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Abstract. In this paper, we introduce the relative L-invariant rL(X)
of a smooth, orientable, compact 4-manifold X with boundary. This
invariant is defined by measuring the lengths of certain paths in the cut
complex of a trisection surface for X. This is motivated by the definition
of the L-invariant for smooth, orientable, closed 4-manifolds by Kirby
and Thompson. We show that if X is a rational homology ball, then
rL(X) = 0 if and only if X ∼= B4.

In order to better understand relative trisections, we also produce an
algorithm to glue two relatively trisected 4-manifold by any Murasugi
sum or plumbing in the boundary, and also prove that any two relative
trisections of a given 4-manifold X are related by interior stabilization,
relative stabilization, and the relative double twist, which we introduce
in this paper as a trisection version of one of Piergallini and Zuddas’s
moves on open book decompositions. Previously, it was only known (by
Gay and Kirby) that relative trisections inducing equivalent open books
on X are related by interior stabilizations.

1. Introduction

In this paper, we introduce the relative L-invariant , a trisection-theoretic
invariant of a compact 4-manifold X with boundary which we denote rL(X).
This invariant is modeled after the L-invariant L(Y ) of Kirby and Thomp-
son [KT18] defined for a closed 4-manifold Y . We review the details of the
L-invariant in Section 2.5.

This invariant has the following interesting property.

Theorem 4.5. If X is a rational homology ball with rL(X) = 0, then
X ∼= B4.

This mirrors the situation in the closed case, as Kirby and Thomp-
son [KT18] showed that for X a rational homology sphere, L(X) = 0 if
and only if X ∼= S4.

Roughly, rL measures the minimal complexity of a relative trisection
diagram of X. By minimizing this complexity over all relative trisection
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diagrams of X, we obtain a manifold invariant. We also define two simi-
lar invariants rL∂(X) and rL◦(X) which minimize (over relative trisection
diagrams) complexities associated to the boundary and interior of X, re-
spectively. Intuitively, one should think of rL∂ and rL◦ as being the relative
L-invariant restricted to the boundary or interior of a manifold, respectively.
We make this precise in Section 3. We review the construction of relative
trisections as introduced by Gay and Kirby [GK16] in Section 2.2.

We show also that when rL∂(X) is small, then the boundary of X has
simple topology.

Lemma 4.1. If T is a (g, k; p, b)-relative trisection diagram of a 4-manifold
X with rL∂(T ) ≤ 1, then ∂X ∼= #2p+b−1S

1 × S2.

Theorem 4.2. Let T be a (g, k; p, b)-relative trisection of 4-manifold X with
rL∂(T ) < 2(2p+ b− 1). Then ∂X admits an S1 × S2 summand.

On the other end of the spectrum, we show that rL(X) can be large.

Corollary 4.4. For any n ∈ N, there exists a 4-manifold X with rL(X) ≥ n.

We also introduce a new move on relative trisection diagrams called a
relative double twist. This move achieves a Harer twist on the open book
induced by the described trisection. As we already know how to achieve
Hopf stabilization of the open book and interior stabilization of the described
trisection, this allows us to relate any two relative trisections of a fixed 4-
manifoldX by a combination of relative double twists, interior stabilizations,
and relative stabilizations. This strengthens the uniqueness results of Gay–
Kirby [GK16] and the first author [Cas16] by removing the requirement that
∂W be a rational homology sphere.

Theorem 2.17. Any two relative trisections T1 and T2 of a 4-manifold with
connected boundary can be made isotopic after a finite number of interior
stabilizations, relative stabilizations, relative double twists, and the inverses
of these moves applied to each of T1 and T2.

We describe the various stabilization moves in detail in Section 2.3. In
Section 3, we show that while interior stabilization of a relative trisection T
cannot increase rL(T ), both relative stabilization and relative double twist
can increase rL(T ).

Moreover, we explicitly describe how to perform the Murasugi sum oper-
ation via relative trisection diagrams.

Theorem 3.20. There is an explicit algorithm to glue two trisections to-
gether by Murasugi sum. That is, given relatively trisected 4-manifolds
X,X ′, we may produce a relative trisection of X\X ′ where the induced open
book on ∂(X\X ′) may be any Murasugi sum of the open books on ∂X, ∂X ′.

This has not previously appeared in the literature on trisections. Recall
that Murasugi sum is a generalized version of plumbing; we review this
definition briefly at the beginning of Section 3.3.
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Organization. We break the paper into the following sections.

Section 2: We recall basic definitions regarding trisections and the L-invariant
for closed 4-manifolds. In this section, we describe stabilizing oper-
ations for relative trisections and prove Theorem 2.17.

Section 3: We define the relative L-invariant, investigate its basic properties,
and compare it to the L-invariant. We also prove Theorem 3.20 as
an item of independent interest, using the language introduced in
this section.

Section 4: We study the topology of 4-manifolds with small L-invariant. In
particular, we prove Theorems 4.2 and 4.5. As a corollary of Theo-
rem 4.2, we conclude Corollary 4.4.

Section 5: Given a relative trisection T of X, we relate rL∂(T ) to the displace-
ment distance of the monodromy of the open book induced by T on
∂X. We use this comparison to construct relative trisections with
large L invariant but whose 3-manifold boundary has small homol-
ogy.

Acknowledgements. This project began at the Spring Trisector’s Meet-
ing at the University of Georgia in February, 2018. Thanks to Jeff Meier
and Juanita Pinzón-Caicedo for early interesting discussions, and to Román
Aranda and Jesse Moeller for very helpful discussions after our first draft.
Thanks also to an anonymous referee for providing many useful comments.

2. Preliminaries

2.1. Trisections. A trisection is a decomposition of a smooth, closed, ori-
entable 4-manifold into three standard pieces. These decompositions were
introduced by Gay and Kirby [GK16] as a 4-dimensional analogue of Hee-
gaard splittings of 3-manifolds. Though this paper focuses on the case of
manifolds with boundary, we begin with the definition for a closed 4-manifold
as a warm up.

Definition 2.1. For non-negative integer g and a triple of non-negative
integers k = (k1, k2, k3) with g ≥ ki, a (g, k)-trisection T of a smooth,
closed, orientable 4-manifold X is a decomposition of X into three pieces
X1, X2, X3 so that:

i) X = X1 ∪X2 ∪X3 and Xi ∩Xj = ∂Xi ∩ ∂Xj for i 6= j,
ii) Each Xi

∼= \kS
1 ×B3,

iii) Each Xi ∩Xj (i 6= j) is a 3-dimensional handlebody \gS
1 ×D2,

iv) The triple intersection X1 ∩X2 ∩X3 is a genus g surface Σ that is
properly embedded in X.

We may write T = (X1, X2, X3). We may also write (X, T ) as a pair to
indicate that X is a 4-manifold with associated trisection T of X.

Gay and Kirby [GK16] proved that every smooth, closed, orientable 4-
manifold admits a trisection, which is unique up to a stabilization move. One
nice feature of a trisection is that all of the information of the 4-manifold can
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be encoded by curves in the triple intersection surface. We will sketch an
argument for this fact, which relies on the following theorem of Laudenbach–
Poenaru [LP72].

Theorem 2.2 (Laudenbach–Poenaru [LP72]). Let M ∼= \kS
1 × B3. Every

self-diffeomorphism of ∂M extends to a self-diffeomorphism of M .

As a consequence of Theorem 2.2, a trisection T = (X1, X2, X3) is deter-
mined by its spine (X1 ∩X2, X2 ∩X3, X1 ∩X3). This holds because given
the inclusion of ∂Xi = (Xi∩Xj)∪(Xi∩Xk) into X, there is a unique way to
glue in the rest of Xi up to diffeomorphism. The 3-dimensional handlebody
Xi ∩Xj is in turn determined by g curves on the surface X1 ∩X2 ∩X3, and
so a trisection is completely determined up to diffeomorphism by a triple of
curves on a surface. This leads us to the following definition.

Definition 2.3. A trisection diagram D = (Σ;α, β, γ) consists of

i) Σ, a closed genus–g surface,
ii) α, β, and γ, each of which are non-separating collections of g disjoint

simple closed curves on Σ.

Moreover, we require that each triple (Σ;α, β), (Σ;β, γ), (Σ;α, γ) be a Hee-
gaard diagram for #ki(S

1×S2) for some non-negative integer ki (i = 1, 2, 3,
respectively).

Given a trisection diagram D = (Σ;α, β, γ), we may recover a trisected
4-manifold (X, T ) by the following process:

(1) Start with Σ×D2,
(2) Attach a copy of H × I to Σ × [e2πi−ε, e2πi+ε]. Each α curve in

Σ× {e2πi} should bound a disk into H × e2πi.
(3) Similarly, attach a copy of H × I near Σ× {e4πi} and another near

Σ × {1}, with the handlebodies determined by the β and γ curves
respectively.

(4) Glue in a (uniquely determined) 4-dimensional 1–handlebody to each
of the three resulting boundary components.

The trisected 4-manifold (X, T ) is well-defined up to diffeomorphism. We
say that D is a trisection diagram of (X, T ), or just a diagram of T .

So far, this discussion has been about closed 4-manifolds. However, in
this paper we are more interested in 4-manifolds with nonempty boundary.

2.2. Relative trisections. A relative trisection is a generalization of a tri-
section to the case of a 4-manifold with boundary. Again we decompose a
given 4-manifold into three standard pieces, though in this case the pieces
meet in a slightly more intricate manner. We give the precise definition
below.

Definition 2.4. For integers g, p, b and a triple k = (k1, k2, k3) with g ≥ p ≥
0, b ≥ 1, and 2p+ b− 1 ≤ ki ≤ 2g + b− 1, a (g, k; p, b)-relative trisection T
of a compact, orientable 4-manifold X with connected, nonempty boundary
is a decomposition of X into three pieces X1, X2, X3 so that:
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i) X = X1 ∪X2 ∪X3 and Xi ∩Xj = ∂Xi ∩ ∂Xj for i 6= j,
ii) The triple intersection X1 ∩X2 ∩X3 is a genus g surface Σ with b

boundary components, properly embedded in X,
iii) Each Xi

∼= \kiS
1 ×B3,

iv) Each Xi ∩ Xj (i 6= j) is a 3-dimensional compression body from Σ
to a genus–p surface contained in ∂X,

v) There are agreeing product structures

Xi ∩ ∂X ∼= [(Xi ∩Xi−1) ∩ ∂X]× I ∼= −[(Xi ∩Xi+1) ∩ ∂X]× I.

We may write T = (X1, X2, X3).
The product structures on each Xi ∩ ∂X induce an open book structure

on ∂X with binding ∂Σ in which Xi ∩ Xj ∩ ∂X is a single page. We will
write OT to denote the open book induced on ∂X by T .

If we are abstractly given a relative trisection T , we may write XT to
denote the trisected 4-manifold decomposed by T . We may also write (X, T )
as a pair to indicate that X is a 4-manifold with associated relative trisection
T of X.

The above definition can be extended to a 4-manifold with more than one
boundary component, but here we specify connected boundary for simplicity.
Relative trisections were first introduced by Gay and Kirby [GK16] and
shown to exist for all bounded, compact 4-manifolds, even when specifying
the boundary data of the induced open book.

Theorem 2.5. [GK16] Given any open book decomposition O of ∂X there
is a relative trisection T of X which induces the open book O.

The first author [Cas16] showed that we may glue trisected 4-manifolds
along common boundary as long as long as the relative trisections induce
equivalent open books.

Theorem 2.6. [Cas16] Let (W, T ) and (W ′, T ′) be relatively trisected 4-
manifolds such that ∂W ∼= ∂W ′. The relative trisections can be glued
together along their diffeomorphic boundaries to induce a closed, trisected
4-manifold (W ∪

∂
W ′, T ∪ T ′) if the induced open books OT and OT ′ are

compatible (see Section 3.2).

