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People readily generalize knowledge to novel domains and stimuli. We present a theory, instantiated in a
computational model, based on the idea that cross-domain generalization in humans is a case of analogical
inference over structured (i.e., symbolic) relational representations. The model is an extension of the Learning
and Inference with Schemas and Analogy (LISA; Hummel & Holyoak, 1997, 2003) and Discovery of Relations
by Analogy (DORA; Doumas et al., 2008) models of relational inference and learning. The resulting model
learns both the content and format (i.e., structure) of relational representations from nonrelational inputs without
supervision, when augmented with the capacity for reinforcement learning it leverages these representations to
learn about individual domains, and then generalizes to new domains on the first exposure (i.e., zero-shot
learning) via analogical inference. We demonstrate the capacity of the model to learn structured relational
representations from a variety of simple visual stimuli, and to perform cross-domain generalization between
video games (Breakout and Pong) and between several psychological tasks. We demonstrate that the model’s
trajectory closely mirrors the trajectory of children as they learn about relations, accounting for phenomena from
the literature on the development of children’s reasoning and analogy making. The model’s ability to generalize
between domains demonstrates the flexibility afforded by representing domains in terms of their underlying
relational structure, rather than simply in terms of the statistical relations between their inputs and outputs.
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Many children learn the apocryphal story of Newton discovering
his laws of mechanics when an apple fell from a tree and hit him on
the head. We were told that this incident gave him the insight that
ultimately led to a theory of physics that, hundreds of years later,
would make it possible for a person to set foot on the moon. The
point of this story is not about the role of fruit in humankind’s quest
to understand the universe; the point is that a single incident—a
child’s proxy for a small number of observations—led Newton to
discover laws that generalize to an unbounded number of new cases

involving not only apples, but also cannonballs and celestial bodies.
Without being told, we all understand that generalization—the
realization that a single set of principles governs falling apples,
cannonballs, and planets alike—is the real point of the story.
Although the story of Newton and the apple is held up as a
particularly striking example of insight leading to broad generaliza-
tion, it resonates with us because it illustrates a fundamental property
of human thinking: People are remarkably good—irresponsibly
good, from a purely statistical perspective—at applying principles
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discovered in one domain to new domains that share little or no
superficial similarity with the original. A person who learns how to
count using stones can readily apply that knowledge to apples. A
graduate student who learns to analyze data in the context of psycho-
logical experiments can readily generalize that knowledge to data on
consumer preferences or online search behavior. And a person who
learns to play a simple videogame like Breakout (where the player
moves a paddle at the bottom of the screen horizontally to hit a ball
toward bricks at the top of the screen) can readily apply that
knowledge to similar games, such as Pong (where the player moves
a paddle on the side of the screen vertically and tries to hit a ball past
the opponent paddle on the other side of the screen).

This kind of “cross-domain” generalization is so commonplace
that it is tempting to take it for granted, to assume it is a trivial
consequence of the same kind of statistical associative learning
taught in introductory psychology. But the truth is more compli-
cated. First, there is no clear evidence that any species other than
humans is capable of the kind of flexible cross-domain generaliza-
tion we find so natural (see Penn et al., 2008). And second, while
“cross-domain” generalization has also been the subject of substan-
tial research in the field of machine learning (see, e.g., Gamrian &
Goldberg, 2019; Kansky et al., 2017; Zhang et al., 2018), robust,
human-like cross-domain generalization continues to frustrate even
the most powerful deep neural networks (DNNS; see, e.g., Bowers,
2017; Geirhos et al., 2020; Greff et al., 2020).

In the following, we present a theory of human cross-domain
generalization. Our primary claim is that human cross-domain gen-
eralization is a product of analogical inference performed over
structured relational representations of multiple domains. We instan-
tiate our theory in a unification and extension of two existing
computational models of relational reasoning, Learning and Inference
with Schemas and Analogy (LISA; Hummel & Holyoak, 1997, 2003)
and Discovery of Relations by Analogy (DORA; Doumas et al.,
2008). The resulting model accounts for how we acquire structured
relational representations from simple visual inputs, integrates with
current methods for reinforcement learning (RL) to learn how to apply
these representations, and accounts for how we leverage these
representations to generalize knowledge across different domains.

In what follows, we first review evidence for the role of structured
relational representations in generalization, broadly defined, but
especially in cross-domain generalization. Along the way, we
discuss what it means for a representation to be structured and
relational, contrasting the strengths and limitations of implicit and
explicit representations of relations. Next, we outline our theory of
human cross-domain generalization and describe the computational
model that instantiates it. We then present a series of simulations
demonstrating that the model learns structured representations of
relations and uses these representations to perform zero-shot (i.e.,
first trial) cross-domain generalization between different video
games and between completely different tasks (video games and
analogy making). We also show that the model’s learning trajectory
closely mirrors the developmental trajectory of human children.
Finally, we discuss the implications for our account, contrasting it
with purely statistical learning accounts such as DNNs, and we
consider future extensions of the theory.

In addition to providing an account of cross-domain transfer, the
model also represents theoretical advance in at least two other
domains, (a) the discovery of the kind of invariant semantic
properties that constitute the meaning of a relation and (b) the
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integration of explicitly relational representations with RL to pro-
duce representations with the expressive power of explicitly rela-
tional representations and the productive capacity of implicit
representations of relations (e.g., as weight matrices).

Relational Representations and Generalization

Psychologists have long observed that people’s concepts, even of
“ordinary” domains like cooking and visual occlusion, are like theories
or models of the domains in question (e.g., Carey, 2000, 2009; Murphy
& Medin, 1985), in that they specify the relations among the critical
variables in the domain. For example, our understanding of visual
occlusion specifies that a larger surface can occlude a smaller surface
more than vice-versa (one can hide behind a hundred-year-old oak better
than a sapling; e.g., Hespos & Baillargeon, 2001); that an object
continues to exist, even when it’s hidden behind an occluder (e.g.,
Piaget, 1954); and that the ability of an occluder to hide an object
depends on the relative distances between the occluder, the observer,
and the hidden object. Our model of biology tells us that the offspring
are the same species as the parents (e.g., Gelman, 2003). Our under-
standing of cooking specifies that the amount of salt one adds to a dish
should be proportional to the size of the dish. And our model of a game
like tennis, baseball, or Pong tells us that the ability of the racket, bat, or
paddle to hit the ball depends on the locations and trajectories of these
objects relative to one another.

The critical property of all these models is that they specify—
and thus depend on the capacity to learn and represent—an open-
ended vocabulary of relations among variables: Whether x can
occlude y from viewer v depends on the relative sizes of x and y,
and the relative distances and angles between x, y, and v. Accord-
ingly, learning a model of a domain entails learning a representa-
tion of the relations characterizing that domain. We take this
claim—that an “understanding” of a domain consists of a repre-
sentation of the relations characterizing that domain—to be uncon-
troversial. However, our claim is stronger than that. We claim that
an understanding of a domain consists of structured relational
representations of the domain. As elaborated shortly, by structured
relational representation, we mean a representational format that
explicitly captures both the semantic content (i.e., meaning) and
the compositional structure (i.e., bindings of arguments to rela-
tional roles) of a relationship.

One of the most important manifestations of a capacity to reason
about relations is analogical inference: inferences based on the relations
in which objects are engaged, rather than just the literal features of the
objects themselves. Analogical inference is evident in almost every
circumstance in which a person demonstrates knowledge on which she
was never explicitly trained. The physics student learning Newton’s law,
f=ma, does not need to learn multiplication de novo in the context of
this new equation, she knows it already. So instead of teaching her an
enormous lookup table with all possible m and a as input and the
corresponding f as output, the physics teacher simply gives her the
equation, knowing her knowledge of multiplication will generalize to
the domain of physics. The student who knows she needs at least a grade
of 70% to pass a course also knows, without additional training, that
69%, 68%, 67%, etc. are all failing grades, an inference based on the
relation between 70 and all the numbers smaller than it. And if you have
ameeting at 2:00 p.m., and the current time is 1:00 p.m, then you know
you are not yet late. Importantly, we know these things without explicit
training on each domain individually. An understanding of a relation
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such as less-than or multiplied-by simultaneously confers understanding
to all domains in which it applies (e.g., grades, appointments, recipes,
automobile manufacture, etc.). In brief, cross-domain generalization
based on structured relational representations is not the exception in
human thinking, it is the default.

Learning Relational Representations

These facts have not escaped the notice of cognitive modelers
(e.g., Doumas et al., 2008; Falkenhainer et al., 1989; Halford,
Wilson, & Phillips, 1998; Hummel & Biederman, 1992; Hummel
& Holyoak, 1997, 2003; Paccanaro & Hinton, 2001), and recent
years have seen increased interest in getting neural networks trained
by back propagation to learn useful representations of relations in
domains such as relation extraction from pictures (Haldekar et al.,
2017), visual question answering (e.g., Cadene et al., 2019; Ma
et al., 2018; Santoro et al., 2017; Xu & Saenko, 2016), same-
different discrimination (Funke et al., 2021; Messina et al., 2021),
and even visual (Hill et al., 2018; Hoshen & Werman, 2017) and
verbal (Mikolov et al., 2013) analogy-making. The core assump-
tions underlying these efforts are that (a) the relevant relational
properties can be discovered as a natural consequence of the
statistical properties of the input—output mappings and that (b)
the relevant relations will be represented in the learned weight
matrices and will permit relational generalization.

This statistical approach to relation learning has met with some
substantial successes. One strength of this approach is that because the
learned relations are represented implicitly in the networks’ weight
matrices, they are functional in the sense that they directly impact the
model’s behavior: Given one term of a relation, for instance, along
with a weight matrix representing a relation, a network of this kind
can produce the other term of the relation as an output (see, e.g., Leech
et al., 2008; Lu et al., 2012; but cf. Lu et al., 2021). By contrast,
models based on more explicit representations of relations (e.g.,
Anderson, 2007; Doumas et al., 2008; Falkenhainer et al., 1989;
Hummel & Holyoak, 1997, 2003), including the model presented
here, must explicitly decide how to apply the relations it knows to the
task at hand (e.g., by adding an inferred proposition to a database of
known facts; see Anderson, 2007). As elaborated in the Simulations
section, one advance presented in this article is a technique for using
RL to choose which relations to use in what circumstances in the
context of video game play.

Although statistical learning of implicit relations achieves impres-
sive results when tested on examples that lie within the training
distribution, their performance deteriorates sharply on out-of-distri-
bution samples. For example, the relational network of Santoro et al.
(2017) was trained to answer same—different questions about pairs
of objects in an image. When the model was tested on shape-color
combinations withheld from the training data (e.g., a test image with
two identical cyan squares where the model had seen squares and the
color cyan individually but not on combination), its performance
dropped to chance (Kim et al., 2018). The limited applicability of the
relations learned by these models holds across application domains
(see, Ricci et al., 2021; Peterson et al., 2020; Sengupta & Friston,
2018; Stabinger et al., 2020, for recent reviews).

Why are useful relational representations so hard to learn using
traditional statistical learning? The short answer is that although these
approaches might capture the content of (some of) the relevant
relations in their respective domains, they do not represent those
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relations in a form that supports broad relational generalization. We
argue that flexible, cross-domain generalization relies, not on implicit
representations (like weight matrices), but instead on explicitly
relational representations, that simultaneously (a) represent the
semantic content of a relation (e.g., the meaning of the relation
left-of ()) and (b) represent that content in a format that makes it
possible to dynamically bind the relation to arguments without
altering the representation of either. The following expands on the
distinction between form and content with the goal of clarifying our
claims about the nature and utility of structured relational representa-
tions for the purposes of generalization. We return to this issue in
much more detail in the Discussion, where we relate our simulation
results to the differences between structured relational representa-
tions, as endorsed in the current theory, and implicit representations of
relations, as represented in the weight matrices of some neural
networks.

Relational Content

What does it mean to represent a relation such as left-of ()? To a first
approximation, it means having a unit (or pattern of activation over
multiple units) that becomes active if and only if some part of the
network’s input is to the left-of some other part. For example, imagine
a neural network that learns to activate a node in its output layer or in
some hidden layer if and only if the network’s input contains at least
two objects, i and j, whose locations in the horizontal dimension of the
display are unequal. Note that in order to represent left-of (), per se, as
opposed to instances of left-of () at a specific location in the visual
field, the unit or pattern must become active whenever any object i is
left of any other object j, regardless of the specific objects in question,
and regardless of their specific locations in the visual field. That is, a
representation of a relation, such as left-of (i, j), is useful precisely to
the extent that it is invariant with the specific conditions (e.g., the
particular retinal coordinates, x; and x;) giving rise to it and with the
objects (arguments, i and j) bound to it (Hummel & Biederman,
1992): Such a unit or pattern would, by virtue of its 1:1 correspon-
dence with the presence of things that are left-of other things in the
input, represent the semantic content of the relation left-of ().

The invariance of a relational representation is partly responsible
for the flexible generalization afforded by such representations. A
system that can represent left-of (paddle, ball) in a form that is
invariant with the specific locations of the paddle and ball is well
prepared to learn a rule such as “if the paddle is left of the ball, then
move the paddle to the right” and then apply that rule regardless of
the location of the paddle and ball in the game display. Such a
representation would even permit generalization to a screen wider
than the one used during training (i.e., with previously unseen values
of x). Conversely, representing left-of (paddle, ball) with different
units depending on where the paddle and ball are in the display will
not permit generalization across locations: Having learned what to
do when the paddle is at x = 10 and the ball is at x = 11 (represented
by a unit we’ll call left-of;,0, 11;), such a network would not know
what to do when the paddle is at x = 12 and the ball at x = 15
(represented by a different unit, left-of;;2, 15)).

The Form of Structured Relational Representations

Being able to represent relational invariants such as left-of () and
above () is extremely useful, if not necessary, for broad, cross-domain
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generalization, but it is not sufficient. Simply activating a unit or
pattern representing left-of () does not specify what is to the left of
what: Is the paddle left of the ball, or the ball left of the paddle? Or is
one of them, or some other object, to the left of some third or fourth
object? Knowing only that something is left of something else
provides no basis for deciding whether, for example, to move the
paddle to the left or right.

Representing a relation such as left-of (i, j) in a way that can
effectively guide reasoning or behavior entails representing both the
relational content of the relation (e.g., that something is left-of
something else, as opposed to, say, larger-than something else),
and specifying that content in a formar that makes the bindings of
arguments to relational roles explicit. Following the literature on
analogy and relational reasoning, we will use the term predicate to
refer to a representation in this format. For our current purposes, a
predicate is a representation (a symbol) that can be bound dynami-
cally to its argument(s) in a way that preserves the invariance of both
(see, e.g., Halford, Wilson, & Phillips, 1998; Hummel & Biederman,
1992; Hummel & Holyoak, 1997, 2003). By “dynamic binding” we
mean a binding that can be created and destroyed as needed: To
represent left-of (paddle, ball), the units representing the paddle must
be bound to the units representing the first role of left-of () while the
units representing the ball are bound to the units representing the
second role; and to represent left-of (ball, paddle), the very same units
must be rebound so that ball is bound to the first role and paddle to the
second role. In propositional notation, these bindings are represented
by the order of the arguments inside the parentheses. Neural networks
need a different way to signal these bindings, and the work reported
here follows Doumas et al. (2008; see also Hummel & Biederman,
1992; Hummel & Holyoak, 1997, 2003) and others in using system-
atic synchrony and asynchrony of firing for this purpose.

What matters about dynamic binding is not that it is based on
synchrony or asynchrony of firing; one might imagine other ways to
signal bindings dynamically in a neural network. What matters is
only that the dynamic binding tag, whatever it is, is independent of
the units it binds together. That is, the binding tag must be a second
degree of freedom, independent of the units’ activations, with which
to represent how those units (representing roles and objects) are
bound together. Synchrony of firing happens to be convenient for
this purpose, as well as neurally plausible (e.g., Hummel &
Biederman, 1992; Hummel & Holyoak, 1997, 2003; Reichert &
Serre, 2014; Rao & Cecchi, 2010, 2011; Shastri & Ajjanagadde,
1993; von der Malsburg, 1982/1994). For example, to represent left-
of (paddle, ball), neurons representing left-of would fire in syn-
chrony with neurons representing the paddle, while neurons repre-
senting right-of fire in synchrony with neurons representing the ball
(and out of synchrony with the paddle and left-of neurons). The very
same neurons would also represent left-of (ball, paddle), but the
synchrony relations would be reversed. In this way, the representa-
tion captures the form of the representation (distinguishing left-of
(ball, paddle) from left-of (paddle, ball)), without sacrificing the
content of left-of (), ball, or paddle. This ability to bind ball and
paddle dynamically to the roles of left-of () without changing the
representation of either derives from the fact that when a unit fires, is
independent of how strongly it fires: The representation is explicitly
structured and relational because timing (which carries binding) and
activation (which carries content) are independent.

We posit that representing a relation as a structure that is invariant
with its arguments and can be dynamically bound to arguments
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permits immediate (i.e., zero-shot) generalization to completely
novel arguments—including arguments never seen during training.
For example, a Breakout player who represents left-of () in a way
that remains unaffected by the arguments of the relation could adapt
rapidly if the paddle and ball were suddenly replaced by, say, a
triangle and a square, or a net and a bunny. Armed with the capacity
to map a given relation such as left-of () in one domain onto a
different relation such as above () in another—that is, armed with a
capacity for analogical mapping—a player could also rapidly adapt
“keep the paddle aligned with the ball in the horizontal direction,” as
in Breakout, to “keep the paddle aligned with the ball in the vertical
direction,” as in Pong. Such a player would exhibit very rapid cross-
domain generalization from Breakout to Pong.

In summary, representing relations explicitly, with a pattern or
unit that remains invariant over different instantiations of the
relation (e.g., left-of () in one location vs. another) and different
role bindings (e.g., left-of (paddle, ball) vs. left-of (triangle, square)),
and that can be dynamically bound to arguments, affords enormous
flexibility in generalization. We argue that it is precisely this kind of
relational generalization that gives rise to cross-domain transfer.

Learning Relations

An account of how people learn explicitly relational representa-
tions must explain how we learn both their content and their form
(Doumas et al., 2008). To account for the discovery of relational
content, it must specify how we come to detect the basic relational
invariants that remain constant across instances of the relation. For
example, how can we discover an invariant that holds true across all
instances of left-of (), given that we only ever observe specific
instances of left-of () at specific locations? To account for the learning
of the form of a structured relational representation—that is, the
capacity to bind relational roles to their arguments dynamically
without destroying the invariant representations of either—the system
must be able to solve two additional problems. First, it must be able to
isolate the relevant invariants from the other properties of the objects
engaged in the relation to be learned. Part of what makes relation
learning difficult is that although a goal is to discover an invariant
representation of the relation, during acquisition relations never occur
in isolation, but always in the context of specific objects engaged in
the relation (e.g., it is impossible to observe a disembodied example of
left-of () as an abstract invariant). Second, having discovered and
isolated the relevant invariants, the system must learn a structured
predicate representation of the relation that can be stored in long-term
memory and can be dynamically bound to arbitrary arguments while
remaining independent of those arguments.

A Theory of Cross-Domain Generalization

We propose that human cross-domain generalization is a special
case of analogical inference over explicitly relational representations.
Accordingly, we propose that cross-domain generalization is subject
to the constraints on relation learning summarized previously, plus the
familiar constraints on analogical reasoning (see Holyoak & Thagard,
1995; Hummel & Holyoak, 1997, 2003). Specifically, we propose
that cross-domain generalization is a consequence of four fundamen-
tal operations: (a) detecting (or learning to detect) relational invar-
iants; (b) learning structured (i.e., predicate) representations of those
invariants; (c) using these structured relational representations to
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construct relational models of various domains (including arithmetic
and physics, or video games) procedurally via processes like RL; and
(d) using those representations to understand new domains by
analogy to familiar ones.

We do not propose that all four of these operations take place de
novo every time a person generalizes from one domain to another. In
particular, if a given domain is familiar to a person, then they will
already have performed steps (1). .. (3) with respect to that domain.
Moreover, even most novel domains are almost never completely
novel. By the time a person learns Newton’s laws of mechanics, for
instance, they have already mastered arithmetic, so although the
equations themselves are new to the student, the arithmetic operations
they represent are not. Although children likely engage actively in all
four steps, by adulthood, the majority of cross-domain transfer—
whether from arithmetic to physics, or from one game to another—
likely relies to an extent on step (3), learning what known relations
might be relevant in a given situation, and most heavily on step (4),
using existing relational concepts and domain models to make
inferences about novel domains that are themselves represented in
terms of relations and objects already familiar to the learner.

The following presents our model of cross-domain transfer,
which performs all four of the steps outlined above: invariant
discovery, relation isolation and predication, model construction,
and relational inference based on those models. The model is an
integration and augmentation of the LISA model of analogical
reasoning (Hummel & Holyoak, 1997, 2003; Knowlton et al.,
2012) and the DORA model of relational learning and cognitive
development (Doumas & Martin, 2018; Doumas et al., 2008). LISA
and DORA account for over 100 major findings in human percep-
tion and cognition, spanning at least seven domains: (a) shape
perception and object recognition (Doumas & Hummel, 2010;
Hummel, 2001; Hummel & Biederman, 1992); (b) relational think-
ing (Choplin & Hummel, 2002; Hummel & Holyoak, 1997, 2003;
Hummel et al., 2014; Krawczyk et al., 2004, 2005; Kroger et al.,
2004; Kubose et al., 2002; Taylor & Hummel, 2009), (c) relation
learning (Doumas & Hummel, 2012; Doumas et al., 2008; Jung &

Table 1
Core Theoretical Claims and Their Instantiation in DORA
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Hummel, 2015a, 2015b; Livins et al., 2015, 2016), (d) cognitive
development (Doumas et al., 2008; Licato et al., 2012; Lim et al.,
2013; Sandhofer & Doumas, 2008), (e) language processing
(Doumas & Martin, 2018; Martin & Doumas, 2017, 2020;
Rabagliati et al., 2017), (f) cognitive aging (Viskontas et al.,
2004), and (g) decline due to dementia, stress, and brain damage
(Morrison et al., 2004, 2011). Accordingly, we view these systems
as a promising starting point for an account of human-level cross-
domain generalization. Importantly, LISA provides a solution to
Problem 4 above (the problem of inference), and DORA provides a
solution to Problem 2 (learning structured representations from
nonstructured inputs). The current model integrates LISA and
DORA into a single framework, and then extends the resulting
model to address Problem 1 (the discovery of abstract relational
invariants) and Problem 3 (model construction via RL).

