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Higher-Order Multicuts for Geometric Model
Fitting and Motion Segmentation

Evgeny Levinkov*, Amirhossein Kardoost*, Bjoern Andres, and Margret Keuper

Abstract—The minimum cost lifted multicut problem is a generalization of the multicut problem (also known as correlation clustering)
and is a means to optimizing a decomposition of a graph w.r.t. both positive and negative edge costs. It has been shown to be useful in
a large variety of applications in computer vision thanks to the fact that multicut-based formulations do not require the number of
components given a priori; instead, it is deduced from the solution. However, the standard multicut cost function is limited to pairwise
relationships between nodes, while several important applications either require or can benefit from a higher-order cost function, i.e.
hyper-edges. In this paper, we propose a pseudo-boolean formulation for a multiple model fitting problem. It is based on a formulation
of any-order minimum cost lifted multicuts, which allows to partition an undirected graph with pairwise connectivity such as to minimize
costs defined over any set of hyper-edges. As the proposed formulation is NP-hard and the branch-and-bound algorithm (as well as
obtaining lower bounds) is too slow in practice, we propose an efficient local search algorithm for inference into resulting problems. We
demonstrate versatility and effectiveness of our approach in several applications: 1) We define a geometric multiple model fitting, more

specifically, a line fitting problem on all triplets of points and group points, that belong to the same line, together. 2) We formulate
homography and motion estimation as a geometric model fitting problem where the task is to find groups of points that can be
explained by the same geometrical transformation. 3) In motion segmentation our model allows to go from modeling translational
motion to Euclidean or affine transformations, which improves the segmentation quality in terms of F-measure.

Index Terms—Combinatorial optimization, local search algorithm, higher-order multicut, motion segmentation, geometric model fitting

1 INTRODUCTION

ULTICUT-BASED formulations have recently received
M considerable attention and have been successfully ap-
plied to a variety of tasks in computer vision [1], [2], [3], [4],
[5],[6], [7], [8], [9], [10], [11], [12]. Their application to a new
problem is particularly easy: one is only required to provide
probability estimates of pairs of nodes to belong together,
while no information about the exact number of clusters
or their expected sizes is necessary. These parameters are
defined by the solution. Multicut-based frameworks are
therefore particularly interesting for tasks such as multiple
model fitting or multiple object motion segmentation, where
one wants to avoid additional model selection steps and
prefers the correct number of objects/models to be directly
inferred from each problem instance.

However, the multicut cost function [13], [14] can assign
a cost or a reward only to direct neighbors in the graph,
which can be a serious limitation in certain applications. For
example, in case of image segmentation and a 4-connected
graph the final solution is likely to deteriorate significantly,
since inter-pixel edge probability estimates tend to be noisy.
Keuper et al. [3] introduced additional (lifted) edges into the
multicut objective, which allow to capture information in a
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non-local neighborhood, but preserve the original feasible
set of solutions. Furthermore, Kim et al. [15] proposed a
higher-order multicut formulation, that allows to model
dependencies between more than two nodes. In this work,
we combine these two ideas in one formulation. This gen-
eralization allows us to apply minimum cost multicuts to
geometric model fitting as well as motion segmentation
problems, which both require higher-order non-local costs
and can have a variable number of objects in each problem.

On the downside, Bansal et al. [14] showed, that solving
the multicut problem is exactly NP-hard. This result ex-
tends to the above mentioned multicut-based formulations.
Although branch-and-bound [2] algorithms, as well as LP
relaxations [15], [16], are feasible when applied to small
problems, they do not easily scale [17]. Instead, we propose
a local search algorithm based on an efficient move making
algorithm [3]. This original heuristic by Keuper et al. pro-
poses feasible solutions for the (second order) lifted multicut
problem. Here, we extend it to handle also higher-order
terms and their combinations. Such heuristics do not pro-
vide any guarantees on the quality of solutions or computa-
tion time, but work well in practice [17] and provide feasible
solutions at any time. Thanks to the affordable runtime of
our proposed local search algorithm, we were able to apply
higher order (lifted) multicuts to large problems, which we
describe in details below.

1.1

The task of robust geometric model fitting is to explain
observational data under a given model assumption. In this
paper we tackle the most general problem setting, i.e. we
assume that the number of models is unknown, there is

Geometric Model Fitting

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3148795, IEEE

Transactions on Pattern Analysis and Machine Intelligence

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX

a significant amount of background noise, and the models
themselves are perturbed.

The most traditional way to solve this task is the random
sampling consensus (RANSAC) [18]. It starts with a random
subset of data points and iteratively adds or removes data
points to grow the inliers set, i.e. the set of points with a
model error below a certain threshold w.r.t. a single model.
A straightforward extension of RANSAC to multiple model
fitting is to iteratively fit a model, remove all associated
inliers, and proceed with fitting another model. This can
lead to undesired results since the information about the
possible relation between the removed and the remaining
data is lost. Zuliani et al. [19] proposed multiRANSAC to
improve over RANSAC in this respect, which requires a user
to specify the number of models. As other recent geometric
model fitting approaches [20], [21], it is based on random
sampling and thus sensitive to the initial condition.

In contrast, we cast the geometric model fitting problem
as a point grouping problem as previously done e.g. in [22],
[23], [24]. Our approach is entirely based on local obser-
vations over which a global and probabilistically motivated
optimization is possible. In this setting, the considered prob-
lem sizes are usually small since previous approaches (e.g.
[20], [21]) require large computation times, such that we can
easily employ and solve models of order up to 5 and thereby
show that our formulation and heuristic are principled.

1.2 Motion Segmentation

Motion segmentation, as addressed for example in [25],
[26], [27], [28], [29], is a task of segmenting salient moving
objects in a video. According to the Gestalt principle of
common fate [30], motion patterns of objects are often more
homogeneous than their appearance and provide robust
cues for moving object segmentation. Thus, from accurately
estimated point-wise motions, object motion models can be
fit through the formulation of a point grouping problem
over local motion similarities.

The Euclidean difference between two local motion de-
scriptors such as optical flow vectors or point trajectories
measures how well the behavior of the two entities can
be described by a single translational motion model. A
simple model with only pair-wise potentials can yield good
performance in practice [4], [31]. While being successful in
providing segmentations in simple scenarios, more complex
motion patterns can not be resolved with only pair-wise
potentials. For example scaling (e.g. zooming in/out of
the camera or movement of objects toward the camera),
out-of-plane rotation and highly non-rigid motion of object
parts hinders providing high quality motion segmentations.
Therefore, higher-order motion models, that can compare
more than two motion vectors at a time, are required.

Transformations describing translation, rotation and
scaling can be estimated from two motion vectors. Thus, for
any three points, one can estimate how well their motion
can be explained by one Euclidean transformation through
residual errors. Costs that describe such motion differences
are thus at least of order three. Affine motion differences can
be estimated from four motion vectors, and to assign costs
to differences in homographies the minimum required order
is five. Our model offers the flexibility to combine edges of

varying order in one problem instance - which we exploit
to produce robust model fits up to Euclidean transforma-
tions. Yet, complementary to the geometric model fitting
application, the relevant motion segmentation benchmarks
yield rather large problem sizes such that we are limited
to models up to order three in this setting. Thus, the first
application we consider, geometric model fitting, indicates
the principled applicability of our formulation while the
second, motion segmentation, proves the practical relevance
of these results.

One additional adversity in motion segmentation is to
distinguish between different objects with similar underly-
ing motion patterns. Lifted Multicuts [3] have shown to re-
solve such ambiguities appropriately in the context of image
segmentation. We show that higher-order graphs with third
order edges and their combination with lifted edges propose
better motion segmentations and disambiguate complex
motion patterns like similarly moving objects, scaling mo-
tions and out-of-plane rotations of the objects.
Contributions In summary, we make the following con-
tributions: We provide a formulation for the geometric
model fitting problem using higher-order lifted minimum
cost multicuts. We show its applicability to multiple model
fitting problems such as line fitting from total least squares
estimates and prove its practical benefit for motion segmen-
tation. In contrast to previous approaches, our model allows
the segmentation of noisy data into segments w.r.t. motion
models beyond in-plane translation by combining second
and third order edges and allows for efficient optimization.

2 RELATED WORK

Geometric Model Fitting Most recent and well-
performing approaches to geometric model fitting are
based on preference analysis. They start with sampling a
number of model hypotheses to build a preference matrix
with the inliers to these hypotheses. J-Linkage [21] builds a
preference matrix by assigning either 1 or 0 indicating if a
point belongs to a hypothesis, determined by a threshold.
Then they perform a greedy agglomerative clustering of
points using the Jaccard distance, i.e. they group points
with similar preference sets. To avoid hard 01-assignments,
T-Linkage [20] relaxes the membership value and uses a
different similarity metric [32]. Magri and Fusiello [33]
cast geometric model fitting as a maximum set coverage
problem: Given an integer £, exactly k subsets of hypotheses
are selected, covering the maximum number of points.

A separate line of research seeks to find low-rank repre-
sentations of the preference matrix and thus discover the
models. Robust Preference Analysis (RPA) [34] builds a
symmetric kernel of pairwise similarities (measured with
Tanimoto distance). Then it performs Robust PCA to obtain
a rank-k representation and clusters points in this reduced
space using Symmetric Non-negative Matrix Factorization.
Avoiding all intermediate operations, Non-negative Matrix
Underapproximation (RS-NMU) [35] directly finds a low-
rank representation of the preference matrix and yields
high-quality results. Their method gains robustness via a
t-test that efficiently filters out statistically insignificant hy-
potheses. Denitto et al. [36] propose an approach to compute
a sparse low-rank representation of the preference matrix
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using FABIA [37] and obtain bi-clusters, i.e. clustering in
rows and columns of the matrix, that allows points to belong
to different geometric models simultaneously.

