
1. Introduction
The low-level jet (LLJ) in the Arabian Sea is a prominent feature of the Indian summer monsoon (Findlat-
er, 1969, 1974; Halpern & Woiceshyn, 2001; Rajendran et al., 2012). The jet carries moisture from the Indian 
Ocean onto the Indian subcontinent. Thus, the strength of the LLJ is positively correlated with the Indian sum-
mer monsoon rainfall in the modern climate (Chakraborty et al., 2002, 2009; Joseph & Sijikumar, 2004). The 
upwelling induced along the western boundary of the Arabian Sea by the LLJ is proportional to the strength of 
the LLJ along the coast (coastal upwelling) and to the curl of wind stress (Ekman upwelling) offshore (Brock 
& McClain, 1992; Lee et al., 2000; Liao et al., 2016). It has been shown that stronger monsoons produce larger 
upwelling (Murtugudde et al., 2007). This relation has been used to reconstruct the strength of the past monsoons. 
Regions of upwelling are also regions of higher ocean productivity. Therefore, by measuring the productivity in 
these regions as archived in the sediment cores, upwelling can be inferred.

Evidence from such reconstructions indicates that the strength of upwelling lags local summer insolation by 
about 9 kyrs (Caley et al., 2011; Reichart et al., 1998; S. C. Clemens & Prell, 2003; S. C. Clemens et al., 2010; 
S. Clemens et al., 1991). Whether this can be interpreted as a lag in the South Asian monsoon has been a subject 
of debate (Gebregiorgis et al., 2020; Zhang et al., 2020) because several terrestrial proxies of monsoon suggest 
that monsoon rainfall is nearly in phase with local insolation (Zhang et al., 2019). Some studies have argued 
that the proxies of upwelling in the Arabian Sea are influenced by the location of the LLJ instead (Anderson & 
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Prell, 1992; Gupta et al., 2005; Le Mézo et al., 2017). Thus, indicating that the relationship between LLJ and the 
monsoon rainfall may be different in different climate regimes. This view is supported by recent studies where 
it was shown that it is the net energy flux into the atmosphere and water vapor, and not the monsoon winds 
that account for variability of South Asian monsoon on centennial and longer timescales (Jalihal, Srinivasan, 
et al., 2019; Jalihal et al., 2020).

The variations in precipitation over the Bay of Bengal are, however, linked to those in LLJ on precession times-
cales (Jalihal, Bosmans, et al., 2019; Jalihal et al., 2020). The LLJ extends into the Bay of Bengal and modulates 
the surface latent heat flux there. These fluctuations in the surface latent heat flux are large enough to counter the 
changes induced by insolation. Hence, precipitation over the Bay of Bengal is out-of-phase with local summer 
insolation. Thus, the orbital-scale variations in LLJ are linked to oceanic precipitation and not to the terrestrial 
precipitation within the South Asian monsoon domain.

The variations in the LLJ on intraseasonal and interannual timescales have been studied extensively (Arpe 
et al., 1998; Chen & van Loon, 1987; Fasullo & Webster, 2002; Halpern & Woiceshyn, 2001; Jain et al., 2021; 
Joseph & Sijikumar, 2004). Several studies have also highlighted that LLJ location and intensity are changing 
and are likely to change further due to global warming (Decastro et al., 2016; Preethi et al., 2017; Rajendran 
et al., 2012; Sandeep & Ajayamohan, 2015; Sandeep et al., 2018). A comprehensive study of LLJ variations on 
the orbital timescale is, however, missing. An understanding of the long-term variations in LLJ and the factors 
that drive it is necessary for the correct interpretation of the proxies. In this article, using fully coupled general 
circulation models, we have unraveled the factors that affect upwelling on the orbital timescale.

