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2-VERMA MODULES

GREGOIRE NAISSE AND PEDRO VAZ

ABSTRACT. We construct a categorification of parabolic Verma modules for symmetriz-
able Kac—-Moody algebras using KLR-like diagrammatic algebras. We show that our
construction arises naturally from a dg-enhancement of the cyclotomic quotients of the
KLR-algebras. As a consequence, we are able to recover the usual categorification of
integrable modules. We also introduce a notion of dg-2-representation for quantum Kac—
Moody algebras, and in particular of parabolic 2-Verma modules.
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1. INTRODUCTION

The study of categorical actions of (quantum enveloping algebras of) Kac-Moody al-
gebras leads to many interesting results. An impressive example is due to Chuang and
Rouquier [11], who introduced categorical actions of sl, to prove the Broué abelian defect
group conjecture for symmetric groups. Another interesting result is Webster’s construction
of homological versions of quantum invariants of links obtained by the Reshetikhin—Turaev
machinery [45].

Until recently, only categorifications of integrable representations of quantum Kac—
Moody algebras were known. These are given by additive (or abelian) categories, on
which the quantum group acts by (exact) endofunctors respecting certain direct sum
decompositions, corresponding to the defining relations of the algebra (see for exam-
ple [15, 19, 25, 26, 38]). In [34], the authors followed a slightly different approach to
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construct a categorification of the universal Verma module M (\) for quantum sl,. The
construction of [34] is given in the form of an abelian, bigraded (super)category, where the
commutator relation takes the form of a (non-split) natural short exact sequence

0 — FE - EF - QK@ IIQK! — 0,

where II is the parity shift functor, and Q a categorification of q_;,l in the form of an infinite

direct sum. This category is obtained as a certain category of modules over cohomology
rings of infinite Grassmannianns and their Koszul duals. Categorification of Verma modules
appeared independently in the litterature with a strongly different flavor in [12] and in [5].

Studying the endomorphism ring of F¥ := Fo ... o F yields a (super)algebra A, that
extends the ubiquitous nilHecke algebra NHj. This superalgebra was studied by the authors
in the follow up [35], where it was used to construct an equivalent categorification of Verma
modules for quantum sl,. The supercenter of A was also studied in [4]. The definition of
the superalgebra Aj;, and is supercenter were extended in [37] to the case of a Weyl group
of type B.

The superalgebra A, comes equipped with a family of differentials d,, for n > 0. The
corresponding dg-algebras are formal, with homology being isomorphic to the n-cyclotomic
quotients of the nilHecke algebra. These quotients are known to categorify the irreducible
integrable U, (s, )-representations V' (n) of highest weight n. We interpret this as a categori-
fication of the universal property of the Verma module M ()), that is there is a surjection
M(X) — V(n) for all n. This also means the dg-algebra (Ay,d,) can be seen as a dg-
enhancement of the cyclotomic nilHecke algebra NH}, and in particular, of categorified
V(n).

In [22, 24] and [38], Khovanov-Lauda and Rouquier introduced generalizations of the
nilHecke algebra for any Cartan datum. These algebras are presented in the form of braid-
like diagrams in [22, 24], with strands labeled by simple roots and decorated with dots. It
is proven in [22, 24, 38] that KLR algebras categorify the half quantum group associated
with the input Cartan datum. Khovanov and Lauda conjectured that certain quotients
of these algebras categorify irreducible, integrable representations of the quantum group.
Due to the isomorphism between these quotient algebras and cyclotomic Hecke algebras
in type A (see [7, 38]), these quotients have become known as cyclotomic KLR algebras.
The corresponding cyclotomic conjecture was first proven in [8, 9, 27] for some special
cases, and then for all symmetrizable Kac-Moody algebras by Kang—Kashiwara in [19],
and independently by Webster in [45].

In this paper, we introduce a version of KLR algebra associated to a pair (p, g), where p
is a (standard) parabolic subalgebra of a quantum Kac-Moody algebra g. This construc-
tion generalizes the algebra Aj from [34], which we view as associated to the (standard)
Borel subalgebra of sl,. The usual KLR algebra is recovered by taking p = g. We prove
that certain ‘cyclotomic quotients’ of these p-KLR algebras categorify parabolic Verma
modules induced over the parabolic subalgebra p, with the cyclotomic quotient depending
on the highest weight. The proof goes by showing first that if p = b is the (standard) Borel
subalgebra of g, then the b-KLR algebra is equipped with a categorical g-action similar
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to the one constructed in [35]. In particular, it categorifies the universal Verma module
of g. Next, we show that the b-KLR algebra can be equipped with a family of differen-
tials, turning it into a dg-enhancement of the cyclotomic p-KLR algebras. This induces a
categorical g-action on the cyclotomic p-KLR algebra. In particular, we recover the usual
categorical action on cyclotomic KLR algebras, and we can reinterpret Kang-Kashiwara’s
proof of Khovanov-Lauda’s cyclotomic conjecture in terms of dg-enhanced KLR algebras.
The world of dg-categories also allows to reinterpret the usual categorical sl,-commutator
relation in terms of mapping cones. More precisely, the derived category of dg-modules
over the dg-enhanced KLR algebra comes equipped with functors E;, F; and an autoequiva-
lence K; for all simple root «;, that categorifies the action of the Chevalley generators E;, F;
and of the Cartan element K; = qZHZ Then, the sl,-commutator relation of the categorical
action takes the form of a quasi-isomorphism of mapping cones

Cone(F,E; — E;F;) = Cone(Q;K; — QK ™),

where Q; is a direct sum of grading shift copies of the identity functor that categories
q.,lliq.. Whenever Fj is locally nilpotent, Cone(Q;K; — Q;K; ') is quasi-isomorphic to a

finite direct sum of shifted copies of the identity functor, corresponding to the usual notion
of an integrable categorical g-action (as in [19] for example).

Categorification of parabolic Verma modules have found connections with topology in
the work of the authors in [33]. In particular, they have constructed Khovanov-Rozansky’s
triply graded link homology using parabolic 2-Verma modules of gl,,. On the decategorified
level, the connection between the HOMFPY-PT link polynomial and Verma modules was
not known before. We expect to find in the future more connections between categorified
Verma modules and low-dimensional topology.

Outline of the paper. In Section 2, we recall the basics about quantum groups and their
parabolic Verma modules.

In Section 3, we introduce the b-KLR algebra R, (Definition 3.3) as a diagrammatic
algebra over a unital commutative ring k, in the same spirit as Khovanov—Lauda’s [22].
We construct a faithful action on a polynomial ring and exhibit a basis, proving Ry is a
free k-module.

In Section 4, we introduce the p-KLR algebra R, for any (standard) parabolic subalgebra
p of g. We also introduce the corresponding N-cyclotomic quotient R{,V . We introduce a
differential dy on Ry, turning it into a dg-enhancement of Rfjv . In particular, we prove the
following theorem:

Theorem 4.4. The dg-algebra (Ry(m),dy) is formal with homology
H(Ry(m),dy) = Ry (m).

In Section 5, we construct a categorical action of U,(g) on Ry, where the action of
the Chevalley generators F; and FEj; is given by functors F; and E; which are defined in
terms of induction and restriction functors for the map that adds a strand labeled i. The
sl,-commutator relation takes the form of a non-split natural short exact sequence. Let
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D(s;—ay (v)],, 1dy be an infinite direct sum of degree shifts of the identity functor that cat-

egorifies the power series (Aiq;a’y ®)_ A;qu‘iv (V))/(qi —¢q; ") (see Eq. (27) in the beginning
of Section 5).

Corollary 5.2. There is a natural short exact sequence
0 — F;E; Id, — E;F; Id, — ®5,-ay (v)),, Idv — 0,
for all v € I, and there is a natural isomorphism
F.E; =~ E;F,,
foralli#j€el.

Fix p < g, and let I; be the set of simple roots for which F; € p. Let Dlnly, Id, be a finite
direct sum of degree shifts of the identity functor that categorifies the quantum integer
[n]q,- The categorical g-action on Ry lifts to the dg-algebra (Ry, dy), and thus to R} by
Theorem 4.4. The short exact sequence of Corollary 5.2 lifts to a short of exact sequence
of complexes, inducing a long exact sequence in homology. This allows us to compute the
action of the functors of induction F}Y and restriction E}Y on R):

Theorem 5.17. Fori ¢ Iy there is a natural short exact sequence
0— FYEY1d, - ENF Id, — @®5,—ay )}, 1dy — 0,
and for i € Iy there are natural isomorphisms
ENFNId, = FNEN 1d, Blni—ay )]
FNENId, =~ ENFY 14, Blay (v)—ni]
Moreover, there is a natural isomorphism

NN  gNEN
FYEN = ENFY,

Y

Id,, ifn,—a/(v)=0
0.

Idw Zf n; — az'v (V)

4

VANA\Y%

a;

fori#jel.

In Section 6, we compute the asymptotic Grothendieck group of (Rp, dy). The asymp-
totic Grothendieck group is a refined version of Grothendieck group, that was introduced
by the first author in [32]. It allows taking in consideration infinite iterated extensions
of objects, such as infinite projective resolutions and infinite composition series (see Defi-
nition 6.3). Let MP(A, N) be the parabolic Verma module of highest weight (A, N), and
MP(A, N) be the c.b.lf. derived category of (Ry,dn) (see Section 6.1).

Theorem 6.14. The asymptotic Grothendieck group o K5 (MP(A, N)) is a U,(g)-weight
module, with action of E;, F; given by [E;], [F;]. Moreover, there is an isomorphism of
U,(g)-modules

oK 5 (MP (A, N)) ®z Q = MP(A, N).

In Section 7, we introduce a notion of categorical dg-action of g on a pretriangulated dg-
category (Definition 7.2), and of (parabolic) 2-Verma module (Definition 7.6). In particular,
we show that J(°(A, N) admits a dg-enhancement J(} ,(A, N) in the form of a dg-category.
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It yields an example of parabolic 2-Verma module, for which Theorem 6.14 takes the
following form:

Corollary 7.8. For all i € I there is a quasi-isomorphism of cones
Cone(FVEN1d, — ENFN1d,) = Cone(Quhig, * ) 1d, — QA7 1¢% @) 1d,),
n anquC(g‘bdg(Rb, dN))

Finally, in Appendix A we recall the construction of the homotopy category of dg-
categories up to quasi-equivalence, based on Toen [42]. We also recall how to compute the
(derived) dg-hom-spaces between pretriangulated dg-categories.

Acknowledgments. G.N. is a Research Fellow of the Fonds de la Recherche Scientifique
- FNRS, under Grant no. 1.A310.16. G.N. is grateful to the Max Planck Institute for
Mathematics in Bonn for its hospitality and financial support. P.V. was supported by the
Fonds de la Recherche Scientifique - FNRS under Grant no. J.0135.16.

2. QUANTUM GROUPS AND VERMA MODULES

We recall the basics about quantum groups and their (parabolic) Verma modules. Our
presentation is close to [18] and [29], where the proofs can be found. References for classical
results about Verma modules are [30] and [17] (and [2] for the quantum case).