Isack and Boykov [38] also formulated a combinatorial
optimization problem with a discrete label space of possi-
ble models parameters. They iteratively find inliers to the
models by applying the a-expansion algorithm [39] and
then re-estimate model parameters and prune the redun-
dant ones. Amayo et al. [40] proposed an efficient primal-
dual optimization method for a convex relaxation of the
discrete energy of [38]. Recently, Barath and Matas [41] have
introduced density modes into models’ parameters space
and showed that applying mean-shift [42] can efficiently
reduce the number of models.

Higher-order clustering has previously been used in [22],
[23], [24], [43], [44], [45], [46] for geometric model fitting.
Higher-order potentials are defined over k-tuples of points
and a probability of the latter to belong together is com-
puted based on the residuals to the sampled hypotheses.
However, to perform clustering, these approaches trans-
form higher-order terms into pairwise potentials or use
randomized techniques and apply spectral clustering. Thus,
in principle, they also require the number of models to
be given. In contrast, we work directly with the higher-
order potentials and perform correlation clustering so as
to automatically recover the optimal number of clusters.
However, the results presented in [22] and [24] can be seen
as a motivation for the use of local evidence on larger than
minimal sets, as employed in the proposed approach.
Motion Segmentation Higher-order graph decomposi-
tions and spectral clustering approaches have been used ex-
tensively in the works of [27], [47], [48], [49], [50], [51], [52] in
computer vision. The higher-order graph decomposition is
proposed first by Agarwalal et al. [43]. Specifically, [27], [50],
[51] model higher-order motions. Zografos et al. [50] model
3D motions using group invariants and [51] model motion
subspaces. The segmentation is then generated by projecting
the resulting hyper-graph onto its primal graph and solving
the spectral clustering problem there. Higher-Order Markov
Random Field (MRF) and Conditional Random Field (CRF)
models have been addressed in [53], [54], [55] and [56].

Our approach relies on the minimum cost lifted multicut
formulation for hyper-graph decomposition. Such formula-
tion is different from both previous approaches. In contrast
to spectral clustering, the multicut formulation does not
suppose any balancing criterion. Moreover, we directly infer
segmentations from the hyper-graph without any projection
onto its primal graph. In contrast to MRFs, the proposed
approach allows higher-order edges to connect vertices
globally, violating the Markov property. Further, MRFs and
CRFs aim at inferring a node labeling with labels given a
priori while multicut approaches aim at inferring an edge
labeling yielding an optimal number of segments.

We cast motion segmentation as a point trajectory group-
ing problem and treat it like a model fitting problem to
generate segments based on different motion pattern. In a
similar way, it has previously been addressed in [4], [25],
[26], [27], [28], [29], [31], [57]. From sparse motion segmen-
tations, frame-wise dense segmentations can be computed
by variational approaches [58] or through learning [12].

In contrast, end-to-end trained CNN based approaches

to motion segmentation are based on single frame segmen-
tations from optical flow [59], [60], [61], [62], [63], [64].
Tokmakov et al. [59], [60], [65] use large amounts of syn-
thetic training data [66] and learn to generate binary object
masks. [59] combine motion cues with an ImageNet [67]
pre-trained appearance model and a GRU for increased
temporal consistency. In a similar way, Jain et al. [64] employ
a realistic dataset extracted from pairs of frames from the
ImageNet video dataset [67] to learn object motion and
appearance cues. While these approaches directly yield pixel
accurate segmentations, they replace explicit motion model
assumptions by huge amounts of training data and can
not inherently determine the number of moving objects. In
DyStaB [68] unsupervised moving object segmentation is
done by partitioning the motion field w.r.t. a mutual infor-
mation based objective and learning object models from the
segments. Yang et al. [69] propose a self-supervised trans-
former model to segment optical flow fields into primary
objects and background in a generative way. The combina-
tion of appearance based detectors and geometric motion
segmentation is used to segment rigid motions in [70].

In [71], motion segmentation is approached in a prob-
abilistic way and the camera motion is subtracted from
each frame for improved training. In [72], this idea of prior
camera motion subtraction is used to allow for better CNN
training for frame-wise segmentation. Bideau et al. [73]
propose a multi-step procedure in which first the camera
motion, fit using RANSAC in the first frames, is subtracted,
then a set of rigid motion models is fitted and last object
segmentation proposals from CNNs are used to combine the
rigid motion parts into objects. In [74], a unified approach is
proposed to handle the moving object detection problem
separately in the 2D and 3D scenes based on geometric
interpretations and the parallax motion analysis. Our ap-
proach directly estimates rigidly moving object parts in a
single step, accounting for camera motion using third-order
models and does not depend on external object proposals.
Minimum Cost Multicuts Most previous works on mini-
mum cost multicuts in computer vision focus on problems
with pair-wise potentials [3], [4], [75], [76]. The exception
is the model first presented by [15], [77] and extensively
studied in [16]. Therein, higher-order costs are used for
image segmentation on superpixel graphs with pairwise
neighborhood connectivity. In [16] an implementation of a
branch-and-bound algorithm is proposed for small problem
instances. We propose a higher-order lifted multicut model,
which allows the definition of higher-order edge costs for
lifted edges as well as for connectivity defining edges. Lifted
multicuts w.r.t. a pair-wise graphs have been proposed in
[3] along with a local search algorithm to find solutions in
reasonable time. A different algorithm for the problem was
proposed in [78] and [79]. Here, we generalize the solver
from [3] to facilitate the inference in higher-order problems.

3 HIGHER-ORDER LIFTED MULTICUT PROBLEM

A decomposition of a graph G = (V, E) can be represented
by assigning to each vertex an identifier of a component it
belongs to, i.e. a vertex labeling. The drawback of such an
encoding is that a permutation of components’ identifiers
will result in a different vertex labeling, while encoding
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(@) (b) (c)

Fig. 1. (@) An example of a graph decomposition and its encodings.
Switching green and red labels will produce a different encoding for the
same decomposition. Dashed lines, in turn, constitute a multicut of a
graph and uniquely define its decomposition. (b) An example of a lifted
graph decomposition and it encoding. Blue lines denote lifted edges,
that connect vertices which are not direct neighbors in the graph. (¢) An
example of 3rd-order costs, that consider three nodes at a time (light
blue triangles) for a better join / cut decision. If a higher-order cost does
not correspond to a clique in the graph, we add lifted edges.

the same decomposition. This ambiguity creates problems
during optimization that are hard to deal with, because the
search space of feasible solutions can be factorially large.
An alternative approach is to assign either 0 or 1 to each
edge such that edges labeled 1 connect nodes only inside
connected components (Fig. 1 (a)).

Such 0l-edge labeling, complying with constraints we
define below, is called a multicut of a graph. Chopra and
Rao [80] define a binary linear program called minimum
cost multicut problem, that allows to optimize for the 01-edge
labeling, or in other words to find an optimal decomposition
of a graph. Its main advantage is that no prior information is
necessary about the number of clusters in the data, instead,
it is deduced from the solution. This is exactly the setting
in the applications we consider in this paper, as we do not
know beforehand how many geometric models or moving
objects the data contains.

However, there are two main limitations of the multicut
problem: 1) It allows to specify costs or rewards only for
direct neighbors in the graph, which limits the expres-
siveness of the cost functions only to local neighborhoods.
Keuper et al. [3] introduced lifted edges (Fig. 1 (b)) into the
2nd-order multicut problem and showed that it greatly im-
proved image and mesh segmentation results. An important
difference of the lifted edges is that they only define a cost
between vertices, but not connectivity, thus preserving the
original feasible set of solutions. See [81] for a detailed proof,
that the lifted multicut problem is not simply equivalent
to a multicut problem with more edges. 2) It allows to
specify only pairwise edge costs, which is not enough for
some applications. For example, for line fitting and motion
segmentation we need 3rd-order costs, while homography
estimation requires 5Sth-order costs. Kim et al. [15] and
Kappes et al. [16] proposed a formulation that allows to
specify costs of arbitrary order (Fig. 1 (c)). They used a
cutting-plane algorithm to solve emerging models, which
turns out to be impractical for large real-world instances
due to the LP-solver’s bottleneck. Below, we combine the
two above-mentioned findings in a joint formulation.

Definition 1 For a simple, connected graph G = (V, E) and
lifted edges F, such that F C () \ E,let V = {U | U €

2V |U| > 2} denote the set of connected subsets of nodes in

G. For a given cost function c: V — R, written below is an

instance of the higher-order minimum cost lifted multicut
min

problem
y€e{0,1}BUF Z cu H Yow » 1)
VeV {vwie(5)n{EUF}

with y subject to the following linear constraints
VC € cycles(G), Ve € C::
(-p)< 3, (-w) @

e’eC\{e}
Vf ={v,w} € F,YP € vw-paths(G):

-y <> (L—w) O

ecP
Vf ={v,w} € F,VT € vw-cuts(G):

yr < Z Ye - 4
eeT

Cycle inequalities (2) ensure that the cut in graph G' does
not have holes. Path inequalities (3) guarantee that Vf =
{v,w} € F, y can be assigned value 1, iff there exists a path
P in graph G, that connects vertices v and w. Otherwise, the
solver then has two options: either create such path or set
yy = 0. Cut inequalities (3) guarantee, that Vf = {v,w} €
F', ys can be assigned value 0, iff there exists a cut 7" in graph
G, that separates vertices v and w. Otherwise, the solver has
to either create such a cut or set y; = 1.

Note that in our formulation (1), the set of decompo-
sitions is defined over a pairwise connected graph G. The
costs, however, are defined over connected subsets U € 2V
of nodes of arbitrary cardinality larger than 1. Normally,
only subsets of fixed cardinality k are used, e.g. V = (V).
However, one can define a cost function over several cardi-
nalities X' C N\ {1}. It is easy to see, that in case K = {2}
we get the lifted multicut formulation from [3]. Therefore,
here we propose a strictly more general formulation.

