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Abstract. For certain motivic spectra, we construct a square of
spectral sequences relating the effective slice spectral sequence and the
motivic Adams spectral sequence. We show the square can be con-
structed for connective algebraic K-theory, motivic Morava K-theory,
and truncated motivic Brown–Peterson spectra. In these cases, we
show that the R-motivic effective slice spectral sequence is completely
determined by the ρ-Bockstein spectral sequence. Using results of
Heard, we also obtain applications to the Hill–Hopkins–Ravenel slice
spectral sequences for connective Real K-theory, Real Morava K-
theory, and truncated Real Brown–Peterson spectra.
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1 Introduction

1.1 Motivation and main theorems

Two of the chief computational tools in motivic stable homotopy theory are
the effective slice spectral sequence [27, 38, 41] and the motivic Adams spectral
sequence [11, 31]. The purpose of this paper is to systematically relate the
effective slice spectral sequence and the motivic Adams spectral sequence.
The effective slice spectral sequence has many applications, such as a new
proof of Milnor’s Conjecture on quadratic forms [35] and the calculation of
the first stable homotopy group of motivic spheres [36] which identifies certain
motivic stable stems with variants of K-theory. In general, the effective slice
spectral sequence is an excellent tool for working over general base schemes
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because slices are often expressible in terms of arithmetic invariants like motivic
cohomology.
The motivic Adams spectral sequence is a powerful resource for making large-
scale computations over specific base fields, such as the complex numbers [22],
the real numbers [6], and finite fields [43]. Computations over Spec(C) have
brought about remarkable progress on the classical stable homotopy groups of
spheres, and applications of R-motivic computations to C2-equivariant homo-
topy have been the topic of much recent work, such as [4, 5, 23].
Our first main theorem fits the effective slice spectral sequence and motivic
Adams spectral sequence into a square of spectral sequences.

Theorem A (Comparison square, Theorem 3.4). Let E ∈ SH(k) be a motivic
spectrum which is algebraically n-sliceable over k (Definition 3.1). There is a
square of spectral sequences of the form

⊕

q≥0 Ext
∗∗∗
A (H∗∗s

n
qE)

Ext∗∗∗A (H∗∗E)
⊕

q≥0 π∗∗s
n
qE

π∗∗E.

n−aESSS
⊕

q≥0
mASS

mASS n−ESSS

(1)

The spectral sequences in the square are discussed in Sections 2 and 3.

Remark. In this paper, we refer to a “square of spectral sequences” whenever
one can run the spectral sequences on one half of the square or the other half
of the square to attempt to compute the same groups. In particular, a square
of spectral sequences is not the same as a commuting square in the category of
spectral sequences of abelian groups, and we make no claims about convergence
to the same filtration.

The condition that E ∈ SH(k) is algebraically n-sliceable is defined in terms of
the homology of its slices and slice covers. Our second main theorem says that
several familiar motivic spectra are algebraically n-sliceable.

Theorem B (Theorems 3.7, 3.9, and 3.16, and Remark 3.17).
Let k be a perfect field. Theorem A1 applies to the following motivic spectra:

1. The effective cover of algebraic K-theory, kgl, if the characteristic of k is
not two.

2. For all n ≥ 1, the connective motivic Morava K-theory, k(n), if the expo-
nential characteristic of k is prime to the characteristic of the coefficients
of H∗∗.

3. For all n ≥ 1, the n-th truncated motivic Brown–Peterson spectrum,
BPGL〈n〉, if k has characteristic zero.

1Or its very effective variant, see Remark 3.5.
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4. The very effective cover of hermitian K-theory, kq, if the characteristic of
k is not two.

The ρ-Bockstein spectral sequence [15] is another important device in computa-
tional motivic stable homotopy theory. Theorems A and B can be used to prove
a precise relation between differentials in the ρ-Bockstein spectral sequence and
the R-motivic effective slice spectral sequence:

Theorem C (Theorems 4.10 and 4.12). Let k = R. There are 1-to-1 correspon-
dences between the following differentials:

1. ρ-Bockstein spectral sequence d3-differentials and effective slice spectral
sequence d1-differentials for kgl.

2. ρ-Bockstein spectral sequence d2n+1−1-differentials and type n effective
slice spectral sequence d1-differentials for k(n).

3. For each 1 ≤ i ≤ n, ρ-Bockstein spectral sequence d2i+1−1-differentials
and effective slice spectral sequence d2i−1-differentials for BPGL〈n〉.

Moreover, the (type n) effective slice spectral sequence differentials are com-
pletely determined by knowledge of the corresponding ρ-Bockstein spectral
sequence differentials.

Formal similarities between the ρ-Bockstein and effective slice spectral sequence
differentials have been observed in previous work, such as [14, Sec. 6]. Theo-
rem C and its proof may be viewed as a rigorous explanation for these similar-
ities.

Finally, our computations have consequences in the C2-equivariant stable ho-
motopy theory. The Hill–Hopkins–Ravenel slice spectral sequence [16] has en-
joyed many applications since its use in the solution to the Kervaire invariant
one problem, and thus we are motivated to calculate differentials for common
C2-spectra. In previous work, Heard [14] compared the R-motivic effective slice
filtration and the Hill–Hopkins–Ravenel slice filtration [16] and deduced certain
differentials in the effective slice spectral sequence using previously computed
differentials in the HHR slice spectral sequence. Using Heard’s comparison re-
sults and Theorem C, we reverse this logic to produce differentials in the HHR
slice spectral sequences for the genuine C2-spectra kR, kR(n), and BPR〈n〉
from known slice spectral sequence differentials. Our results recover work of
Dugger [10] and Hill–Hopkins–Ravenel [16].

Theorem D (Corollaries 5.7, 5.8, and 5.9). The following statements hold:

1. The nontrivial differentials in the HHR slice spectral sequence for πC2
∗∗ kR

are determined via Leibniz rule by

d3(τ
2) = ρ3v̄1 and d3

(

γ

ρ3τ2

)

=
γ

τ4
v̄1.
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2. Let n ≥ 1. There is a nontrivial differential in the HHR slice spectral
sequence for πC2

∗∗ kR(n) of the form d2n+1−1(τ
2n+1

) = ρ2
n+1−1v̄n.

3. Let n ≥ 1. There are nontrivial differentials in the HHR slice spectral
sequence for πC2

∗∗ BPR〈n〉 of the form d2i+1−1(τ
2i+1

) = ρ2
i+1−1v̄i, 1 ≤ i ≤

n.

The relevant elements are recalled in Remark 5.1.

1.2 Organization

In Section 2, we recall the functors and spectral sequences discussed in this
paper, such as (equivariant) Betti realization, variants of the effective and very
effective slice spectral sequences, and the motivic Adams spectral sequence.
In Section 3, we define when a motivic spectrum is algebraically n-sliceable
and prove Theorem A. We then analyze several examples and non-examples of
algebraically n-sliceable spectra, and in particular we prove Theorem B.
In Section 4, we recall the ρ-Bockstein spectral sequence and differentials in
the motivic Adams spectral sequence; we then prove Theorem C.
In Section 5, we recall Heard’s comparison of the motivic and C2-equivariant
slice filtrations and apply it to prove Theorem D.

1.3 Conventions

1. After Section 2, everything is implicitly (p, η)-complete.2

2. k is a perfect field of expontential characteristic prime to p.

3. SH denotes the classical stable homotopy category, SH(k) denotes the
motivic stable homotopy category over Spec(k), and SHC2 denotes the
C2-equivariant stable homotopy category.

4. H denotes the classical, equivariant, or motivic mod p Eilenberg-MacLane
spectrum.

5. Mk
p denotes the mod p motivic cohomology of Spec(k).

6. A (resp. A∨) denotes the motivic Steenrod algebra (resp. its Mk
p-linear

dual).

7. If M is an A-module, M∨ denotes its Mk
p-linear dual.

8. The homotopy groups of E ∈ SH(k) are denoted πk
m,u(E), or if there is

no confusion about the base field, πm,u(E). Our bigrading convention is
that πk

m,u(E) ∼= SH(k)[Σ∞(S1
•)

∧m−u ∧G∧u
m , E].

2This agrees with p-completion in many cases we consider. See e.g. [20, Thm. 1].
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πC2
∗∗ HF2

element alt. name bidegree RO(C2)-degree
ρ aσ (−1,−1) −σ
τ uσ (0,−1) 1− σ
γ
τ

θ (0, 2) 2σ − 2

πC2
∗∗ HZ2

element alt. name bidegree RO(C2)-degree
ρ aσ (−1,−1) −σ
τ2 u2σ (0,−2) 2− 2σ
γ
τ

2u−1
2σ (0, 2) 2σ − 2

γ
τ2 θ (0, 3) 3σ − 3

Table 1: Names, alternate names, and degrees of elements in C2-equivariant
homotopy groups.

9. The homotopy groups of E ∈ SHC2 are denoted πC2
m,u(E). Our bigrading

convention is that πC2
m,u(E) ∼= SHC2 [Σ∞Sm−u ∧ Suσ, E] where σ is the

one-dimensional real sign representation of C2.

10. We will often write Ext∗∗∗A (E) in place of Ext∗∗∗A (H∗∗E).

11. We use the following abbreviations for spectral sequences:

(a) mASS: motivic Adams spectral sequence.

(b) ESSS and VSSS: effective and very effective slice spectral sequence.

(c) aESSS and aVSSS: algebraic effective and very effective slice spectral
sequence.