2. Data and Methods
We have used NCEP reanalysis over the period 1948–2017 to understand the connection between upwelling and 
precipitation at the interannual timescales. GPCP monthly precipitation data is used to evaluate precipitation over 
India. Reconstructions of upwelling from the Arabian Sea give an estimate of the upwelling on longer timescales. 
We have used several foraminifer assemblages from the cores RC27-61 (S. C. Clemens & Prell, 2003), MD04-
2861 (Caley et al., 2011), and GeoB3004-1 (Schmiedl & Leuschner, 2005). The productivity estimates from the 
NIOP cores 455, 464, and 497 (Reichart et al., 1998) were also used. Furthermore, denitrification in the oxygen 
minimum zone also represents upwelling (Altabet et al., 2002; Reichart et al., 1998). Hence, we have used δ15N 
from the cores RC27-14 and RC27-23 (Altabet et al., 2002). These proxies are spread across the western and 
northern Arabian Sea (Figure 1). Thus, they have the potential to provide an estimate of spatial variations in up-
welling on longer timescales. Most of these records constitute the Arabian Sea monsoon stack by S. C. Clemens 
et al. (2010). At the precession mode, this stack is highly coherent with the orbital parameters as well as the δ18O 
from caves in East Asia with a confidence level of 95%. These Arabian Sea upwelling records are compared 
with the δ18Osw (δ18O of seawater; see methods in Jalihal, Srinivasan, et  al.,  2019 for a detailed description) 
from a sediment core near the mouth of Ganga-Brahmaputra in the northern part of the Bay of Bengal (Kudrass 
et al., 2001). Since this region is influenced by the run off from over land, this proxy captures the amount of ter-
restrial monsoon rainfall. The time sampling is not uniform across different proxies. Hence, we have interpolated 
all the proxies to an equally spaced interval of 500 years, following which a bandpass filter is applied to extract 
the precession modes (18–24 kyrs). For our analysis, we have considered the time period between 0 and 100 ka.

We have carried out time slice orbital experiments in the high resolution, fully coupled CESM 1.2.0 (Hurrell 
et al., 2013; Neale et al., 2012). The model consists of the CAM 5 (Community Atmospheric Model) for the 
atmospheric component and Parallel Ocean Program (POP) for the ocean model. CAM has a resolution of 
0.9° × 1.2°, whereas the POP has a resolution of about 0.25° near the equator. The model was run with orbital 
configurations corresponding to the minimum and maximum precession (Pmin and Pmax), following the experi-
mental setup used by Bosmans et al. (2015). In the precession minimum (Pmin) orbital configuration, the boreal 
summer solstice occurs near the perihelion, whereas in the Precession maximum (Pmax), it occurs at aphelion. The 
eccentricity is set close to the highest values that occurred in the last million years. This produces a difference in 
summer insolation (June-July-August) between Pmin and Pmax, over India of about 80 Wm−2 (Berger, 1978; Bos-
mans et al., 2015, 2018; Jalihal, Bosmans, et al., 2019). Each simulation is run for 100 years. Since precessional 
forcing modulates the seasonal cycle and does not affect the annual mean insolation, its impact on the interme-
diate and deep ocean can be assumed negligible. Thus, a simulation of 100 years is sufficient. The first 50 years 
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of the simulation are discarded as spin-up, and only the last 50 years are considered for the study. All the other 
boundary conditions are kept constant at their preindustrial values. The model has a decent representation of 
the climatological Indian summer monsoon (Figure S1 in Supporting Information S1). It has excess orographic 
precipitation along the foothills of the Himalayas. Compared to most CMIP5 models, CESM 1.2.0 has better 
climatological precipitation over India and reproduces the seasonal cycle quite well (Figures S2 and S3 in Sup-
porting Information S1). To further validate our results, we have used data from the Pmin and Pmax simulations 
from another high-resolution fully coupled model: EC-Earth (Bosmans et al., 2015) and also from a transient 
simulation of climate over the last 22,000 years (TraCE-21K) with realistic forcings (Liu et al., 2009; He, 2011).