Keuper et al. [3] showed the connection of optimization
problem (1) with V = (‘2/) to finding the most likely
multicut in Bayesian sense: Let p(ypw = 1 | Zyw) be a
conditional probability estimate for two nodes {v, w} € V
to belong together given some features x,,,. If we set costs
as Cyw = log W, then minimizing (1) is the
same as performing MAP inference in the induced Bayesian
network. The extension from 2nd-order sets to higher-order
cases is straightforward.

This allows to interpret solutions of (1) in terms of
local probabilities. If p(H{v’w}e(g)m{EuF} Yow = 1| 2y) is
greater than 0.5 for some U € V), then the corresponding cost
cy is less than 0. This means that all nodes in U are likely to
belong together. We call such terms attractive. Conversely, if
P(H{U,w}e(g)n{EuF} Ypw = 1 | 2y) is less than 0.5, then the
corresponding cost ¢y is greater than 0 and acts as a penalty.
We call such terms repulsive.

4 LOCAL SEARCH ALGORITHM

The multicut problem is known to be NP-hard [14]. Var-
ious cutting-plane and branch-and-bound algorithms [2],
[15], [75], [77], [82], [83], [84] do not scale to instances of
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Algorithm 1: Kernighan-Lin Algorithm. The function
UPDATE_BOUNDARY is given in Alg. 2.

Algorithm 2: Function UPDATE_BOUNDARY greedily
moves vertices from one component to the other.

Data: weighted, undirected graph G = (V, E), lifted
edges F, cost function ¢, starting 01-edge labeling
yO c {07 1}EUF

Result: 01-edge labeling y*~

1

1t+1

2 while t < max_iter and y' # y'~! do

3 foreach (A, B) € adjacent_components(y'~") do
4 | 4" + update_boundary(G, F, ¢, A, B)

5 foreach A € components(y') do
6 | 4" + update_boundary(G, F, ¢, A, ())

the size we consider even for 2nd-order problems, c.f. the
comparative study [17]. Indeed, we implemented a branch-
and-bound method in Gurobi [85] for the 3rd-order case
by linearizing the objective (1), but we could not obtain a
solution even for the smallest problem we consider in 12
hours. Toward scalable algorithms, Keuper et al. [3] define a
generalization of Kernighan and Lin’s primal local search
algorithm for graph partitioning problems to the case of
lifted multicut problem. It shows the best performance for
this problem in [17]. We generalize their algorithm further to
lifted multicut problems to include costs of arbitrary order.
Overview The algorithm takes as input an instance of the
higher-order lifted multicut problem and an initial decom-
position of G' and outputs a decomposition of G whose
higher-order lifted multicut has an objective value lower
than or equal to that of the initial decomposition. As the
original KLj-Algorithm [3], it always maintains, throughout
its execution, a feasible decomposition of G. The pseudo-
code is given in Alg. 1. New components are introduced by
updating a boundary of a component against an empty set (),
as given by lines 5-6, exactly as in the 2nd-order version [3].

Function UPDATE_BOUNDARY (Alg. 2) receives two com-
ponents A and B and updates the cut between only them.
It constructs a sequence M of elementary transformations
of the components A and B greedily such that every
consecutive move-operation increases the cumulative gain
S maximally (or decreases it minimally). Therefore, the
operation COMPUTE_GAINS computes, at the beginning of
each execution of UPDATE_BOUNDARY, for every element
v € AU B the difference in the objective function (gain)
when v is moved from A to B or from B to A. These
differences are updated as described in Alg. 2, 1l. 9-21. To
escape local optima, we determine * = argmax;S; such as
to maximize the total gain of the sequence of operations. If the
objective value can be decreased by executing either the first
1* elementary transformations or by joining the components
A and B the optimal of these two operations is carried out.
While components are defined with respect to the graph
G = (V,F), differences in objective value are computed
with respect to the graph G’ = (V,EU F).

In [3] as well as in our algorithm, all transformations
of feasible solutions are local, resulting in changes of the
objective value that are computed in linear time (in the
size of the graph). The combination of the locality of in-
dividual transformations and the non-locality of sequences
of transformations has proven effective for diverse appli-

Data: weighted, undirected graph G = (V, E), lifted
edges F', cost function c, a pair of partitions A
and B

Result: 01-edge labeling y

1 DAYB + compute_gains(G, F, ¢, A, B)

2 ) + find_boundary_nodes(V, E, A, B)
3 Ajoin < compute_gain_from_joining(G, F, ¢, A, B)
4 SO = 0

5 M =] // array to store moves
6 fori< 1to || do
7 v* + argmax, .o D*YP
// w.l.o.g. let v' €A
8 foreach U € {U' | U’ e V,v* € U',U' C AU B} do
9 U + U\ {v*}
10 if U’ C A then
1 foreach w € U’ do
12 | Dw ¢ Dw —cu
13 else if U’ C B then
14 foreach w € U’ do
15 | Dw ¢ Duw+cu
16 if |[U' N A| =1 then
17 w«UNA
18 Dy < Dy —cu
19 if U’ N B| =1 then
20 w<+ U NB
21 Dy < Dy +cu
22 M .push(v™) // move v* from A to B
23 Si = Si—1 + Dy~ // cumulative gain
24 Q < update_boundary(v*, F, A, B)

25 1" - argmax;S; // best number of moves
26 if Ajoin > Si* and Ajoin > 0 then
27 L join_components(y, A, B)

28 undo_moves(y, A, B,i*) // undo moves after "

cations [17]. As in KLj [3], the number of outer iterations
of Alg. 1 is not bounded by a polynomial and we cannot
give any guarantee for convergence. However, in practice,
the algorithm converged in less than 50 iterations for the
experiments described in Sec. 6.

Implementation Details For efficiency, we pre-compute
all the gains for vertices in A U B (line 1) and keep track of
the vertices, that currently lie on the boundary €2 between
A and B (lines 2 and 21); this dramatically improves the
runtime for sparse graphs. We iteratively pick a vertex v*
with the largest gain (line 7), that can also be negative. Then,
we update gains of all other vertices in A and B, that are in
subsets U that contain v* (lines 8-18). Note, that in the case
of 2nd-order costs updates as given in lines 10-18 specialize
to the corresponding updates in [3]. In the end, we find,
which first i moves produce the greatest decrease (note, ¢*
can be also 0), and either merge A and B together (lines
23-24) or undo the moves after i* (line 25).

5 GRAPH CONSTRUCTION
5.1 Geometric Model Fitting

We cast geometric model fitting as a point grouping prob-
lem or in other words as a graph decomposition problem
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which is defined over local observations. Specifically, we
consider minimal residual errors of n-tuples of points as
local features indicating these points’ likelihood of being
sampled from the same model. Given this local evidence, we
can phrase the geometric model fitting problem as a higher-
order minimum cost multicut problem.

We compute residual errors rel-
ative to a model fit using total least Q
squares (TLS). Unlike least squares
(brown color), that minimize only
axis-aligned residuals, total least
squares (red color) minimize the dis-
tance between a point and its pro-
jection on the model. We solve TLS using Singular Value
Decomposition.

For the minimal set plus 1 of data points, where the
minimal set is the set of points required to estimate model
parameters, we compute a probability for these points to be-
long together, i.e. being sampled from the same model. This
probability is inversely proportional to the points’ residuals
to the estimated model. For line models, the minimum set
is of cardinality two. Therefore, we need edges of at least
order three to assign such probabilistically motivated costs.
Line Fitting For line fitting, we create a fully-connected
graph over all (‘2/) vertices, that defines the set of feasible de-
compositions. The cost function ¢ is defined over all V = (g)
as follows: We fit a line into each triplet {u, v,w} € V using
TLS and compute their residuals 7, an example is given in
Fig. 2 (a). We assume, that points have been sampled from a
Gaussian centered on the ground-truth line with a standard
deviation of o. That makes p,(r,) = erfc(r,;0,0?), where
erfc(-) is the complementary error function. Further assum-
ing that all the points are i.i.d., we get Puyw (YurYuwYow =
1| ru, o, mw) = Du(Tu)Py(ry)pw(ry). Finally, the cost is
Cuvw = log 1;’; E‘T(:;‘p)f (T(:)p)f (T(z)) This corresponds to mini-
mizing the sum of residuals w.r.t. a non-noisy line.
Homography and Motion Estimation For homography
and motion estimation we proceed in the same manner as
described above. For this task, we have to subsample cost
terms, as V = (V) is a prohibitive for |V'| > 150. For every
vertex we thus sample all (250) subsets of its 20 nearest
neighbors (in the image pixel space) to capture the local
scope and 2-10° random subsets to capture the global scope.
We fit an elementary homography into each of these 5 pairs
of points and assume the points’ probability to be inversely
proportional to the distance between the ground-truth cor-
respondence and its projection via the fit homography, c.f.
Fig 2 (b). This corresponds again to minimizing the sum of
re-projection errors.

\;,'/
1
o

5.2 Motion Segmentation
5.2.1 Point Trajectories

Point trajectories are spatio-temporal curves that describe
the trajectory of a single object point in the image plane.
They build the basis for many motion segmentation meth-
ods such as [4], [25], [31], [86], [87]. Here, we use the method
from [25] to generate dense long-term point trajectories
from precomputed optical flow [88] to allow for a direct
comparison to prior work. For a video of length N, [25]
yields n point trajectories p; with the maximum length

(a) (b)

Fig. 2. (a) Line fitting: We fit a line using TLS into a set of points and
assume that the latter are independently drawn from a 1D Gaussian
centered on the line and orthogonal to it. (b) Homography Estimation:
For a pair of images with annotated correspondences (yellow line) we
directly model the distance r between the corresponding and projected
point. In the example above, a point from the second image corresponds
to a red dot, but its projection via the estimated homography is a bit off
(blue dot). Uncertainty model corresponds to a 2D isotropic Gaussian
centered at the red point.