The first author, together with Gay and Pinzón-Caicedo [CGPC18a],
showed that relative trisections can be completely described diagramatically.

Definition 2.7. A relative trisection diagram D = (Σ;α, β, γ) consists of

i) Σ, a genus g surface with b boundary components,
ii) α, β, and γ, each of which are a non-separating collection of g − p

disjoint simple closed curves on Σ.

Moreover, each triple (Σ;α, β), (Σ;β, γ), (Σ; γ, α) can be made standard as
in Figure 1 after handleslides of the curves and diffeomorphisms of Σ.
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}

k − 2p− b+ 1

}
g + p+ b− k − 1

}
p

} b
Figure 1. Standard position for a pair of collections of
curves in a (g, k; p, b)-relative trisection diagram

We say that a relative trisection diagram D describes or determines the
relative trisection T = (X1, X2, X3) if T has the property that under some
identification X1 ∩X2 ∩X3 with Σ (hence the naming convention), then

i) X1 ∩ X2 strongly deformation retracts to Σ ∪ (3-dimensional 2–
handles along the (g − p) α curves),

ii) X2 ∩ X3 strongly deformation retracts to Σ ∪ (3-dimensional 2–
handles along the (g − p) β curves),

iii) X3 ∩ X1 strongly deformation retracts to Σ ∪ (3-dimensional 2–
handles along the (g − p) γ curves).

Theorem 2.8. [CGPC18a] Every relative trisection T of a 4-manifold X4

can be described by a relative trisection diagram.

Note in particular that a relative trisection diagram then determines an
open book on ∂X. Given the relative trisection diagram, this open book is
determined up to automorphisms of ∂X that extend over X. When (X, T )
is specified, then a diagram D of T determines this open book up to isotopy.

Since a relative trisection diagram D determines a relative trisection T ,
we may write OD to mean the open book induced by T on XD := XT . We
similarly say that D induces the (abstract) open book OD. Again, when
(X, T ) is specified first, then this open book is determined up to isotopy in
∂X, otherwise OD is determined up to an automorphism of ∂X extending
over X.

2.3. Trisection stabilization. Interior stabilization of trisections was in-
troduced in [GK16]. This is completely analogous to stabilization of Hee-
gaard splittings.

Definition 2.9. Let T = (X1, X2, X3) be a trisection or relative trisection
of a 4-manifold X. Let T1 = (Y1, Y2, Y3) be a (1, k)-trisection of S4, where
{k1, k2, k3} = {0, 0, 1} (as in Figure 9). We obtain another trisection T ′ =
(Z1, Z2, Z3) of X by taking the connected-sum (X, T ′) := (X, T )#(S4, T1).
Here, the ball removed from each of X,S4 when performing the connected-
sum is centered at a point in the triple-intersection surface of T , T1. We
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arrange T and T1 so that Xi and Yi meet in a ball along the connected-sum
3-sphere. Then we let Zi = Xi\Yi.

We say T ′ is obtained by stabilizing T . Conversely, we say that T is
obtained by destabilizing T ′. When X has boundary, we will usually refer
to (de)stabilization as interior (de)stabilization.

Note that there are three kinds of stabilization we may perform on a
trisection T . One of the these stabilizations increases k1 while fixing k2 and
k3; the other stabilizations increase k2 or k3 (see Figure 9). When (X, T ) is a
relatively trisected 4-manifold with boundary, interior stabilization does not
affect the induced open book on ∂X. Gay and Kirby [GK16] show that any
two relative trisections (X, T1), (X, T2) which induce the same open book
on the bounding 3-manifold ∂X become isotopic after finitely many interior
stabilizations of each of T1, T2.

When (X, T ) is a relatively trisected 4-manifold, we consider two different
forms of stabilizations that take place near ∂X. First we briefly discuss
Lefschetz fibrations over the disk, through which both stabilizations must
pass. The reader is referred to [Cas16, CGPC18a, CO19, OS04] for details.

Definition 2.10. A Lefschetz fibration of a 4–manifold with boundary W
is a smooth map f : W → D2 with a finite number of isolated singularities
Cf = {c1, . . . , cn} such that each of the critical points can be locally modeled
by the map (z, w) 7→ z2 + w2.

For any y ∈ D2 \ Cf , f−1(y) ∼= F , where F is a surface with boundary
called the regular fiber of f . If ci ∈ Cf is a critical value of f , then we refer
to f−1(q) as a critical fiber. It is well known that each ci ∈ Cf corresponds
to a simple, closed curve δi ⊂ F called a vanishing cycle. The critical fiber
corresponding to ci is obtained by contracting the vanishing cycle δi to a
point, resulting in a nodal singularity. The topology of a Lefschetz fibration
can be recovered by the data of the regular fiber and an ordering of vanish-
ing cycles as follows: We attach 4–dimensional 2–handles to F ×D2 along
neighborhoods of the vanishing cycles in sequential order. Each 2–handle
is attached to F × {xi} for distinct values of xi ∈ partialD2. The framing
of a 2–handle is −1 if the local model of the corresponding critical point is
orientation preserving, and is +1 if the local model is orientation reversing.
A Lefschetz fibration with both orientation preserving and reversing local
models is called achiral.

One key feature shared by Lefschetz fibrations and relative trisections of
W is that they induce an open book decomposition on ∂W. While obtaining
the explicit (abstract) open book from a relative trisection diagram is quite
involved (see Section 2.4), obtaining the open book decomposition from
a Lefschetz fibration is quite simple. Given an ordering of the vanishing
cycles δ1, . . . , δn on F , let τ(δi) denote the positive Dehn twist of F along
the curve δi. The open book decomposition of ∂W is Of = (F, φ), where
φ ∈ Map(F, ∂F ) is the composition of Dehn twists τ−σn(δn) · · · τ−σ1(δ1),
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(a) The regular fiber of f . (b) The regular fiber of f ′.

(c) The local result of a relative stabilization.

Figure 2. Modifying a Lefschetz fibration F by adding a
cancelling 1-2–pair. In [PZ18], this is referred to as an S
move. This induces a Hopf stabilization to the bounding open
book decomposition. In general, one could attach the Hopf
band to different boundary components. The new regular
fiber is obtained from the old fiber by adding a band. The
new (last) vanishing cycle runs over a core of this band.

where

σi =

{
−1 the local model of ci is orientation-preserving

1 otherwise.

By carefully adding a canceling 1-2 pair to W , we can obtain a new
Lefschetz fibration f ′ of W . We require that the feet of the 1–handle are
attached to neighborhoods of points on the binding of O. The attaching
sphere δ of the 2–handle is comprised of two arcs δ = a ∪ a′, where a is a
properly embedded arc in a single page O and a′ is the core of the 1–handle.
Finally, δ must have framing ±1. This modification is referred to as an S
move in [PZ18]. This ensures that the bounding open book is modified by
a positive/negative Hopf stabilization, ∂S. The effect on the regular fiber
is depicted in Figure 2. Note that the regular fibers of f ′ differ from those
of f by an additional 1–handle (i.e. a band), and Cf ′ = Cf ∪ c, where c is
a Lefschetz singularity with vanishing cycle δ. In the sequential ordering of
vanishing cycles for f ′, δ appears last.
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(a)

h

h

(b)

Figure 3. The effect of wrinkling a vanishing cycle.

In a neighborhood of a Lefschetz singularity, there is a local perturbation
(z, w) 7→ z2 + w2 + tRe(w), known as wrinkling, which changes the nodal
singularity to a triply cusped singular set. Roughly speaking, in the case of
Lefschetz fibrations over the disk, wrinkling all of the singularities will result
in a relative trisection (diagram) which induces the same open book decom-
position on ∂W as the initial Lefschetz singularity. Adding a cancelling
1-2 pair as above (to a relative trisection) and wrinkling the corresponding
singularity gives rise to a relative stabilization, which we shortly define in
Definition 2.11. This procedure on Lefschetz fibrations motivates the gen-
eral definition of a relative stabilization. The local model for obtaining a
relative trisection diagram via wrinkling is shown in Figure 3. The total
move on relative trisection diagrams is sketched in Figure 2.

Definition 2.11. Let T = (X1, X2, X3) be a relative trisection of a 4-
manifold X. Let T1 = (Y1, Y2, Y3) be a (1, 1; 0, 2)-trisection of B4. We
obtain a new relative trisection T ′ = (Z1, Z2, Z3) of X by taking the bound-
ary connected-sum (X, T ′) := (X, T )\(B4, T1). To form this boundary
connected-sum, we Murasugi-sum the open booksOT andOT1 along squares,
making sure to glue the plumbed square inXi∩Xj∩∂X to one in Yi∩Yj∩∂B4.
Then we let Zi = Xi\Yi.

We say T ′ is obtained by relatively stabilizing T . Conversely, we say
that T is obtained by relatively destabilizing T ′. We illustrate a relative
stabilization from this perspective in Figure 4. In practice, we typically
specify the Murasugi-sum square in the page Σα = X1∩X2∩∂X in order to
perform the stabilization operation diagramatically, so this is what we have
done in Figure 4.

We will see a more detailed construction of plumbings of trisections in
Theorem 3.20.

When a 3-manifold Y has a unique spinc structure, any two open books on
Y can be related by Hopf stabilizations/destabilizations [GG06]. Since ∂H
does not change the spinc structure of the homotopy plane field supported
by an open book, not all open book decompositions of a fixed 3-manifold
can be related by Hopf stabilizations and destabilizations.
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(a) An arc δ in Σα. The arc δ may
intersect many β and γ curves, as
indicated.

A A

(b) The effect of positive relative
stabilization along δ.

A A

(c) The effect of negative relative
stabilization along δ.

Figure 4. Local illustration of positive and negative relative
stabilization. Compare to Figure 2.

Piergallini and Zuddas [PZ18] show that the U move on Lefschetz fibra-
tions can achieve the goal of changing the spinc structure associated to the
induced open book of Y . We are particular interested in the effect of the U
move on the boundary open book.

Definition 2.12. Let O be an open book on a 3-manifold defined by a page
P and monodromy φ : P → P . Isotope φ so that it fixes an open disk
D pointwise. Let P ′ be a copy of P with two smaller disjoint open disks
within D deleted. Let φ′ : P → P be an automorphism which agrees with
φ outside D, and inside D consists of Dehn twists about each component of
∂P ′ \ ∂P of opposite sign. We say that the open book O′ with page P and
monodromy φ is obtained from O by a ∂U move.

It is an easy exercise to show that the total spaces of O and O′ are home-
omorphic 3-manifolds. Just as there are many ways to perform positive or
negative Hopf stabilization to an open book (i.e. many choices of square in
the page along which to plumb a Hopf band), there are many ways to choose
a disk D in a page P along which to perform a ∂U move. In practice, one



THE RELATIVE L-INVARIANT OF A COMPACT 4-MANIFOLD 11

should isotopy the monodromy φ of an open book O to be a product of Dehn
twists along curves C1, . . . , Cn in P . Then one can consider performing the
∂U move in any component of P \ (C1 ∪ · · · ∪ Cn). Piergallini and Zud-
das [PZ18] show that some sequence of these ∂U moves (and inverses) and
Hopf stabilizations can turn O into any open book of the same 3-manifold.

Theorem 2.13 ([PZ18, Theorem 3.5]). Any two open book decompositions
of a closed, oriented 3-manifold M3 can be made ambiently isotopic after a
finite number of ∂S± moves (positive and negative Hopf stabilization) and
∂U moves and their inverses.