2.1. Quantum groups. A generalized Cartan matriz is a finite dimensional square matrix
A= {aij}i,jel S mem such that

e a; =2and a;; <0 foralli#jel;

° CI,Z]:O@CL]Z:O
One says that A is symmetrizable if there exists a diagonal matrix D with positive entries
d; € Z~q for all i € I, such that DA is symmetric. A Cartan datum consists of
a symmetrizable generalized Cartan matrix A;
a free abelian group Y called the weight lattice;
a set of linearly independent elements Il = {«;},e; < Y called simple roots;
a dual weight lattice Y := Hom(Y, Z);
a set of simple coroots 11V = {a }ier < Y'V;
such that

o o (aj) = ai;

o for each i € I there is a fundamental weight A; € Y such that o (A;) = 6;; for all

jel.

The abelian subgroup X := @, Za; < Y is called the root lattice. We also write X* :=
@, No,; < X for the positive roots. Given a Cartan datum, since A is symmetrizable with
d;a;; = d;a;;, one can construct a symmetric bilinear form

(—]-): Y xY -7,

respecting
o (cifay) = 2d; € {2.4,...};
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o (]aj) = dia;; €{0,—1,-2,...} for all i # j;

o a)(y) = 2% forallyeY.

In the end, a Cartan datum is completely determined by (I, X, Y, (—|—)).

Definition 2.1. The quantum Kac-Moody algebra U,(g) associated to a Cartan datum
(I,X,Y,(—|—)) is the associative, unital Q(q)-algebra generated by the set of elements
E;, F; and K, for all i € I and v € Y, with relations for all ¢ € I and 7,7 € Y'V:

}<b:: 1, 1{&}(y ::}(V+V“
K E; = ¢“EK,, K F, = ¢ " FK,
One also imposes the sl,-commutator relation for all 7, j € I:
K, — K !
(1) EiFj — FiE; = 05—
q; — g;

where ¢; := ¢% and K; := Kaiv-
Finally, there are the Serre relations for i # j € I:

@ ) vwﬂ“fﬂ@@@@=m

r+s=1—a;;

3) 2 «wﬂ“ﬁﬂqﬂﬂﬁ=o

r+s=1—a;;

3

k3

This ends the definition of U,(g).

Given a sequence ¢ = 1y - - -%,, of elements in I, we write F; := F; ---F, and E; :=
E;, --- E;,,. We write Seq(]) for the set of such sequences. Any element of U,(g) decomposes

as a sum of elements F; K, F; with ¢, j € Seq([).

The half quantum group U (g) of U,(g) is the subalgebra generated by the elements
{Fi}icr. As a Q(q)-vector space, it admits a basis given by a subset of {F}}icseq(r)-

2.2. Weight modules. Let M be an U,(g)-module with ground ring R > Q(g). Consider
a Z-linear functional

A:YY - R,
where the group structure on R* is the product. For each such A and y € Y, we call
(A, y)-weight space the set

My, = {ve M|Kw = \7)¢"Wv for all y e YV}.

Note that E;My, < My yiq, and F;My, < M)y ,_q,- A weight module is a module that
decomposes as a direct sum of weight spaces. A highest weight module is a module M
such that M = U,(g)vy for some vy € Mo with E;uy = 0 for all ¢ € I. In that case, we
call \ the highest weight and we have

M ~ <:> A4X;—y~

yeX+
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as R-module.

One says that a U,(g)-module M is integrable if for each v € M there exists k » 0 such
that EFv = 0 and FFv = 0 for all i € I. Any finite dimensional module is integrable, and
any integrable module is a weight module with A\(ITV) < Z[gq]. We consider only type 1
modules, that is A(ITV) < N[q].

Let M be a highest weight module with highest weight vector vy € My o. Then we set
Ai = M) for each i € I. We are interested in A such that each ); is either \; = ¢ for
some n; € Z or ); is formal. In that case, we write it \; = ¢ where we interpret 3; as a
formal parameter.

2.2.1. Parabolic Verma modules. The (standard) Borel subalgebra U,(b) of U,(g) is gener-
ated by K, and E; for all ye YV and i € I. A (standard) parabolic subalgebra of U,(g) is
a subalgebra containing U,(b). It is generated by K, E; and F; for all y € YV, i € I and
j € Iy for some fixed subset Iy < I. The part given by K., E; and F} for j € Iy is called
the Levi factor and written U,(l). The nilpotent radical U,(n) is generated by E; for all
i € I, := I\I;. Note that parabolic subalgebras are in bijection with partitions I = I L I,.

Let U,(p) be a parabolic subalgebra determined by I = Iy 1,. For each i € Iy, we choose
a weight n; € N. For each j € I, we choose a weight \; € {¢”/, ¢"7}. We write N = {niticr,
and A = {\;}jer,. Let V(A, N) be the unique (type 1) integrable, irreducible representation
of U,(I) on the ground ring R = Q(gq, A), and with highest weight A determined by

s ¢, ifk=iel;,
A(%):{)\ TR !
i, itk=jel,.
We extend it to a representation of U,(p) by setting U,(n)V (A, N) = 0.

Definition 2.2. The parabolic Verma module of highest weight (A, N) associated to
U,(p) < U,(g) is the induced module

MP(A’ N) = Uq(g) ®Uq(p) V(Aa N)

Whenever U,(p) < U,(g), we have that M*(A, N) is an infinite dimensional module.
Moreover, for all parabolic Verma modules, there is a Q(g)-linear surjection

U, (9) ®q(q) B — MP(A, N).

Example 2.3. If U,(p) = U,(b), then N = &, and V(A, N) = Q(¢, A)va is 1-dimensional,
and such that

EZ'UA = 0, KA/UA = H)\;-Y(Aj)UA.
jel

In this case, we simply call it Verma module, and denote it M°(A). If \; = ¢° is formal
for all 5 € I,., then we call it the universal Verma module.

Example 2.4. If U,(p) = U,(g), then A = & and MP(A,N) = V(N) is an integrable,
irreducible U,(g) representation.
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Since ¢ is a generic parameter we can apply Jantzen’s criterion [17, Theorem 9.12], thanks
to the results in [2]. We obtain that MP(A, N) is irreducible whenever \; ¢ {¢"|n € N} for
all jeI,. If \; = ¢" for n; € N, then M?(A, N) contains a non-trivial, proper submodule,
which is isomorphic to MP (Aijnj_z, N) for Aijnj_z given by exchanging ¢ with ¢~ 2 in
A. Moreover, the quotient

MP(A,N)
Mv(A™ . N)

—nj—27

>~ MPH(A\{g™}, N u {n}),

is isomorphic to the parabolic Verma module associated to the parabolic subalgebra p + 7
given by adding j to Iy, that is generated by p and Fj.

Furthermore, whenever \; = ¢% is formal, there is a surjective map
vy, : MP(A,N) — Mp(AZj,N),
for all n; € Z, given by evaluating ; = n;.

These two facts together allow us to define a partial order on parabolic Verma mod-
ules. For this, we say that there is an arrow from MP?(A, N) to M¥* (A’, N') if we have an
evaluation map ev,; such that

evn, (MP(A, N)) = MP (A, N'),
or if there is a short exact sequence
0— MP(A"™ _, N)— MP(A,N) — M"(A',N') — 0.

—n;—2
For parabolic Verma modules M and M’ we say that M is bigger than M’ if there is a
chain of arrows from M to M’. In that case, there is an M”, which is either trivial or a
parabolic Verma module, and a short exact sequence
0—> M"—ev(M)— M —0,

where ev is a composition of evaluation maps ev,,. With this partial order, the universal
Verma module is a maximal element and each integrable, irreducible module is a minimum.
This also means that we can recover any parabolic Verma module from the universal one.

2.2.2. The Shapovalov form. Let p : U,(g) — U,(g)”® be the Q(g)-linear algebra anti-
involution given by
(4) p(E:) = q; ' K[ 'F, p(F) = ¢ 'K, p(I,) = K,
forallie [ and ye YV.
Definition 2.5. The Shapovalov form
(= =)« MP(A,N) x MP(A,N) — Q(q, A),

is the unique bilinear form respecting

o (van,vAN) = 1, for vy v the highest weight vector;

e (uv,v’) = (v, p(u)v') where p is defined in (4);

® f(vv Ul) = (fU, Ul) = (Uv fvl>7
for all v,v" € MP(A,N),ue U,(g) and f € Q(q,A).
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2.2.3. Basis. Since parabolic Verma modules are highest weight modules, they admit at
least one basis given in terms of elements of the form Fyv, y for ¢ € Seq(I), where vp n is a
highest weight vector. In particular, as R-modules they are all submodules of U, (g)®q(q) 12,
meaning that these basis lives in a subset of {Fup ny|¢ € Seq(I)} modded out by the

Serre relations. We call such a basis an induced basis and write it {vy y = mg,my,...}.
Any element in such basis takes the form F; = Fib: . -Fl-bl1 for some i1,...,4, € I and
bi,...,b, € N, with i, # i;.;. Replacing each F} by the divided power Fl-(b) = F/([b],))
yields another basis {vany = m{,m/,...}. Lusztig’s canonical basis [29] is given by a

certain choice of such a divided power basis characterized by
(mi,m;) — 1€ ZZ[q, A],

for any order such that 0 < ¢ < A; (see Section 6 for a definition of Z%[¢, A]). Whenever
MP(A, N) is irreducible, the Shapovalov form is non-degenerate. Therefore, in this case,
there is a dual canonical basis uniquely determined by

(mf,m?) = dij.
3. THE b-KLR ALGEBRAS
Fix once and for all a Cartan datum (7, X,Y, (—|—)), and let
dij = —Oéiv (Oéj) e N.

For v e X* we write
I/ZZVZ'-CYZ', v; €N,
1€l
and we set |v| := >, 14, and Supp(v) := {i|lv; # 0}.
We also fix a choice of scalars in a commutative, unital ring k as introduced in [39].

Following the conventions in [10], it consists of:

o t;;ek” forall¢,jel;

e spekfori#j,0<t<djand0<v<dy;

e r,ek* foralliel,

respecting
oty =1;
L] tij = tji whenever dij = 07
° Stv — Svt.

i jio
o 517 = 0 whenever t(o|a;) + v(aj|ay) # —2(la;).
In addition, whenever ¢ < 0 or v < 0, we put s}% := 0. Thus we have s}/ = 0 for p > d;

: . dij0 0d;; :
or ¢ > dj. We will also write s,/ := t;; and s;;”* 1= t;;. Hence if (a;|a;) = 0 we get
00 _ 00 _ 4 _ 4
Sij = i = tij = Lji.