N, where n depends on the desired sampling rate. Due
to occlusions and mistakes in the optical flow estimation,
most trajectories are significantly shorter than N, and some
trajectories start after frame 1 to ensure even point sampling
throughout the sequence.

5.2.2 Higher-Order Motion Models

Although it is not sufficient to accurately describe object mo-
tion in a 3D environment recorded with a possibly moving
camera, we restrict ourselves to edge potentials of order two
and three for practical reasons. This allows to measure the
difference of point motions according to Euclidean motion
models, i.e. from the group of transformations describing
translation, rotation and scaling in the 2D plane. This is a
subset of the group of similarity transformations in the 2D
plane, with reflections excluded.

We further argue that in any case, the easiest model
that can explain the motion of a set of points with a single
transformation should be used. If two points are moving
according to the same translational motion model, we can
assume that they belong to the same object without looking
at further points around them. Only if their motion is dif-
ferent according to a purely translational model, looking at
more complex motion models adds information. This results
in a motion-adaptive graph construction strategy.
Motion-Adaptive Graph Construction We propose to
construct the higher-order graph G from the pairwise costs
computed from motion differences. The algorithm is de-
scribed in Alg. 3. For any pair of trajectories, we compute
their cost of belonging to the same translational motion
model. Only if this cost is positive, i.e. repulsive, we look
at all further points to compute for every three-tuple the
cost of belonging to the same motion model for translation,
rotation and scaling. The respective third-order edges are
inserted along with their costs.

This strategy allows to integrate second and third order
potential without losing model capacity. Further, compared
to generating the full graph with higher-order potentials, it
yields a significant space reduction in practice.

Lifted Graph Construction To construct higher-order
lifted graph G’ = (V, E U F'), we compute for every trajec-
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Algorithm 3: Motion Adaptive Graph Construction.

Data: set of point trajectories V with p, € V with
ke{l...n}
Result: weighted undirected higher-order graph
G = (V, E), cost vector ¢
1 G+ (V,E=0D)
2 ¢c=]

s foreach (u,v) € (}) do
4 Cuv — compute_translational_motion_cost(p., p.)
5 E + EU (u,v) // add edge
6 if ¢ < 0 then
7 | cpush(cus)
8 else
9 foreach w € V' \ {u,v} do
10 Cyvw
compute_HO_motion_cost(pu, pv, pw)
1 E + FEU (u,w) U (v,w) // add edge
12 c.push(cuvw)

tory the set of its 12 spatially nearest neighbors AV. The edge
set E of edges between direct neighbors in G’ is computed
according to Alg. 3. It contains exactly all pairwise edges
e;j € I for which at least one of the following three condi-
tions holds: (1) p; € N'(p;), (2) p; € N(p;) (3) the maximum
spatial distance between p; and p; is below 40 pixels.
Second Order Costs Second order costs are computed
from pairwise differences on point trajectories. We compute
such differences only for trajectories which have at least
two frames in common. Since it has proven successful
in previous work [4], we compute such differences based
on motion, color and spatial distance cues. As suggested
by [31], we define the pairwise motion difference of two
trajectories at time ¢ as

19:pi — Op; |l
Ot

d;notion (

i, pj) = ()
Here, 0,p; and 0;p; are the partial derivatives of p; and p;
with respect to the time dimension and oy is the variation
of the optical flow as defined in [31]. The motion distance of
two trajectories is defined by the maximum over time

7" (pi, pj). (6)

dmotion (

pi; pj) = max
As proposed in [4] color and spatial distances d®'°" and
dPal are computed as average distances over the common
lifetime of two trajectories. These three cues are combined
non-linearly to compute the costs

ciyj = max(fp + 0 d™(pi,p;) (7)
+ 0y dP(p;,p;)
+ 6 d" (p;, pj) ,
b + 61 d™(pip;) )

with weights and intercept values 6 as proposed in [4]'.
Third Order Costs We compute third order motion differ-
ences as proposed in [27]. For any two trajectories p; and p;

1. Specifically, 0o =16,00 =26, =603 =—-0.02and 0 = —

we estimate the Euclidean motion model 7;;(¢), consisting
of rotation R,,, translation v := (vy, UQ)T and scaling s as

o= arccos ( (pi(t') —p;(t N (palt) — p;(t)) ) ®)
)|

Ipi(#") = ps (@)1 - lpi(t) — p; (¢
s (') = p; (¢l
, Ipi(t) = p; (D)
v = 5 it") +p;(t") = sRa(pit) +p;(1)))

where ¢ denotes the first point in time where both trajec-
tories co-exist and ¢’ is the last. The distance to any third
trajectory py existing from ¢ to ¢’ can then be measured
by di;(pr) = || Ti;(t)pr(t) — pr(t')||. For numerical reasons,
df; (p) is normalized by

—piOl | llpit) —

(1 () (I *
=2 G (o non * oo non) - ©

with o, being the optical flow variation as in (5).

To render distances symmetric, [27]  pro-
pose to consider the maximum df, (i,j,k) =
max(’y”dt (pr)s Ve dle (0, ijdjk(pi))/ which  yields

an over-estimation of the true distance. While this is
unproblematic in a spectral clustering scenario, where
distances are used to define positive point affinities, it can
lead to problems in the multicut approach. Over-estimated
distances lead to under-estimated join probabilities and
thus eventually to switching the sign of the cost function
towards repulsive terms. To avoid this effect, we compute
both d!. .. (7, j, k) and, analogously, d'.,. (4, 4, k). For both, we
compute the maximum motion distance over the common
lifetime of p;, p; and py as dmax(i, j, k) = maxid,, (7,7, k)
and dmin(i,7, k) = max;d’ (i, 7, k). We evaluate the costs
c(dmax(t,7,k)) and c(dmin(i,7,k)) for both distances as

¢(d) = 6y + 61d and compute the final edge costs

c(dmin(i, 4, k) if  c(dmax(7, 5, k) >0
c(dmax(i, 7, k)) if c(dmin(i,7,k)) <0
0 otherwise.

Cijk = (10)

Thus, we make sure not to set any costs for edges whose
underlying motion is controversial. Here, we set ) = 1 and
61 = —0.08 manually.

Implementation Details In practice, we insert pairwise
edges ¢;; in G and G’ only if the spatial distance between p;
and p; is below 100 pixels even for lifted edges in F'. This is
in analogy to [4] and due to the fact that for nearby points,
the approximation of the true motion by a simplified model
is usually better than for points at a large distance. Also,
since the number of pairwise edges increases quadratically
with the maximal spatial distance, this heuristic decreases
the computational load significantly. For the same reason,
we introduce an edge sampling strategy for third order
edges. For every triplet of points, we compute the maximum
pairwise distance d. From all triplets with 20 < d < 300, we
randomly sample 152%, while we insert all edges e;;;, with
d < 20. This also prevents from a too strong imbalance of
long range edges over short range edges.
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TABLE 1
Quantitative results on synthetic line fitting data from Toldo and
Fusiello [21]. The total runtime is split into sampling and solving time.

Misclassification error [%, |]

J-Linkage T-Linkage RansaCov’ RS-NMU  Our
Stairs4 10.6 8.6 4.0 3.0 4.2
Star5 5.4 74 2.0 1.0 22
Star11 12.0 9.55 2.73 191 2.64
mean 9.33 8.52 291 197  3.01

Runtime (sampling/solving) [s, |1

Stairs4 58/30 58/120 58/42 58/36  10/5
Starb 54/15 54/54 54/15 54/11 10/6
Star1l  294/112 294/1652  294/113 294/210 107/42

6 EXPERIMENTS
6.1 Geometric Model Fitting

We start with line fitting experiments on synthetic data from
Toldo and Fusiello [21]. This dataset consists of 3 instances
with lines arranged in different shape (namely, stairs with 4
lines and star with 5 and 11 lines) and perturbed by Gaus-
sian noise. Each instance contains around 50% of uniformly
sampled gross outliers, c.f. Fig. 3 top row.

Here, we compare against J-Linkage [21], T-Linkage [20],
RansaCov [33], and RS-NMU [35]. We use the publicly avail-
able code of these methods and hand tune their parameters
for optimal performance on each instance. It has been shown
in [21] that J-Linkage outperforms multiRANSAC [19],
residual histogram analysis [89], and mean-shift [42].

As a performance measure we use the widely ac-
cepted [20], [21], [33], [35] misclassification error (ME), that is
the ratio of the misclassified points over the total number of
points. The classification is performed by matching the pre-
dicted and the ground truth clusters such that the number
of misclassified points is minimized using the Hungarian
algorithm [90] for minimum weight bipartite matching. The
point is then considered to be correctly classified if its cluster
label corresponds to the matched ground truth one.

Xiao et al. [23] notice that it is impossible to estimate the
number of models present in the data without introducing
additional stronger assumptions. For example, if we assume
that points lying on a line constitute a model, then many
more lines can be discovered in the presence of many out-
liers, as is the case of the data from Toldo and Fusiello [21].
Indeed, the term “outliers” here is rather subjective, as any
two points perfectly define a line. A common solution [20],
[21], [33] is to simply take the top-K largest clusters and
assign the rest to the “outliers” class, where K is the number
of clusters in the ground-truth. A more principled approach
was proposed by Tepper and Sapiro [35], it is based on
the statistical t-test that allows to keep only statistically
significant models. In this paper we adopt the usual strategy
and match the predicted models to the ground truth ones so
as to minimize the misclassification error.

