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ABSTRACT

Kirkwood-Bulff integrals (KBIs) connect the microscopic structure and thermodynamic properties of liquid solutions. KBIs are defined in
the grand canonical ensemble and evaluated by assuming the thermodynamic limit (TL). In order to reconcile analytical and numerical
approaches, finite-size KBIs have been proposed in the literature, resulting in two strategies to obtain their TL values from computer sim-
ulations. (i) The spatial block analysis method in which the simulation box is divided into subdomains of volume V' to compute density
fluctuations. (ii) A direct integration method where a corrected radial distribution function and a kernel that accounts for the geometry of the
integration subvolumes are combined to obtain KBI as a function of V. In this work, we propose a method that connects both strategies into
a single framework. We start from the definition of finite-size KBI, including the integration subdomain and an asymptotic correction to the
radial distribution function, and solve them in Fourier space where periodic boundary conditions are trivially introduced. The limit g — 0,
equivalent to the value of the KBI in the TL, is obtained via the spatial block-analysis method. When compared to the latter, our approach
gives nearly identical results for all values of V. Moreover, all finite-size effect contributions (ensemble, finite-integration domains, and peri-
odic boundary conditions) are easily identifiable in the calculation. This feature allows us to analyze finite-size effects independently and
extrapolates the results of a single simulation to different box sizes. To validate our approach, we investigate prototypical systems, including
SPC/E water and aqueous urea mixtures.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0076744

I. INTRODUCTION

Kirkwood-Bulff integrals (KBIs) connect the microscopic struc-
ture of a liquid solution, via integrals of the radial distribution
functions (RDFs), and its thermodynamic properties, as obtained
from fluctuations of the number of particles in subvolumes of the
total system.! This connection between local structure and thermo-
dynamics is particularly useful in computational soft-matter studies
where KBIs are widely used to evaluate isothermal compressibil-
ity, partial molar volumes, and derivatives of chemical potentials.l’_‘
In particular, applications of KBI include the investigation of the
thermodynamics of complex molecular mixtures,” '~ solvation of
macromolecules,” " multicomponent diffusion in liquids,”""* pro-
tein self-assembly and aggregation,”” Hofmeister ion chemistry,”
identification of nanostructures in water solutions of ionic liquids,f:‘

. . e ee 27230 . 31,32
and the parameterization of atomistic and coarse-grained

force fields. Recently, KBIs have been applied to compute isothermal
compressibility of prototypical crystals,”* showing unprecedented
flexibility and range of applicability.

KBIs are strictly defined in the grand canonical ensemble.
Moreover, in practice, it is usual to take the thermodynamic limit
(TL) to reduce their calculation to spherically symmetric real-space
integrals of the radial distribution functions. In computer simula-
tions, the TL is approximated by introducing periodic boundary
conditions (PBC) for a system with a fixed number of particles
No. Accordingly, finite subvolumes V with an average number of
particles (N) are used to compute fluctuations of the number of
particles and radial distribution functions.”*® Periodicity, different
thermodynamic ensembles and finite integration domains introduce
artifacts in the resulting KBI.

Finite-size KBIs have been proposed in the literature to bridge
the existing gap between analytical expressions and numerical
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studies. Similar to the definition in the grand canonical ensem-
ble, finite-size KBIs equate fluctuations of the number of particles
in subvolumes V inside the simulation box with integrals of the
corresponding closed-system radial distribution functions.”” ** This
relation provides two routes to obtain KBI in the TL. The first
one, i.e., the spatial block analysis method (SBA), is based on cal-
culating fluctuations of the number of particles in subdomains of
volume V. By using arguments from the thermodynamics of small
systems,” linear scaling relations are defined to extrapolate KBI in
the TL."”*" The second possibility is to correct the radial distribu-
tion functions for the differences in the thermodynamic ensemble
and then integrate them using a kernel that takes into account finite-
size domains.”” " Naturally, the limit V' — oo gives the KBI in the
TL.