(d) n-(-)SSS: type n (-)SSS, with (-) either E, V, aE, or aV.

(e) H∗-n-(-)SSS: homological type n (-)SSS, with (-) as above.

(f) ρ-BSS: ρ-Bockstein spectral sequence.

12. Notation for C2-equivariant homotopy elements is contained in Table 1.
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2 Motivic slice and Adams spectral sequences

We start by discussing the functors and spectral sequences which we will study
in the rest of the paper.

2.1 (Equivariant) Betti realization functors

Since we will mention them in our discussion of the various spectral sequences
below, we start by recalling the Betti realization and equivariant Betti real-
ization functors which relate the motivic, classical, and C2-equivariant stable
homotopy categories.

Suppose the base field k has a complex embedding. The Betti realization
functor [32]

Re : SH(k)→ SH (2)

is defined by sending X ∈ SH(k) to X(C) ∈ SH. Similarly, if k has a real
embedding, the equivariant Betti realization functor [32]

ReC2
: SH(k)→ SHC2 (3)

is defined by sending X ∈ SH(k) to X(C) ∈ SHC2 , where C2 acts on X(C) via
complex conjugation.

2.2 The type n effective slice spectral sequence

We now introduce one of our main objects of study, the type n effective
slice spectral sequence, which generalizes the effective slice spectral sequence.
Throughout this section, we fix a prime p.

Let SHeff(k) be the localizing subcategory of SH(k) generated by {Σ∞
+ X : X ∈

Smk}. These subcategories form the effective slice filtration

· · · ⊂ Σ2q+2,q+1 SHeff(k) ⊂ Σ2q,q SHeff(k) ⊂ Σ2q−2,q−1 SHeff(k) ⊂ · · · . (4)

The inclusion iq : Σ2q,q SHeff(k) ⊂ SH(k) is left adjoint to the functor rq :

SH(k)→ Σ2q,q SHeff(k).

Definition 2.1. The composite fq := iq ◦ rq is the q-th effective slice cover
and sq := cofib(fq+1 → fq) is the q-th effective slice.

For each n ≥ 1, we define the q-th type n effective slice cover fn
q := fq(pn−1) and

the q-th type n effective slice snq := cofib(fn
q+1 → fn

q ). Observe that f1
q = fq if

p = 2.

For any motivic spectrum E ∈ SH(k) and any integer n ≥ 1, we obtain a
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Z-indexed tower of fibrations

...

fn
q+1E snq+1E

fn
q E snqE

fn
q−1E snq−1E

...

(5)

called the type n effective slice tower. Applying motivic homotopy groups gives
rise to the type n effective slice spectral sequence

n,effE
1

m,q,u(E) = πm,us
n
qE ⇒ πm,u sc(E) (6)

with differentials dr(E) : n,effE
r

m,q,u(E) → n,effE
r

m−1,q+r,u(E). Let f q
nE de-

note the cofiber of fn
q+1E → E. The term sc(E) in the abutment is the slice

completion of E defined as the homotopy inverse limit sc(E) := limq fqE. For
each n, we have sc(E) ≃ limq f

q
nE since the type n effective slice filtration is a

sped up version of the ordinary effective slice filtration.
For each E ∈ SH(k) we study below, there is an equivalence sc(E) ≃ E by
[17, Thm. 8.12]. More generally, [36, Thm. 3.50] implies that in very general
situations, sc(E) may be identified with the η-completion of E.

2.3 The type n very effective slice spectral sequence

We now discuss a variant of the type n effective slice spectral sequence.
Throughout this section, fix an integer n ≥ 1 and prime p.
Let SHveff(k) be the smallest full subcategory of SH(k) that contains all sus-
pension spectra of smooth k-schemes of finite type and which is closed under
all homotopy colimits and extensions. Repeating the construction from Sec-
tion 2.2 with SHveff(k) in place of SHeff(k) yields the q-th type n very effective
slice cover f̃n

q and the q-th type n very effective slice s̃nq . These fit into a
tower analogous to (5) which gives rise to the type n very effective slice spectral
sequence

n,veffE1
m,q,u(E) = πm,us̃

n
qE ⇒ πm,u vsc(E) ∼= πm,uE (7)

with differentials dr(E) : n,veffE
r

p,q,u(E) → n,veffE
r

p−1,q+r,u(E). If we let f̃ q
nE

denote the cofiber of the map f̃n
q+1E → E, then the very effective slice com-
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pletion vsc(E) := limq f̃
q
1E ≃ limq f̃

q
nE is equivalent to E because s̃nqE is

q(pn − 1)-connected in Morel’s homotopy t-structure on SH(k) for all q ∈ Z.3

Remark 2.2. Suppose the ground field k admits a complex embedding. Then
the very effective slice spectral sequence over Spec(k) is compatible with the
double-speed Postnikov filtration under Betti realization [13], so there is a
map of spectral sequences from the very effective slice spectral sequence for
X ∈ SH(k) to the double-speed Postnikov spectral sequence of Re(X).

Remark 2.3. Suppose the ground field k admits a real embedding. Then the
very effective slice spectral sequence over Spec(k) for a localized quotient of
MGL is compatible with the Hill–Hopkins–Ravenel slice spectral sequence [16]
of its equivariant Betti realization by [14, Thms. 5.15-5.16].

Remark 2.4. The effective and very effective slice filtrations coincide for local-
ized quotients of MGL [14, Prop. 4.3] and Landweber exact motivic spectra
[14, Prop. 4.11].

2.4 The motivic Adams spectral sequence

Let E ∈ SH(k) be a unital motivic spectrum and let E := cofib(S0,0 → E).
The canonical E-based Adams resolution of the sphere spectrum S is given by

S Σ−1,0E Σ−2,0E
∧2

· · ·

E Σ−1,0E ∧E Σ−2,0E ∧ E
∧2
.

(8)

The canonical E-based Adams resolution over a motivic spectrum X ∈ SH(k)
is obtained by smashing every term in (8) with X .
When E = H is mod p motivic cohomology, we have H∗∗(S

0,0) = Mk
p and

π∗∗(H ∧ H) = A∨ is the dual motivic Steenrod algebra [18, 42]. Applying
motivic homotopy groups to (8) gives the motivic Adams spectral sequence

mASSE
s,t,u

2 = Exts,t,uA∨ (Mk
p , H∗∗(X))⇒ πt−s,u(X

∧
H) (9)

with dr : mASSE
s,t,u

r → mASSEs+r,t+r−1,u
r . Here, X∧

H is the H-nilpotent com-
pletion of E. By [20, Thm. 1][26, Cor. 6.1][29, Thm. 1.0.1], there is an
equivalence X∧

H ≃ X∧
(p,η) for X sufficiently nice4. Moreover, if k is a field

of characterstic zero, and if p > 2 and Dp(k) < ∞ and −1 ∈ k is a sum of
squares, or if p = 2 and k has finite virtucal cohomological dimension, then
X∧

(p,η) ≃ X∧
p [20].

Remark 2.5. The motivic homology Mk
p is reviewed in Section 4.1.

3See [38, Sec. 5] for a full discussion of convergence of the very effective slice spectral
sequence.

4In this paper, “sufficiently nice” includes all motivic spectra X which are connective and
cellular of finite type.
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Remark 2.6. As in Remark 2.2, if the ground field k admits a complex em-
bedding, the motivic Adams and Adams–Novikov filtrations of X ∈ SH(k) are
compatible with the Adams and Adams–Novikov filtrations of Re(X) ∈ SH.
Thus Betti realization induces a map from the motivic Adams(–Novikov) spec-
tral sequence to the classical Adams(–Novikov) spectral sequence.
Similarly (c.f. Remark 2.3), if the ground field k admits a real embedding,
then the motivic Adams and Adams–Novikov filtrations of X ∈ SH(k) are
compatible with the C2-equivariant Adams and Adams–Novikov filtrations of
ReC2

(X) ∈ SHC2 . Thus equivariant Betti realization induces a map between
the corresponding spectral sequences.

3 Comparison square and examples

In this section, we introduce a condition on a motivic spectrum which allows
for the construction of a comparison square relating the effective slice spectral
sequence and the motivic Adams spectral sequence. We prove that many com-
mon motivic spectra satisfy this condition, and we find an example which does
not. From now on, we will implicitly p-complete everywhere.

3.1 Algebraic slice spectral sequences

The type n effective slice tower (5) is built out of cofiber sequences

fn
q+1E → fn

q E → snqE.

Applying mod p motivic homology induces a long exact sequence

· · · → Hi,jf
n
q+1E −→ Hi,jf

n
q E −→ Hi,js

n
qE −→ Hi−1,jf

n
q+1E → · · · (10)

for each j ∈ Z.

Definition 3.1. We say that E ∈ SH(k) is algebraically n-sliceable over k if
the long exact sequences (10) split into short exact sequences of A∨-comodules

0 −→ H∗∗f
n
q E

p
−→ H∗∗s

n
qE

ι
−→ H∗−1,∗(f

n
q+1E)→ 0 (11)

for each q ∈ Z.
Similarly, we say that E is algebraically sliceable over k if the long exact se-
quences associated to the effective slice tower split into short exact sequences
of A∨-comodules

0 −→ H∗∗fqE
p
−→ H∗∗sqE

ι
−→ H∗−1,∗(fq+1E)→ 0 (12)

for each q ∈ Z.
When the field k is clear, we will omit the phrase “over k” for brevity.