The results are reported in Tab. 1. All competing methods
sample a small number of hypotheses before optimization,
while we sample all possible triplets. For a fair comparison
we sample all possible hypotheses for the competing meth-

Stairs4

Fig. 3. Qualitative results on synthetic line fitting data from Toldo and
Fusiello [21]. Colored dots denote points assigned to the same line
model. Gray dots denote points assigned to noise/background.

ods as well. However, this dramatically increases runtimes
of these methods. In our experiments we noticed, that the
statistical filtering of Tepper and Sapiro [35] very efficiently
gets rid of irrelevant ones, thus, we apply it to the sampled
hypotheses before optimization. It can be seen from Tab. 1,
that our method is the fastest at the same time showing
competitive accuracy, especially on the hardest problem
Star11. Visualizations of our results are presented in Fig. 3.
We analyze the behavior of our method regarding pos-
sible uniformly random sub-sampling of the cost terms in
Fig. 4 (a). It can be seen, that our method can get away
with as little as 5% of all the possible triplets. As noted
earlier, our method discovers more lines, than there is in
the ground-truth, because any 2 points define a line in the
Euclidean space. This corresponds to over-segmentation of
the graph decomposition we obtain. Yet, if we plot the costs
of the resulting clusters as given in Fig. 4 (b), computed
according to the objective function (1), it is rather easy to
spot the models (lines) of interest. We think, this may allow
to develop a method for automatic selection of models.
Next we turn to the real-world challenge posed by
Adelaide Robust Model Fitting (AdelaideRMF) data set [91].
It consists of 38 image pairs with a set of interest points
and human-annotated correspondences for each pair. The
dataset is split into two equal parts and offers two chal-
lenges: 1) estimate multiple homographies (a transformation
that relates points belonging to the same planar surface in
3D space) and 2) estimate multiple motion models.
Numerical results are shown in Tab. 2, some vi-
sual results are provided in Fig. 5. Here we also com-
pare against Random Cluster Models Simulated Anneal-
ing (RCMSA) [92], Robust Preference Analysis (RPA) [34],
FABIA [36], Multi-X [41], Mode-Seeking on Hypergraphs
Fitting (MSHF) [46], and Convex Relaxation Algorithm
(CORAL) [40]. Our model yields competitive performance
with a particularly low error for motion model estimation.

6.2 Motion Segmentation

First, we apply the proposed higher-order lifted multicut
model on the motion segmentation benchmark FBMS-59
[31], an extended version of the BMS-26 benchmark from
Brox-Malik [25].
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TABLE 2
Misclassification errors on the Adelaide Robust Model Fitting data set [91]. Our model yields competitive results at low standard deviation. T these
methods require the exact number of models before optimization.

RCMSA J-Lnkg T-Lnkg RPAT  FABIAT RCov! Multi-X MSHF RS-NMU CORAL Our
Homography Estimation [%, |]
mean 28.30 25.50 24.66 17.20 15.94 12.91 9.72 7.38 5.82 4.21 10.01+0.14
median 29.40 24.48 24.53 17.78 17.96 12.34 249 2.37 2.07 3.48 5.61£0.00
Motion Estimation [%, |]
mean 12.37 16.43 9.37 5.49 4.61 6.04 2.97 741 5.72 - 3.45+0.06
median 9.87 14.29 7.80 457 1.66 4.27 0.00 2.44 3.64 - 2.09+0.02
-10% 104 -10%

30 F T 5| + + +
_ — mean 4 a4l | 6 -
£ 20 std | # ‘ Al B
g 101 } ol 12 T ef P
0 B N mr—Trrrm ) 0L et | 0 4 oL N

! 10 100 Stairs4 Star5 Starll

(a) Costs sub-sampling

(b) Sorted clusters costs

Fig. 4. (a) Mean ME and standard deviation of our method on Star71 averaged over 20 runs as functions of the sub-sampling rate of the cost edges;
o is fixed. Already at 5% of all the (“300) possible cost edges the mean error becomes almost optimal and the standard deviation drops to 0. (b)
Plotted are sorted absolute costs per cluster in the optimal solutions for Stairs4, Star5, and Star11. For each problem the corresponding 4, 5, and
11 most expensive clusters are visually clearly separated form the lower cost clusters, the latter being lines fit into the outliers.

Homography Estimation

napierb sene unihouse

Motion Estimation

o

biscuitbookbox breadcartoychips game

cubechips

Fig. 5. Some visualizations of our results on the Adelaide Robust Model
Fitting data set [91]. Only one image of the pair is shown. Colored
boxes denote points assigned to the same geometric model. Yellow dots
denote points assigned to noise/background.

It contains 59 sequences of varying length (from 19 to
800 frames) and diverse content and motion: severe camera
shaking, non-rigid multi-object motion, scaling, out-of-plane
rotation of objects, zooming of the camera, etc..

To allow for training, the data set has been split into
two subsets of 29 and 30 sequences for training and testing,
respectively. While we agree that training all model param-
eters is highly desirable, we did not do so. This is due to
the fact that (1) neither of the state-of-the-art methods [4],
[27], [31] is training-based and (2), the training set, with 29
sparsely annotated sequences, is rather small. Thus, to avoid
confusion, we hence denote the training split by Set A and
the test split by Set B.

FBMS-59 [31] provides manual annotations for all mov-

ing objects in the videos for every 20-th frame as well
as ground truth definition files that downweight annotated
segments in some scenes. Thus, objects in some sequences
that contain severe camera motion, for example, a mistak-
enly segmented wall in Fig. 9, attain a lower weight in the
evaluation. All objects that move in at least one frame are
segmented in all annotated frames. A second set of ground
truth annotations at a similar level of sparsity has later
been provided in [93] to evaluate a slightly different motion
segmentation paradigm. In [73], [93], it was argued that all
freely moving objects in 3D space but nothing more should
be segmented per frame. Specifically, this means that objects
moving only in few frames are only to be segmented in
these frames. Scene geometry and camera motion yielding
apparent motion in the image plane, such as the wall in the
example of Fig. 9, are not considered. Our work addresses
the task originally annotated by [31]. It aims to segment
all objects that move in at least one frame of a sequence
and does not provide full 3D motion segmentations, as we
limit ourselves to third order motion terms. Yet, we find
it interesting to consider both sets of annotations during
evaluation to allow for a comparison to the respective
competing methods. Note, that also the evaluation metrics
differ slightly. Both [31] and [93] measure precision, recall
and f-measure, where [31] evaluate precision and recall over
all frames and compute the f-measure in the end, while [93]
evaluate the f-measure per frame and report the mean value.
In addition, [31] report the number of objects O that are
segmented with an f-measure above 0.75. Instead, [73] pro-
pose the AObj metric, which measures the average absolute
difference between the number of ground truth objects in
each frame and the number of segmented objects in this
frame. While O should be large, AObj should be small.

For our evaluation, we employ the annotations provided
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Fig. 6. Samples of our Lifted AOMC segmentations densified by [58]. Even for articulated motion, our segmentations show little over-segmentation.

TABLE 3
Segmentation results on the FBMS-59 dataset on Set A (top) and Set B
(bottom). We report P: average precision in %, R: average recall in %,
F: F-measure in % and O: extracted objects with F > 75%. All results
are computed for sparse trajectory sampling at 8 pixel distance. Our
result HO MC is computed on the non-lifted purely higher-order model
to allow for a direct comparison to the listed competing methods.

Set A (29 sequences) P [%, 1] R[%, 1] F[%, 1] O [1]
SC [31] 85.10 62.40 72.0 17/65
Higher-Order SC [27] 81.55 59.33 68.68 16/65
MC [4] 84.94 71.22 77 .48 23/65
HO MC (ours) 83.20 74.34 78.52 29/65
Set B (30 sequences) P [%, 1] R[%, 1] FI[%, 1] O [1]
SC [31] 79.61 60.91 69.02 24/69
Higher-Order SC [27] 82.11 64.67 72.35 27/69
MC [4] 82.87 69.89 75.83 27/69
HO MC (ours) 82.92 68.82 75.22 27/69
TABLE 4

Segmentation Results on FBMS-59 on Set A (top) and Set B (bottom).
We report P: average precision, R: average recall, F: F-measure and
O: extracted objects with F > 75%. All results are computed for sparse
trajectory sampling at 8 pixel distance. The proposed approach Lifted
AOMC performs best.

Set A (29 sequences) P [%, 1] RI[%, 1] F[% 1] OI[t]
MCe [4] 86.73 73.08 79.32 31/65
HOPMC 87.66 74.15 80.34 31/65
AOMC 82.29 76.17 79.11 32/65
Lifted HOPMC 87.07 70.84 78.12 28/65
Lifted AOMC 86.20 78.35 82.08 34/65
Set B (30 sequences) P [%, 1] R[% 1] F[% 1] OI[t]
MCe [4] 87.88 67.7 76.48 25/69
HOPMC 85.00 67.75 75.40 25/69
AOMC 84.48 73.08 78.37 27/69
Lifted HOPMC 87.07 70.84 78.12 28/69
Lifted AOMC 87.82 71.45 78.79 24/69

in [31] when considering the metric proposed therein. We
use the annotations from [93] when evaluating using the
metric proposed in [73] to allow for direct comparison to
their work. We start by an evaluation using annotations and
metrics from [31].

Evaluation To assess the capacity of our model compo-
nents, we first evaluate a purely higher-order non-lifted
version of our model. In this model, all pairwise costs are re-

moved and all edges are connectivity defining. We compare
this simple model to [27], [31] and the purely motion-based
version of [4]. While [31] and [4] only consider translational
motion, the affinities in [27] are defined most similarly to
our higher-order costs. As the proposed approach, [4] for-
mulate a multicut problem while [27], [31] follow a spectral
clustering approach. The results are given in Tab. 3 in terms
of precision, recall, F-measure and the number of extracted
objects. Precision and recall are not directly comparable but
they can serve as cues for under- or over-segmentation. The
F-measure is a weighted harmonic mean of the two. From
Tab. 3, we can observe that our higher-order lifted multi-
cut model outperforms the higher-order spectral clustering
method from [27] by about 10% on Set A and 3.5% on Set B.
While there is a clear improvement on both sets, the imbal-
ance is remarkable. A similarly remarkable imbalance can
be observed when comparing the performance between the
two spectral clustering methods [31] and [27]. The higher-
order model [27] results in a lower F-measure on Set A
compared to [31]. Yet it outperforms [31] on Set B by about
3%. This indicates that the motion statistics in both splits are
significantly different. When we compare our higher-order
model to the pairwise minimum cost multicut model from
[4], we can observe an improvement on Set A. On Set B,
both models perform almost equally.