We introduce a relative double twist of a relative trisection diagram, which
alters the spinc structure associated to OD by inducing a ∂U move. By
Theorem 2.13, we conclude that this move, together with the relative stabi-
lization, will allow us to modify a relative trisection diagram so as to induce
any desired open book on the boundary.

Definition 2.14 (Relative double twist). Let T = (X1, X2, X3) be a (g, k;
p, b)-relative trisection of a 4-manifold X4.

Suppose there is a disk D ⊂ Σ := X1 ∩ X2 ∩ X3 disjoint from all the
compression circles used to build the compression bodies X1 ∩ X2, X2 ∩
X3, X3 ∩ X1 on Σ. Then there is a copy Ei = D × I × I in each Xi.
Suppose that Ei and Ej agree in Xi ∩ Xj for each i, j. This condition is
not automatically satisfied; when this is true, we will say that D satisfies
the relative double twist criterion. In this case, E1 ∪ E2 ∪ E3 is a copy of
D ×D2, with D identified with D × {0} and (D ×D2) ∩ ∂X = D × ∂D2.

Now consider the (2, 1; 0, 2)-relative trisection (Y1, Y2, Y3) of S2×D2 pic-
tured on the right of Figure 5. There is a disk D′ in Y1∩Y2∩Y3 that similarly
gives a copy of D′ ×D2 inside S2 ×D2.

Let

Z4 = (X4 \ (D ×D2)) ∪∂D×S1∼∂D′×S1 (S2 ×D2 \D′ ×D2),

with

Zi = (Xi \ Ei) ∪ (Yi \ (D′ ×D2)).

Then Z4 ∼= X4, and T ′ := (Z1, Z2, Z3) is a (g + 2, k + 2; p, b+ 2)-relative
trisection of X4. We say that T ′ is obtained from T by a relative double twist
along D. in Figure 6, we show how to obtain a relative trisection diagram
for T ′ from one for T . Note that OT ′ is obtained from OT by a ∂U move
along D × {pt}.

The description of the relative double twist move as being the result of
gluing a 4-manifold to S2 × D2 after removing a 2-handle from each was
inspired by the “poking” move of Aranda and Moeller [AM19].

Proposition 2.15. Let T = (X1, X2, X3) be a relative trisection of X4. By
performing a relative double twist, we may induce any ∂U move on OT .
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D

Σ

D′

Figure 5. Left: a schematic of a disk D in a trisection
surface Σ for a trisection T of a 4-manifold X4 satisfying
the relative double twist criterion. We shade the copy of
D × D2 inside X. Right: a trisection diagram of he trisec-
tion (Y1, Y2, Y3) of S2 × D2. We shade the disk D′ as in
Definition 2.14. We similarly find a copy of D′ × D2 inside
S2×D2. To perform the relative double twist operation to T
along D, we delete D×D2 from X and D′×D2 from S2×D2,
then glue the resulting manifolds along D×∂D2 ∼ D′×∂D2

so that Xi \ (D × I × I) glues to Yi \ (D′ × I × I).

D

(a) Preparing to do a relative dou-
ble twist to a relative trisection di-
agram D = (Σ;α, β, γ) along a disk
D.

1 1 2 2

(b) After performing the rela-
tive double twist, we obtain a
relative trisection diagram D′ =
(Σ′, α′, β′, γ′).

Figure 6. Moving from Figure (A) to figure (B) is an in-
stance of the relative double twist on relative trisection dia-
gram, if D satisfies the relative double twist criterion, as in
Definition 2.14. See Remark 2.16 if interested in finding such
a disk. The surface Σ′ is obtained from Σ by deleting two
open disks and attaching two tubes with D. Each of α, β, γ
is included in α′, β′, γ′ (correspondingly) and we draw the
curves in α′ − α, β′ − β, γ′ − γ.
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Proof. Choose a ∂U move on OT . That is, factor the monodromy of OT
into a product of Dehn twists and choose a disk D in Σα that is disjoint
from each Dehn twisted curve in the monodromy φ of OT . View D as being
in Σ. Since D is fixed by φ, it is possible to isotope X2 and X3 so that the
copies of D× I × I in each Xi agree in Xi ∩Xj (i.e., so that D satisfies the
relative double twist criterion). Then perform a relative double twist on T
along D.

�

Remark 2.16. In the proof of Proposition 2.15, we may have to isotope
X2 and X3 in order to do the relative double twist. One should view this
as analogous to the condition that in order to perform a ∂U move on an
open book, we must first isotope the open book to fix a disk pointwise. If
we start with a relative trisection diagram D = (Σ;α, β, γ) for X in mind,
then this isotopy might induce slides of the β and γ curves in X that might
seem mysterious.

In practice, to achieve a relative double twist, it is helpful to start with a
relative trisection diagram in which the support of the open book mon-
odromy φ is easily visible. Once this is done, the process for the rel-
ative double twist is illustrated in Figure 7 and explained in what fol-
lows. Slide the α, β curves to make them standard, so that D yields a
Kirby diagram of X containing Σα, as in [KM18, MN20]. The algorithm
of [CGPC18b] reverses this procedure (up to interior (de)stabilization) by
projecting the 2-handle attaching circles to Σα and attaching certain deco-
rated tubes (see [CGPC18b] for details). Now φ is supported in a neighbor-
hood of the projected 2-handle circles. Let D be a disk in Σα disjoint from
any tubes or projections of 2-handle circles. Choose an arc δ in (Σα∩Σ)\ D̊
from ∂D to ∂Σα. (The arc δ may intersect projections of 2-handle circles.)
Then we may obtain a trisection diagram D′ of X by adding two dotted cir-
cles (one of which is a double of δ) and two 2-handles to the Kirby diagram
as in Figure 7 and then applying the procedure of [CGPC18b] to obtain a
relative trisection diagram. The trisection described by D′ is obtained from
the one described by D up to interior (de)stabilization.

Thus, a relative trisection of a given 4-manifold is unique up to a simple
set of moves. Previously, this was only known among relative trisections with
the same boundary data [GK16] or suitably similar boundary data [Cas16].

Theorem 2.17. Let T and T ′ be relative trisections of a 4-manifold X,
with a fixed identification X ∼= XT ∼= XT ′. Then T and T ′ are related by a
sequence of ambient isotopies, stabilizations, relative stabilizations, relative
double twists, and the inverses of these moves.

Proof. By Theorem 2.13 and Proposition 2.15, we may perform relative
stabilizations, relative double twists, and inverse moves to T until we obtain
a relative trisection T ′′ withOT ′′ ambiently isotopic toOT ′ . Then by [GK16,
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(a) A relative tri-
section diagram
D = (Σ;α, β, γ) with
α and β standard.

−1

(b) As
in [KM18, MN20],
we obtain a Kirby
diagram from D
containing Σα. Note
the projections of the
2-handle attaching
circles to Σα.

−1

(c) Choose a disk D
(shaded) in Σα dis-
joint from the projec-
tions of the 2-handle
curves, and an arc δ
from ∂D to ∂Σα.

−1

(d) Delete two open disks in Σα

in D. Add two 2-handles (with
framing +1 and −1, not pictured
for space) to the Kirby diagram
around these holes, and two dot-
ted circles (one linking the two 2-
handles, the other doubling the arc
δ).

(e) Perform the algorithm
of [CGPC18b] to turn the picture
back into a relative trisection
diagram D′. The open book OD′ is
obtained from OD by a ∂U move
along D; the relative trisection
TD′ is obtained from TD by a
relative double twist along D up
to interior (de)stabilization. Note
that Figure 6b is contained in D′.

Figure 7. Moving from Figure (A) to figure (E), we show
how to diagrammatically perform the relative double twist
to a relative trisection diagram. Not illustrated: we preemp-
tively standardize the α and β curves of the starting relative
trisection diagram.
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Theorem 21], we can perform interior stabilizations and destabilizations to
T ′ to obtain a relative trisection ambiently isotopic to T . �

2.4. The Monodromy Algorithm. An essential component to encoding
a relatively trisected 4-manifold via a trisection diagram is the monodromy
algorithm from [CGPC18a], which we review here for completeness. Let
D = (Σ;α, β, γ) be a (g, k; p, b) relative trisection diagram for a 4-manifold
W with connected boundary. The page of the open book induced by D is
the genus p surface with b boundary components Σα obtained by surgering
Σ along the α curves. Any essential, properly embedded arc in the page Σα

which misses the disks resulting from surgering Σ along the α curves can be
identified with an arc in the trisection surface Σ.

Let Aα = {a1, . . . , al} be collection of l = 2p + b − 1 disjoint, essential,
properly embedded arcs in Σα such that their complement in Σα is a disk
(We will think of Aα as a subset of both Σ and Σα and will specify which
surface the arcs are in when necessary.) We fix a point on each boundary
component of Σ, and we consider all arcs in this paper up to isotopies which
do not take the endpoints of the arcs over these fixed points. The following
algorithm produces a collection of arcs A = {a1, . . . , al} ⊂ Σα which defines
a diffeomorphism φ : Σα → Σα by requiring φ(ai) = ai for each i. This φ is
the monodromy of the open book OD.

Algorithm. [CGPC18a]

1. Slide α curves and Aα over α curves (without introducing intersec-
tions to α ∪ Aα) and β curves over β curves (without introducing
self-intersections to β) until they are disjoint from β. Call the re-
sulting collection of arcs Aβ = {b1, . . . , bl}, where bi is obtained from
ai. Let β′ be the curves resulting from sliding β, so β′ ∩Aβ = ∅.

2. Slide β′ curves and Aβ over β′ curves (without introducing intersec-
tions to β′∪Aβ) and slide γ curves over γ curves (without introducing
self-intersections to γ) until they are disjoint from γ. Call the result-
ing collection of arcs Aγ = {c1, . . . , cl}, where ci is obtained from bi.
Let γ′ be the curves resulting from sliding γ, so γ′ ∩Aγ = ∅.

3. Slide γ′ curves and Aγ over α curves (without introducing intersec-
tions to γ′ ∪Aγ) until they are is disjoint from α. Call the resulting

collection of arcs Ã = {ã1, . . . , ãl}, where ãi is obtained from ci. Let

α′ be the curves resulting from sliding α, so α′ ∩ Ã = ∅.
4. Slide α′ and Ã over α′ curves until α′ is again equal to the original
α curves, while always keeping the curves and arcs disjoint. Call the
resulting collection of arcs A = {a1, . . . , al}, where ai is obtained
from ãi. We have α ∩A = ∅.

Since Aα, A ⊂ Σα each have complement a disk, we may uniquely define
φ : Σα → Σα up to isotopy by specifying that φ(ai) = ai.

Remark 2.18. It is helpful to keep the following facts in mind when per-
forming the above algorithm:
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1. Such slides in each step of the algorithm exist since we know any
pair of curves can be made to be in standard positions.

2. Two types of choices are made when performing the algorithm: the
choice of arcs Aα and the choice of arc slides in each step. An
important part of the proof of the algorithm is that φ is independent
of these choices, up to isotopy and conjugation in the mapping class
group of Σα.

3. By starting with a standard set of α and β curves, we may find initial
arcs for this algorithm which are disjoint from both sets of curves.
This makes the first step of the algorithm redundant.

2.5. The L–invariant. In this section, we briefly review the definitions and
some of the results in [KT18]. We must first understand a certain complex
associated to a surface.

Definition 2.19. Given a closed orientable surface Σ, the cut complex of
Σ, HT (Σ), is the simplicial complex built as follows.

Each vertex of HT (Σ) corresponds to a cut system for Σ; that is, a
collection of g non-separating simple closed curves on Σ whose complement
in Σ is a punctured sphere.