Modern observations and numerical simulations suggest that the high primary productivity in the western Ara-
bian Sea is governed largely by two factors, viz. the coastal upwelling along the coast of Arabia and the offshore 
upwelling (Brock & McClain, 1992; Lee et al., 2000; Liao et al., 2016). The coastal upwelling is proportional to 
the wind stress (Sverdrup, 1951), whereas the offshore upwelling (Ekman upwelling) is determined by the curl of 
wind stress. Using simulations of productivity in the western Arabian Sea in a fully coupled climate model with 
an online biogeochemical model (Le Mézo et al., 2017) have shown that orbital forcing influences productivity in 
the western Arabian Sea through the Ekman upwelling. Hence, we have used Ekman upwelling in all our analy-
ses, and it was evaluated as the curl of wind stress over the surface of the ocean:

𝑊𝑊𝑒𝑒 = curl

(

𝜏𝜏

𝜌𝜌𝜌𝜌

)

 (1)

Figure 1. The spatial map of correlation between interannual June-July-August averaged rainfall over India and Ekman 
upwelling everywhere over the period 1948–2017. The inset black box represents the region over which area-averaged 
precipitation was evaluated (10°–29°N; 70°–85°E; land only grids). The hatched regions have significant correlation 
coefficients at the 90% confidence level. NCEP-reanalysis 1 data set was used to evaluate the curl of wind stress, and 
Global Precipitation Climatology Project data set was used for precipitation. The filled circles show the correlation between 
the proxy of the Indian monsoon, δ18Osw (Kudrass et al., 2001)and the proxies of upwelling in the Arabian Sea (Altabet 
et al., 2002; Caley et al., 2011; Reichart et al., 1998; S. C. Clemens & Prell, 2003; Schmiedl & Leuschner, 2005). These 
proxies were bandpass filtered for the precession modes (18–24 kyrs). The filled circles represent the location of the 
upwelling proxies. The color with which the circles are filled corresponds to the correlation of the proxy with that of the 
Indian monsoon proxy.
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where, We is the upwelling averaged over the Ekman layer, ρ is the density of sea water (taken to be 1025 kg m−3), 
f is the Coriolis parameter, τ is the wind stress on the surface of the ocean. τ is given by:

𝜏𝜏 = 𝜌𝜌𝑎𝑎 ∗ 𝐶𝐶𝑑𝑑 ∗ 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠 (2)

ρa is the density of air (taken to be 1 kg m−3), WSsfc is the surface wind speed (10 m wind speed is used from NCEP 
and wind speed at 0.995 σ for model data). Cd is the drag coefficient and is given by Large and Pond (1981):

𝐶𝐶𝑑𝑑 = 0.001 3 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 11 m s
−1 (3)

�� = 10−3(0.49 + 0.065 ∗ �����) ����� > 11 m s−1 (4)

3. Results
3.1. Impact of Precession on the Relation Between the Arabian Sea Upwelling and South Asian Monsoon

Figure 1 depicts the correlation between the Indian summer monsoon rainfall (ISMR) and upwelling in the sur-
rounding oceans at interannual timescales based on NCEP data. It shows that ISMR is positively correlated with 
upwelling in the northwestern Arabian Sea along the coast. Even though the reconstructions of upwelling lie 
within regions where upwelling is positively correlated with the ISMR, they register a negative correlation. This 
opposing correlation at the interannual and precession timescales (∼23 kyrs) suggests that different processes 
link upwelling to the ISMR at different timescales. Moreover, the precession mode correlation is not spatially 
uniform. There are differences in the correlation as we move north. Near the Horn of Africa, it is positively cor-
related, but changes sign further north. Thus, suggesting a complex relationship between ISMR and upwelling 
on precession timescales.