Remark 3.2. If p = 2, being algebraically sliceable is the same as being alge-
braically 1-sliceable.
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Applying the functor Ext∗∗∗A∨ (Mk
p,−) to (12) gives rise to long exact sequences

which assemble into the unrolled exact couple

· · ·Exts,t,u(fn
0 E) Exts−1,t−1,u(fn

1 E) Exts−2,t−2,u(fn
2 E) · · ·

· · ·Exts,t,u(sn0E) Exts−1,t−1,u(sn1E) Exts−2,t−2,u(sn2E) · · ·

p∗ p∗

δ

p∗

δ

ι∗ ι∗ (13)

in which the dotted arrows have tridegree (0,−1, 0). This gives rise to the
algebraic type n effective slice spectral sequence

n,aESSSE
q,s,t,u

1 (E) = Exts,t,uA∨ (Mk
p , H∗∗s

n
qE) (14)

with differentials
dr : Eq,s,t,u

r → Eq+r,s−r+1,t−r,u
r .

Proposition 3.3. The spectral sequence (15) converges conditionally to the
Ext groups of H∗∗(E):

n,aESSSE
q,s,t,u

1 (E) =⇒ Exts+q,t+q,u(H∗∗E). (15)

Moreover, if E is effective, i.e. E = f0E, and the spectral sequence collapses
at a finite stage, then the spectral sequence converges strongly.

Proof. We will verify that the spectral sequence (15) converges conditionally to
the colimit Ext∗∗∗(H∗∗(E)) in the sense of Boardman [7, Def. 5.10]: for each
fixed tridegree (s, t, u), we will show that

lim
k

Exts−k,t−k,u(H∗∗f
n
k E) = 0, (16)

lim
k

1 Exts−k,t−k,u(H∗∗f
n
k E) = 0. (17)

The limits above are taken along the maps δ in the unrolled exact couple .
Fix a tridegree (s, t, u). Observe that

Exts−k,t−k,u(H∗∗f
n
k E) = 0

whenever k > s, so (16) is clear. For (17), note that

Exts−k,t−k,u(H∗∗s
n
kE) = 0

for all k > s, so

p∗ : Exts−k,t−k,u(H∗∗f
n
k E)→ Exts−k,t−k,u(H∗∗s

n
kE)

is zero for all k > s and thus

δ : Exts−(k+1),t−(k+1),u(H∗∗f
n
k+1E)→ Exts−k,t−k,u(H∗∗f

n
k E)

Documenta Mathematica 26 (2021) 1085–1119



Algebraic Slice Spectral Sequences 1095

is surjective for all k > s. Therefore the inverse system
(Exts−k,t−k,u(H∗∗f

n
k E), δ) is Mittag-Leffler, cf. [7, Pg. 9], and the equal-

ity (17) holds.
We have now shown that (15) converges conditionally to the colimit. We now
justify strong convergence under the hypotheses that E is effective and the
spectral sequence collapses at a finite stage. Since E is effective, (15) is a half-
plane spectral sequence with entering differentials [7, Pg. 20].5 By [7, Remark,
Pg. 20], we have RE∞ = 0 whenever the spectral sequence collapses at a finite
stage. The spectral sequence therefore converges strongly under our hypotheses
by [7, Thm. 7.1].

The same discussion carries over to the type n very effective slice filtration.
In particular, we can define when E ∈ SH(k) is very algebraically n-sliceable
over k, and for such E we may define the algebraic type n very effective slice
spectral sequence

n,aVSSSE
q,s,t,u

1 (E) = Exts,t,uA∨ (Mk
p , H∗∗s̃

n
qE)⇒ Exts,t,uA∨ (Mk

p, H∗∗ sc(E)). (18)

The spectral sequence converges conditionally. If E is very effective and the
spectral sequence collapses at a finite stage, the spectral sequence converges
strongly.

3.2 Comparison square

Our main tool for relating the type n effective slice spectral sequence and the
motivic Adams spectral sequence is the following theorem, which assembles the
spectral sequences (6), (9), and (15) discussed above into a square.

Theorem 3.4 (Comparison square). Let E ∈ SH(k) be a k-motivic spectrum.
If E is algebraically n-sliceable, then there is a square of spectral sequences of
the form

⊕

q≥0 Ext
s,f,u
A (H∗∗s

n
qE)

Exts+q,f+q,u
A (H∗∗E)

⊕

q≥0 πs,us
n
qE

πs+q,uE.

n−aESSS
⊕

q≥0
mASS

mASS n−ESSS

(19)

Remark 3.5. The obvious analog holds if we work with the type n very effective
slice filtration instead of the type n effective slice filtration. Similarly, we may
work with the ordinary (very) effective slice filtration instead of the type n
(very) effective slice filtration.

5More precisely, the restriction to each fixed weight u is a half-plane spectral sequence
with entering differentials.
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3.3 Examples

We now present some examples of motivic spectra which are algebraically slice-
able.

3.3.1 Zero slices

We begin with a simple example.

Example 3.6. If E ∈ SH(k) is effective and the canonical map fn
0 E → sn0E is

an equivalence, then the type n effective slice tower of E is just an equivalence
at the bottom level and zero elsewhere. The only nontrivial long exact sequence
in homology then splits into a short exact sequence of the form

0→ H∗∗f
n
0 E

∼=
−→ H∗∗s

n
0E → 0→ 0,

so E is algebraically n-sliceable. This applies, for example, if E = HFp or
E = HZp, where n can be any positive integer, and k can be any base field.

3.3.2 Connective algebraic K-theory

Most spectra of interest are not concentrated in a single type n slice. How-
ever, the following example shows that some more complicated spectra are
algebraically sliceable.

Theorem 3.7. Let p = 2 and let k be any base field of characteristic not
two. The effective cover of algebraic K-theory, kgl, is algebraically and very
algebraically sliceable over k.

Proof. The effective and very effective slice filtrations of kgl coincide by [14,
Prop. 4.3] since it is a localized quotient of MGL, so it suffices to prove that
kgl is algebraically sliceable. Recall that for any E ∈ SH(k), we have by [3,
Lem. 8] that Σ2,1fnE ≃ fn+1(Σ

2,1E). Bott periodicity for algebraic K-theory
[40, Sec. 6.2] implies that Σ2,1KGL ≃ KGL, so Σ2,1fnKGL ≃ fn+1KGL for
all n ∈ Z. Therefore

fnkgl ≃ fnf0KGL ≃ fnKGL ≃ Σ2n,nf0KGL ≃ Σ2n,nkgl (20)

for all n ≥ 0 since kgl = f0KGL. We also recall that sqkgl ≃ Σ2q,qHZp if
q ≥ 0 and sqkgl = 0 if q < 0.
The cofiber sequences of motivic spectra

fqkgl→ sqkgl→ Σ1,0fq+1kgl

thus can be rewritten as

Σ2q,qkgl→ Σ2q,qHZp → Σ2q+3,q+1kgl.
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Applying homology gives a short exact sequence

0→ Σ2q,q(A//E(1))∨
i
−→ Σ2q,q(A//E(0))∨

j
−→ Σ2q+3,q+1(A//E(1))∨ → 0

where i is the evident inclusion of A∨-comodules and j is the evident projection
of A∨-comodules. This follows from the identification of f1kgl → f0kgl with
v1 : Σ2,1kgl→ kgl, along with the fact that H∗∗(v1) = 0. It follows that kgl is
algebraically sliceable.

3.3.3 Connective motivic Morava K-theory

We now include an example to demonstrate the necessity of the type n effective
slice filtration. Throughout this section, let p be a prime and k a perfect field
of exponential characteristic prime to p.

Proposition 3.8. Let k(n) denote the n-th connective motivic Morava K-
theory [28, Def. 4.3].6 If n > 1, then k(n) is not algebraically or very alge-
braically sliceable.

Proof. The effective and very effective slice filtrations of k(n) coincide by [14,
Prop. 4.3] since it is a localized quotient of MGL, so it suffices to prove that
k(n) is not algebraically sliceable. By [28, Cor. 4.7], we have

sqk(n) ≃

{

Σ2q,qHFp if q ≡ 0 mod (pn − 1),

∗ if else.
(21)

In particular, we have s1k(n) = 0 and f1k(n) ≃ f2k(n) whenever n > 1.
Applying homology of cofiber sequence

f1k(n)→ s1k(n)→ Σ1,0f2k(n)

therefore yields
A∨ → 0→ Σ1,0A∨

which cannot be a short exact sequence since A∨ is bounded below in each
fixed motivic weight. Thus k(n) is not algebraically sliceable.

Although k(n) is not algebraically sliceable if n > 1, the arguments showing
kgl is algebraically sliceable extend to show that k(1) is algebraically sliceable:
the key point is that sqk(1) 6= ∗ for all q ≥ 0, and thus we avoid the issues in
the previous proof. More generally, the type n effective slice filtration allows
us to avoid these trivial slices:

Theorem 3.9. Let n be a positive integer. The n-th connective motivic Morava
K-theory, k(n), is algebraically and very algebraically n-sliceable.

6The definition of k(n) given by Levine–Tripathi in [28] as a localized quotient of algebraic
cobordism works for all base fields with exponential characteristic prime to p. This definition
generalizes the earlier definition of the auxiliary spectrum k′(n) given by Borghesi over fields
with a complex embedding [8, Sec. 4.2] and certain perfect fields [9, Sec. 4].
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Proof. It suffices to prove k(n) is algebraically n-sliceable. The slices of k(n)
are given by Equation (21), so we have

snq k(n) ≃ Σq·(2pn−2),q·(pn−1)HFp

for all q ≥ 0. We also observe that by periodicity of k(n), we have

fn
q+1k(n) ≃ Σ2pn−2,(pn−1)fn

q k(n) ≃ · · · ≃ Σ(q+1)(2pn−2),(q+1)(pn−1)k(n).

