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Abstract

People undergo many idiosyncratic experiences throughout their lives that may contribute to indi-
vidual differences in the size and structure of their knowledge representations. Ultimately, these can
have important implications for individuals’ cognitive performance. We review evidence that suggests
a relationship between individual experiences, the size and structure of semantic representations, as
well as individual and age differences in cognitive performance. We conclude that the extent to which
experience-dependent changes in semantic representations contribute to individual differences in cog-
nitive aging remains unclear. To help fill this gap, we outline an empirical agenda that utilizes net-
work analysis and involves the concurrent assessment of large-scale semantic networks and cognitive
performance in younger and older adults. We present preliminary data to establish the feasibility and
limitations of such empirical, network-analytical approaches.
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1. Introduction

From childhood and adolescence onwards, the average human reads a couple of books each
year, watches hundreds of hours of TV, and spends many hours on social media (Twenge,
Martin, & Spitzberg, 2019), leading to the accumulation of a large and, potentially, largely
unique, set of experiences during a lifetime. To what extent does the accumulation of such
idiosyncratic experiences contribute to individual differences in thought and judgment across
the life span?

Aging research has long realized not only the importance of describing the modal changes
in cognition across the life span but also that “cognitive development in adulthood and old
age differs substantially from person to person and is malleable within individuals” (Linden-
berger, 2014 p. 576). Despite the field’s direct acknowledgment of interindividual differences,
we still know little about the sources of such differences and the extent to which idiosyncratic
life experiences contribute to cognitive performance. Crucially, some voices have raised the
possibility that cumulative experience and the cognitive representations they give rise to are a
major factor underlying typical age-related patterns, such as decreased memory performance
with increased age (Buchler & Reder, 2007; Ramscar, Hendrix, Shaoul, Milin, & Baayen,
2014).

In this article, we propose that network science can be instrumental in illuminating the
effects of cumulative experience on individual differences in cognition. To this end, we first
review the existing literature on the links between cumulative experience, cognitive repre-
sentation, and cognitive performance. We then identify the lack of direct assessment of indi-
viduals’ mental representations as a central limitation, and propose an empirical agenda that
utilizes network analysis to fill this gap. Next, we present a proof-of-concept study that illus-
trates the feasibility and limitations of our approach involving the elicitation of large-scale
semantic networks from single individuals. Finally, we discuss the challenges and implica-
tions of the outlined research agenda to understand individual and age differences.

2. From experience to cognitive performance: An overview of the current literature

In this section, we assess the current state of the psychological literature that has investi-
gated the links between environmental exposure, the size and structure of semantic represen-
tations, and cognitive performance across the life span (see Fig. 1). Our goal is both to provide
a brief overview of the current literature and to highlight the main gaps that must be filled to
understand the role of individual experience in cognitive representations and performance.

There are several lines of research supporting a close link between cumulative experience
and cognitive performance (see Fig. 1, pathway A: Environment—Performance), of which
three stand out. First, research that summarizes the association between print exposure and
reading performance in children and young adults underlines the tremendous impact of expe-
rience on linguistic proficiency. Specifically, meta-analytic results show moderate to strong
correlations between print exposure and reading comprehension or spelling (Mol & Bus,
2011). This work supports the idea of an “upward spiral,” such that individuals who are more
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Fig. 1. Research pathways that have linked environment, representation, and cognitive performance across the
life span. Pathway (A) represents research studying the association between the environment and cognitive perfor-
mance without explicit consideration of the underlying mental representations. Pathway (B) represents research on
the association between environmental exposure and mental representations. Pathway (C) represents research on
the association between mental representations and cognitive performance. We propose that pathways (B) and (C)
can particularly benefit from a network analytic approach.