Each edge in HT (Σ) is either type 0 or type 1. If v, v′ are vertices cor-
responding to cut systems (α1, α2, ..., αg) and (α′1, α

′
2, ..., α

′
g), respectively.

There is a type 0 edge between v and v′ if (up to reordering of either or both
cut systems) αi = α′i for i > 1 and α1 ∩ α′1 = ∅. (This relation is sometimes
called a generalized handleslide.) Similarly, there is a type 1 edge between
v and v′ if (up to reordering of either or both cut systems) αi = α′i for i > 1
and α1 intersects α′1 transversely in a single point.

Let T = (X1, X2, X3) be a trisection of a closed 4-manifold X. Let
D = (Σ;α, β, γ) be a diagram for T . Each of α, β, and γ are cut systems for
Σ, so correspond to vertices vα, vβ, and vγ of HT (Σ). We observe that any
two cut systems related by slides correspond to vertices in HT (Σ) connected
by a path of type 0 edges. Let HT 0(Σ) be the complex obtained from HT (Σ)
by deleting all type 1 edges (leaving only type 0 edges). A trisection then
naturally gives rise to three connected subgraphs of the cut complex HT (Σ),
which we denote by Γα, Γβ, Γγ , where Γ∗ is the component of HT 0(Σ)
containing v∗.

Recall that the 3-dimensional handlebodies in a trisection pairwise form
Heegaard splittings for #kiS

1 × S2. By Waldhausen’s theorem [Wal68],
these Heegaard splittings have diagrams which, after handle slides and a
diffeomorphism, can be made to look like the diagram in Figure 8 and in
this position, one can use g − ki type 1 edges to pass between the vertices.
Following [KT18], we call a pair of cut systems αβ ∈ Γα and βα ∈ Γβ defining
a genus g Heegaard splitting of #k1S

1 × S2 good if they are connected by a
path of exactly g−k1 type 1 edges (and similarly for the pairs (β, γ), (γ, α)).
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}

k1

}
g − k1

Figure 8. Standard genus g Heegaard diagram for #k1S
1×

S2.

Definition 2.20. Let X be a 4-manifold with (g, k)-trisection T , and let
Hα ∪Hβ ∪Hγ be the spine of T . Let δ be a loop in HT (Σ). We say that
δ is valid with respect to T if δ includes (not necessarily distinct) vertices
αγ , αβ, βα, βγ , γβ, γα in cyclic order so that:

(1) The segment of C between αγ , αβ (inclusive) lies in Γα,
(2) The segment of C between βα, βγ (inclusive) lies in Γβ,
(3) The segment of C between γβ, γα (inclusive) lies in Γγ ,
(4) The cut systems associated to the pairs (αβ, βα), (βγ , γβ), (γα, αγ)

are all good pairs, and the edges of δ between these pairs are all
type 1.

We define lX,T to be the length of the shortest loop in HT (Σ) which is
valid with respect to T .

We then appropriately normalize, taking

LX,T = lX,T − 3g + k1 + k2 + k3.

To see why the normalization in the definition of LX,T is appropriate, we
analyze how LX,T changes under stabilization of T .

Say T and T ′ are trisections of closed 4-manifolds with triple intersection
surfaces Σ and Σ′, respectively. Suppose δ and δ′ are loops in the cut
complexes HT (Σ), HT (Σ′) respectively, where δ is valid with respect to T
and δ′ is valid with respect to T ′. Let αγ , . . . , γα and α′γ , . . . , γ

′
α be the

distinguished vertices of δ, δ′ as in Definition 2.20. Then we may find a loop
in HT (Σ#Σ′) valid with respect to T #T ′ (see Definition 2.9) in which each
vertex splits into the disjoint union of a cut system for T and a cut system
for T ′. We start at the vertex αγ tα′γ , by which we mean the vertex whose
cut system corresponds to the union of the cut systems for αγ and α′γ . We
then add edges corresponding to those of δ between αγ and αβ, followed by
edges corresponding to those of δ′ between α′γ and α′β. Then we add edges
corresponding to those of δ between αβ and βα, and so on, ending with edges
corresponding to the segment of δ′ between γ′α and α′γ . This loop has length
the sum of the lengths of δ and δ′, so we conclude lX,T#T ′ ≤ lX,T + lX,T ′ .
When T ′ is a genus-1 trisection of S4 (so T #T ′ is a stabilization of T ), then
δ′ can be taken to be length two. See Figure 9. If T is a (g, k)-trisection,
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Figure 9. A genus 1 trisection of S4 whose corresponding
path in the cut complex has length 2.

this yields

lX,T#T ′ ≤ lX,T + 2

LX,T#T ′ + 3(g + 1)− k1 − k2 − k3 − 1 ≤ LX,T + 3g − k1 − k2 − k3 + 2

LX,T#T ′ ≤ LX,T .
Thus, LX,T does not increase under stabilization. This should be kept in
mind for the next definition.

Definition 2.21 ([KT18, Definition 11]). Let X be a smooth, closed, ori-
entable 4-manifold. We define L(X) = minT {LX,T } where T ranges over
all trisections of X.

3. Relative L-invariant

3.1. Definitions. In this section, we define a non-negative integer invariant
of a relatively trisected 4-manifold X with boundary (or just a 4-manifold
X with boundary, by minimizing over trisections of X). We mirror the
definition of the L-invariant of a closed 4-manifold from Section 2.5.

In the relative case, the individual sets of (g − p) α, β, and γ curves
of a relative trisection (Σ;α, β, γ) will generally not form a cut system of
Σ, where by “cut system” we mean a set of curves and arcs on Σ whose
complement in Σ is a disk. (In fact, Σ \ α must be a genus–p surface with
b boundary components, so if p > 0 or b > 1, then α is certainly not a cut
system for Σ.) Instead, the α curves along with some 2p+ b−1 disjoint arcs
Aα may form a cut system for Σ. Similarly, we find sets of l = 2p + b − 1
arcs Aβ and Aγ so that β ∪Aβ and γ ∪Aγ are cut systems for Σ.

Definition 3.1. Let (Σ;α, β, γ) be a relative trisection diagram of trisection
T . Let Aα, Aβ, Aγ be sets of disjoint, properly embedded arcs in Σ with
Aα ∩ α = Aβ ∩ β = Aγ ∩ γ = ∅ with the property that each of α ∪ Aα, β ∪
Aβ, γ ∪ Aγ is a cut system for Σ. We call (Σ;α, β, γ;Aα, Aβ, Aγ) an arced
relative trisection diagram of T .

We implicitly find an arced relative trisection diagram of relative trisec-
tion T when performing the algorithm of Section 2.4 to determine the mon-
odromy of OT . This is our justification for why cut systems on Σ consisting
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of (g−p) closed curves and l arcs are natural to consider when studying the
relative trisection T . We now construct a complex associated to a surface
with boundary which is analogous to the cut complex of a closed surface as
described in Section 2.5.

Definition 3.2. Let Σ be a compact orientable genus–g surface with b ≥ 1
boundary components. The p-cut complex of Σ, HTp(Σ), is the simplicial
complex built as follows.

Each vertex of HTp(Σ) corresponds to a cut system for Σ consisting of a
collection of g − p non-separating simple closed curves on Σ and 2p+ b− 1
arcs.

Each edge in HTp(Σ) is either type 0, type 0∂ , or type 1. If v, v′ are
vertices corresponding to cut systems (α1, α2, ..., αg−p, a1, . . . , a2p+b−1) and
(α′1, α

′
2, ..., α

′
g−p, a

′
1, . . . , a

′
2p+b−1), respectively (where αi, α

′
i are closed curves

and aj , a
′
j are arcs), then:

(1) There is a type 0 edge between v and v′ if (up to reordering of
either or both cut systems) αi = α′i, aj = a′j for i > 1 and all j and

α1 ∩ α′1 = ∅.
(2) There is a type 0∂ edge between v and v′ if (up to reordering either

or both cut systems) αi = α′i, aj = a′j for all i and all j > 1 and

a1, a
′
1 are disjoint in their interiors. We require ∂a1 = ∂a′1, and near

the two boundary points of a1 a normal framing to a1 must either
point toward or away a′1 (i.e. not toward a′1 near one boundary and
away at the other).

(3) There is a type 1 edge between v and v′ if (up to reordering of either
or both cut systems) αi = α′i, aj = a′j for i > 1 and all j and α1

intersects α′1 transversely in a single point.

Note that two vertices whose arcs have different endpoints reside in dif-
ferent connected components of HTp(Σ), since vertices connected by edges
in HTp(Σ) necessarily correspond to cut systems whose arcs have common
boundary.

Let D = (Σ;α, β, γ) be a relative trisection diagram of relative trisection
T . By the definition of a relative trisection, one can find a sequence of
handle slides (i.e. type 0 moves) of each pair of {α, β, γ} so that they become
standard, i.e. homeomorphic to the curves in Figure 1. (Note that we do
not claim that the three pairs can be made simultaneously standard; rather,
any pair can be made standard while ignoring the third set of curves.)

Choose 2p+b−1-tuples of arcs Aα, Aβ, Aγ so that (Σ;α, β, γ;Aα, Aβ, Aγ)
is an arced relative trisection diagram DA. Let vα, vβ, vγ be the vertices of
HTp(Σ) corresponding to cut systems α ∪ Aα, β ∪ Aβ, γ ∪ Aγ , respectively.
Let Γα be the set of all vertices in HTp(Σ) which are connected to vα by a

path consisting of only type 0 and type 0∂ edges. Similarly define Γβ and
Γγ .
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We call a pair of vertices αβ ∈ Γα and βα ∈ Γβ good if they are connected
by a path of exactly g + p + b − k − 1 type 1 edges. Note that this is the
number of dual α and β curves in the two cut systems, so that this is the
minimum possible number of type 1 edges we could hope to find in a path
between αβ and βα.

Definition 3.3. We say a path δ in HTp(Σ) is valid with respect to T if δ
includes vertices v1, v2, v3, v4, v5, v6, v7 in order (if distinct) with δ beginning
at v1 and ending at v7 so that:

(1) The segment of C between v1, v2 (inclusive) lies in Γα,
(2) The segment of C between v3, v4 (inclusive) lies in Γβ,
(3) The segment of C between v5, v6 (inclusive) lies in Γγ ,
(4) We have v7 ∈ Γα and the closed curves of the cut systems corre-

sponding to v1 and v7 agree,
(5) The cut systems associated to the pairs (v2, v3), (v4, v5), (v6, v7) are

all good pairs and the edges in δ between these pairs consist of type
1 edges.

We say that δ is valid with respect to DA or that DA represents δ if v1, v3,
and v5 correspond to α∪Aα, β∪Aβ, and γ∪Aγ , respectively. We say that δ is
valid with respect to D if δ is valid with respect to any arced relative trisection
diagram extending D. We note that not every arced trisection diagram has
a valid path, as not every cut system is part of a good pair. However, the
following proposition shows that any relative trisection diagram (without
arcs) admits a valid path.

Proposition 3.4. Let D = (Σ;α, β, γ) be a relative trisection diagram.
For any choices of arcs Aα for α, there exist arcs Aβ, Aγ so that DA :=
(Σ;α, β, γ;Aα, Aβ, Aγ) is an arced relative trisection diagram and so that
there exists a path δ in HTp(Σ) that is valid with respect to DA.

Proof. We describe δ as a sequence of slides and type 1 moves.
Let Aα be any set of arcs Σ \ α so that α ∪ Aα are a cut system for

Σ. By the definition of a relative trisection diagram, there exist curves α′

and β′ slide-equivalent to α and β (respectively) so that (α′, β′) are a good
pair. Perform slides on α,Aα to transform α into α′ (this may require us
to perform some slides of Aα arcs, turning them into arcs Aα′). Then do
g+p+ b−k−1 type 1 moves to replace α′ with β′. Perform slides on β′, A′β
to transform β′ into β and A′β into arcs Aβ.