Our core theoretical claims and their instantiation in the proposed
model are summarized in Table 1. These claims along with the core
claims of LISA/DORA (see Doumas et al., 2008; Hummel &
Holyoak, 1997, 2003) compose the primary assumptions of the
approach. We claim that structured relational representations under-
lie cross-domain generalization as a natural consequence of (a) their
general applicability across domains and (b) their ability to underlie
analogies between domains. Cross-domain analogical inference
occurs because we build models of domains consisting of an
open-ended vocabulary of relations among of the elements the
domains (see also Murphy & Medin, 1985; Carey, 2009; Gentner,
2003). These representations are structured and relational in that they
express the invariant content of the relations they specify in a
structured (i.e., symbolic) format that dynamically binds arguments
to relational roles. We learn both the content and the format of
structured relational representations from experience by explicitly
comparing examples. We learn which relations are important for
characterizing and acting in a domain through a process of RL.

The remainder of the paper proceeds as follows. First, we
summarize our integration of the LISA/DORA frameworks and
describe the current extensions for invariant discovery and

Core theoretical claim

Instantiation in DORA

1. Cross-domain generalization is a natural consequence of structured
relational representations, which express the invariant content of relations
and compose dynamic role-argument bindings into propositions.

la. Structured relational representations support cross-domain
generalization because they are generally applicable across domains.

1b. Cross-domain generalization is a case of analogical inference over
domain models.

2. Structured relational representations are acquired by a comparison process
that reveals and isolates relational invariants and composes them into
predicates that dynamically bind to arguments.

w

. Relations relevant for characterizing and acting in a domain are learned
procedurally through reinforcement learning.

DORA represents relations between elements in a format that makes explicit
the relational invariants, the bindings of relational roles to arguments, and
the integration of multiple bindings into propositions. DORA’s capacity
for cross-domain generalization follows from operations over these
representations.

DORA'’s representations can be applied promiscuously to characterize
genuinely new situations. DORA uses the representations that it has
learned in the past to represent novel situations by dynamically binding
previously learned predicate representations to objects in the new situations.

DORA performs analogical mapping, discovering correspondences between
situations based on shared relational structure, and generalizes across
situations based on these mappings.

DORA discovers invariant relational properties by exploiting properties
inherent to rate-coded representations of magnitude. DORA then learns
structured relational representations of these properties through a process
of comparison-based intersection discovery and Hebbian learning.

DORA and its representations integrate smoothly with existing methods for
reinforcement learning.

Note. DORA = Discovery of Relations by Analogy.
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generalization. Next, we report simulations demonstrating that (a)
the model learns structured relational representations from simple
visual inputs without assuming a vocabulary of structured repre-
sentations a priori; (b) These representations support the develop-
ment of more complex domain models via RL; (¢c) The model uses
these representations to generalize to a new domain in a single
exposure, exhibiting zero-shot transfer; (d) Generalization in the
model fails without the structured format of the representations it
learns; (e) The representations that the model learns from simple
domains transfer readily to more complex tasks like adult analogy
problems, and the representations that the model learns meet the
hallmarks of human relational cognition; and (f) The trajectory of
the model as it learns closely mirrors the developmental trajectory of
human children and that the representations learned in one domain
transfer readily to different laboratory tasks, allowing the model to
capture several phenomena from the developmental literature.
Finally, we discuss some implications and possible future exten-
sions of the model and contrast our approach with purely statistical
accounts of human learning.

The Model

As noted previously, our model of cross-domain generalization is
based on an integration and augmentation of the LISA and DORA
models of relational reasoning (henceforth, simply DORA). We begin
by reviewing how DORA represents relational knowledge, how it
uses those representations for reasoning, and how it learns structured
representations of relations from unstructured vector-based inputs.

We next present a novel algorithm for discovering invariant
relational properties—that is, the semantic content of relational
representations—from simple, nonrelational visual inputs. The re-
sulting model provides the first complete account of how structured
representations of visual relations can be learned de novo from
simple nonrelational inputs without feedback and without assuming
a vocabulary of relations a priori. The resulting model also provides
an account of human cross-domain generalization as a natural
consequence.

The following description of the model presents published
details of DORA’s operation only in broad strokes, going into
detail only when those details are relevant to understanding the
novel extensions of the work (e.g., relation discovery). Complete
details of the model’s operation can be found in Appendix A
(which includes a functional description of the model, pseudo-
code, and full computational details). The model’s source code is
available online."

Representing Relational Knowledge: LISAese

We begin by describing the final (i.e., postlearning) state of
DORA’s knowledge representations. These representations do
not serve as the input to the model but are the result of its learning
(as described below). DORA is a neural network consisting of four
layers of bidirectionally connected units. DORA represents propo-
sitions using a format, LISAese, which is a hierarchy of distributed
and progressively more localist units whose activations oscillate
over progressively slower time scales (moving from the bottom to
the top layer of the network; Figure 1). At the bottom of the
hierarchy, feature units represent the basic features of objects
and relational roles in a distributed manner. Token units (T1-T3)
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learn without supervision (see below) to conjunctively code collec-
tions of units from the layer below. Tokens at the lowest level of the
hierarchy (T1) take inputs directly from feature units and learn to
respond to objects or relational roles in a localist fashion. Tokens in
the next layer (T2) take their inputs from PO tokens and learn to
respond to pairs of PO units—that is, to roles and the objects
(arguments) to which they are bound. Tokens in the highest layer
(T3) learn to respond to collections T2 units, instantiating multiplace
relational propositions.

When they become active, units representing relational roles and
their arguments independently (i.e., features and T1 units) must be
bound together dynamically. DORA represents dynamic bindings
using time: T1 units representing relational roles and their argu-
ments fire out of synchrony but in close temporal proximity. These
temporal relations arise from inhibitory interactions among token
units. Within a single proposition, token units are laterally inhibitory
(e.g., T1 units inhibit other T1 units, T2 units inhibit other T2 units;
as elaborated below, lateral inhibition between token units extends
beyond propositions but for the present illustration this simplifica-
tion is appropriate). Each token unit is also yoked to an inhibitory
unit, which causes the token’s activation to oscillate, even in
response to a fixed excitatory input.

Together, the yoked inhibitors and lateral inhibitory interactions
between tokens cause the constituents of a single proposition to fire
in a systematic, hierarchical temporal pattern (Figure 1b and 1c):
When a T3 unit representing a proposition such as above (ball,
paddle) becomes active, it will excite the T2 units below itself (here,
above + ball and below + paddle). These T2 units inhibit one
another, and one of them (e.g., above + ball) will randomly win the
initial inhibitory competition, becoming active and driving the other
to inactivity. After a fixed number of iterations/milliseconds, k, the
inhibitor yoked to that T2 unit (above + ball) will become active,
driving it to inactivity, and allowing the other T2 unit (below +
paddle) to become active for k iterations/milliseconds (until its own
inhibitor drives it to inactivity).

This same pattern of lateral inhibition and yoked inhibitor activity
causes the T1 units below above + ball and below + paddle—
namely, the T1 units above and ball, and below and paddle,
respectively—to oscillate out of phase with one another at twice
the frequency (i.e., half the duration; specifically, k/2) at which the
T2 units are oscillating. T1 units activate feature units, causing the
semantic units’ activity to oscillate at the same frequency as the T1
units. The result on the T1 and semantic units is a repeating temporal
pattern of the form [(above, ball), (below, paddle)), [(above, ball),
(below, paddle)], etc., where units inside parentheses are oscillating
out of phase with one another with duration k/2, and units inside
brackets are out of phase with duration k (see Figure 1b and 1c). In
this way, the network represents relational roles and fillers indepen-
dently (in the features and T1 units) and simultaneously represents
the binding of roles to fillers.

Interpreting LISAese

One advantage of the representations DORA learns is that they
are easily interpretable. Units in T1 will learn to represent objects
and relational roles, and by inspecting the features to which any
given T1 unit is connected, it is possible to determine which object

!'Source code is available online; see Author Note.
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Knowledge Representation and Temporal Binding in DORA
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(a) Representation of a single proposition (above (ball, paddle)) in DORA. Feature units represent properties of objects and relational

roles in a distributed manner. Token units in T1 represent objects and roles in a localist fashion; token units in T2 conjunctively bind roles to their
arguments (e.g., objects); token units in T3 conjunctively link role-argument pairs into multiplace relations. (b) A time-series illustration of the
activation of the units illustrated in (a). Each graph corresponds to one unit in (a) (i.e., the unit with the same name as the graph). The abscissa of
the graph represents time, and the ordinate represents the corresponding unit’s activation. (c) Time-based binding illustrated as a sequence of

discrete frames (i ...

iv). (i) Units encoding higher-than-something fire. (ii) Units encoding ball fire. (iii) Units encoding lower-than-something

fire. (iv) Units encoding paddle fire. Labels in units indicate what the unit encodes (see key); the labels on the units are provided for clarity and are

meaningless to DORA. DORA = Discovery of Relations by Analogy.

or role it represents. Units in T2 will learn to represent specific
predicate—argument bindings, which are interpretable by inspecting
the T1 units to which they are connected. And units in T3 will learn
to represent complete propositions, which are interpretable by
inspecting the connected T2 units. Accordingly, in the following,
we will refer to the units DORA learns in terms of these interpreta-
tions. We do so solely for clarity of exposition. The labels we use
have no meaning to DORA and no impact on its operation.

Computational Macrostructure

Figure 1 depicts the representation of an individual proposition in
DORA'’s working memory (as synchronized and desynchronized
patterns of activation). Figure 2 provides an overview of DORA’s
macrostructure.

A complete analog—situation, story, schema, etc.—consists of
the collection of token units that collectively encode its propositional
content. Within an analog, a single token represents a given object,
role, role-binding, or proposition, no matter how many propositions
refer to that entity. For example, in a single analog, the same T1 unit
for left-of represents that role in all propositions containing left-of as
arole. However, separate analogs do not share tokens. For example,
one unit would represent left-of in DORA’s representation of the
game it is currently playing (represented in one analog) and a
completely separate token would represent leff-of in DORA’s
representation of a game it had played in the past (represented in
a separate analog). Collections of token units (i.e., T1...T3)

representing the situations and schemas (i.e., “analogs”) DORA
knows collectively form its long-term memory (LTM; Figure 2a).

For the purposes of learning and reasoning—for example, when
making an analogy between one situation and another—the propo-
sitions representing those analogs enter active memory (dashed box
in Figure 2a), a state in which they are readily accessible for
processing, but not fully active (see, e.g., Cowan, 2001; Hummel &
Holyoak, 1997, 2003). As depicted in Figure 2b, the analogs in active
memory are divided into independent sets: The driver corresponds
to the current focus of attention (e.g., the state of the current game, as
delivered by perceptual processing), and maps onto one or more
recipients (e.g., an analog describing the model’s emerging under-
standing of the game).” Token units are laterally inhibitory within
but not between sets. The driver/recipient distinction in DORA is
different from the more familiar source/target distinction discussed
in the analogical reasoning literature. The farget of analogical
reasoning is the novel problem to be solved (or situation to be
reasoned about), and the source is the analog from which inferences
are drawn about the target. As summarized shortly, in DORA, the
target analog tends to serve as the driver (i.e., the focus of attention)

2 The idea that mutually exclusive sets are fundamental for analogical
reasoning goes back to Gentner (1983), and has been implemented in a
variety of models (SME, LISA, etc.). As detailed in Knowlton et al. (2012),
we assume these sets are implemented by neurons in posterior frontal cortex
with rapidly modifiable synapses that act as “proxies” for larger structures
represented elsewhere in cortex.
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Figure 2
DORA’s Macrostructure
(@) (b)
AM
LTM I_A_____A_A__I
_ _ _ _AM I Driver Recipient
T3] i ] | ol
I ] ! |
72| | ; pi7------- > )
X
Features Features
Note. (a) DORA’s long-term memory (LTM), Consisting of layers of token units (T1-T3; black rectangles),

and the feature units connected to the bottom Layer of LTM. During processing, some units in LTM enter active
memory (AM). (b) Expanded view of AM. AM is composed of two sets, the driver (the current focus of attention)
and the recipient (the content of working memory available for immediate processing). Black lines indicate
bidirectional excitatory connections. DORA = Discovery of Relations by Analogy.

during memory retrieval and in the initial stages of analogical
mapping, whereas the source serves as the driver during analogical
inference.

Operation

In DORA activation generally starts in the driver, passing through
the feature units (and any mapping connections, as detailed shortly)
into other analogs in LTM (for memory retrieval), including any
analogs in the recipient (for mapping, learning, and inference).
Token units in the driver compete via lateral inhibition to become
active (i.e., token units in the driver laterally inhibit other tokens in
the driver in the same layer), generating patterns of activation on the
feature units (as described previously; Figure 1). Units in the
recipient (or LTM) compete via lateral inhibition to respond to
the resulting patterns on the feature units. This inhibitory competi-
tion is hierarchical in time, reflecting the temporal dynamics of
the driver and features: T1 units (relational roles and objects) in
LTM/recipient compete to respond to patterns generated by indi-
vidual roles and objects in the driver; T2 units (role bindings) in
LTM/recipient compete to respond to specific role/filler bindings;
and T3 units compete to respond to complete propositions. The
result is a winner-take-all inhibitory competition operating at mul-
tiple temporal scales and serves as the foundation of all the functions
DORA performs, including memory retrieval, analogical mapping
(Hummel & Holyoak, 1997), analogical inference (Hummel &
Holyoak, 2003), and relation discovery (Doumas et al., 2008).

Memory Retrieval

Patterns of activation imposed on the feature units by active
tokens in the driver will tend to activate token units in LTM that
have learned to respond to similar patterns (Appendix A—Retrieval
section, for details). For example, the features activated by a paddle
in the driver will tend to activate T1 units responsive to paddle
features, and the features activated by leffmost in the driver will tend
to activate T1 units connected to leffimost features. Together, these
T1 units will tend to excite T2 units for leftmost + paddle. Features

consistent with ball and rightmost would likewise activate T1 units
for ball and rightmost, which would excite a T2 unit for rightmost +
ball. Together, the T2 units for leftmost + paddle and rightmost +
ball will tend to activate any T3 unit(s) encoding the proposition left-
of (paddle, ball): The model will have recognized the desynchro-
nized patterns of features as representing the fact that the paddle is
left-of the ball, which can be retrieved into the recipient.

Mapping

One of the most important operations DORA performs is analogi-
cal mapping. During mapping, DORA discovers structural corre-
spondences between tokens in the driver and recipient. When tokens
in the driver become active, similar tokens are activated in the
recipient via the shared feature units. Using a kind of Hebbian
learning, the model learns mapping connections between co-active
units in the same layer across driver and recipient (Hummel &
Holyoak, 1997, 2003; see Appendix A—Update Mapping Hypothe-
ses and Update Mapping Connections sections for details). The
resulting connections serve both to represent the mappings DORA
has already discovered, and to constrain its discovery of additional
mappings. The algorithm provides an excellent account of human
analogical mapping performance (Doumas et al., 2008; Hummel &
Holyoak, 1997, 2003).

Analogical Inference

Augmented with a simple algorithm for self-supervised learning
(Hummel & Holyoak, 2003), DORA’s mapping algorithm also
provides a psychologically and neurally realistic account of analog-
ical inference (making relational inferences about one situation
based on knowledge of an analogous one; Appendix A—Relational
Generalization section, for details). The algorithm implements a
version of Holyoak et al.’s (1994) copy-with-substitution-and-gen-
eralization (CWSG) framework. In CWSG, when two situations are
analogically mapped, information about one situation can be
inferred about the other. For example, if one knows about situa-
tion-1, where chase (Fido, Rosie), and scared (Rosie) are true, and
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maps that onto situation-2, where chase (Spot, Bowser) is true, one
can copy the representation of the scared predicate from situation-1
to situation-2, and then use the mapping of Bowser to Rosie, to copy
Bowser as the argument of scared to infer scared (Bowser). As
elaborated below, this process serves as the basis for our proposed
solution to the problem of cross-domain generalization.

Learning Relational Format: LISAese From
Nonstructured Inputs

DORA generalizes the operations described above to address the
problem of learning structured representations of relations from
unstructured “flat” vector/feature-based representations (Doumas
et al., 2008). DORA represents relations as collections of linked
roles, rather than as monolithic structures: For example, the relation
above composes the roles higher and lower rather than consisting
strictly of the single atom above, as it would in propositional
notation or a labeled graph. This role-based approach to representing
relations offers several advantages over alternative approaches (see
Doumas & Hummel, 2005, for a review), one of which is that it
makes it possible to learn relations by (a) first learning their roles and
then (b) linking those roles together into multi-argument relational
structures (as described in Doumas et al., 2008).

DORA'’s unsupervised relation learning algorithm (Doumas et al.,
2008) begins with representations of objects encoded as vectors of
features. DORA learns single-place predicates—that is, individual
relational roles—as follows (see Appendix A—Predicate and Rela-
tion Learning section, for details): (a) By the process of analogical
mapping (summarized above) the model maps objects in one
situation (the driver; e.g., a previous state of the game of Breakout)
onto objects in a similar known situation (the recipient; e.g., the
current state of a game). For example, DORA might map a T1 unit
representing the ball in its previous location onto a T1 unit repre-
senting the paddle in its current location (Figure 3ai). Early in
learning, these tokens will be holistic feature-based representations
specifying an object’s attributes (e.g., its location, color, etc.) in a
single vector; (b) As aresult of this mapping connection, the T1 unit
representing the ball in the driver will become co-active with the T1
unit representing the paddle in the recipient. T1 units in both the
driver and recipient pass activation to the feature units to which they
are connected, so any features connected to the active T1 units in
both the driver and recipient will receive about twice as much
input—and therefore become about twice as active—as any features
unique to one or the other (Figure 3aii). As a result, the intersection
of the two instances becomes highlighted as the collection of the
most active features; (c) DORA recruits (activates) a T1 unit and a
T2 unit in the recipient, and updates connections between units in
adjacent layers via Hebbian learning (Figure 3aiii). Consequently,
the recruited T1 unit will learn connections to active features in
proportion to their activation, thereby encoding the shared features
(the intersection) of the mapped objects. If the compared objects are
both, say, higher than something—and so have the features of
higher in their vectors—then DORA will learn an explicit represen-
tation of the features corresponding to being higher (the next section
describes how such relational features can be learned from absolute
location information delivered by the perceptual system); and (d)
The resulting representation (Figure 3aiv) can now function as
single-place predicate (i.e., relational role), which can be bound
to new arguments (i.e., other units in T1) by asynchrony of firing
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(see Figure 1). Applied iteratively, this kind of learning produces
progressively more refined single-place predicates (Doumas
et al., 2008).

The same Hebbian learning algorithm links token units into
complete propositions by allowing tokens units in successive layers
to integrate their inputs over progressively longer temporal intervals
(Doumas et al., 2008; see Appendix A—Predicate and Relation
Learning section, for details). The algorithm exploits the fact that
objects playing complementary roles of a single relation will tend to
co-occur in the environment. For example, the representation of a
ball that is higher than something (i.e., higher-than-something
(ball)) will systematically co-occur with another object (e.g., the
paddle), which is lower than something (e.g., lower-than-something
(paddle); Figure 3bi). When two sets of co-occurring role-argument
pairs are mapped (e.g., an instance where ball is higher-than-
something and a paddle is lower-than-something is mapped to an
instance where a paddle is higher-than-something and a ball is
lower-than-something; Figure 3bi), a diagnostic pattern of firing
emerges: (a) the T2 units coding each predicate—argument binding
will oscillate systematically across both driver and recipient

encodes a multiplace relational structure (equivalent to above
(paddle, ball); Figure 3biv).> Applied iteratively over many exam-
ples, this algorithm learns abstracted structured representations
describing a domain in terms of the properties and relations that
characterize that domain (Doumas et al., 2008).

Doumas et al. (2008) demonstrated that this algorithm for
relation discovery provides a powerful account of numerous phe-
nomena in cognitive development. However, although the Doumas
etal. algorithm can learn relational representations with a structured
form from repeated exposures to nonstructured inputs, it provides
little basis for discovering the invariant content of those relations—
that is, the relational features themselves. Instead, their simulations
were based primarily on representations of objects with hand-coded
invariant features. The next section describes a novel algorithm for
discovering invariant relational features from nonrelational inputs.

Learning Relational Content: Discovering
Relational Invariance

To learn an abstract representation of a relation that remains
invariant with the relation’s arguments, there must be at least one
invariant that characterizes that relation. For example, to learn a
representation of right-of that captures every instance of right-of-
ness, there must be a detectable property(ies) that remains constant
over all instances of right-of-ness (see, e.g., Biederman, 2013;
Harnad, 1990; Hummel & Biederman, 1992; Kellman et al.,
1999). Most previous work on relational perception and thinking
has tacitly assumed the existence of such invariants (e.g., Anderson,
2007; Doumas et al., 2008; Falkenhainer et al., 1989; Hummel, 2001;
Hummel & Biederman, 1992; Hummel & Holyoak, 1997, 2003).
But unless all these invariants are assumed to be innate, there must be

3 In the above example, we describe learning a two-place relation com-
posed of two role-filler pairs for the purposes of brevity. DORA learns
relations of arity n by linking » role-filler pairs (e.g., a three-place relation is
composed of three role-filler pairs; see Doumas & Hummel, 2012).
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Figure 3
Representation Learning in DORA
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(a) Learning a single-place predicate representation by comparing two objects. (i) A representation of a ball in the driver is mapped

(gray double-headed arrow) to a different representation of a paddle (e.g., from a different game screen) in the recipient. (ii) The representation
of the ball in the driver activates the mapped unit in the recipient (through shared features and mapping connection); as units pass activation to
their features, shared features become more active (dark-gray units) than unshared features (light gray units). (iii) Units in T1 and T2 are
recruited (activation clamped to 1; dark-gray units with white squiggle) in the recipient, and weighted connections are learned via Hebbian
learning (i.e., stronger connections between more active units). (iv) The result is an explicit representation of the featural overlap of the ball and
paddle—in this case, the property of being higher-than-something (see main text)—that can be bound to an argument (as in Figure 1).
(b) Learning a multiplace relational representation by linking a co-occurring set of role-argument pairs. (i) a representation of a ball that is higher-
than-something and a paddle that is lower-than-something is mapped to a different representation of a paddle that is higher-than-something, and a
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ball that is lower-than-something (e.g., from a different game screen). (ii) (Mapping connections, gray double-headed arrows, have been lightened to
make the rest of the figure clearer.) When the representation of higher-than-something (ball) becomes active in the driver it activates mapped units in
the recipient; a T3 unit is recruited (activation clamped to 1; dark-gray unit with white squiggle) in the recipient and learns weighted connections to
units in T2 via Hebbian learning. (iii) When the representation of lower-than-something (paddle) becomes active in the driver, it activates
corresponding mapped units in the recipient; the active T3 unit learns weighted connections to T2 units. (iv) The result of learning is a LISAese
representation of the relational proposition above (ball, paddle) (see Figure 1). Labels in units indicate what the unit encodes (see key). The labels on
the units are provided for clarity and are meaningless to DORA. DORA = Discovery of Relations by Analogy.

some basis for discovering them from representations of values on
the underlying dimensions over which the relations are defined (e.g.,
somehow discovering the notion of right-of by observing examples
of objects arrayed in the horizontal dimension of space).