By [17, Lem. 6.10], the cohomology of k(n) is A//E(Qn), where E(Qn) is
the sub-Hopf algebroid of motivic Steenrod algebra generated by the motivic
Milnor primitive Qn.We are now in a situation mirroring that of Theorem 3.7.
Just like in that proof, the long exact sequences in homology associated to the
cofiber sequences

fn
q+1k(n)→ fn

q k(n)→ snq k(n)

split into short exact sequences of A∨-comodules of the form

0→ Σq(2pn−2),q(pn−1)(A//E(Qn))
∨ i
−→ Σq(2pn−2),q(pn−1)A∨

j
−→ Σ(q+1)(2pn−2)+1,(q+1)(pn−1)(A//E(Qn))

∨ → 0

since H∗∗(vn) = 0. Therefore k(n) is algebraically n-sliceable.

3.3.4 Truncated motivic Brown–Peterson spectra

Like k(n), the truncated motivic Brown–Peterson spectrum BPGL〈m〉 is not
algebraically 1-sliceable over certain base fields when m > 1, but it is alge-
braically m-sliceable over certain base fields. The proof is more subtle in this
case, though.

Lemma 3.10. Consider a tower of fibrations

...

f2E s2E

f1E s1E

E f0E s0E
≃

where fqE → fq−1E → sq−1E is a fibration for each q ≥ 1. If H∗(fqE →
fq−1E) is zero for each q ≥ 1, then the associated spectral sequence

E∗∗
1 = H∗(s∗E) =⇒ H∗E

collapses at the E2-page.
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Proof. Take any class x ∈ H∗sqE with d1(x) = 0. We show that it is a
permanent cycle, i.e. di(x) = 0 for any i ≥ 1.
Consider the sequence of maps

H∗fqE →֒ H∗sqE
δq
−→ H∗−1fq+1E →֒ H∗−1sq+1E,

where the first and last arrows are inclusion by assumption. Therefore d1(x) =
0 implies that δq(x) = 0. Hence we have that the class x lifts to H∗fqE. When
q = 0, the class x lifts to H∗f0E and is therefore a permanent cycle. When
q ≥ 1, since the connecting homomorphism H∗+1sq−1E → H∗fqE is surjective,
x is the target of a d1 differential. In particular, it is a permanent cycle.

Remark 3.11. From the proof of Lemma 3.10, we can see that when H∗(fqE →
fq−1E) is zero for each q ≥ 1, the elements in H∗E are all detected by the
classes in filtration zero. For higher filtrations sqE, the classes either support
a differential (i.e. have nonzero image under the connecting homomorphism),
or are hit by a d1 differential (i.e. lift to fqE).

With some extra assumptions, the converse of Lemma 3.10 is true.

Lemma 3.12. We use the same notation as in Lemma 3.10. The map
H∗(fqE → fq−1E) is zero for each q ≥ 1 if the tower satisfies the following
conditions:

1. the map H∗(f1E → f0E) is zero;

2. the associated spectral sequence collapses at E2-page;

3. lim
←−
n

fnE = ∗.

Proof. We prove the statement by induction. Assume the statement is true
for q ≤ n + 1. We prove that H∗(fn+2E → fn+1E) is zero, or equivalently,
H∗(jn+1 : fn+1E → sn+1E) is injective.
We show this by contradiction. Suppose there is a nonzero class 0 6= x
in H∗fn+1E such that jn+1(x) = 0. The connecting homomorphism δn :
H∗+1snE → H∗fn+1E is surjective by inductive hypotheses. We can choose a
preimage y ∈ δ−1

n (x). It follows that d1(y) = jn+1δn(y) = 0. By the collaps-
ing condition, the class y is a permanent cycle. Therefore, the class x lifts to
lim
←−
n

H∗(fnE). Since the spectral sequence collapses at a finite page, this inverse

limit lim
←−
n

H∗(fnE) ∼= H∗(lim←−
n

fnE) ∼= 0. This contradicts the assumption that x

is nonzero.

We now discuss the sliceability of the m-th motivic Brown–Peterson spectrum
BPGL〈m〉. For the sake of simplicity, we restrict to the case when p = 2. The
odd primary cases work similarly.
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Theorem 3.13. Over any base field k of characteristic zero, we have that

H∗∗BPGL〈m〉 ∼= A//E(m)∗∗

∼= Mk
2 [τm+1, . . . , ξ1, . . . ]/(τ

2
i − τξi+1 − ρτ i+1, i ≥ m+ 1).

In particular,

H∗∗HZp
∼= A//E(0)∗∗ ∼= Mk

2 [τ1, . . . , ξ1, . . . ]/(τ
2
i − τξi+1 − ρτ i+1, i ≥ 1).

Proof. The first isomorphism is [33, Thm. 3.9]. The second isomorphism can
be obtained by direct computation. For example, see [15, 18, 25, 34] for the
formulas of the k-motivic A∗∗, E(m), and conjugation.

Take the mod 2 homology of the type 1 effective slice tower of BPGL〈m〉. By
[28, Cor. 4.7], the q-th slice is a wedge sum of suspensions of HZp :

s1q(BPGL〈m〉) ≃ Σ2q,qHZ2 ⊗ π2qBP 〈m〉.

We obtain a homological effective slice spectral sequence:

E∗∗∗
1 = H∗∗(s

1
∗BPGL〈m〉) ∼= H∗∗HZ2[v1, . . . , vm] =⇒ H∗∗BPGL〈m〉. (22)

For a fixed bidegree (s, t), we have that Hs,t(s
1
qBPGL〈n〉) ≃ 0 when s− t < q.

There are only finitely many slices that can contribute to a degree. On the
other hand, recall that we have sc(BPGL〈n〉) ≃ BPGL〈m〉 by [17, Thm.
8.12]. Therefore the spectral sequence strongly converges to H∗∗BPGL〈m〉.
We will refer to this spectral sequence as the H∗-ESSS below. We have the
following result about this spectral sequence:

Theorem 3.14. Let k be either Q, R, or C. The differentials in the spectral
sequence (22) are determined by d2i−1(τ̄i) = vi, 1 ≤ i ≤ m, and Mk

2-linearity.

Proof. We first treat the case k = R. We prove the result by induction.
When m = 1, the spectral sequence (22) takes the form

H∗∗HZ2[v1]⇒ H∗∗kgl,

where by Theorem 3.13, the abutment is

Mk
2 [τ2, . . . , ξ1, . . . ]/(τ

2
i − τξi+1 − ρτ i+1, i ≥ 2),

and the E1-page is

Mk
2 [v1][τ1, . . . , ξ1, . . . ]/(τ

2
i − τξi+1 − ρτ i+1, i ≥ 1).

The degree (s, q, u) of the elements and the differentials are as follows:

|τ̄i| = (2i+1 − 1, 0, 2i − 1), |ξ̄i| = (2i+1 − 2, 0, 2i − 1),
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|vi| = (2i+1 − 2, 2i − 1, 2i − 1), i ≥ 1;

|ρ| = (−1, 0,−1), |τ | = (0, 0,−1); |dr| = (−1, r, 0), r ≥ 1

By comparing degrees, the only possible target of τ̄1 is v1. That determines all
the differentials.
Now suppose that the statement holds for m− 1. Consider the quotient map

BPGL〈m〉 → BPGL〈m− 1〉

and the induced map between spectral sequences. We have d2i−1(τ̄i) = vi for
1 ≤ i ≤ m− 1 by naturality, so the E2m−1 -page is

Mk
2 [vm][τm, . . . , ξ1, . . . ]/(τ2i − τξi+1 − ρτ i+1; i ≥ m).

By comparing degrees, the generator τm supports a d2m−1 differential and hits
vm. This completes the proof for k = R.
We now consider the other base fields. The collections of bidegrees where MC

2

or M
Q
2 are nonzero are contained in the collection of bidegrees where MR

2 is
nonzero, c.f. [34, Sec. 5]. Since we only used degree arguments to deduce the
differentials above, we obtain the desired result by the same proof.

Theorem 3.15. Let m ≥ 2 and let k ⊆ C be a field which admits a complex
embedding. The m-th motivic Brown–Peterson spectrum BPGL〈m〉 ∈ SH(k)
is not algebraically 1-sliceable.

Proof. The k = C case follows from Theorem 3.14 and the contrapositive of
Lemma 3.10.
More generally, let k →֒ C be a field which admits a complex embedding. Base
change induces a map between the H∗-ESSS in SH(k) and the H∗-ESSS in
SH(C). The target does not collapse at E2, so it follows from inspection of
the map that the source cannot collapse at E2. Indeed, base change sends the
generators τ̄i and vi to the generators with the same name. Therefore we may
apply Lemma 3.10 to conclude that BPGL〈m〉 ∈ SH(k) is not algebraically
sliceable.

If we work with the type m effective slice tower, then in the H∗-m-ESSS7 for
BPGL〈m〉, the q-th filtration quotient in the E1 term, H∗∗s

m
q BPGL〈m〉, is an

extension of the type 1 filtration quotients H∗∗s
1
iBPGL〈m〉 with q(2m − 1) ≤

i ≤ (q + 1)(2m − 1)− 1. In other words, the homology of the type m slices can
be computed using the truncated H∗-ESSS. As a result, in the H∗-m-ESSS of
BPGL〈m〉, the longest differential has length 1.
Although BPGL〈m〉, m ≥ 2, is not algebraically 1-sliceable, it is algebraically
m-sliceable. We have the following result.