In Tab. 4, we show the evaluation of our higher-order
multicut model with the motion-adaptive order, denoted
AOMC (compare Alg. 3). This model has access to similar
pairwise cues as the motion and color-based version from
[4], denoted MCe. It has as well access to the higher-order
motion cues from equation (10).

As a sanity check for the motion-adaptive graph con-
struction, we also generate graphs that simply contain all
pairwise costs c;; as well as all third order edges with
costs ¢;j, without any adaptation with respect to the costs.
We denote this additive model by HOPMC (higher-order
+ pairwise multicut). On Set A, all three approaches pro-
duce similar results, whereas the proposed AOMC shows
particularly good performance on the test set with about 2%
improvement over MCe [4] in f-measure.

Lifted versions of both types of problems (HOPMC and
AOMQC) yield a small further improvement on Set B. How-
ever, on Set A, the segmentation quality of Lifted HOPMC
is even below the one of MCe by about 1%. In contrast,
the proposed Lifted AOMC consistently outperforms all
competing methods and baselines.

In Tab. 5, we evaluate the impact of the quality of
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TABLE 5
Segmentation results of the proposed model Lifted AOMC on the
FBMS-59 dataset on Set A (top) and Set B (bottom) for different optical
flow methods. We report P: average precision, R: average recall, F:
F-measure and O: extracted objects with F > 75%. All results are
computed for sparse trajectory sampling at 8 pixel distance.

Set A Flow P [%, 1] R[%, 1] F[%, 1] O[]
MCe [4] LDOF [88]  86.73 73.08 79.32 31/65
Lifted AOMC 8620 7835 82.08 34/65
MCe [4] FlowNet [94] 89.63 7338  80.69 29/65
Lifted AOMC 88.22 7734 8242 33/65
MCe [4] FlowNet [95] 89.77  75.78 8219 34/65
Lifted AOMC 89.19 7935 8398 38/65
Set B Flow P [%, 1] R[%, 1] F[%, 1] O[]
MCe [4] LDOF [88]  87.88 677 7648 25/69
Lifted AOMC 87.82 7145 7879 24/69
MCe [4] FlowNet [94] 86.73 6877 7671 26/69
Lifted AOMC 86.89  69.81 7742 24/69
MCe [4] FlowNet [95] 8459 7019  76.72 27/69
Lifted AOMC 8839 7212 7943 26/69

the point trajectories when they are computed from dif-
ferent optical flow models [88], [94], [95]. The proposed
approach Lifted AOMC consistently outperforms the pair-
wise MCe [4] on comparable optical flows. While the most
recent FlowNet [95] performs best, the overall differences
are small.

Several examples of pixel-segmentations computed from
our sparse segmentation using [58] are given in Fig. 6.
The densified segmentations look reasonable. On the bear
example, the articulated leg motion still causes some over-
segmentation. One of the horses in the horses05 sequence is
missed. However, even small objects such as the tray in the
marplel2 sequence or the phone in the marplel3 sequence
can be correctly segmented. Such densified segmentations,
computed from sparse results using FlowNet [95], can be
evaluated by the metrics from [73] with their matching
annotations [93]. Tab. 6 shows our results in the setting
by [73], i.e. considering a frame-wise evaluation on all
freely moving 3D objects. While the f-measure of our model
is similar to the one reached by [4], the AObj metric is
significantly improved, i.e. lower, and almost on par with
the results from [73], which are dedicated to this setting.
Evaluating binarized segmentations (Tab. 6) allows for a
comparison to learning based encoder-decoder models such
as [59]. Without learning any prior on object saliency, our f-
measure for binary segmentation on FBMS-59 is 76.16% and
thus slightly better than the learnt model from plain motion
cues in [59] with 74.79%, but inferior to [60], who learn
an additional appearance stream and reach 86.96% [73]. In
the following, we discuss several example segmentations in
detail.

Fig. 7 shows the trajectory segmentation quality under
scaling. In the horses05 sequence, scaling is caused by the
motion of the white horse towards the camera. This causes
over-segmentation in the competing method MCe [4], which
can not handle higher-order motion models. With the pro-
posed Lifted AOMC, the segmentation can be improved.

Fig. 8 and 9 both show examples where the same label
is assigned to distinct objects that move similarly. In the

TABLE 6
Results for densified segmentations on FBMS-59 using annotations
and metrics as in [73] for freely moving 3D objects. For AObj, lower is
better. Results for [4], [96], [59], [60] and [73] are taken from [73].

P [%, 1] R[%, 1] F[%, 1] AObj[|]

MCe [4] 7464  62.03  63.59 7.7
Taylor at al. [96] 72.69 5436  56.32 11.7
Bideau et al. [73] 7423  63.07 6497 4
Lifted AOMC 7329 6026  63.58 441
- Tokmakov at al. [59]  87.29 72.19 74.79 -
& Tokmakov et al. [60] 92.40 85.07 86.96 -
5 Lifted AOMC 7998 7697 76.16 -

ours

MCe [4]

Fig. 7. The scaling motion of the white horse moving towards the camera
causes over-segmentation with a simple motion model [4]. With the
proposed Lifted AOMC, this can be avoided.

cars?2 sequence in Fig. 8, this is due to similar real-world
object motion, whereas, in the marplel0 sequence, the effect
is due to camera motion and the scene geometry. In both
cases, the formulation of the Lifted AOMC problem allows
to tell the distinct objects apart. However, in the marple10
sequence (Fig. 9), we can observe a spurious segment in the
background, which is probably caused by imprecise flow.

In Fig. 10, we show an example of the goats01 sequence.
Here, the head and body of the goat in front are segmented
into a distinct components by the pairwise method [4],
because of the expressed articulated motion. Although our
third order model can not explicitly handle articulation, the
over-segmentation can be fixed in this case.

Fig. 11 shows a failure case of the proposed method. Due
to the dominant camera motion in a scene with complex ge-
ometry, the Euclidean motion model fits particularly badly.
Thus our model leads to the segmentation of the scene into
its depth layers, and thus to strong over-segmentation.

Next, we evaluate our approach on two additional
datasets widely considered for motion segmentation, the
DAVIS 4 dataset [100] and the VSB100 dataset [97], [98].
Both have originally been designed for different purposes.
DAVIS;s is a dataset for binary video object segmentation
which has been used to learn appearance and motion pat-
terns of salient objects in videos, e.g. in [60]. While the
sequences may contain several moving objects, the task is to
track the segmentation of the dominant object throughout
the sequence. Complementary to this, the VSB100 dataset
was originally proposed as a video segmentation dataset
where the task is to mimic human boundary level annota-
tions, i.e. the segments do not necessarily have a notion of
objectness. This general purpose multi-label video segmen-
tation dataset has a motion subtask which can be used to
evaluate motion segmentation approaches before, e.g. as in
[4]. Tab. 7 shows our results on the DAVIS; 4 dataset in terms
of Jaccard index (J) and the f-measure (F) which measures
the boundary fidelity of the segmentation. We compare to
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MCe [4]

Fig. 8. The two cars in front move to the same direction, leading an
assignment to the same cluster with the non-lifted multicut approach [4].
The Lifted AOMC can assign the different cars to distinct segments.

ours

MCe [4]

Fig. 9. Due to camera motion the person and the wall are assigned to the
same cluster with the non-lifted multicut approach [4]. The Lifted AOMC
allows for correct segmentation.

ours

the results by [4] which is, as ours, a method for multi-label
motion segmentation. The proposed approach improves sig-
nificantly over those results. Yet, note that dedicated video
object segmentation approaches such as recently proposed
in [68], [69] yield higher numbers on the DAVIS benchmark
with mean Jaccard index of up to 80% on the validation set.
The evaluation of our model on the motion subtask of
VSB100 is given in Fig. 12 in terms of boundary precision
and recall (BPR) and the region metric volume precision and
recall (VPR). It can be seen that the proposed higher order
model with adaptive edge order outperforms the previous
models on this task. As expected, the differences in the
BPR are rather small while they are more significant in
VPR. The dashed lines indicate results of our model using
FlowNet [95] to compute optical flow while the solid lines
are based on [88] to ensure fair comparison to [4] and [31].
The improved optical flow has a slightly larger impact on
the BPR values, indicating that the issues addressed by more
robust optical flow estimation and the issues addressed by
our more complex motion model are complementary.
Scalability Analysis on FBMS-59 Last, we want to eval-
uate our proposed heuristic for the higher-order minimum
cost lifted multicut problems (compare Alg. 1) in terms of
computation times. Figure 13 plots the computation times of
our full pipeline on FBMS-59 w.r.t. the number of point tra-
jectories. The runtime distribution indicates linear runtime
behavior and shows that heuristic solutions can be gener-
ated in a few minutes for most instances. Yet, the number of
large problem instances is too small to make any claim.

7 CONCLUSION

We presented a multicut-based approach that can be applied
to computer vision tasks such as motion segmentation and
geometric model fitting. To do so, we proposed a pseudo-
boolean formulation that allows to define costs on subsets
of vertices of arbitrary cardinality and includes lifted edges.
In motion segmentation higher than simple pair-wise costs
allow to model object motion more precisely (Euclidean
instead of in-plane translational motion). Line fitting can be
formulated only with 3-rd order costs, while homography

MCe [4]

Fig. 10. The articulated motion causes over-segmentation in [4]. The
Lifted AOMC performs better.

ours

MCe [4]

ours

Fig. 11. Failure case. The dominant camera motion causes strong over-
segmentation with the proposed method. Here, our third order model
can not model the motion appropriately.

estimation requires 5-th order costs. Since the emerging
higher-order multicut problem is NP-hard to solve exactly,
we proposed an efficient local search algorithm for infer-
ence. When applied to real and toy problems, our approach
yields either competitive or state-of-the-art results, is highly
flexible and easy to apply.

