this triple onto P3×{m} coincides with the triple (17) for E = Em. We thus

have a map Ψ : M̃ → P5 = P (∧2V ∨
4 ), m 7→ [Ñ|P3×{m}]. The map Ψ has the following explicit description. Given a

point m = (a, q) ∈ M̃ , consider a homomorphism f(a, q) : V4
a
−→ V6

q
−→ V ∨

6
a∨
−−→ V ∨

4 . It is clearly skew- symmetric:
f(a, q) ∈ ∧2V ∨

4 . An easy diagram chasing with the display of the monad A
M̃
|P3×{m} (i. e., equivalently, of the

monad (46)) using (48) shows that

(49) Ψ(m) = 〈f(a, q)〉 ∈ P (∧2V ∨
4 ),

so that Ψ is a well-defined morphism. By the universality of the monad A
M̃
, Ψ is surjective.

We next consider the set

M := {m ∈ M̃ | Ñ|P3×{m} is locally free}.
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From the definition of M it follows that it is a nonempty open subset of M̃ , hence it is irreducible since M̃ is
irreducible. Denote

(50) E := ẼM, ϕM := (ϕ
M̃
)M : E

≃
−→ E∨, U := ŨM , N := ÑM,

where ϕ
M̃

is the symplectic structure (47). Note that, by Lemma 4, for any m ∈ M the triple (48) restricted

onto P3 × {m} splits:

(51) Em ≃ O
⊕2
P3 ⊕Nm, m ∈M,

where Nm is a null correlation bundle. We now show that these splittings globalize to the splitting of the triple
0→ U→ E→ N→ 0 obtained from (48) by restriction onto M:

(52) E = U⊕N.

Indeed, the last triple considered as an extension is given by the element in Ext1(N,U). By (27), (28) and the
Base Change [31, Thm. 1.4], the sheaves Ext ipM (N,U), i = 0, 1, vanish, and the exact sequence relating global

and relative Ext [31, (1)] yields Ext1(N,U) = 0.
Now, for a ≥ 2 and any m ∈M , the triple (17) twisted by OP3(a), in which we set E = Em, yields:

(53) h0(Em(a)) = 4

(
a+ 3

3

)
− a− 2, hi(Em(a)) = 0, i > 0.

Formulas (47), (53) and the Base Change show that the sheaf

(54) F = pM∗(E(a, 0))

is a locally free OM -sheaf of rank r = h0(Em(a)). Consider the scheme T = P(F∨). By the above, T is
set-theoretically described as

(55) T = {(m, 〈σ〉) | m ∈M, 0 6= σ ∈ H0(Em(a))},

and the natural projection ρ : T → M, (m, 〈σ〉) 7→ m is a locally trivial Pr−1-bundle. Note that, since M is an
open subset of the affine space W , it follows that T is a variety, and from (45) and (53) we have

(56) dimT = h0(Em(a))− 1 + dimM = 4

(
a+ 3

3

)
− a+ 42.

On T and M we have canonical morphisms F∨
T

ev
։ L and FM

can
−−→ E(a, 0), respectively, where L = OP(F∨)(1) is

the Grothendieck sheaf. Consider the composition of morphisms

(57) σ : OP3 ⊠ L∨ ev∨
T−−→ FT

canT−−−→ ET(a, 0).

By definition, for any point (m,kσ) ∈ T the restriction σ|P3×{(m,kσ)} coincides, up to a twist by OP3(−a), with

the morphism σ : OP3(−a)→ Em. In view of (51) we may represent σ as σ = (σ1, σ2), σ1 ∈ H0(O⊕2
P3 (a)), σ2 ∈

H0(Nm(a)). For the pair σ = (σ1, σ2) 6= (0, 0) we will adopt in the sequel, together with the notation 〈σ〉, the
following equivalent notation:

(58) [σ1 : σ2] := 〈σ〉 = {(λσ1, λσ2)|λ ∈ k×},

and also understand [σ1 : σ2] as a point of the projective space P (H0(O⊕2
P3 (a))⊕H0(Nm(a))). Under this notation,

define an open subset S of T as

S := {(m, [σ1 : σ2]) ∈ T | (i) σ = (σ1, σ2) : OP3(−a)→ Em ≃ O
⊕2
P3 ⊕Nm

is a subbundle morphism and (ii) σ1, σ2 6= 0}.
(59)

The subset S is clearly open in T . Moreover, it is nonempty. Indeed, for any point m ∈M , Em decomposes as in
(51). Take any a ≥ 2. Since the direct summand Nm is a null correlation bundle, it follows quickly from the triple
(15) for N = Nm, twisted by OP3(a), that Nm(a) is generated by global sections. From this it follows easily (cf.
[19, Proof of Prop. 1.4]) that a general section σ2 ∈ H

0(Nm(a)) has 1-dimensional zero-locus (σ2)0. Next, since
a general section σ1 ∈ H0(O⊕2

P3 (a)) has for its zero locus a complete intersection curve (σ1)0 = D1 ∩ D2 for two
surfaces D1, D2 of degree a, it follows that for general D1 and D2 we have (σ1)0 ∩ (σ2)0 = ∅. Hence, the section
σ = (σ1, σ2) ∈ H0(Em(a)) has no zeroes and therefore defines a subbundle morphism σ : OP3(−a)→ Em.

It follows that S is irreducible and dense in T since T is irreducible. The morphism σS is included in the
monad A := (A

M̃
)S on S:

(60) A : 0→ OP3(−a)⊠ L∨ σS−−→ ES

σ
t
S−−→ OP3(a)⊠ L→ 0
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where σtS is the composition ES

ϕ
S−−→ E∨

S

σ
∨
S−−→ OP3(a) ⊠ L. By construction, for any point (m, 〈σ〉) ∈ S, the

restriction of the monad A onto P3 × {(m, 〈σ〉)} is isomorphic to the monad AEm,ϕm,σ in (42). Hence,

(61) H0(A)|P3×{(m,〈σ〉)} = H0(AEm,ϕm,σ), (m, 〈σ〉) ∈ S.

In (63)-(65) below we will extend the constructions (54)-(55), (59)-(61) of the data F , T , S, A and H0(A) over

M to the constructions of the corresponding data F̃ , T̃ , S̃, Ã, H0(Ã) over M̃ . As a consequence, it will follow:

(62) F = F̃M, T =M ×
M̃
T̃ , S �

� open dense
// S̃, A = (Ã)S, H0(A) = (H0(Ã))S.

For this, we first set

(63) F̃ := p
M̃∗(Ẽ(a, 0)), T̃ := P(F̃∨),

and remark that formulas (53) are still true for any m ∈ M̃ , so that the sheaf F̃ is a locally free O
M̃
-sheaf of rank

r = h0(Em(a)) given by (53), and the scheme T̃ := P(F̃∨) is set-theoretically described as T̃ = {(m, 〈σ〉) | m ∈

M̃, 0 6= σ ∈ H0(Em(a))}. The natural projection ρ̃ : T̃ → M̃, (m, 〈σ〉) 7→ m is a locally trivial Pr−1-bundle, so

that, since M̃ is an open subset of the affine space W , it follows that T̃ is an irreducible variety of dimension

(64) dim T̃ = h0(Em(a))− 1 + dim M̃ = 4

(
a+ 3

3

)
− a+ 42.

Here, in accordance with (56), T̃ and T have the same dimension. Next, we have an open subset S̃ of T̃ defined

as S̃ := {(m, 〈σ〉) ∈ T̃ | σ : OP3(−a) → Em is a subbundle morphism.} Since the condition (ii) in (59) is open,

comparing the definition of S̃ with (59) we obtain that S is an open subset of T ∩ S̃, where the intersection is taken

in T̃ . Since S is nonempty and T̃ is irreducible, the inclusion S �

� open dense
// S̃ in (62) follows and, moreover,

ρ̃S : S →M coincides with the projection ρ.

Next, we have the extension of the universal monad (60) from S to S̃: Ã : 0 → OP3(−a) ⊠ L∨ σ
−→ Ẽ

S̃

σ
t

−→
OP3(a)⊠ L→ 0, satisfying the relation similar to (61):

(65) H0(Ã)|P3×{(m,〈σ〉)} = H0(AEm,ϕm,σ), (m, 〈σ〉) ∈ S̃.

Whence, the relations (62) follow from (50), (63) and the Base Change.
Consider the modular morphisms

(66) ΦS : S → B(a2 + 1), ΦS̃ : S̃ → B(a2 + 1),

defined by the families of sheaves H0(A) and H0(Ã), respectively. The relations (62), (65), and Proposition 12

together with the irreducibility of S̃ yield

Proposition 14. (i) For a ≥ 2, the set G(a, 1) of isomorphism classes of cohomology sheaves of monads (32) for
k = 1 is the image of the modular morphism

ΦS̃ : S̃ → B(a2 + 1), (m, 〈σ〉) 7→ [H0(Ã)|P3×{(m,〈σ〉)}],

defined by the family H0(Ã) of sheaves over S̃. Its closure G(a, 1) in B(a2 + 1) is an irreducible scheme.

(ii) The set G(a, 1)0 := ΦS(S) is dense in G(a, 1).

In the remaining part of this section we will construct a new family of monads AY on P3, with base Y and
cohomology sheaves belonging to G(a, 1), for which the related modular morphism

ΦY : Y → B(a2 + 1), y 7→ [H0(AY)|P3×{y}]

has G(a, 1)0 as its image (see Proposition 15 below). This family will be used in the next Section to prove one of

the main results of the paper - the rationality of G(a, 1).
To construct the variety Y , consider the moduli space of B := B(1) of locally free null correlation bundles on

P3. This is well known to be isomorphic to P5 rG(2, 4), where G(2, 4) is the Plücker hyperquadric (see, e.g., [34,
Thm. 4.3.4]). Moreover, on B = P3×B there is the universal family N of null correlation bundles. Consider the
vector bundle E = V2 ⊗OB ⊕N and denote Eb = E|P3×{b}, Nb = N |P3×{b}, b ∈ B, so that

(67) Eb = V2 ⊗OP3 ⊕Nb, b ∈ B.

By linear algebra, there are canonical isomorphismsϕ(1) : V2⊗OB
≃
−→ V ∨

2 ⊗∧
2V2⊗OB and ϕ(2) : N

≃
−→N∨⊗∧2N .

The sheaf N fits in the exact triple 0 → OP3 ⊠ OB(−1) → Ω1
P3(1) ⊠ OB → N → 0 globalizing (15), so that

∧2N ≃ OP3 ⊠OB(1). (Here we set OB(±1) := OG(2,4)(±1)|B.) Consider the varieties B1 := V(∧2V ∨
2 ⊗ OB) r
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{0− section}
π1−→ B and B2 := V(OB(−1))r {0− section}

π2−→ B. Note that the pullback of a line bundle onto its
total space with the 0-section removed trivializes this bundle, we obtain π∗

2OB(1) ≃ OB2
, hence (∧2N )B2

≃ OB2
.

Similarly, (∧2V2 ⊗OB)B1
≃ OB1

. Thus, we obtain the symplectic structures

ϕB1
:= (ϕ(1))B1

: V2 ⊗OB1

≃
−→ V ∨

2 ⊗OB1
, ϕB2

:= (ϕ(2))B2
: NB2

≃
−→N∨

B2
.

Consider the variety B̃ := B1 ×B B2. On B̃ we obtain from E a vector bundle E
B̃

with the symplectic structure
ϕ

B̃
, where

(68) E
B̃
= V2 ⊗OB̃

⊕N
B̃
, ϕ

B̃
= ϕ1 ⊕ϕ2 : E

B̃
→ E∨

B̃
,

and ϕ1 := (ϕB1
)
B̃

: V2 ⊗ OB̃

≃
−→ V ∨

2 ⊗ OB̃
, ϕ2 := (ϕB2

)
B̃

: N
B̃

≃
−→ N∨

B̃
. By the above, we have the following

description of the varieties B1, B2 and B̃:

B1 = {(b, ϕ1) | b ∈ B, ϕ1 : V2 ⊗OP3

≃
−→ V ∨

2 ⊗OP3 is a symplectic structure},

B2 = {(b, ϕ2) | b ∈ B, ϕ2 : Nb
≃
−→ N∨

b is a symplectic structure},

B̃ = {(b, ϕ1, ϕ2) | (b, ϕi) ∈ Bi, i = 1, 2}.