Orbital forcing modulates both the ISMR as well as the LLJ (Jalihal, Bosmans, et al., 2019; Jalihal et al., 2020). 
Therefore, we have examined the relation between ISMR and upwelling due to variations in Earth's orbit (Fig-
ures 2a and 2b). We find that the relation between ISMR and upwelling is different under different climates 
(Figures 2a and 2b). During periods of high local summer insolation and climatological monsoon (Pmin), the 
correlation between interannual variations in ISMR and upwelling is negligible. In contrast, during periods of 
weaker summer insolation and climatological monsoon (Pmax), the correlation between interannual variations in 
ISMR and upwelling is stronger. Thus, underscoring that the relationship between ISMR and upwelling as seen 
in modern observations should not be extended for all climates.

The orbital configuration of Pmax resembles the modern orbital configuration, albeit with higher eccentricity. 
The pattern of the correlation between ISMR and upwelling is, also similar (Figures 1 and 2b). The interannual 
variations in the latitude and strength of the LLJ is related to those in the gradient of surface pressure over the 
Arabian Sea (Chakraborty & Agrawal, 2017; Sandeep & Ajayamohan, 2015; Tomas & Webster, 1997; Webster 
et  al.,  2003). At the precession timescales, additional factors influence the location and strength of the LLJ 
(Jalihal, Bosmans, et al., 2019). Precipitation over northeastern Africa and the western equatorial Indian Ocean 
increase on account of higher summer insolation in Pmin compared to Pmax (Figure S4 in Supporting Informa-
tion S1). The convective heating over these two regions drives a Matsuno-Gill-like response of the lower tropo-
spheric winds (Jalihal, Bosmans, et al., 2019; Pausata et al., 2021). The ensuing Kelvin wave produces an anoma-
lous easterly that leads to narrowing of the LLJ and also causes its maxima to shift northward (Jalihal, Bosmans, 
et al., 2019; Pausata et al., 2021). In the current study, we find a similar dependence at the interannual timescales 
as well in Pmin. The interannual variations in precipitation over northeastern Africa and the western equatorial 
Indian Ocean have a greater impact on the LLJ, and hence on the upwelling in Pmin (Figure 2c and Figure S5a in 
Supporting Information S1). In Pmax, precipitation over these two regions is weaker. Therefore, they do not influ-
ence the upwelling in Pmax at the interannual timescales (Figure 2d and Figure S5b in Supporting Information S1).

3.2. Change in Area of Upwelling

The proxies used to detect upwelling, in general, record the integrated effect of several years. Therefore, we 
next examine the climatology in our simulations. A change in precession leads to meridional shifts in the LLJ 
(Figures 3a and 3b). In Pmin, the LLJ is parallel to the coast of Oman and is located in the northern Arabian Sea. 
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The climatological summer monsoon is stronger in this experiment. On the other hand, summer insolation and 
ISMR are weaker in Pmax. The LLJ is further south as compared to its location in Pmin. Along with this southward 
shift, the strength of the LLJ also changes. The maximum velocity is higher in Pmax and is located near the Horn 
of Africa. There is a change in the width of the LLJ as well. The LLJ is broader in Pmax and is narrower in Pmin 
(Figures 3a and 3b). Thus, suggesting that the orbital scale variability of the LLJ consists of fluctuations in the 
strength, meridional location, and width, whereas, its interannual fluctuations are primarily due to changes in 
its strength (Figure S6 in Supporting Information S1). The variations in the strength, magnitude, and location 
of the LLJ on precession timescales are due to the additional influence of convective heating over northeastern 
Africa and the western equatorial Indian Ocean (Jalihal, Bosmans, et al., 2019; Pausata et al., 2021; Figure S4 in 
Supporting Information S1).