REFERENCES

[1]  B. Andres, ]. H. Kappes, T. Beier, U. Kothe, and F. A. Hamprecht,
“Probabilistic image segmentation with closedness constraints,”
in ICCV, 2011.

[2] B. Andres, T. Kroger, K. L. Briggman, W. Denk, N. Korogod,
G. Knott, U. Kéthe, and F. A. Hamprecht, “Globally optimal
closed-surface segmentation for connectomics,” in ECCV, 2012.

[3] M. Keuper, E. Levinkov, N. Bonneel, G. Lavoué, T. Brox, and
B. Andres, “Efficient decomposition of image and mesh graphs
by lifted multicuts,” in ICCV, 2015.

[4] M. Keuper, B. Andres, and T. Brox, “Motion trajectory segmenta-
tion via minimum cost multicuts,” in ICCV, 2015.

[5] S. Tang, B. Andres, M. Andriluka, and B. Schiele, “Subgraph
decomposition for multi-object tracking,” in CVPR, 2015.

[6] S. Tang, M. Andriluka, B. Andres, and B. Schiele, “Multiple
people tracking by lifted multicut and person reidentification,”
in CVPR, 2017, pp. 3539-3548.

[7] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka,
P. Gehler, and B. Schiele, “DeepCut: Joint subset partition and
labeling for multi person pose estimation,” in CVPR, 2016.

[8] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and
B. Schiele, “DeeperCut: A deeper, stronger, and faster multi-
person pose estimation model,” in ECCV, 2016.

[9] E. Insafutdinov, M. Andriluka, L. Pishchulin, S. Tang,

E. Levinkov, B. Andres, and B. Schiele, “ArtTrack: Articulated

multi-person tracking in the wild,” in CVPR, 2017.

A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and

C. Rother, “Instancecut: from edges to instances with multicut,”

in CVPR, 2017.

E. Levinkov, J. Uhrig, S. Tang, M. Omran, E. Insafutdinov,

A. Kirillov, C. Rother, T. Brox, B. Schiele, and B. Andres, “Joint

graph decomposition and node labeling: Problem, algorithms,

applications,” in CVPR, 2017.

A. Kardoost, K. Ho, P. Ochs, and M. Keuper, “Self-supervised

sparse to dense motion segmentation,” in ACCV, 2020.

E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica, “Correla-

tion clustering in general weighted graphs,” Theoretical Computer

Science, 2006.

N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,”

Machine Learning, 2004.

S. Kim, S. Nowozin, P. Kohli, and C. D. Y., “Higher-order corre-

lation clustering for image segmentation,” in NeurIPS, 2011.

[10]

[11]

(12]

[13]

(14]

[15]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3148795, IEEE

Transactions on Pattern Analysis and Machine Intelligence

LEVINKOV et al.: HIGHER-ORDER MULTICUTS FOR GEOMETRIC MODEL FITTING AND MOTION SEGMENTATION 13
TABLE 7 g -
Evaluation on DAVIS14. The more complex motion model in Lifted S
AOMC is beneficial on this dataset of binary object segmentation. § hd
Results marked with * are taken from [59]. c10%F +++++ + E
) e
'g +#ﬁ+ +
MCe [4] Lifted AOCM <, R A
=102k He o+ + E
train  val trainval train val trainval % oL *:,d;
Jmean [t] 534 55.2*/54.59 53.9 62.7 57.79 60.74 s I, ™
Jrecall [1] 59.5 57.5%/58.41 59.04  74.18 64.72 70.40 Z10r S - .
Jdecay [|] -1.57 2.2*/ 4 0.66 38 375 378 0 # nedes 10
Fmean [f] 51.86 55.2*/52.35 52.05 61.55 57.55 59.94
Frecall [1] 56.39 61.0*/54.60 55.67 72.36 67.63 70.47 i o . .
Fdecay [|] 25 3.4* /425 3.23 705 539 638 Fig. 13. Computation times in log-scale of the problem instances from
Set A and B of FBMS-59 with respect to the number of point trajectories.
1 Bourndary Global PR Curve ) Volume Global PR Curve
0.9 : %%min al 0.9 L]
o — 1 o [35] M. Tepper and G. Sapiro, “Nonnegative matrix underapproxima-
£06 | | \migzasd . ThAgMe. |- cos tion for robust multiple model fitting,” in CVPR, 2017.
gos — e - gos & [36] M. Denitto, L. Magri, A. Farinelli, A. Fusiello, and M. Bicego,
s b \ “Multiple structure recovery via probabilistic biclustering,” in
02 - o2 d S+SSPR (workshop), 2016.
0.1 - o1 [37]1 S.Hochreiter, U. Bodenhofer, M. Heusel, A. Mayr, A. Mitterecker,
oo 0.1 02 03 04 05 06 07 08 09 1 %0 01 02 05 04 05 06 07 08 08 1 A. Kasim, T. Khamiakova, S. Van Sanden, D. Lin, W. Talloen,
Recall Recall L. Bijnens, H. W. H. Géhlmann, Z. Shkedy, and D.-A. Clevert,
. ] ] “Fabia: factor analysis for bicluster acquisition,” Bioinform., 2010.
Fig. 12. Evaluation on the motion subtask of the VSB100 dataset [38] H. Isack and Y. Boykov, “Energy-based geometric multi-model
[97], [98]. We compare our results to SC [31], the video segmentation fitting,” IJCV, 2012.
approach VS [99], the superpixel tracking baseline from [97], and the  [39] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
multicut models with pairwise terms MCe [4]. The proposed lifted adap- minimization via graph cuts,” TPAMI, 2001.
tive order model (LAOMC) outperforms the pairwise terms consistenly.  [40] P. Amayo, P. Piniés, L. M. Paz, and P. Newman, “Geometric multi-
LAOMC* shows results baset_j on FIow_Net [95], while LAOMC is com- model fitting with a convex relaxation algorithm,” in CVPR, 2018.
puted on flows from [88] for fair comparison to [31]. [41] D. Barath and J. Matas, “Multi-class model fitting by energy
minimization and mode-seeking,” in ECCV, 2018.
[42] D. Comaniciu and P. Meer, “Mean shift: a robust approach
. R . toward feature space analysis,” TPAMI, 2002.
[16] J.H.Kapp €s, M.‘ Speth{ G. Rslnelt, and C. Schnrr, “Higher-order [43] S. Agarwalal, J. Lim, L. Zelnik-Manor, P. Perona, D. Kriegman,
segmentation via multicuts,” CVIU, 2016. R o L.
. .. ” . and S. Belongie., “Beyond pairwise clustering,” in CVPR, 2005.
[17] E. Levinkov, A. Kirillov, and B. Andres, “A comparative study of . . Py ”
1 . . L5 [44] S. Jain and V. Madhav Govindu, “Efficient higher-order cluster-
ocal search algorithms for correlation clustering,” in GCPR, 2017. ine on the erassmann manifold.” in ICCV. 2013
[18] M. A. Fischler and R. C. Bolles, “Random sample consensus: a & 8 . " ’ L .
. . . N X . [45] V. Madhav Govindu, “A tensor decomposition for geometric
paradigm for model fitting with applications to image analysis rouping and segmentation.” in CVPR, 2005
and automated cartography,” Communications of the ACM, 1981. groupms & : ¢ .
L. . ” . [46] H. Wang, X. Guobao, Y. Yan, and D. Suter, “Searching for rep-
[19] M. Zuliani, C. S. Kenney, and B. S. Manjunath, “The multiransac < -
- - N T resentative modes on hypergraphs for robust geometric model
algorithm and its application to detect planar homographies,” in fitting” TPAMI. 2018
ICIP, 2005. [47] S1 Xl ga/rwal K ]’3rans;)n and S. Belongie, “Higher order learnin
[20] L. Magri and A. Fusiello, “T-linkage: A continuous relaxation of V\;ithg N hé " .in ICML ,2006 ’ ste & &
j-linkage for multi-model fitting,” in CVPR, 2014. sraphe, A e P
) g . b ’ Y L [48] D. Zhou, J. Huang, and B. Scholkopf, “Learning with hyper-
[21] R..Toldo. and A;’Eu51ello, Robust multiple structures estimation graphs: clustering, classification, and embedding,” in NeurIPS,
with J-Linkage,” in ECCV/, 2008. 2007.
(22] R. B. Tennakoon, A. Bab-Hadl.a shar, ZZ Cao., R. Hosemne;zhad, [49] G. Chen and G. Lerman, “Spectral curvature clustering scc,” in
and D. Suter, “Robust model fitting using higher than minimal ICCV, 2009.
SUbS?t sampling,” TP, AML 2016. . ) [50] V. Zografos, R. Lenz, E. Ringaby, M. Felsberg, and K. Nordberg,
(23] G. Xiao, H. Wang, T. Lai, and D. Suter, “Hypergraph modelling “Fast segmentation of sparse 3d point trajectories using group
for geometric model fitting,” Pattern Recognit., 2016. theoretical invariants,” in ACCV, 2014.
[24] P. Purkait, T. J. Chin, A. Sadri, and D. Suter, “Clustering with [51] E.Elhamifar and R. Vidal, “Sparse subspace clustering,” in ICCV,
hypergraphs: The case for large hyperedges,” TPAMI, 2017. 2013.
[25] T Brox and J. Malik, “Object segmentation by long term analysis  [52] T. Wu, A. R. Benson, and D. E Gleich, “General tensor spectral
of point trajectories, m ECCV, 2010. . co-clustering for higher-order data,” in NeurIPS, 2016.
[26] ].Lezama, K. Alahari, J. Sivic, and L. Laptev, “Track to the future:  [53] A. Fix, A. Gruber, and B. Boros, “A graph cut algorithm for
Spatio-temporal video segmentation with long-range motion higher-order markov random fields,” in ICCV, 2011.
cues,” in CVPR, 2011-” ) ) [54] X.Lan, S. Roth, D. Huttenlocher, and M. J. Black, “Efficient belief
[27] P. Ochs and T. Brox, “Higher order motion models and spectral propagation with learned higher-order markov random fields,”
clustering,” in CVPR, 2012. in ECCV, 2006.
[28] Z. Li, ]J. Guo, L. Cheong, and S. Zhou, “Perspective motion  [55] K. Schelten and S. Roth, “Mean field for continuous high-order
segmentation via collaborative clustering,” in ICCV, 2013. mrfs,” in DAGM, 2012.
[29] F Shi, Z. Zhou, J. Xiao, and. W. Wu, “Robust trajectory clustering  [56] . Liy, J. Jinglu Wang, T. Fang, C.-L. Tai, and L. Quan, “Higher-
for motion segmentation,” in ICCV, 2013. order crf structural segmentation of 3d reconstructed surfaces,”
[30] K. Koffka, Principles of Gestalt Psychology, 1935. in ICCV, 2015.
[31] P Ochs, J. Malik, and T. Brox, “Segmentation of moving objects  [57] P.Ji, H. Li, M. Salzmann, and Y. Dai, “Robust motion segmenta-
by long term video analysis,” TPAMI, 2014. tion with unknown correspondences,” in ECCV, 2014.
[32] T. Tanimoto, “Technical report,” IBM Internal Report, 1957. [58] P Ochsand T. Brox, “Object segmentation in video: a hierarchical
[33] L. Magri and A. Fusiello, “Multiple models fitting as a set variational approach for turning point trajectories into dense
coverage problem,” in CVPR, 2016. regions,” in ICCV, 2011.
[34] ——, “Robust multiple model fitting with preference analysisand  [59] P. Tokmakov, K. Alahari, and C. Schmid, “Learning motion