(69)

The following constructions (see (71)-(76)) are parallel to the constructions (59)-(61). Twisting the equality (67)
by OP3(a), we obtain as in (53): h0(Eb(a)) = 4

(
a+3
3

)
− a − 2, hi(Eb(a)) = 0, i > 0. Thus, as in (54), the sheaf

FB = pB∗(E(a, 0)) is a locally free OB-sheaf of rank r = h0(Eb(a)). Consider the variety T := P(F∨
B ). Similarly

to (55) we have

(70) T = {(b, 〈σ〉) | b ∈ B, 0 6= σ ∈ H0(Eb(a))}.

For any point (b, 〈σ〉) ∈ T in view of (67) we may represent σ as a pair σ = (σ1, σ2), σ1 ∈ H0(V2⊗OP3(a)), σ2 ∈
H0(Nb(a)). Thus, using the notation (58) we can rewrite (70) as T = {(b, [σ1 : σ2]) | b ∈ B, [σ1 : σ2] ∈
P (H0(Eb(a)))}. On the other hand, representing σ as a morphism σ : OP3(−a)→ Eb, we see that, when (b, 〈σ〉)
runs through T , the morphisms σ, as in (57), globalize to a morphism σT : OP3(−a)⊠ L∨

T → ET on T , where
LT is the Grothendieck sheaf OT /B(1). Next, similar to (59), we define an open subset S of T as

(71) S := {(b, [σ1 : σ2]) ∈ T | (i) (σ1, σ2) : OP3(−a)→ Em is a subbundle morphism and (ii) σ1, σ2 6= 0}.

Note that S is a nonempty set. (The proof mimics that of nonemptiness of the subset M of T given in paragraph
after (59).) By the Base Change, the sheaf FB̃ = pB̃∗(EB̃

(a, 0)) is isomorphic to the sheaf (FB)B̃. Therefore,

from the definition of T it follows that the variety Ỹ := P(F∨
B̃
) is isomorphic to B̃ ×B T :

(72) Ỹ ≃ B̃ ×B T .

Thus by (69) and (70) we have Ỹ = {(b, ϕ1, ϕ2, [σ1 : σ2]) | (b, ϕ1, ϕ2) ∈ B̃, [σ1 : σ2] ∈ P (H0(Eb(a)))}, and the

natural projection Ỹ → B̃, (β, 〈σ〉) 7→ β is a locally trivial Pr−1-bundle. We now use (72) and the open subset S

of T to define an open subset Y of Ỹ as

(73) Y := B̃ ×B S.

Here, Y is a nonempty open in Ỹ since S is nonempty. It follows that Y is irreducible and dense in Ỹ since Ỹ is

irreducible. In addition, using (71) and the above description of Ỹ we obtain:

(74) Y = {(b, ϕ1, ϕ2, [σ1 : σ2]) ∈ Ỹ |(i) (σ1, σ2) : OP3(−a)→ Em is a subbundle morphism and (ii) σ1, σ2 6= 0}.

The morphism σY := (σT )Y is included in the universal monad on Y:

(75) AY : 0→ OP3(−a)⊠ L∨
Y

σY−−→ EY

σ
t
Y−−→ OP3(a)⊠ LY → 0,

where LY = (LT )Y and σtY is the composition EY

ϕ
Y−−→ E∨

Y

σ
∨
Y−−→ OP3(a) ⊠ LY . By construction, for any point

(β, 〈σ〉) ∈ Y , β = (b, ϕ1, ϕ2), the restriction of the monad AY onto P3 × {(β, 〈σ〉)} is isomorphic to the monad
AEb,ϕ1⊕ϕ2,σ in (42). Hence,

(76) H0(AY)|P3×{(β,〈σ〉)} = H0(AEb,ϕ1⊕ϕ2,σ), (β, 〈σ〉) ∈ Y, β = (b, ϕ1, ϕ2).

Now consider the rank 2 the vector bundle U on M defined in (50) and its associated principal frame bundle

I := Isom(V2 ⊗OM ,U)
ξ
−→M



14 C. ALMEIDA, M. JARDIM, A. TIKHOMIROV, AND S. TIKHOMIROV

together with the tautological isomorphism V2 ⊗ OI
∼
−→ UI . Using this isomorphism and applying to (52) the

functor ξ∗ we obtain an isomorphism

(77) EI
∼= V2 ⊗OI ⊕NI.

Besides, by (50), we have a symplectic structure ϕI := (ϕM)I : EI
≃
−→ E∨

I on EI. This symplectic structure in
view of (77) splits into a direct sum of two symplectic structures

(78) ϕI = ϕI,1 ⊕ϕI,2, ϕI,1 : V2 ⊗OI
≃
−→ V ∨

2 ⊗OI, ϕI,2 : NI
≃
−→ N∨

I .

Remark that, by the defscription of the morphism Ψ given in (49), we have Ψ(M) = B. Now, comparing (68)-(69)
with (77)-(78), we obtain a morphism

(79) Γ : I → B̃, x 7→ (b, ϕ1, ϕ2), b = Ψ(ξ(x)), ϕi = ϕI,i|P3×{x}, i = 1, 2,

such that

(80) EI
∼= (E

B̃
)I, ϕI

∼= (ϕ
B̃
)I,

and these isomorphisms are compatible with the direct sum decompositions (77), (78) and (68). From (79) and
the surjectivity of Ψ it follows that Γ is also surjective. Set

(81) X := I ×M S, Y
ΓY←−− X

ξS
−→ S, FI := pI∗(EI(a, 0)).

From (54), (80), the isomorphism FB̃ ≃ (FB)B̃ and the Base Change we obtain FI ≃ (FB̃)I , so that, in view of

(72) and the equality T = P(F∨), the variety X̃ := P(F∨
X) satisfies the isomorphisms

(82) I ×M T ≃ X̃ ≃ I ×B̃ Ỹ .

The definition of X (see (81)) and the left isomorphism (82) imply that there exists an open embedding X →֒ X̃

such that X = X̃ ×T S. Therefore, comparing the descriptions (74) and (59) of Y and S and using the right
isomorphism (82), we obtain:

(83) X ≃ I ×B̃ Y.

This together with (80) implies that EX
∼= (EY)X. Moreover, since X = I ×M S, we have

(84) AX
∼= (AY)X,

where the monads A and AY were defined in (60) and (75), respectively. Consider the modular morphisms

(85) ΦX : X → B(a2 + 1), ΦY : Y → B(a2 + 1),

defined by the (families of) sheaves H0(AX), H0(AY), respectively. From (84), (83) and (81) it follows that ΦX
factors through ΓY and through ξS as: ΦX = ΦY ◦ ΓY = ΦS ◦ ξS . Here, ΦS : S → B(a2 + 1) is the modular
morphism (66), ξS in (81) is surjective by the surjectivity of ξ, and ΓY is surjective as Γ is surjective. Hence,

(86) G(a, 1)0 = ΦS(S) = ΦY (Y ).

On the other hand, by Proposition 14, G(a, 1)0 is dense in G(a, 1). We thus obtain

Proposition 15. Let ΦY : Y → B(a2 + 1) be the modular morphism defined by the family of sheaves H0(AY),

where AY is the monad (75). Then ΦY (Y ) is dense in G(a, 1).

5. Series of rational irreducible components of the moduli spaces B(a2 + 1)

Consider the variety Y defined in (73). We first will relate to Y a new variety Pa, together with a natural
projection π : Y → Pa. In this section we will relate the morphism π to the modular morphism ΦY : Y → B(a2+1)
(for the precise formulation see Theorem 18). For this, take any point y ∈ Y . By (74), y is a collection of data

y = (b, ϕ1, ϕ2, [σ1 : σ2]),

where (i) b ∈ B, (ii) ϕ1 : V2 ⊗OP3

≃
−→ V ∨

2 ⊗OP3 and ϕ2 : Nb
≃
−→ N∨

b are symplectic isomorphisms:

(87) ϕ1 ∈ H
0(∧2(V2 ⊗OP3)∨)r {0} = ∧2V ∨

2 r {0} ∼= k×, ϕ2 ∈ H
0(∧2N∨

b )r {0} = H0(OP3)r {0} ∼= k×,

(iii) σ1 and σ2 are:

(88) 0 6= σ1 ∈ H
0(V2 ⊗OP3(a)) = Hom(V ∨

2 ,Wa), Wa := H0(OP3(a)), 0 6= σ2 ∈ H
0(Nb(a)),
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(iv) σ = (σ1, σ2) : OP3(−a) → V2 ⊗ OP3 ⊕ Nb is a subbundle morphism. In Hom(V ∨
2 ,Wa) consider an open

subset Homin(V ∨
2 ,Wa) := {σ1 ∈ Hom(V ∨

2 ,Wa) | σ1 : V ∨
2 →Wa is a monomorphism}. One can easily see (use the

argument in paragraph after (59)) that

Homin(V ∨
2 ,Wa) = {σ1 ∈ Hom(V ∨

2 ,Wa) | dim(σ1)0 = 1}.

Besides, note that the group GL(V2) naturally acts on Homin(V ∨
2 ,Wa) via its action on V ∨

2 , and we have an
isomorphism

(89) Homin(V ∨
2 ,Wa)/GL(V2)

≃
−→ Gr(2,Wa)

and the factorization morphism

(90) τ1 : Homin(V ∨
2 ,Wa)→ Gr(2,Wa), σ1 7→ im(σ1 : V ∨

2 →֒ Wa).

Next, as it was mentioned in Section 4 (see paragraph after (59)), the setH0(Nb(a))
∗ := {σ2 ∈ H0(Nb(a)) | dim(σ2)0

= 1} is open dense in H0(Nb(a)). Besides, it is clearly invariant under the action of the group Aut(Nb(a)) = k×.
(Recall that the null correlation bundle Nb is stable and therefore simple, i. e., End(Nb(a)) = k · id.) Hence,

(91) P (H0(Nb(a)))
∗ = H0(Nb(a))

∗/Aut(Nb(a))
open
→֒ P (H0(Nb(a))) ≃ Pr,

where r = 2
(
a+3
3

)
− a− 3, and we have the factorization morphism

(92) τ2 : H0(Nb(a))
∗ → P (H0(Nb(a)))

∗, σ2 7→ 〈σ2〉.

Now the above condition (iv) imposed on (σ1, σ2) can be rewritten in the form:

(93) (σ1, σ2) ∈ Hb,a := {(σ1, σ2) ∈ Homin(V ∨
2 ,Wa)×H

0(Nb(a))
∗ | (σ1)0 ∩ (σ2)0 = ∅}.

Clearly, Hb,a is a dense open subset of Homin(V ∨
2 ,Wa) ×H0(Nb(a))

∗. This subset is invariant under the action
of the group k× by homotheties. Therefore, denoting P (Hb,a) := Hb,a/k

× and using (90) and (92), we obtain the
factorization morphism

(94) τ : P (Hb,a)→ Gr(2,Wa)× P(H0(Nb(a)))
∗, [σ1 : σ2] 7→ (τ1(σ1), τ2(σ2)).

To globalize the above pointwise (w.r.t. b ∈ B) constructions over B, set K := pB∗(N (a, 0)). The variety P(K∨)
has the description P(K∨) = {(b, 〈σ2〉) | b ∈ B, 〈σ2〉 ∈ P (H

0(Nb(a)))}. Consider its dense open subset

Πa := {(b, 〈σ2〉) ∈ P(K∨) | 〈σ2〉 ∈ P(H0(Nb(a)))
∗}

and set

(95) Ga := Gr(2,Wa)×Πa, Ga = {(b, V, 〈σ2〉) | V ∈ Gr(2,Wa), (b, 〈σ2〉) ∈ Πa}.