Part of what makes invariant discovery difficult is that it poses a
kind of chicken and egg problem: An invariant only seems to be
discoverable in a noninvariant input if one knows to look for that
invariant in the first place. Consider an invariant like “square.” Of all
the possible arrangements of pixels on a computer screen, some of
them form squares and others do not. Whether a set of pixels forms a
square does not depend on the color of the pixels, the color of the
background, the locations of the pixels on the screen, or their
distances from one another: Provided they are arranged relative
to one another in a way that forms a square, then they satisfy the
invariant “square.” “Square” is a higher-order relational property
that is independent of—that is, invariant with—the properties of any
of the pixels composing it. Making matters more complicated,
“square” is only one of an infinity of such higher-order relational
invariants one could find in visual images. Others include rhombi,
various triangles, and countless random-looking clouds of points. All
these configurations are defined by the spatial relations among sets of
points, so any one of them could, in principle, become a perceptual
invariant like “square.” But not all of them do. Why do we recognize
“square” as an invariant, but not any of the nearly infinite random-
looking (but nonetheless invariant) clouds of points?

It is not our intent to fully answer to this question here, but one
constraint that suggests itself is to start simple: Perhaps “square” is
not itself a basic (“primitive”) invariant in the human cognitive
architecture but is instead (at least initially) a composition of several
simpler invariants (e.g., straight lines, equal lengths, right angles,
and such) arranged in particular relations to one another (as pro-
posed by Biederman, 1987, and many others). According to this
account, the cognitive architecture might be biased to find a small
number of very basic invariants (things such as equal-to, greater-
than, and less-than, among others; Doumas et al., 2008; Kellman
et al., 1999), and compose more complex relational invariants, such
as above (x, y), right-of (x, y), and square (x), by applying the basic
relations to specific perceptual and cognitive dimensions, and to
other relations.

Following this intuition, we developed a simple relational
invariant discovery circuit (henceforth, simply relational invari-
ance circuit) to discover the invariants greater-than, equal-to, and
less-than on any metric dimension, m. This circuit exploits compu-
tational properties that naturally emerge whenever magnitudes are
rate coded, either in terms of the number of units that fire in
response to a given magnitude, or in terms of the rates at which
individual neurons fire. The basic idea is that for any magnitude
represented as a rate code, computing relations such as greater-
than, less-than, and equal-to is a straightforward matter of re-
sponding to the difference between two rates. The sign of this
difference (+, 0, or —) becomes an invariant signature of the

categorical relations greater-than, equal-to, and less-than respec-
tively; and by summing over greater-than and less-than, this same
operation yields the invariants same and different with respect to
the dimension in question.

Let m be an n-dimensional vector space, for example, a collection
of neurons that codes a simple magnitude, m, such as size. The
vector a (in m) then represents an object with size a, and b represents
size b. Armed with these rate codes, the difference between sizes a
and b, E, ;, is the directional difference (e.g., Gallistel & Gelman,
2000; Zorzi et al., 2005):

E.p=) (a;—b), (1)

1

when ais larger than b, E, ;, will be positive; when a is smaller than b,
E,;, will be negative; and when they are equal, E,; will be zero.

Using unsupervised learning, it is straightforward to exploit this
regularity to train units to respond explicitly to whether any metric
values a and b are equal, unequal with a > b, or unequal with a < b.
The resulting neurons will be invariant representations of the
relations equal, greater-than, and less-than for any rate-coded
metric dimension m. In the language of LISAese, the resulting units
could serve as feature units in dimension-specific relations such as
right-of, above, larger, etc.*

Circuit Architecture

The circuit begins with a rate-coded representation of a metric
dimension, m (e.g., size, or location in the horizontal dimension of
the visual field; “Feature units m” in Figure 4a). These units share
bidirectional excitatory connections with a collection of T1 units
(e.g., role units in DORA), which mutually inhibit one another, and
each of which excites a single “proxy” unit. The proxy units in turn
excite a collection of four E units (for their relation to Equation 1),
which excite feature units outside the set of features representing m
(“Feature units non-m” in Figure 4a). All other connections depicted
in Figure 4 start with weights of 1.0, with the exception of con-
nections between Feature units non-m (henceforth non-m features)
and E units, and the connections between feature units non-m and
T1 units. The connections to and from feature units change during
learning. Initially, the connection weights, w;;, from each E unit, j, to
a collection of 10 non-m features, i, are initialized randomly with
values between 0 and 1. As detailed below, after learning each E unit
is most strongly connected to a different subset of the non-m feature
units, and these subsets become representations greater-than,

* We have left the arguments a and b out of the relational expressions here
because these units represent invariant relational content, but by themselves
do not specify how the roles of those relations bind to arguments; that is, they
do not specify the relational format. However, as noted above, the problem of
learning representations with relational format from representations without
this format is already solved in DORA.
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Figure 4
Relational Invariance Circuit
(a) Relational invariance circuit (b) i) Proxy units Proxy units
Proxy units
Tl units [ . Feature units m
h E units Feature units non-m Feature units non-m Feature units non-m
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Feature units non-m Feature units non-m

(a) The relational invariance circuit. (b) (i) Activation flows from clamped feature units encoding a dimension or property to T1 units (dark-gray units

indicate more active units). (ii) T1 units compete via lateral inhibition to respond to the active feature units (light gray units indicate less active units). (iii) T1
units activate proxy units, which feed activation to E units. E units pass activation to a subset of feature units non-m and connections between active feature
units non-m and T1 units are updated via Hebbian learning. (iv) The active T1 unit is inhibited to inactivity by its inhibitor (black square). (v—vi) The process
repeats for the second active T1 unit. T1 = TOKENS at the lowest level of the hierarchy.

less-than, and equal-to (as in Figure 4a). Connections between non-
m feature units and T1 units are initially 0.

Circuit Operation

Processing in the relational invariance circuit is assumed to begin
after perceptual processing has segmented the image into objects and
encoded each object in terms of its various attributes (e.g., size,
location in the horizontal and vertical dimensions, etc.). As elaborated
under Simulations, DORA is equipped with a simple perceptual
preprocessor that accomplishes this segmentation and encoding.
The T1 units depicted in Figure 4 correspond to a subset of this
encoding (i.e., representing each object’s size). For the purposes of
illustration, we shall assume that each T1 unit in Figure 4 represents
the size of one object (in a display containing two objects, a and b).
(The T1 units in this circuit are otherwise identical to other T1 units in
DORA.) For simplicity, we also assume that the pattern of activation
on the feature units representing dimension m is the superposition
(i.e., sum) of the vectors, m;, representing the sizes of the two objects
in the display. The learning algorithm does not require the feature
inputs, m;, to be segmented into separate objects, i; instead, it is
sufficient to encode this information in the connections from m; to T1;.

Once the objects and their attributes are encoded by the prepro-
cessor, the superimposed vector m, = m, + m,, is clamped on the
subset of feature units, m, representing m (Figure 4bi). This vector
serves as input to the T1 units, which compete via lateral inhibition
to become active. The input to T1 unit i is given by:

n; = Zajwij - Zak — LI, 2)
J

k#i

where j is feature units connected to T1 unit i, k are other active T1
units (k # i), and LI is the activation of the local inhibitor, a refresh
signal given when no active T1 units are active in the driver (as in,
Doumas et al., 2008; Horn et al., 1991; Horn & Usher, 1990; Hummel
& Holyoak, 1997, 2003; Usher & Niebur, 1996; von der Malsburg &

Buhmann, 1992; see Appendix A—Update the Local and Global
Inhibitors section, for details). Activation of T1 units is calculated as:

Aa; =yn;(1.1 — q;) — 8a;, 3)

where Ag; is the change in activation of unit 7, y (= 0.3) is a growth
parameter, n; is the net input to unit 7, and & (= 0.1) is a decay
parameter. At this juncture, a note about parameter values is
warranted: All the standard DORA parameters have the same values
as reported in previous papers, and previous work has shown that
DORA'’s behavior is robust to the values of these parameters (see
Doumas et al., 2008). Where we have had to introduce new
parameters for the purposes of the relational invariant circuit, their
values were set solely for the purposes of having the circuit’s
behavior match the main idea expressed in Equation 1. No attempt
was made to optimize their values.

Since the vectors m, and m,, are superimposed on the feature
units, the T1 unit with more connections to the feature units (in this
case, the unit coding for the larger size), say T1,, will initially win
the inhibitory competition, inhibiting T1, to inactivity. For this
reason, the T1 unit with the larger input vector will always win the
initial inhibitory competition (Figure 4bii).

Each proxy unit, 7, has a connection weight of 1 from T1;, and a
weight of 0 from all other T1;,;. A proxy unit is a simple binary
threshold unit whose activation is given by:

|1, m>04
pi= {O, otherwise’ @)
where p; is the activation of proxy unit i.
The input, n;, to proxy unit i is calculated as:
m= ) awy—p, 5)
J

where j is an active T1 unit and p; is the refraction of unit i. The
refraction, p; is given:



RELATION LEARNING AND CROSS-DOMAIN TRANSFER 1011

1

Tt ©

Pi
where x is the number of iterations since unit i last fired, and
1 (=.0000001) is a scaler. Proxy unit i will be active if and only
if T1; is active (i.e., a; > 0.4) and proxy unit i has not recently
been active.

E units take their inputs from the proxy units. The connections
from proxy units to E units have temporal delays built into them, so
that each E unit has a Gaussian receptive field in the three-
dimensional space formed by the two T1 cells’ activations, plus
time. Input to E units is given by Equation 5 such that j is proxy
units, and change in activation is calculated using:

(1i=05)2

Aag; = yei( 2

> - .la;—5» a;— LI, )
J

where y is a growth parameter, O is the threshold on unit in
E, k= .2,jis all other units in E j # i. The circuit contains four £
unit each with ay of .1 or .3, and a O of 1 or 2, such that all four
combinations of y and O values are present in a single E unit. As
aresult, some E cells respond preferentially to proxy units firing
early in processing, others respond preferentially to proxy units
firing later, and still others respond preferentially to the two
proxy units firing at the same time. Like the T1 units, £ units
laterally inhibit one another to respond in a winner-take-all
fashion so that only one E unit tends to become active in response
to any (temporally extended) pattern of activation over the
proxy units.

E units are randomly connected to a collection of feature units that
are not part of the vector space m (Figure 4). Active E units, i, both
excite the non-m feature units, j, and during learning, update their
connections to them. Feature units connected to E units update their
input by:

J

where i and j are feature units and E units, respectively. Feature unit
activation is updated as:
n;
4= max(n;)’ ©)
J

where a; is the activation of feature unit , n; is the net input to feature
unit i, and max(n;) is the maximum input to any feature unit. There is
physiological evidence for divisive normalization in the feline visual
system (e.g., Bonds, 1989; Heeger, 1992; Foley, 1994) and psy-
chophysical evidence for divisive normalization in human vision
(e.g., Thomas & Olzak, 1997). While the circuit is being learned,
connections between units in £ and feature units are updated by the
equation:

Aw;; = a;(a; — wy)y, (10)

where i and j refer to units in £ and feature units, respectively, and y
is the growth parameter.

When the circuit is running, connections between the non-m
feature units and active T1 units are updated by Equation 10
(Figure 4biii). As a result, T1, (the T1 unit we assumed won the

initial inhibitory competition) will learn positive connections to
whatever feature unit(s) the active E unit has learned to activate
(recall that the connections from E units to non-m features are
initially random). Importantly, the active non-m feature units, j, to
which T1, has learned connections effectively represent greater-
than: These features will become active whenever the E unit that
responds to early firing proxy units becomes active. In short, T1, has
gone from representing a particular value on m to representing the
conjunction of that value (it is still connected to the features in m)
along with the relational invariant greater-than.

Recall that the T1 units are oscillators (see also Appendix A). As a
result, after some iterations have transpired with T1, active, that
unit’s inhibitor will become active, inhibiting T1, and allowing T1,,
to become active (Figure 4biv). The same operations described with
respect to T1,, will take place with respect to T1,, which will learn
connection(s) to feature unit(s) representing less-than (those non-m
features that are strongly connected to the E unit that responds later
in firing; Figure 4bv—vi).

After these operations have taken place on a single pair of objects,
DORA will have constructed a representation of that pair of objects,
each with a specific value on metric dimension m (represented by
T1, and T1, in Figure 4) explicitly tagged with an invariant
specifying that its value is either greater-than (in the case of
T1,) or less-than (T1,) some other value on m. Importantly, these
representations do not yet constitute an explicit representation of the
relation greater-than (a, b), because they are not linked into a
propositional structure (e.g., by T2 and T3 units) specifying that
the individual roles, greater-than and less-than, are linked into a
single relation. Moreover, the emerging representation of these
roles, as instantiated in the feature units connected to T1, and
T1,, still retain a full representation of the specific metric values of
T1, and T1, on m. In other words, T1, and T1, do not represent
greater-than and less-than in the abstract, but instead represent
something closer to greater-than-and-value-a and less-than-and-
value-b. However, this kind of almost-relational representation, in
which relational invariants are present, but (a) are still associated
with other, nonrelational features (e.g., specific values on m) and (b)
are not yet composed into an explicitly relational structure, are
precisely the kind of representations DORA uses as the starting
point for learning explicitly structured relations (see above).

To illustrate, consider what will happen when a different pair of
objects, ¢ and d, are engaged in the process described above. For the
purposes of illustration, assume that ¢ has a larger value on m than d
does, but both have different values than a and b. The processes
described previously will attach T1, to the same invariant greater-
than feaure(s) as T1, and T1, to the same less-than feature(s) as T1,,.
It is in this sense that those feature units represent greater-than and
less-than, respectively: The relational invariance circuit will, by
virtue of the E unit-to-feature connections learned in the context of
objects a and b, be biased to activate the feature unit(s) recruited for
greater-than in the context of T1, in response to the “greater-than-
ness” of Tl., and the feature unit(s) recruited for less-than in
response to the “less-than-ness” of T1,. If, subsequently, DORA
compares the pair [a, b] to the pair [c, d], it will learn predicates (T1
units) strongly connected to greater-than and less-than, and only
weakly connected to the specific values of a and ¢, and b and d,
respectively (see above). After exposure to as few as two pairs of
objects, DORA has started to explicitly predicate the invariant
relation greater-than (x, y) with respect to dimension m.
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In fact, DORA has learned something much more general than
that because the invariant features greater-than and less-than,
learned in the context of metric dimension m, will generalize to
any other rate-coded metric dimension, n # m. The reason is that the
rate code that serves as the input to the relational invariance circuit
operates on the magnitudes of the T1 units’ inputs, regardless of
their origin: So long as the T1 units in question are (a) coupled
oscillators that compete with one another to become active, (b)
receive rate-coded inputs from whatever metric dimension they
represent, so that (c) the T1 unit with the larger value fires earlier
than the T1 unit connected to the smaller value, the T1 unit
connected to the larger value of the dimension will become con-
nected to greater-than and the T1 unit connected to the smaller value
on the dimension will become connected to less-than (or, if the two
T1 units encode the same value on n, and become simultaneously
co-active therefore activating the E unit that responds when multiple
T1 units are active, they will become connected to the non-m
features strongly connected to the active E unit, or equal-to).

This same property of the relational invariance circuit renders it
vulnerable to incorrectly assigning the invariants more-than and
less-than to any pair of object properties (represented as T1 units)
that get passed into the circuit, even if those properties do not lie on a
metric dimension. For this reason, there need to be constraints on
when the relational invariance circuit is invoked. One obvious
constraint is that it should only be invoked when the property
coded by a T1 unit is a value on a metric dimension. As discussed
previously, additional constraints, for example, regarding which
metric dimensions are most likely to invoke the circuit under what
circumstances, are likely also important, but consideration of what
those constraints are is beyond the scope of the current work (but see
Spelke & Kinzler, 2007).

Learning the Content and the Format of Relational
Representations

By integrating the relational invariance circuit with the DORA
algorithm for learning structured representations of relations
(Doumas et al., 2008), we have developed a single system that
explains learning structured relational representations of similarity
and relative magnitude from very simple (nonrelational) beginnings
without assuming any structured representations, or even relational
invariants, a priori. The model starts with flat feature vector repre-
sentations of object properties. These vectors contain no relational
features, just absolute information about properties and magnitudes
along dimensions. As described above, when objects with these
feature encodings are compared, invariant patterns emerge, which
mark similarities and differences in featural encoding and absolute
magnitudes. The relational invariance circuit exploits these patterns
to identify relational instances and return invariant features identi-
fying those relations.

The DORA learning algorithm identifies invariant features of
compared objects and learns structured representations of those
features in a format akin to a single-place predicate. The model then
links systematically co-occurring predicate—argument bindings to
form functional multiplace predicate representations. That is, over a
series of progressive comparisons, the model isolates collections of
object features, represents these as functional single-place predi-
cates, links systematically co-occurring single-place predicates to
form multiplace predicates, and produces increasingly more refined
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versions of these representations. When the representational content
of these objects is relational, DORA will learn structured representa-
tions of this relational content.

A Mechanism for Generalization

We propose that operations on relational representations underlie
human generalization and that generalization based on relations
occurs in (at least) two ways. First, relational representations learned
in one context are readily applicable to characterize new contexts.
Relational representations are useful for characterizing multiple
domains because the same relations apply across domains regardless
of the objects involved. Second, theories and schemas learned from
one domain allow us to make inferences about other domains using
analogical inference.

Analogical inference—in this case, using a model of one domain
to reason about another domain—follows directly from DORA’s
mapping process. For example, suppose that DORA has learned
about spatial relations (e.g., above, right-of, larger) and then learned
that when playing the game Breakout—where the goal of the game
is to hit a ball with a paddle moving horizontally—relations between
the ball and paddle predict actions to take. Specifically, DORA has
learned that the state right-of (ball, paddlel) supports moving right
(i.e., right-of (paddle2, paddlel); where paddlel is the state of the
paddle before the move, and paddle2 after the move), the state left-of
(paddlel, ball) supports moving left, and the state same-x (ball,
paddlel) supports making no move. When DORA encounters a
game like Pong—where the goal of the game is to hit a ball with a
paddle moving vertically—the moves available in Pong (up and
down) might remind DORA of the moves available in Breakout (left
and right). With the representation of the available Pong actions in
the driver (e.g., above (paddle2, paddlel), and representations of the
Breakout strategy retrieved into the recipient (e.g., right-of (ball,
paddle) — right-of (paddle2, paddle)), DORA performs analogical
mapping. Because of the shared relational similarity, corresponding
moves between Pong and Breakout map—for example, above
(paddle2, paddlel) in the driver will map to right-of (paddle2,
paddlel) in the recipient (Figure 5a, mappings depicted as
double-headed arrowed lines; Appendix A,—Update Mapping
Hypotheses and Update Mapping Connections sections, for details
of how such mappings are discovered). Generalization is performed
on the basis of these mappings.

During analogical generalization, propositions with unmapped
elements enter the driver, and any propositions to which they map
enter the recipient (information is generalized from the driver to
recipient; see Hummel & Holyoak, 2003). So, if DORA has mapped
above (paddle2, paddlel) to right-of (paddle2, paddlel), the repre-
sentation of the rule from Breakout enters the driver, and the mapped
representation of the move from Pong enters the recipient. Figure 5b
depicts a case where the rule right-of (ball, paddle) — right-of
(paddle2, paddle) is in the driver, and the mapped above (paddle,
paddle2) is in the recipient. When a unit 7, in the driver learns an
excitatory mapping condition to a given unit j, in the recipient, it also
learns a global inhibitory mapping connection to all other units, k #
J»in the recipient. Similarly, j learns a global inhibitory connection to
all units i # / in the driver. These global inhibitory connections play
a vital role in the inference process. Continuing the example, all
units encoding the representation of Pong in the recipient have a
positive mapping connection to a corresponding unit in the driver
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Figure 5
Analogical Inference in DORA
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Abbreviated token unit labels

mx — more-X

Ix — less-x

my — more-y

ly — less-y

b — ball

pl — paddlel

p2 — paddle2
mx+b — more-x+ball
Ix+pl — less-x+paddlel
mx+p2 — more-x+paddle2
Ie+pl — less-x+paddlel
my+b — more-y+ball
Iy+pl — less-y+paddlel

my+p2 — more-y+paddle2

Iy+pl — less-y+paddlel

Xbpl — right-of (ball, paddlel)
Xp2pl — right-of (paddle2, paddlel)
Ybpl — above (ball, paddlel)
Yp2pl — above (paddle2, paddlel)

Strong bidirectional connection

emsmmms Connection learned via analogical inference

Mapping connection

<€—» Inference relationship

Q Unit involved in a mapping

‘ Recruited/inferred unit

Note. (a) The representation of the right-of (ball, paddlel), and right-of (paddle2, paddlel) in the driver maps to the representation of above
(paddle2, paddlel) in the recipient (gray double-arrowed lines indicate mappings). (b) As the representation of right-of (ball, paddlel)
becomes active in the driver, some active units have nothing to map to in recipient (the units representing ball, more-x + ball, less-x + paddlel,
and right-of (ball, paddlel)). DORA recruits and activates units to match the unmapped driver units (black units indicate recruited units; black
double-arrowed lines indicate inference relationships). DORA learns connections between co-active token units in the recipient (heavy black
lines). The result is a representation of the situation: above (ball, paddlel) and above (paddle2, paddlel) in the recipient. DORA = Discovery

of Relations by Analogy.

(i.e., right-of maps to above, paddlel maps to paddlel, and paddle2
maps to paddle2; Figure 5). By consequence, all units in the
recipient also have a global inhibitory mapping connection to all
other units in the driver. Therefore, when more-x (ball) becomes
active in the driver (along with the T2 unit encoding more-x + ball
and the T3 unit encoding right-of (ball, paddlel)), the T1 unit
encoding ball inhibits all T1 units in the recipient (except for more-y,
which is excited by more-x), the T2 unit encoding more-x + ball
inhibits all T2 units in the recipient, and the T3 unit representing
right-of (ball, paddle2) inhibits all T3 units in the recipient.