Since upwelling is determined by the curl of wind stress, any changes in the location, width, or strength of the 
LLJ would have an impact on upwelling. Therefore, we have compared the curl of wind stress from the two ex-
periments to understand the impact of the changes in the LLJ (Figure 4). In Pmin (stronger summer insolation), 

Figure 2. The spatial map of correlation between the June-July-August mean precipitation over the region represented by the inset boxes with Ekman upwelling over 
grids everywhere for the Pmin simulation(a and c) and the Pmax simulation(b and d). The area-averaged precipitation over the Indian monsoon region (10°–29°N; 70°–
85°E; land only grids) is considered in (a and b), and over northeast Africa (10°–20°N; 35°–45°E) is taken in (c and d). The hatched regions have significant correlation 
coefficients at the 95% confidence level. The last 50 years of the simulation were used to generate the correlation maps.
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upwelling is concentrated along the western boundary of the Arabian Sea and extends all the way into the north-
ern parts of the Arabian Sea. In Pmax, the intensity of upwelling increases along the Horn of Africa. This region of 
largest upwelling extends up to 15°N. The upwelled water gets advected along with the nutrients to the northern 
Arabian Sea (Caley et al., 2011). Therefore, most of the proxies would capture a stronger signal in climates with 
Pmax–like orbital configurations. Furthermore, the area over which upwelling occurs in the northern Arabian Sea 
more than doubles in Pmax. This explains why most of the proxies suggest a large lag with respect to the local 
summer insolation. Such changes in the area of upwelling are not observed on interannual timescales (Figure S7 

Figure 3. The June-July-August averaged climatological surface wind speed in shading for (a) Pmin (strong monsoon) and (b) Pmax (weak monsoon). The unit vectors 
indicate the direction of surface winds.

Figure 4. The June-July-August averaged climatological Ekman upwelling in shading for the climate for (a) Pmin (strong monsoon) and (b) Pmax (weak monsoon).
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in Supporting Information S1). These results are consistent in Pmin and Pmax simulations using another fully cou-
pled model- EC-Earth (Figure S8 in Supporting Information S1). The out-of-phase relation between upwelling 
and ISMR can also be seen in TraCE-21k (Figure S9 in Supporting Information S1). The Indian monsoon is weak 
at the last glacial maximum, and it strengthens across the deglacial, reaches a maximum around early Holocene 
(∼10 ka), and gradually weakens during the Holocene. Contrarily, Ekman upwelling is strongest at the last glacial 
maximum. It decreases across the deglacial to reach a minimum at around the early Holocene and increases in 
strength through the Holocene.

4. Discussion and Conclusions
Different proxies have been used to reconstruct the long-term variations in the monsoon. Some of the proxies, 
in particular, the δ18O from caves, indicate that monsoon is nearly in phase with local summer insolation (Cheng 
et al., 2012; Zhang et al., 2019). Reconstructions of upwelling along the western coast of the Arabian Sea, which 
was previously believed to be proportional to monsoon strength, suggests that upwelling (and hence monsoon) 
lags local summer insolation significantly at the precession mode. A comprehensive mechanism for the cause 
of lag in the proxies from the Arabian Sea was still missing. Furthermore, the previous studies did not explain 
the diverging relation between the Indian monsoon rainfall and upwelling at interannual and precession modes.

In this study, we have demonstrated that along with the changes in wind speed of the LLJ, the changes in the 
width of the jet, and its meridional location influence upwelling in the Arabian Sea. On interannual timescales, 
the changes in the wind speed govern the seasonal mean upwelling (Figure S6 in Supporting Information S1). 
At the precession timescales, the variations in the width and latitude of the jet also play a crucial role. These 
are influenced by convective heating in the western equatorial Indian Ocean and northeastern Africa (Jalihal, 
Bosmans, et al., 2019; Jalihal et al., 2020). These convective heat sources are a result of precessional forcing. 
The changes in the strength, width, and latitude of the LLJ are such that the curl of wind stress is stronger during 
climates with weaker summer insolation. Moreover, the spatial extent of upwelling is substantially larger. Thus, 
proxies register enhanced productivity (upwelling) in such climates even though the summer monsoon is weaker. 
Another high-resolution fully coupled climate model shows consistent results. Similar result from a transient 
simulation of climate over the last 22,000 years (TraCE-21k) with realistic forcings in a fully coupled CCSM4 
further enhances confidence in our results (Figure S9 in Supporting Information S1). Thus, upwelling-based 
proxies do not represent the variability of the South Asian monsoon at the precession mode. This also explains 
the large lag observed between upwelling and other terrestrial proxies of the monsoon. The proxies of upwelling 
were previously thought to represent the South Asian monsoon and were found to have a large lag with respect 
to the terrestrial proxies, sparking off a long-standing debate (Caley et al., 2011; Gebregiorgis et al., 2020; Wang 
et al., 2014; Zhang et al., 2019, 2020). Our results show that upwelling-based proxies in the Arabian Sea are not 
linked to the Indian monsoon rainfall at precession timescales.