Indeed, the two approaches are connected. In the limit
V > V¢, with the volume V; defined by the correlation length of the
system (, the integration of the radial distribution functions gives
an expression equivalent to the result obtained from linear scal-
ing of fluctuations of the number of particles, including ensemble
and finite integration domain effects.*® Nevertheless, the local solva-
tion structure information, provided by the short-range part of the
RDF, is lost in this case. Moreover, the effect of periodic boundary
conditions is not included in the final result.

In this work, we propose a method that connects the spatial
block analysis method to the direct integration of exact finite-size
KBI. We evaluate the large r limit by introducing an asymptotic cor-
rection to the RDF. By defining the geometry of the subdomain, we
write and solve KBI in Fourier space where the periodicity of the
cell can also be incorporated, following the procedure proposed in
Ref. 47. We compute the g — 0 limit by using the spatial block anal-
ysis method. We thus obtain KBI as a function of the volume of
the subdomain and find excellent agreement with fluctuations of the
number of particles for SPC/E water and aqueous urea mixtures for
all values of V. The method is accurate, and its implementation is
straightforward. It simply requires performing a spatial block anal-
ysis and calculating one-dimensional integrals of partial structure
factors.

This paper is organized as follows: In Sec. 1, we introduce
the method, and in Sec. I1I, we give the computational details. We
present the main results in Sec. I'V and conclude in Sec. V.

1. KIRKWOOD-BUFF INTEGRALS FOR FINITE-SIZE
SYSTEMS

For a multicomponent fluid of species i,j, contained in a
volume V = L?, in thermal and chemical equilibrium with an infi-
nite reservoir of particles, the Kirkwood-Buff integral (KBI) is
defined as'

(Ni){Nj) (Ni)
- %/vadndrz[g,-j(r)-l], (1)

where N; is the number of particles of the i species, the bracket (- - -)
denotes a thermal average, §;; is the Kronecker delta, and g is the
pair correlation function defined in the grand canonical ensemble
withr=r, — ;.

Gij:v(w 5 )
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In computer simulations, we usually investigate systems with
fixed number of particles Ny with volume V, = LS. Building on
similar results for the Ornstein-Zernike equation,”” we define the
finite-size KBI as

NN - N5,
sz(V,Vo)—V( J(Ni)’(N,-)’ j _<N1-])')
=%f/dl‘ldl‘zR(l'l)R(l‘z)[gij(r;VO)—l]) ©)

where the average (---)" = (- )v,y, now explicitly depends on the
subdomain and total volumes, V and Vy, respectively (see Fig. 1).
Here, we focus on the integral term that contains the radial distri-
bution function of the closed system, gij(r; Vo), and a step function
R(r) that defines the integration subdomain: it is one inside and zero
outside the volume V. By defining Eq. (2), we connect explicitly den-
sity fluctuations and the integral of the pair correlation function for
any subdomain V.

In the following, we focus on integrating the rhs of Eq. (2),
that is,

1

G,-j(V;Vo):V//drldrzR(rl)R(rz)h,-j(r;Vo), 3)

with hij(l'; Vo) = gzj(r; Vo) - 1.
To include the correction due to ensemble effects, we use the
approximation proposed in Ref. 46,

cei(r) - (%
g6V =g - 4 (2

+ Gl‘-]’-°), (4)

Lo

FIG. 1. Schematic representation of the spatial block analysis method. The Ny blue
particles represent the system with linear size Lo, and the red particles represent
the periodic images. The purple box is a subvolume of linear size L < L, defined
to compute fluctuations of the number of particles.
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based on the asymptotic limit g;(r — oo; Vo) =1-(dii/pi
+ Gj°)/ Vo discussed in Ref. 2. This implies that

1 51” oo
Iy (155 Vo) = i (x) — 7O(p—f Gy ) 6)
and, thus, the finite-size KBI becomes
14 61” oo
Vo \ pi

where the second term on the rhs contains the correction due to

3,4,46,48
ensemble effects” """ and

Gy(V)= 5 [ [ dndrRE)RE) @, )

This expression can be easily written in Fourier space,

Gy(V) = [ aR@RER R0, ®

@)V )3V

where h;j is the Fourier transform of h;. An additional advantage
of integrating in reciprocal space is that periodic boundary condi-
tions can be considered explicitly.”*" Tt is enough to rewrite fz,,(k)
such that periodic copies of the system are included via a phase fac-
tor. That is, we include the complete contribution of the periodic
boundary conditions into Eq. (8) as