exposed to written text become more proficient in reading and comprehension, which, in turn,
leads to increased print exposure, further increasing linguistic proficiency. Second, one of the
best documented findings in aging research concerns the observed increases in crystallized
abilities across the life span, as reflected in vocabulary size (Verhaeghen, 2003, for a meta-
analysis). This work suggests that even as adults, individuals continue to expand their vocab-
ulary store throughout their lives (Brysbaert, Stevens, Mandera, & Keuleers, 2016). This is
compatible with the idea that such vocabulary growth is related to individuals’ lifetime formal
or informal education. Notably, such increases in knowledge seem to have general implica-
tions for cognitive performance. For example, older adults are more likely to rely on predic-
tion in reading because of their additional reading experience (Huettig & Pickering, 2019; but
see Wlotko, Federmeier, & Kutas, 2012). Third, research on expertise suggests that increased
cumulative experience leads to domain-specific memory performance (Sala & Gobet, 2017,
for a meta-analysis), such as experienced chess players being able to memorize both realis-
tic and random chess positions better than novices (Gobet & Simon, 1996). All in all, such
findings coalesce to make a strong case for the importance of environmental effects on cog-
nitive performance and suggest that these effects are cumulative and, likely, domain specific.

Most, if not all, psychologists will find it trivial to state that the effects of cumulative expe-
rience are somehow mediated by its effects on mental representations and processes (Fig. 1,
pathway B, Environment—Representation). Despite the truism and the increasing consen-
sus that the lexical-semantic space continues to be shaped by personal linguistic experience
throughout the life span (Rodd, 2020), only recently have researchers started to probe more
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deeply into the effects of cumulative experience on the structure of knowledge representa-
tions. Some researchers have adopted graph-based approaches to capture potential structural
changes to the mental lexicon that occur across the life span as a function of experience (for
an overview, see Wulff, De Deyne, Jones, Mata, & The Aging Lexicon Consortium, 2019).
The current literature suggests that cumulative experience has implications for not only the
size but also the structure of mental representations (e.g., Cosgrove, Kenett, Beaty, & Diaz,
2021; Dubossarsky, De Deyne, & Hills, 2017). For example, Dubossarsky and colleagues
conducted a network analysis of free association data from thousands of individuals (10 to 84
years of age), and found older adults’ semantic networks were less connected (i.e., the words
in the network have lower average degrees), less organized (i.e., the words in the network
have a lower average local clustering coefficient), and less efficient (i.e., the shortest path
length between any two words in the network is greater) relative to those of younger adults.
Crucially, new methods are becoming available that promise ever greater insight and preci-
sion in mapping individual and group differences in the structure of mental representations
(e.g., Benedek et al., 2017; Morais, Olsson, & Schooler, 2013; Zemla & Austerweil, 2018).
Table 1 presents an overview of a few approaches to measuring individual-level mental rep-
resentations and we discuss in more detail pros and cons of each approach in the next section
(cf. Section 3).

Finally, research is accumulating that establishes direct links between the structure of
semantic representations and cognitive performance (Fig. 1, pathway C, Representation—
Performance). For example, various studies on memory recall show impaired performance
when words represented as nodes within a semantic network have lower clustering (Nelson,
Bennett, Gee, Schreiber, & McKinney, 1993). More recent work has expanded this line of
research to understand how lexical and semantic structure is crucial to individual cognitive
performance in various domains, such as intelligence and creativity (He et al., 2021; Kenett
& Faust, 2019). These more recent studies are particularly relevant because they have started
relying on individual or small group estimates of mental representations and how macroprop-
erties of representational networks impact cognitive performance. However, one should note
that this work has not established a direct link between explicit measures of an individual’s
cumulative experience, such as books read or movies watched, and the size or structure of the
mental representations—instead studies have typically relied on proxies for experience, such
as age (Wulff et al., 2019).

All in all, these different lines of research support the idea that cumulative personal expe-
rience plays a crucial role in determining individual differences in cognitive performance
across the life span. However, much of this work is correlational (Nation, 2017, for a sim-
ilar critique) and not carried out at the level of the individual. As a result, the mechanisms
that tie cumulative exposure to performance are still under investigation. We propose that
to truly understand the consequences of individual experience on mental representation and
cognitive performance, the concurrent assessment of individuals’ unique environments, as
well as their mental representations and cognitive performance, is needed. In this endeavor,
network science provides a key tool to capturing individuals’ mental representations, in par-
ticular, in the quantification of the connection patterns between mental concepts that can be
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empirically related to both experience and cognitive performance. In what follows, we offer
an empirical agenda that uses network science tools to better understand the aging lexicon.