By construction, Ga is a rational variety. Next, remark that, comparing the definitions (71) and (93) of S and
Hb,a, we obtain

S = {(b, [σ1 : σ2]) | b ∈ B, [σ1 : σ2] ∈ P(Hb,a)}.

Thus, by (94), we have a well-defined morphism

(96) τ : S → Ga, (b, [σ1 : σ2]) 7→ (b, τ1(σ1), τ2(σ2)).

Consider the group G̃ = GL(V2)× k×, its normal subgroup G′ = {(ρ · idV2
, ρ) | ρ ∈ k×}, and let

(97) G = G̃/G′

be the factor group. We will use the following notation for elements of G: [g1 : λ] := (g1, λ)G
′ = {(ρg1, ρλ) | ρ ∈

k×}, (g1, λ) ∈ G̃. The group G naturally acts on S as:

(98) aS : S ×G→ S, ((b, [σ1 : σ2]), [g1 : λ]) 7→ (b, [g1 ◦ σ1 : λσ2]),

and formulas (89)-(96) show that Ga = S/G and the morphism τ : S → Ga in (96) is the quotient morphism for
this action and it is a principal G-bundle. Therefore in view of (53) we have:

(99) dimGa = dimP (Hb,a) + dimB − dimG = 4

(
a+ 3

3

)
− a− 2.
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The principal G-bundle S
τ
−→ Ga by construction is locally trivial, hence there exists an open dense subset U of

Ga and a section U
s
→֒ S of the projection τ |τ−1(U) : τ

−1(U)→ U :

(100) S

τ

��

U
.

�

s

>>
⑥⑥

⑥⑥⑥
⑥⑥

⑥
�

� open
// Ga.

Here U is rational since Ga is rational as it was mentioned above.
Now consider the variety P(∧2(V2 ⊗OB)⊕ ∧2N ) together with the embeddings

P(∧2(V2 ⊗OB)) →֒ P(∧2(V2 ⊗OB)⊕ ∧
2N ) ←֓ P(∧2N )

and denote PB̃ := P(∧2(V2⊗OB)⊕∧2N )r{P(∧2(V2⊗OB))⊔P(∧2N )}. By construction, the natural projection

PB̃ → B is a locally trivial fibration with fiber

(101) F ≃ P1 r {2 points}.

Using the description (69) of the varieties B1, B2 and the notation (58) in which we put ϕ1, ϕ2 in place of σ1, σ2,

we obtain PB̃ = {(b, [ϕ1 : ϕ2]) | (b, ϕi) ∈ Bi, i = 1, 2}. Remark that the group k× naturally acts on B̃ as

(102) B̃ × k× → B̃, ((b, ϕ1, ϕ2), λ) 7→ (b, λϕ1, λϕ2),

(here we use the description (69) of B̃), so that

(103) PB̃ = B̃/k×,

and we have the factorization morphism

(104) πB̃ : B̃ → PB̃, (b, ϕ1, ϕ2) 7→ (b, [ϕ1 : ϕ2]).

Consider the varieties PY := PB̃ ×B S = {(b, [ϕ1 : ϕ2], [σ1 : σ2]) | (b, [ϕ1 : ϕ2]) ∈ PB̃, (b, [σ1 : σ2]) ∈ S} and

Pa := PB̃ ×B Ga = {(b, [ϕ1 : ϕ2], V, 〈σ2〉) | (b, [ϕ1 : ϕ2]) ∈ PB̃, (b, V, 〈σ2〉) ∈ Ga}, where Ga was defined in (95).
From (99) and (101) we have

(105) dimPa = dim Ga + dimF = 4

(
a+ 3

3

)
− a− 1.

Note that the local triviality of the fibration PB → B implies that the natural projection

(106) prY : PY → S

is a locally trivial fibration with fiber F given in (101).
The morphism πB̃ in (104) induces the morphism

(107) πY : Y → PY, (b, ϕ1, ϕ2, [σ1 : σ2]) 7→ (b, [ϕ1 : ϕ2], [σ1 : σ2]),

and from (102)-(104) it follows that πY is a factorization morphism of the following k×-action on Y :

(108) aY : Y × k× → Y, ((b, ϕ1, ϕ2, [σ1 : σ2]), λ) 7→ (b, λϕ1, λϕ2, [σ1 : σ2]).

Respectively, the morphism τ : Ya → Ga defined in (96) induces a morphism

(109) τY : PY → Pa, (b, [ϕ1 : ϕ2], [σ1 : σ2]) 7→ (b, [ϕ1 : ϕ2], τ1(σ1), τ2(σ2)).

Define the morphism π : Y → Pa as the composition

(110) π = τY ◦ πY : Y → Pa, (b, ϕ1, ϕ2, [σ1 : σ2]) 7→ (b, [ϕ1 : ϕ2], τ1(σ1), τ2(σ2)).

We will now proceed to the study of the fibers of the morphism π.

Definition 16. Introduce on Y the following equivalence relation:

(111) y = (b, ϕ1, ϕ2, [σ1 : σ2]) ∼ (b̃, ϕ̃1, ϕ̃2, [σ̃1 : σ̃2]) = ỹ

if there exists an isomorphism of symplectic monads Ay and Aỹ, i. e., a commutative diagram with rows Ay and
Aỹ:

(112) Ay : OP3(−a) //
(σ1,σ2)

//

h− ≃

��

V2 ⊗OP3 ⊕Nb
(σ∨

1 ◦ϕ1,σ
∨
2 ◦ϕ2)

// //

(g1,g2) ≃

��

OP3(a)

h+ ≃

��

Aỹ : OP3(−a) //
(σ̃1,σ̃2)

// V2 ⊗OP3 ⊕Nb̃
(σ̃∨

1 ◦ϕ̃1,σ̃
∨
2 ◦ϕ̃2)

// // OP3(a).
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We denote by [y] = [b, ϕ1, ϕ2, [σ1 : σ2]] the equivalence class of a point y = (b, ϕ1, ϕ2, [σ1 : σ2]) ∈ Y under this
equivalence relation.

Note that, in diagram (112), one has

(113) g1 ∈ Isom(V2 ⊗OP3 , V2 ⊗OP3) ∼= GL(V2);

and g2 ∈ Isom(Nb, Nb̃) which in view of the stability of Nb implies that

(114) b = b̃, g2 = λ · idNb
, λ ∈ k×;

besides, the isomorphisms h−, h+ are multiplications by some constants µ, ν ∈ k×, respectively:

(115) h− = µ · idO
P3

(−a), h+ = ν · idO
P3

(a).

Furthermore, in view of (87), (113), (114) and the symplecticity of ϕ1, ϕ2, we have in (112)

(116) ϕ̃1 = λ1ϕ1, ϕ̃2 = λ2ϕ2, λ1, λ2 ∈ k×, g∨1 ◦ ϕ1 ◦ g1 = det(g1)ϕ1, g∨2 ◦ ϕ2 ◦ g2 = λ2ϕ2.

The leftmost square of diagram (112) together with (115) impliies:

(117) σ̃1 =
1

µ
g1 ◦ σ1, σ̃2 =

λ

µ
σ2.

Respectively, the rightmost square of diagram (112) yields νσ∨
1 ◦ ϕ1 = σ̃∨

1 ◦ ϕ̃1 ◦ g1, νσ∨
2 ◦ ϕ2 = λσ̃∨

2 ◦ ϕ̃2.

Substituting (115)-(117) into the last equalities we obtain the relations ν = λ1 det(g1)
µ and ν = λ2λ

2

µ . Whence

λ1 det(g1) = λ2λ
2. This relation shows that the G-action (98) on S lifts to the following G-action on PY :

(118) aPY : PY ×G→ PY, ((b, [ϕ1 : ϕ2], [σ1 : σ2]), [g1 : λ]) 7→ (b, [
ϕ1

det(g1)
:
ϕ2

λ2
], [g1 ◦ σ1 : λσ2]).

Thus, Pa = PY/G and the morphism

(119) τY : PY → Pa

in (109) is the quotient morphism for this action and it is a locally trivial principal G-bundle. We therefore have
a commutative diagram

PY
τY

//

prY

��

Pa

prG

��

S
τ

// Ga,

where prG is a natural projection. Since by (106) the morphism prY : PY → S is a locally trivial fibration with

fibre F, the open subset U of Ga and the section U
s
→֒ S in the diagram (100), after possible shrinking U , can be

lifted to an open section F× U
s̃
→֒ PY of the projection τY : PY → Pa:

PY

τY

��

F× U
,

�

s̃

;;✈✈✈✈✈✈✈✈✈
�

� open
// Pa.

Since F is rational by (101) and U is rational, it follows that

(120) Pa is rational.

Next, from (107)-(108), (118) and (119) it follows that the morphism π : Y → Pa in (110) is the quotient

morphism of the following action of the group G := G× k× on Y , where G = G̃/G′ was defined in (97):

(121) aY : Y ×G→ Y, ((b, ϕ1, ϕ2, [σ1 : σ2]), ([g1 : λ], µ)) 7→ (b,
µϕ1

det(g1)
,
µϕ2

λ2
, [g1 ◦σ1 : λσ2]), G = G×k×.

Moreover,

(122) π : Y → Pa = Y/G is a principal G-bundle,

and computations (113)-(118) show that the equivalence class [y] of any point y ∈ Y is the G-orbit of y:

(123) [y] = aY ({y} ×G) = π−1(π(y)), y ∈ Y.

In other words, Pa is the set of equivalence classes of points of Y :

(124) Pa = {[y] | y ∈ Y }.
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Remark that, by Corollary 2, the equality [y] = [ỹ], i. e. the isomorphism of symplectic monads Ay and Aỹ
in (112) is equivalent to the isomorphism of their cohomology rank 2 bundles as symplectic bundles (H0(Ay), ψy)
and (H0(Aỹ), ψỹ), i. e., to the commutativity of the diagram

(125) H0(Ay)
ψy

≃
//

≃f

��

H0(Ay)
∨

H0(Aỹ)
ψỹ

≃
// H0(Aỹ)

∨.

f∨ ≃

OO

Here ψy, respectively, ψỹ, is a symplectic isomorphism induced by the symplectic isomorphism of the monad Ay
with its dual A∨

y , respectively, of Aỹ with A∨
ỹ . Thus, denoting by [H0(Ay), ψy] the isomorphism class of the pair

(H0(Ay), ψy), we have:

(126) [y] = [H0(Ay), ψy] = [H0(Ay)].

This together with (122)-(124) shows that the modular morphism

ΦY : Y → B(a2 + 1), y 7→ [H0(Ay)]

factors through an injective map Θ : Pa → B(a2 + 1), i. e.

(127) ΦY = Θ ◦ π.

Since Y is clearly smooth, the map Θ is actually a morphism. This outcomes from the following well known
general result. (For the convenience of the reader we give its proof here.)

Lemma 17. Let X, Y, Z be quasiprojective varieties with Y smooth, and let a : X → Y and b : X → Z be
morphisms such that a is surjective and b is constant on the fibers of a. Then there exists a morphism f : Y → Z
such that b = f ◦ a.

Proof. Consider the morphism g : X → Y ×Z, x 7→ (a(x), b(x)), and let Y
a′
←− Y ×Z

b′
−→ Z be the projections onto

factors so that a = a′◦g and b = b′◦g. Since b is constant on the fibers of p, it follows that ã := a′|g(X) : g(X)→ Y
is a bijection. Therefore, as Y is smooth, ã is an isomorphism (see, e.g., [S, Ch.2, Section 4.4, Thm. 2.16]). The
desired morphism f is now the composition f = b′ ◦ ã−1. �

Now Proposition 15 together with (105), (120), (122) and (127) yields

Theorem 18. There exists an injective morphism Θ : Pa →֒ B(a2 + 1) such that the modular morphism ΦY :
Y → B(a2 + 1) factorizes as

(128) ΦY : Y
π
−→ Pa

Θ
→֒ B(a2 + 1),

where π : Y → Pa is a principal G-bundle with the group G defined in (121). The variety G(a, 1) containing the
rational variety G(a, 1)0 = Θ(Pa) as a dense subset is rational of dimension 4

(
a+3
3

)
− a− 1.