GiV) = Gy )3V f dk R(k) R(-k) iEPC(K), )
where?”
R (k) = Z e S (K, (10)

with 8,1, = (11x Lox, 1y Loy, 11z Lox ), @ vector specifying the system’s
periodic images such that n,. takes integer values. In the follow-
ing, we consider a cubic simulation box with Loy = Loy = Lo, = Lo.
Moreover, we find that the choices |nx| < 1, |n,| < 1, and |n;| < 1 are
sufficient to compute Eq. (9) accurately.

We assume a homogeneous and isotropic fluid such that
hi(k) = h,](k) with k = Vk- k. Hence, in practice, we use the rela-

tion between h,](k) and the partial structure factors Sjj,”””' namely,
Sii(k) = 8 + hy(k). (11)
The partial structure factors are computed as’*">”
1[N N;
Sii(k) = —(>.> exp(-ik- (ry — 1)) ). (12)

N i'ei j'ej

The average in the previous equation runs over values of k
such that |k| = k as well as over the simulation ensemble. Conse-
quently, the problem reduces to evaluate a single integral of the
partial structure factors given by Eq. (9).

In principle, Eq. (6) now includes all the finite-size effects
present in the simulation (finite boundary, periodicity of the box,
and ensemble). Before entering into applications, there are still two
issues demanding our immediate attention. The first is that the

ARTICLE scitation.org/journalljcp

asymptotic correction in Eq. (6) requires the value of Gj. The sec-
ond concerns the evaluation of limy_,, S,j(k) that reduces, again, to
evaluate G,‘;" . Indeed, we have

limS;(K) = & + pi G (13)

To obtain Gj”, we recall that, in the limit V; < V < V, (grand
canonical ensemble), Eq. (7) can be approximated to G;j(V) ~ Gj°

+ oc]/Vl/3 9404 where ay; is a constant. By including this approxi-

mation into Eq. (6), we recover the spatial block analysis (SBA) result
consistent with the result reported in Ref. 46,

(14)

14 Vv 8,“ Aij
SBA(V Vo) = G ( ) ij ij

— |-+ .
Vo Vo pPi V1/3

By evaluating density fluctuations for volumes V' < V, as defined by
the left-hand side of Eq. (2), it is thus possible to extrapolate G;°. 1046

To summarize, the present method to evaluate KBI for finite
systems requires information readily accessible from the simulation
trajectory: density fluctuations for subvolumes V < Vj and partial
structure factors. Additional corrections to the RDF or finite domain
integration kernels are not required. Moreover, periodic boundary

effects are trivially included in the calculation.

I1l. COMPUTATIONAL DETAILS

To validate our approach, we first focus on liquid SPC/E
water.”* Molecular dynamics simulations have been carried out with
GROMACS 4.5.1% for systems containing 1000 and 8000 water
molecules. We started with systems of initial density ~26 waters/nm®
(~776 kg/m®) that were optimized using steepest descent minimiza-
tion (50000 steps are sufficient). An equilibration run of 3.5 ns
was carried out in the NPT ensemble at 1 bar. Next, we alternated
3.5 ns (time step = 1 fs) constant pressure (NPT) at P = 1 bar and
constant volume (NVT) simulations at T = 300 K. For NPT simula-
tions, we used the Berendsen barostat,”® and for NVT simulations,
the temperature was enforced by a velocity rescaling thermostat.””
We continued with this protocol until we verified that in the NPT
ensemble, the density is 33.5 waters/nm’ (1000 kg/m?) and that in
the NVT simulation, pressure fluctuates around the 1 bar value. The
last NVT trajectory obtained after this sequence of NPT-NVT equi-
libration runs was used for the spatial block analysis and for the
calculation of the structure factor.