3. An empirical agenda

As outlined above, the current literature has made large strides toward understanding the
components linking cumulative experience to cognitive performance: We know that younger
and older adults differ in the amounts and kinds of experiences, the contents and structure of
mental representations, and that there are systematic age and individual differences in both
fluid and crystallized performance. However, presently, we cannot confidently estimate the
portion of individual differences in performance across the life span due to the accumulation
of specific types of experience. What is missing, in our mind, is a concerted empirical agenda
that investigates the Environment—Representation and the Representation—Performance path-
ways at the level of the individual, thus allowing us to quantify how a certain type or quantity
of experience translates into the size or structure of cognitive representations, and, ultimately,
into differences in cognitive performance. This goal presents challenges on several levels, and
we discuss two major ones below: first, the challenge of measuring individuals’ environments,
and, second, the challenge of capturing the content and structure of single individuals’ mental
representations.

Concerning the challenge of measuring individuals’ environments, one main limiting factor
is currently the lack of available data. Put simply, the field lacks context-aware longitudinal
projects that provide a characterization of the environments experienced by individuals over
time. Although unprecedented, large amounts of contextualized text and speech data are now
available to scientists (e.g., Love, Dembry, Hardie, Brezina, & McEnery, 2017; Schroter &
Schroeder, 2017), few of these data sets present data on the level of the individual or distin-
guish between age groups. Crucially, any individual’s environment consists of not only lin-
guistic information, but also rich multimodal sensorial information (e.g., De Deyne, Navarro,
Collell, & Perfors, 2021). Thus, a major challenge for future research is to create individual-
annotated, multimodal corpora accessible for research. There is optimism in the field that the
rise of the quantified-self movement and the availability of new “digital tracing” methods can
provide multiple data streams to feed computational modeling efforts that use these data to
create models of individual’s mental representations (Wulff et al., 2019). These models would
be crucial to generate expectations about individuals’ actual mental representations.

Concerning the challenge of mapping individuals’ mental representations, and as dis-
cussed above, there are now different approaches to obtaining semantic networks in order to
characterize the size and structure of mental representations (see Table 1). However, not all
of these approaches are equally suited to accurately uncovering the full breadth and depth
of a single individual’s mental representation (scope) while ensuring comparability between
individuals in the lexical-semantic space covered (comparability). For example, approaches
to derive networks derived from verbal fluency tasks, for example, using the U-INVITE algo-
rithm (Zemla & Austerweil, 2018), are limited to specific categories (e.g., concrete categories
such as animals) and semantic relationships (e.g. is-a). which may not be representative of
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the entire semantic network (De Deyne & Storms, 2008). In addition, learning about within-
category structure is not very informative about the links between categories. In turn, other
approaches that derive networks from relatedness judgments require no intricate modeling
and can be powerful in providing comparability between individuals because participants can
be presented with the same pairs of concepts (Wulff, Hills, & Mata, 2018). However, asking
individuals to provide ratings to all possible pairs becomes prohibitively demanding with even
small sets of stimuli because this implies thousands of paired comparisons.! Compared to
other methods, free associations are a relatively economical basis for semantic networks and
can provide broad scope. However, free-association methods that ask individuals to generate
associations in a snowball method (Morais et al., 2013) may reduce comparability across par-
ticipants’ networks due to path dependency in any individual’s search of the representational
store. In comparison, to generate networks from free associations with fixed, experimenter-
generated lists may provide a better choice in both scope and comparability. One should note
that free association has also been the method of choice for most previous large-scale assess-
ments of aggregate semantic networks (De Deyne, Navarro, Perfors, Brysbaert, & Storms,
2019; Steyvers, Shiffrin, & Nelson, 2005).