Theorem 3.16. Let k be a field of characteristic zero. The m-th motivic
Brown–Peterson spectrum BPGL〈m〉 ∈ SH(k) is algebraically m-sliceable.

7The spectral sequence obtained by applying homology to the type m effective slice tower.
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Proof. We first show the case k = Q. We show the three assumptions in
Lemma 3.12 are satisfied.

1. By Remark 3.11, we have that the map in the type m tower

BPGL〈m〉 → sm0 (BPGL〈m〉)

induces an inclusion on homology. Therefore H∗∗(f1BPGL〈m〉 →
f0BPGL〈m〉) is zero.

2. By the discussion above, the longest differential is of length 1. As a result,
the spectral sequence collapses at the E2 page.

3. Since sc(BPGL〈m〉) ≃ BPGL〈m〉, the inverse limit of the effective slice
tower of BPGL〈m〉 is contractible. Equivalently, the inverse limit of the
type m effective slice tower is contractible.

The result for k = Q follows by applying Lemma 3.12.

If k is any field of characteristic zero, then there exists a field homomorphism
i : Q→ k. We have

i∗(fm
q+1BPGL〈m〉 → fm

q BPGL〈m〉) ≃ fm
q+1BPGL〈m〉 → fm

q BPGL〈m〉

by naturality of the slice filtration, where the left-hand side is i∗ applied to
part of the type m slice tower over Q and the right-hand side is part of the
type m slice tower over k. The left-hand side is zero, so the right-hand side is
zero and thus BPGL〈m〉 is algebraically m-sliceable over k.

3.3.5 Very effective cover of hermitian K-theory

We conclude by mentioning an example where the effective and very effective
slice filtrations differ.

Remark 3.17. Let p = 2 and let k be a perfect field of characteristic not two. A
quadruple speed very effective slice filtration can be defined by setting f̄q = f̃4q
and s̄q = cofib(f̄q+1 → f̄q). By [3], the very effective cover of hermitian K-
theory kq [1] satisfies f̄qkq ≃ Σ8q,4qkq. Observe that f̄q+1kq → f̄qkq may be
identified with the Bott map β : Σ8q+8,4q+4kq → Σ8q,4qkq which induces the
zero map in homology. It follows (c.f. the proof for kgl) that kq is “algebraically
sliceable” with respect to the quadruple speed very effective slice filtration.
Unfortunately, we cannot compute H∗∗(s̄qkq) for any q ≥ 0, so have been
unsuccessful in attempts to apply Theorem 3.4 to understanding the VSSS or
mASS for kq.

It is also worth noting that the very effective slice filtration of kq does not coin-
cide with the effective slice filtration. It seems unlikely that kq is algebraically
sliceable with respect to a quadruple speed effective slice filtration.
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3.4 Non-example

We mention a non-example to indicate the limitations of our techniques.

Proposition 3.18. The algebraic cobordism spectrum MGL is not alge-
braically sliceable.

Proof. The slices of MGL are [17, Theorem 8.5][37, Thm. 4.7]

sqMGL ≃ Σ2q,qHπ2qMU.

In particular, we have that s0MGL ≃ HZp, and that the map

MGL→ s0MGL ≃ HZp

coincides with the Thom class.
Furthermore, by [17, Theorem 6.5], we have an isomorphism of left A∗∗-
comodules

H∗∗MGL ≃ P∗∗ ⊗ Fp[xi | i 6= pr − 1],

where
P∗∗ = Mk

p [ξ1, ξ2, . . .] ⊆ A∗∗

is the even subalgebra of the motivic dual Steenrod algebra. The map

H∗∗MGL→ H∗∗HZp
∼= A//E(0)∗∗

is the inclusion of P∗∗ and 0 on the other factor. Thus the fiber sequence

f1MGL→MGL→ s0MGL

induces a long exact sequence in mod p motivic homology which is not short
exact. This shows that MGL is not algebraically sliceable.

3.5 The sphere spectrum

We conclude our discussion of examples and non-examples by discussing the
sphere spectrum S0,0 ∈ SH(k).
First, we observe that as in the case of the very effective cover of hermitian
K-theory kq (see Remark 3.17), the effective and very effective slice filtrations
of the sphere spectrum are different. Unlike kq, however, we do not know if the
sphere spectrum is algebraically sliceable with respect to any variant of either
slice filtration.
In any case, it is interesting to suppose that S0,0 is algebraically sliceable and
to speculate on the behavior of its algebraic slice spectral sequence. Such a
spectral sequence would have the form

Eq,s,t,u
1 =

⊕

i≥0

Exts,t,uA∨ (H∗∗sqS
0,0)⇒ Exts+q,t+q,u

A∨ (Mk
p). (23)
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By [36, Thm. 2.12], the effective slices of the sphere spectrum are intimately
connected to the E2-page of the classical Adams–Novikov spectral sequence.
That is, there is an equivalence of motivic spectra

sq((S
0,0)∧p ) ≃

∨

i≥0

Σ2q−i,qH(Exti,2qBP∗BP (BP∗, BP∗)), (24)

where BP is the classical p-primary Brown–Peterson spectrum. Therefore the
algebraic slice spectral sequence for the sphere spectrum, if it existed, would
begin with the Ext-groups of the entries in the E2-term of the classical Adams–
Novikov spectral sequence and end with the E2-term of the k-motivic Adams
spectral sequence.

4 Comparison of differentials

We now apply Theorem 3.4 to compare differentials in the effective slice spectral
sequence, the motivic Adams spectral sequence, and the ρ-Bockstein spectral
sequence.

4.1 The ρ-Bockstein spectral sequence

When k = C, the groups Ext∗∗∗A∨ (MC
p , H∗∗(X)) are roughly as complicated as

their classical counterparts Ext∗∗A∨(Fp, H∗(Re(X))). When k is an arbitrary
base field, the groups Ext∗∗∗A∨ (Mk

p, H∗∗(X)) contain more complicated arithmetic

data coming from Mk
p:

Theorem 4.1 (Voevodsky). [21, Thm. 2.7] Suppose that p and char(k) are
coprime, and that k contains a primitive p-th root of unity. Then there is an
isomorphism

Mk
p
∼= KM

∗ (k)/p[τ ]

where KM
n (k) has degree (−n,−n) and |τ | has degree (0,−1).8

Example 4.2. [21, Exs. 2.1, 2.2, 2.6][39, Prop. 2.4.2] We record Mk
p for several

cases of k considered later:

1. MC
p
∼= Fp[τ ] with |τ | = (0,−1).

2.

MR
p
∼=

{

F2[τ, ρ] if p = 2,

Fp[θ] if p 6= 2,

where |ρ| = (−1,−1), |τ | = (0,−1), and |θ| = (0,−2).

8Recall that we have defined Mk
p as the mod p motivic homology of a point, so the bidegree

of elements in KM
n (k), as well as τ , are negative instead of positive.
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3. M
Fq

2
∼= F2[τ, u]/u

2 with |u| = (−1,−1) and |τ | = (0,−1). We note that
the A∨-coaction on u depends on the equivalence class of q modulo 4,
and if q ≡ 3 mod 4, then u = ρ.

Recall that Ext∗∗∗A∨ (Mk
p , H∗∗(X)) may be calculated using the cobar complex

C•(M
k
p, A

∨, H∗∗(X)). When k = R and p = 2, filtering the cobar complex by
powers of ρ gives rise to the ρ-Bockstein spectral sequence [15]

E∗∗∗∗
1 = Ext∗∗∗A∨ (MC

2 , H∗∗(X))[ρ]⇒ Ext∗∗∗A∨ (MR
2 , H∗∗(X)) (25)

with differentials dr : Eq,s,t,u
r → Eq+r,s+1,t,u

r calculated using the coaction of
A∨ on MR

2 . The ρ-Bockstein spectral sequence can be built over more general
base fields (e.g. k = Fq [43]) using analogous constructions.
Hill applied the ρ-Bockstein spectral sequence to compute Ext∗∗∗E(n)(M

R
2 ,M

R
2 )

for all n ≥ 0 [15, Thm. 3.1] and Ext∗∗∗A(1)(M
R
2 ,M

R
2 ) [15, Fig. 6]. In both cases,

the differentials were computed using an explicit analysis of the cobar com-
plex and technical Massey product arguments. The groups Ext∗∗∗A(1)(M

R
2 ,M

R
2 )

were recomputed by Guillou–Hill–Isaksen–Ravenel [12, Sec. 6] using a result
comparing the ρ-inverted R-motivic and classical Ext groups [12, Prop. 4.1] to
force all of the necessary differentials.
As mentioned in the proof of Theorem 3.9, H∗∗(k(n)) ∼= A//E(Qn). Its mASS
E2-page is the the trigraded group Ext∗∗∗E(Qn)(M2,M2). Restricting to C and R,
we have the following result on the ρ-Bockstein spectral sequence associated to
k(n); compare with [14, Thm. 6.3] for the case n = 1.

Proposition 4.3. For all n ≥ 0, the E1-page of the ρ-Bockstein spectral se-
quence converging to Ext∗∗∗E(Qn)(M

R
2 ,M

R
2 ) is given by

E1 = Ext∗∗∗E(Qn)(M
C
2 ,M

C
2 )[ρ]

∼= F2[ρ, τ, vn].