We next obtain the following important formula.

Lemma 19. For every [E ] ∈ G(a, 1)0 with a ≥ 2, it holds

h1(End(E)) = 4 ·

(
a+ 3

3

)
− a− 1 + ε(a),

where ε(a) = 1 when a = 3, and ε(a) = 0 when a 6= 3.

Proof. Since E is a self dual rank 2 bundle, we have End(E) ≃ S2E⊕Λ2E = S2E⊕OP3 , thus h1(End(E)) = h1(S2E).
We will compute the latter.

By the definition of G(a, 1)0 (see Proposition 14.(ii), (59) and (61)), E is the cohomology of a complexM• with
terms M−1 = OP3(−a), M0 = E ≃ O⊕2

P3 ⊕N, M1 = OP3(a). Proceed to the double complex M• ⊗M• and to

its total complex T •. The symmetric part of T • is the monad 0 → E(−a) → S2E ⊕ OP3 → E(a) → 0, whose
cohomology sheaf is isomorphic to S2E . Therefore this monad can be broken into two short exact sequences

0→ K → S2E ⊕OP3 → E(a)→ 0 and 0→ E(−a)→ K → S2E → 0.

Since h0(E(−a)) = h0(S2E) = 0, it follows that h0(K) = 0; in addition, h1(E(a)) = h2(S2E ⊕ OP3) = 0 (use
Proposition 5) implies that h2(K) = 0. It then follows in view of the splitting E ≃ O⊕2

P3 ⊕N that

(129) h1(S2E) = h1(K) + h2(E(−a)) = h1(K) + ε(a), ε(a) := h2(N(−a)),
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since h1(E(−a)) = 0 for a ≥ 2.
To complete our calculation, consider the exact sequence

0→ H0(S2E ⊕OP3)→ H0(E(a))→ H1(K)→ H1(S2E ⊕OP3)→ 0.

Since h0(S2E ⊕OP3) = 4 and h1(S2E ⊕OP3) = 5 by Proposition 5, we conclude that

h1(K) = h0(E(a)) + 1 = h0(N(a)) + V2 ⊗ h
0(OP3(a)) + 1,

which, together with the equality in equation (129), yields the desired formula. �

It is interesting to observe that the right hand side of the formula in Lemma 19 yields the value of h1(End(E))
expected by the deformation theory when a = 2 and a = 3, respectively 37 and 77; when a ≥ 4, one can check
that 4 ·

(
a+3
3

)
− a− 1 > 8(a2 + 1)− 3.

Noting that, in view of Theorem 18, the dimension of G(a, 1) equals h1(End(E)) for a = 2 and a ≥ 4, as
calculated in Lemma 19, and using Proposition 14, we have therefore completed the proof of the first main result
of this paper.

Theorem 20. For a = 2 and a ≥ 4, the rank 2 bundles given as cohomology of monads of the form

0→ OP3(−a)⊕OP3(−1)→ V6 ⊗OP3 → OP3(1)⊕OP3(a)→ 0

fill out a dense subset of a rational irreducible component of B(a2 + 1) of dimension

4 ·

(
a+ 3

3

)
− a− 1.

In particular, for the case a = 2, we conclude that rank 2 bundles given as cohomology of monads of the form
(5) yield a dense subset of an irreducible component of B(5) with expected dimension 37.

6. Cohomology bundle E of the monad of type (6) and the related reflexive sheaf F

Consider the set

H = {[E ] ∈ B(5) | E is cohomology of a monad of type (6)}.

It is known that H 6= ∅ - see [21, Table 5.3, c2 = 5, Case (2).ii)]. Note that the set H is a constructible subset of
B(5), as well as G(2, 1) (see Remark after Proposition 7). The aim of this and the subsequent sections is to prove

Theorem 21. The set H satisfies the condition dim(H r (G(2, 1) ∩ H)) ≤ 36. Its closure in B(5) does not
constitute a component of B(5).

In this section we will relate the vector bundle [E ] ∈ H \ (G(2, 1) ∩ H) to a rank 2 reflexive sheaf F with
Chern classes c1(F) = 0, c2(F) = 2 and c3(F) = 2k, 0 ≤ k ≤ 6, which appears as a middle cohomology of a
left-exact complex K• (see (154)) induced by the monad of type (6) defining E . This relation will be established
in Proposition 25. We will then use it in Section 7 to prove Theorem 21.

Let [E ] ∈ H \ (G(2, 1) ∩H) be the cohomology bundle of the monad of the form (6):

M• : 0→M−1 α
−→M0 β

−→M1 → 0,

M−1 = OP3(−2)⊕ V2 ⊗OP3(−1), M0 = OP3(−1)⊕ V6 ⊗OP3 ⊕OP3(1),

M1 = V ′
2 ⊗OP3(1)⊕OP3(2).

(130)

Since the bundle V2⊗OP3(−1) is a uniquely defined subbundle of the bundle M−1 (respectively, V ′
2 ⊗OP3(1) is a

uniquely defined quotient bundle of M1), we obtain a commutative diagram in which α0 and β0 are the induced
morphisms:

(131) V2 ⊗OP3(−1)
��

��

&&

α0

&&▲
▲▲

▲▲
▲▲

▲▲
▲▲

OP3(2)
��

��

M−1

����

//
α

// M0 β
// //

β0

%% %%▲
▲▲

▲▲
▲▲

▲▲
▲ M1

����

OP3(−2) V ′
2 ⊗OP3(1).
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Here the induced monad

(132) 0→ V2 ⊗OP3(−1)
α0−→M0 β0

−→ V ′
2 ⊗OP3(1)→ 0

has the rank 4 cohomology bundle

(133) E =
kerβ0
im α0

.

Mimicking now the argument with diagram (37), we obtain that there exist a subbunle morphism σ : OP3(−2)→ E
and an epimorphism τ : E → OP3(2) which yield the monad the the cohomology bundle E :

(134) 0→ OP3(−2)
σ
→ E

τ
→ OP3(2)→ 0, E = ker τ/im σ.

Since there is a uniquely defined (up to a scalar multiple) quotient morphism M0
։ OP3(−1), we have a well-

defined morphism

(135) α̃ : V2 ⊗OP3(−1)
α0

→֒M0
։ OP3(−1)

and, dually, a well-defined morphism

(136) β̃ : OP3(1)→֒M0 β0

։ V ′
2 ⊗OP3(1).

Assume that both α̃ and β̃ are nonzero morphisms. Then a standard diagram chasing shows that, in the monad
(132), one can split out a direct summand OP3(−1) from V2 ⊗ OP3(−1) and M0, respectively, split out a direct
summand OP3(1) from M0 and V ′

2 ⊗OP3(1), without changing its cohomology bundle E. Thus, the monad (132)
reduces to a monad

(137) 0→ OP3(−1)
α′

→ V6 ⊗OP3

β′

→ OP3(1)→ 0, E =
kerβ′

im α′
.

Now by the remark after Lemma 4, E is a rank 4 instanton bundle, so that, by (134) and Lemma 10, E is the
cohomology bundle of the monad (32) for a = 2 and k = 1. This means that E ∈ G(2, 1) ∩ H, contrary to the
assumption on E .

We thus may assume that either (a) α̃ = 0, β̃ 6= 0, or (b) α̃ = β̃ = 0. (We omit the case α̃ 6= 0, β̃ = 0, since it
is completely similar to the case (a).)

(a) Case α̃ = 0, β̃ 6= 0. We are going to show that this case is impossible.

First, note that, since β̃ 6= 0, we may as above split out a direct summand OP3(1) from the middle term and
the righthand term of the monad (132), without changing its cohomology bundle E. Thus, this monad reduces
to a monad

(138) 0→ V2 ⊗OP3(−1)
α′

→ OP3(−1)⊕ V6 ⊗OP3

β′

→ OP3(1)→ 0, E =
kerβ′

im α′
.

Next, the condition α̃ = 0 means that the subbundle morphism α′ in (132) factors through a subbundle morphism
α′′ in the commutative diagram

(139) V2 ⊗OP3(−1) //
α′′

// V6 ⊗OP3
// //

��

��

F4
��

λ

��

V2 ⊗OP3(−1) //
α′

// OP3(−1)⊕ V6 ⊗OP3
// //

����

F5

µ

����

OP3(−1) OP3(−1),

where F4 := coker α′′ and F5 := coker α′ are vector bundles of rank 4 and 5, respectively. From this diagram it
follows immediately that OP3(−1) splits out as a direct summand of F5:

(140) F5
∼= OP3(−1)⊕ F4.
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The monad (138) and the diagram (139) yield a commutative diagram

(141) F3
// //

��

��

F4
η◦λ

// //

��

λ

��

A
��

��

E //
ν

//

µ◦ν

����

F5
η

// //

µ

����

OP3(1)

����

B // // OP3(−1)
η̄

// // C,

where F3 := ker(η ◦ λ), A := F4/F3, B := E/F3, C := OP3(1)/A. Here A 6= 0, since otherwise C ≃ OP3(1), and
then η̄ is not surjective, contrary to (141). Hence, C is a torsion sheaf, and A, B and F3 are torsion free sheaves
of rank 1, 1 and 4, respectively. Therefore, the diagram (141) implies that c1(F4)− c1(E) = 2c1(OP3(1)). On the

other hand, in view of (140) we have a well-defined injective morphism ρ : E
ν
−→ F5

pr2
−−→ F4 such that, by the

Snake Lemma, Q := cokerρ ∼= A/B is a torsion sheaf. In addition, by the above equality, c1(Q) = 2c1(OP3(1)) 6= 0,
i. e., Q 6= 0. However, (141) and the Snake Lemma yield a commutative diagram

(142) E //
ρ

// F4
// //

��

i

��

Q
��

ī

��

E //
ν

// OP3(−1)⊕ F4
η

// //

����

OP3(1)

����

OP3(−1) OP3(1)/ī(Q),

where i is the inclusion of the direct summand and ī is the induced morphism. But the torsion sheaf Q is not a
subsheaf of OP3(1), and we obtain a contradiction, as claimed.

Summarizing the above arguments, we see that the bundle [E ] ∈ H is the cohomology H0(M•) of a monad M•

of the form (6) satisfying the condition (a): (α̃, β̃) 6= (0, 0), then M• is reducible to a monad of the form (5), i. e.
[E ] ∈ H ∩ G(2, 1). Thus, denoting

(143) H0 := {[E ] ∈ H | E = H0(M•),where M• satisfies the condition (b): α̃ = β̃ = 0},

we obtain

(144) H r (H ∩ G(2, 1)) ⊂ H0.

We thus proceed to the study of the case α̃ = β̃ = 0.

(b) Case α̃ = β̃ = 0.
First, consider the commutative diagram

(145) OP3(1)
��

j1

��

OP3(1)
��

j0

��

V6 ⊗OP3 ⊕OP3(1) //
i0

//

h1

����

M0 g0
// //

h0

����

OP3(1)

V6 ⊗OP3
//

i
// V6 ⊗OP3 ⊕OP3(−1)

g
// // OP3(1)

and the exact triples following from (132) and (133)

(146) 0→ V2 ⊗OP3(−1)
α0−→M0 c0−→ C0 → 0,

(147) 0→ E
d0−→ C0

e0−→ V ′
2 ⊗OP3(1)→ 0, C0 := coker α0, β0 = e0 ◦ c0.

The condition α̃ = 0 implies that there exists a subbundle morphism 0 → V2 ⊗OP3(−1)
α1−→ V6 ⊗OP3 ⊕OP3(1)

such that

(148) α0 = i0 ◦ α1.
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Setting C := coker(h0 ◦ α0), C1 := coker α1, α2 := h1 ◦α1, C2 := coker α2, we obtain from (145)-(146) and (148)
an induced commutative diagram

(149) OP3(1)
��

j̄1

��

OP3(1)
��

j̄0

��

C1
//

ī0
//

h̄1

����

C0
ḡ0

// //

h̄0

����

OP3(−1)

C2
//

ī
// C

ḡ
// // OP3(−1)

and an exact triple

(150) 0→ V2 ⊗OP3(−1)
α2−→ V6 ⊗OP3

c2−→ C2 → 0.