All in all, our review of the literature, as well as assessment of the challenges above, high-
lights several future directions: first, providing a better description of the idiosyncratic expe-
riences of individuals that can inform computational and learning models of linguistic and
semantic cognition, and second, mapping the mental representations of single individuals
that can later be matched to expectations about the role of experience in cognitive perfor-
mance and the potential consequences. In what follows, we provide our own attempt at using
network science to tackle the second challenge of mapping individual semantic networks and
linking them to cognitive performance.

4. Estimating the Representation—Performance pathway: The MySWOW project

Our team is currently pursuing the My Small World of Words (MySWOW) project that
aims to map the semantic networks of single individuals so as to be able to link the structural
characteristics of each individual’s mental representation and several aspects of cumulative
experience and performance.

In what follows, we describe a small study that showcases and assesses the feasibility
of such an approach. Our project and the procedure of our feasibility study was inspired
by ongoing efforts to obtain word association norms for several languages in a large
online citizen-science project, the Small World of Words (SWOW) study (https://small
worldofwords.org). SWOW has already offered a set of useful linguistic resources for both
Dutch (De Deyne, Navarro, & Storms, 2013) and English (De Deyne et al., 2019) and
aims to contribute additional resources concerning 15 other languages, including German
(https://smallworldofwords.org/de), in the future. The adoption of the same procedure for the
large, population-based SWOW and the study of individuals, MySWOW, promises future
assessments of the comparability between the results from aggregate networks and those of
single individuals or small groups.
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We largely adopted the procedure of SWOW, which asks participants to provide three
associates to a given cue (e.g., “cat”). The two additional responses help elicit nondominant
associations, with limited evidence of response chaining (i.e., bias from previous responses;
De Deyne et al., 2019). SWOW typically presents volunteers with 18 cues that provide
responses in the course of minutes. In contrast, we asked each individual participant to pro-
vide answers to thousands of cues over the course of weeks. Specifically, each participant in
our study was asked to provide three associations to a total of 3,000 unique cues and 600
repeated cues (to assess reliability), resulting in a total of 10,800 responses per participant.

We obtained data for four younger (aged 24 to 28) and four older (aged 68 to 70) native Ger-
man speakers. In an initial session, participants were briefed in person and received instruc-
tions concerning the dedicated online tool that they could use to complete the word asso-
ciations. Participants then completed the word associations from home over the course of
weeks. After finishing the word association task, participants returned to the laboratory for
cognitive testing on several memory and linguistic tasks. In particular, we focused on verbal
fluency, paired associated learning, and episodic memory tasks that have often been used to
estimate and understand individual and age differences in cognitive performance (Ramscar,
Sun, Hendrix, & Baayen, 2017; Zemla & Austerweil, 2018). A companion data paper pro-
vides a detailed account of our design, participants, and methods (Wulff, Aeschbach, Deyne,
& Mata, in press). The data can be downloaded from https://osf.io/vkwps/.

4.1. Differences in the semantic networks of younger and older individuals

In what follows, we document a first effort to obtain individual semantic networks from
word association data in MySWOW and report a qualitative comparison of the results with
those from past work, which suggests structural differences between the semantic representa-
tions of younger and older adults (Dubossarsky et al., 2017; Wulff et al., 2019).

For each individual, we created unipartite networks by placing weighted, undirected edges
between responses and corresponding cues. This resulted in eight individual networks con-
taining 4,836 to 6,461 nodes, which is comparable in size to previously obtained large-scale
aggregate associative networks (Morais et al., 2013; Steyvers et al., 2005). Fig. 2 illustrates
the network of one individual, highlighting the most central words according to PageRank
(e.g., Griffiths, Steyvers, & Firl, 2007) and the underlying structure by identifying clusters
extracted using the Louvain method (Blondel et al., 2008).