Repeat the above procedure with β, γ taking the roles of α, β. That is,
slide β and Aβ, do g + p+ b− k − 1 type 1 moves, and perform more slides
to obtain γ and arcs Aγ . Finally, repeat this procedure one more time with
γ, α: slide γ;Aγ , do g+ p+ b− k− 1 type 1 moves, and perform more slides
to obtain α and arcs Aα.

This sequence of moves describes a path δ in HTp(Σ) that is valid with
respect to (Σ;α, β, γ;Aα, Aβ, Aγ).

�



THE RELATIVE L-INVARIANT OF A COMPACT 4-MANIFOLD 21

In Definition 3.3, we label the distinguished vertices with numbers rather
than α, β, γ (as in Definition 2.20) to avoid giving the impression that the
path δ is a closed loop. In Definition 3.3, we generally cannot hope for δ
to be a closed loop, as the arcs corresponding to v7 should differ from those
corresponding to v1 by an application of the monodromy of OD.

Remark 3.5. Note that a path δ which is valid with respect to DA roughly
corresponds to performing the monodromy algorithm of [CGPC18a] as de-
scribed in Section 2.4, as we begin with a cut system (choice of arcs) for the
α-page Σα of OD and by sliding the arcs obtain cut systems for Σβ, Σγ , and
Σα again. This algorithm is the primary motivation for the definition of a
valid path.

Definition 3.6. We define the relative L-invariant of a relative trisection
diagram to be

rL(D) = min{|δ| | δ valid with respect to D }−3(g+p+b−1)+(k1+k2+k3).

We define the relative L-invariant of a relative trisection T to be

rL(T ) = min{rL(D) | D is a relative trisection diagram for T }.
Similarly, we define the relative L-invariant of a bounded 4-manifold X to
be

rL(X) = min{rL(T ) | T is a relative trisection of X}.
Proposition 3.4 ensures that these quantities are all well-defined (i.e. that
we are not taking the minimum value of an empty set).

When rL(X) = rL(DA) = |δ| − 3(g + p + b − 1) + (k1 + k2 + k3) for
some path δ representing arced relative trisection diagram DA, we say that
(DA, δ) achieve rL(X), as a convenient shorthand.

In Definition (3.6), |δ| refers to the length (number of edges) in the path
δ. The constant 3(g + p + b − 1) − (k1 + k2 + k3) is the minimum number
of type 1 edges which must be in δ for algebraic reasons; note that up to
slides the pair α, β consist of k1 − 2p − b + 1 pairs of parallel curves and
g + p+ b− k1 − 1 pairs of dual curves (and similarly for the pairs β, γ and
γ, α). As in Section 2.5, this normalization ensures that interior stabilization
does not increase rL(T ).

Remark 3.7. Let T be the (0, 0; 0, 1)-relative trisection of B4. Note that
HT0(D2) is the empty complex. The empty path δ is valid with respect to
T . Moreover, |δ| − 3(0 + 0 + 1 − 1) + (0 + 0 + 0) = 0, so we conclude that
rL(T ) = 0, so rL(B4) = 0.

Proposition 3.8. Let T be a (g, k; p, b)-relative trisection of X4. Let T̃ be a

(g+1, k̃; p, b)-relative trisection obtained from T by one interior stabilization.

Then rL(T̃ ) ≤ rL(T ).

Proof. Let DA = (Σ;α, β, γ;Aα, Aβ, Aγ) be an arced relative trisection di-
agram for T . Let D′ = (Σ′, α′, β′, γ′) be a trisection diagram of a (1, k)-
trisection T ′ of S4.
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Let δ be a path in HTp(Σ) which is valid with respect to DA. Choose
δ and DA so that (DA, δ) achieves rL(T ) (i.e. rL(T ) = |δ| − 3(g + p +
b − 1) + (k1 + k2 + k3)). Let v1, v2, . . . , v7 be the distinguished vertices of
δ as in Definition 3.6. Recall that v1, v3, v5 correspond to the cut systems
α ∪Aα, β ∪Aβ, γ ∪Aγ .

Let δ′ be a loop in HT (Σ′) which is valid with respect to D′. Take δ′

specifically to be the length-2 loop implicitly described in Figure 9; assume
k1 = 1, k2 = k3 = 0 (up to reordering α′, β′, γ′). Say the vertices of δ′ are
v′1, v

′
2, v
′
3, where so v′1, v

′
3 correspond to α′. Let v′β be the first of v′1, v

′
2, v
′
3 to

correspond to β′ and v′γ the first to correspond to γ′.
Then we may find a loop in HTp(Σ#Σ′) valid with respect to T #T ′ in

which each vertex splits into the disjoint union of a cut system for Σ and
a cut system for Σ′. We start at the vertex v1 t v′1, by which we mean the
vertex whose cut system corresponds to the union of the cut systems for v1

and v′1. We then add edges corresponding to those of δ between v1 and v2

(if any), followed by edges corresponding to those of δ′ between v′1 and vβ
(if any). Then we add edges corresponding to those of δ between v2 and v3,
and so on, ending with an edge corresponding to the segment of δ′ between
vγ and v3 (if nonempty). This path δ̃ has length the sum of the lengths of

δ and δ′, namely |δ|+ 2. Since D#D′ is a relative trisection diagram for T̃ ,
we thus conclude

rL(T̃ ) ≤ |δ̃| − 3((g + 1) + p+ b− 1) + Σk̃i

= (|δ|+ 2)− 3(g + p+ b− 1)− 3 + (Σki + 1)

= |δ| − 3(g + p+ b− 1) + Σki

= rL(T ).

�

Definition 3.9. The boundary complexity of the relative trisection diagram
D is the non-negative integer

rL∂(D) = min{#of type 0∂ edges in δ | δ valid with respect to D}.
The boundary complexity of the 4-manifold X is the non-negative integer

rL∂(X) = min{rL∂(D) | D is a relative trisection diagram for X}.

When rL∂(X) = rL∂(DA) = #type 0∂ edges in δ for some path δ repre-
senting arced relative trisection diagram DA, we say that (DA, δ) achieves
rL∂(X), as a convenient shorthand. When (DA, δ) achieves rL∂(X), we
need not expect the pair also achieves rL(X).

Proposition 3.10. If ∂X ∼= S3, then rL∂(X) = 0.

Proof. By work of the first author [Cas16], there is a (g, k; 0, 1)-relative
trisection T of X. A cut system of any diagram D = (Σ;α, β, γ) of T is
comprised only of closed curves. That is, HTp(Σ) does not include any type

0∂ edges. Thus, rL∂(T ) = 0. �
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We will later see a converse to this in Proposition 4.1. That is, if rL∂(X) =
0, then ∂X ∼= #n(S1 × S2) for some n ≥ 0.

Definition 3.11. The interior complexity of the (g, k; p, b)-relative trisec-
tion diagram D is the non-negative integer

rL◦(D) = min{|δ| −#(type 0∂ edges in δ) | δ valid with respect to D}
− 3(g + p+ b− 1) + (k1 + k2 + k3).

The interior complexity of the 4-manifold X is the non-negative integer

rL◦(X) = min{rL◦(D) | D is a relative trisection diagram for X}.

We note that if a pair (DA, δ) achieves rL(X), then the valid path δ
consists of edges which count for either rL◦(X) or for rL∂(X). We therefore
immediately obtain the inequality rL(X) ≤ rL◦(X)+rL∂(X). On the other
hand, it is plausible that the path realizing rL(X) minimizes neither rL◦(X)
nor rL∂(X), motivating the following question.

Question 3.12. Given a smooth, compact 4-manifold X with connected,
nonempty boundary, must rL(X) = rL◦(X) + rL∂(X)?

Remark 3.13. It is simple to see that

rL(X) = rL(−X), rL∂(X) = rL∂(−X), rL◦(X) = rL◦(−X).

This holds because if D = (Σ;α, β, γ) is a relative trisection diagram for
X, then −D = (Σ, γ, β, α) is a relative trisection diagram for −X. If δ ∈
HTp(Σ) is a valid path with respect to D, then the reverse of δ is a valid
path in HTp(Σ) for −D.

Proposition 3.14. Let T ′ be obtained from (g, k; p, b)-relative trisection T
by interior stabilization. Then:

rL(T ′) ≤ rL(T ), rL∂(T ′) ≤ rL∂(T ), rL◦(T ′) ≤ rL◦(T ).

Proof. We showed in Proposition 3.8 that rL(T ′) ≤ rL(T ). We proved this
by showing that for any diagram D of T and valid path δ with respect to
D, we may obtain a diagram D′ of T ′ with valid path δ′, where |δ′| = |δ|+ 2
and δ′ has the same number of type 0 and type 0∂ edges as does δ (the two
”extra” edges are type 1). This immediately yields rL∂(T ′) ≤ rL∂(T ) and
rL◦(T ′) ≤ rL◦(T ). �

Remark 3.15. If T ′ is obtained from T by a relative stabilization or relative
double twist, then it is possible that rL(T ′) > rL(T ). For example, let T
have diagram D = (D2, ∅, ∅, ∅), so T is the (0, 0; 0, 1)-relative trisection of
B4. We have rL(T ) = 0 (see Remark 3.7). Let T ′ be the (1, 1; 0, 2)-relative
trisection of B4, obtained from T by one relative stabilization. The open
book OT ′ has binding the Hopf link. In Lemma 4.1, we will show that if
rL∂(T ′) = 0 then ∂B4 ∼= S1 × S2, a contradiction. Therefore, rL(T ′) ≥
rL∂(T ′) > 0 = rL(T ).
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a

b c

d

(a) The vanishing cycles of a Lef-
schetz fibration

1 12 2

33 4 4

(b) Wrinkling the Lefschetz sin-
gularities to obtain a relative tri-
section diagram

Figure 10. Wrinkling the Lefschetz singularities to obtain a relative tri-
section diagram.

As another example, let T ′′ be a (2, 2; 0, 3)-relative trisection of B4 ob-
tained from T by a relative double twist. Again by Lemma 4.1, we must
have rL∂(T ′′) > 0 = rL(T ). (In fact, by Theorem 4.2, we must have
rL∂(T ′′) > 3, or else ∂B4 would admit an S1 × S2 summand.) Applying
this theorem, we conclude that rL(T ′′) = 4 > rL(T ′) = 2 > rL(T ) = 0.)

Compare this to Proposition 3.8, which shows that interior stabilization
cannot increase rL(T ).

Example 3.16 (Figures 10 and 11). Consider the relative trisection diagram
D = (Σ;α, β, γ) shown in Figure 10 (B) obtained from the positive allowable

Lefschetz fibration f : W → D2 of the 4-manifold W ∼= CP 2 \ B̊4 with
regular fiber the thrice punctured disk and vanishing cycles a, b, c, d, shown
in Figure 10(A). If we denote τa as the positive Dehn twist about the curve
a, the induced open book is (S0,4, φ) where φ = τaτbτcτd. The steps in the
monodromy algorithm are shown in Figure 11; these steps describe a path
δ in HT0(Σ) which is valid with respect to the (4, 3; 0, 4)-relative trisection
diagram D.

The path δ consists of 12 type 1 edges and 6 type 0∂ edges. We thus
have rL(D) ≤ 18− 3(4 + 0 + 4− 1) + 9 = 6, rL∂(D) ≤ 6, and rL◦(D) = 0.
We will see in Corollary 4.3 that rL(D) = rL∂(D) = 6 (using the fact that
∂W is a 3-sphere). On the other hand, by considering a (1, 0; 0, 1)-relative
trisection of W , we find rL(W ) = rL∂(W ) = 0. Here we provide a more
detailed caption for Figure 11.