low-rank approximation,” in BMVC, 2015.

patterns in videos,” in CVPR, 2017.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3148795, IEEE

14
[60]
[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]
[77]

(78]

[79]
[80]

(81]

(82]

[83]

[84]

[85]
(86]
(871
(88]

[89]

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX

——, “Learning video object segmentation with visual memory,”
in ICCV, 2017.

L. Maczyta, P. Bouthemy, and O. Meur, “Cnn-based temporal
detection of motion saliency in videos,” Patt. Recognit. Lett., 2019.
K. Fragkiadaki, P. Arbelaez, P. Felsen, and J. Malik, “Learning to
segment moving objects in videos,” in CVPR, 2015.

M. Siam, H. Mahgoub, M. Zahran, S. Yogamani, M. Jagersand,
and A. El-Sallab, “Modnet: Motion and appearance based mov-
ing object detection network for autonomous driving,” in ITSC,
2018.

S. Jain, B. Xiong, and K. Grauman, “Fusionseg: Learning to com-
bine motion and appearance for fully automatic segmentation of
generic objects in videos,” arXiv preprint arXiv:1701.05384, 2017.
P. Tokmakov, C. Schmid, and A. Karteek, “Learning to segment
moving objects,” I/CV, 2018.

A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,
V. Golkov, P. Smagt, D. Cremers, and T. Brox, “Flownet: Learning
optical flow with convolutional networks,” in ICCV, 2015.

O. Russakovsky, J. Deng, H. Su, ]J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
IJCV, 2015.

Y. Yang, B. Lai, and S. Soatto, “Dystab: Unsupervised object
segmentation via dynamic-static bootstrapping,” in CVPR, 2021.
C. Yang, H. Lamdouar, E. Lu, A. Zisserman, and W. Xie, “Self-
supervised video object segmentation by motion grouping,” in
ICCV, 2021.

G. Yang and D. Ramanan, “Learning to segment rigid motions
from two frames,” in CVPR, 2021.

P. Bideau and E. Learned-Miller, “Its moving! a probabilis-
tic model for causal motion segmentation in moving camera
videos,” 10 2016, pp. 433-449.

P. Bideau, R. R. Menon, and E. Learned-Miller, “Moa-net: Self-
supervised motion segmentation,” in ECCV workshop, 2018.

P. Bideau, A. RoyChowdhury, R. R. Menon, and E. Learned-
Miller, “The best of both worlds: Combining cnns and geometric
constraints for hierarchical motion segmentation,” in CVPR, 2018.
M. Irani and P. Anandan, “A unified approach to moving object
detection in 2d and 3d scenes,” TPAMI, 1998.

J. H. Kappes, M. Speth, B. Andres, G. Reinelt, and C. Schnorr,
“Globally optimal image partitioning by multicuts,” in EMM-
CVPR, 2011.

S. Tang, B. Andres, M. Andriluka, and B. Schiele, “Multi-person
tracking by multicut and deep matching,” in ECCVWV, 2016.

S. Kim, C. Yoo, S. Nowozin, and P. Kohli, “Image segmentation
using higher-order correlation clustering,” TPAMI, 2014.

T. Beier, B. Andres, U. Kothe, and F. A. Hamprecht, “An efficient
fusion move algorithm for the minimum cost lifted multicut
problem,” in ECCV, 2016.

A. Kardoost and M. Keuper, “Solving minimum cost lifted mul-
ticut problems by node agglomeration,” in ACCV, 2019.

S. Chopra and M. Rao, “The partition problem,” Mathematical
Programming, 1993.

A. Horndkovd, J.-H. Lange, and B. Andres, “Analysis and opti-
mization of graph decompositions by lifted multicuts,” in ICML,
2017.

J. Yarkony, A. Ihler, and C. Fowlkes, “Fast planar correlation
clustering for image segmentation,” in ECCV, 2012.

J. Yarkony, “ Analyzing PlanarCC: Demonstrating the equivalence
of PlanarCC and the multi-cut LP relaxation,” in NeurIPS Work-
shop on Discrete Optimization, 2014.

J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnorr, S. Nowozin,
D. Batra, S. Kim, B. X. Kausler, T. Kroger, J. Lellmann, N. Ko-
modakis, B. Savchynskyy, and C. Rother, “A comparative study
of modern inference techniques for structured discrete energy
minimization problems,” IJCV, 2015.

Gurobi Optimization, LLC, “Gurobi Optimizer Reference Man-
ual,” 2021.

K. Fragkiadaki, P. Arbelaez, P. Felsen, and J. Malik, “Learning to
segment moving objects in videos,” in CVPR, 2015.

K. Fragkiadaki, G. Zhang, and J. Shi, “Video segmentation by
tracing discontinuities in a trajectory embedding,” in CVPR, 2012.
T. Brox and J. Malik, “Large displacement optical flow: descriptor
matching in variational motion estimation,” TPAMI, 2011.

W. Zhang and J. Kosecka, “Nonparametric estimation of multiple
structures with outliers,” in ECCV workshop, 2006.

[90]

[91]

[92]
[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

H. W. Kuhn, “The hungarian method for the assignment prob-
lem,” Naval Research Logistics Quarterly, 1955.

H. S. Wong, T-J. Chin, J. Yu, and D. Suter, “Dynamic and
hierarchical multi-structure geometric model fitting,” in ICCV,
2011.

T. T. Pham, T.-J. Chin, J. Yu, and D. Suter, “The random cluster
model for robust geometric fitting,” TPAMI, 2014.

P. Bideau and E. Learned-Miller, “A detailed rubric for motion
segmentation,” 2016.

E.Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep
networks,” in CVPR, 2017.

E. Ilg, T. Saikia, M. Keuper, and T. Brox, “Occlusions, motion and
depth boundaries with a generic network for disparity, optical
flow or scene flow estimation,” in ECCV, 2018.

B. Taylor, V. Karasev, and S. Soattoc, “Causal video object seg-
mentation from persistence of occlusions,” in CVPR, 2015.

F. Galasso, N. Nagaraja, T. Cardenas, T. Brox, and B.Schiele, “A
unified video segmentation benchmark: Annotation, metrics and
analysis,” in ICCV, 2013.

P. Sundberg, T. Brox, M. Maire, P. Arbelaez, and J. Malik, “Oc-
clusion boundary detection and figure/ground assignment from
optical flow,” in CVPR, 2011.

E. Galasso, M. Keuper, T. Brox, and B. Schiele, “Spectral graph
reduction for efficient image and streaming video segmentation,”
in CVPR, 2014.

F. Perazzi, ]J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross,
and A. Sorkine-Hornung, “A benchmark dataset and evaluation
methodology for video object segmentation,” in CVPR, 2016.

Evgeny Levinkov is a research scientist in the
Bosch Center for Atrtificial Intelligence, Germany.
He received MSc and PhD degrees from the
Saarland University, Germany. During his PhD
studies he was with the Max Planck Institute for
Informatics, Germany.

Amirhossein Kardoost received the MSc de-
gree from the Saarland University, Germany,
in 2017. Since 2017, he is a PhD candidate
for Computer Vision in University of Mannheim,
Germany. His research is in video object and
motion segmentation mostly under the minimum
cost lifted multicut formulation. He is supervised
by Margret Keuper.

Bjoern Andres is the Professor of Machine
Learning for Computer Vision at TU Dresden.
Previously, he worked as a group leader and de-
partment head at the Bosch Center for Artificial
Intelligence, as a Senior Researcher at the Max
Planck Institute for Informatics and as a Postdoc-
toral Fellow at Harvard University. His doctorate
in Physics at the University of Heidelberg was
supervised by Fred A. Hamprecht.

Margret Keuper is a Professor for Visual Com-
puting at the University of Siegen, Germany. Be-
fore, she was a Juniorprofessor at the University
of Mannheim and she worked as a postdoc-
toral researcher for the University of Freiburg
and at the Max Planck Institute for Informatics
in Saarbruecken. She did her Ph.D. under the
supervision of Thomas Brox at the University of
Freiburg.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