This form of generalized inhibition occurs when all units in
the recipient map to some unit in the driver, and no units in the
recipient map to the currently active driver units. That is, the
signal indicates that there are elements in the driver that map to
nothing in the recipient. This occurrence signals DORA to initiate
analogical inference. During analogical inference, DORA re-
cruits and activates units in the recipient that corresponds to
the unmapped (i.e., inhibitory) unit in the driver (e.g., DORA
recruits a T1 unit in the recipient corresponding to an unmapped
T1 unit in the driver). Newly recruited units are assigned positive
mapping connections with the driver units that initiated their
recruitment (black double-headed arrows in Figure 5b), and they
learn connections to other recipient units by simple Hebbian
learning (e.g., active T1 units learn connections to active T2 units
and active feature units; thick black lines in Figure 5b). When
more-x (ball) is active in the driver, the driver T1 unit represent-
ing more-x activates the recipient T1 unit more-y, as they map,
however, the active ball T1 unit, more-x + ball T2 unit, and above

(ball, paddlel) T3 unit will activate nothing and inhibit all
recipient units (as they map to nothing in the recipient). In
response to this generalized inhibition in the recipient, DORA
recruits a T1 unit corresponding to the unmapped active driver
T1 unit (representing ball), a T2 unit corresponding to the active
unmapped driver T2 unit (representing more-x + ball), and a
T3 unit is recruited corresponding to the active unmapped driver
T3 unit (representing right-of (ball, paddlel); black units in
Figure 5b). The recruited T1 unit learns connections to the active
features of ball and to the recruited T2 unit (as they are all
co-active; thick black connections in Figure 5b). The recruited
T2 unit learns connections to the recruited T3 unit (as they are
co-active), and then to the T1 unit representing more-y when it is
active. As such, the recruited T1 unit becomes a representation of
ball, and the recruited T2 links the representation of ball and
more-y (more-y + ball). Similarly, when less-x (paddlel) be-
comes active in the driver (activating the less-y and paddlel
T1 units in the recipient), a T2 unit will be recruited to match the
unmapped active driver T2 unit. That T2 unit will learn connec-
tions to the less-y and paddlel T1 units, and to the active recruited
T3 unit (which remains active as its corresponding driver T3 unit
remains active). The result is a representation of above (ball,
paddlel) in the recipient (Figure 5b).

The same process also accounts for how we might predicate (or
explicitly represent) known relations about new situations. As a
simple example, suppose DORA encounters two objects involved in
a relation such as when object-1 is above object-2. Those objects
will have properties of that relation (e.g., object-1 might have
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features such as “more” and “y”’; delivered by the relation invariance
circuit). If DORA has learned explicit structured representations of
the relation above (e.g., two linked predicates strongly connected to
the features “more” and “y” and “less” and “y”, respectively), then it
might retrieve a representation of that relation from LTM, say above
(P, Q). The retrieved relational representation can then be projected
on to object-1 and object-2 (Figure 6). Specifically, P, the higher
item, will correspond to object-1, and Q, the lower item, will
correspond to object-2. Based on these correspondences, DORA
will infer the predicates bound to P and Q about object-1 and object-2
via the analogical inference algorithm. Shifting focus to the above
(P, Q) proposition (above (P, Q) is in the driver; Figure 6), when the
higher unit becomes active it inhibits all units in the recipient,
signaling DORA to recruit a T1 unit in the recipient to match the
active higher unit and a T2 in the recipient to match the active higher +
P unit. The recruited T1 unit learns connections to the active feature
units, becoming an explicit representation of higher, and the re-
cruited T2 unit learns connections to the recruited T1 unit (repre-
senting higher) and the object-1 unit when it becomes active (Figure 6).
Similarly, a representation of lower is represented about object-2.
The result is the known relation above predicated about object-1 and
object-2 (Figure 6).

In the following simulations, we demonstrate the efficacy of the
computational account of relation learning and relation-based gen-
eralization that we have proposed. We show how DORA learns

Figure 6
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structured relational representations from simple visual nonstruc-
tured and nonrelational inputs, and how it then uses these repre-
sentations to support human-level cross-domain generalization—by
characterizing novel domains in terms of known relations, and then
driving inferences about the new domain based on the systems of
relations learned in previous domains. Additionally, we demonstrate
that DORA captures several key properties of human representation
learning and the development of generalization.

Simulations

As described previously, explaining cross-domain generalization
as analogical inference entails explaining how a system: (a) detects
(or learns to detect) relational content; (b) learns structured repre-
sentations of that relational content; (c) uses these representations to
characterize and behave in the domains it experiences (e.g., to build
models of the domain to guide behavior); and (d) uses the repre-
sentations learned from previously experienced domains to make
analogies and subsequently inferences about new domains. In addi-
tion, there is a distinction between representing a domain and acting
on those representations. Extrapolation from one domain to another
relies on both using representations learned in one domain to
characterize another (i.e., representational transfer), and adopting
strategies from one domain for use in another (i.e., policy transfer).

Generalizing Known Relations to New Situations Using the Analogical Inference

Algorithm in DORA

O 0O

Note.

Abbreviated token unit labels

h — higher

I — lower

P — object-P

Q — object-Q

1 — object-1

2 — object-2
h+P — higher+object-P
+Q — lowertobject-Q

h+1 — highertobject-1
lower-+object-2
APQ — above (object-P, object-Q)
A12 — above (object-1, object-2)

o0} ||

Strong bidirectional connection
Inference relationship

Mapping connection

Indicates an inference relationship

Active unit

Recruited/inferred unit

The representations of object-P and object-Q in the driver map to the representations of

object-1, object-2 in the recipient (gray double-arrowed lines). As the representations of higher
(object-P) and lower (object-Q) become active in the driver, some active units have nothing to
map to in recipient (e.g., the driver units representing higher and higher + object-P, and the units
representing lower and lower + object-Q). DORA recruits and activates units to match the
unmapped driver units (black units indicate recruited units; black double-headed arrows indicate
inference relationships). DORA learns connections between co-active token units in the recipient
(heavy black lines). The result is a representation of above (object-1, object-2) in the recipient.

DORA = Discovery of Relations by Analogy.
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Below we report a series of simulations evaluating these various
capacities of the model. In Simulation 1, we show that the model
learns structured relational representations—both their form and
content—from nonstructured and nonrelational visual inputs with-
out assuming a vocabulary of structured representations or relational
features a priori. In Simulations 2—4, we show that the model can be
integrated with methods for RL to use the representations that it
learns to build more complex models (or policies) for behaving in
the domain, and then use its representations to perform zero-shot
(i.e., first trial) cross-domain generalization. Specifically, we show
that after the model learns to play one video game (Breakout), it can
generalize its knowledge to play a structurally similar but featurally
very different game (Pong). Moreover, we show that generalization
in the model relies exquisitely on the structured format of the
representations that it learns. In Simulation 5, we evaluate whether
the representations that the model learned in previous simulations
generalize to more complex tasks like adult analogy problems,
support generalization to completely novel stimuli (i.e., approxi-
mating universal generalization), and meet the hallmarks of human
relational cognition. Finally, we are proposing an account of human
generalization that includes relational representation learning. As
such, it should be the case that our model mirrors the capacities of
children as they learn relational representations. In Simulations 6
and 7, we use the learning trajectory the model underwent during
Simulations 2—4 to simulate studies from the developmental litera-
ture on children’s magnitude reasoning (Simulation 6) and relational
problem-solving (Simulation 7). Additionally, Simulations 6 and 7
provide further tests of the model’s capacity for cross-domain
generalization: After learning representations in a domain like
Breakout, the model extends these representations to reason in
the domain of a psychology experiment. We show that the model
not only generalizes the representations that it learns from one
domain to reason about a new task (as children do when they
enter the laboratory) but also goes through the same behavioral
trajectory as children. Details of all simulations appear in
Appendix B.

Visual Front End

Generalizing DORA to work with perceptual inputs, such as pixel
images necessitated supplying the model with a basic perceptual
front end capable of segmenting simple objects (e.g., paddles and
balls) from visual displays. We endeavored to keep this extension as
simple as possible, importing existing solutions.

We used a visual preprocessor that delivers object outlines using
edge detection (via local contrast) with a built-in bias such that
enclosed edges are treated as a single object. In brief, the prepro-
cessor identifies “objects” (enclosed edges) and represents them in
terms of their location on the “retina,” size, and color. This
information roughly corresponds to the total retinal area of the
object and the enervation of the superior, inferior, lateral, and medial
rectus muscles in reaching the (rough) center of the object from a
reference point (see Demer, 2002). The information is encoded as
the raw pixels and direction (specific muscle) between the rough
object center and the reference point, and the red-green-blue (RGB)
encoding of the pixels composing the object. One consequence of
this encoding is that the model shows the same bias to classify along
the cardinal directions observed in humans (Girshick et al., 2011).
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This preprocessor is clearly a vast oversimplification of human
perception. However, we chose it because it is adequate for our
current purposes, it is computationally inexpensive, and the repre-
sentations it generates are at least broadly consistent with what is
known about human vision. For example, the visual system detects
edges by local contrast (e.g., Marr & Hildreth, 1980), represents
objects and their spatial dimensions (e.g., Wandell et al., 2007), and
these representations and the visual image are quasihomomorphic
(e.g., Demer, 2002; Engel et al., 1994; Furmanski & Engel, 2000;
Moore & Engel, 2001). We certainly do not claim the preprocessor
is an accurate model of human vision; only that it is not grossly
inconsistent with what is known about biological vision, and that it
is adequate to our current goal, which is to model learning and
generalization in the domain of simple visual images, with general-
ization to novel domains. The output of the visual preprocessor adds
two assumptions to the model: (a) that the visual system can
individuate objects and (b) that dimensional information is rate-
coded. Finally, it is possible to use the preprocessor as a front-end to
both DORA and to the comparison DNNs, allowing us to equate the
inputs used by DORA with those used by the DNNs.

Simulation 1: Unsupervised Discovery of Relations

The goal of Simulation 1 was to evaluate the capacity of the
model to learn, without supervision, structured representations of
relational concepts from nonstructured representations of objects
that include only absolute (nonrelational) information. We ran two
Simulations, 1a and 1b, testing the model’s capacity to learn from
both simpler and more featurally complex stimuli.

Simulation la

Simulation 1a served as a basic proof of concept. In this simula-
tion, we tested whether DORA would learn structured relational
concepts when presented with simple visual displays.

Visual Displays. We started with 150 two-dimensional images,
each differing in shape, contrast, size, width, and height (see Figure 7
for examples of the images). Each of the 150 shapes was then

Figure 7
Examples of the Shape Stimuli Used for Simulation 1
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randomly grouped with between 1 and 4 other shapes to create a
total of 150 multi-object displays. The displays were processed by
the visual preprocessor. As described above, the visual preprocessor
identified an object as any item with a continuous and connected
edge and represented that object as a T1 unit connected to a
collection of features corresponding to the pixels composing its
absolute width and height (x- and y-extent), size, and vertical and
horizontal deviation from the edge of the screen (x- and y-deviation).
As the images were grayscale, we left out the RGB information in
this simulation. To add extraneous noise to the objects, each T1 unit
encoding an object was also randomly connected to 10 “noise”
features from a set of 1,000. The result was 150 “scenes” containing
between 2 and 5 objects, with each object represented as a set of
absolute rate-coded spatial dimensions and noise features.

Learning Structured Relational Representations. We de-
signed this simulation to mimic a child noticing a visual display
(e.g., a scene) and attempting to use their memory of previous
experiences to understand and learn about that display. DORA
started with no representations (i.e., all weights set to 0). The
representations of the 150 multi-object scenes were placed in
DORA’s LTM. DORA attempted to learn from these stimuli, but it
did not otherwise have any “task” to perform, and it received no
feedback on its performance during the simulation. Rather, DORA
performed 3,000 “learning trials.” On each learning trial, DORA
randomly selected one collection of objects from LTM and placed
that collection in the driver, thus simulating the perception of a
visual display. DORA ran the driver representations through
the relational invariance circuit, and then performed memory
retrieval, analogical mapping, and representation learning (as
described previously and in Appendix A). For the current simula-
tions, we constrained DORA’s retrieval algorithm to favor more
recently experienced displays (such recency effects are common
in the memory literature; e.g., Logie et al., 2020). With probability
.2, DORA attempted to retrieve from the last 100 analogs that it
had learned, otherwise it attempted to retrieve from LTM
generally.

In evaluating DORA’s learning, what we wanted to know was
whether the model learned structured representations of relation
content. That is, we wanted to know first, if the model had learned
T1 units connected strongly to features defining a specific relational
role concept (and only weakly to other features), and second,
whether the model linked representations of complementary rela-
tional roles into multiplace relational structures. For example, if
DORA learned a representation of a T1 unit connected strongly to
the features encoding “more” and “x-extent” and weakly to all other
features, then it had learned a relative (relational) representation of
more-x-extent. Similarly, if the model learned a representation of a
T1 unit connected strongly to the features encoding for “less” and
“x-extent” and weakly to all other features, then it had learned a
relative (relational) representation of less-x-extent. Finally, if the
model learned a full LISAese structure wherein these T1 units (one
representing more-x-extent and another representing less-x-extent)
were bound to objects via T2 units that were linked via a T3 unit (as
in Figure 1), then it had learned a structured multiplace relational
representation.

To this end, we first defined a set of meaningful relational roles
that the model could learn given the input images. This list
comprised the set of relative encodings of the absolute dimensional
information returned by the visual preprocessor: That is, the features
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encoding “more,” “less,” and “same” paired with the encoding of
x-extent [(“more,” “x-extent”), (“less,” “x-extent”), (“same,”
“x-extent”)], y-extent [(“more,” “y-extent”), (“less,” “y-extent”),
and (“same,” “y-extent”)], size [(“more,” “size”), (“less,” “size”),
and (“same,” “size”)], x-deviation (henceforth x; [(“more,” “X”),
(“less,” “x”), and (“same,” “x”)], and y-deviation (henseforth y;
[(“more,” “y”), (“less,” “y”), and (“same,” “y”)].

In order to evaluate DORA’s learning of the relations in the
displays, we defined the relational selectivity metric, Q;, for a
T, unit 7 as:
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where ' is the relational role that maximizes the mean weight of unit
i to the features, j =1 ...n, that make up the role’s content, and k =
1...mare all other features. Q; scales with the degree to which unit {
codes selectively for a relational role, where Q; = 1.0 indicates that
the unit responds exclusively to the features of a single relational
role, r'. We measured the relational specificity of the T1 units in
DORA'’s LTM over the course of 3,000 learning trials (Figure 8). As
Figure 8 illustrates, DORA learned representations (T1 units) en-
coding meaningful relational roles. That is, DORA learned T1 units
encoding roles like more-x-extent (strongly connected only to
features for “more” and “x-extent”), less-y (strongly connected
only to “less” and “‘y”), or same-size (strongly connected only to
“same” and ‘“size”). The results indicate that DORA’s learning
algorithm produces representations that encode invariant relational
content.

Next, we checked whether the representations DORA learned
were composed into meaningful relational structures (i.e., whether
representations of complementary roles were linked into multiplace
structures). For example, if DORA links more-y (objl) and less-y
(obj2) to form the relation above (objl, obj2), or links more-x-extent

Figure 8
Mean Relational Selectivity of T1 Units (as Defined in Text) as a
Function of Number of Training Examples, Simulation la
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(obj2) and less-x-extent (objl) to form the relation wider (obj2,
objl), then it has learned representations of meaningful relations. To
this end, we checked the number of representations in LTM
representing single-place predicates (a learned T1 unit linked to
another T1 unit via a T2 unit but not connected to a T3 unit),
meaningful multiplace relations (T1 units representing complemen-
tary relational roles, each linked to an object T1 unit via T2 units that
are also linked via a single T3 unit), and meaningless multiplace
relations (T1 units not representing complementary relational roles,
each linked to an object T1 unit via T2 units that are linked via a
single T3 unit). As presented in Figure 9, DORA learns representa-
tions of meaningful relations with experience. By the 1000th
learning trial, DORA had learned representations of all possible
meaningful relations (i.e., above, below, same-vertical, right-of, left-
of, same-horizontal, wider, thinner, same-width, taller, shorter,
same-height, larger, smaller, same-size), and it learned progres-
sively more refined representations of these relations with additional
learning trials.

As described above, DORA learns multiplace relations by com-
paring sets of single-place predicates. During learning, this process
runs in parallel with the discovery of the single-place predicates that
will form the roles of these relations. However, because the linking
operation depends on having a vocabulary of single-place predicates
to combine, DORA necessarily follows a developmental trajectory
in which it acquires single-place predicates before it acquires multi-
place relations. As shown in Figure 9 roughly the first 300 learning
trials are dominated by the discovery of single-place predicates like
more-x, less-x-extent, and their complements. After that initial
period, learning is dominated by the discovery of multiplace rela-
tions like above.

In contrast to error-correction learning (such as back propaga-
tion), DORA’s learning algorithm does not replace old knowledge
(e.g., predicates discovered early in learning) with new knowledge
(predicates learned later), but rather adds new knowledge to its
existing knowledge. For example, the multiplace relations it learns

Figure 9

The Number of Representations of Single-Place Predicates, Meaningful
Relations, and Meaningless Relations in Discovery of Relations by
Analogy (DORA’s) Long-Term Memory (LTM) After Each 100
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do not replace the single-place predicates from which they were
composed, and refined predicates and relations do not replace their
less refined predecessors. However, as a consequence of DORA’s
retrieval algorithm, less refined predicates become less likely to
be retrieved (and thus used as the basis of new comparisons) than
their (increasingly common) more-refined counterparts (the
retrieval algorithm is biased in favor of retrieving the simplest
pattern that fits the retrieval cue; Hummel & Holyoak, 1997).
Effectively, the less refined predicates tend to fall out of service as
they become obsolete. As a result, there is a difference between
the predicates DORA knows (i.e., has stored in memory) and
those it frequently uses.

Moreover, DORA not only learns specific relations such as
above and below, but it also discovers more abstract relations
such as greater-than and same-as as a natural consequence. For
example, when DORA compares two different instances of wider
(x, y), then it will learn a more refined representation of wider
(x, y) (as described previously). But if it compares an instance of
wider (x, y) to an instance of raller (z, w), then it will learn a
representation that retains what wider has in common with taller,
or a generic greater (a, b) relation. This result mirrors the
development of abstract magnitude representations in children
(e.g., Sophian, 2008).

In total, these results indicate that DORA learns structured repre-
sentations of relative magnitude and similarity relations from unstruc-
tured (i.e., flat feature vector) representations of objects that include
only absolute values on dimensions and extraneous noise features.
However, a potential criticism of this simulation is that the starting
representations are quite simple. Perhaps DORA only learns useful
relational representations because each object only has five dimen-
sions, whereas real objects have many more. Simulation 1b addresses
this limitation.

Simulation 1b: Scaling up

In this simulation, we tested DORA’s capacity to learn from
messier examples containing more competing and extraneous
information. We created 150 scenes each containing between 2
and 5 objects (using the same procedure as in Simulation 1a). We
then altered the objects in two important ways. First, we added
1,000 distractor features from a pool of 100,000. Second, we
added absolute encodings from 45 additional dimensions. That
is, while in Simulation la, each object was connected to rate-
coded features encoding an absolute value on five dimensions
(as delivered by the visual preprocessor), in this simulation each
object was connected to rate-coded features encoding an abso-
lute value on 50 dimensions (the five from Simulation 1a, and
45 additional “dimensions”). As a consequence, each object was
now much messier, containing not only more noise features, but
also encoding more dimensions (that DORA could potentially
learn explicit representations of). If DORA’s learning algorithm
is indeed robust, then we would expect it to (a) learn relational
representations of all dimensions (there should be nothing
special about the five used in Simulation 1a) and (b) learn these
representations in a number of learning trials that scales propor-
tionally with the number of items to be learned (i.e., the model
should take roughly 10 times as long to learn comparably refined
structured relational representations of 50 dimensions as it took
to learn five).
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Simulation 1b proceeded like Simulation 1a. A no-representations
version of DORA was created. The representations of the 150 multi-
object scenes were placed in DORA’s LTM. As in Simulation 1a,
DORA attempted to learn from these stimuli, but it did not otherwise
have any “task” to perform, and it received no feedback on
its performance during the simulation. In this simulation, DORA
performed 10,000 learning trials.

Figure 10 shows the progression of the relational selectivity of
DORA’s T1 units over the course of training. Just as in Simulation
la, DORA learned progressively more refined representations of
relational content. Vitally, DORA learned structured relational
(relative; more/less/same) representations of all 50 dimensions, as
well as of general greater, lesser, and same. In addition, as seen in
Figure 10, the number of learning trials required to learn refined
representations of structured representations scales linearly. While
DORA learned representations of all meaningful relations from five
dimensions in roughly 1,000 learning trials (Simulation 1a), DORA
learned meaningful relational representations of 50 dimensions in
10,000 trials. In addition, with more learning trials, the representa-
tions that DORA learned became progressively more refined. Just as
in Simulation 1a, after 3,000 learning trials the relational selectivity
in the model was just below 0.7, though with additional learning
trials in Simulation 1b, relational selectivity continued to increase.
Finally, Figure 11 shows that just as in Simulation 1la, DORA
learned progressively more meaningful structured representations of
relational representations with more learning trials and follows the
same trajectory of learning single-place predicates first, followed by
multiplace relational representations.

The results of Simulation 1b show that DORA’s learning algo-
rithm scales well with the complexity of the learning environment.
Finally, it is worth noting that although DORA’s learning in
Simulations la and 1b was unsurprisingly slightly slow (recall
that DORA received no feedback or guidance), Sandhofer and
Doumas (2008) showed that DORA’s learning accelerates (to the
same rate as human learners) when the model receives the kind of
general guidance children routinely receive from adults during the

Figure 10
Mean Relational Selectivity of T1 Units (as Defined in Text) as a
Function of Number of Training Examples, Simulation 1b
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Figure 11
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normal course of cognitive development (e.g., being guided to make
specific comparisons in specific sequences; Sandhofer & Smith,
1999; Sandhofer et al., 2000).

Simulation 2: Cross-Domain Transfer in
Simple Video Games

Our second simulation was designed as a test of cross-domain
generalization. We wanted to evaluate whether the model could
learn representations from a domain, use those representations to
perform intelligently in that domain, and then transfer that
knowledge to a new domain in a single shot (i.e., without any
additional training). We used transfer between different video
games as a case study. In this simulation, after DORA learned to
play Breakout, we tested its capacity to generalize, without
additional training, to Pong® (which is a structurally analogous
to Breakout but featurally quite different—among other differ-
ences, the player moves the paddle up and down in Pong but left
and right in Breakout), and then tested its capacity to return to
playing Breakout.