Definition 3.1 ([22, 38]). For m € N, the Khovanov-Lauda—Rouquier (KLR) algebra R(m)
is the k-algebra generated by braid-like diagrams on m strands, read from bottom to top,
such that
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e two strands can intersect transversally, but no triple intersections are allowed;

e strands can be decorated by dots (we use a dot with a label & to denote k consecutive
dots on a strand);

e cach strand is labeled by a simple root, written ¢ € I, that we (usually) write at
the bottom;

e multiplication is given by concatenation of diagrams, which preserves the labeling
(i.e. connecting two strands with different labels gives zero);

e diagrams are taken modulo planar isotopies and the following local relations:

r

0 if i = j,

5 = 3 ,
) distv ¢t +b if i # 7,

for all 4,5 € I,

i J ( J i J i J
mop e | e e
7 7 7 7 7 7 7 7 1 /) 1 /)
foralli # jel,
( 0 if i # k,
8 — = 3 ”
(8) §§< >€§ r,ng’ DI I t otherwise,
tv ut+b=
i gk tJ k =
A B

for all 4, j, k € I. In addition, R(m) is Z-graded by setting

deg, >< = —(ai|ay), deg, + = (il ai).

i i
Remark 3.2. Note that in Eq. (5) and Eq. (8), the sum }; s} can be restricted to the
t,v

finite number of pairs ¢,v € N such that t(a;|a;) + v(ajlay) = —2(u|a;). Moreover, it
contains at least two non-zero elements with invertible coefficients, given by t = d;;,v =0
and t = 0,v = dj;.
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As proven in [22, 24] (see also [38]), these algebras categorify the half quantum group
U, () associated to (I, X,Y,(—[-)), as a (twisted) bialgebra. The multiplication and
comultiplication are categorified using respectively induction and restriction functors, ob-

tained by putting diagrams side by side.

For each non-negative integral highest weight N := {n; € N|i € I}, there is a N-
cyclotomic quotient RY (m) of R(m) given by modding out the two-sided ideal generated
by all diagrams of the form

s

1 J k

As first conjectured in [22] and proven in [19] and independently in [45], these cyclotomic
quotients categorify the irreducible integrable U,(g)-module of highest weight N, where
the action of F; (resp. E;) is given by induction (resp. restriction) along the map R(m) —
R(m + 1) that adds a vertical strand with label i, at the right.

3.1. b-KLR algebra. Our first goal is to construct a dg-enhancement of the cyclotomic
KLR algebras RY(m), in the same spirit as in [35]. We introduce the following algebra:

Definition 3.3. For m € N, the b-KLR algebra Ry(m) is the k-algebra generated by
braid-like diagrams on m strands, read from bottom to top, such that

e two strands can intersect transversally, but no triple intersections are allowed;

e strands can be decorated by dots;

e regions in-between strands can be decorated by floating dots, which are labeled by
a subscript in I and a superscript in N;

e cach strand is labeled by a simple root, written i € I;

e multiplication is given by concatenation of diagrams, which preserves the labeling;

e diagrams are taken modulo planar isotopies that preserve the relative height of the
floating dots, and modulo the KLR relations Eq. (5 — 8) and the following local

relations:
a
a b O.
O. o) 7
(9) i .- Ob = — a - j = 0,
: O.
J 7 O.

7

meaning floating dots anti-commute with each other for all i, j € [ and a,b e N,

-

Sl +o‘?‘1 if i = j and a > 0,
2 1
(10) ol = ¢ ! fr
J S(-1)s o ”+t if i # j,
() t,v j
\ ()
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(11) @ - o;f +Zs§;2(—1)“oj+“ Y X if i # j,

t,v u+Lf=
. . Uil . .
1 J 1 J v J
Moreover, a floating dot in the left-most region is zero
o’ | = 0.
(3
7k l

Given a diagram, it is sometimes useful to decorate some of its regions with an element
K =%,k -a;,€ X", where k; denotes the number of strands with label i to the left of
the region. The algebra Ry is Z'*//l-graded (a ¢-grading and a \;-grading for each k € I)

with
deg, >< = — (i), deg, + = (o] ay),
[ J i
degAk >< = 0, degAk + = 0,
[ J i
and

e o’ = a— ()0
dgq(K i ) (1+ J(K) + ki) (i),

a
deg,, ( . O, ) = 20

This ends the definition of Ry(m).

3.2. Tightened basis. Before going any further, let us introduce some useful notations
borrowed from [22]. First, let Ry(v) be the subalgebra of Ry(m) given by diagrams where
there are exactly v; strands labeled i, for each ¢ € I. We also denote Seq(v) the set of
all ordered sequences ¢ = 1145 - - - i,,, With i, € I and ¢ appearing v; times in the sequence.
The symmetric group S, acts on Seq(r) with the simple transposition o € S,, acting on
i = dylg- - iy € Seq(v) by permuting i and igyq. Sometimes, for K = > _ k; - a; € X
we abuse notation by writing ok instead of o).

el

For ¢ = dyis - - - iy, € Seq(v), let 1; € Ry(v) be the idempotent given by m vertical strands
with labels iy, o, ..., %,,, that is

1,,; =

11 19 Im
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We have 1;1; = §;; for all 4, j € Seq(v), and so there is a decomposition of k-modules
Rb(l/) = @ 1JR5(V)1Z
4,j€Seq(v)

Our goal is to construct a basis of 1;R,()1; as k-module.

3.2.1. An action of Ry(v) on a polynomial space. We construct a polynomial representation
of Ry(v) with a similar flavor as in [22, §2.3]. We fix v € X+ with |v| = m. For each i € I
we define

Qi = k[LELZ’, cey .CL’,,Z.’Z‘] ® /\'<w17i, e ,w,,hi>.

We write Q; = ),.; @i, where ® means the supertensor product in the sense that
weiwpj = —wp jwe; for all 7,5 € I and x;, commutes with everything. Thus, @Q; is a
supercommutative superring. Then, we construct the ring
QV = @ Qll'b
i€Seq(v)

where the elements 1; are central idempotents. It is Z'*//l-graded by setting
deg,(2¢,) = (ulov), deg, (wei) = (1 = £)(ailai),
degAj (xe:) =0, degAj (wei) = 2645

We first construct an action of the symmetric group S, on @, by letting the simple
transposition

ok Qrly = Qrle,
to act by sending

Tpi1iles,  if i = g = 7 and p = #{s < ki, = i},
Tpils =  p1ilg,  if iy =iy =i and p = 1 4+ #{s < klis = i},
Tpilo,i, otherwise,
foriel,pe{l,...,v;} and i =iy ...%,, and by sending
w1y o {(wpﬂ' + (Tpi = Tpr1,0)Wps1,i) Logis i i = ip1 = @ and p = #{s < k|i; = i},
7 Wp,ileis otherwise,
which we extend to @, by setting ox(fg) := or(f)ox(g) for all f, g€ Q,.
Proposition 3.4. The procedure described above yields a well-defined action of S,, on Q,.
Proof. The proof is a straightfoward computation. We leave the details to the reader. [
Then, we define inductively the element wy ; € (r for a € N as
0 atl ._  a

R— . . = . —_— . a .
Wp,j = Wpjs Wpj = Wp-1,5 = TpjWpj-
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For K =Y, ki-ie X" such that k; < v, we define wf(K) € Q; inductively as

iel
0, it kj; =0,

Wi (K) = Wi, 3 it k; = 0 for all ¢ # j,
;j( 1)tsifag, wi ™ (K —1i), otherwise,

where K — 7 is a shorthand for K — 1 - «.
Lemma 3.5. The element w§(K) is well-defined.

Proof. Take i # 1" # j € I such that k; > 0 and k; > 0. We can suppose by induction that
Wo(K —i— i) is well-defined for all b > 0. Then we have

J
Z( 1)'siag, Z(—l)t/st' ISL’Z, pwi (K =i — 1)

t o'
— Z t' ' Z“ Z( 1)'spwy, wi ™ (K — i — i),
t,v
forall i #1¢ # jel. O
It will be useful to give w?(K) a non-inductive expression. We write KV := >, ki ai

For a given non-negative integer n; € N we define

(12> gzbi,i<£kz,z = 2 (Hsvﬂex?z> 2'7

|Vil=n;

with the sum being over all partitions V; : v; + -+ 4+ vy, = v; such that (o;]oy)|ve(oy|a;)

for each ¢ € {1,...,k;}, and with ¢, := 72(0‘2"?&1';2[)(%‘%). This is a symmetric polynomial of
q-degree —2k;(a;|a;) — v;(j]eyj) whenever it is non zero. Clearly, we can suppose vy < dj;,

and therefore we can also suppose that n; < dj;;k;. For n € N we define

(13) el (zy) Z (H i@y, ) ) € P,

[V|=n \i#j

with the sum being over all partitions V' : >, = n. Notice that €/ (z)) is a polynomial

of g-degree (—a; Y(KV) = n)(a]ay).
Lemma 3.6. We have

z;é]

,ajv (K\J’)
(14) WH(K) = Y, (=1)wprel(zk) € Pr.
n=0
Proof. A straightforward computation shows that the RHS of Eq. (14) respects the recur-
sive definition of w$(K'), which proves the equality. O

We now have all the tools we need to define an action of R,(r) on P,. First, we choose
an arbitrary orientation ¢ < j or ¢ — j for each pair of distinct 7,5 € I. Then, we let
a € R,(v)1; act as zero on Prl; whenever j # 4. Otherwise, we declare that
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©t

l

e the dot

acts as multiplication by 41 ,1;;
e the floating dot

o’
K J
acts as multiplication by w§(K)1;;
e the crossing
PR
i
acts as
1; — 1;
fLoo gm0 e) if i = j,

Thii — Thi+1y

(st‘xk Tk, +1g> or(f1s), ifi — g,
fli— ok (f1y), if 4« 7.
Proposition 3.7. The rules above define an action of Ry(v) on Q,.

Proof. We have to check the validity of the KLR relations Eq. (5 — 8) and of the relations
involving floating dots Eq. (9 — 11), as well as the relations coming from regular isotopies.

We start by proving the KLR relations. Clearly Eq. (5), Eq. (6) and Eq. (7) are satisfied.
The case ¢ # k of Eq. (8) is also straightforward. For i « j and k = i we compute the
action of the LHS of Eq. (8) on f € @, as

f— Zséi’yt:cl 010201 — 0201 Zsﬁyt:cgag
Zstv tl,v —010201(f) (Ztv ?{ytfﬁé’) ~ (Ztv ?z)ytff)@(h@(f)
ﬂy 1 Tl — T2 Tr1 — T2
T
_Zstv t lf Z ;zl)yt Z :LJl“xg,
r+s=
v—1

where 1z, 7y correspond with the xy, ;, ¥x, 41 and y with zy, ;. What remains coincides
with the RHS of Eq. (8). A similar computation applies for the case i — j.
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For the relations involving floating dots, we remark that Eq. (9) follows from the super-
commutativity of @,, and w§(K) respects Eq. (10) by construction. For relation Eq. (11),
we apply the action of the LHS on some f € (), and we obtain

f Zsztytx” 9K +5)f,

and for the RHS we obtain
Foo (WHE i)+ ) sty D (F1) wi T (K)a'y') f

t,v u44=
v—1
= (Z( 1)'siz'wi ™ (K + j) + ZSZ) Z (—1)"wi™(K)a'y") f.
tv t,v ut+b=

v—1

Then we compute

W+ ) = (3 (1)) + (1) K + ),
utf=
v—1
which implies that the action of the RHS of Eq. (11) coincides with the one of the LHS.
The only non trivial relation coming from regular isotopies we need to verify is given
by the commutation of a floating dot and a crossing at its left. This is a consequence of
the fact that Eq. (12) is a symmetric polynomial, which commutes with divided difference
operators. O]

3.2.2. Left-adjusted expressions. Recall from [35, §2.2.1] that a reduced expression o, - - - 0;,
of we S, is left-adjusted if i, + --- + i1 is minimal. Equivalently, it is left-adjusted if and
only if

min oy, ---0;, (k) < min oy, --- 0, (k),

tE{O, ,} tE{O, 7}
for all k € {0,...,n} and all other reduced expression o;, ---0;, = w. In this condition, we
write
in, (k) := i 0 (k).
min, (k) == _min_ 0,0, (k)