Recent reconstructions of the monsoon spanning multiple glacial-interglacial cycles suggest a stronger influence 
of changes in greenhouse gas concentrations and ice volume (Beck et  al.,  2018; Maher & Thompson,  2012; 
McGrath et al., 2021; S. C. Clemens et al., 2021; S. Clemens et al., 2018). This is in direct contrast to some of the 
speleothem reconstructions from East Asia, which suggest changes in insolation predominantly drive monsoons. 
In our previous work (Jalihal, Srinivasan, et al., 2019; Jalihal et al., 2020), using the energetics of monsoons we 
have shown in the TraCE-21k that net energy flux into the atmosphere (Qdiv) and total column water vapor (Pwat) 
are enough to explain the orbital scale variability of monsoons. Insolation drives fluctuations in monsoons pri-
marily through Qdiv, whereas greenhouse gases and ice sheets affect the gross moist stability through their impact 
on Pwat. Thus, the impact of other forcings is accounted for. In these studies, we had used a domain that covers 
most of the South Asian monsoon region. The relative impact of these forcings might vary from one region to 
another. This could be one reason why some of the proxies suggest a stronger influence of forcings other than 
insolation. Moreover, since the simulation used in these studies is only 22 Kyrs long, the relative role of insolation 
and other forcings on monsoons on the glacial-interglacial timescales cannot be determined fully. Greenhouse 
gas and ice sheet forcings also affect the LLJ and hence the curl of wind stress (Le Mézo et al., 2017). This could 
be a reason why proxies of upwelling indicate a lag of 5–9 Kyrs with local summer insolation instead of the 
12 Kyrs lag (Precession maximum and minimum are separated by 12 Kyrs). Additionally, other processes such 
as lateral advection of coastally upwelled nutrients due to alongshore wind stress, the transport of nutrients by 
mesoscale eddies and filaments, vertical mixing, and mixed layer depth could also affect the lag in the proxies. 
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Fertilization of the upper ocean by dust can also impact primary productivity (Liao et al., 2016; Wiggert & Mur-
tugudde, 2007). During periods of weaker monsoons, dust emission is higher due to an increase in the area of the 
arid regions. This is another factor that could be the reason for the opposite phase of primary productivity with 
insolation. Furthermore, it has also been argued that the timing of the supply of nutrients to the euphotic zone is 
influenced by the Atlantic Meridional Overturning Circulation (AMOC; Ziegler et al., 2010). The changes in the 
relative impact of these processes in response to orbital, greenhouse gas, and ice-sheet forcings might lead to the 
spatially nonuniform relation between proxies of upwelling and the Indian monsoon (Figure 1). High-resolution 
eddy-resolving ocean models are required to understand the impact of changes in these processes on primary 
productivity in response to glacial-interglacial forcings.

Proxy reconstructions are based on the relation between physical processes observed in the modern climate. Our 
results underscore that additional factors can impact the interpretation of some of the proxies on longer times-
cales. For example, since the region of upwelling expands and shrinks out-of-phase with the strength of the Indian 
monsoon on precession timescales, the upwelling signal captured by the proxy in many cases is out-of-phase with 
the Indian monsoon.

Data Availability Statement
The CESM 1.2.0 data used in this study is available at https://doi.org/10.5281/zenodo.5140156. The NCEP rea-
nalysis data was obtained from https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html. The GPCP precipi-
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