Networks strongly overlapped in content with each other and with existing SWOW data
sets. For instance, the top 10 most central words in the German SWOW data set,’ money,
music, work, school, water, car, love, green, and important, are all found among the top 100
most central words in all individual networks, while also making up 38% of the top 10 most
central words in individual networks. Consistent with previous work (e.g., Dubossarsky et al.,
2017; Wulft, Hills, Lachman, & Mata, 2016; Wulff et al., 2018), older adults’ networks were
larger (Noa = 5, 921 vs. Nyq = 5, 133), had lower degrees ({(k)ps = 1.39 vs. (k)ys = 1.66),
had lower clustering coefficients (Cps = 0.053 vs. Cyq = 0.115), and had larger shortest path
lengths (Lps = 8.87 vs. Lyy = 7.45) than those of younger adults (see Table 2). Except for
one older adult, whose network had structural characteristics more similar to those of the
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Fig. 2. Associative network of one participant. Node size represents PageRank centrality, colors communities
detected using the Louvain algorithm (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008). Words were translated
from the original German and show the most important words in the respective community, with size representing
the word’s importance in the overall network as determined by PageRank.

Table 2
Macroscropic differences in semantic network structure in terms of degree (k), clustering coefficient (C), and
average path length (L) for full and common individual networks based on nodes shared among participants

Full network Common network

Group Age V| (k) C L V| (k) C L

Young 24 5,780 3.03 .091 8.15 2,111 3.03 153 7.66
Young 27 4,836 3.47 115 7.13 2,111 3.55 174 6.70
Young 27 4,920 3.31 119 7.36 2,111 3.32 202 6.81
Young 28 4,995 3.44 136 7.14 2,111 3.62 220 6.54
Old 68 5,275 3.35 .059 6.54 2,111 3.33 .110 5.94
Old 68 6,461 2.63 .045 9.33 2,111 2.46 .072 8.86
Old 69 6,157 2.78 .053 8.37 2,111 2.76 .093 7.76
Old 70 5,792 2.39 .055 11.3 2,111 2.19 114 10.8

younger adults (row 5 in Table 2), these patterns held for all possible pairwise compar-
isons of younger and older adults’ networks. Also consistent with earlier work, the degree
distributions® of older adults’ networks were less similar to each other (.48 < r < .58) than
those of younger adults (.58 < r < .71), suggesting a progression of network differentiation
with age (Wulff et al., 2018).
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5. Linking individual networks to cognitive performance

Can the networks described above be used to understand individual cognitive performance?
This question can be addressed at two levels: At the network level, macroscopic properties
of the network, such as average degree or clustering, could be used to predict overall per-
formance in a given task (Kenett & Faust, 2019). At the node level, microscopic properties,
such as node degree or the shortest path length between two nodes, can be used to predict
trial-level performance, such as the order of retrievals in a verbal fluency task. As the small
sample size (N = 8) of our proof-of-concept study limits comparisons at the network level,
we focus on relating semantic networks and cognitive performance on the node level. To this
end, we analyze how well two important node characteristics—namely, node centrality, mea-
sured using PageRank (see, e.g., Griffiths et al., 2007), and node similarity, measured using
Katz’ walk similarity (see, e.g., De Deyne, Navarro, Perfors, & Storms, 2016; Hills, Jones, &
Todd, 2012)—correspond to response patterns in two verbal fluency tasks, a paired associative
learning task and an episodic memory task.

In the animal and letter verbal fluency tasks, individuals were asked to retrieve as many
animal words or words starting with the letter S, respectively, as they could, within 10 min.*
The retrieved words had substantially higher centrality than words that were not retrieved, but
are in an individual’s network. Specifically, for seven out of eight individuals, retrieved ani-
mals were more central in their respective networks as compared to other animals contained
in the respective networks that were not retrieved by the individual (Fig. 3A). Similarly, for
all eight individuals, retrievals of words starting with the letter S had higher centrality in the
respective networks than other words starting with any same letter contained in their net-
works (Fig. 3B). We also found words occurring directly adjacent within retrieval sequences
to be more similar to each other than words more distant from each other. Comparing directly
adjacent words (Lag 1) to words that were three responses apart, this was the case for every
individual in the animal fluency task (Fig. 3C) and for six of the eight individuals in the letter
fluency task (Fig. 3D). In the episodic memory task, participants freely recalled words from
previously studied word lists.” Both retrieved words and intrusions, that is retrieved words
that were not on the list, but included in the individual’s network, tended to have, on average,
higher centrality than missing words (Fig. 3E). This pattern held for five out of eight individu-
als. Furthermore, both retrieved words and intrusions were, on average, more similar to other
retrieved words than to missing words (Fig. 3F) for seven of eight individuals. Finally, the
associate recall task required individuals to retrieve previously learned word pairs.® Retrieved
word pairs had, on average and for all eight individuals, higher similarity than words pairs
that were not retrieved (Fig. 3G).