Note that a left adjusted expression always exists and is unique up to distant permutation
(o0j < ojo; for |i—j| > 1), so that min,, (k) is well-defined. In particular, one can obtain
a left-adjusted reduced expression for any permutation by taking its representative in the
coset decomposition

(15) |_| —10n—1"""0q,

applied recursively. If we think of a reduced expression in terms of string diagrams, then
it is left-adjusted if all strings are pulled as far as possible to the left.
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Example 3.8. The permutation (1 3 2 4) € S; admits as left-adjusted reduced expres-
sion the word oy09010309 which comes from the summand S,o305 in the first step of the
recursive decomposition (15). Note that oy09030109 is also left-adjusted while gy01090309
and 0901030903 are not. In terms of string diagrams, we consider as example the following
reduced expression of the permutation w = (143 52) € S :

It is not left-adjusted since the 4th strand (read at the bottom) can be pulled to the left.
Hence we obtain the following left-adjusted minimal presentation:

Suppose o;, - --0;, is a left-adjusted reduced expression of w. Then we can choose for
each k€ {1,...,n} an index t; € {1, ..., 7} such that

Uitk 04y (k‘) = mlnw(k‘)
Clearly this choice is not necessarily unique and we can have t;, = ¢, for k # k’. However,
it defines a partial order < on the set {1,...,n} where k < k' whenever ¢, < t;,. We extend
this order arbitrarily and we write <, for it. There is a bijective map ¢ : {1,...,n} —
{1,...,n} which sends k& < k" to ((k) <; ((K'), so that tcu) < tcu). In terms of string
diagrams, the map ( tells us in which order the strands attain their (chosen) leftmost

position while reading from bottom to top. In particular, ((k) gives the starting point of
the strand that attains its leftmost position in kth position.

Example 3.9. Consider again the following left-adjusted string diagram:

Both the 1st and 3rd strand attain their leftmost position at the bottom of the diagram,
thus we can choose ((1) = 1 and ¢(2) = 3. Then both the 2nd and 4th strand attain their
leftmost position, thus we can take ((3) = 4 and ((4) = 2. Finally, the 5th strand attains
its leftmost position and we put (5) = 5.

For ke {1,...,n + 1}, we put

k = . LIRS .
T vy " Titggmny?

where it is understood that t¢(g) := 0 and t¢(,41) := 7. It defines a partition of the reduced
expression of o;_ ---0;, = w. Moreover, it is constructed so that

w® - w (C(k)) = ming (C(k)),

foralll1 <k <n.
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Example 3.10. Consider again w = 0102010309 with i1 = 2,19 = 3,13 = 1,14 = 2,15 = 1.
We can choose for example ¢; = 0,5 = 0,3 = 3 and t; = 5. Then we can put ((1) =1
(or 2), ¢(2) = 2 (or 1), ¢(3) = 3 and ((4) = 4, with w' = 1,w? = 1, w® = 0,030, and
wt = 0109.

3.2.3. A generating set. We say that a floating dot is tight if it is placed immediately to
the right of the left-most strand, and has superscript 0. We can also suppose it has the
same subscript as the label of the strand at its left (otherwise it would slide to the left and
be zero).

Lemma 3.11. The algebra Ry(v) is generated by KLR elements (i.e. dots and crossings)

and tight floating dots.
1

foralla > 0,7 € I. Eq. (16), together with Eq. (11) and Eq. (10) allows to bring all floating
dots to the left. Then applying Eq. (10) recursively allows to transform all floating dots
with superscript bigger than zero into dots and tight floating dots. O

Proof. We first compute

(16)

1 1

We write w for a tight floating dot, 7, for a crossing between the ath and (a + 1)th
strands (counting from left), and x, for a dot on the ath strand, where we suppose the
label of the strands given by the context, in the form of an idempotent 1;. We also define
the tightened floating dot in Ry(v) as 0, :== 7,1+ TqwTy - - - T4_1, Or diagrammatically

We also write 60 := 0, and ;! := 1.

Lemma 3.12. Tigthened floating dots anticommute with each others, up to adding terms
with a smaller number of crossings, that is

0.0, = —0,0, + R, (0.)* =0+ R,

where R (resp. R') possesses strictly less crossings than 0,0, (resp. (0,)%), for all 1 <
a,b<m.
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Proof. We first compute that

o’
J
(17) @ = 0,
k¢ koL

for all 7, j,k,¢ € I and a,b € N. Then we obtain

where both Ry and R; have less crossings. O

Fix 4,5 € Seq(v). Since they are both sequences of the same elements, there is a subset
iSi © Sy of permutations w € Sy, such that i, = j,u) for all k€ {1,...,m}. Given such
a permutation w € ;5;, we can choose a left-adjusted reduced expression. It comes with a
partition w™*! ... w?w! = w and a bijection ¢ : {1,...,m} — {1,...,m}, such that

w® - w'(¢(k)) = min, (C(k)),
for all 1 < k < m. Then, consider the collection of elements

o am a 125 14 14
iBi = a2 Tum B oy o Ousin (c@) T Oimin (c ) T

(18)
a; €N, l;€ {0, -1}, w e ;S;}

in 1;R,(v)1;. Diagrammatically, elements in ;B; can be constructed using the following
algorithm:

(1) choose a permutation w € ;S;, consider its corresponding string diagram and make
it left-adjusted by bringing all strands to the left;

(2) for each strand, choose whether we want to add a floating dot. If so, add a tightened
floating dot where the strand attains its left-most position by pulling the strand to
the far left and adding the floating dot immediately at its right;

(3) for each strand, choose a number of dots to add at the top of the diagram.

adjusted permutation w € ;95;:

11 %2 3 4 s
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Take {1 = 1,05 = 0,03 = 1,04, = 0 and /5 = 0 (for the same ( as in Example 3.9). Then we
obtain the following element in ;B;:

(] Q02 403 S04 05

Q>

o
11 12 i3 4 15

Proposition 3.14. Elements in ;B; generate 1;Ry(v)1; as a k-vector space.

Proof. The proof is an induction on the number of crossings. By Lemma 3.11, we can
assume that all floating dots are tight. By Eq. (6) and Eq. (7) we can bring all the dots to
the top of any diagram, at the cost of adding diagrams with fewer crossings. Moreover, all
braid isotopies hold up to adding terms with a lower amount of crossings thanks to Eq. (5)
and Eq. (8).

We claim that we can also assume that there is at most one floating dot at the immediate
right of each strand. Indeed, suppose there are two tight floating dots at the right of the
same strand. Then we can apply a braid-isotopy to bring it as most as possible to the
left, until it is possibly blocked by other tight floating dots. We depict it by the following

picture:
‘o ¢ ||
- ‘~\ (o) ~\
’ .
T > terms with

r'd
v + .
. P fewer crossings,

- ’4
10 e
. S

~

where the dashed strand in red represents the one we want to pull, and the boxes represent
other elements in Ry(v). If there is no floating dot in-between, then it is zero by Eq. (9).
Otherwise, we apply Eq. (17) to jump the bottom floating dot over all the floating dots
in-between, until we have two floating dots in the same region at the top, which is zero
by Eq. (9). This proves the claim.

Finally, we observe that given a strand with a single tight floating dot, we can tighten
it by braid isotopy, until we end up with a tightened floating dot. Since by Lemma 3.12
tightened floating dots anticommute, this concludes the proof. 0

3.2.4. The basis theorem.
Proposition 3.15. The action in Proposition 3.7 is faithful.

Proof. The proof is inspired by [39, Proposition 3.8] (see also [22, Theorem 2.5] for a differ-
ent approach). We claim that elements of ;B; act as linearly independent endomorphisms
on P,. The action yields morphisms

P[li — P[lj,
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that we will consider as endomorphisms of P;.

First we extend the scalars to k(xy,,...,2,,;) in P; for all i € I. We claim that different
choices of w € ;S; and ¢; € {—1,0} give linearly independent operators. Notice that since
t,7 is fixed, w is given by choices of permutations between strands of the same label.
Since crossings between strands with different labels act as multiplication by a polynomial,
we can ignore them as being multiplication by a scalar. By [35, Corollary 3.9], we know
that different choices of permutations and tightened floating dots for strands with label
1 act as linearly independent operators on F;, hence proving our claim. Finally, taking
into account the multiplication by the polynomial given by the choice of the a; € N as in
Eq. (18) concludes the proof. O

Theorem 3.16. The k-module 1;Ry(v)1; is free with basis ;B;.
Proof. Tt follows from Proposition 3.14 and Proposition 3.15. 0J
From this, we also deduce the following:

Corollary 3.17. The b-KLR algebra admits a presentation given by the KLR-generators
and tight floating dots, subjected to the KLR-relations Eq. (5-8) together with

for alli,j e I,.

4. DG-ENHANCEMENT

We fix a subset Iy < I and consider the associated parabolic subalgebra U,(p) < U,(g)
as defined in Section 2.2. For each j € Iy, we also choose a weight n; € N, and write

N := {nj}je[f.

Definition 4.1. The p-KLR algebra R,(m) is given by forgetting the \;-degree for each
j € Irin Ry(m) and modding out by

for all j € I.
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In particular, R4(m) is the usual KLR algebra R(m) (see Definition 3.1). Its N-
cyclotomic quotient Rév (m) is also the usual cyclotomic quotient of the KLR algebra.
Taking Iy = J gives p = b and we recover Definition 3.3.

We equip Ry(m) with a homological Z-grading, denoted h, by setting

Qa
degh >< = 0, degh + = 0, degh ( X OZ ) — 1’

? J 1

for all 4,5 € I. Then, we equip Ry(m) with a differential dy by setting

dN >< = dN + = 0,

i J i
and
0, if j &Iy,

, lfJEIf

J u Im—1 J i1 Im—1
We extend the definition of d to the whole algebra using the graded Leibniz rule dy(zy) =

dy(z)y + (1)@ 2dy(y) and Lemma 3.11. Checking that dy is well-defined is straight-
forward using Corollary 3.17. From this, we derive that for j € I, we have

a fajV(K\j)
dN( X Oj ) = (—1)nj_kj+l+a Z fbnj+a—kj+1+r(l'kj7j)5£(£[<)a

r=0

where x4, is a dot on the (th strand with label i, #,, is the nth complete homogeneous
polynomial, and &/(z) is defined in Eq. (13).

Definition 4.2. We refer to the dg-algebra (Ry(m),dy) as the dg-enhanced KLR algebra.
Proposition 4.3. Ifn; —v; — ajv(z/\j) <0, then (Ry(v),dy) is acyclic.

Proof. Taking a := —(n; —v; — ) (vV) + 1) and considering the floating dot placed on the
far right with subscript j and superscript a yields

a v
dn ( Oj ) = (=1)% ),
v

Thus, H(Ry(v),dy) = 0. O
Our goal for the rest of the section will be to prove the following:

Theorem 4.4. The dg-algebra (Ry(m),dy) is formal with homology
H(Ry(m),dy) = R} (m).
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4.1. Proof of Theorem 4.4. Denote 1, := Zjelm 1;i, or diagrammatically

1(m,z) = Z

(J1y-ees Jm )EI™

jl ]m {
It is an idempotent of Ry(m + 1). We also define 1(;) 1= > icg0q() Lii for v € X*. The

algebra Ry(m) acts on 1(, ;) Re(m + 1) by first adding a vertical strand labeled 7 at the
right of D € Ry(m) and then multiplying on the left in Ry(m + 1).