For the purposes of comparison, we also trained four statistical
learning systems, including (a) a deep Q-learning network (DQN;
Mnih et al., 2015) with the standard convolutional neural network
front end; (b) a DQN with the same visual front end as DORA; (c) a
supervised DNN with the same visual front end as DORA; and (d) a
graph network (e.g., Battaglia et al., 2018) with the same front end as
DORA. These controls allowed us to compare DORA to systems
that do not have structured relational representations, and to control
for the visual front-end and its assumptions: Networks 2—4 also had

% In this simulation, we discuss DORA’s performance transferring from
Breakout to Pong for expositional clarity. As shown in Supplemental
Simulation 1, the generalization results were the same when DORA learned
to play Pong and attempted to transfer to Breakout.
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objects individuated and contained rate-coded dimensional infor-
mation as inputs.

In addition, we ran a small transfer study with humans.
Unlike the current networks, humans come into the game
situation with a wide range of knowledge beyond simple video
games (let alone only Breakout), but an account of human
generalization should be able to match the qualitative property
that humans do transfer between things like games. To test
whether humans do indeed generalize between games, human
players either played 50 min of Breakout followed by 10 min of
Pong, or the reverse. The results indicate cross-game transfer
between Breakout and Pong and Pong and Breakout. Details
appear in Supplemental Results.

Learning to Play a Game in DORA

In this simulation, as in Simulation 1, DORA started with no
knowledge. To begin, DORA learned representations from Break-
out game screens. Learning in this simulation proceeded as
described in Simulation 1, with the difference that we used game
screens from Breakout rather than images of collections of 2D
shapes. We allowed the system to play 250 games of Breakout
making completely random responses, which produced game
screens. These game screens ran through the visual preprocessor
described above generating representations of scenes composed of
simple objects (e.g., the paddle, the ball, the rows of bricks), which
were stored in LTM. DORA attempted to learn from these stimuli
performing 2,500 learning trials. It did not have any “task” to
perform, and it received no feedback during this part of the
simulation. DORA successfully learned structured representations
of above, below, same-vertical, right-of, left-of, same-horizontal,
wider, thinner, same-width, taller, shorter, same-height, larger,
smaller, same-size, same-color, and different-color (screen images
were colored).

The next step was for DORA to use the representations that it
learned from the game environment to engage intelligently with it.
Several accounts of how relational representations, once avail-
able, may be used to characterize particular domains have been
proposed (e.g., Kemp, 2012; Lake et al., 2015; Nye et al., 2020;
Tenenbaum et al., 2011). However, these probabilistic program
induction approaches do not directly address the problem of
building a relational model of the environment from a reward
signal (these models are supervised). As learning to play video
games entails learning to associate actions with states of the game
based on reward signals (e.g., points), RL methods (Sutton &
Barto, 2018) are a natural starting point to solve this problem. RL
has been widely applied to account for several aspects of human
learning and exploratory behavior (Gershman, 2017; Otto et al.,
2010; Rich & Gureckis, 2018). In tabular RL, which is the version
of RL that we use in this simulation, the state-action space is
represented as a table where the rows are defined by the individual
states and the columns are defined by the actions. A known
problem with tabular RL is that as the size of the table increases,
learning becomes intractable. As relational representations can be
combined, the size of the table grows exponentially on the number
of relations considered when describing the state. Therefore, in
our simulations, we make the simplifying assumption that the
agent knows what the relevant relations to build a model of the
domain are (from the relations that the model had learned from
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game screens previously). By definition, a full account of how to
build a relational model of the domain from the reward signal
would need to solve the problem of selecting the relevant relations
from a potentially very large set of relations. We return to this
point in the general discussion.

As mentioned above in our simulations, states were represented as
the relevant relations to learn to play a game. In Breakout, the
relations considered were right-of, left-of, and same-horizontal
applied over the paddle and the ball and the same relations applied
over the ball at times 7 — 1 and ¢. For example, one state in Breakout
could be [right-of (balll, paddlel)]. On the other hand, actions were
represented as a relation between the object that the action was
performed over at time #, and the same object at time ¢ + 1. For
example, in Breakout the action move-right was represented as
right-of (paddle2, paddlel), where paddlel is the paddle before
acting, and paddle?2 is the paddle after. To associate actions with
states of the game, we augmented DORA with the capacity for
RL. Specifically, we used tabular Q-learning (Watkins, 1989).
RL algorithms seek to maximize the expected discounted cumu-
lative reward, or return, by interacting with the environment. In
each iteration of this process, the environment produces a state S,
and areward R, and the agent takes an action A, in response. The
goal of RL is to find the optimal policy n* that maximizes the
return. To do so, Q-learning utilizes action values as the basis for
this search. The action value of a state-action pair Q(s, a) is the
return when the agent is in state s at time 7, S, = s and takes action
a, A, = a. Q-learning follows an epsilon-greedy policy, where
most of the time the action is selected greedily regarding the
current action values and with a small probability the action is
selected randomly, while updating the action values according to
the equation:

0(S1, A) < O(Si, A) + Ry +y m‘leQ(S,_,,, ,a) =08, A)),
12)
where y is a discount factor (in all simulation we set this value
to .99).

Applied iteratively, this algorithm approximates the true
action values and, therefore, the output policy (greedy regarding
these values) will approximate the optimal policy. We trained
DORA for 1,000 games using tabular Q-learning. The model
learning to associate relational states with relational representa-
tions of the available actions. Importantly for our purposes,
because the states are relational the resulting policy corresponds
to a set of relational rules that can be used as a basis for
analogical inference (see below).

Generalizing to a New Game in DORA

As described above, analogical inference occurs when a
system uses analogical correspondences between two situations
to flesh out one situation based on knowledge of the other. This
method is precisely how DORA infers how to play a game like
Pong based on its experience with a game like Breakout. While
learning to play Breakout, DORA had learned that relations
between the ball and paddle predicted actions. Specifically,
DORA learned that the state right-of (ball, paddlel) supported
moving right (i.e., right-of (paddle2, paddlel)), that the state
left-of (paddlel, ball) supported moving left, and that the state
same-x (ball, paddlel) supported making no move. With the
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representation of the available Pong actions in the driver, these
Breakout representations could be retrieved into the recipient.
DORA then performed analogical mapping. Because of the
shared relational similarity, corresponding moves between
Pong and Breakout mapped—for example, above (paddle2,
paddlel) in the driver mapped to right-of (paddle2, paddlel)
in the recipient. DORA then performed analogical generalization
on the basis of these mappings.

As described previously and illustrated in Figure 5, after mapping
the moves in Breakout and Pong, DORA infers the relational
configurations that might reward specific moves in Pong based
on the relational configurations that reward specific moves in
Breakout. For example, given that right-of (ball, paddle) tends to
reward a right response (right-of (paddle2, paddlel) in Breakout,
and the mapping between the right response and the up response
(above (paddle2, paddlel) in Pong, DORA inferred that above (ball,
paddle) tends to reward a up response in Pong. The same process
allowed DORA to generalize other learned rules (e.g., below
(paddle2, paddlel) then move down).

Importantly, like DORA’s representation learning algorithm,
mapping and analogical inference are completely unsupervised
processes: The model discovers the correspondences between the
games on its own, and based on those correspondences, makes
inferences about what kinds of moves are likely to succeed in the
new situation.

Simulation Results

The DQN, the DQN with the same visual front end as DORA, and
the graph network were all trained for 31,003, 20,739, and 10,000
games, respectively. The DNN was trained via back-propagation for

Figure 12
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4,002 games. Models that use structured representations often require
far fewer training examples than networks trained with traditional
feature-based statistical learning algorithms (see, e.g., Bowers, 2017;
Hummel, 2010). It is, therefore, unsurprising that DORA learned to
play Breakout much faster than the other networks.

Figure 12a shows the mean score over the last 100 games of
Breakout for all five networks. As expected, all the networks
performed well.

We then had the networks play a new game, Pong, for 100 games.
Figure 12b shows the models’ zero-shot (i.e., immediate) transfer
from Breakout to Pong. DORA performed well on the very first
game of Pong (left columns) and over its first 100 games (beyond
making an analogical inference, DORA did not engage in any
additional learning during these test games). That is, DORA dem-
onstrated zero-shot transfer between the games: Having learned to
play Breakout, generalized to how to play Pong. In contrast, the
statistical learning algorithms did not transfer from Breakout to
Pong: Having learned to play Breakout, the statistical algorithms
knew nothing at all about Pong. (The bars for these other networks
are not missing from Figure 12c, they are simply at zero.) This result
is largely unsurprising: One does not expect a lookup table for
addition to do subtraction, and one does not expect a lookup table for
Breakout to play Pong.

The reason for DORA’s zero-shot transfer from Breakout to Pong
is straightforward. As described above, during its first game of Pong,
DORA represented the game state using the relations it had learned
playing Breakout. Armed with these relations, the model used
analogical mapping to discover the correspondences between the
two games, and based on those correspondences, made inferences
about what kinds of moves were likely to succeed in the new
situation. The model’s prior experience with Breakout thus allowed
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it to play its first game of Pong like a good rookie rather than a rank
novice.

As a final test, we trained the DNNs (but not DORA) to play Pong
until they could play with competence, and then retested the DNNs
and DORA for their ability to play Breakout. Of interest in this
simulation was whether the various systems, upon learning to play
Pong, would still know how to play Breakout. Figure 12c shows the
performance of the networks on the first 100 games of Breakout after
learning Pong. DORA returned to Breakout with little difficulty,
1(198) = 1.26, p > .05; again DORA engaged in no learning during
these test games). By contrast, the deep DNNs showed extremely poor
performance, indicating that learning to play Pong had completely
overwritten their ability to play Breakout (i.e., the networks suffered
interference from Pong to Breakout; see, e.g., French, 1999).6

It is important to stress that the supervised DNN, one of the
DQNs, and the graph net used the same visual preprocessor as
DORA, so the differences in generalization performance cannot be
attributed to differences in inputs (e.g., individuated objects and
rate-coded dimensions). Rather, the DNNs’ generalization failure
reflects the purely statistical nature of their representations. For a
DNN screens from Breakout and screens from Pong are simply from
different distributions, and therefore, it has no reason to generalize
between them. By contrast, relation-based learning—Ilike a varia-
blized algorithm—naturally generalizes to novel values (arguments)
bound to the variables (relational roles) composing in the algorithm
(model of the task).

Simulation 3: Cross-Domain Transfer From Shape
Images to Video Games

A serious limitation of Simulation 2 is that all the models
embarked on learning Breakout as blank slates, with no prior
knowledge of any kind. We adopted this practice to remain consis-
tent with the tradition in the prior literature on neural networks for
game play (e.g., Mnih et al., 2015), which is to start with completely
untrained networks. This convention no doubt reflects the fact that
DNNs do not profit from cross-domain transfer, so there is no point
in training them on any other kind of task (e.g., to teach them basic
spatial relations) before training them to play video games.

People, by contrast, learn very differently than DNNs. Rather than
approaching each new task as a tabula rasa, people bring their prior
knowledge to the learning of new tasks. By the time a person plays
their first video game, they have no doubt had extensive experience
with such basic spatial relations as above and left-of, not to mention
years of experience in numerous other domains. This difference
between how people and DNNs learn is important as it speaks
directly to the importance of cross-domain transfer: Whereas purely
associative systems such as DNNs suffer from retraining on a new
task, people rely on it.

Accordingly, Simulation 3 explored a slightly more realistic
course of learning in DORA. Instead of learning the relations
relevant to playing the game from the game itself, DORA first
learned representations from a different domain, namely the first 300
images from the CLEVR (Compositional Language and Elementary
Visual Reasoning) data set (pictures consisting of multiple objects
on a screen; Johnson et al., 2017). We started with a version of
DORA with no knowledge. CLEVR images were run through the
preprocessor and the results were encoded into DORA’s LTM. We
then ran DORA for 2,500 unsupervised learning trials (as in
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Simulation 1). As in previous simulations, DORA successfully
learned structured representations of the relations present in the
stimuli—here above, below, same-vertical, right-of, left-of, same-
horizontal, wider, thinner, same-width, taller, shorter, same-height,
larger, smaller, same-size, same-color, and different-color. We do
not claim that this pretraining with the CLEVR images provides
DORA with a realistic approximation of a person’s prevideo game
experience. On the contrary, DORA’s pretraining is a pale imitation
of the rich experiences people bring to their first video game
experience. But the crucial question in Simulation 3 is not whether
we can endow DORA with all the advantages a person’s prior
experiences bring to their ability to learn video games, but merely
whether DORA, like people, is capable of profiting from prior
exposure to relevant spatial relations even if that exposure comes
from a completely different domain.

Following representation learning from the CLEVR images,
DORA learned to play Breakout via Q-learning for 800 games.
Again, the key difference from the previous simulation was that
DORA used the representations that it had learned from the CLEVR
images to encode game screens. No additional representation learn-
ing occurred from experience with Breakout. Only associations
between the previously learned representations and successful
moves were updated via Q-learning. As in Simulation 2, after
training with Breakout, we tested the model’s ability to generalize
to playing Pong, and then return to playing Breakout.

Using representations learned from CLEVR, DORA learned to
play Breakout and transferred learning from Breakout to Pong and
back to Breakout in a manner very similar to the results of
Simulation 2 (Figure 13a—13c, black and dark gray bars). However,
DORA learned to play Breakout in fewer games when it started with
the representations learned from the CLEVR images than it did
starting with a blank slate in Simulation 1 (800 vs. 1,250 games,
respectively; as it did not need to learn representations, only a policy
for associating representational states with actions). This simulation
demonstrates that DORA—Iike a human learner—exploits cross-
domain transfer rather than suffering from it. DORA’s capacity to do
so is a direct reflection of its ability to represent the domain-relevant
relations explicitly, bind them to arguments, and map them onto
corresponding elements between the familiar and novel games.

Simulation 4: The Centrality of Binding and
Structured Representations in Cross-Domain
Transfer in DORA

DORA relies on neural oscillations to dynamically bind distrib-
uted representations of objects and relational roles into relational
structures. According to our account, these oscillations play a central
role in learning and generalization because, without them, DORA’s
representations would be nonstructured feature lists—akin to the
representations used by DNNs and other associative learning
algorithms—and its generalization ability would be correspondingly
limited. To explore the role of neural oscillations—that is, structured
relational representations—in DORA’s performance, we reran

® Catastrophic forgetting can be avoided by interleaved training (i.e.,
training on to-be-learned tasks simultaneously, with “batch” updating of
connection weights; e.g., Kirkpatrick et al., 2017). Sequential training of the
type people routinely encounter continues to produce catastrophic forgetting
in DNNs.
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Figure 13
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Results of Game Play Performance for DORA From Simulation 1 and After CLVR Learning (Simulation 2; Black and Dark Gray
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Simulation 2 (allowing the model to learn to play Breakout, and
then attempting to generalize to Pong), but with two different
ablated versions of the model. In both ablated versions, we
disrupted the lateral inhibition between token units (specifically,
we reduced the weight of the inhibitory lateral connections
between tokens from —1 to —0.1), disrupting the model’s ability
to maintain systematic oscillatory behavior. In the first ablated
model (A1), we ablated the inhibitory connections from the onset
of the simulation. As a result, neural oscillations were disrupted
both during predicate learning and thereafter. In the second
ablated model (A2), we ablated the inhibitory connections after
the model had learned to play Breakout: Although the model was
intact when it learned to play Breakout, the neural oscillations,
and thus role-argument bindings, were disrupted during general-
ization to Pong.

The current simulations were otherwise identical to Simulations
2. As expected, Model Al failed to learn any useful predicate
representations. Disrupting the model’s neural oscillations elim-
inated its capacity to learn predicates, and thus greatly reduced
its capacity to learn Breakout. The model resorted to learning
based on the absolute features of the stimuli, and thus learned
much like a less sophisticated DQN. Based on these representa-
tions, the model struggled with Breakout even after 20,000
training games and failed to generalize to Pong (Figure 13, light
gray bars). Model A2, which was intact during predicate learning
and Breakout training, learned predicate representations and
achieving good performance on Breakout within 1,000 games
(Figure 13a, white bar). However, when the oscillations were
disabled after training, the model failed to generalize to Pong
(Figure 13b, white bar). This result demonstrates the centrality of
systematic oscillations in the model’s capacity to learn relational

representations (Model A1) and of structured relational repre-
sentations to its ability to perform generalization (Models Al
and A2).

Simulation 5: Transfer From Games to More
Complex Tasks

This simulation was designed to further challenge the capacity
of the representations that DORA learns. In this simulation, we
investigated whether the representations DORA learned playing
video games and from CLEVR (i.e., Simulations 2 and 3) would
allow the model to generalize to the very different domain of
analogical reasoning. To this end, we used the same model and
representations from Simulations 2 and 3 and set to it tasks
representing characteristics of human-level analogical reasoning
(Bassok & Olseth, 1995; Gick & Holyoak, 1983; Holyoak, 2012;
Holyoak & Thagard, 1996). Specifically, after learning repre-
sentations from Breakout and CLEVR, we tested whether it
could immediately (i.e., with no additional experience) use those
representations to: (a) solve analogical cross mappings; (b)
analogically map similar, but nonidentical predicates; (c) analogically
map objects with no featural overlap—including completely novel
objects—that play similar roles; and (d) map the arguments of an
n-place relation onto those of an m-place relation even when n and m
are unequal (i.e., called violation the n-ary restriction; Hummel &
Holyoak, 1997). As such, the simulation had two purposes: (a) to
evaluate the capacity of the representations the model learns to support
human-level analogical reasoning and (b) to provide a further test of
the model’s capacity for cross-domain generalization: Just like humans
do, the model had to learn representations in one domain, and use these
representations to reason in a novel (laboratory) task.
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During a cross-mapping, an object (objectl) is mapped to a
featurally less similar object (object2) rather than a featurally
more similar object (object3) because it (objectl) plays the same
role as the less similar object. For example, if catl chases mousel
and mouse2 chases cat2, then the structural cross-mapping places
catl into correspondence with mouse2 because both are bound to the
chaser role. The ability to find such mappings is a key property of
human relational (i.e., as opposed to feature-based) reasoning (e.g.,
Bassok & Olseth, 1995; Gick & Holyoak, 1980, 1983; Holyoak,
2012; Richland et al., 2006). Cross-mappings serve as a stringent
test of a computational system’s structure sensitivity as they require
the system to discover mappings based on relational similarity in the
face of competing featural or statistical similarity.

We tested the representations DORA learned in Simulations 2 and 3
for their ability to support cross-mapping. DORA randomly selected
two of the predicates (T1 units) it had learned during Simulations 2
and 3, such that both predicates coded for the same relation (e.g.,
both coded for above or both coded for same-width). DORA bound
the relations to new objects, to form two new propositions, P1 (e.g.,
above (objectl, object2)) and P2 (e.g., above (object3, object4).
We manipulated the objects such that the agent of P1 (objectl) was
featurally identical to the patient of P2 (object 4) and the patient of
P1 (object 2) was featurally identical to the agent of P2 (object 3).
Based on the objects’ featural similarity, DORA would therefore
map object] to object4 and object2 to object3, but based on their
roles in the relational structures, it should map objectl to object3
and object2 to object4. We repeated this procedure 100 times (each
time with different randomly chosen T1 units) using representa-
tions from Simulations 2 and 3. In every case, DORA successfully
mapped object] to object3 and object2 to object4 (the structurally
consistent mappings) rather than objectl to object4 and object2 to
object3 (the feature-based mappings). This result demonstrates
that the relations DORA learned in Simulations 2 and 3 imme-
diately transfer to analogy tasks and support relational cross-
mapping.

We then tested whether DORA’s relational representations sup-
port mapping similar but nonidentical relations (such as mapping
above to greater-than) and mapping objects with no featural overlap
based only on their bindings to similar roles. DORA randomly
selected two of the relations, R1 and R2 (e.g., above (x, y) or wider
(x, y)), that it had learned during Simulations 2 and 3 such that each
role of R1 shared roughly half of its features with the corresponding
role of R2 (e.g., the role more-y has half of its features in common
with the role more-length). The objects serving as arguments of the
relations had no featural overlap at all. We repeated this process 100
times and each time, DORA mapped the agent role of R1 to the
agent role of R2 and the patient role of R1 to the patient role of R2.
Even though the objects had no features in common, and even
though the relations to which they were bound were not identical,
DORA found the structurally correct object and role mappings.

Next, we tested whether the representations DORA learned can
violate the n-ary restriction, mapping the arguments of an n-place
predicate onto those of an m-place predicate when n # m. In each of
these simulations, DORA randomly selected a relation, R1, that it
had learned in Simulations 2 and 3, and we created a single-place
predicate (r2) that shared 50% of its features with the agent role of
R1 and none of its features with the patient role. DORA then bound
two objects to the roles of R1 to form the Proposition R1 (objectl,
object2), and bound a third object to r2, to form the Proposition
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12 (object3). Object3 shared half its features with objectl and the
other half with object2 (i.e., it was equally similar to both objectl
and object2). DORA attempted to map 12 (object3) onto R1
(objectl, object2). If the model can violate the n-ary restriction,
then it should consistently map object3 to objectl based on the
similarity of r2 to the first (agent) role of R1 (recall that R1 is
represented as a linked set of roles). This process was repeated 100
times using a different randomly chosen R1 each time. Each time
DORA successfully mapped object3 to objectl, along with corre-
sponding relational roles (i.e., DORA maps the predicate represent-
ing one of the roles of R1 and the predicate representing the single-
place predicate r2). We then ran 100 simulations in which 12 shared
half its features with the second (patient) role of R1 rather than the
first (agent) role. In these 100 additional simulations, DORA
successfully mapped the patient role of R1 to 2 (along with their
arguments).