(A) Aα is disjoint from both α and β. The segment of δ between the
vertices corresponding to α ∪Aα and β ∪Aα consists of four type 1
edges.
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1 12 2

33 4 4

(a)

1 12 2

33 4 4

(b)

1 12 2

33 4 4

(c)

1 12 2

33 4 4

(d)

1 12 2

33 4 4

(e) (f)

Figure 11. A relative trisection diagram D and a path δ ∈ HTp(Σ) valid
with respect to D. See Example 3.16 for a more detailed caption.
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(B) We must slide Aβ = Aα over β curves so that they are disjoint from

γ. These slides correspond to three type 0∂ edges in δ.
(C) Aγ viewed as arcs in Σ. One generalized arc slide was done to each

arc in Aβ to obtain Aγ . Replacing β with γ corresponds to four type
1 edges in δ.

(D) We must slide Aγ over γ so that they are disjoint from α to obtain

A These slides correspond to three type 0∂ edges in δ.
(E) One generalized arc slide was done to each arc in Aγ to obtain A.

Replacing γ with α corresponds to four type 1 edges in δ.
(F) The monodromy φ : Σα → Σα induced by the relative trisection.

Specifically, we draw Aα and φ(Aα).

3.2. Gluing and comparison with the L-invariant for closed mani-
folds. Let D = (Σ;α, β, γ;Aα, Aβ, Aγ) and D′ = (Σ′, α′, β′, γ′;Aα′ , Aβ′ , Aγ′)
be arced relative trisection diagrams which correspond to relatively trisected
4-manifolds X and X ′ with connected boundaries W and W ′ respectively.
(This can be generalized to 4-manifolds with multiple boundary compo-
nents). Assume thatOD andOD′ are compatible; i.e. there is an orientation-
reversing diffeomorphism from W to W ′ taking the pages of OD to the pages
of OD′ setwise (rel boundary), and specifically taking the pages Σα,Σβ, and
Σγ to Σα′ ,Σβ′ , and Σγ′ , respectively.

Such a map defines a closed surface S = Σ ∪f Σ′ along with essential,
simple, closed curves α = {α1, . . . , α2p+b−1}, where αi := ai ∪f a′i. We will
denote α′′ = α ∪ α ∪ α′; similarly for β′′ and γ′′.

Theorem 3.17 ([CO19, Cas16]). Let XT and X ′T ′ be relatively trisected
4-manifolds with connected boundary which induce compatible open book de-
compositions on their diffeomorphic boundaries. Then (X ∪

∂
X ′, T ∪

∂
T ′) is a

closed trisected 4-manifold. Moreover, if D and D′ as above are the corre-
sponding compatible relative trisection diagrams, then (S, α′′, β′′, γ′′) is the
trisection diagram corresponding to T ′′ = T ∪ T ′.

Lemma 3.18. Let T and T ′ be relative trisections of 4-manifolds XT , XT ′

with ∂XT ∼= ∂XT ′. Assume T and T ′ are compatible, so they can be glued
to obtain a trisection T ′′ of XT ∪XT ′. Let S be the closed surface obtained
by gluing the α-pages of T and T ′, with cut system s made by gluing the α
arcs of T and T ′ along their common endpoints.

Then

L(T ′′) ≤ rL(T ) + rL(T ′) + d(vs, vφ(s)),

where φ is the monodromy of the open book OT , vs and vφ(s) are the ver-
tices in the cut complex HT (S) corresponding to cut systems s and φ(s)
(respectively), and d denotes the distance in the cut complex.

Proof. Let δ and δ′ be valid paths realizing rL(T ) and rL(T ′) respectively,
and let D = (Σ;α, β, γ;Aα, Aβ, Aγ) and D′ = (Σ′, α′, β′, γ′;Aα′ , Aβ′ , Aγ′)
be arced relative trisection diagrams for T and T ′ representing δ and δ′,
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respectively. We form a trisection diagram D′′ for T ′′ with trisection surface
Σ′′ = Σ ∪ Σ′ as in Theorem 3.17. We can, in particular identify Aα with
Aα′ , Aβ with Aβ′ and Aγ with Aγ′ to form some closed α′′, β′′, γ′′ curves in
D′′. Now we form a path, δ′′, in HT (Σ′′) which is valid with respect to T ′′.
In rough language, the strategy is to take δ′′ to agree with δ on one side of
Σ′′ and δ′ on the other half of Σ′′.

Comparing Definitions 2.19 and 3.2, we see that each type 0 or type 1 edge
of δ or δ′ corresponds directly to a type 0 or type 1 edge on the cut systems
of Σ′′. Moreover, a type 0∂ edge of δ or δ′ corresponds to removing an arc,
a, and replacing it with an arc, a′, which misses all of the other curves and
arcs. We can realize this change by a type 0 edge HT (Σ′′) by removing a
curve that contains a, and replacing the half of the curve corresponding to
a by a′ and leaving the other half fixed.

Since each edge in the paths δ and δ′ corresponded to an edge in HT (Σ′′),

we may construct a path δ̃′′. by first following all of the edges corresponding
to edges in δ and then following all of the edges corresponding to edges in
δ′. Note that |δ̃′′| = rL(T ) + rL(T ′). However, δ̃′′ is not a loop: the start
and endpoints correspond to cut systems of Σ that differ by an application
of the monodromy of OT ∪ OT ′ on the subsurface S := Σα ∪ Σα of Σ′′.

That is, α′′ = α∪α′∪s while α′′ = α∪α′∪φ(s). Since HT (S) is connected

[HT80], there is a path from s to φ(s) in HT (S). Choose a path δ̂′′ achieving
minimum possible length (d(vs, vφ(s))). Each slide or flip corresponding to

an edge in δ̂′′ can be lifted to a slide or flip of s, φ(s) in Σ′′ disjoint from

α ∪ α′, so we may lift δ̂′′ to a path in HT (Σ′′) from the endpoint of δ̃′′ to

the starting point of δ̃′′. Therefore, the union δ′′ = δ̃′′ ∪ δ̂′′ is a valid path
for T ′′ of length rL(T ) + rL(T ′) + d(vs, vφ(s)), proving the lemma. �

We separately consider the special case of puncturing closed manifolds.

Proposition 3.19. Let X̂ be a smooth, orientable, closed 4-manifold. Let

X := X̂ \ B̊4. Then rL(X) ≤ L(X̂).

Proof. Let D̂ = (Σ̂, α, β, γ) be a (g, k)-trisection diagram of X̂. Deleting a

small open disk in Σ̂ (away from α, β, γ) yields a (g, k; p, b) = (g, k; 0, 1)-
relative trisection diagram D = (Σ;α, β, γ) of X.

Let δ̂ be a closed loop in HT (Σ̂) valid with respect to D̂. Each vertex in

δ̂ corresponds to a cut system of g curves on Σ̂. Perturb each cut system
slightly if necessary so that the curves always live in Σ. Each of these cut
systems is then a cut system for Σ (including 2p+b−1 = 0 arcs). Then each

vertex and edge of δ̂ naturally corresponds to a vertex or edge in HT0(Σ),

yielding a path δ in HT0(Σ) valid with respect to D. Since |δ| = |δ̂|, we
conclude

rL(D) + 3(g + p+ b− 1)− (k1 + k2 + k3) ≤ L(D̂) + 3g − (k1 + k2 + k3)

rL(D) ≤ L(D̂).
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Since this holds for all D̂, we conclude rL(X) ≤ L(X̂). �

3.3. Interlude: Murasugi sum. In this subsection, we describe how to
perform another common procedure via relative trisection diagrams: Mura-
sugi sum. The language of cut complexes introduced in this section is helpful
in carefully stating the procedure.

We remind the reader that an open book O of a 3-manifold X#Y =
X̊ ∪S Y̊ (with connected-sum sphere S and X̊ := X \ B̊4, Y̊ := Y \ B̊4) is
a Murasugi sum when S intersects every page of O in a disk. For a fixed
page L, we usually refer to this disk P ⊂ L as a 2n-gon, where n is chosen

by requiring alternating edges of P to be in the boundary of ((L \ P ) ∩ X̊)

while the other edges of P are in the boundary of ((L \ P ) ∩ Y̊ ). By inter-

secting O with X̊ or Y̊ and capping boundaries with balls and disks, we
obtain open books OX and OY on X and Y . We say that O is obtained
by Murasugi-summing OX and OY along 2n-gons PX and PY in ˆL ∩X and

ˆL ∩ Y , respectively. When n = 1, we usually refer to this operation simply
as “connected-sum.” When n = 2, we generally refer to this operation as
“plumbing.” We give an example of plumbing two pages together along a
rectangle in Figure 12 which serves as an illustration of the following theo-
rem.

Theorem 3.20. There is an explicit algorithm to plumb two trisections
together by Murasugi sum. That is, given relatively trisected 4-manifolds
X and X ′, we may produce a relative trisection of X\X ′ where the induced
open book on ∂(X\X ′) may be chosen to be any desired Murasugi sum of the
open books on ∂X, ∂X ′.

Proof. Let D = (Σ;α, β, γ) and D′ = (Σ′, α′, β′, γ′) be relative trisection
diagrams corresponding to the 4-manifolds with boundary X and X ′ re-
spectively. Let P ⊂ Σα and P ′ ⊂ Σ′α′ be 2n-gons, with alternating edges
contained in ∂Σ or ∂Σ′ (respectively). Choose arcs a1, . . . , an−1 in P which
are properly embedded in Σ so that (P ∩∂Σ)∪(a1∪· · ·∪an−1) is connected.

We will produce a relative trisection diagram D = (Σ, α, β, γ) of X\X ′.
The open book OD will be the open book obtained by the Murasugi sum of
OD and OD′ along P and P ′, respectively.

Let δ be a path in HTp(Σ) represented by D. Choose the first vertex of δ
so that it corresponds to a cut system including a1, . . . , an as arcs. (Such a
path δ exists by Proposition 3.4.) Let Σ be obtained from Σ,Σ′ by plumbing
along P, P ′. We continue to identify Σ and Σ′ with subsets of Σ. We set
α = α ∪ α′.

Let v3 be the first vertex of δ in Γβ with closed curves equal to β. By
following the edges in δ, which each either preserve each ai or change it by
a slide to some other arc, the arc ai corresponds to some arc bi in the cut
system corresponding to v3. The arc bi is disjoint from the β curves. Choose
a homeomorphism f : Σ → Σ so that f(ai) = bi for i = 1, . . . , n − 1 and
f |Σ′\P ′ = id. Set β = β ∪ f(β′). In words, we performed the monodromy
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algorithm to slide the β curves off the plumbing region P before adding the
β′ curves.

Now similarly let v5 be the first vertex of δ in Γγ with closed curves
equal to γ. By following the edges in δ, which each either preserve each bi
or change it by a slide to some other arc, the arc bi corresponds to some
arc ci in the cut system corresponding to v5. The arc ci is disjoint from
the γ curves. Choose a homeomorphism g : Σ → Σ so that g(bi) = ci for
i = 1, . . . , n − 1 and g|Σ′\P ′ = id. Set γ = γ ∪ (g ◦ f)(γ′). In words, we
performed the monodromy algorithm to slide the β and γ curves off the
plumbing arc before adding the γ′ curves.

Now consider the resulting relative trisection diagram D := (Σ;α, β, γ)
of a 4-manifold Z4. By construction (using the monodromy algorithm
of [CGPC18a]; see Section 2.4), a page of OΣ is obtained by plumbing Σ
and Σ′ along P and P ′, with the monodromy of OΣ the composition of the

monodromies of OD and OD′ (viewed as automorphisms of Σ,Σ′ ⊂ Σ). We
conclude that ∂Z4 ∼= ∂X#∂X ′, and OD is the Murasugi sum of OD and
OD′ along P, P ′.