From the condition β̃ = 0 and diagram chasing it follows that there exists an injective morphism j : OP3(1)→ E
such that j̄0 = d0 ◦ j. From this relation and (147), (149) and (150) by diagram chasing we obtain the folowing
data:
1) an exact triple

(151) 0→ OP3(1)
j
−→ E

h
−→ E3 → 0, E3 := cokerj,

2) a commutative diagram

(152) F // //
��

��

E3
ε

// //

��

d

��

OP3(−1)

C2
//

ī
//

ē
����

C
ḡ

// //

e

����

OP3(−1)

V ′
2 ⊗OP3(1) V ′

2 ⊗OP3(1),

where d and e are the induced morphisms, ε := d ◦ ḡ, ē := e ◦ ī,
3) a sheaf

(153) F := ker ε,

and a left-exact complex

K• : 0→ K−1 α2−→ K0 β2
−→ K1 → 0, β2 := ē ◦ c2,

K−1 = V2 ⊗OP3(−1), K0 = V6 ⊗OP3 , K1 = V ′
2 ⊗OP3(1),

(154)

such that

(155) H0(K•) = F , H1(K•) = coker ε.

From (134), (154) and the vanishing of Hom(OP3(1),OP3(−2)) follows the commutative diagram

(156) OP3(1)
��

j

��

OP3(1)
��

j′

��

OP3(−2) //
σ

// E // //

h

����

coker σ

����

OP3(−2) //
h◦σ

// E3
// // L

where L := coker(h ◦ σ) and j′ is an induced morphism which is nonzero, hence injective, since coker σ is locally
free by the exact triple 0→ E → coker σ → OP3(2)→ 0 following from (134). Since E is stable by assumption, so
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that h0(E(−1)) = 0 (see [34]), the last triple and (156) yield a commutative diagram

(157) OP3(1)
��

j′

��

OP3(1)
��

β̄

��

E // // coker σ // //

����

OP3(2)

����

E // // L // // OP2(2),

where P2 = Supp(coker β̄) is a projective plane in P3. Note that, in this diagram, β̄ is the composition β̄ :

OP3(1)
can
−−→ M0 β

−→ M1, and im β̄ →֒ OP3(2) since β̃ = 0. Thus, P2 is uniquely defined by the morphism
β in the monad M•. In a similar way, since α̃ = 0, the morphism α in M• uniquely defines a morphism
ᾱ : OP3(−2) → OP3(−1), hence a projective plane P2

0 = Supp(coker ᾱ). For these two planes we will use the
notation

(158) P2 = P2(M•, β), P2
0 = P2(M•, α).

Consider the lower horizontal triple in (157):

(159) 0→ E
θ
−→ L

γ
−→ OP2(2)→ 0, P2 = P2(M•, β).

Lemma 22. The sheaf L in (159) is a stable reflexive rank 2 sheaf on P3, [L] ∈ R(1, 4, 6).

Proof. First, show that the triple (159) doesn’t split. Indeed, otherwise, the lower horizontal triple in (156)
extends to a commutative push-out diagram

(160) OP3(−2) // // E3
// // E ⊕ OP2(2)

OP3(−2) // // OP3(−2)⊕OP2(2) // //

OO

OP2(2),

OO

where the lower triple splits since Ext1(OP2(2),OP3(−2)) = 0. This yields a nonzero morphism δ : OP2(2)→ E3

which being composed with the morphism ε in (153) is the zero morphism OP2(2)→ OP3(−1). Hence, in (153),
δ factors through a nonzero morphism

(161) δ′ : OP2(2)→ F .

On the other hand, (154) and (155) yield an exact triple 0→ OP3(−2)→ ker β2 → F → 0 which, together with
(161), extends to a push-out diagram similar to (160):

(162) OP3(−2) // // ker β2 // // F

OP3(−2) // // OP3(−2)⊕OP2(2) // //

δ′′

OO

OP2(2),

δ′

OO

where δ′′|O
P2

(2) is nonzero. However, this is impossible since ker β2 by definition is torsion free as a subsheaf of
a locally free sheaf V6 ⊗OP3 .

Next, since E ∼= E∨ is locally free and Ext1(OP2(2),OP3) = OP2(−1), then, applying the functor Ext•(−,OP3)
to the triple (159) we have an exact sequence

(163) 0→ L∨
θ∨
−−→ E → OP2(−1)

ϕ
−→ 1L → 0, 1L := Ext1(L,OP3).

Let d = dim(1L). Consider the three possible cases: (a) d = 2, (b) d = 1, and (c) d = 0. We will show that the
cases (a) and (b) lead to a contradition.
(a) d = 2. In this case dimSing L = 2, i. e. the torsion subsheaf T ors(L) of L has dimension 2. This necessarily

implies that the composition T ors(L) →֒ L
γ
։ OP2(2) is an isomorphism giving the splitting of the triple (159),

contrary to the above.
(b) d = 1. In this case 1L = OZ(−1) for Z a subscheme of P2, of dimension dimZ = 1. Hence kerϕ →֒ OP2(−1−k)
for some k ≥ 2. By (163) the sheaf kerϕ is the quotient of E , it follows that h0(EP2(−1− k)) 6= 0, k ≥ 1, and so
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h0(EP2(−2)) 6= 0. On the other hand, since E is the cohomology of (130), by [21, Table 5.3, case 5(2.ii)] it has the
spectrum Sp(E) = (−1, 0, 0, 0, 1), and then it follows that

(164) h1(E(−3)) = 0, h1(E(−2)) = 1.

Thus, by the first equality in (164), the inequality h0(EP2(−2)) 6= 0 contradicts to the cohomology sequence of
the exact triple

(165) 0→ E(−3)→ E(−2)→ EP2(−2)→ 0

as h0(E(−2)) = 0 by the stability of E. Note also that we have proved here the equality

(166) H0(EP2(−2)) = 0, ∀ P2 ⊂ P3.

(c) d = 1. In this case 1L = OZ(−1) for Z a subscheme of P2 of dimension dimZ = 0, and the sequence

0 → L∨
θ∨
−−→ E → IZ,P2(−1) → 0, and Z = (s)0, 0 6= s ∈ H0(E(−1)|P2). Since dimZ = 0, it follows that

Ext1(IZ,P2(−1),OP3) = Ext1(OP2(−1),OP3) = OP2(2). Thus, applying the functor Ext•(−,OP3) to the last triple,

since E ∼= E∨ we obtain an exact triple 0 → E
θ∨∨

−−→ L∨∨ γ
−→ OP2(2) → 0. Comparing this triple with (159) and

taking into account that, by construction, the composition E
θ
−→ L

can
−−→ L∨∨ coincides with θ∨∨ we obtain that

L
can
−−→ L∨∨ is an isomorphism, i. e. L is reflexive.
Next, as ct(E) = 1 + 5t2, formulas for Chern classes of L follow from (159). In particular, L∨ ∼= L(−1) has

c1(L(−1)) = −1, and since h0(E) = 0, it follows that

(167) h0(L(−1)) = 0.

Thus, L is stable by [20, Lemma 3.1]. Lemma is proved. �

We now proceed to the more close study of the sheaf F . Consider the upper horizontal triple of the diagram
(152) which extends to an exact sequence:

(168) 0→ F → E3
ε
−→ OP3(−1)→ OȲ (−1)→ 0, Ȳ ⊂ P3.

Lemma 23. The sheaf F defined in (153) is a reflexive rank 2 sheaf on P3 fitting in an exact triple

(169) 0→ F
ζ
−→ L → IȲ ,P2

0
(−1)→ 0,

and in its dual

(170) 0→ L(−1)→ F
ρ
−→ IZ̄,P2

0
(2)→ 0,

where P2
0 = P2(M•, α), Ȳ , Z̄ ⊂ P2

0, dim Ȳ ≤ 0, dim Z̄ ≤ 0, and

(171) ℓ(Ȳ ) + ℓ(Z̄) = 6.

Chern classes of F are c1(F) = 0, c2(F) = 2, 0 ≤ c3(F) = 2ℓ(Ȳ ) ≤ 12.

Proof. We first show that rkF = 2. Indeed, if ε in (168) is the zero morphism, then the diagram (152) and the
Snake Lemma yield an epimorphism V ′

2 ⊗OP3(1) ։ OP3(−1) which is impossible. Hence, ε 6= 0 and (153) implies
that rkF = 2 and, moreover, that Ȳ $ P3, i. e., Ȳ is a proper subscheme of P3. Note also that, by (132) and
(133), c1(E) = 0, hence c1(E3) = −1 in view of (151). Thus, (168) implies that c1(F) = c1(OȲ (−1)) ≥ 0.

Next, consider the lower exact triple in (156):

(172) 0→ OP3(−2)
h◦σ
−−→ E3 → L→ 0.

If the composition f := ε ◦ h ◦ σ is zero, then (168) and (172) imply that there exist injective morphisms

OP3(−2)
f1
֌ F and coker(f1)

f2
֌ L. Since rkF = 2, c1(F) ≥ 0 and L is reflexive by Lemma 22, it follows

that coker(f1) is a rank 1 torsion free sheaf with c1(coker(f1)) ≥ 2. Thus, the injectivity of f2 shows that
h0(L(−2)) 6= 0, contrary to the stability of L (see Lemma 22). It follows that f 6= 0, so that (168) and (172)
extend to a comutative diagram

(173) OP3(−2)
��

h◦σ

��

OP3(−2)
��

f

��

F // // E3
ε

//

����

OP3(−1)
δ

// //

����

OȲ (−1)

F // // L
ε̄

// OP
2
0
(−1)

δ̄
// // OȲ (−1),
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where P2
0 is some projective plane in P3. If δ̄ is an isomorphism, then coker(ε) ≃ OP

2
0
(−1), so that the diagram

(152) and the Snake Lemma yield an epimorphism V ′
2 ⊗OP3(1) ։ OP

2
0
(−1) which is impossible. Hence, Ȳ $ P2

0,

i. e., Ȳ is a proper subscheme of P2
0, dim Ȳ ≤ 1, and (173) yields an exact triple (169).

Show that the case dim Ȳ = 1 is impossible. Indeed, in this case Ȳ contains a divisor D ⊂ P2
0 of degree

k ≥ 1 as a subscheme, and this yields an epimorphim OȲ (−1)
b
։ OD(−1). On the other hand, the middle

horizontal exact sequence in (173), together with diagram (152) and the Snake Lemma, yield an epimorphism
V ′
2 ⊗ OP3(1) ։ OȲ (−1). This epimorphism composed with the above epimorphism b gives an epimorphism
V ′
2 ⊗OP3(1) ։ OD(−1) which is impossible, since h0(OD(−2)) = 0, as follows from the cohomology of the exact

triple 0→ OP
2
0
(−2− k)→ OP

2
0
(−k)→ OD(−2)→ 0.