We now introduce some other diagrammatic notations as in [35, §3.1]. We draw Ry (m)
(viewed as Ry(m)-Ry(m)-bimodule) as a box labeled by m

and ®y, := g, (m) becomes stacking boxes on top of each other. Moreover, when Ry(m+1)
is viewed as a left Ry(m)-module, as a right Ry(m)-module or as an Ry (m)-Ry(m)-bimodule,
we draw respectively

ﬁ#l T%l m+1

Lemma 4.5. As a left Ry(m)-module, 1(m, ;) Rs(m + 1) is free with decomposition

m+1

@ @(Rb 7-a:lj @® Rb( )]-(m,z)Tm e Ta9§)7

a=1 £>0
where 0¢ := 1, 1 - -mwztiT -
a = Ta—1 1WITT1 Ta—1-

We draw this as

We then apply Eq. (6) and Eq. (7) to bring all the dots to the desired position. It is a
triangular change of basis, concluding the proof. O
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From now on, we will draw boxes with label ‘m, dy’ to denote the dg-algebra (Ry(m), dy).
Similarly, a box with label H(m) denotes its homology H(Ry(m),dy). Then, the decom-
position in Lemma 4.5 lifts directly to a direct sum decomposition of dg-modules whenever
© ¢ Iy. Otherwise, for i € I, it lifts to the mapping cone

"

(20) ~ Cone

where the map dy is induced by the differential of (Ry(m + 1), dy).

We will prove Theorem 4.4 using induction on the number of strands m. Therefore, we
can assume (Ry(m),dy) to be formal.

Following [20], recall that for a dg-algebra (A, d4), we say that a dg-module is a relatively
projective module if it is a direct summand of a free module in (A, d4)-mod. Moreover,
an (A,da)-module Y satisfies property (P) if there is an exhaustive filtration of (A, d4)-
modules

O=lhckhclkhc ---cF.cl,c---CY,

such that each F,,,/F, is isomorphic in (A,d4)-mod to a relatively projective module.
An (A, da)-direct summand of a property (P) module is called cofibrant. Also recall the
following result of homological algebra:

Lemma 4.6. Let (A,da) be a dg-algebra, (M, dy) be a right (A, da)-module, and (N, dy)
a left one. If (M, dyy) is formal and (N,dy) is cofibrant, then we have

H((M, dar) ®ady) (I, dN)) = H(H(M> dar) ®a,ay) (N, dN))-
Proof. Tensoring with a cofibrant dg-module preserves quasi-isomorphisms. 0

Therefore we obtain an exact sequence

thanks to Lemma 4.6 and Eq. (19).

Proposition 4.7. The exact sequence Eq. (21) is a short exact sequence, with dy being
mjective.
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Theorem 4.4 above is a direct consequence of Proposition 4.7. Therefore, we now focus
on proving this proposition. This is in fact similar to Kang—Kashiwara’s [19, Eq. (4.13)],
with basically only a change of basis, and thus we will follow the same ideas. We introduce
the equivalent of ‘g,” from the reference and draw it as an undercrossing:

>< iti o,

;/\j:<ri+'}|rl| + >< >< +2>< iz

]

\

In order to shorten out our diagrams, we introduce the convenient notation

e ARE

It respects the relation

22 BSGE N
We also have that

23 % — 7 ++ — e
) AN T A

Lemma 4.8. ([19, Lemma 4.12]) Undercrossings respect the following relations:

2N 2N

\\

Still as in [19], in order to construct a “nearly inverse” for dy, we define the map

~
~
~
~.
~
~

foralli,j, ke l.
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as multiplication on the left (or diagrammatically stacking above) with the element

e

>

m+1l =

(117

i

Lemma 4.9. The map P defined above is a map of H(Ry(m), dy)-modules.

Proof. We need to verify that 8,1 commutes with the elements in H(Ry(m), dy). Cross-

~

ings and dots slide over the upper part of the (m + 1)th strand in 6,,.; at the cost of
adding diagrams with fewer crossings. Because there are fewer crossings, we can slide
the floating dot coming from 6,, 1 to the part H (Rp(m),dy) of the diagram, which gives
zero. The crossings and dots in the remaining terms then slide over the lower part thanks
to Lemma 4.8. Tight floating dots with subscript j ¢ I; also slide over 5m+1 thanks to

Eq. (11).

Lemma 4.10. The composition P o dy is given on H(Ry(m),dy) ®m LwoRe(m + 1) by

multiplication by

2v;—ay (v)

(24) i amiten(z,),
p=0

where €},(z,) is as in Eq. (13).
Proof. The proof is similar to [19, Theorem 4.15]. We have

POCZN
>

We prove by induction on the number of strands m that
7)) 2vi—ay (v)

2v; n;+p 1
T z merlgp(gu)?
n; p=0

where = means equality up to adding elements killed in the quotient H(Ry(m),dy)
Rév (m). If m = 0, then it is trivial. Thus we suppose by induction that it holds for m — 1.
We fix the label of the strands on the diagram above as ij with j = j; - - - j,, € Seq(v), and

we consider the different possible cases.
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If j,, # i, then the result follows by applying Eq. (5) with Lemma 4.8, and using the
induction hypothesis.
If j,, = ¢, we first observe that

(26) Q s ><

Then, we need to consider j,,_1. If m = 1, we have that

/
=Ty nz:>< ] nl><
ni . . . .
i g 11 11
= >< by ><n,+1 + 72 +nl
11 T 1

7 1 7 1

Moreover, we observe that

11
which finishes the case m = 1. For j,,_1 = 7, we have

1) ))

g

using Eq. (26), Eq. (23) and Lemma 4.8. Using Eq. (22) followed by Lemma 4.8 and
g Eq. (26), Eq. (23) g Eq N

Eq. (26) we obtain
e
g

Keeping in mind Eq. (25), we have

Il
m
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by Eq. (8) and Eq. (7). This means we can apply the induction hypothesis to get

WA LW

n; 7
Similarly, we have

Ty

n; n;

Putting these two results together and using Eq. (7), we obtain

1)) 1))

which concludes this case.
For the final case j,,_1 = j # i, we compute

t,v u+£—
T ] 1 T ] 1 T ] 1

using Eq. (8). Then we obtain for the first term on the RHS of the second equality, using

the induction hypothesis together with Eq. (5)
t,v
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On the other hand, we have for all ¢, v that

LF -

g iogot i ]

Putting these results together with the case j,, # ¢ yields

1) )) 1))
=2
i ji i ji

which concludes the proof. O

Proof of Proposition 4.7. The polynomial Eq. (24) is monic (up to invertible scalar) with

leading terms :Enmiifw*aiv @), Therefore, multiplication by Eq. (24) yields an injective map.

Thus, Lemma 4.10 tells us that P o dy is injective, and so is dy. O

As a consequence, this also ends the proof of Theorem 4.4.

5. CATEGORICAL ACTION

For each i € I there is a (non-unital) inclusion Ry(m) < Ry(m+1)1(,), given by adding
a vertical strand with label i to the right of a diagram D € Ry(m):

g2 T Im JuoJ2 7m0
This gives rise to induction and restriction functors
Ind”™*" : Ry(m)-mod — Ry(m + 1)-mod,
Ind"*" (=) = Re(m + 1)1 () Qum —,
Res” " : Ry(m + 1) -mod — Ry(m)-mod,
Res!" ™' (—) = Ly Re(m + 1) @y —

m

which are adjoint.

We write

RS (v) := Ry(v) @ k[&] = P @ Re(v

=0

with deg, (&) = (ai|a;). We will prove the following theorem in the next subsection:
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Theorem 5.1. There is a short exact sequence
0— ¢ *Ro(V)1(—ii) Om-1 Lw—iyRe(V) = Ly Re(v + )11
— RS () @ A2q; RS (0)[1] — 0,
of Ry(v)-Ry(v)-bimodules for all i € I. Moreover, there is an isomorphism
g 1) Ry ()1 (i) Ot Ly Ro(V) = 1y Re(v + )10,
foralli#jel andvV +j =v +1.

As we will see in the proof of Theorem 5.1, we can picture these facts as a short exact
sequence of diagrams

where the cokernel vanishes whenever ¢ # 5. We write 7 for the projection
-l 1

mi Cma1 |- @[ m et

£20

- i
We write Id, := Ry(v) ® (—) and we define

Fi = @ Ind™*, E=@ P N'g ™ Res1d, ;.
m=0

m=0 |v|=m

These are exact functors thanks to Lemma 4.5. Define

27 Drs,ar .. Idy = D g (A 1™ Y 1d, @hig ™ M 1d,[1]).
[Bi—ay ()]g i i 4 i
>0
ol ) o1 @) )
It is a categorification of the fraction alh q__q/_\fl % . We obtain:

Corollary 5.2. There is a natural short exact sequence
0 — FE; 1d, — E;F;1d, — @5,-ay (v)),, Idy — 0,
for all i € I, and there is a natural isomorphism
F.E; = E,F,,
foralli+#jel.
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Proposition 5.3. For each i,j € I there is a natural isomorphism

l(dzgél)/2j dij +1 F2“F-Fdij+1_2“ ~ ld”@/m dij +1 F2a+1F'Fdij_2a
= 2a q_i I - 2a+1q," 70 ’

i a=0

and in particular for (o;lo;) = 0 we have F;F;1, = F;F;1,. By adjunction, the same
isomorphism exists for the E;, E;.

Proof. Similarly as in the case of the usual KLR algebras, it follows from Eq. (7) and Eq. (8)
(the proof of [24, Proposition 6] can be applied directly). O

5.1. Proof of Theorem 5.1. By symmetry along the horizontal axis, we obtain a decom-
position of Ry(m+ 1) as a right Ry(m)-module similar to the one of Lemma 4.5. Note that
the left and right decompositions are not compatible, and therefore we do not have a de-
composition as a Ry(m)-R,(m)-bimodule. However, the surjection Ry(m + 1) — ¢%Ry(m)
that projects on the summand Ry(m)xf, , given by taking a = m + 1 in Lemma 4.5, is a
(left-invertible) map of bimodules.

We define the map
(—2a (v
74t L Ro(m + 1)1, = X Ry(v)[1],

as the projection map on the summand Ry(m)6 ., in the left decomposition of Ry(m + 1)
as Ry(m)-module in Lemma 4.5. Similarly, let

—2ay (v
W% : 1(1,,2-)Rb(m + 1)1(y,i) - )\?q? 2ai( )Rb(’/)[l]v

be the projection map on 6, Ry(m) in the right decomposition.

Lemma 5.4. We have

for all y € Ry(m + 1).