To obtain Z4 from D, recall that we start with Σ×D2, attach 2-handles
according to α, β, γ curves, and then some 3-handles using a standard model
[Cas16]. The copy of D contained in D thus corresponds to a subset of Z4

that is diffeomorphic to X. Sliding β′, γ′ curves in D (corresponding to 2-
handle slides) would yield a copy of D′ (i.e.quotienting Σ by Σ and deleting
the α, β, γ curves yields D′), so we conclude that Z4 ∼= X ∪ X ′, where X
and X ′ are glued along a ball whose boundary is the connected sum sphere
in ∂Z4 = ∂X#∂X ′. Thus, Z4 ∼= X\X ′ as desired.

�

4. Topology of manifolds with small relative L-invariant

Now we prove that when the relative L-invariant of a manifold is small,
we may recover information about its topology.

Lemma 4.1. If T is a (g, k; p, b)-relative trisection diagram of a 4-manifold
X with rL∂(T ) ≤ 1, then ∂X ∼= #2p+b−1S

1 × S2.

Proof. Let DA = (Σ;α, β, γ;Aα, Aβ, Aγ) be an arced relative trisection di-
agram for T and δ a path in HTp(X) valid with respect to DA, so that

(DA, δ) achieves rL∂(T ). Then δ includes at most one type 0∂ edge. Let Aα
be the arcs corresponding to the final vertex of δ, so α∪Aα and α∪Aα are
cut systems for Σ. Since δ includes at most one type 0∂ edge, then Aα and
Aα are equal or differ by a sliding one arc over some disjoint closed curves.

If Aα and Aα are equal, then from the monodromy algorithm we find
that the relative trisection induced by D has trivial monodromy. Then
∂X ∼= #2p+b−1S

1 × S2 as desired.
On the other hand, suppose that Aα is obtained from Aα by sliding one

arc over disjoint closed curves C1, . . . , Cn (which themselves are disjoint from
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D
D′

P

P ′

(a) Relative trisection diagrams D and D′

of T and T ′. We shade 2n-gons P and P ′

in Σα, Σα′ along which we will plumb T
and T ′.

(b) The resulting relative tri-
section diagram D′′. This di-
agram describes the 4-manifold
XT \XT ′ . The induced open
book is obtained from OT and
OT ′ by Murasugi sum identifying
P with P ′.

a1 b1 c1

α′

f(β′)

(g ◦ f)(γ′)

(c) Here we illustrate the procedure described in Theorem 3.20. We perform
the monodromy algorithm on D. We include the β′ and γ′ curves after making
the arcs in Σ disjoint from β and γ. In general, we may have to slide β and γ
first as well.

Figure 12. Theorem 3.20 allows us to glue two trisected 4-
manifolds and induce any desired Murasugi sum of the open
books induced on their boundaries.

Aα, Aα). Since Aα, Aα are disjoint from α, [C1] + · · · + [Cn] is in the span
of the α curves in H1(Σ). Therefore, there exist slides over α curves taking
Aα to Aα, so we again conclude from the monodromy algorithm that ∂X
admits an open book with trivial monodromy, so ∂X ∼= #2p+b−1S

1 × S2.
�

The argument of Proposition 4.1 yields some insight into slightly larger
values of rL∂(X).
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Theorem 4.2. Let T be a (g, k; p, b)-relative trisection of 4-manifold X with
rL∂(T ) < 2(2p+ b− 1) and 2p+ b− 1 > 0. Then ∂X ∼= M#(S1 × S2) for
some 3-manifold M .

Proof. Let DA = (Σ;α, β, γ;Aα, Aβ, Aγ) be an arced relative trisection dia-
gram for T with valid path δ in HTp(Σ) so that δ has less than 2(2p+ b−1)

type 0∂ edges. Say that an arc a “changes to a′ during δ” if there is a type
0∂ edge in δ corresponding to replacing a with another arc a′. Continue
identifying a with a′ and if a subsequent type 0∂ edge in δ changes a′, say a
“changes again” during δ.

Since Aα contains 2p+b−1 arcs, there is some arc a0 in Aα which changes
at most once in δ.

Case 1. a0 never changes. Then the monodromy of the open book
induced by T on ∂X fixes an essential arc (up to isotopy). We conclude ∂X
admits an S1 × S2 summand.

Case 2. a0 changes to arc b0 in Aβ.
Then b0 is obtained from a0 by slides over α curves. We again conclude

that up to isotopy, the monodromy of the induced open book on ∂X fixes
an essential arc.

Case 3. a0 changes to arc c0 in Aγ (which is not also in Aβ). Then
c0 is obtained from a0 by slides over β curves.

Slide α, a0, c0 and separately slide β to turn α, β into a standard pair
α′, β′. This may involve sliding c0 over α curves, but we abuse notation and
still refer to the obtained arc as c0. Now c0 can be obtained from sliding a0

over some collection of β′ curves. Moreover, a0 and c0 are disjoint from α′.
Since α′, β′ are standard, we conclude that the union of curves over which
we slide a0 are in the span of α′ in H1(Σ), so a0 and c0 are isotopic in the
α-page of Σ. Thus, we conclude that up to isotopy, the monodromy of the
induced open book on ∂X fixes an essential arc.

Case 3. a0 changes to arc c0 in Aγ (which is not also in Aγ). By
replacing X with −X, exchanging β and γ, and reversing the direction of
γ, we find ourselves in Case 2.

�

Corollary 4.3. The relative trisection T in Example 3.16 has rL(T ) =
rL∂(T ) = 6.

Theorem 4.2 allows us to construct 4-manifolds with arbitrarily large
relative-L invariant.

Corollary 4.4. There exist 4-manifolds X1, X2, . . . so that rL(Xn) ≥ n for
each n ∈ N.

Proof. Let X0 be the 4-manifold obtained from B4 by attaching a 2-framed
2-handle along an unknot in S3, so ∂X1

∼= L(2, 1). Let Xn
∼= \nX1.

Suppose Xn admits a (g, k; p, b)-relative trisection. Then ∂Xn admits
an open book with genus-p pages and b binding components. This implies
that H1(∂Xn;Z) admits a presentation with 2p + b − 1 generators. Since



32 CASTRO, ISLAMBOULI, MILLER, AND TOMOVA

Slides
D

Destabilize
D′

αg βg

γg

γr

βj

αi

α′i β′jγ′r

Figure 13. Destabilizing a relative trisection diagram as in
the proof of Theorem 4.5.

H1(∂Xn;Z) ∼= ⊕nZ/2, we then have 2p+ b− 1 ≥ n. Since ∂Xn
∼= #nL(2, 1)

does not admit an S1 × S2 summand, Theorem 4.2 implies rL(Xn) ≥
rL∂(Xn) ≥ 2n. �

Now we deal with the global topology of the 4-manifold.

Theorem 4.5. Let X4 be a rational homology ball with rL(X4) = 0. Then
X4 is diffeomorphic to B4.

Proof. Let (DA, δ) be a pair achieving rL(X4). That is, find a (g, k; p, b)-
relative trisection diagram DA = (Σ;α, β, γ;Aα, Aβ, Aγ) for X and path δ in
HTp(Σ) valid with respect to DA so that |δ| = 3(g+p+b−1)−(k1 +k2 +k3).
Then δ consists only of type 1 edges. By Lemma 4.1, we have ∂X4 ∼=
#2p+b−1(S1 × S2). Since ∂X4 is a rational homology 3-sphere, we must
have 2p + b − 1 = 0, so p = 0 and b = 1. Thus, Aα, Aβ, Aγ are all empty.
We now write D = (Σ;α, β, γ).

We wish to proceed by induction; to make the proof easier we weaken our
knowledge of δ. Let vα, vβ, vγ be vertices in HT0(S) corresponding to the
α, β, γ curves (respectively) in D, so these vertices appear in order in δ (with
vα as the first vertex of δ). Restrict δ to the subinterval of δ from vα to vγ .
From now on, the only properties we will assume of δ are that δ is a path in
HTp(Σ) from vα to vβ to vγ consisting of exactly 2(g+ p+ b− 1)− (k1 + k2)
type 1 edges.

The segment of δ between vα and vβ consists of g − k1 type 1 edges. If
v1, . . . , vg−k1+1 are the vertices of δ (in order) between vα, vβ, with v1 =
vα, vg−k1+1 = vβ, then the cut system corresponding to vi+1 differs from
that of vi by replacing one curve in α with a distinct curve in β. Write the
disjoint curves in α as α1, . . . , αg and those in β as β1, . . . , βg, where the
edge from vi to vi+1 corresponds to replacing αi with βi (i ≤ g − k1). Note
αj = βj for g − k1 < j ≤ g. Write the curves in γ as γ1, . . . , γg.

Suppose k1 > 0, so αg and βg are parallel. There cannot be a γj curve
parallel to αg and βg, or else this would yield a connected-sum factor of
S1×S3 in X4, violating H1(X4;Q) = 0. Therefore, some edge in δ between
vβ and vγ corresponds to replacing βg with some γj . Choose the labelings
of the γ curves so this curve is γg. See Figure 13.
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Now after slides to remove intersections of other α, β curves with γg
and intersections of other γ curves with αg and β1, D can be destabi-
lized along ν(αg ∪ γg) to obtain a (g − 1, k′, 0, 1)-relative trisection diagram
D′ = (Σ′, α′, β′, γ′) (schematically pictured in Figure 13).

Claim 4.6. Let E be an edge in δ between vα, vγ with endpoints w1, w2.
Assume E does not correspond to replacing β1 with γ1. Let w′1 and w′2 be
the corresponding vertices in HT0(Σ′) (i.e. corresponding to the cut systems
by replacing α, β, γ curves by α′, β′, γ′ and deleting α1, β1, γ1). Then there
is a type 1 edge between w′1 and w′2.

Proof. For i > 1, we write α′i to denote the α curve in D′ corresponding to
αi in D (and do similar for β and γ curves).

If αi intersects γ1 and γj intersects α1, then |α′i∩γ′j | > |αi∩γj |. Similarly,

if βl intersects γ1 then |β′l ∩ γ′j | > |βl ∩ γj |. However, we always have

|α′p ∩ β′q| = |αp ∩ βq| for any p, q > 1.
Case 1. Suppose E corresponds to replacing αi with βi, 1 < i ≤ g − k1.

The vertices w1 and w2 each correspond to some combination of α and β
curves in D. Then w1 and w2 descend to vertices w′1, w

′
2 of HT0(Σ′) which

correspond to combinations of α′ and β′ curves in D′. The cut system for
w′1 is obtained from that of w′2 by deleting α′i and replacing it with β′i. Since
|α′i ∩ β′i| = |αi ∩ βi| = 1, w′1 and w′2 are connected by a type 1 edge.

Case 2. Suppose E corresponds to replacing βi with γj for some i, j > 1.
To make notation easier in this section, we write Eαr or Eβr to indicate

the edge corresponding to replacing αr or βr with a different curve. Then
E = Eβi .

Claim 4.7. |β′i ∩ γ′j | = |βi ∩ γj | = 1.

Proof. Assume otherwise. Then βi ∩ γ1 6= ∅ and γj ∩ β1 6= ∅.
Since βi intersects γ1, in δ E must occur before Eβ1 (since β1 is replaced

by γ1, which would intersect βi if βi had not yet been replaced). Similarly,
since β1 intersects γj , in δ Eβ1 must occur before Eβi = E (since βi is
replaced by γj , which would intersect β1 if β1 had not yet been replaced).
This yields a contradiction. �

Since the cut systems corresponding to w′1 and w′2 differ by replacing β′i
with γ′j , we conclude there is a type 1 edge between w′1 and w′2.