Hence, dim Ȳ ≤ 0 and therefore, denoting iI := Exti(IȲ ,P2
0
(−1),OP3), i ≥ 1, we obtain 1I = OP2(2), dim 2I ≤

0, 3I = 0. Besides, set iF := Exti(F ,OP3), iL := Exti(L,OP3), i ≥ 1, and remark that, for the reflexive
sheaf L, dim 1L = 0, iL = 0, i = 2, 3 (see [20, proof of Thm. 2.5]). Now, applying to (169) the functor
Ext•(−,OP3) and using the above relations we obtain the equalities iF = 0, i = 2, 3, and an exact sequence

0 → L∨
ζ∨

−−→ F∨ → OP2(2)
µ
−→ 1L → 1F → 2I → 0, wherefrom dim 1F ≤ 0 and kerµ ≃ IZ,P2

0
(2) for some

subscheme Z of P2
0, of dimension dimZ ≤ 0. We thus obtain an exact triple 0→ L∨

ζ∨

−−→ F∨ → IZ,P2
0
(2)→ 0 and

the relation Ext1(IY,P2
0
(2),OP3) = OP2(−1). Next, applying to the last triple the functor Ext•(−,OP3) yields an

exact sequence 0→ F∨∨ ζ∨∨

−−→ L∨∨ → OP2(−1)
ν
−→ Ext1(F∨,OP3). By [20, Cor. 1.2] F∨ is a reflexive rank 2 sheaf,

hence dim Ext1(F∨,OP3) ≤ 0 by [20, Rem. 2.7.1], and therefore ker ν ≃ IW,P2
0
(−1) for some subscheme W of P2

0,

of dimension dimW ≤ 0. Thus the last sequence leads to an exact triple 0 → F∨∨ ζ∨∨

−−→ L∨∨ → IW,P2
0
(−1) → 0

which together with (169) fits in a commutative diagram

F∨∨ //
ζ∨∨

// L∨∨ // //

can

IW,P2
0
(−1)

F //
ζ

//

OO

can

OO

L // // IȲ ,P2
0
(−1).

c

OO

Besides, the above stated relations iF = 0, i = 2, 3, dim 1F ≤ 0 show that the sheaf F is locally free outside

the set of dimension ≤ 0, and this shows that the sheaf κ = coker(F
can
−−→ F∨∨) has dimension ≤ 0 and by the

Snake Lemma κ is a subsheaf of ker c. However, the sheaf has no subsheaves of dimension 0. Hence, κ = 0

and F
can
−−→ F∨∨ is an isomorphism, i. e. F is reflexive. A standard computation with the triple (169) yields

the values of Chern classes of F , The triple (170) and the equality (171) are obtained by applying to (169) the
functor Ext•(−,OP3) and using formulas for Chern classes of F and L. The inequality 0 ≤ c3(F) ≤ 12 follows
from (171). �

Lemma 24. The projective planes P2 and P2
0 defined in (158) coincide.

Proof. The middle horizontal triple 0 → E → coker σ → OP3(2) → 0 in (157) as an extension is defined by a
nonzero element in Ext1(E ,OP2(2)) ≃ H1(E(−2)). Since h1(E(−2)) = 1 by (164), it follows that the sheaf coker σ
is defined by E uniquely up to an isomorphism. Since h0(L(−1)) = 0 as L is stable by Lemma 22, the twisted by
OP3(−1) middle vertical triple 0 → OP3 → cokerσ(−1) → L(−1) → 0 in (157) shows that h0(cokerσ(−1)) = 1.
Hence, L = L(M•) is uniquely up to an isomorphism defined by cokerσ (and therefore by E) as

(174) L(M•) = (cokerσ(−1)/OP3)(1).

Then the lower horizontal triple in (157) shows that the plane P2 = P2(M•, β) is determined uniquely by E as

(175) P2(M•, β) = Supp(L(M•)/E).

Next, it follows from (158) that

(176) P2(M•, α) = P2(M•∨, β∨), resp., P2(M•, β) = P2(M•∨, α∨),

where M•∨ : 0 → (M1)∨
β∨

−−→ (M0)∨
α∨

−−→ (M−1)∨ → 0 is the monad dual to M•. The monad M•∨ defines

the monad dual to (134): 0 → OP3(−2)
τ∨

→ E
σ∨

→ OP3(2) → 0 with E∨ = ker(σ∨)/im(τ∨), and the argument
dual to the above yields the formulas dual to (174) and (175): P2(M•∨, β∨) = Supp(L(M•∨)/E∨), L(M•∨) =
(coker(τ∨)(−1)/OP3)(1). Since E∨ ≃ E these formulas mean in view of (176) that the plane P2

0 = P2(M•, α) is
uniquely defined by E via the same construction as above, hence it coincides with P2 = P2(M•, β). �
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Let F ∈ R(0, 2, 2k) be the reflexive sheaf defined in (153), where 0 ≤ k ≤ 6 by Lemma 23, i. e.,

(177) [F ] ∈
⊔

0≤k≤6

Rk, Rk := R(0, 2, 2k).

Formulas (143), (144) and Lemmas 22, 23 and 24 yield

Proposition 25. There is an inclusion

(178) H r (H ∩ G(2, 1)) ⊂
⊔

0≤k≤6

Hk, where

Hk = {[E ] ∈ B(5) | E is obtained from F ,where [F ] ∈ Rk,

by the two subsequent elementary transformations (180) below},
(179)

0→ L(−1)→ F
ρ
−→ IZ̄,P2(2)→ 0, (step 1)

0→ E → L
γ
−→ OP2(2)→ 0, (step 2)

(180)

where P2 is some plane in P3, Z̄ ⊂ P2, dim Z̄ ≤ 0, ℓ(Z̄) = 6− k, and L is a stable reflexive sheaf from R(1, 4, 6).

7. Geometric properties of sheaves F and moduli of cohomology bundles E of monads (6)

In this section we explore in detail the geometry of the reflexive sheaves F described in Lemma 23. The main
result of this study will be the upper estimates for the dimensions of the moduli space of sheaves F and sheaves
L obtained from F by the elementary transformation (170). These estimates are obtained in Propositions 26 and
27 below. This will eventually lead to the proof of Theorem 21.

Denote

Ruk := {[F ] ∈ Rk | F is unstable}, Rsk := {[F ] ∈ Rk | F is stable},

Huk := {[E ] ∈ Hk | E is obtained from F in (179),where [F ] ∈ Ruk},

Hsk := {[E ] ∈ Hk | E is obtained from F in (179),where [F ] ∈ Rsk},

where 0 ≤ k ≤ 6. Thus, Rk = Ruk ⊔R
s
k and (144) and (178) yield:

(181) H r (H ∩ G(2, 1)) ⊂
⊔

0≤k≤6

(Huk ⊔H
s
k).

The estimate for the dimension of H r (H ∩ G(2, 1)) will eventually follow from the computations of dimensions
of Huk and Hsk which we will give below. For this, we start with an explicit description of the spaces Ruk and Rsk.

Proposition 26. (i) Ruk 6= ∅ only for 0 ≤ k ≤ 3, and any sheaf F from Ruk fits in an exact triple

(182) 0→ OP3

s
−→ F

u
−→ IC,P3 → 0,

where C = Sing(F/OP3) is a l.c.i. curve of degree 2 in P3, χ(OC) = 4− 1
2c3(F) = 4− k.

(ii) If C is reduced, then either c3(F) = 4 and C is a disjoint union l1 ⊔ l2 of two projective lines in P3, or
c3(F) = 6, then C is a plane conic in P3.
(iii) If C is nonreduced then C is the scheme structure of multiplicity two on a projective line l in P3 defined by
an exact sequence

(183) 0→ IC,P3 → Il,P3 → Ol(m)→ 0, −1 ≤ m = 2− k ≤ 2.

(iv) The moduli spaces Ruk are varieties of dimensions

(184) dimRu0 = dimRu3 = 14, dimRu1 = dimRu2 = 13,

and they are fine.

Proof. (i)-(iii). By Lemma 23, we have c1(F) = 0, c2(F) = 2. Since F is unstable, it follows from [20, Lemma 3.1]
that H0(F) 6= 0. Besides, from (167) and the triple (169) twisted by OP3(−1) we obtain H0(F(−1)) = 0. Take

a section 0 6= s ∈ H0(F) and define a subscheme C in P3 by the ideal sheaf IC,P3 = im(u : F
can
−−→
≃
F∨ s∨
−→ OP3).

(The canonical isomorphism can : F
≃
−→ F∨ follows since c1(F) = 0.) From the equality H0(F(−1)) = 0, by [20,

Thm 4.1] we obtain that:
(a) C is a Cohen-Macaulay curve in P3 satisfying the triple (182), so that degC = c2(F) = 2, and
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(b) the triple (182) is exact, and the equality χ(OC) = 4−k follows from this triple and [20, Thm. 2.3]; moreover,
(182) defines an extension

(185) ξ ∈ Ext1(IC,P3 ,OP3) ≃ H0(Ext1(IC,P3 ,OP3)) ≃ H0(Ext2(OC ,OP3)).

(Here we use standard isomorphisms relatig global Ext-groups and Ext-sheaves - see [20, Sec. 4].) If C is a
reduced curve then, since degC = 2, C is either a disjoint union l1 ⊔ l2 of lines, or a conic. If C is nonreduced,
then C is the scheme structure of multiplicity two on a projective line l (in the sense of [12, Definition on p. 58]).
Moreover, since C is Cohen-Macaulay, the sheaf Il,P3/IC,P3 has no 0-dimensional torsion. Hence, by [12, Claim
on p. 59], the exact triple (183) follows and, moreover, C is a locally complete intersection. The triples (183) and
(182) yield the equality m = 2− 1

2c3(F)=2-k. Furthermore, (183) and the isomorphism

(186) Il,P3 |l ≃ N
∨
l/P3 ≃ Ol(−1)

⊕2

imply m ≥ −1. Besides, 2−m = k = 1
2c3(F) ≥ 0, as F is reflexive. Thus, −1 ≤ m ≤ 2 and therefore 0 ≤ k ≤ 3.

(iv) Consider the varieties Ck = {C | C is a l.c.i. curve of degree 2 in P3, χ(OC) = 4 − k}, 0 ≤ k ≤ 3. From
(i)-(iii) and [12, Remark 1.3] it follows that Ck are rational varieties of dimensions

(187) dim C0 = 11, dim C1 = 9, dim C2 = dim C3 = 8.

Note that (183) yields an exact triple 0 → Ol(2 − k) → OC → Ol → 0, k = 1
2c3(F). Applying to it the functor

Ext2(Ol,OP3) and using the relations Ext2(Ol,OP3) ≃ det(Nl/P3) ≃ Ol(2), Exti(Ol,OP3) = 0, i = 1, 3, (see [34,

pp. 49-50]) we obtain an exact triple 0 → Ol(2) → Ext2(OC ,OP3)
ǫ
−→ Ol(k) → 0 which, together with (185),

yields

dimHom(IC,P3 ,OP3) = 1, Ext≥2(IC,P3 ,OP3) = 0,

dimExt1(IC,P3 ,OP3) = h0(Ext2(OC ,OP3) = k + 4,
(188)

Now, by (i)-(iii), for 0 ≤ k ≤ 3, the spaces Ruk are described as: Ruk = {([F ], 〈ξ〉) | [F ] ∈ Rk, F fits in (182), 〈ξ〉 ∈
P(Ext1(IC,P3 ,OP3))} = {(C, 〈ξ〉) | C ∈ Ck, 〈ξ〉 ∈ P(Ext1(IC,P3 ,OP3))}. This, together with (188), shows that

Rk is a projective fibration with fibre Pk+3 over Ck, and (187) yields (184). Note that there exist universal flat
families Γ ⊂ Ck of curves C, and in view of (188) and [31, Thm. 1.4] the sheaves Ext ipCk

(IΓ,Ck
,OCk

) commute

with the base change. Hence, by [31, Prop. 4.2] there exist universal sheaves F on Ru
k , i. e., R

u
k are fine moduli

spaces. �

Proposition 27. Suppose that [F ] ∈ Rsk. Then the following statements hold.
(i) Rsk 6= ∅ only for 0 ≤ k ≤ 2.
(ii) dimRsk = 13, k = 0, 1, 2.

(iii) For 0 ≤ k ≤ 2 and any [F ] ∈ Rsk, dimExt1(F ,F) = 13, Ext2(F ,F) = 0.
(iv) For any P2 ⊂ P3, h0(FP2(2)) = 10, h1(FP2(2)) = 0.