Proof. We can suppose y = 6% .y with ¥ € Ry(m). We want to prove that y =
(—1)deen®y/gl |+ o for some yo ¢ Re(m)6,,,. For this, it is enough to show that
Y1Omi12y2 = (—1)degh(2)y12‘9n+1y2 + 29 where y1,y2 € Ry(m), 20 ¢ Rb(m>9fn+1 and z is any
generator of Ry(m) (i.e. crossing, dot or tight floating dot).
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If z = x, and is on a strand labeled j # 4, then it slides freely over 6,,,1 thanks to
Eq. (6). If the strand is labeled 4, then we compute

¢ Q)’)) @

112
AR
AKX XD
_Xo)
3
X

where the double strands represent multiple parallel strands (the number depending on m
and a), and R is a sum of terms of the following form:

0
e

and its mirror along the horizontal axis. Note that it is implicitly assumed that each of
these diagrams have the element y; at the top and y, at the bottom. Using Lemma 4.5,
we can rewrite the composition of the last three terms in the equation above with vy as
elements in @"_; B0 Ro(m — 1) TTim_1 -+ Ta2? & Ry(m)0’, . Hence they form the term
20-

If z = 7; is a crossing, then we obtain the desired property by Eq. (8), and applying a
similar reasoning as above.

Finally if z = w and is at right of a strand labeled j # i, it follows directly from Eq. (17).
Otherwise, if the strand is labeled i, we compute

(0] (0]
o o ¢ ’”*8‘ .
7 7 7 7 Z Z Z Z

Then for all ;s > 0 we compute using Eq. (7) again

o/ o
reows &g
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Looking at these elements in the global picture yields

S o seQ
= +R
T o r 0o

which is an element not contained in Ry(m)6_; for the same reasons as before. We see
that together they form the element z,, concluding the proof. O

We now have all the ingredients we need to prove Theorem 5.1.
Proof of Theorem 5.1. We first construct an injective map
(28) uij 1 g 1) Ry() 1 1.6y @t Ly jy Ro(V) = 1y Ro(m + 1)1,
of Ry(m)-Ry(m)-bimodules, by setting (as in [19, Proposition 3.3])
Ui (T @m_1Y) := TTy.

In terms of diagrams, it consists of adding a crossing at the right

J

Then, we construct a surjective map
Ly Re(m + 1)1 = By () @ Mg, RE (0)[1],

by projecting onto the direct summands @, 25,1 Re(m) @ 0%, Rs(m) of the decompo-
sition of Ry(m + 1) as right Ry(m)-module. By Lemma 5.4 we know that this is a map of
Ry (m)-Ry(m)-bimodules. Finally, exactness follows directly from Lemma 4.5, since

R (V)L im—1,0) ®m—1 Limy,j) Ro(v)

= Rb( )1(m 1,i) m—1 (@@ Rb —1 ]-(mz Tm—1" Taxilj

a=1 ¢=0
® Ro(m = 1)lim )T Taba15))
and so
ij (Ro (V)L (m-1,) ®m-1 Lmy.j)Re(v))

N @@ Ry(m — 1)1 (ms) Tin Tt - Taxﬁlj

a=1 ¢=0
@ Rb(m — 1>1(m,i)7_m7-m—1 cee Taeﬁlj).



34 GREGOIRE NAISSE AND PEDRO VAZ

We remark that whenever ¢ # j, we have
D L)1 R (M) i) © L) Ro(m)0r 1 1wiy = 0,
=0

and thus u;; is an isomorphism, concluding the proof. O

5.2. Long exact sequence. We want to lift Theorem 5.1 to the dg-world of (Ry(m), dy),
and study the long exact sequence that it induces. Therefore we define

whenever ¢ € If, and yy = 0 for ¢ ¢ I;. Then we define

(RS (n)@\2q, > RE (v)[1], dw)

= Cone (X2g, "Ry (n)[1], dy) 2> (RE (v), d))
and
(Ro(V)L(m-1,) ®m—1 Lim-1,)Re(v), dn)
= (Ro(V)Lm—1,0), AN) Ry (m—1).dn) Lim—1,)R6(v), dn).
Proposition 5.5. There is a short exact sequence of dg-bimodules
0 — q; *(Re(V)L(yiiy @m-1 Low—inyRe(V), dn) — (LpyRe(v + i) 114, dn)
= (By () ® X, " RE (V)[1], dy) — 0
for all i € I. Moreover, there is an isomorphism
¢~ (Ro(1) L) Om1 Lwr—i ) Ro(') dn) = (Lo ) Ro (v + 1)1, d)
foralli#jel andv+i=1v+ 7.
Proof. 1t is a straightforward consequence of Theorem 5.1. 0J

In order to understand the consequences of this short exact sequence in homology, we
need to compute the homology

H(RS (v) ® N2q; ™ VRS (v)[1], dw),

%
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for all < € Iy.
Therefore, we want to compute the projection of the element

for all p > n;. Note that we project on the homology of (Ry(m),dy). This will ease some
of the computations we need to do. We write 7 when we take the composite of m with the
projection on the homology of (Ry(m),dy). More precisely, 7 is given by

Similarly, we write yy.

Lemma 5.6. If p > 2u;, then

Proof. The proof is an induction on m. If m = 0, then it is trivial. Suppose the statement
holds for m — 1. We fix the labels of the strands as the bottom as j = j; - j,, € Seq(v).
If 71 = ¢, then we compute
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Then, using Eq. (8) we have

Z(r+2)7r

r+s

which concludes the case by observing that s —a,’ (v —i) = p—a;’ (v), and taking ¢ = r2¢’.
If p < 2v;, the claim is immediate by the induction hypothesis.
For the case j; = j # i, we use Eq. (5) and then the induction hypothesis to get
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where we recall that s?}j 0
serving that d;; +p — o (v — j) = p — oy’ (V).
Consider also the following result, which is akin to [19, Lemma 5.4].

Lemma 5.7. We have for k <k andt =k —k,

where

Proof. First we observe that

n;+k’ = n;+k

0

37

= t;;. We conclude by applying the induction hypothesis, ob-

O

using Eq. (7) and Eq. (6), and the fact that n; dots on the left strand is annihilated in

H(Rb(m), dN)
Then, using Lemma 4.5 we obtain

(29)

(30)

thanks to Eq. (7).
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Proposition 5.8. Putting p; := n; — o (v), we have

EC k+p; + @
£=0

which is 0 whenever k + p; < 0, and where ( € k™.

Proof. If n; = 2v;, then the result follows from Lemma 5.6. Otherwise, we take k' = 2v; —n;
and the result follows from Lemma 5.6 for & > k’. Suppose k < k' and put t = k' — k.
Then, by Lemma 5.7 we obtain

which concludes the proof. 0J

We now have all the tools we need to compute the homology of the cokernel of the short
exact sequence of Proposition 5.5.

Proposition 5.9. There is an isomorphism of R (v)-R) (v)-bimodules

H (RS (v) ® A2q; 2 RE (v)[1], dw)
z{cnlaﬂRN<> if pi

)

>0
207 Y @ PRV, if <0,

where p; = n; — o) (V).
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Proof. First suppose p; = 0. Then, Proposition 5.8 tells us that §x(£F) is a monic poly-
nomial (up to invertible scalar) with leading terms 77", This gives us the first case. If
pi < 0, then we have g (&) = 0 for k < —p;. Moreover, (1gn (&) = 1, and in general
yn(£F) is a monic polynomial with leading term §f *Pi for k > —p;. This concludes the

proof. O

5.3. Strongly projective dg-modules. The following notions were originally introduced
by Moore [31]. We use the presentation given in [41], which is best suited for our notations.

Definition 5.10 ([41, Definition 8.5]). Let (R,0) be a ring R viewed as a dg-Z-algebra
concentrated in degree zero. An (R,0)-module (Q,dq) is strongly projective if H(Q,dg)
and im dg are both projective R-modules.

Lemma 5.11 ([44, Theorem 9.3.2]). Let (P, dp) be a strongly projective right (R, 0)-module
and (N, dy) any left (R,0)-module, then

H((P, dp) ®(R,O) (N, dN)) = H(P, dp) Xpr H(N, dN)

Definition 5.12 ([41, Definition 8.17]). Let (A, d) be a dg-R-algebra. A left (resp. right)
(A, da)-module (P, dp) is strongly projective if it is a dg-direct summand of (A, da) ®(r,0)
(Q,dg) (resp. (Q,dg) ®r,0) (A,d4)) for some strongly projective (R,0)-module (Q,dg).

Proposition 5.13 ([41, Lemma 8.23]). If (P,dp) is a strongly projective right (A, da)-
module and (N, dy) is any left (A, da)-module, then

H((P,dp) @, (N,dn)) = H(P,dp) Qu(aa, H(N,dy).

Note that if (P, dp) is a strongly projective (A, d4)-module, then H (P, dp) is a projective
H(A,d4)-module. Indeed, we can assume (P,dp) = (A,da) ® g (Q,dg), and we have
H(P,dp) = H(A,da) ®r H(Q, dg).
Since H(Q,dg) is a projective R-module, it is a direct summand of a free R-module F'.
Therefore H (P, dp) is a direct summand of H(A, d4)®gF, which is a free H(A, d 4)-module.

Remark 5.14. This result does not hold in general. As a counterexample we can take
(A,d) = (Q[x],0) and consider the dg-module (X, dx) = Cone(Q[z] = Q[x]). In this case
we have that H(X, dx) = Q but H((X, dX) ®(A,d) (X, dx)) = Q@Q[l]

5.3.1. Strong projectivity of Ry(m + 1). Our next goal is to show the following:
Proposition 5.15. The (Ry(m), dy)-module (1mqRe(m + 1),dy) is strongly projective.

It is obvious for ¢ ¢ Iy by Lemma 4.5, and thus we can assume i € [y. We first construct
the mapping cone

(deQ) =
m+1 m+1

Cone(D @ Ry(m) 177 “S @D @ Ry(m) Ly 7n -+ 7al)

a=1 ¢=0 a=1 (>0
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where we think of 7,, - - - 7,0% as a formal symbol that represents a degree shift corresponding
to the degree of the element 1,7y, - -Taé’f; in Ry(m + 1). The map d is given by first
embedding Ry(m) into Ry(m + 1) through the diagrams

Ro(m)1(,Tm -+

then applying dy of (Ry(m+1),dy), then decomposing the image in the left-decomposition

Z:rll Do Bo(m) L mi)Ton - - - T.x%, and finally projecting unto the part in homogical degree
zero of Ry(m), which is trivially isomorphic to Ry(m). Moreover, (Ry(m), dy) is a (right)
module over (Rg,0) which acts by gluing KLR diagrams on the bottom. Then, we have,
as (Ry(m), dy)-modules

(Ro(m + 1), dn) = (By(m), dn) O(rg(m) 0) (@, de)-

Therefore, we want to show that (Q,dg) is strongly projective as (R4(m), 0)-module. We
write
m+1
Ql[gz] = @ @ Rg(m)l(u,i)Tm o Taefm
a=1 (>0
m+1

QO[&Z] = @ @ Rg(m>1(u,i)Tm T Tal’ﬁ,

a=1 ¢=0
where we identify & with x, in Qo, and & with x¢ in 6¢. Note that dg is not k[&;]-linear.

Lemma 5.16. The map
dg : Q1[&] — Qol&i]

defined above is injective.