The nontrivial differentials are generated under ρ- and vn-linearity by the dif-
ferentials

d2n+1−1(τ
2n) = ρ2

n+1−1vn.

Proof. The result about the E1 page follows from direct computation.
The result about the differentials can be obtained by a similar computation as
the ρ-Bockstein spectral sequence computation for E(n) ([15, Thm. 3.2]). Here
we analyze it by comparison. The ρ-Bockstein spectral sequence for E(n) has a

differential hitting ρ2
n+1

−1vn and its vn- and ρ-power multiples. Therefore, in
our case, the elements with the same names must be killed. By degree reasons,
the only possibility is d2n+1−1(τ

2n) = ρ2
n+1−1vn and differentials generated by

it under ρ and vn-linearity.

Remark 4.4. Although the ρ-Bockstein spectral sequence for Ext∗∗∗A (MR
2 ,M

R
2 )

is multiplicative [15, Prop. 2.3], the ρ-Bockstein spectral sequence for
Ext∗∗∗E(Qn)(M

R
2 ,M

R
2 ) is not. Thus no issues arise from the fact that τ does not
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support a differential while τ2
n

does. This is analogous to the topological situa-
tion, where the ESSS for the sphere spectrum is multiplicative [36, Prop. 2.24],
but the ESSS for k(n) cannot be multiplicative: the differentials in the n = 1
case of [14, Thm. 6.3] are incompatible with a Leibniz rule.

4.2 Review of Adams differentials

In this section we record some facts about differentials in the motivic Adams
spectral sequence. For the remainder of this section, we focus on the case p = 2
since ρ = 0 when p is odd.

Lemma 4.5. If k is an algebraically closed field or k = R, then the motivic
Adams spectral sequences converging to π∗∗(k(n)) and π∗∗(BPGL〈n〉), n ≥ 0,
collapse at E2.

Proof. Recall H∗∗k(n) ∼= A//E(Qn) and H∗∗BPGL〈n〉 ∼= A//E(n). If k is
algebraically closed, then

mASSE2(k(n)) = Ext∗∗∗E(Qn)(M
k
2 ,M

k
2)
∼= Ext∗∗∗E(Qn)(M

C
2 ,M

C
2 )
∼= F2[τ, vn],

mASSE2(BPGL〈n〉) = Ext∗∗∗E(n)(M
k
2 ,M

k
2)

∼= Ext∗∗∗E(n)(M
C
2 ,M

C
2 )
∼= F2[τ, v1, . . . , vn].

Both spectral sequences collapse for tridegree reasons.
When k = R, this follows from [15, Thm. 5.3] for BPGL〈n〉. Similarly, the
spectral sequence collapses at E2 for k(n) for tridegree reasons.

On the other hand, there are possible differentials when k = Fq.

Lemma 4.6. When q ≡ 1 mod 4, the E2-page of the Fq-motivic Adams spectral
sequence for kgl is given by

E2 = Ext∗∗∗E(1)(M
Fq

2 ,M
Fq

2 ) ∼= F2[τ, u, v0, v1]/u
2.

When q ≡ 3 mod 4, the E2-page is given by

E2 = Ext∗∗∗E(1)(M
Fq

2 ,M
Fq

2 ) ∼= F2[τ
2, ρ, [ρτ ], v0, v1]/(ρ

2, ρ[ρτ ], [ρτ ]2, ρv0).

Proof. When q ≡ 1 mod 4, the class u ∈ M
Fq

2 satisfies ηR(u) = ηL(u).
Therefore it is a permanent cycle in the cobar complex and we see that
ExtFq ∼= ExtC[u]/u2.
When q ≡ 3 mod 4, the result follows from the ρ-Bockstein spectral sequence9.
In particular, the ρ-Bockstein d1-differentials are generated under the Leibniz
rule by d1(τ) = ρv0, and the spectral sequence collapses at E2.

9In this case, just a long exact sequence.
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Kylling showed that the Fq-motivic Adams spectral sequences for HZ2, kgl,
and kq do not collapse [24, Sec. 4.2].

Theorem 4.7. Let ν2 denote 2-adic valuation. When q ≡ 1 mod 4, the
nontrivial differentials in the motivic Adams spectral sequence converging to

π
Fq

∗∗(BPGL〈m〉) are generated under the Leibniz rule by

dν2(q−1)+s(τ
2s ) = uτ2

s−1h
ν2(q−1)+s
0 , s ≥ 0.

When q ≡ 3 mod 4, they are generated by

dν2(q2−1)+s−1(τ
2s) = ρτ2

s−1h
ν2(q

2−1)+s
0 , s ≥ 1.

Proof. For all n ≥ 1, there is a map

BPGL〈m〉 → BPGL〈0〉 ≃ HZ2.

The claimed differentials then follow by naturality of the motivic Adams spec-
tral sequence from the differentials for HZ2 which were calculated in [24, Lems.
4.2.1, 4.2.2].

4.3 Relating ρ-Bockstein and slice differentials over Spec(R)

Throughout this section, we fix k = R. The square (19) allows us to describe a
precise relationship between differentials in the ρ-BSS and n-ESSS for kgl and
k(n). We do so by first relating the ρ-BSS differentials with n-aESSS differen-
tials, and then we will relate n-aESSS differentials to n-ESSS differentials.

Proposition 4.8. There are 1-to-1 correspondences between the following dif-
ferentials:

1. ρ-BSS d3-differentials and aESSS d1-differentials for kgl.

2. ρ-BSS d2n+1−1-differentials and n-aESSS d1-differentials for k(n).

Moreover, the aESSS and n-aESSS differentials are forced by knowledge of the
corresponding ρ-BSS differentials.

Proof. Throughout this proof, we will write Ext∗∗∗A (E) in place of
Ext∗∗∗A (H∗∗E) to avoid clutter.
Let E denote kgl or k(n), n ≥ 1, let i∗ : SH(R) → SH(C) denote base change
along the inclusion R→ C, and let s̄q denote sq if E = kgl or snq if E = k(n).
We will prove the proposition by considering the square of spectral sequences

⊕

q≥0 Ext
∗∗∗
AC (s̄qi

∗E)[ρ]
⊕

q≥0 Ext
∗∗∗
AR (s̄qE)

Ext∗∗∗AC (i∗E)[ρ] Ext∗∗∗AR (E).

ρ−BSS

ρ−BSS

(26)
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where the rows are ρ-Bockstein spectral sequences, the left column is the direct
sum over powers of ρ of the aESSS or n-aESSS, and the right column is the
aESSS or n-aESSS.10

Let E = kgl. We can identify each corner of (26). We have

⊕

q≥0

Ext∗∗∗AC (i∗sqkgl)[ρ] ∼=
⊕

q≥0

Ext∗∗∗AC (Σ2q,qi∗HZ2)[ρ] ∼=
⊕

q≥0

Σ2q,qF2[τ, ρ, v0],

⊕

q≥0

Ext∗∗∗AR (sqkgl) ∼=
⊕

q≥0

Ext∗∗∗AR (Σ2q,qHZ2) ∼=
⊕

q≥0

Σ2q,qF2[τ
2, ρ, v0]/(ρv0),

Ext∗∗∗AC (i∗kgl)[ρ] ∼= F2[τ, ρ, v0, v1],

Ext∗∗∗AR (kgl) ∼= F2[τ
4, ρ, v0, v1]/(ρv0, ρ

3v1)

where |τ | = (0, 0,−1), |ρ| = (0,−1,−1), |v0| = (1, 0, 0), and |v1| = (1, 3, 1).
The left column collapses for quad-degree reasons: the E1-page of the aESSS
for i∗kgl is concentrated in quad-degrees with t−s ≡ 0 mod 2, but dr decreases
t− s by 1 for all r ≥ 1. The differentials in the top row are generated by

d1(τ) = ρv0

and the differentials in the bottom row are generated by

d1(τ) = ρv0, d3(τ
2) = ρ3v1.

Since the upper right and lower left composites must arrive at the same answer,
we must have

d1(τ
2) = ρ3v1

in the right column, where by abuse of notation v1 denotes the generator of
Ext∗∗∗AR (s1kgl).
Now fix n ≥ 1 and let E = k(n). To declutter the notation, let r = 2n− 1. For
the corners of (26), we have

⊕

q≥0

Ext∗∗∗AC (i∗snq k(n))[ρ]
∼=

⊕

q≥0

Ext∗∗∗AC (Σ2qr,qri∗HF2) ∼=
⊕

q≥0

Σ2qr,qrF2[τ, ρ],

⊕

q≥0

Ext∗∗∗AR (snq k(n))
∼=

⊕

q≥0

Ext∗∗∗AR (Σ2qr,qrHF2) ∼=
⊕

q≥0

Σ2qr,qrF2[τ, ρ],

Ext∗∗∗AC (k(n))[ρ] ∼= F2[τ, ρ, vn],

Ext∗∗∗AR (k(n)) ∼= F2[τ, ρ, tn+1, vn]/(τ
2n , ρ2

n+1−1vn)

where |τ | = (0, 0,−1), |ρ| = (0,−1,−1), |vn| = (1, 2n+1 − 1, 2n − 1) and |tn| =

(0, 0,−2n+1). Here, tn is represented by τ2
n+1

on the E1-page of the ρ-BSS,
c.f. [14, Thm. 6.3].