Finally, we tested whether the representations that DORA learns
support generalization to completely novel (i.e., never before expe-
rienced) stimuli. The ability to make generalizations about
completely novel items is the hallmark of the capacity for universal
generalization (see, e.g., Marcus, 2001). In this simulation, we
created six objects with completely novel features (features units
grafted onto DORA). DORA randomly selected two instances of the
same relation that it had learned in Simulations 2 and 3 (e.g., two
instances of bigger). We bound one instance of the relation to three
of the objects—objectl, object2, and object3—to create three
propositions R1-R3 that instantiated a transitive relation such
that object2 served as both the patient of one proposition and the
agent of the other. For example, if the relation DORA had selected
was bigger, then it bound that relation to objectl and object2 to
make the Proposition R1, bigger (objectl, object2), bound the same
relation to object2 and object3 to make the Proposition R2, bigger
(object2, object3), and finally bound the same relation to objectl and
object3 to make the Proposition R3, bigger (objectl, object3) (recall
that within a single analog, or story, token units are shared between
proposition, so the same T1 unit instantiating, say, more-size was
bound to both objectl and object2). From the remaining three
objects—object4, objectS, objectb—we used the second instance
of the relation to make the propositions R4 and RS such that object5
served as both the patient in one proposition and the agent in the
other. For example, we bound object4 and object5 to bigger to make
R4, bigger (objectd, object5), and bound object5 and object6 to
bigger to make RS, bigger (object5, object6). Importantly, none of
the objects had any features (including metric features) that DORA
has previously experienced. As such the simulation was akin to
telling DORA that a transitive relation held between three novel
objects and that some of the same relations held between a second
three objects. We placed R1 and R2 and R3 in the driver, and R4 and
RS in the recipient. We wanted to see whether (a) DORA could
integrate relations such that it would map R1 to R4 and R2 to RS
(i.e., it would map the instances where the same object was a patient
and an agent) and (b) whether it would use these mappings (if
discovered) to generalize the transitive relation in R3 to the objects
in the recipient (i.e., would it complete the transitive set of relations
about objects4—6). If DORA found a mapping, it then attempted to
perform analogical inference. We ran the Simulation 100 times. In
each simulation, DORA mapped the representation of R1 to R4, and
R2 to R5. Moreover, DORA generalized R3 to the recipient to
create a transitive Proposition R6—for example, to continue the
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above example, DORA inferred that bigger (object4, object6). That
is, armed with the knowledge that some objects it had never before
experienced played particular relational roles, DORA generalized
that a proximal object (that it had also never experienced before)
might play a complementary role. The inability to reason about
completely novel features (i.e., features not part of the training
space) is a well-known limitation of traditional neural networks
(e.g., Bowers, 2017). However, this limitation does not apply to
DORA. Not only can DORA represent that novel objects can play
certain roles (because it can dynamically bind roles to fillers), but it
can also use its representations to make inferences about other
completely novel objects.

In total, Simulation 5 demonstrates that the relational representa-
tions DORA learned during Simulations 2 and 3 immediately
support performance of an unrelated task (analogical reasoning)
even with completely novel objects. After learning representations
in one domain (game play and images of shapes), DORA, with no
additional experience (zero-shot), used these representations to
solve a set of analogical reasoning tasks representing several hall-
marks of human analogical thinking, and then used these repre-
sentations to generalize to completely novel objects. The results
provide further evidence that DORA’s representations support
cross-domain transfer and highlight the generality of the DORA
framework.

Simulation 6: Development of Representations of
Relative Magnitude

We have previously shown that DORA’s format learning algo-
rithm provides a good account of several developmental phenomena
in representational development (e.g., Doumas et al., 2008). The
purpose of Simulations 6 and 7 was to examine whether the
representations that DORA learned, and the trajectory of the repre-
sentation learning mirror human development when DORA is
learning both relational content and relational format. Additionally,
these simulations provided another opportunity to evaluate gener-
alization of representations across domains: Learning representa-
tions in one domain and deploying those representations to reason
about a new domain (as human often do when they engage in
laboratory experiments).

Children develop the ability to reason about similarity and relative
magnitude on a variety of dimensions (e.g., Smith, 1984). The
development of children’s capacity to reason about basic magni-
tudes is well demonstrated in a classic study by Nelson and Benedict
(1974). In their experiment, children aged 3—6 years old were given
a simple identification task. An experimenter presented the child
with two pictures of similar objects that differed in some dimen-
sions. The experimenter then asked the child to identify the object
with a greater or lesser value on some dimension. For example, the
child might be shown pictures of two fences that differed in their
height, their size, and their color, and then asked which of the two
fences was taller or shorter. The developmental trajectory was clear:
Children between 3-years-10-months and 4-years-4 months (mean
age ~48 months) made errors on 34% of trials, children between
4-years-7-months and 5-years-5-months (mean age ~60 months)
made errors on 18% of trials, and children aged 5-years-6-months
and 6-years-6-months (mean age ~73 months) made errors on only
5% of trials. In short, as children got older, they developed a mastery
of simple magnitude comparisons on a range of dimensions.
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If DORA is a good model of human representational develop-
ment, then it should be the case that DORA’s representations follow
a similar developmental trajectory. To test this claim, we used the
representations that DORA had learned during Simulation 2. If
DORA develops like a human child, then early in the learning
process, DORA’s performance on the Nelson and Benedict task
should mirror 3—4-year-old children, later in the learning process
DORA'’s performance should mirror 4-5-year-old children, and
later in the learning process DORA’s performance should mirror
5—-6-year-old children.

To simulate children of different ages, we stopped DORA at
different points during learning and used the representations that it
had learned to that point (i.e., the state of DORA’s LTM) to perform
the magnitude reasoning task. To simulate each trial, we created two
objects instantiated as T1 units attached to features. These features
included 100 random features selected from the pool of 10,000,
along with features encoding height, width, and size (dimensions
used in Nelson and Benedict) in a pixel format (as in the simulations
above; e.g., for an object 109 pixels wide, one feature unit describing
“width0” and 109 features encoded “109 pixels wide”). A dimen-
sion was selected at random as the question dimension for that trial.
DORA sampled at random a representation from its LTM that was
strongly connected to that dimension (with a weight of .95 or
higher). If the sampled item was a relation or a single-place
predicate, DORA applied it to the objects and placed that represen-
tation in the driver. For example, if the key dimension was size, the
two objects (objl and obj2) were then run through the relational
invariance circuit on the dimension of size, marking one (assume
objl) as relatively larger and the other (assume obj2) as relatively
smaller. If DORA had sampled a representation of the relation
larger (x, y), then the more-size T1 unit was bound to the objl T1
unit and the less-size T1 unit was bound to the obj2 T1 unit. To
simulate a dimensional question, DORA randomly sampled a
representation of the question dimension from LTM and placed
that in the recipient. For example, if the question was, “which is
bigger,” DORA sampled a representation of a T1 unit encoding
more-size from LTM. DORA then attempted to map the driver and
recipient representation. If DORA mapped a representation in the
driver to a representation in the recipient, the mapped driver item
was taken as DORA’s response on the task. If DORA failed to find a
mapping, then an item was chosen from the driver at random and
taken as DORA’s response for that trial (implying that DORA was
guessing on that trial). The probability of guessing the correct item
by chance was 0.5.

To simulate 4-year-olds, we used the representations in DORA’s
LTM after 1,000 total training trials, to simulate 5-year-olds we used
the representations in DORA’s LTM learned after 1,000 additional
training trials (2000 total trials), and to simulate 6-year-olds we used
the representations in DORA’s LTM learned after 1,000 additional
training trials (3,000 total trials). We ran 50 simulations each with 20
trials at each age level (each simulation corresponding to a single
child). The results of the simulation and the original results of
Nelson and Benedict are presented in Figure 14.

The qualitative fit between DORA’s performance and the perfor-
mance of the children in Nelson and Benedict’s study is close. Just
like the children in the original study, DORA is better than chance,
but still quite error-prone early during learning, but gradually comes
to learn representations that support very successful classification of
dimensional magnitudes. These simulation results provide evidence
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Figure 14
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that the trajectory of the development of DORA’s representations of
relative dimensional magnitude mirrors that of humans.

Simulation 7: The Relational Shift

One of the key findings from work on the development of
analogical reasoning in children is that children go through a
relational shift (e.g., Gentner et al., 1995). The relational shift
describes a qualitative change in children’s reasoning wherein
they progress from making analogies based on the literal features
of things, to making analogies based on the relations that objects are
involved in (e.g., Richland et al., 2006). With development, children
learn progressively more powerful representations of similarity and
relative magnitude relations that support more proficient relational
generalization (Smith, 1984). In addition, children develop the
capacity to integrate multiple relations in the service of reasoning
(e.g., Halford & Wilson, 1980), and their relational representations
grow more robust with learning, and allow them to overcome ever
more excessive featural distraction (e.g., Halford & Wilson, 1980;
Rattermann & Gentner, 1998).

One of the classic examples of the relational shift and the
associated phenomena is given in Rattermann and Gentner (1998).
In their experiment, Rattermann and Gentner had 3-, 4-, and
5-year-old children participate in a relational matching task.
Children were presented with two arrays, one for the child and
one for the experimenter. Each array consisted of three items that
varied on some relative dimension. For example, the three items in
each array might increase in size from left to right or decrease in
width from left to right. The dimensional relation in both pre-
sented arrays was the same (e.g., if the items in one array increased
in size from left to right, the items in the other array also increased
in size from left to right). The items in each array were either
sparse (simple shapes of the same color) or rich (different shapes
of different colors). The child watched the experimenter hide a
sticker under one of the items in the experimenter’s array. The
child was then tasked to look for a sticker under the item from the
child’s array that matched the item selected by the experimenter.
The correct item was always the relational match—for example, if
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the experimenter hid a sticker under the largest item, the sticker
was under the largest item in the child’s array. Critically, at least
one item from the child’s array matched one of the items in the
experimenter’s array exactly except for its relation to the other
items in its array. To illustrate, the experimenter might have an
array with three squares increasing in size from left to right
(Figure 15a). The child might have an array of three squares
also increasing in size from left to right, but with the smallest item
in the child’s array identical in all featural properties to the middle
item in the experimenter’s array (Figure 15b). Thus, each trial
created a cross-mapping situation, where the relational choice
(same relative size in the triad) was at odds with the featural choice
(exact object match). The child was rewarded with the sticker if
she chose correctly.

Rattermann and Gentner found a relational shift. Children
between 3 and 4 years old were very drawn by featural matches
and had trouble systematically making relational matches (making
relational matches 32% of the time in the rich condition and 54% of
the time in the sparse condition). Children between 4 and 5 years old
were quite good at making relational matches with sparse objects—
making relational matches 62% of the time—but still had trouble
with rich objects when featural matches were more salient—making
relational matches 38% of the time. Children between 5 and 6 years
old were quite good at making relational matches in both the rich
and the sparse conditions, with the rich condition providing more
trouble than the sparse condition—making relational matches 68%
for rich and 95% of the time for sparse stimuli.

We simulated the results of Rattermann and Gentner (1998) as in
the simulation above, using the representations learned during
Simulation 2. Again, to simulate children of different ages we
stopped DORA at different points during learning and used the
representations that it had learned to that point. To simulate 3-year-
olds we used the representations in DORA’s LTM after 850 training
trials, to simulate 4.5-year-olds we used the representations in
DORA’s LTM after 1,500 training trials, and to simulate 5.5-
year-olds we used the representations in DORA’s LTM after
2,500 training trials. To simulate each trial, we created two arrays

Figure 15
A Recreated Example of the Stimuli Used in Rattermann and
Gentner (1998)

(a)

(b)
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of three objects, each object instantiated as a T1 unit connected to
features. For the sparse trials, each object was connected to feature
units such that some features encoded absolute size, height, width, x-
position, y-position, color, 10 features described shape, and four
features were chosen at random from a pool of 1,000. The identical
objects from both arrays matched on all features. For the rich trials,
each object was attached to additional features: some features
encoding absolute size, height, width, x-position, y-position, color,
10 features describing shape, four features describing object kind
(e.g., “shoe,” “train,” “bucket”), and 40 features chosen at random
from a pool of 1,000. The identical objects from both arrays matched
on all features.

We ordered the objects in both arrays according to some relation
(e.g., increasing size, decreasing width). DORA sampled four
representations from its LTM that were strongly connected to
that dimension (with a weight of .95 or higher) and applied two
of the sampled representations to each of the two arrays. If the
sampled representation was a relation or a single-place predicate, it
applied to the objects. For example, if the key dimension was size,
and DORA sampled a representation of the relation larger (x, y), it
applied that representation to the objects, binding the larger object to
the more-size role and the smaller object to the smaller role (as
described in Simulation 6). If the sampled representation was a
single-place predicate like more-size (x), then it was bound to the
larger object. As each array consisted of two instances of the key
relation (e.g., larger (objectl, object2), and larger (object2,
object3)), DORA applied one of the two sampled items to one of
the relations in the array, chosen at random, and the other sampled
item to the other relation in the array. For simplicity, the model only
considered relations between adjacent objects.

The representation of the child’s array entered the driver, and the
experimenter’s array the recipient. An item from the recipient was
chosen at random as the “sticker” item (i.e., the item under which the
sticker was hidden). The capacity to ignore features is a function of
the salience of those features, and so richer objects with more
features are harder to ignore (see, e.g., Goldstone & Son, 2012).
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To simulate the effect of the rich versus the sparse stimuli, on each
rich trial, DORA made a simple similarity comparison before
relational processing started. It randomly selected one of the items
in the driver and computed the similarity between that item and the
“sticker” item in the recipient using the equation:

1
P (=)

S1m,

13)

where sim;; is the 0—1 normalized similarity of PO unit 7 and PO unit
J» and s; is the activation of feature unit i. If the computed similarity
was above .8, then DORA learned a mapping connection between
the two items. Finally, DORA attempted to map the items in the
driver to the items in the recipient. If any driver representation was
mapped to the “sticker” item in the recipient, the mapped item was
taken as DORA’s response on the task. If DORA failed to find a
mapping, then it selected an item from the recipient at random as a
response for that trial (implying that DORA was guessing on that
trial). The probability of guessing the correct item by chance
was 0.33.

We ran 50 simulations each consisting of 20 trials at each age
level. The results of the simulation, as well as those from the original
Rattermann and Gentner experiment with both sparse and rich trials,
are presented in Figure 16a and 16b respectively.

As Figure 16 shows, there is a close qualitative fit between
DORA'’s performance and the performance of the children in
Rattermann and Gentner (1998). Initially, DORA, just as the
3-year-old children in the original study, had some trouble
correctly mapping the items in the driver and the recipient,
and struggled to solve the cross-mapping. As DORA learned
more refined representations (after more training), like the 4-year-
old children in the original study, DORA began to solve the
sparse problems more successfully, while still struggling with the
rich problems. Finally, like the 5-year-old children in the original
study, after even more learning, DORA was quite successful at
both rich and sparse trials, reaching ceiling-level performance on
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Figure 16
Results of Simulation of Rattermann and Gentner (1998)
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(a) Performance of children and DORA on sparse trials. (b) Performance of children and DORA on rich trials.
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the sparse problems. These simulation results indicate that, like
humans, the trajectory of the development of DORA’s represen-
tations of relative dimensional magnitude undergoes a relational
shift with learning. Additionally, the representations that DORA
learns during its development support the same kind of perfor-
mance on relational matching tasks that is evidenced by human
children during their development.

General Discussion
Summary and Overview

We have presented a theory of human cross-domain generaliza-
tion instantiated in the DORA computational framework. Our
proposal is that people represent knowledge domains as models
consisting of structured representations of the relations among the
elements of those domains. These representations specify the invari-
ant content of the relations and their arguments, and representations
of relational roles are dynamically bound to their fillers while
maintaining role-filler independence. DORA learns both the content
and structure of these relations from nonrelational inputs, such as
visual displays, without supervision. DORA uses comparison to
bootstrap learning both the content and structure of relational
representations. By integrating these representations with a capacity
for RL, DORA learns which relations to use in what contexts in the
service of problem-solving (e.g., game play). The resulting repre-
sentations can be applied to new domains, including completely
novel ones, by a process of analogical inference. That is, the model
generalizes across domains as a natural consequence of its ability to
represent relations in a manner that is invariant with both the
arguments of the relations and the specific circumstances in which
those relations arise.

A series of simulations demonstrated that this approach to
learning and knowledge representation greatly facilitates cross-
domain generalization. Simulation 1 showed that the model is
capable of learning structured representations of relations from
unstructured, nonrelational visual inputs. Simulation 2 showed
that, as a result of learning to play one video game, DORA learns
representations that support immediate (zero-shot) transfer to a
different game (Pong), and the capacity to move between games
successfully. By contrast, four different associative networks (two
DQNs, a DNN, and a GNN) both (a) failed to transfer knowledge
from one game to another and (b) lost their ability to play the first
game after training on the second. Simulation 3 demonstrated that
the representations DORA learns in one domain (images of 3D
shapes) support learning to play one video game play and immedi-
ately generalize to a new game. Simulation 4 demonstrated the
essential role of structured representations in the model’s learning
and generalization. Simulation 5 showed that the representations
DORA learns from domains like video games and pictures also
support successful zero-shot transfer to unrelated reasoning tasks
(cross-mapping, mapping nonidentical predicates, mapping
novel objects, and violating the n-ary restriction), and, impor-
tantly, support generalization to completely novel (i.e., never
previously experienced) stimuli. Finally, Simulations 6 and 7
showed that DORA follows the same developmental trajectory as
children as it learns representations. That is, DORA accounts for
results from the literature on children’s reasoning as it learns to
play video games.
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LISAese, Relational Databases, and Generalization

We have argued that the reason that people can learn relations and
apply them to new domains is because we learn representations of
those relations that specify relational invariants in a form that
permits the binding of relational roles to arguments without chang-
ing the representation of either (see also Doumas et al., 2008;
Halford, Bain, et al., 1998; Halford, Wilson, & Phillips, 1998;
Hummel & Biederman, 1992; Hummel & Holyoak, 1997, 2003;
Phillips, 2018, 2021; Phillips et al., 1995). It turns out that our
proposal has an analog in computer science in the form of relational
databases.”

In mathematical logic, a relation is defined as a subset of the
Cartesian product of two or more potentially infinite sets. For
example, the relation larger-than (), defined over the integers,
can be represented as a matrix (a Cartesian product), with integers
in the rows and columns, and 1s and Os in the cells, such that a 1
appears in every cell whose row is larger than its column. More
generally, a binary relation between sets A and B is a subset of the
Cartesian product A X B for each pair (a, b) over which the relation
holds. A relation is thus represented by a characteristic function,
xr(a, b), which maps to 1 if the relation is true for (a, b) and 0
otherwise.

The characteristic function captures the same information as the
relational invariants we described in the Introduction. In other
words, the characteristic function specifies the content of the rela-
tion, so learning the invariant that defines a relation is a matter of
executing the characteristic function. The circuit DORA uses to
discover relational invariants is nothing more than an implementa-
tion of the characteristic function of, for example, larger-than ()
over a rate-coded neural representation of magnitude.

However, we have argued that simply expressing an invariant (the
output of the characteristic function) is not sufficient to support
cross-domain generalization. It is also necessary to somehow rep-
resent the dynamic binding of arguments to roles of the relation in a
way that preserves the identity of both the relational roles and their
arguments. The representational format we have employed for this
purpose, LISAese, is isomorphic to a relational schema (or rela-
tional database) developed in computer science.

A relational schema (see, e.g., Phillips, 2018) corresponds to the
headings of a table that describe the roles of the so-related elements.
The table consists of a set of rows, representing instances of the
relation, and columns, corresponding to the roles of the relation. For
example, the relational schema for the relation larger-than (x, y)
includes two columns, one specifying the larger item and the other
specifying the smaller, with each row of the table an instance of the
larger-than relation. This representational format has the property
that relations (tables) are represented explicitly, as are their roles
(columns), and arguments (cells), while simultaneously expressing
the bindings of arguments to roles without altering the meaning of
either.

Halford, Bain, et al. (1998; Halford, Wilson, & Phillips, 1998,
Phillips, 2018, 2021; Phillips et al., 1995) have argued that relational
schemas are a good model of human mental representations. Specifi-
cally, (a) they identify a relation symbolically, (b) the roles (or
argument slots) of the relation are represented independently of the

7 We are indebted to Reviewer 3 for their help in making the discussion of
correspondence between LISAese and relational schemas much stronger.
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fillers of those roles, (c) binding of roles to fillers is explicit, (d) the
format supports representing higher-order relations (i.e., relations
between relations), and (e) the resulting representations have the
property of systematicity, meaning that they permit simultaneous
expression of the meaning of (a) the relation, (b) its roles, and (c)
their composition into a larger expression (see Halford, Bain, et al.,
1998; Halford, Wilson, & Phillips, 1998, Phillips et al., 1995).
Phillips (2018, 2021) has observed that LISAese is a representa-
tional format akin to a relational schema. And indeed, the repre-
sentations that DORA learns (i.e., LISAese) satisfy all the properties
of a relational database. In DORA relational representations are
specified as sets of linked single-place predicates (columns) com-
posing a header, and values bound to those predicates instantiating
(rows) of the specific relation.

In a set of experiments, Halford, Bain, et al. (1998) demonstrated
that people’s inferences in a complex learning task are better
captured by representations based on relational schemas than simple
associations. In their Experiment 2, participants learned to associate
a shape and trigram pair with another trigram. The stimuli were
composed from three shapes (say, square, circle, triangle) and three
trigrams (say, BEJ, FAH, PUV). The shape acted like an operator,
and the mapping from shape-trigram pair to the output (i.e., the other
trigram) was given by a simple rotation rule. For example, one shape
when linked with a trigram mapped to the identical trigram. The
second shape when linked to a trigram, mapped to the next trigram
from the list (trigram-1 mapped to trigram-2, trigram-2 mapped to
trigram-3, and trigram-3 mapped to trigram-1). The third shape
when linked to a trigram mapped to the trigram two jumps away
(trigram-1 mapped to trigram-3, trigram-2 mapped to trigram-1, and
trigram-3 mapped to trigram-2). As expected, participants learned to
perform the task after several exposures. The experimenters rea-
soned that if participants had learned the mappings by association,
then when given new trigrams and new shapes that followed the
same rotation rule, the participants would need roughly the same
number of exposures to learn them. However, if participants had
learned the relation (i.e., rotation) between shape-trigram pair and
trigram output, then they should be able to apply the relation
between two new shapes and trigram sets within a few exposures.
Participants did apply the rule to new shapes and trigram within a
few trials, indicating that they had learned the relational table.

More recently, Phillips (2018, 2021), using tools from Category
Theory, showed that performance on tasks like the relational schema
inference task requires structured relational representations (like a
relational database) and cannot be accounted for by association
alone. Our simulation results resonate with this claim and suggest
the capacity extends to cross-domain transfer. As demonstrated in
Simulations 2—4, after learning structured relational representations,
DORA can learn to play a video game and then immediately
generalize to a relational similar (but featurally different) game.
However, if these representations are removed, the model fails
utterly at any kind of generalization.