To test the method with a multicomponent case, we have re-
used our simulation trajectories of aqueous urea solution”"” using
the Kirkwood-Buff derived force field”® and SPC/E water™ in
GROMACS 4.5.1°° with a relatively small size of the simulation box
(L ~ 8 nm). We have considered four more molar concentrations
for a total of seven molar concentrations: 2.00, 3.06, 3.90, 5.07, 6.03,
7.10, and 8.03M. Hence, we have alternated 3.5 ns (time step = 1 fs)
constant pressure (NPT) at P = 1 bar and constant volume (NVT)
simulations at T = 300 K. For NPT simulations, we used a Berend-
sen barostat™ to control the pressure, and for NVT simulations, a
velocity rescaling thermostat®” to enforce the target temperature. We
continued with this protocol (38 NPT-NVT cycles) until we verified
that in the NVT simulation, pressure fluctuates around 1 bar. Also
in this case, the last NVT trajectory obtained after this NPT-NVT
equilibration sequence was used for the spatial block analysis and
for the calculation of the partial structure factors.
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IV. RESULTS
A. Single-component liquid: SPC/E water

For the single-component liquid, we focus on the Ornstein—
Zernicke integral equation for finite-size systems.’””” ' For a closed
system with fixed number of particles Ny and volume V), including
PBC. Similar to Eq. (2), we define”**

( NZ ) r_ < N>12

(N)

:1+%/vadrldrzR(rl)R(rz)[g(r; Vo) -1], (15)

xr(Vs Vo) =

and in this case, we use the asymptotic correction to the RDF
proposed in Refs. 60 and 62,

(x5 Vo) = g(r) - "V (16)

by neglecting O(1/Ng) contributions. y5° = pkp T, where x7 being
the isothermal compressibility of the bulk system. To solve the inte-
gral on the rhs of Eq. (15), we use the same procedure as described in
Sec. II. In cases where V; < V < V, we obtain the equivalent spatial
block analysis expression,}‘ !

X?“(V;%):ﬁ"(l—%%%, (17)
with « a constant.

First, we compute density fluctuations as defined on the Lh.s.
of Eq. (15) for both Np =1000 and 8000 systems. By defining
A= (V/Vo)'?, we plot Axy as a function of A (Fig. 2). We extrap-
olate y7° from the curve’s slope in the region A < 0.3 for the system
with Ny = 8000 water molecules. The choice of this linear region is
motivated by the fact that AXT, as obtained from Eq. (15), has the
maximum at Amax = 0.63. Thus, we estimated A = 0.3 as the value
where the curve starts deviating significantly from a straight line. We
can also use A = 0.3 to choose an appropriate size of the system for

0.08
0.06 1
£0.04-
~ Fluctuations
Fluctuations
0.02 Integral
Integral
SBA
0.00 1
0.0 0.2 0.4 0.6 0.8 10
A

FIG. 2. Plots of the normalized finite-size isothermal compressibility A, as a func-
tion of A = (V/Vy)'/3 for systems with Ny = 1000 (black) and 8000 (red) water
molecules. Dashed lines correspond to density fluctuations and solid lines rep-
resent the method presented here. Solid gray lines correspond to the fitting of
Eq. (17).

ARTICLE scitation.org/journalljcp

the spatial block analysis. By assuming that the correlation length of
water is { = 1.5 nm, we define VE/S = 1.5 x (477/3)"/° nm. The sim-

ulation box with N = 8000 water molecules has Vé/ -62 nm, thus
A= (V(/Vo)l/3 = 0.39. This value is larger than A = 0.3; still, it is suf-
ficient to obtain a value of y7° = 0.062, in good agreement with the
results reported in Ref. 4. In practice, to select the size of the system,
one can start by estimating the correlation length from the radial dis-
tribution function and evaluating the linear size of the box such that
A ~ 0.3. This criterion can also be applied to binary mixtures.

We use the results of this linear fit to plot the SBA results
[Eq. (17)]. Also for this system, we compute the structure factor and
correct for the limy_,¢ by using the relation,

I{gr&S(k) =Xxr - (18)

We, thus, compute an integral equivalent to Eq. (8) to obtain
X7 (Vs Vo). The results for both systems are also presented in Fig. 2.
It is apparent that the agreement between density fluctuations and
the integral method presented here is excellent. In contrast to the
spatial block analysis result [Eq. (17)], oscillations of Ay, at low val-
ues of A, related to the local liquid structure, and at large values
of A, due to the periodicity of the simulation box, are consistently
reproduced with our method. This is particularly interesting for the
system with Ny = 1000 water molecules, where oscillations are more
pronounced. In this case, our integral method uses information from
the system with Ny = 8000 water molecules. The small box behavior
is reproduced artificially via the periodic images in Eq. (10).