Proof. Statements (i)-(iii) are proved in [12, Sec. 2]. The equalities in statement (iv) follow from the exact triple
0→ F(1)→ F(2)→ FP2(2)→ 0 and [12, Tables 2.8.1 and 2.12.2] for k = 2, 4 and, respectively, from [19, §9] for
k = 0. �

We next proceed to a detailed description of the relation between the spaces Huk and Ruk for 0 ≤ k ≤ 3 and the
spaces Hsk and Rsk for 0 ≤ k ≤ 2 given by steps 1 and 2 of formula (180). Denote

2SuF := {P2 ∈ P̌3 | dim(C ∩ P2) = 1, C ⊂ P2, OC = OP3/(F/OP3)}, [F ] ∈ Ru3 ,

2SuF := ∅, [F ] ∈ Ruk , k ≤ 2,
1SuF := {P2 ∈ P̌3 | dim(C ∩ P2) = 1, OC = OP3/(F/OP3), C 6⊂ P2}, [F ] ∈ Ruk ,
2SsF = 1SsF := ∅, if [F ] ∈ Rsk,
0SuF := {P2 ∈ P̌3 r (1SuF ∪

2SuF ) | SingF ∩ P2 6= ∅}, [F ] ∈ Ruk ,
0SsF := {P2 ∈ P̌3 r (1SsF ∪

2SsF) | SingF ∩ P2 6= ∅}, [F ] ∈ Rsk,
−1SuF := P̌3 r (0SuF ∪

1SuF ∪
2SuF ),

−1SsF := P̌3 r (0SsF ∪
1SsF ∪

2SsF ),

Duk := Ruk × P̌3, iDuk := {([F ],P2) ∈ Duk | P
2 ∈ iSuF}, −1 ≤ i ≤ 2,

Dsk := Rsk × P̌3, iDsk := {([F ],P2) ∈ Dsk | P
2 ∈ iSsF}, −1 ≤ i ≤ 2,

Dk := Duk ⊔ D
s
k = ⊔

−1≤i≤2

iDk, where iDk := iDuk ⊔
iDsk, −1 ≤ i ≤ 2.
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Clearly, iDuk (respectively, iDsk) are locally closed in Duk (respectively, Dsk) and

(189) Duk =
⊔

−1≤i≤2

iDuk , Dsk =
⊔

−1≤i≤2

iDsk,

(190) dim iDuk ≤ dimRuk + 2− i, dim iDsk ≤ dimRsk + 2− i, −1 ≤ i ≤ 2.

Next, denote

Π(F ,P2) := {〈ρ〉 ∈ P(Hom(F ,OP2(2)))|im(ρ : F → OP2(2)) = IZ,P2(2)

for a subscheme Z ⊂ P2, dimZ ≤ 0, ℓ(Z) = 6− k}, ([F ],P2) ∈ Dk,
(191)

K([F ],P2) := {〈ρ〉 ∈ Π(F ,P2) | [Lρ := (ker ρ)(1)] ∈ R(1, 4, 6) is stable},

([F ],P2) ∈ Dk,Qk := {([F ],P2, 〈ρ〉) | ([F ],P2) ∈ Dk, 〈ρ〉 ∈ K([F ],P2)},

Qk
p1k−−→ Dk is the forgetful map, p−1

1k ([F ],P
2) = K([F ],P2),

(192)

Σ([F ],P2,〈ρ〉) := {〈γ〉 ∈ P(Hom(Lρ,OP2(2))) | γ : Lρ → OP2(2) is an

epimorphism and kerγ is locally free}, ([F ],P2, 〈ρ〉) ∈ Qk,

Tk := {([F ],P2, 〈ρ〉, 〈γ〉) | ([F ],P2, 〈ρ〉) ∈ Qk, 〈γ〉 ∈ Σ([F ],P2,〈ρ〉)},

Tk
p2k−−→ Qk is the forgetful map, p−1

2k ([F ],P
2, 〈ρ〉) = Σ([F ],P2,〈ρ〉),

(193)

Quk := p−1
1k (D

u
k ∩ p1k(Qk)), T uk := p−1

2k (Q
u
k ∩ p2k(Tk)),

Qsk := p−1
1k (D

s
k ∩ p1k(Qk)), T sk := p−1

2k (Q
s
k ∩ p2k(Tk)).

(194)

(Here 0 ≤ k ≤ 3 and 0 ≤ k ≤ 2 in unstable case and stable case, respectively.) Since Dk = Duk ⊔ D
s
k, it follows

that

(195) Qk = Quk ⊔Q
s
k, Tk = T uk ⊔ T

s
k , 0 ≤ k ≤ 3.

(For consistency, in (195) and below we set Qs3 = T s3 = ∅.) Since the stability of the sheaf Lρ is an open property
in flat families [24, Prop. 2.3.1] it follows that

(196) p−1
1k ([F ],P

2) = K([F ],P2)
�

� open
// Π(F ,P2), ([F ],P2) ∈ Dk.

Take any point ([F ],P2, 〈ρ〉, 〈γ〉) Since by definition [Lρ] ∈ R(1, 4, 6) is stable and E = ker γ is a vector bundle,
we obtain from the second triple (180) that [E ] ∈ R(0, 5, 0) is also stable, i. e. [E ] ∈ B(5). Thus, we obtain a
natural map

(197) fk : Tk → B(5), ([F ],P2, 〈ρ〉, 〈γ〉) 7→ [ker γ]

and by Proposition 25, Huk ⊂ fk(T
u
k ), H

s
k ⊂ fk(T

s
k ). This, together with (181) and and the second formula (195)

yields

(198) Hr (H ∩ G(2, 1)) ⊂
⊔

0≤k≤3

fk(Tk).

It will follow from computations below that Tk are disjoint unions of schemes and fk are morphisms for each of
these schemes and all admissible values of k.

Lemma 28. Let ([F ],P2) ∈ Dk and Π(F ,P2) 6= ∅. Then:

(i) there is an open embedding j : Π(F ,P2)
�

� open
// P(H0((FP2)∨∨(2))) and for any 〈ρ〉 ∈ Π(F ,P2) there exists a

subscheme W (ρ) of P2, dimW (ρ) ≤ 0, and an exact triple

(199) 0→ FP2(2)
can
−−→ (FP2)∨∨(2)→ OW (ρ) → 0, ℓW (ρ) = k;

(ii) if Σ([F ],P2,〈ρ〉) 6= ∅ for ([F ],P2, 〈ρ〉) ∈ Qk, then there is an open embedding Σ([F ],P2,〈ρ〉)
�

� open
// P(Hom(L,OP2(2))) ≃

P10;
(iii) if ([F ],P2) ∈ −1Dk, then k = 0, h0(F∨∨

P2 (2)) = h0(FP2(2)) = 10 ;
(iv) if 0Dk 6= ∅ and ([F ],P2) ∈ 0Dk, then 1 ≤ k ≤ 2, h0(FP2(2)) = 10 and

(200) h0((FP2)∨∨(2)) = 10 + k;
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(v) if 1Dk ∪ 2Dk 6= ∅ and ([F ],P2) ∈ 1Dk ∪ 2Dk, then the equalities (200) hold for k = 1, 2, 3 and

(201) h0((FP2)∨∨(2)) = h0((FP2)(2)) = 11, if k = 0.

Proof. (i) Take any 〈ρ〉 ∈ Π(F ,P2). By the definition of Π(F ,P2) we may consider ρ as a composition ρ : F
⊗O

P2−−−→

FP2

ρ̄
−→ IZ,P2(2) with dimZ ≤ 0, ℓZ = 6− k. As F is reflexive, FP2 has no torsion as a OP2-sheaf [20, §1]. Hence,

ker ρ̄ is a rank 1 torsion free OP2 -sheaf. Since c1(FP2) = 0, c2(FP2) = 2, ker ρ̄ ≃ IW,P2(−2), where dimW ≤ 0,
and there is an exact triple

(202) 0→ IW,P2

θρ
−→ FP2(2)

ρ̄
−→ IZ,P2(4)→ 0.

The monomorphism θ = θρ in this triple extends to a commutative square

(203) IW,P2
//

θρ
//

��

can

��

FP2(2)
��

can

��

OP2
//
θ∨∨
ρ

// (FP2)∨∨(2),

and we obtain a morphism j : Π(F ,P2)→ P(H0((FP2)∨∨(2))), 〈ρ〉 7→ θ∨∨
ρ . To construct the inverse to j morphism

ψ : (imj) → Π(F ,P2), take any (θ̃ : OP2 → (FP2)∨∨(2)) ∈ imj. The morphism θ : IW,P2 → FP2(2) such that

θ̃ = θ∨∨ is recovered from θ̃ as θ̃|I
W,P2

, where IW,P2 = can−1(θ̃(OP2) ∩ can(FP2(2))). Then θ̄ defines via θ a

morphism ρ̄ as the quotient morphism FP2(2) → cokerθ ≃ IZ,P2(4), and we set ψ(〈θ̄〉) := 〈ρ̄ ◦ (− ⊗ OP2)〉. The
openness of j follows from the openness of the condition ρ : F → OP2(2) to be surjective.

Next, remark that, in (203), the OP2 -sheaf cokerθ ≃ IZ,P2(4) has no torsion, hence there is no nonzero morphism
OW = OP2/IW,P2 → cokerθ, since dimW ≤ 0. Thus, (203) and the Snake Lemma yield an exact triple (199) with
W (ρ) =W .

(ii) The injection Σ([F ],P2,〈ρ〉) →֒ P(Hom(Lρ,OP2(2))) ≃ P10 is an open embedding since the condition that
γ : L := Lρ → OP2(2) is an epimorphism and ker γ is locally free is open on 〈γ〉 ∈ P(Hom(L,OP2(2))). We thus
have to show that dimHom(L,OP2(2)) = 11. Consider the epimorphism γ̄ = γ|P2 : LP2 ։ OP2(2). Since by
definition [L] ∈ R(1, 4, 6), it follows that ker γ̄ ≃ IY,P2(−1) for some subscheme Y of P2, dimY = 0, ℓY = 6.

This yields an exact triple 0 → IY,P2(−1) → LP2

γ̄
−→ OP2(2) → 0. Applying to it the functor Ext•O

P2
(−,OP2(2))

we obtain an exact triple 0 → OP2 → Hom(LP2 ,OP2(2)) → OP2(3) → 0 which implies dimHom(L,OP2(2)) =
dimHom(LP2 ,OP2(2)) = h0(Hom(LP2 ,OP2(2))) = 11.

(iii) Since ([F ],P2) ∈ −1Dk, (FP2)∨∨ ≃ FP2 is locally free OP2-sheaf, and (199) implies k = 0. Now, if F is
unstable, then applying to (182) the functor −⊗OP2(2) we have an exact triple

(204) 0→ OP2 → FP2 → IY,P2(2)→ 0, dimY = 0, ℓY = degC = 2,

and this triple yields the desired values of hi((FP2)∨∨(2)) = hi(FP2(2)). If F is stable, then these values are given
by Proposition 27.(iv).

(iv) Since ([F ],P2) ∈ 0Dk ∪ 2Dk 6= ∅, the morphism can in (199) is not an isomorphism, hence k = ℓW (ρ) ≥ 1.
On the other hand, k ≤ 3 by Propositions 27(i) and 26(i). As above, if F is unstable, the triple (204) is true,
which yields the equalities h0(FP2(2)) = 10, h1(FP2(2)) = 0. Respectively, if F is stable, these equalities follow
from Proposition 27.(iv). Whence, by (199), we have (200).

We only have to show that, in case F is unstable, k ≤ 2. By the definition of the sets iDuk , i = 0, 1,
the condition ([F ],P2) ∈ 0Duk implies that P2 6∈ 1SuF . This means that the exact triple (204) is true, with
dimY = 0, ℓY = degC = 2. Dualizing this OP2-triple we easily obtain an inequality h0(Ext1(FP2 ,OP2)) ≤
h0(Ext2(OY ,OP2)) = ℓY = 2 and an exact tripe 0 → OP2 → (FP2)∨ → IZ,P2(2) → 0 for some scheme Z ⊂ P2

with dimZ ≤ 0, ℓZ = 2 − h0(Ext1(FP2 ,OP2)). This triple, together with the triple (204) and the isomorphism

(FP2)∨ ≃ (FP2)∨∨, yields an exact triple 0 → FP2(2)
can
−−→ (FP2)∨∨(2) → K → 0, where K is an artinian

sheaf of length h0(K) = h0(Ext1(FP2 ,OP2)) ≤ 2. Comparing this triple with (199) we obtain K ≃ OW (ρ) and
k = ℓW (ρ) ≤ 2.