Each of these links demonstrates that individual networks can be used to predict an indi-
vidual’s pattern of behavior in several cognitive measures. The critical question arising from
this framework, however, is whether individual networks reveal idiosyncratic differences that
can be used to understand an individual’s behavior better than would be possible using an
aggregate representation derived from the responses of many individuals. To assess this,
we compared the magnitude of the effects presented in Fig. 3, for example, the PageRank
of retrieved versus nonretrieved words in verbal fluency tasks, which were derived using
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Fig. 3. Links between mental representations and cognitive performance for the four younger (blue lines) and
the four older adults (yellow lines). The panels show the difference in PageRank centrality between retrieved
and nonretrieved words in animal (A) and letter fluency (B), the average cosine similarity of words one,
two, and three words apart in animal (C) and letter fluency (D), the PageRank centrality of retrieved, missing,
and intrusion words in the episodic memory task (E), the average cosine similarity of retrieved, missing, and
intrusion words to (other) retrieved words in the episodic memory task (F), and the average cosine similarity of
retrieved versus nonretrieved word pairs in the associative recall task (G). The black line shows the effects under
the aggregate representations. Centrality is measured as PageRank times the number of nodes in the network, to
account for differences in network sizes.

individuals’ personal networks, against the magnitude of effects resulting from using an
aggregate derived from combining the responses from all eight individuals. This analysis
revealed that the aggregate network produced, on average, equally large, if not larger, effects
than individual networks (see black lines in Fig. 3).

The similar or improved performance of the aggregate compared to individuals’ own net-
works could be due to differences in both the reliability and precision of measurement of the
different types of networks. First, on average, only 53% of three possible associations given
to repeated cues were also given during the first encounter of the same cue, indicating, at best,
moderate levels of internal consistency. Furthermore, focusing on the 2,111 shared nodes, we
found individuals’ networks to share a large amount of variance with the aggregate network,
as indicated by average correlations of 7 = .61 and 7 = .55 for PageRank and cosine distri-
butions, respectively, although variance shared with the networks of other individuals was,
on average, rather low (PageRank: 7 = .34; Cosine: ¥ = .33). These results suggest that the
individual networks contain a shared component that is reliably captured by an aggregate
network. They also suggest that the aggregate network is relatively free from aggregation
bias (see also Wulff et al., 2018). Second, the aggregate network derived from the response
of all individuals is given access to more detailed information on the relative strength of
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associations between nodes in the networks. For individuals, only 2.2% to 5.5% of word
associations occurred more than once, and these repetitions occurred a maximum of two or
three times per individual. For the aggregate representation, however, 20.5% of associations
occurred more than once, with counts reaching as high as 15, leading to a more graded pattern
of edge strengths between network nodes in the aggregate relative to the individual networks.
One should note that this implies that the comparison of individual and aggregate networks
is largely confounded with a comparison of weighted (aggregate) and unweighted (individ-
ual) networks.

6. What have we learned from MySWOW so far?

Our approach using network science was successful in mapping large-scale individual net-
works for a small sample of younger and older adults, suggesting that the approach can be
used to capture the mental representations of individuals: Individuals’ networks were highly
similar to each other in terms of content, and these contents were qualitatively similar to
those of past efforts to produce aggregate networks, such as SWOW. In line with past work,
the results from the eight participants suggested age-related differences in their structural
composition (Dubossarsky et al., 2017; Wulff et al., 2018). All in all, our approach seems
promising in offering a window into adult age differences in the content and structure of the
aging lexicon and the individual differences that can arise across adulthood as a function of
cumulative experience.