We now focus on the different finite-size effects present in the
system with Ny = 1000 water molecules. In Fig. 3, we present four
possibilities of evaluating the rhs of Eq. (15). (i) For the closed sys-
tem, i.e., including the correction 7~ V/Vo, with PBC, we observe
that y,.(1 = 1) = 0, as expected. (ii) The closed system without PBC
gives a limit yr(A =1) = poc/V(:/3 consistent with Eq. (17). (iii) An
open system can be obtained by neglecting the correction y7° V/Vj.
Moreover, by including PBC, we obtain yr(A =1) = y7° = 0.062,

0.12
0.10 1
-
0.08 1 P
.~
& ==
> 0.06 1
~ —— Closed, PBC
0.04 1 -==- Closed, no PBC
—-— Open, PBC
0021 [ e Open, no PBC
— X7
0.00 1
0.0 0.2 0.4 0.6 0.8 1.0
A

FIG. 3. Calculation of Ay, with our method [Eq. (9)] for the system with
Ny = 1000 molecules. We present four cases: (solid) closed system with PBC,
(dashed) closed system without PBC, (dashed-dotted) open system with PBC,
and (dotted) open system without PBC. The black horizontal line corresponds to
X7~ =0.062.
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SBA

Fluctuations
Open, PBC
Closed, PBC

0.00 1

SBA

wa

Fluctuations
Open, PBC
Closed, PBC

—0.05

0.00 1

Guw

—0.05 1

1 —— SBA
Fluctuations
Open, PBC
Closed, PBC

0.0 0.2

FIG. 4. KBI components Gy, (blue, top panel), G, (red, middle panel), and G (green, bottom panel) for an 8M aqueous urea mixture as a function of A = (V/Vp) /. We
present density fluctuations as obtained from the left-hand side of Eq. (2) (dashed lines), the spatial block analysis approximation in Eq. (14) (gray lines), and from the finite
KBI expression [Eq. (6)] with G;;(V) given by the Fourier integral [Eq. (9)] with (solid) and without (dashed-dotted lines) the correction to ensemble effects given by G;l."’)@.

The solid black lines correspond to the KBI in the TL, G,}"’ The dashed gray lines indicate the asymptotic limit for the closed system, —dj;/p;.

precisely the thermodynamic limit value. (iv) For an open sys-
tem without PBC, yr(A = 1) = 7 + poc/Vé/S, again consistent with
Eq. (17). These results thus highlight the role of PBC in enforcing
the correct behavior at the boundary of open and closed molecular
systems.

B. Binary mixture: Aqueous urea solution

We perform a similar analysis for the aqueous urea mixture
case. First, we compute fluctuations of the number of particles
as defined on the Lh.s. of Eq. (2). As for the single-component
case, we define A = (V/Vy)"/? and plot AGj; as a function of A.
We carried out this study for all concentrations. However, we
only present the results for the case 8M in Fig. 4 (dashed lines).
Using the information from the linear region A < 0.3, we extrap-
olate Gj° and obtain aj. In this case, we get Gy = —0.0867, Gg,
-0.0639, and G, = —0.0083 nm® with uu, uw, and ww corre-
sponding to urea—urea, urea-water, and water—-water components,
respectively. These values well reproduce derivatives of activity coef-
ficients reported experimentally,”*® as expected from the force field
parameterization,”® as well as excess chemical potentials trends with
concentration obtained with different computational methods.”**
We insert these values in Eq. (14), i.e., SBA, and plot this result
as well (solid gray lines). Finally, we use the finite KBI introduced
here [Eq. (6)] and use the Fourier integral [Eq. (9)] to compute
G;ij(V). We present both results with (solid lines) and without
(dashed-dotted lines) the correction to the ensemble finite-size
effects, Gi7A°.