10The top left corner is the E1-page of the ρ-BSS because s̄qi
∗E ≃ i∗s̄qE, which follows

from the observation that s̄qE is Eilenberg–MacLane for all q ∈ Z and base change preserves
Eilenberg–MacLane spectra.
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The left column and top row both collapse for quad-degree reasons, and the
differentials in the bottom row are determined by

d2n+1−1(τ
2n) = ρ2

n+1−1vn.

We conclude by commutativity of (26) that we must have

d1(τ
2n) = ρ2

n+1−1vn

in the n-aESSS, where by abuse of notation vn denotes the generator of
Ext∗∗∗AR (sn1k(n)).

Lemma 4.9. There are 1-to-1 correspondences between the following differen-
tials:

1. aESSS d1-differentials and ESSS d1-differentials for kgl.

2. n-aESSS d1-differentials and n-ESSS d1-differentials for k(n).

Moreover, the ESSS and n-ESSS differentials are forced by knowledge of the
corresponding aESSS and n-aESSS differentials.

Proof. We have shown kgl is algebraically sliceable and k(n) is algebraically
n-sliceable, so in the notation of the previous proof, we have squares of spectral
sequences

⊕

q≥0 Ext
∗∗∗
A (H∗∗s̄qE)

Ext∗∗∗A (H∗∗E)
⊕

q≥0 π∗∗s̄qE

π∗∗E.

aESSS

⊕
q≥0

mASS

mASS ESSS

(27)

for E = kgl and E = k(n).
The mASS’s for kgl, k(n), sqkgl ≃ Σ2q,qHZ2, and snq k(n) ≃ Σ2qr,qrHF2 all
collapse. The only nontrivial differentials in the aESSS for kgl and the n-
aESSS for k(n) have length one, so for quad-degree reasons, we must have
identical differentials in the ESSS for kgl and n-ESSS for k(n).

Putting together Proposition 4.8 and Lemma 4.9, we have proven the following
theorem.

Theorem 4.10. There are 1-to-1 correspondences between the following differ-
entials:

1. ρ-BSS d3-differentials and ESSS d1-differentials for kgl.

2. ρ-BSS d2n+1−1-differentials and n-ESSS d1-differentials for k(n).
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Moreover, the ESSS and n-ESSS differentials are completely determined by
knowledge of the corresponding ρ-BSS differentials.

Remark 4.11. As the n-ESSS is obtained by increasing the speed of the ef-
fective slice filtration, a d1-differential in the n-ESSS corresponds to a d2n−1-
differential in the ESSS. Therefore part (2) of Theorem 4.10 may be restated
as a 1-to-1 correspondence between ρ-BSS d2n+1−1-differentials and d2n−1-
differentials in the ESSS.

Theorem 4.10 can be used to prove a correspondence between more complicated
differentials. The following theorem is closely related to Yagita’s analysis of the
effective slice spectral sequence for BPGL in [44, Sec. 4].

Theorem 4.12. Let m ≥ 1. For each 1 ≤ i ≤ m, there is a 1-to-1 correspon-
dence between the ρ-BSS d2i+1−1-differentials and ESSS d2i−1-differentials for
BPGL〈m〉.

Proof. We proceed by induction on m. At p = 2, there is an equivalence
kgl ≃ BPGL〈1〉, so the base case m = 1 is handled by Theorem 4.10.
Suppose now that the result holds for all k < m and we wish to show the
theorem holds for BPGL〈m〉. We begin by using the induction hypothesis to
show that the theorem holds for i < m (but not necessarily i = m).
Observe that the d2i+1−1-differentials in the ρ-BSS’s for BPGL〈m − 1〉 and
BPGL〈m〉 are determined by the same differential

d2i+1−1(τ
2i ) = ρ2

i+1−1vi (28)

for 1 ≤ i ≤ m− 1 by [15, Thm. 3.2]. This implies that the d2i+1−1-differentials
for BPGL〈m〉 are precisely the d2i+1−1-differentials for BPGL〈m−1〉 extended
vm-linearly.
On the other hand, naturality of the ESSS allows us to completely determine
the d2i−1-differentials in the ESSS for BPGL〈m〉. Indeed, the quotient map
BPGL〈m〉 → BPGL〈m− 1〉 implies that the d2i−1-differentials between slices
indexed on monomials not divisible by vm coincide for BPGL〈m − 1〉 and
BPGL〈m〉, and the quotient map BPGL〈m〉 → k(n) implies that vm is a
d2i−1-cycle for i < m by Theorem 4.10. Applying the Leibniz rule for the ESSS
[36, Prop. 2.24] proves that the d2i−1-differentials in the ESSS for BPGL〈m〉
are precisely the d2i−1-differentials in the ESS for BPGL〈m− 1〉 extended vm-
linearly. Therefore we have proven a 1-to-1 correspondence between ρ-BSS and
ESSS differentials for i < m.
We now consider the case i = m. Theorem 3.16 shows that BPGL〈m〉 alge-
braically m-sliceable, so we may consider the comparison square (19) relating
its m-aESSS and m-ESSS. The mASS’s for BPGL〈m〉 and its type m slices
(extensions of (2j, j)-suspensions of HZ2) all collapse, so we obtain a 1-to-1
correspondence between d1-differentials in the m-aESSS and m-ESSS.
We are therefore reduced to relating the d2m+1−1-differentials in the ρ-BSS and
the d1-differentials in the m-aESSS, but this follows from essentially the same
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arguments as Proposition 4.8. Indeed, consider the BPGL〈m〉-analog of (26):

⊕

q≥0 Ext
∗∗∗
AC (smq i∗BPGL〈m〉)[ρ]

⊕

q≥0 Ext
∗∗∗
AR (smq BPGL〈m〉)

Ext∗∗∗AC (i∗BPGL〈m〉)[ρ] Ext∗∗∗AR (BPGL〈m〉).

ρ−BSS

ρ−BSS

(29)

The left column collapses for degree reasons and the differentials in the bottom
row were determined in [15, Thm. 3.2]. The differentials in the top row coincide
with the differentials in the bottom row, with two types of exceptions:

1. All of the d2m+1−1-differentials, i.e. the longest nontrivial differentials,
in the bottom row cannot occur in the top row since their target in the
bottom is divisible by vm (which is zero in the top). We refer to these as
long differentials.

2. The dr-differentials for r < 2m+1 − 1 in the bottom row of the form
dr(x) = y where x lies in stem s with k(2m+1 − 2) ≤ s < (k + 1)(2m+1 −
2) and y lies in stem s′ with s′ ≥ (k + 1)(2m+1 − 2) cannot support
differentials in the top row for degree reasons. We refer to these as fringe
differentials since they involve elements from adjacent type m slices.

A discussion fringe differentials for the case m = 2 appears in Example 4.13.
The long and fringe differentials in the bottom row which do not occur in
the top row both are accounted for by d1-differentials in the m-aESSS. The
d1-differentials in the m-aESSS forced by the fringe differentials in the ρ-BSS
give rise to dr-differentials in the ESSS with r < 2m − 1, which are completely
understood by the induction hypothesis. On the other hand, the d1-differentials
in the m-aESSS forced by the long differentials in the ρ-BSS correspond to
d2m−1-differentials in the ESSS; this is precisely the correspondence we wished
to show.

Example 4.13. We analyze the fringe dr-differentials in the ρ-BSS for
BPGL〈2〉. In this case, we have the cofiber sequence

f3BPGL〈2〉 → BPGL〈2〉 → s20BPGL〈2〉.

Observe that

s20BPGL〈2〉 ≃ s20BPGL〈1〉 ≃ BPGL〈1〉/v31 .

Furthermore, the associated graded motivic spectrum s2∗BPGL〈2〉 is given by

s2∗BPGL〈2〉 ≃ s20BPGL〈2〉[v31 , v2].

In particular, to understand the top ρ-BSS of (29) it is enough to understand
the ρ-BSS for s20BPGL〈2〉. This can be done using the naturality of the ρ-BSS

Documenta Mathematica 26 (2021) 1085–1119



1112 D.L. Culver, H. J. Kong, J.D. Quigley

which produces the diagram

Ext∗∗∗AC (BPGL〈2〉)[ρ] ExtAR(BPGL〈2〉)

Ext∗∗∗AC (s20BPGL〈2〉)[ρ] Ext∗∗∗AR (s20BPGL〈2〉).

(30)

On E1-pages, the left-hand map is the projection map

F2[τ, ρ, v0, v1, v2]→ F2[τ, ρ, v0, v1, v2]/(v
3
1 , v2).

This allows us to import differentials from the ρ-BSS for BPGL〈2〉.
In the top and bottom rows, the d1-differentials are determined by the differ-
ential d1(τ) = ρv0, and the morphism of spectral sequences is the obvious map
on E2-pages. There are no d2-differentials so E2 = E3.
We encounter a fringe differential on the E3-page. In the top, there is a d3-
differential

d3(τ
2) = ρ3v1

which implies a differential of the same form in the bottom. However, in the
top there is a differential d3(τ

2v21) = ρ3v31 which cannot occur in the bottom
since v31 = 0. This is precisely the phenomena described by fringe differentials
in the previous proof.
After running d3-differentials, both rows collapse. Thus, in
ExtAR(s20BPGL〈2〉), there is an extra class which we denote by [τ2v21 ] to
remind us that it is indecomposable in ExtAR . Since there are ρ-BSS differen-
tials d3(τ

2v21) = ρ3v31 in the ρ-BSS for BPGL〈2〉, it follows that we must have
differentials of the form

d1(ρ
ℓ[τ2v21 ](v

3
1)

jvk2 ) = ρℓ+3(v31)
j+1vk2

in the m-aESS, and hence in the m-ESSS. These correspond to the d1-
differentials in the ESSS which are already understood by reduction to
BPGL〈1〉 ≃ kgl.