(v) From the condition ([F ],P2) ∈ 1Dk 6= ∅ and Proposition 26 it follows that P2 ∩ SingF = l is a line, if
k = 0, 1, 2; respectively, P2 ∩ SingF = C is a conic, if k = 3. Thus, applying to the triples (182) and (183) the
functor − ⊗ OP2(2) and using the resolution 0 → OP3(−1) → OP3 → OP2 → 0, we obtain the following exact
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triples, where dimW = 0 and if k = 0 or 1, then W ⊂ l:

0→ OP2(2)→ FP2(2)→ IC,P3(2)|P2 → 0,

0→ Ol(3 − k)→ IC,P3(2)|P2 → IW,P2(1)→ 0, ℓW = 3− k, k ≤ 2,

0→ Ol → IC,P3(2)|P2 → OP2(1)→ 0, k = 3, C 6⊂ P2, P2 ∩ C = l,

0→ OC(1)→ IC,P3(2)|P2 → OP2 → 0, k = 3, C ⊂ P2.

(205)

Since F is locally free for k = 0, hi((FP2)∨∨(2)) = hi(FP2(2)), from (205) we obtain (201). Respectively, for
k = 1, 2, 3, (205) and (199) imply (200). �

For 0 ≤ k ≤ 3, let B ⊂ P3 × P̌3 be the graph of incidence,OB(2) = OP3(2) ⊠O
P̌3 |B, and let pr0 : Du

k → D
u
k ,

pr1 : Du
k →Ru

k , D
u
k → P3 × P̌3 be the projections. For each m ≥ 0 consider the set

(206) Y = Y uk,m := {([F ],P2) ∈ Duk | dimHom(F ,OP2(2)) = m}, m ≥ 0,

and set Y = pr−1
0 (Y ), qi = pri|Y, i = 0, 1, 2, L = Extq0(q

∗
1F , q

∗
2OB(2)), where F is the universal sheaf on Ru

k

which exists by Proposition 26.(iv), Y = Y ×Y P(L∨), and let P(L∨)
λ
←− Y

π
−→ Y and Y

µ
−→ P(L∨)

ν
−→ Y be the

projections. By [2, Satz 3], Y = Y uk,m is locally closed in Duk and the sheaf L is a rank m locally free sheaf on Y

which commutes with the base change, i. e., for y = ([F ],P2) ∈ Y , one has L|y = Hom(F ,OP2(2)). On Y there
is a universal morphism ρ : (q1 ◦ π)∗F → (q2 ◦ π)∗OB(2)⊗ µ∗OP(L∨)(1). Consider the set

(207) X = Xu
k,m := {([F ],P2) ∈ Y uk,m | K([F ],P2) 6= ∅}.

From this definition it follows that the sheaf imρ is flat over P(L∨) at any point x ∈ ν−1(X). This implies that X
is an open (possibly, empty) subset of Y , hence it is locally closed in Duk . Therefore, since in view of Proposition
26.(iv) Duk are varieties, the set Φuk = {m ∈ Z≥0 | Xu

k,m 6= ∅} is finite. By the definitions (191), (192), (194) and

(207) we have

(208) Xu
k :=

⊔

m∈Φu
k

Xu
k,m = p1k(Q

u
k), Quk = p−1

1k (X
u
k ).

Denoting iXu
k = iDuk ∩X

u
k ,

iQuk = p−1
1k (

iXu
k ), −1 ≤ i ≤ 2, we find from the first equality (189) that

(209) Quk =
⊔

−1≤i≤2

iQuk .

The inclusion (196) and Lemma 28.(i) yield that the projection p1k : iQuk →
iXu

k decomposes as

(210) p1k : iQuk
�

� open
// iQ̃uk

p̃1k−−→ iXu
k , −1 ≤ i ≤ 2, 0 ≤ k ≤ 3,

where iQ̃uk
p̃1k−−→ iXu

k is the projective fibration with fibre P(H0((FP2)∨∨(2))) over an arbitrary point ([F ],P2) ∈
iXu

k . Here by (208) each iXu
k is a disjoint union of schemes, This shows that each iQuk is a disjoint union of

schemes. Since iXu
k ⊂ D

u
k , it follows from (190) and Lemma 28.(iii)-(v) that

(211) dim iQuk ≤ dim iRuk + 11− i+ k, −1 ≤ i ≤ 2, 0 ≤ k ≤ 3.

Thus, in view of (184), we obtain dim iQuk ≤ 26 for all possible i, k, hence (209) yields

(212) dimQuk ≤ 26, 0 ≤ k ≤ 3.

To obtain a similar estimate for dimensions of Qsk, we define similarly to (206) the locally closed subsets
Y sk,m := {([F ],P2) ∈ Dsk | dimHom(F ,OP2(2)) = m}, m ≥ 0, of Dsk. Next, note that apriori there is no universal

sheaf F on Rs
k. However, by Proposition 27, Ext2(F ,F) = 0 for any [F ] ∈ Rsk, 0 ≤ k ≤ 2. This means that the

deformation theory for Rsk is unobstructed, so there exists an open cover Rsk =
⋃
j∈J

Uj and universal sheaves F j on

U j (see, e. g., [9, Appendice A1-A2], [17, Ch. 6]). The existence of these local universal sheaves is enough to show
that the setsXs

k,m defined similarly to (207) asXs
k,m := {([F ],P2) ∈ Y sk,m |K([F ],P2) 6= ∅}, are locally closed subsets

of Dsk. We then have, similarly to (208)-(209), a finite dijoint unions of schemes Xs
k :=

⊔
m∈Φs

k

Xs
k,m = p1k(Qsk) and

relations Qsk = p−1
1k (X

s
k). Denoting iXs

k = iDsk∩X
s
k,

iQsk = p−1
1k (

iXu
k ), −1 ≤ i ≤ 2, and mimicking the argument in

(209)-(211) with u substituted by s, we obtain that iQsk, respectively, Q
s
k are disjoint unions of schemes satisfying

the inequalities dim iQsk ≤ dim iRsk + 11− i + k, −1 ≤ i ≤ 2, 0 ≤ k ≤ 2. These formulas and Proposition 27.(ii)
imply the inequalities dimQsk ≤ 26, 0 ≤ k ≤ 2, which, together with (212) and (195) yield

(213) dimQk ≤ 26, 0 ≤ k ≤ 3.
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(Remind that, as in (195), we set Qs3 = T s3 = ∅.) Now from Lemma 28.(ii) and the last formula in the display
(193), similarly to (210), we obtain that Tk are disjoint unions of schemes and projections p2k : Tk → Qk are

morphisms which decompose as p2k : Tk
�

� open
// T̃k

p̃2k−−→ Qk, where T̃k
p̃2k−−→ iQk is the projective fibration with

fibre P(H0((FP2)∨∨(2))) ≃ P10 over an arbitrary point ([F ],P2, 〈ρ〉) ∈ Qk, 0 ≤ k ≤ 3. This together with (213)
yields

(214) dim Tk ≤ 36, 0 ≤ k ≤ 3.

Proof of Theorem 21. It is clear from the above that the maps fk : Tk → B(5) defined in (197) are morphisms.
The inequality dim(H r (G(2, 1) ∩ H)) ≤ 36 now follows from (198) and (214). However, by [20, Remark 3.4.1],
any irreducible component of B(5) has dimension at least 37. Hence, Theorem 21 follows. ✷

8. Components of B(5)

We finally have at hand all the results needed to complete the proof of our second main result, namely, the
characterization of the irreducible components of B(5) given by Main Theorem 2. This entire section will be
devoted to this goal.

Proof of Main Theorem 2. The first ingredient of the proof is the fact, proved by Hartshorne and Rao, that
every bundle in B(5) is cohomology of one of the monads (2)-(6), cf. [21, Table 5.3, case 5.(1)-(4)].

Recall that for each stable rank 2 bundle E on P3 with vanishing first Chern class, the number α(E) :=
h1(E(−2)) mod 2 is called the Atiyah–Rees α-invariant of E, see [19, Definition on p. 237]. Hartshorne showed
[19, Corollary 2.4] that this number is invariant on the connected components of the moduli space of stable vector
bundles on P3. One can easily check that the cohomologies of monads of the form (2) and (3) have α-invariant
equal to 0, while the cohomologies of the other three types of monads have α-invariant equal to 1.

Rao showed in [35] that the family of bundles obtained as cohomology of monads of the form (3) is irreducible,
of dimension 36, and it lies in a unique component of B(5). Since instanton bundles of charge 5, i. e. the
cohomologies of monads of the form (2), yield an irreducible family of dimension 37, it follows that the set

(215) I := {[E] ∈ B(5) | α(E) = 0}

forms a single irreducible component of B(5), of dimension 37, whose generic point corresponds to an instanton
bundle. In addition, every [E] ∈ I satisfies H1(End(E)) = 37; this was originaly proved by Katsylo and Ottaviani
for instanton bundles [30], and by Rao for the cohomologies of monads of the form (3) [35, Section 3]. Therefore,
we also conclude that I is nonsingular. This completes the proof of the first part of the Main Theorem.

Our next step is to analyse those bundles with Atiyah–Rees invariant equal to 1.
Hartshorne proved in [20, Theorem 9.9] that the family K of stable rank 2 bundles E with c1(E) = 0 and

c2(E) = 5 whose spectrum is (−2,−1, 0, 1, 2) is an irreducible, nonsigular family of dimension 40, and from the
definition of spectrum one has

(216) h1(E(−2)) = 3, [E ] ∈ K.

The bundles from K are precisely those given as cohomologies of monads of the form (4), cf. [21, Table 5.3, case
5.(4)], which is a particular case of a class of monads studied by Ein in [15]. It is shown in [15] that the closure
K of K in B(5) is an irreducible component of B(5) of dimension 40.

We proved in Main Theorem 1, case a = 2, that the bundles arising as cohomology of monads of the form
(5) form a dense subset G(2, 1) of a rational irreducible component of dimension 37. Consider the set H of
bundles arising as cohomology of monads of the form (6). Since the bundles from G(2, 1) ∪H have the spectrum
(−1, 0, 0, 0, 1) by [21, Table 5.3, case 5.(2)], by we have (cf. (164))

(217) h1(E(−2)) = 1, [E ] ∈ G(2, 1) ∪H,

so that α(E) = 1, and therefore, in view of (215), H ∩ I = ∅. Since, by Theorem 21, H does not constitute a

component in B(5), it then follows from the above that H ⊂ G(2, 1) ∪ K.

Proposition 29. H ⊂ G(2, 1) and K = K.

Proof. We only have to show that (G(2, 1) ∪ H) ∩ K = ∅. Suppose by contradiction that there exists a vector
bundle [E ] ∈ (G(2, 1) ∪ H) ∩ K. By (216) and the inferior semi-continuity of the dimension of the cohomology
groups of coherent sheaves, one has that h1(E(−2)) ≥ 3, contrary to (217). �

This last proposition finally concludes the proof of Main Theorem 2. ✷

We summarize all the information in the Main Theorem 2, and the discrete invariants of stable rank 2 bundles
with c1 = 0 and c2 = 5 in the following table.
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Table 1. Irreducible components of B(5)

Component Dimension Monads Spectra α-invariant

Instanton 37
(2) (0,0,0,0,0)

0
(3) (-1,-1,0,1,1)

Ein 40 (4) (-2,-1,0,1,2) 1
Modified

Instanton
37

(5)
(-1,0,0,0,1) 1

(6)

Remark. Inspired by the techniques introduced in the present paper, the authors of [38] construct another
infinite series of irreducible components of B(0, n) whose special point corresponds to a bundle obtained as the
cohomology of a monad similar to the one in display (24), just substituting a direct sum of two rank 2 instantons
bundles for the rank 4 instanton bundle of charge 1 in middle term.
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