DORA provides an account of human generalization because it
can learn explicit representations of relational concepts—both their
content and their format—and then leverage those representations to
solve problems. In addition, the model provides an account of how
such knowledge structures can be implemented in a distributed
neural system, and how they can be learned from nonrelational
Inputs.
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Other Classes of Relations

In the work reported here, we have focused on transitive relations,
those that can be defined by differences on a single dimension, such
as larger-than () and left-of (). It is natural to ask whether these same
principles apply to other, nontransitive relations such as chases (),
mother-of (), and loves (). The short answer is yes. Starting with
whatever regularities it is given or can calculate from the environ-
ment, DORA’s learning algorithm will isolate those invariants, learn
structured representations (i.e., functional predicates) that take
arguments, and, where appropriate, compose them into relational
structures. In short, given a set of invariants (or a means to calculate
them), DORA’s learning mechanisms will produce explicit predi-
cate and relational representations of those invariants. DORA will
learn structured representations of concepts based on their invariant
properties, whether the invariants the system detects are instances of
stimulus magnitude or romantic love (see Doumas et al., 2008). The
hard part is finding the invariants. And for this problem, the human
visual system may give us a leg up.

Nontransitive relations like chase, support, or love fall on a
gradient in terms of how spatial they are. A relation like chase is
comparatively easy to reduce to spatial properties: There are two
objects, a and b, such that the vector characterizing the movement of
a is in the direction of the vector characterizing the location of b, and
this configuration is maintained through time. The representations
necessary to induce this relation are delivered by the visual system.
Michotte (1963) showed that participants would overwhelming
interpret chasing occurring in a situation where two dots moved
across a screen (or, in Michotte’s original version, two lights moved
on a grid of lights) such that one stayed in front of the other as they
moved. Similarly, relations such as support (one object above and in
contact with another object) or [ift (one object supports and raises
another object), are definable in spatial terms. Even a relation like
loves might reduce, at least in part, to spatial relations, though. In a
study by Richardson et al. (2003), participants were asked to use
configurations of objects to represent a relation produced over-
whelmingly similar spatial arrangements for relations like love,
admire, and hate.

We do not claim that all relations are spatial in origin, or that there
are no invariants (e.g., characterizing social relations such as love,
hate, friend, adversary, etc.) that have nonspatial origins. On the
contrary, we are completely agnostic about the number and nature of
the psychological dimensions over which relational invariants might
be computed. What we do claim is that any psychologically
privileged dimension, whether it be spatial, auditory, social, or
what have you, is subject to the kind of invariant isolation and
structure-inducing processes embodied in DORA: If there is an
invariant, wherever it originates, intersection discovery can find it
and DORA can predicate it and use it for inference and cross-domain
generalization.

Doumas (2005) and Shurkova and Doumas (2021) proposed a
compression mechanism, complementary to DORA’s refinement
algorithm, which is a form of chunking. During compression,
multiple roles attached to the same object fire together, and a
unit learns to respond to that new conjunction as a unitary predicate.
Compression allows DORA to combine multiple representations of
the same object. For example, if DORA encounters situations in
which one element is both larger and occludes some second object,
DORA can compress the roles larger and occluder and the roles
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smaller and occluded to form a representation like cover (a, b). Such
aprocedure might serve as a basis for combining primitive transitive
relations into more complex relations.

A second question is whether the role-filler representational
system DORA uses is sufficient to represent all the relations people
learn. Again, the short answer is, at least in principle, yes (as pointed
out originally by Leibniz). Formally, any multiplace predicate is
representable as a linked set of single-place predicates (Mints,
2001). Therefore, a role-filler system can, at least in principle, be
used to represent higher-arity predicates (or relations; recall the
distinction, noted above, between a relation qua a relational schema
and a function). Models based on role-filler representations account
for a large number of phenomena in analogy making, relational
learning, cognitive development, perception, and learning (e.g.,
Doumas & Hummel, 2010; Doumas et al., 2008; Hummel &
Biederman, 1992; Hummel & Holyoak, 1997, 2003; Livins &
Doumas, 2015; Livins et al., 2015; Martin & Doumas, 2017;
Morrison et al., 2004; Sandhofer & Doumas, 2008; Son et al.,
2010). Moreover, access to and use of role-based semantic informa-
tion is quite automatic in human cognition, including during mem-
ory retrieval (e.g., Gentner et al., 1993; Ross, 1989), and analogical
mapping and inference (Bassok & Olseth, 1995; Kubose et al., 2002;
Krawczyk et al., 2004; Ross, 1987). Indeed, the meanings of
relational roles influence relational thinking even when they are
irrelevant or misleading (e.g., Bassok & Olseth, 1995; Ross, 1989).
Role information appears to be an integral part of the mental
representation of relations, and role-filler representations provide
a direct account for why. Moreover, role-filler systems appear
uniquely capable of accounting for peoples’ abilities to violate
the “n-ary restriction,” mapping n-place predicates to m-place
predicates, where n is not equal to m (e.g., mapping “x murdered
y” onto “a caused b to die”’; Hummel & Holyoak, 2003).8

Livins et al., 2016 showed that we can affect the direction of a
relation by manipulating which item one looks at first, for both
obvious similarity and magnitude relations, and the other kinds of
relations. Livins et al. showed participants images depicting a
relation that could be interpreted in different forms (e.g., chase/
pursued-by, liftthang). Before the image appeared on screen, a dot
appeared on the screen drawing the participant’s attention to a
location that one of the objects involved in the relation would
appear. For example, the image might show a monkey hanging from
aman’s arm, and the participant might be cued to the location where
the monkey would appear. The relation that the participant used to
describe the image was strongly influenced by the object that they
attended to first. That is, if the participant saw the image of the
monkey hanging from the man’s arm, and she was cued to the
monkey, they would describe the scene using a hanging relation.
However, if the participant was cued to the man, she would describe
the scene using a lifting relation. This result follows directly from a
system based on role-filler representations wherein complementary
relations are represented by a similar set of roles, but the predicate,
or role, that fires first, defines the subject of the relation.

Limitations and Future Directions

People routinely learn structured representations from experi-
ence, an ability we argue is fundamental to our understanding of the
world and our ability to use the knowledge we have gained in one
context to inform our understanding of another. We offer an account
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of this process that is based on minimal assumptions, assumptions
that, with the exception of the capacity for dynamic role-filler
binding, are standard in neural networks such as DNNs. Our account
is, of course, limited in several ways. In the following, we outline
some of the limitations of our model and suggest ways to address
these limitations.

First, the constraints on learning in DORA are underdetermined.
DORA learns when it can and stores all the results of its learning.
We have implemented a crude form of recency bias in our simula-
tions (biasing retrieval of the most recently learned representations
during learning; see Simulation 1), but future work should focus on
the development of more principled mechanisms for constraining
learning and storage. Such mechanisms might focus on either
constraining when learning takes place, or when the results of
learning are stored for future processing. Most likely, though, it
will be necessary to account for both.

Constraining when DORA learns amounts to constraining when it
performs comparison. We have previously proposed several possi-
ble constraints on comparison such as language (e.g., shared labels)
and object salience, and have shown how direction to compare (i.e.,
instruction) serves as a very powerful constraint on learning (see
Doumas et al., 2008; Doumas & Hummel, 2013). These constraints
may also serve to limit when the results of learning are stored in
memory. DORA might be extended or integrated with existing
accounts of language or perceptual (feature) processing to imple-
ment such constraints (see, e.g., Martin & Doumas, 2017).

Both these limitations might be addressed by refining DORA’s
control structure. The quality of comparisons DORA makes and the
representations it learns may serve as important constraints on the
control process it uses. RL provides a useful tool for implementing
these constraints.

Second, as pointed out in Simulation 2, we do not have yet a
complete solution for the problem of how to select the right
representations to build a relational model of a domain from the
reward signal when the domain of potential relations is large. In
artificial intelligence, the problem of learning relational (a.k.a., first-
order) policies has been studied under the name of relational RL
(Driessens & Dzeroski, 2004; Driessens & Ramon, 2003; Dzeroski
et al., 2001), but these early models do not scale well to large
problems involving multiple relations. However, recent models
based on differentiable versions of inductive logic programming
(Evans & Grefenstette, 2018; Jiang & Luo, 2019) may be a
promising approach to this problem. These systems have shown

# One might wonder how the role-based learning approach works for
symmetrical relations like equals or antonym. In short, these kinds of
relations are not a problem for DORA (e.g., as demonstrated above the
model has no problem learning relations like same-as). If the relation is
interpreted as referential then the relation is not symmetrical, and the roles are
distinct. For example, in antonym (x, y), y is the referent term, playing the
referent-of-something role, and x is the antonym of that term, playing the
opposite-of-something role. Alternately, if the relation is symmetrical and
both arguments play the same role, then in a LISAese representation of that
relation, there will only be a single token for the role (recall T1 tokens are not
repeated within an analog). For example, if antonym (x, y) is symmetrical,
and both arguments play the same role—like opposite-of—then a single T1
token unit will represent that role in the proposition and both x and y will be
bound to that role by distinct T2 role-binding units in LTM and by
asynchrony of firing in WM. That is, the relation does not need two distinct
roles, but rather is representable (and learnable) as a single role involved in
two (or more) role-bindings, with those role-bindings linked to form a
higher-arity proposition.
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that it is possible under some circumstances to use gradient descent
methods to prune a prebuilt large set of rules to obtain a program
(i.e., a refined sets of rules) that allows the agent to interact
effectively with the environment. We are currently working toward
integrating this kind of error-correction learning with DORA.

The discovery of invariance has relevance beyond the few pro-
blems presented here. For example, detecting invariants in speech and
language is a defining and unsolved problem in language acquisition
and adult speech processing, including in automatic speech recogni-
tion by machines. Similarly, whether the generalization of grammati-
cal rules can be fully accounted for in systems that rely on statistical
learning alone remains contentious. The account of learning invari-
ance from experience offered here, combined with principles like the
compression of role information (Doumas, 2005), may present new
computational vistas on these classic problems in the language
sciences (see Martin, 2016; Martin & Doumas, 2017, for further
discussion). Systems with the properties of DORA may offer an
inroad to representational sufficiency across multiple domains, built
from the same mechanisms and computational primitives.

Conclusion

A cognitive architecture that is prepared to learn structured
representations of relations is prepared to generalize broadly based
on those relations. This kind of generalization includes cross-
domain transfer as a special case. In fact, it is a mundane conse-
quence of the way people conceptualize the world.

Purely statistical learning systems will most likely continue to
outperform people at any single task on which we choose to train
them. But people, and cognitive architectures capable of learning
relations in an open-ended fashion, will continue to outperform any
finite set of purely statistical systems as generalists. And general
intelligence, we argue, is not the capacity to be optimal at one task,
but is instead the capacity to excel, albeit imperfectly, at many.
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Appendix A

Computational Details

For completeness, we provide full implementational details of
DORA'’s operation below. Code for the model is available online
(see Author note).

Parts of Discovery of Relations by Analogy (DORA)

As described in the main text, DORA consists of an LTM
composed of three bidirectionally connected layers of units. Units
in LTM are referred to as token units (or tokens). Units in the lowest
layer of LTM are connected to a common pool of feature units.
Token units are yoked to integrative inhibitors that integrate input
from their yoked unit and token units in higher layers.

DORA learns representations of a form we call LISAese via
unsupervised learning. Propositions in LISAese are coded by a
hierarchy of units in layers of a neural network (see main text). At
the bottom of the hierarchy, feature (or semantic) nodes code for the
featural properties of represented instances in a distributed manner.
At the next layer, localist predicate and object units (T1) conjunc-
tively code collections of feature units into representations of objects
and roles. At the next layer localist role-binding units (T2) conjunc-
tively bind object and role T1 units into linked role-filler pairs.
Finally, proposition units (T3) link T2 units to form whole relational
structures.

Sets, groups of potentiated units, correspond to attention or
working memory (WM) within a cognitive framework. The driver
corresponds to DORA’s current focus of attention. The recipient
corresponds to active memory. Token units are laterally inhibitive
(units in the same layer inhibit one another) within, but not
across, sets.

Each layer of token units is negatively connected to a local
inhibitor, and all token unit are connected to a global inhibitor.
Active token units in a layer inhibit the local inhibitor to inactivity.
When no token units in a given layer are active, the local inhibitor
becomes active and sends a refresh signal to all tokens in that layer
and below across LTM (see below). When no token units in the

driver are active, the global inhibitor becomes active, and sends a
refresh signal to all tokens across LTM (see below). Each layer of
token units is connected to a clamping unit (C), which is excited by
unclamped units in the layer below and inhibited by unclamped
units in the same layer and the layer above (see below). C units play
a role in recruiting and activating token units during learning.

We use the term analog to refer to a complete story, event, or
situation (e.g., from a single object in isolation to a full proposition
in LISAese). Analogs are represented by a collection of token units
(T1-T3). Token units are not duplicated within an analog (e.g.,
within an analog, each proposition that refers to Don connects to the
same “Don” unit). Separate analogs do have nonidentical token
units (e.g., Don will be represented by one T1 unit in one analog and
by a different T1 in another analog). The feature units thus represent
general type information and token units represent instantiations (or
tokens) of those types in specific analogs.

Functional Overview of Processing in DORA

In this section, we describe DORA’s operation in strictly func-
tional terms. How these operations are instantiated in the neural
network using traditional connectionist computing principles is
detailed in the section directly below.

Retrieval

When there are items in the driver (i.e., DORA is attending to
something), but nothing in the rest of AM, then DORA performs
retrieval. In short, some representation b is retrieved into the
recipient to the extent that it is similar to a in the driver and
prevalent in memory, and other representations ¢ in memory are
not similar to a and are not prevalent in memory. Functionally,
retrieval works as follows:

Ret(B) « fre(sim(B, AP), sim(C # B, AP), p(B), p(C)), (Al)
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RELATION LEARNING AND CROSS-DOMAIN TRANSFER

where Ret(B) is a retrieved representation B, A” is a driver repre-
sentation (i.e., a collection of connected token units instantiating a
LISAese representation), p(B) is the prevalence of representation B
in LTM, and fg., is the retrieval function.

Mapping

When there are items in the driver (i.e., DORA is attending to
something), and in the recipient, then DORA performs mapping. In
short, representation a in the driver will map to representation b in
the recipient to the extent that there are correspondences between a
and b, and there are no correspondences between a and any other
items c in the recipient. Functionally, mapping works as follows:

M(AP, BR) «f,,(sim(AP, BR), sim(AP, C # BR)), (A2)

where M (A, B) is a mapping between A and B (instantiated as learned
bidirectional weighted connections), AP is a driver representation, B
is a recipient representation, C are other representations in the
recipient that are not B, sim(4, B) is a similarity function, and fj,
is the mapping function.

Relation Learning

If DORA has learned mapping connections between representa-
tions in driver and recipient, then it can learn from the mapping.
During learning, there are two possibilities. In the first case, if two
objects (a and b) that are not already bound to predicates (i.e., no T
units are active) are mapped, then DORA learns a single-place
predicate composed of the featural intersection of a and b. In the
second case, when sets of role-filler pairs are mapped—for example,
P(a) and P,(b) are mapped to P,(c) and P,(d)—and are not already
linked into multiplace relational structures (i.e., no T; units are
active), then DORA links one of the mapped pairs (via a T3) unit,
forming a functional multiplace relation. Functionally, learning can
be defined as follows:

E PE L, (0F) = fL(M(a®, b¥)), T,
CO RE <L (M(PP(a), PE(b)) ... M(PP(c). P;(d))), AT;
(A3)

where E; is a learned representation, P;(a) is a single-place predicate
i, in set J[J € (D = driver, R = recipient, M = LTM)] that takes the
argument a, lowercase letters (a, b, ¢, d) indicate objects, a N b
indicates the intersection of the features of @ and b, R{ , is a relational
structure i (consisting of linked predicate—argument pairs; see
Equation A4, directly below) of arity n in set J, T} is an active
T, token unit, and f; is the learning function.

The relational structure RY,, is instantiated in DORA functionally

as:
R, =[Pi(a) & ... Pi(c)], (A4)
where < is a linking operator. For any R; a single T5 unit instantiates

all n — 1 instances of the < operator in R;, linking (i.e., conjuncting)
predicate-argument pairs PR(a) ... PR(c).
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Refinement

If DORA has learned mapping connections between representa-
tions in driver and recipient, then it can learn a refined (or schema-
tized) representation consisting of the featural intersection of the
mapped representations. Refinement is defined as follows:

R —fr(M(RD,RE)), (A5)

where R{n (defined directly below) is a refined relational structure i
of arity n in set J, and f; is the refinement function. The refined
structure R/, is then:

R = [Pl (@) & . Pl e (8)] (A6)
where Ppnp, is a single-place predicate composed of the featural
intersection of mapped predicates P;” and PJ«R.

Relational Generalization

If DORA has learned mapping connections between representa-
tions in driver and recipient, then it can perform relational generali-
zation, inferring structure from the driver about items in the
recipient. Generalization in DORA follows the standard copy-
with-substitution-and-generalization format (Holyoak et al.,
1994), and can be defined as follows:

GE —fG(M(RP, R®) A ~M(RD)), (A7)

where G; is a generalized structure (see Equation A8, directly
below), ~M(A) is an unmapped structure A, and f; is the generali-
zation function. The generalized structure G is then:

GF = [RX ARE), (A8)

where Rf is the mapped relational structure from Equation A7, and
RR is generalized relational information in the recipient that matches
the unmapped R? from Equation A7.

Processing in DORA

DORA’s operation is outlined in pseudocode in Figure Al. The
details of each step, along with the relevant equations and parameter
values, are provided in the subsections that follow. DORA is very robust
to the values of the parameters (see Doumas et al., 2008). For equations
in this section, we use the variable a to denote a unit’s activation, 7 its
(net) input, and w;; to denote the connection from unit i to unit j.

An analog, F (selected at random, or based on the current game
screen), enters the driver. Network activations are initialized to 0.
Either (a) the firing order of propositions in F is random (however,
see Hummel & Holyoak, 2003, for a detailed description of how a
system like DORA can set its own firing order according to the
constraints of pragmatic centrality and text coherence), or (b) a
roughly random firing order is instantiated by passing a top-down
input signal to all units i in the highest layer of D sampled from a
uniform distribution with values between 0 and 0.4. DORA performs
similarity and relative magnitude calculation through the relational
invariance circuit, then runs retrieval from LTM, analogical map-
ping, and comparison-based unsupervised learning (predicate learn-
ing, refinement, and (relational) generalization). Currently, the order

(Appendices continue)
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Figure A1l
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Pseudocode of Processing in Discovery of Relations by Analogy (DORA)

Processing step

| Description

Items Fin D
W(‘L’i, T O'n) — LE(T,-, Tj)

refining, generalizing}:
Fori e F:

UntilY; > 0; :
{g,n, Y, 1} « f(a), @ Wi Y, 1)
When mapping :

Ahy < a;a;

If EI(mD,R) :

When predicate learning :

When refining :

(aTx,LTM,L = 1) <3 (afy.D,L >6,0N mTy'R)

When generalizing :

(aTx,R,L =1)« A,y N AM R

AWU < a; (a] - WU))/
End If
End Until
End For
When retrieving :

A(g)
Jr <D (ZA—(h) h#Eg
‘When mapping :

End For

For operation in {retrieving, mapping, predicate learning,

(a"-'j,R,L = 1) < ((Zafy.R.L—1 - EaTz:j,R,L) > 917)

< Potentiated units, F, in driver, D.
Run relational invariance circuit.

VANAN

Perform DORA operations in sequence.

< Fis the set of units at the highest token
layer for any set of connected units.

< While unit i’s yoked inhibitor has not fired.

< Update inputs and activation of units in
the network.

< During mapping.

< Update mapping hypotheses, &, between
units j and k.

< If there are mapping connections, m,
between units in D and R.

< During predicate learning.

A

Activation of recruited token 7 in R

layer L is clamped to 1 as a function of

the activation of unclamped 7, and 74 at

L-1 and L respectively.

< During refinement.

< Activation of recruited token unit, 7, in
long term memory, LTM, layer L,
clamped to 1 to match active 7, in D
layer L with mapping connections.

< During generalization.

< (2.3.3) Activation of recruited z in R
layer L clamped to 1 to match active 7z in
D layer L with no mapping connections.

< Update weights via Hebbian learning.

< During retrieval.

< Activated, 4, units g, retrieved into
recipient, R.

< During mapping

< Activated, 4, units g, retrieved into
recipient, R, via the Luce choice rule.

of operations of these routines is set to the order: retrieval, mapping,
learning (predicate learning, refinement, and generalization).

Relational Invariance Circuit

The operation of the relational invariance circuit is described in
the main text. The relational invariance circuit runs when two or
more items (T1 units) are present in the driver and those items are
connected to similar magnitude representations (e.g., pixels, etc.). It
is inhibited to inactivity when two or more circuit output features are
active above threshold (= .9) when both T1 units are active. As
noted in the main text, we presently make no strong commitment to
an account of dimensional salience (as discussed in, e.g., Spelke &

Kinzler, 2007). As such, two T1 units in the driver, both encoding an
object or both encoding a predicate, are selected at random, and
when those items are connected to multiple dimensions, a dimen-
sional encoding becomes active at random (activation of features
encoding that magnitude for the two T1 units are clamped to 1). The
choice of two T1 units follows work on the WM capacity of children
(e.g., Halford, Bain, et al., 1998). As described in the main text,
proxy units connected to the active driver T1 units update their
activation and input by Equations 4 and 5, respectively. E unit
activation is updated by Equation 7. Feature units connected to E
units update their input by Equation 8, and their activation by
Equation 9. Weights between feature units and active T1 units
are updated by Equation 10.

(Appendices continue)
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Main DORA Operations

Repeat the following until each token unit  in the highest layer of
F has fired three times if mapping, or once, otherwise (each token
unit at the highest layer firing is referred to as the phase set). If a
firing order has been set, select the current unit i in the firing order
and set g; to 1.0. Otherwise, pass a top-down input (n = unif (0, .4))
to token units in the highest layer of F.