In this case as well, the results of our method accurately repro-
duce density fluctuations in the whole range 0 <A < 1, including
both local structure (A << 1) and periodic boundary (A » 1) features.
As anticipated, it is also apparent that the SBA result does not repro-
duce these limiting cases. Nevertheless, in the limit A = 1, the results
from fluctuations, SBA, and our integration (closed, PBC) converge

to —d&ji/p;» the expected result of the KBI for a closed system.” As
previously stated, we can separate finite-size contributions by focus-
ing on the corresponding terms in Egs. (6) and (9). In particular, for
an open system (open, PBC), i.e., limy, .0, we verify that the KBIs
converge to Gi° when A = 1.

We examine this in more detail in Fig. 5 where the normalized
KBI for urea-urea, AGuy, is presented. In addition to the limiting

0.00
~0.05
= o
- —
& —0.101 00T R
~< "-.,.'..‘. uu
\\‘ I *1/Pu
—0.085 1 N ---- Fluctuations
—0.151 Al —— Open, PBC
— Closed, PBC
—0.090 . LT Ogon, no PBC
0201 __"0.050___0.975 ___1000___ === Gil
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 5. Normalized KBI, AGyy, as a function of A obtained using various methods
and conditions. Fluctuations—Fluctuations of the number of particles as obtained
from the Lh.s. of Eq. (2) (dashed lines). Closed, PBC and Open, PBC—finite KBI
expression [Eq. (6)] with Gyu (V) given by the Fourier integral [Eq. (9)] with (solid)
and without (dashed-dotted lines) the correction to ensemble effects given by
GS2 A%, both with PBC. Open, no PBC—finite KBI without the correction for the
thermodynamic ensemble and without PBC. The solid black line corresponds to
the KBI in the TL, Gg; . The dashed gray line indicates the asymptotic limit for the
closed system, —1/p,. The red-dashed line corresponds to the running integral
[Eq. (19)]. (Inset) Detail of the convergence to the TL.
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cases discussed above, we also consider an open system without peri-
odic boundary conditions (dotted line). It is apparent in the region
A ~ 1 (inner panel) that Gy, for an open system with PBC converges
to the value in the thermodynamic limit Gy, whereas for the open
system without PBC, Gy, is slightly larger than Gy, value by a fac-

tor o/ V(}/ 3, as expected from the SBA expression [Eq. (14)]. As in
the single-component case, this result emphasizes that PBC enforces
the correct behavior at the boundary of closed and open liquid mix-
tures. Finally, we also present the normalized running integral AGf;-
(red-dashed line) using

G = an [ dr i (o(rs
i = 4m A rr(g(r; Vo) - 1), (19)

with R > {, an expression frequently used in the literature. The major
differences with the results presented in this work resulting from
various finite-size effects highlight the apparent limitations of using
such an expression to calculate KBI.

V. CONCLUDING REMARKS

Finite Kirkwood-Buff integrals (KBIs) enable us to sample the
thermodynamic limit of liquid mixtures via relatively small com-
puter simulations. The definition of finite KBI balance fluctuations
of the number of particles in subdomains within the simulation box
and integrals of the corresponding RDF. In this work, we under-
line this equality by reproducing density fluctuations as a function
of the linear size of the subdomain via a simple integration strategy.
In particular, we introduce a method to evaluate KBI via integrals of
the partial structure factors in reciprocal space combined with the
SBA method. A significant advantage of our approach corresponds
to the direct inclusion of finite integration domains and PBC contri-
butions. Consequently, we can now identify and remove finite-size
effects such that grand canonical and thermodynamic limit results
become readily available from finite-size computer simulations.
Moreover, we show that this scheme enables us to extrapolate our
results to different sizes of the simulation box simply by modifying
the periodicity factor in the integration procedure. The simplicity
of the method is apparent since it only requires fluctuations of the
number of particles calculated for different subdomain sizes and the
partial structure factors. We foresee immediate applications in situa-
tions where PBC plays a pivotal role, namely, the recently introduced
KBI for crystalline materials.”""*
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