Our results also showed that estimates of node centrality and relatedness derived from
single individuals’ networks exhibited strong links to individuals’ responses in four cog-
nitive tasks, including two verbal fluency and two memory tasks. These results demon-
strate that it is feasible, in principle, to map information from individual semantic networks
onto additional linguistic and memory performance at the single participant level. Naturally,
future work needs to strive to collect data from more individuals to assess whether network-
level properties are systematically related to differences in cognitive performance between
individuals.

Our results demonstrate that our approach is, nevertheless, limited. Most crucially, our
results suggest that individual networks were less powerful in accounting for individuals’
response patterns in the additional measures of linguistic and memory performance than an
aggregate network composed of all individuals’ responses. The advantage of aggregate over
individual networks presents a major challenge to the claim that it is important to assess
individual networks to understand individual differences in cognitive performance. Before
one fully dismisses our claim, one should distinguish two explanations for these findings
that have different implications. First, one possibility is that our approach was not able to
capture relevant individual differences in the content of the semantic representations, for
example, because of the use of a pool of cues containing mostly high-frequency words for
which individual differences in semantic representations may be small. In this case, the
breadth of cues used would need to be expanded so that the networks generated are better
able to capture the idiosyncratic nature of individuals’ representations. Second, another pos-
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sibility is that our approach may not have been able to measure the strength of association
between various nodes (i.e., edges) with sufficient precision and reliability. In this case, addi-
tional work may be needed that considers both obtaining larger sets of responses per cue,
having participants provide responses to the same cue on repeated occasions, or asking indi-
viduals to provide additional ratings (Roads & Love, 2020). In our view, these possibilities
speak to the need for future work that guarantees appropriate scope and reliability rather than
a clear rejection of the idea that individual networks can be helpful to understanding the link
between experience and cognitive performance.

7. General discussion

We proposed an empirical agenda that utilizes network science to provide an estimate of
the extent to which idiosyncratic experiences matter for the size and structure of mental rep-
resentations and, ultimately, individual and age differences in cognitive performance. Despite
the promise we see in this approach, and some encouraging results from our feasibility study,
a number of major challenges remain.

First, there are still considerable questions about how to best capture individual seman-
tic networks. As discussed in Section 1, the MySWOW approach is only one of several:
There are alternative elicitation methods (see Table 1) as well as different network estima-
tion methods (e.g., Zemla & Austerweil, 2018) that merit further consideration. Future work
may want to rely on several of the available methods and compare commonalities and dif-
ferences of their results to obtain a better picture of individual networks. One limitation that
may be common to many of the currently available approaches, however, is that no elicitation
of individuals’ knowledge store is independent of the process by which the representation
is accessed. As a result, any individual or age differences detected cannot be unequivocally
assigned to the nature of association in the knowledge store (representation), but can in prin-
ciple result from the process by which this representation is searched and accessed (Jones,
Hills, & Todd, 2015; Kenett, Beckage, Siew, & Wulff, 2020; Kraemer, Wulff, & Gluth, 2021;
Siew, Wulff, Beckage, & Kenett, 2019). So far, there seems to be no clear consensus concern-
ing the extent to which representation and process are entangled in the kinds of tasks typically
used to elicit semantic networks (Abbott, Austerweil, & Griffiths, 2015; Jones et al., 2015).
The degree of entanglement likely depends on the nature of the tasks and processes com-
pared. At least in word association tasks, empirical evidence suggests associative strength
between word pairs in itself is a poor predictor of a wide variety of findings that involve
retrieval about these pairs from semantic memory (De Deyne et al., 2019). The reason for this
is that the same retrieval processes underestimate semantic effects due to frequency biases
(i.e., a frequent word like money is the response to many cue words, and therefore car-
ries little information). In most studies, such biases need to be mitigated using appropriate
transformations of associative strength that highlight cue-specific information (e.g., point-
wise mutual information; De Deyne et al., 2019). More generally, it is unlikely that a single
approach can provide a definitive resolution to this conundrum and there are two possible
ways forward that we would like to emphasize. One potential way to distinguish the role of
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structure versus process could be to use multiple methods of assessment (e.g., word associ-
ation, verbal fluency, relatedness judgments) to elicit mental representations. To the extent
that these different assessment methods are associated with different search processes and
strategies, convergent evidence could provide some support for the role of representation. A
related approach could involve the use of the same elicitation method under different explic-
itly instructed search strategies that could equate these across participants (Wulff, Hills, &
Hertwig, 2013, 2020). A second direction could involve using techniques from neuroscience
to distinguish between search (i.e., control) processes and representational components (Hoff-
man & Morcom, 2018), in particular to the extent that individuals’ representational space has
a signature in the functional organization of the brain (Huth, Nishimoto, Vu, & Gallant, 2012).