Proof. Recall the map P of Lemma 4.9 given by multiplication by 5m+1. Since floating
dots are also annihilated in Ry(m), multiplication by 6,,.1 also defines a map

(31) P’ Qol&] — Qu[&]-
We reconsider the proof of Lemma 4.10 to show that P'odg, is injective. First, we introduce
an order on the summands of Q,[&;] = P! Py Ro(m) 1 iyTmn - - - 405 by declaring that

a=1

/

Rg(m)l(u,i)Tm - -Taﬁﬁ < Rg(m)l(u,i)Tm . _Taee

Ry(m)1,i)Tm - 1.0 < Ry(m)1 )T - -Taxé’f:,,,

for all @ > @', £ < ¢, and for all £”. In other words, if there are more crossings under
the floating dot, then the term is smaller. If there is the same amount of crossings, then
we consider the amount of dots at the left of the floating dot, and lesser dots meaning a
smaller term.



2-VERMA MODULES 41

We claim that if Z € Ry(m)1,:Tm - - - 7405 then

2U;— O‘z‘
P'ody(Z) = r Z Z:cgjfal( )+ H,

(2

where H < Z :cf:ffrzw_a"y ) This implies that P’o dg is in echelon form (with pivot being

invertible scalars), and thus is injective. By consequence, so is dg.

In order to prove our claim, we need to tweak the proof of Lemma 4.10. We need to
keep track of the terms that are annihilated when working over the cyclotomic quotient,
and show these appear as lower terms in the order defined above. The case j,, # ¢ remains
the same. The case j,, = ¢ and m = 1 becomes

P D P+
o 2 2
—TZ' (@) _TZ' +T7j — T
p
p o

where p = n; + £. The first term is the leading term. The second term possesses less dots
on the left of the floating dot, and so it is smaller. If a = 0, then the last two terms possess
one more crossing at the bottom of the floating dot, and therefore they are smaller. If
a = 1, then they are annihilated by Eq. (5). Finally, the two remaining cases j,,_1 # @ and
Jm—1 follow from the same arguments as in the proof of Lemma 4.10, with the lower terms
in the induction hypothesis only adding lower terms because:

by (8), and,

7 ]

by Eq. (8) and Eq. (5). This concludes the proof of the claim, and therefore of the
proposition. [

Proof of Proposition 5.15. The proof is a revisit of the proof of [19, Lemma 4.18] that
applies to our particular case.

Recall the map P’ from Eq. (31). We know that P’ o dg is given by multiplying by a
monic polynomial with leading term :c:;j:lz vimed ) plus some remaining map giving lower

terms. In particular, it is injective and we have a short exact sequence

0— (1 [52]

Pola, 0,[6] — cok(P' o dg) — 0.
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Moreover, since P’ od is in echelon form, it means that cok(P’ ody) is a projective Ry(m)-
module. Thus, the sequence splits as Ry(m)-modules with splitting map o : Q1[&] —
Q1[&], and we get 0 o P’ odg = Idg,[¢,]- Then, the short exact sequence

0 —— Qu&] 2 Qol&] —— H(Q,dg), — 0,

ooP’

obtained thanks to Lemma 5.16 splits with splitting map given by o o P’. Since Qy[&;] is
a projective R,(m)-module, so is H(Q,dg). Finally, dg(Q1[&:]) is also projective since dg
is injective and Q1[&;] is projective. O

5.4. Functors. We define for all ¢ € I the functors
FY(=) == @ Ry (m + 1)1ims) ®rymy (),

m=0

—1 14+ay(v)
EZN(_) = @ @ A; 1%’ 1(1/,2‘)R;]av(m + 1) ®R{,\’(m+1) (_)>
m=0 |v|=m
where we interpret \; = ¢"* whenever i € Iy. Thanks to Proposition 5.15, these are exact.

For n € N, we write
n—1

@[n]qi Idl/ = @ qilinJrzZ Idln

=0
for the finite direct sum that categorifies [n],,.

Theorem 5.17. Fori ¢ Iy there is a natural short exact sequence

(32) 0— FYEY1d, - ENF Id, — @®5,—ay )}, 1dy — 0,

and for i € Iy there are natural isomorphisms

(33) ENFYId, = FYEN Id, @ —ay o)1, 1du,  if i — @) (v) > 0,
FYENId, =~ EYFN Id, @0y v)—ny, Idv,  if 0 — o) (v) < 0.

Moreover, there is a natural isomorphism

NgN o gNEN
(34) Fi'E; =~ E/'F,
fori#jel.

Proof. The short exact sequence Eq. (32) and the isomorphism Eq. (34) are immediate
consequences of Proposition 5.5 and Proposition 5.15. For the isomorphisms Eq. (33),
Proposition 5.5 and Proposition 5.15 give a long exact sequence of R} (v)-R} (v)-bimodules.
By Proposition 5.9 it truncates to a short exact sequence

0— FYEN1d, — ENFY 1d, — @, 1d, — 0,
if p; = n; — o (v) = 0, and a short exact sequence

0— @, 1d, > FYEN1d, — ENFY Id, — 0,
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if p; = n; — ) (v) < 0. In the first case, we can identify

pi—1

Oppy 1y = ;" D

=0

and the map ENFNId, — D(pi],, 1y is induced by the projection 7. Thus the sequence
splits with the splitting map @®y,,), Id, — EF} Id,, given by the sum of maps R ()" —
Rév (v + i) that add a vertical strand labeled ¢ carrying ¢ dots at the right of a diagram in
R} (v). In the second case, we also identify

—pi—1

Oy, 1y = g7
£=0

Moreover the map @_,,11d, — FNENId, is induced by the connecting homorphism 4.
Using the notations of Eq. (29) it takes the form

Yk

Pk

where u;; is the monomorphism defined in Eq. (28), and 0 < & < —p;. We also note
that Eq. (30) tells us that

ket ) Yy
(35) _ o
P+t Pk

~

Moreover since §n (& ”') = ¢ and iy (&) = 0 for £ < —p;, we obtain by Eq. (30) again that

(36)
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As in [19, Proof of Theorem 5.2], we construct a map ®: FYEY Id, — ®[_,), Id, induced
by the morphism of bimodules

for all z,y € R} (v).
Then we compute

Therefore, ® 0§ is given by a triangular matrix with invertible elements on the diagonal,
and thus is an isomorphism. In particular, ¢ is left invertible, concluding the proof. O

Corollary 5.18. Forie Iy, then 1,E; and F;1, are biadjoint (up to shift).

Proof. By the results in [6], we know the splitting map ENFN1d, — FNEN Id, of Theo-
rem 5.17 together with the unit and counit of the adjunction F; 4 E; allow to construct a
unit and counit for the adjunction E; - F;. O

Proposition 5.19. For each i,j € I there is a natural isomorphism

[(dij +1)/2] {d-- 1
ij

@ 2a

a=0

:| (FiV)QIlF;.V(Fi\/)dijJrl*?a
qi

ldi;/2]
4 + 1 ] o
~ @ l2é+1] FN)2 +1F§_V(F2N)dlj 2 )

By adjunction, the same isomorphism ezists for the EY, EY.

Proof. This follows from Proposition 5.3. U

In particular, there is a strong 2-action of the 2-Kac—Moody algebra of [23, 38| associated
to (E;, Fy, Kiyier, on @yex+ R} (v)-mod through FY, EY.
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5.5. A differential on Rév. We fix a subset Iy < [; < I and consider the parabolic
subalgebras U,(p) = U,(p') = Uy(g). For each j € I}\I; we choose a weight n; € N. For
j € Iy we take n; := n; € N, and we write N’ := {n;}jel}. Then, we equip the cyclotomic
p-KLR algebra R{,V (m) with a differential d¥, which is zero on dots and crossings and

0, if j ¢ I},
I — Cwrenn

J Tm—1 J {1 Tm—1

ay, 0.
J

As before, we extend using the graded Leibniz rule, and verifying that d¥, is well-defined
is straightforward.

Theorem 5.20. The dg-algebra (R} (m),dy,) is formal with homology
H(RY(m),dN,) = RY (m).

Proof. We have RY(m) = H(Ry(m),dy) and Ré\,ﬂ(m) ~ H(Ry(m),dys) by Theorem 4.4.
Moreover, dy, can be lifted to Ry(m). We split the homological grading of Ry(m) in three:
a first one that counts the amount of floating dots with subscript in ¢, a second one for the
floating dots with subscript in I\, and a third one for I\I} that we ignore for the moment.
Then, we have that dy, has degree (0, —1) and dy has degree (—1,0), and they commute
with each other. Thus we have a (bounded) double complex (Ry, dy, d%,) with total com-
plex being (Ry, dn-), since dy: = dy + d¥,. In particular, there is a spectral sequence from
H(RY(m),d},) to H(Ry,dy) = RY'(m). Now, Theorem 4.4 tells us that H(Ry, dy) is con-
centrated in homological degree zero (for the first homological grading). Thus, the spectral
sequence converges at the second page, and in particular H(R} (m),dy,) = R} ‘(m). O

We interpret this result as a categorical version of the fact that if there is an arrow from a
parabolic Verma module M*(A, N) to M* (A’, N') (see Section 2.2), then there is a surjec-
tion MP(A, N) — M¥ (A’, N'). Indeed, in that case there is a surjective quasi-isomorphism
(Rév Jdyt) = (Ré\f ’,0), inducing equivalences of derived categories that commute up to
quasi-isomorphism with the categorical actions of U,(g).

6. THE CATEGORIFICATION THEOREMS

Recall that the k-algebra of formal Laurent series k((z1,...,x,)) (as constructed in [3],
see also [32, §5]) is given by first choosing a total additive order < on Z™. One says that
a cone C := {av; + - -+ + au,|a; € Ryp} < R™ is compatible with < whenever 0 < v; for
all i e {1,...,n}. Then, we set

k(@1 own) = | ek, -l
eczn

where k_ [z, ..., x,] consists of formal Laurent series in k[z1, ..., x,] such that the terms
are contained in a cone compatible with <. We will also write k*[z,...,z,] for the
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elements in k- [z1, ..., x,] with terms contained in a cone without the 0 element (i.e. series
with the degree zero term being zero). We obtain a ring by equipping k((x1, ..., x,)) with
the usual addition and multiplication of series. Requiring that all series are contained in
cones compatible with < ensures that the product of two elements in k((z1, ..., x,)) is well-
defined. Indeed, under these conditions, any coefficient in the product can be determined
by summing only a finite amount of terms.

6.1. C.b.L.f. derived category. We fix an arbitrary additive total order < on Z". We
say that a Z"-graded k-vector space M = Pg Mg is c.b.l.f. (cone bounded, locally
gezn

finite) dimensional if

e dim M, < oo for all g € Z7;
e there exists a cone C); < R" compatible with < and e € Z" such that My = 0
whenever g — e ¢ ().

In other words, M is c¢.b.l.f. dimensional if and only if

gdim, M := Z 29 dim(My) € %k [z1, ..., z,].
gez™

Let (A,d) be a Z"-graded dg-k-algebra, where A = @, yczxzn Ap, and d(Aj) < AF~".
Suppose that (A, d) is concentrated in non-negative homological degrees, that is AZ =0
whenever h < 0. Let (A4, d) be the derived category of (4,d). Let DY (A, d) be the full
triangulated subcategory of @ (A, d) consisting of (A, d)-modules having homology being
c.b.L.f. dimensional for the Z"-grading. We call @ (A, d) the c.b.l.f. derived category of
(A, d).