�

Thus, there is still a path in HT0(Σ′) from v′α to v′β to v′γ consisting of

|δ|−1 = 2(g+p+b−1)−(k1+k2)−1 = 2((g−1)+p+b−1)−((k1−1)+k2)−1
type 1 edges. Recall that (Σ′, α′, β′γ′) is a ((g − 1), (k1 − 1, k2, k3); p, b)-
relative trisection (and p = 0, b = 1). Thus we may proceed inductively until
finding a (g, (0, k2, k3); 0, 1)-relative trisection diagram D = (Σ, α, β, γ) for
X so there is a path δ in HT0(Σ) from vα to vγ to vγ consisting of 2g − k2

type 1 edges. The curves α and β are algebraically dual.



34 CASTRO, ISLAMBOULI, MILLER, AND TOMOVA

By repeating the argument taking the reverse of δ to take the role of δ
(exchanging the roles of γ and α), we may also take k2 = 0, so the β and γ
curves are dual.

This relative trisection description yields a handle decomposition of X4

into a 0–handle, zero 1–handles, g 2–handles, and k3 3–handles.(See [KM18]
for a description of going from relative trisections to handle structures and
vice versa). Since H3(X4;Q) = 0, k3 = g. Therefore, the γ and α curves on
Σ define the same genus–g handlebody.

Slide only the α curves until they agree with the γ curves (here using the
fact that α and γ define the same handlebody, so that we need not slide γ as
well. Although pairs of curves in a relative trisection diagram are standard,
we generally expect to have to slide both sets of curves to standardize). Then
we may slide the β curves and simultaneously slide the α and γ curves (so
that the α and γ curves always coincide) until α, β intersect standardly (and
β, γ also intersect standardly). After all of these slides, D is a connected
sum of the (0, 0; 0, 1)-relative trisection diagram for B4( i.e. (D2, ∅, ∅, ∅))
and genus–1 trisection diagrams for S4, so we conclude that X4 ∼= B4.

�

Corollary 4.8. Let X̂ be a rational homology 4-sphere. Then L(X̂) = 0 if

and only if X̂ ∼= S4.

Proof. Let X := X̂ \ B̊4. By Proposition 3.19, rL(X) = 0. By Theorem 4.5,

X ∼= B4. Therefore, X̂ ∼= S4. �

5. Bounds and the arc complex

As we are only concerned with surfaces with boundary (rather than sur-
faces with punctures), we will restrict our discussion to this setting. Given a
surface automorphism φ : P → P , let Mφ denote the 3-manifold with open
book Oφ induced by φ.

Definition 5.1. The essential arc complex Ae(P ) of a surface with bound-
ary P is a simplicial complex such that

i) each vertex in the 0–skeleton A0
e(P ) corresponds to an essential,

properly embedded arc,
ii) the collection of vertices {v0, . . . , vn} defines an n–cell if the arcs ai

and aj corresponding to vi and vj are disjoint for every i and j.

Note that edges in the essential arc complex behave differently than edges
in the cut complex. Given two disjoint arcs a1, a2 in Σ, there is an edge in
A0
e(P ) connecting vertices corresponding to those edges. However, if C1, C2

are cut systems for Σ (each consisting of g closed curves and 2p+b−1 arcs),
then if there is an edge in the cut complex between vertices corresponding
to C1 and C2, it must be the case that ∂C1 = ∂C2. In some sense, the
edges in the essential arc complex are more flexible, as we connect vertices
corresponding to arcs with very different boundaries (perhaps even meeting
distinct components of ∂Σ).
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Let de : A0
e(P ) × A0

e(P ) → N ∪ {0} count the minimal number of edges
between any two essential, properly embedded arcs in P . The displacement
distance of an orientation preserving diffeomorphism φ : P → P which fixes
the (non-empty) boundary pointwise is

de(φ) = min{de(a, φ(a))|a ∈ A0
e}.

Theorem 5.2 (Etnyre, Li). If de(φ) = 0, thenMφ decomposes as Y 3#S1×
S2. If de(φ) = 1, then Oφ admits a positive or negative Hopf destabilization.

Like the closed L-invariant, the relative L-invariant is typically difficult
to compute in practice. Nevertheless, we may still bound the invariant in
terms of other, more calculable, invariants. Our goal will be to obtain a
bound on our invariant in terms of the complexity of the monodromy of the
boundary. Here, following Etnyre and Li [EL15], our notion of complexity
will be the translation distance of the monodromy in the arc complex. We
begin with a bound on distances in this complex in terms of intersection
numbers.

Proposition 5.3. Let a and b be homologically essential arcs on Σ. Then
de(a, b) ≤ |a ∩ b|+ 1.

Proof. We proceed by induction. If a and b are disjoint, then the statement
clearly holds. Suppose that |a ∩ b| = n, and isotope a and b until they
intersect minimally. Let b1 be the subarc of b whose first endpoint lies on
∂Σ and whose second endpoint is the first intersection with a. Let b′1 and
b′′1 be the two arcs formed by following b1 to the intersection point and then
following a to its endpoints in either direction (See Figure 14). Note that
∂ν(b1 ∪ a) = a ∪ b′1 ∪ b′′1 so that b′1 ∪ b′′1 is homologous to a. Therefore at
least one of b′1 or b′′1 is homologically essential. Without loss of generality,
suppose b′1 is homologically essential.

Now b′1 is disjoint from a. Also, |b′1∩b| = |a∩b|−1. Then by the inductive
hypothesis, de(b

′
1, b) ≤ (n−1)+1 = n. Then de(a, b) ≤ de(a, b′1)+de(b

′
1, b) ≤

n+ 1. �

In an arced relative trisection diagram, the arcs corresponding to the page
Σβ will typically intersect the α curves. This makes it unclear how they fit
onto the page Σα, where the monodromy of the page is typically defined.
To understand all of the arcs on a single page, we look towards subsurface
projection.

Definition 5.4. Let a be a properly embedded arc on a surface Σ, and let
Σ′ be an essential subsurface of Σ. Isotope a so that |a∩ ∂Σ′| is minimized.
Then if a ∩ Σ′ 6= ∅, we say that a cuts Σ′. If a cuts Σ′, then we define the
subsurface projection of a onto Σ′ to be:

(1) a, if a ⊂ Σ′.
(2) Any component of the boundary of a regular neighbourhood of a ∩

∂Σ′, if a ∩ ∂Σ′ 6= ∅.



36 CASTRO, ISLAMBOULI, MILLER, AND TOMOVA

a

bi

b′i

b′′i

Figure 14. The arcs a and b are disjoint from the arcs b′1
and b′′1.

Disjoint arcs on a surface will not necessarily project to disjoint arcs
on a subsurface. The issue arises when both arcs are projected onto the
same boundary component. In this case one can quickly verify the following
lemma.

Lemma 5.5. If a and b are disjoint arcs on Σ and a′ and b′ are their
projections onto Σ′, then |a′ ∩ b′| ≤ 2.

By combining Lemma 5.5 and Proposition 5, we obtain the following.

Corollary 5.6. Let (a0, ..., an) be a path in Ae(Σ) where every arc cuts an
essential subsurface Σ′. Let a′0 and a′n be the subsurface projections of a0

and an, respectively. Then deAe(Σ
′))(a′0, a

′
n) ≤ 3n.

We are now ready to prove the main proposition of this section.

Proposition 5.7. Let T be a (g, k; p, b)−relative trisection X such that
g ≥ 2 or g = 1 and b ≥ 2. Let φ : Σα → Σα be the monodromy of the open
book decomposition of ∂X induced by T . Then rL∂(T ) ≥ 1

3(2p+b−1)de(φ).

Proof. Let DA = (Σ;α, β, γ;Aα, Aβ, Aγ) be a relative trisection diagram for
T and δ a path in HTp(Σ) valid with respect to DA. We will show that
each arc in Aα must be replaced at least 1

3de(φ) times during the course of
δ (here we are a little relaxed in terminology. Implicitly, we identify the arc
systems corresponding to either side of a type 0∂ edge in δ, so that we may
think of one arc being replaced several times when following δ from start to
end). Using the fact that there are (2p+ b− 1) arcs, we will then obtain the
result as stated.

Let a0 be an arc in Aα. Find the first type 0∂ edge in δ corresponding
to replacing a0 with an arc a1, if such an edge exists. Say the next type 0∂

edge corresponding to replacing a1 changes a1 to a2. Repeat until finding
an edge an which is never changed in cut systems corresponding to type 0∂

edges once it appears. Since δ is valid with respect to DA, an = φ(a0).
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By definition of a type 0∂ edge, ai and ai+1 must be disjoint in their
interiors and can be pushed off each other by isotoping the boundary of
ai+1 slightly. Therefore, there is a path in Ae(Σ) whose vertices correspond
(in order) to a0, a1, . . . , an (after pushing off slightly).

Let Σ′ be the subsurface of Σ obtained by deleting a small annular neigh-
borhood of each α curve. Since each ai is a properly embedded arc in Σ and
∂Σ ⊂ Σ′, we must have ai ∩ Σ′ 6= ∅. Let a′i be a subsurface projection of ai
to Σ′i. We have a′0 = a0 and a′n = an, since a0 and an are both contained in
Σα.

By the hypothesis, Σ′ is not a pair of pants. Then by Corollary 5.6,
dAe(Σ′)(a

′
0, a
′
n) ≤ 3n. Now Σα is obtained from Σ′ by capping some boundary

components with disks, so de(a0, an) ≤ 3n. Since an = φ(a0), we conclude
de(φ) ≤ 3n. That is, n ≥ 1

3de(φ).
�

Note that pseudo-Anosov maps have positive stable translation distance
in the arc complex (see, for example, [FS14] and [Str18])). In particular,
this implies that for any n ∈ N and any surface P with negative Euler char-
acteristic, there exists a pseudo-Anosov map φ : P → P with translation
distance greater than k. We may use this fact, together with the previous
corollary, to construct relative trisections with large relative L-invariant.
More precisely, we start with a map pseudo-Anosov map φ on a genus–p
surface whose translation distance is greater than some given n. We fac-
tor φ into a collection of m Dehn twists. This decomposition allows us to
construct a Lefschetz fibration with m Lefschetz singularities, such that the
monodromy of the fibration is the original map φ. A construction in [Cas16]
shows how to turn this fibration into a (p + m, 0; p, b)-relative trisection
whose induced open book decomposition on the boundary has monodromy
φ (see also Subsection 2.3). We summarize this discussion in the following
corollary.

Corollary 5.8. For fixed p, b with 2p + b − 1 > 1 and for all n ∈ N, there
exists a (gn, kn; p, b)-relative trisection Tn so that rL∂(Tn) > n.

Compare this statement to Corollary 4.4, in which we produced manifolds
X1, X2, . . . with arbitrarily large relative L-invariant. In those examples, the
genus or boundary number of a page of an open book on Xn was forced to
grow large with n due to the dimension of H1(∂Xn;Z). In contrast, the
induced open books in Corollary 5.8 live in 3-manifolds Y1, Y2, . . . , where
the dimension of H1(∂Yn;Z) is bounded above uniformly.

In the examples of Corollary 5.8, one must continuously iterate the orig-
inal pseudo-Anosov map in order to increase the complexity of the relative
trisection. This has the side effect of increasing the genus of the decompo-
sition. In light of this, we pose the following natural question.

Question 5.9. Fix a positive integer g. Do there exist genus–g relative
trisections with arbitrarily large relative L-invariant?
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