Remark 4.14. Naturality of the ESSS can be used to prove an analogous cor-
respondence between ρ-BSS and ESSS differentials for BPGL.

Remark 4.15. Although we have only considered the case k = R here, it would
be interesting to consider more general base fields of characteristic zero. For
example, the mASS for BPGL〈n〉 is completely understood when k = Q by
work of Ormsby and Østvær [34, Thm. 5.8]. If one extends Theorem 3.16 to
k = Q, then it may be possible to understand the ESSS for BPGL〈n〉 over
Spec(Q) using Theorem 3.4.

4.4 Comparison over Spec(Fq)

We now turn to the case when k = Fq.

Documenta Mathematica 26 (2021) 1085–1119



Algebraic Slice Spectral Sequences 1113

Unlike the R-motivic case, the comparison is trivial for k(n), n ≥ 1. Since

M
Fp

2 is zero in bidegrees (s, u) with s < −1, the ρ-BSS, mASS, and n-ESSS all
collapse for degree reasons.
However, the analysis is still interesting for kgl. Recall from Example 4.2(3)
that the A∨-coaction depends on the equivalence class of q modulo 4. We
discuss the case when q ≡ 1 mod 4, and the other case when q ≡ 3 mod 4 is
similar.

4.4.1 q ≡ 1 mod 4

By Lemma 4.6, we observe that in the motivic Adams spectral sequence of kgl
and HZ2, the E2-pages have the relation that

Ext∗∗∗A (kgl) ∼= Ext∗∗∗A (HZ2)[v1].

Since Ext∗∗∗A (HZ2)[v1] is exactly the E1-page of the algebraic effective slice
spectral sequence for kgl, we conclude that the algebraic effective slice spectral
sequence collapses.
By Theorem 4.7, the nontrivial differentials in both motivic Adams spectral
sequences for kgl and HZ2 are determined under Leibniz rule by

dν2(q−1)+s(τ
2s) = uτ2

s
−1h

ν2(q−1)+s
0 , s ≥ 0.

Therefore, using the motivic comparison square (19), we conclude that the
effective slice spectral sequence for kgl collapses.

4.4.2 q ≡ 3 mod 4

When q ≡ 3 mod 4, we also get that the algebraic effective slice spectral
sequence and the effective slice spectral sequence for kgl both collapse.

Remark 4.16. The work of Ormsby [33] shows that the situation over local
fields is very similar. The above analysis can be carried over local fields to
show that the effective slice spectral sequence for kgl, as well as BPGL〈m〉 for
all m ≥ 0, are trivial.

5 Applications to C2-equivariant stable homotopy theory

We now make some calculations in C2-equivariant stable homotopy theory. Let
k ⊆ R be a field with a real embedding.

Remark 5.1. Throughout this section, we will freely use the names of elements
in πC2

∗∗ (HF2) and πC2
∗∗ (HZ2) used in [12]. We briefly describe the relevant

elements here.
The C2-equivariant elements τ ∈ πC2

0,−1(HF2) and ρ ∈ πC2

−1,−1(HF2) are the
images under equivariant Betti realization of the R-motivic elements with the
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same names.11 The subalgebra F2[τ, ρ] ⊆ πC2
∗∗ (HF2) is sometimes called the

positive cone.
There is another element, γ

τ
∈ πC2

0,2(HF2), which is infinitely ρ- and τ -divisible
but is not in the image of equivariant Betti realization. The infinitely divisible
part of πC2

∗∗ (HF2) is sometimes called the negative cone.
There are two sets of naming conventions for C2-equivariant homotopy ele-
ments. We refer the reader to tables in Section 1.3 for the correspondence.

We will use the following result of Heard to obtain C2-equivariant slice differ-
entials from known motivic differentials. We note that Heard actually proves
a more general result, but we only use the following specialization in our work.

Theorem 5.2 (Heard). [14, Thms. 5.15-5.16] Let E ∈ SH(k) be a
motivic spectrum which is a localized quotient of MGL. Then ReC2

:
(SH(k),Σq

T SH(k)eff ) → (SHC2 ,Σ2q(SHC2)HHR) is compatible with the slice
filtration at E.12

Heard applied this theorem to deduce effective slice spectral sequence differ-
entials from the existence of HHR slice differentials. We will apply Heard’s
theorem in the opposite direction: starting with the R-motivic effective slice
spectral sequence differentials computed above, we will deduce the existence of
differentials in the HHR slice spectral sequence.

Corollary 5.3. Let E ∈ SH(k) be a motivic spectrum which is a localized
quotient of MGL. Every d2r−1−1-differential in the ESSS for E uniquely de-
termines a d2r−1-differentials in the HHR slice spectral sequence for ReC2

(E).

Remark 5.4. The difference in the lengths of the differentials in Corollary 5.3
stems from a difference in the indexing conventions between the motivic slice
spectral sequence and the equivariant slice spectral sequence. In particular,
motivic d1-differentials correspond to equivariant d3-differentials. See the proof
of [14, Proposition 6.1] for more details.

We will apply Corollary 5.3 to the following C2-spectra:

Definition 5.5. We define the following C2-spectra using equivariant Betti
realization.13

1. Let
kR := ReC2

(kgl)

denote the C2-equivariant slice cover of Atiyah’s K-theory with reality.

2. Let
kR(n) := ReC2

(k(n))

denote the n-th connective Real Morava K-theory.

11There are also geometric models for τ and ρ, cf. [30, Section 4].
12We refer the reader to [14, 16] for details on the C2-equivariant slice spectral sequences

discussed in this section.
13Each spectrum can also be defined directly in C2-spectra. See [2, 10] for kR and [16, 19]

for kR(n) and BPR〈n〉.
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3. Let

BPR〈n〉 := ReC2
(BPGL〈n〉)

denote the n-th truncated Real Brown–Peterson spectrum.

By [14, Ex. 3.5], the motivic spectra kgl, k(n), and BPGL〈n〉 are localized
quotients of MGL. Combining Theorem 5.2 and Corollary 5.3, we obtain:

Corollary 5.6. Let E be kgl, k(n), or BPGL〈n〉. Every d2r−1−1-differential
in the ESSS for E uniquely determines a d2r−1-differential in the HHR slice
spectral sequence for ReC2

(E).

We identified the differentials in the ESSS for kgl, k(n), and BPGL〈n〉 with
ρ-Bockstein spectral sequence differentials in Theorems 4.10 and 4.12. Coupled
with Corollary 5.6, this allows us to produce differentials in the HHR slice spec-
tral sequences for kR, kR(n), and BPR〈n〉. We spell out these consequences
in the next few corollaries.

Corollary 5.7. The nontrivial differentials in the HHR slice spectral sequence
for πC2

∗∗ kR are determined via the Leibniz rule by

d3(τ
2) = ρ3v̄1 and d3

(

γ

ρ3τ2

)

=
γ

τ4
v̄1.

Proof. The differential d1(τ
2) = ρ3v1 in the ESSS for kgl arising from Theo-

rem 4.10 gives rise to the differential d3(τ
2) = ρ3v̄1 in the HHR slice spectral

sequence for kR using Corollary 5.6.
We now prove the second differential. By the Leibniz rule,

0 = d

(

γ

ρ3τ2
· τ2

)

=d

(

γ

ρ3τ2

)

· τ2 +
γ

ρ3τ2
· d(τ2)

Therefore we have that

d

(

γ

ρ3τ2

)

· τ2 =
γ

ρ3τ2
· d(τ2).

Since the element τ2 support a d3-differential, we deduce that the element
γ

ρ3τ2 lives to the E3-page and supports a differential with target γ
τ4 v̄1. This

differential generates a family of d3-differentials by multiplicity.
By inspection, there is no room for further differentials. This completes the
proof.

Corollary 5.8. There is a nontrivial differential in the HHR slice spectral
sequence for πC2

∗∗ kR(n) of the form

d2n+1−1(τ
2n) = ρ2

n+1−1v̄n.
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Proof. By Theorem 4.10 and Remark 4.11, there is a 1-to-1 correspondence
between d2n+1−1-differentials in the ρ-BSS and d2n−1-differentials in the ESSS
for kR(n). By Proposition 4.3, the nontrivial differentials in the ρ-BSS are
generated under ρ- and vn-linearity by the differentials

d2n+1−1(τ
2n) = ρ2

n+1−1vn.

By Corollary 5.6, these R-motivic differentials uniquely determine the stated
d2n+1−1-differentials in the HHR slice spectral sequence for kR(n).

Similar arguments also apply to truncated Real Brown–Peterson spectra, where
one uses Theorem 4.12 and [15, Thm. 3.2] to identify the differentials in the
ESSS for BPGL〈n〉.

Corollary 5.9. There are nontrivial differentials in the HHR slice spectral
sequence for πC2

∗∗ BPR〈n〉 of the form

d2i+1−1(τ
2i ) = ρ2

i+1−1v̄i

for 1 ≤ i ≤ n.

Remark 5.10. Using naturality and the quotient maps BPR → BPR〈n〉, the
corollary recovers the p-local version of the G = C2-case of the Hill–Hopkins–
Ravenel Slice Differentials Theorem [16, Thm. 9.9].14
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