Update Inputs and Activations of Network Units
Update Mode of All T3 Units in Driver and Recipient

T3 units in all propositions operate in one of three modes:
Parent, child, and neutral (Hummel & Holyoak, 1997, 2003). T3
mode is important for representing higher-order relations (e.g.,
RI(x, R2 (y, z)); Hummel & Holyoak, 1997). As detailed below,
higher-order relations are represented in DORA such that if one
proposition takes another as an argument, the T3 unit of the lower-
order proposition serves as the object of an T2 unit for the higher-
order proposition (i.e., the lower-order T3 unit is downwardly
connected to the T2 unit, as a T1 unit would be), and the T3 unit
represented the lower-order proposition operates in child mode. By
contrast, when a T3 unit is not acting as the argument of another
proposition, it operates in parent mode. The mode m; of T3 unit i is
updated by the equation:

Parent(l), Tzabove < szelow
m; = Chlld(_l)’ Tzabovc > T2bclow s (A9)
Neutral(0), otherwise

where T2,,0ve 1S the summed input from all T2 units to which i is
upwardly connected (i.e., relative to which i serves as an argument),
and T2jow is the summed input from all T2 units to which i is
downwardly connected. In the current simulations, T3 mode did not
have to change their mode. We include this step here solely for the
purposes of completeness (see Hummel & Holyoak, 1997, 2003, for
details).

Update Input to All Units in the Network

Update Input to All Token Units in Driver. Token units in the

driver update their input by the equation:

n; = Zajw,-jG - Zak - sz.’)am - 101;,
Y k m

where j is all units above unit i (i.e., T3 units for T2 units, T2 units
for T1 units), G is a gain parameter attached to the weight between
the T2 and its T1 units (T1 units learned via DORA’s comparison-
based predication algorithm (see below) have G = 2 and all other T1
units have G = 1), k is all units in the driver in the same layer as i (for
T1 units, k is only those T1 units and T3 units currently in child
mode not connected to the same T2 as unit #; see above), m are T1
units that are connected to the same T2 (or T2 units) as i, and /; is the
activation of the T1 inhibitor yoked to i. When DORA is operating
in binding-by-asynchrony mode, s = 1; when it is operating in
binding-by-synchrony mode (i.e., like LISA), s = 0.

Update Input to Feature Units. Feature units update their
input as:

(A10)
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n; = E ajwij,

JjESE(D,R)

(A1)

where jis all T1 units in S, which is the set of propositions in driver,
D, and recipient R, and wj; is the weight between T1 unit j and
feature unit i. In LISA (see Hummel & Holyoak, 2003), when
multiple propositions are in the driver simultaneously it ignores the
features of the arguments. This convention follows from the
assumption that people default to thinking of single propositions
at a time, and the only reason to consider multiple propositions
simultaneously is to consider structural constraints (e.g., Hummel &
Holyoak, 2003; Medin et al., 1993), and has been adopted in DORA.
When there are multiple positions in the driver, input to semantics is
taken only from T1 units j acting as roles (i.e., with mode = 1;
see below).

Update Input to Token Units in Recipient and LTM. Inputto
all token units in recipient and LTM are not updated for the first five
iterations after the global or local inhibitor fires.

Token units in recipient and token units in LTM during retrieval
update their input by the equation:

J
+ Mi - Zak - SZ3am - Zan - IﬁG -I7, (A12)
k m n

where j is any unit above token unit i (i.e., T3 units for T2 units, T2
units for T1 units; input from j is only included on phase sets beyond
the first), SEM,; is the feature input to unit { if unit i is a PO, and 0
otherwise, M; is the mapping input to unit i, k is all units in either
recipient (if unit i is in recipient) or LTM (if unit i is in LTM) in the
same layer as i (for T1 units, k is only those T1 and T3 units currently
in child modeunits not connected to the same T2 as unit i; see the
Update Mode of All T3 Units in Driver and Recipient section ), m is
T1 units connected to the same T2 as i (or O for non-T1 units), n is
units above unit i to which unit i is not connected, ' is the activation
of the global inhibitor (see below), and I'; is the activation of the local
inhibitor in the same layer as or any layer above i. When DORA is
operating in binding-by-asynchrony mode, s = 1; when it is operating
in binding-by-synchrony mode (i.e., like LISA), s = 0. SEM,, the
feature input to i, is calculated as:

2wy

SEM; = ,
" 1+ num(j)

(A13)

where j is feature units, w; is the weight between feature unit j and
T1 unit i, and num(}) is the total number of feature units i is
connected to with a weight above 0 (= 0.1). M; is the mapping
input to i

M, = Zaj(3w,-j — Max(Map(i)) — Max(Map(j))),  (Al4)

where j is token units of the same type as i in driver (e.g., if i is a T2
unit, j is all T2 units in driver), Max (Map (i)) is the highest of all unit
i’s mapping connections, and Max (Map ( j)) is the highest of all unit
J’s mapping connections. As a result of Equations A14, active token
units in driver will excite any recipient units of the same type to
which they map and inhibit all recipient units of the same type to
which they do not map.

(Appendices continue)
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Update Input to the Yoked Inhibitors

Every token unit is yoked to an inhibitor unit i. T2 and T3
inhibitors are yoked only to their corresponding T2. T1 inhibitors
are yoked both to their corresponding T1 and all T2 units in the same
analog. Inhibitors integrate input over time as:

nEHl) — nf‘t) +a;+ Zak’ (A15)
k

where ¢ refers to the current iteration, j is the token unit yoked to
inhibitor unit i, and k is any T2 units if j is a T1, and O otherwise.
Inhibitor units become active (a; = 1) when n; is greater than the
activation threshold (= 220 for T2 and T1 units; 220 X n for T3
units—where n is the number of T2 units the T3 units is
connected to). All T1 and T2 inhibitors become refreshed
(a; = 0 and n; = 0) when the global inhibitor (I'g; described
below) fires.

Update the Local and Global Inhibitors

The local inhibitors, I';, are inhibitory units connected to all
units in a single layer of LTM (i.e., there is a local inhibitor for
T1 units, another for T2 units). The local inhibitor is potentiated
(P (I'y)=1)whenadriverunitin I';’s layer is active, is inhibited
to inactivity (I';, = 0) by any driver unit in its layer with activation
above ©; (=0.5), and becomes active (I';, = 10) when no token unit in
its layer has an activity above ©;. A firing local inhibitor sets the
activation and potentiation of all other local inhibitors below and
including itself to 0. The global inhibitor, I's, is potentiated (P(I'g) = 1)
when any driver units are active, and is inhibited to inactivity (I'¢ = 0)
by any driver unit in its layer with activation above O (= 0.5), and
becomes active (I'¢ = 10) when no T1 in its layer has an activity above
®¢. The global inhibitor sets activation and potentiation of all other
local inhibitors to 0.

Update Activations of All Units in the Network

All token units in DORA update their activation by the leaky
integrator function:

Aa; = yn;(1.1 — a;) — 8a;]9, (A16)
where Ag; is the change in activation of unit i, y (= 0.3) is a growth
parameter, n; is the net input to unit i, and & (= 0.1) is a decay
parameter. Activation of all token units 7, is hard limited to between
0 and 1 inclusive.

Feature units update their activation by the equation:
n;

= max (n;)’ (AL7)

where a; is the activation of feature unit i, n; is the net input to feature
unit 7, and max () is the maximum input to any feature unit. There is
physiological evidence for divisive normalization in the feline visual
system (e.g., Bonds, 1989; Heeger, 1992) and psychophysical
evidence for divisive normalization in human vision (e.g., Foley,
1994; Thomas & Olzak, 1997).

Token unit inhibitors, i, update their activations according to a
threshold function:

DOUMAS, PUEBLA, MARTIN, AND HUMMEL

_ 1, n; > ®IN
&= {0, otherwise’ (A13)
where ©;y =220 for T1 and T2 units and 220 X n for T3 units (where
n is the number of T2 units to which that T3 unit is connected).

Update Mapping Hypotheses

If mapping is licensed, DORA learns mapping hypotheses
between all token units in driver and token units of the same
type in recipient, that is, between T3 units, between T2 units and
between T1 units in the same mode (described below). Mapping
hypotheses initialize to zero at the beginning of a phase set.
The mapping hypothesis between a driver unit and a recipient
unit of the same type is updated by the equation:

Ahj; = didl, (A19)

where ;' is the activation of driver unit i at time 7.

Comparison-Based Unsupervised Learning

If licensed, DORA will perform comparison-based learning
(CBL). CBL is unsupervised. In the current version of the model,
learning is licensed whenever 70% of driver token units map to
recipient items (this 70% criterion is arbitrary, and in practice either
0% or 100% of the units nearly always map).

Predicate and Relation Learning

During predicate and relation learning, DORA recruits (and
clamps the activation of) token units in the recipient to respond
to patterns in firing in adjacent layers. The recruitment procedure is a
simplified version of ART (Carpenter & Grossberg, 1990). Each
layer of token units i is connected to a clamping unit C;, which 10
iterations after any inhibitor unit has fired, is activated by the
equation:

o= (S-S} 0.

1
0, otherwise

where a; is the activation of unclamped token units in the layer
below i for T2 and T3 units, g; is the activation of unclamped token
units in layer 7, max (a;) is the maximum activation of a unit in layer
J» and 6, 1s a threshold (=0.6). C; for the T1 layer is equal to C; for the
T2 layer.

An active C; in the recipient sends an input, (p; = 1.0), to a
randomly selected token unit, j (where j is not connected to units in
other layers), in layer i (p; = O for all units k # j). Token units are
clamped by the equation:

I, pi—=-3>a >0
¢ = { R (A21)
0, otherwise

where ¢; is the clamped activation of unit j in layer 7, and ay is the
activation of all clamped token units in the same layer as j, where
k # j, if jis in T1, and all token units in the same layer as j,

(Appendices continue)
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where k # j, otherwise. Unit j remains clamped until I'; fires, and j
is inhibited to inactivity. If the recruited token is in T1 its mode is set
to 1 (marking it as a learned representation; although the idea of
units firing in modes sounds nonneural, Hummel et al. (1994)
described how it can be accomplished with two or more auxiliary
nodes with multiplicative synapses) and connections between the
recruited token unit and all active features update by the equation:

Awy; = a;(a; — wy)Y. (A22)
where Aw;; is the change in weight between the new T1 unit 7, and
feature unit j, a; and g; are the activations of i and j, respectively, and
y is a growth rate parameter. Additionally, connections between
corresponding token units (i.e., between T3 and T2, or T2 and T1
units) are also updated by Equation A22, where i are recipient token
units in layers adjacent to recruited unit j. When the phase set ends,
connection weights between a T2 or T3 unit i/ and any token unit in
the adjacent lower layer j (i.e., j is a T2 unit when i is a T3 unit, and j
is a T1 unit when i is a T2 unit), are updated by the equation:

(A23)

i

Wij >owi =2
Wi = k

0, otherwise

where £ is all other units, including j, in the same layer as j. This
operation removes weights to redundant tokens that do not conjunct
two or more units at a lower layer.

Refinement Learning

During refinement, DORA infers token units in the LTM that match
active tokens in the driver. Specifically, DORA infers a token unit in
the LTM in response to any mapped token unit in the driver. If unitj in
the driver maps to nothing in the LTM, then when j fires, it will send a
global inhibitory signal to all units in the LTM (Equation A14). This
uniform inhibition, unaccompanied by any excitation in recipient, is a
signal that DORA exploits to infer a unit of the same type (i.e., T1, T2,
T3) in LTM. Inferred T1 units in the LTM have the same mode as the
active T1 in driver. The activation of each inferred unit in the LTM is
set to 1. DORA learns connections between corresponding active
tokens in the LTM (i.e., between T3 and T2 units. and between T2 and
T1 units) by Equation A22 (where unit j is the newly inferred token
unit, and unit i is any other active token unit). To keep DORA’s
representations manageable (and decrease the runtime of the simula-
tions), at the end of the phase set, we discard any connections between
feature units and T1 units whose weights are less than 0.1. When the
phase set ends, connection weights between any T2 or T3 unit i and
token units at a lower adjacent layer j to which i has connections are
updated by Equation A23.

Relational Generalization

The relational generalization algorithm is adopted from that
Hummel and Holyoak (2003). As detailed in Equation A14, when
a token unit j in driver is active, it will produce a global inhibitory
signal to all recipient units to which it does not map. A uniform
inhibition in recipient signals DORA to activate a unit of the same type
(i.e., T1, T2, T3) in recipient as the active token unit in driver. DORA
learns connections between corresponding active tokens in the LTM
(i.e., between T3 and T2 units. and between T2 and T1 units) by the
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simple Hebbian learning rule in Equation A22 (where unit j is the
newly active token unit, and unit i is the other active token unit).
Connections between T1 units and feature units are updated by
Equation A22. When the phase set ends, connection weights between
any T2 or T3 unit i and any token units in an adjacent lower layer j to
which i has connections are updated by Equation A23.

Retrieval

DORA uses a variant of the retrieval routine described in Hummel and
Holyoak (1997). During retrieval units in the driver fire as described
above for one phase set. Units in the LTM become active as in
Step 2.1. After one phase set representations are retrieved from
LTM into the recipient probabilistically using the Luce choice

axiom:
R;

; A24
SR (A24)
where L; is the probability that T3 unit i will be retrieved into
working memory, R; is the maximum activation T3 unit i reached
during the retrieval phase set and j is all other T3 units in LTM. If a
T3 unit is retrieved from LTM, the entire structure of tokens (i.e.,
connected T1...T3 units) are retrieved into recipient.

Update Mapping Connections

If DORA is mapping, mapping connections are updated at the end
of each phase set. First, all mapping hypotheses are normalized by
the equation:

) — MAX (), (A25)

[ (R —
77 \MAX (I, hy)

where h;;is the mapping hypothesis between units i and j, MAX (h;, ;)
is the largest hypothesis involving either unit i or unit j, and MAX
(hy) is the largest mapping hypothesis where either k =i and [ # j, or
| = j and k # i. That is, each mapping hypothesis is normalized
divisively: Each mapping hypothesis, &; between units 7 and j, is
divided by the largest hypothesis involving either unit i or j. Next,
each mapping hypothesis is normalized subtractively: The value of
the largest hypothesis involving either i or j (not including A;; itself)
is subtracted from h;;. The divisive normalization keeps the mapping
hypotheses bounded between zero and one, and the subtractive
normalization implements the one-to-one mapping constraint by
forcing mapping hypotheses involving the same i or j to compete
with one another. Finally, the mapping weights between each unit in
driver and the token units in recipient of the same type are updated
by the equation:

Awy = (1.1 = wy)hy)°, (A26)
where Aw;; is the change in the mapping connection weight between
driver unit i and recipient unit j, h; is the mapping hypothesis
between unit i and unit j, n is a growth parameter, and Aw;; is
truncated for values below 0 and above 1. After each phase set,
mapping hypotheses are reset to 0. The mapping process continues
for three phase sets.

(Appendices continue)
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Learning the Relational Invariance Circuit

As described in the main text, the relational invariance circuit
consists of three layers of nodes. At the top layer, proxy units are
connected to individual T1 units in the driver. The next layer, E,
consists of four nodes and takes input from any active proxy units.
At the bottom are feature units, initially randomly connected to
nodes in E. Weights between units in £ and feature units are
initialized to random numbers between O and 0.9, and lateral
connections for E are set to —1. Connections between units in £
and feature units are updated by Equations 10 in the main text.

Higher-Order Relations

Although they are not necessary for the current simulations, for
the purposes of completeness it is important to note that DORA
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easily represents higher-order relations (i.e., relations between
relations; see Doumas et al., 2008; Hummel & Holyoak, 1997).
In short, when a proposition takes another proposition as an argu-
ment, the T3 unit of the lower-order proposition serves as the object
of a T2 unit for the higher-order proposition. For example, in the
higher-order relation greater (distance (a, b), distance (c, d)), the T3
unit of the proposition distance (a, b) serves as the argument of the
more role of the higher-order greater relation, and the T3 unit of the
proposition distance (c, d) serves as the argument of the /ess role of
the higher-order greater relation. When a T3 unit serves as the object
of a T2 unit, it operates in child mode (see above). The modes of T3
units change as a function of whether they are receiving top-down
input. A T3 unit receiving top-down input from a T2 unit (i.e., when
the T3 unit is serving as the argument of that T2 unit) will operate in
child mode, while a T3 unit not receiving input from any T2 units
will operate in parent mode.

Appendix B

Simulation Details

DORA: Learning Representations From Screens

We used DORA to simulate learning structured representations
from screenshots from the game Breakout. This simulation aims to
mirror what happens when a child (or adult) learns from experience
in an unsupervised manner (without a teacher or guide). While we
describe the results in terms of DORA learning to play Breakout and
generalizing to Pong, but results were the same when run in the other
direction (i.e., train on Pong and generalize to Breakout; Supple-
mental Results, Figure S1).

For Simulation 2, screens were generated from Breakout during 250
games with random move selection. Each screen from each game was
processed with the visual preprocessor that identified objects and
returned the raw pixel values as features of those objects. When
learning in the world, objects have several extraneous properties. To
mirror this point, after visual preprocessing, each object was also
attached to a set of 100 additional features selected randomly from
a set of 10,000 features. These additional features were included to act
as noise, and to make learning more realistic. (Without these noise
features, DORA learned exactly as described here, only more quickly.)

DORA learned from object representations in an unsupervised
manner. On each learning trial, DORA selected one pair of objects
from a screen at random. DORA attempted to characterize any
relations that existed between the objects using any relations it has
previously learned (initially, it had learned nothing, and so nothing
was returned) by selecting a dimension at random and running the
two objects through the relational invariance circuit (described
above) over that dimension. If the features returned matched
anything in LTM (e.g., “more” and “less” “x”), then DORA used
that representation from LTM to characterize the current objects.
DORA then ran (or attempted to run) retrieval from LTM, the
relational invariance circuit, mapping, and representation learning
(see above). Learned representations were stored in LTM. We
placed the constraint on DORA’s retrieval algorithm such that
more recently learned items were favored for retrieval. Specifically,
with probability .6, DORA attempted to retrieve from the last 100
representations that it had learned. This constraint followed our

assumption that items learned more recently are more salient and
more likely to be available for retrieval.

The process was identical for Simulation 3, except that instead of
screens from Breakout, we used the first 300 images from the CLVR
data set for representation learning. In Simulation 4, we had two
ablated versions of the model: In the first ablated model (A1), we
ablated the inhibitory connections from the onset of the simulation;
in the second ablated model (A2), we ablated the inhibitory con-
nections after the model had learned to play Breakout. Representa-
tion learning for both models was as in Simulation 1.

DORA: Q-Learning for Game Play

For Simulations 2—4, for a given screen, DORA used the repre-
sentations it had previously learned to represent the relations
between objects on that screen and the previous screen. That is,
for any pair of objects, if DORA had learned a representation that
characterized the relation between the two objects (in LTM and as
measured by the relational invariance circuit), DORA used that
representation the characterize the objects.

The relations were then used to form a table of encountered
relational states, and Q-learning (Sutton & Barto, 1998) was used to
learn the approximate action-value function for Breakout. We used a
rule length constraint of two relations per state, reflecting the
simplicity of the game and the WM capacity exhibited by humans
(Logie et al., 2020). We trained DORA decreasing the learning rate
linearly from 0.1 to 0.05 and the exploration rate linearly from 0.1 to
0.01 throughout the training session. We saved the version of the
table that yielded the maximum score during the session.

Deep Q-Network

A deep Q-network (DQN; Mnih et al., 2015) was trained to play
Breakout and Pong. The raw 210 x 160 frames were preprocessed
by first converting their RGB representation to grayscale and down-
sampling it to a 105 x 80 image. We stacked the last four
consecutive frames to form the input of each state.

(Appendices continue)
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The input to the neural network was the 105 x 80 X 4 preprocessed
state. The first hidden convolutional layer applied 16 filters of size 8 X 8
with stride 4 with a relu activation function. The second hidden
convolutional layer applied 32 filters of size 4 X 4 with stride 2 with a
relu activation function. The third hidden layer was fully connected
of size 256 with a relu activation function. The output layer was fully
connected with size 6 and a linear activation function.

We implemented all the procedures of the DQN to improve training
stability, in particular: (a) We used memory replay of size 1,000,000;
(b) We used a target network which was updated every 10,000
learning iterations; (c) We fixed all positive rewards to be 1 and
all negative rewards to be —1, leaving 0 rewards unchanged; and (d)
We clipped the error term for the update through the Huber loss.

We also ran the same network using the input from the visual
preprocessor described above.

Supervised DNN

We trained a DNN in a supervised manner to play Breakout and
Pong and tested generalization between games. One network was
trained using random frame skipping and the other with fixed frame
skipping.

The inputs to the network were the output of the visual prepro-
cessor described above. Specifically, the network took as input the x
and y positions of the ball and player-controlled paddle, as well as
the left paddle for Pong (left as zeros when playing Breakout). The
input to the neural network was a vector of size 24 corresponding to
the preprocessed last seen four frames. This was fed to three fully
connected layers of size 100 each with a relu activation function.
The output layer was fully connected with size 6 and a softmax
activation function.

The criteria for training were the correct action to take in order to
keep the agent-controlled paddle aligned with the ball. In Breakout if
the ball was to the left of the paddle the correct action las “LEFT,” if
the ball was to the right of the paddle the correct action was
“RIGHT” and if the ball and the paddle were at the same level
on the x-axis the correct action was “NOOP.” In Pong if the ball was
higher than paddle the correct action was “RIGHT,” if the ball was
lower than paddle the correct action was “LEFT” and if the ball and

the paddle were at the same level on the y-axis the correct action was
“NOOP.” This action was encoded as a one-hot vector (i.e.,
activation of 1 for the correct action and cero for all other actions).

Graph Network

Graph networks (see Battaglia et al., 2018, for a review) are neural
network models designed to approximate functions on graphs. A
graph is a set of nodes, edges, and a global feature. The representa-
tion of the nodes, edges, and the global attribute encode feature
information. A graph network takes as input a graph and returns a
graph of the same size and shape, but with updated attributes.

Our graph net agent used an encode-process-decode architecture
(Battaglia et al., 2018) where three different graph networks are
arranged in series. The first graph net encodes the nodes, edges and
global attributes independently, the second graph net performs three
recurrent steps of “message passing” and the third graph net decodes
the nodes, edges, and global attributes independently.

The graph agent takes in a graph-structured representation of the
screen where each object corresponds to a node in the graph. In our
simulations, the node representation corresponds to the position,
area, color, and velocity of the objects on the screen. In order to use
the graph network as a reinforcement learning agent, we set the
number of edge attributes to the number of possible actions. In this
way, our agent produces a vector of Q-values for each edge,
corresponding to the valid actions in each game. To choose actions,
the agent takes an argmax across all edges’ Q-values.

To train our agent, we used a replay memory of size 50,000.
Before training, we feed the replay memory with 1,600 memories
(i.e., tuples containing a state graph, action, edge, reward, next state
graph, and a “done” variable). At each time step, we saved the
current memory and sample a batch of 32 memories from the replay
memory to train the agent. We used the Adam learning algorithm
with a learning rate of 0.01 and default learning parameters.
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