Second, we are still lacking a computational model of learning and cognition that captures
and links all aspects of interest (i.e., environment-representation—performance). A suite of
models would be ideal because they could be used to generate predictions about which tests
should be used to assess individual and age differences in mental representations as a function
of experience. These predictions could then guide specific empirical approaches and tests.
These models may also be generative in allowing us to test specific components contributing
to individual differences, such as the role of learning, memory, or search strategies (Wulff
etal., 2019). For example, past work has used techniques from network science that assess the
robustness of networks to perturbation and decay that could be instrumental in understanding
the role of aging processes, such as forgetting (Borge-Holthoefer, Moreno, & Arenas, 2011;
Cosgrove et al., 2021).

Third, there is still a dearth of data concerning single individuals’ exposure to the phys-
ical, linguistic, and social environment that can then be linked to individuals’ mental rep-
resentations. Most past work has used simple measures of self-reported exposure (e.g., to
print; Mol & Bus, 2011) but there may be more efficient alternatives that are now avail-
able, for example, experience sampling (Dennis, Yim, Garrett, Sreekumar, & Stone, 2019),
or massive recording and analysis of naturalistic linguistic exposure, such as speech (Mehl,
2017) and text (Banda et al., 2021). These approaches could become particularly powerful as
such data become increasingly connected with other information about individuals, for exam-
ple, if these are collected with informed consent in larger surveys or longitudinal household
panels that also include dedicated cognitive instruments, such as verbal fluency or memory
tasks (Taler, Johns, & Jones, 2020).

Fourth, and finally, most of past research and our own approach introduced above is cor-
relational in nature in that it aims to establish a correlation between individual experience
and the contents and structure of mental representation or cognitive performance. In order to
help establish causality, however, one would need a comparison of individuals assigned to
different environmental exposures through either natural or, ideally, controlled experiments.
There are a few candidate training strategies, including training of specific physical or virtual
environments (Miller et al., 2013), artificial or natural languages (Pothos, 2007), and even
complex narratives (Heusser, Fitzpatrick, & Manning, 2021). Regardless of the exact type of
information and mode of exposure, it remains a challenge to obtain meaningful and reliable
individual estimates of the emergent mental representations and their potential effects across
large swathes of time such as a life span.
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8. Conclusion

We have argued that quantifying individual and age differences in the size and structure of
human knowledge is important because this represents a missing link in estimating the role
of cumulative experience in cognitive performance. We specifically proposed an empirical
agenda that combines tracking individuals’ idiosyncratic experiences, broad mapping of their
mental representations using the tools of network science, and studies linking representational
structure to individuals’ cognitive performance. We strongly believe such steps can move us
closer to understanding the role of the environment in shaping the structure of the mental
lexicon and its implications for cognitive aging.
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Notes

1 A recent alternative approach (Roads & Love, 2020) that relies on ranking and active
learning algorithms can provide a solution to the problem of scale.

2 German SWOW data were downloaded on January 25, 2021.

3 Considering only the 2,111 words shared between all individual networks.

4 On average, between 62 and 113 animals and between 45 and 138 words starting with the
letter S were retrieved. Animals overlapped with 1.5% of cues and 0.8% of responses,
whereas words starting with the letter S overlapped with 11.1% of cues and 11.9% of
responses. For details see Wulff et al. (in press).

5 Participants correctly recalled between 28.7% and 60.9% of words, with an additional
1.3% to 25% intrusions. For details see Wulff et al. (in press).

6 Participants correctly recalled between 32.8% and 96.8% of pairs. For details see Wulff
et al. (in press).
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