Definition 6.1 ([32]). We say that (A,d) is a positive c.b.l.f. dimensional dg-algebra if

(1) Ais c.b.l.f.dimensional for the Z"-grading;

(2) A is non-negative for the homological grading;

(3) Ab =0 for h > 0;

(4) (A, d) decomposes into a direct sum of shifted copies of relatively projective modules
P; := Ae; for some idempotent e; € A, such that P; is non-negative for the Z"-
grading and AJP; is semisimple.

Remark 6.2. As explained in [32, Remark 9.5], condition (3.) cannot be respected when-
ever P, := Ae; is acyclic. However, in this case there is a quasi-isomorphism (A, d) —
(A/Ae; A, d) and we can weaken hypothesis (3.) so that it is respected only after removing
all acyclic P;. This is the case of (Ry,dy).

6.1.1. Asymptotic Grothendieck group. As already observed in [1] (see also [34, Appendix]),
one caveat of the usual definition of the Grothendieck group is that it does not allow to
take into consideration infinite iterated extensions of objects. We need to introduce new
relations in the Grothendieck groups to handle such situations. One solution is to use
asymptotic Grothendieck groups, as introduced by the first author in [32].
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Let 6 be a triangulated subcategory of some triangulated category . Suppose 9 admits
countable products and coproducts, and these preserve distinguished triangles. Let K5 (6)
be the triangulated Grothendieck group of 6.

Recall the Milnor colimit MColim,~¢(f,.) of a collection of arrows {X, Ir, Xs1trenin T
is the mapping cone fitting inside the following distinguished triangle

[ [x =& ][ X — MColim,»o(f,) —

reN reN
where the left arrow is given by the infinite matrix
1 0 0 O
—fo 1 0 0

I-fo=10 -f 1 o0

There is a dual notion of Milnor limit. Consider a collection of arrows { X, ;1 T X, }rso0
in . The Milnor limit is the object fitting inside the distinguished triangle

MLim,=o(f,) — [ [ X, = ] X —
r=0 r=0
Definition 6.3. The asymptotic triangulated Grothendieck group of ‘€ — J is given by
Kj'(8) := K5 (8)/T(®),
where T'(6) is generated by

r=0

whenever both @, ., Cone(f,) € € and @, £, € 6, and
Y = MColim(X = Fy & Fy &5 ),
is a Milnor colimit, or
X = MLim(--- 2% 7 2 Ry = v),

is a Milnor limit, and
[E/] = [Cone(f,)] € K§'(6),
for all » = 0.

In a Z"-graded triangulated category I, we define the notion of c.b.l.f. direct sum as
follows:

e take a a finite collection of objects {K;, ..., K,,} in T;
e consider a direct sum of the form

P ! (Kig® @ Knyg), with Kiy =@ Kilhijgl,

gez™ j=1
where k; g € N and h; ;4 € Z such that:
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e there exists a cone C' compatible with <, and e € Z" such that for all ;7 we have
k;jq = 0 whenever g — e ¢ C
e there exists h € Z such that h; ;4 > h for all 7, j, g.

If 9 admits arbitrary c.b.lf. direct sums, then Ky(J) has a natural structure of
Z((x1, ..., x,))-module with

Z agxe+g[X] = [@ xg+eX®ag:|7

geC geC
where X®% — P! X[a,] and oy = 0if ay > 0 and a, = 1 if ay < 0.

Theorem 6.4 ([32, Theorem 9.15]). Let (A,d) be a positive c.b.l.f. dg-algebra, and let
{P;}jes be a complete set of indecomposable cofibrant (A, d)-modules that are pairwise non-
isomorphic (even up to degree shift). Let {S;};es be the set of corresponding simple modules.
There is an isomorphism

K3 (2Y(A,d) = D Z(ar,. .., w) [P

jedJ
and K& (DY (A, d)) is also freely generated by the classes of {[S;]}je.-

Proposition 6.5 ([32, Proposition 9.18]). Let (A,d) and (A’,d’) be two c.b.l.f. positive
dg-algebras. Let B be a c.b.l.f. dimensional (A',d")-(A,d)-bimodule. The derived tensor
product functor

F:2Y(Ad) -7 (A,d), F(X):=BQuqaX,
mduces a continuous map
[F]: K§(2 (A, d) — Kg(2 (4, d)).
We will need the following definitions in Section 7:

Definition 6.6. Let {K;,..., K,,} be a finite collection of objects in 6, and let {E,},en
be a family of direct sums of {Kj,..., K,,} such that @,y E; is a c.b.L.f. direct sum of
{Ki,...,Ky}. Let {M,},en be a collection of objects in € with My = 0, such that they fit
in distinguished triangles

M, 5 M,y — E, —

Then, we say that an object M € € such that M ~g MColim,>q(f.) in T is a c.b.l.f.
iterated extension of {Ky, ..., Ky}

Definition 6.7. We say that 7 is c.b.l.f. generated by {X;};c; for some collection of
elements X; € U if for any object Y in ¥ we can take a finite set {Yj}rer of retracts
Y, < Xj, such that Y is isomorphic to a c.b.Lf. iterated extension of {Y}}rex-
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6.2. Categorification. In this section we assume that Ry (v) is a k-algebra over a field k.
We also choose an abritrary order < for constructing Z((¢g, A)) such that 0 < ¢ < A; for all
formal \; = ¢% € A. We assume that the parabolic Verma module M?(\, N) is constructed
over the ground ring R := Q((A, ¢)) (instead of Q(A,q)).

Every idempotent of Ry(v) is the image of an idempotent of the classical KLR algebra

Ry(v) under the obvious inclusion Ry(v) — Ry(r). Thanks to [22, Section 2.5] we know
all the idempotents of R4(v). We define the element

€in 1= To, 2l 2wy 1y € Ry(n),
where 0, is the longest element in S,.. Let Seqd(v) be the set of expressions {™i{™ . .. ;")

for different r € N and m, € N such that >},_, m, - o;, = v. For each ¢ € Seqd(v) we define
the idempotent

i = €i1my @ €iymy - Qe m,. € Ry(v),
where z ® y means we put the diagram of x at the left of the one of y. Identifying e; with
its image in Ry(v), as in [22], we define a projective left Ry(v)-module

P; = Ry(v)e,
Then, we put

T

. my (mg — 1)
() = — Z fdia.
=1
and we define P; := g PP,
When writing ...2... and ...7... we mean we take two sequences %1%ty and 21j1o
in Seqd(v) that coincide everywhere except on ¢ and j. From the decomposition of the
nilHecke algebra [22, §2.2] we get an isomorphism of Rév -modules

P im = @m0 P itm....

Mimicking the arguments in [22, Proposition 2.13] and [24, Proposition 6] we have the
following:

Proposition 6.8. There are isomorphisms

[(dij+1)/2] ldij /2]
@ P..z‘(%)ji(dij“*z“)... = @ P..i(2a+1>ji(dir2a>,,,
a=0 a=0

foralli#j€el.

Equipping~Rb(1/) with dy induces a differential on P;, and Proposition 6.8 holds for the
dg-version (P;, dy). We put
MP(A,N) == P DY (Ro(m), dn),
m=0

with the particular case #((A) meaning p = b and N = ¢, and therefore dy = 0. Note
that D (Ry(m), dy) = D (RY (m), 0). Let oK (=) i K&(=) @uqny Qlas A).
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Proposition 6.9. The Z'*\_graded dg-algebra (Ry(m),dy) is a positive c.b.Lf. dimen-
stonal dg-algebra.

Proof. Clearly, Ry(m) is c¢.b.1.f. dimensional for the Z'*/*l-grading, and is non-negative for
the homological grading. We can also assume we have applied Remark 6.2. Recall that the
part in homological degree zero of Ry(m) is isomorphic to the usual KLR algebra Ry(m).
As explained in [22, §3.3], for each monomial f € U (g), we have a projective Ry(m)-

module Py (defined similarly as P; for f = Fi(lml) e Fi(rm*)), Moreover, by [22, Proposition
3.22] extended for any g, P is indecomposable if and only if f is a canonical basis element.
Also, the quadratic form in [29, §14.2] corresponds with the graded dimension of the graded
hom-spaces between these projective Ry(m)-modules. The same applies for the homological
degree zero part of the graded hom-spaces between our P;’s. Then, by [29, Theorem 14.2.3],
we obtain that
gdlm HOMRb(m)<P17 PJ) — 5i,j € Zi [[q, A]],

which concludes the proof. O

Proposition 6.10. There is an isomorphism of Q((q, A))-modules

U, (9) ®q(g) Qlg, A) = oK (M(A)),
and a Q((q, A))-linear surjection

Uy (8) ®ag) Qg M) — oK' (MP(A, N)),
both sending F-(ml)ﬂ(zm) - Fi(rmr) to [(By, dy)] for i = i) qlmn)

11

Proof. Since projective modules of Ry (v) are in bijection with the ones of the classical KLR
algebra Ry(v) and respect the categorified Serre relations (see Proposition 6.8), both claims
are a direct consequence of the main results in [22, 24], together with Theorem 6.4. 0

Consider the subring P(v) of R, (v) consisting of dots on vertical strands (without float-
ing dots). It admits an action of the symmetric group permuting the strands (with labels)
and dots on them (not to be confused with the action of S,, on P, from Section 3.2). We
write Sym(v) := P(v)®= for the subring of invariants under this action. Clearly it lies in
the center of Ry(v) but this inclusion is strict (see [35] or [4] for a study of the center in
the case of sl,).

The supercenter of R,(v) contains Sym (v)®@X),.; A(@?, ..., &7 ") where &¢ is a floating
dot with subscript 7, superscript a and placed in the rightmost region:
Wi = o’
1

We conjecture that the supercenter contains no other elements.

Conjecture 6.11. There is an isomorphism of rings
Z(Rb(y)) = Sym(y) ® ® /\.<(‘D?a s >a);'ji_l>>
iel

where Z(Ry(v)) is the supercenter of Ry(v).
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In general R, ,(v) is not a free module over Sym(v) ® ®),.; A&, ..., 0 "), but we
have the following.

Proposition 6.12. Ry(v) is a free module over Sym(v) of rank 2™(m!)?.

Proof. 1t follows from Theorem 3.16 and the fact P(v) is a free module of rank m! on
Sym(v). O

Since Sym(v) lies in the center of Ry(v), any simple Ry(r)-module is annihilated by
Sym™(v), where Sym™(v) consists of the elements in Sym(r) with non-zero degree. In
particular, a simple Ry(v)-module must be a finite dimensional Ry(v)/Sym™ (v)Ry(v)-
module. Since Ry(v)/Sym™(v)Ry(v) has finite dimension over k, we only have finitely
many simple modules, up to shift and isomorphism. For each ¢ € Seqd(v) such that P;
is indecomposable, we let S; be the unique simple quotient of F;. We put S; = ¢ ©g;.
If (P;,dy) is not acyclic, then it lifts automatically to a dg-version (S,,O) because of
Proposition 6.9.

By Lemma 4.5 and Proposition 5.15 we know that E; Id, and F; Id, are exact. Moreover,
they respect the conditions of Proposition 6.5. Therefore, they induce maps
[E:1d,] : Ko(2Y(Ro(v),dy)) — K5 (DY (Ry(v —i),dn)),
[Fi1d,] : Ko(DY (Re(v),dn)) — K§ (DY (Ry(v + 1), dy)).
Then, Theorem 4.4, Theorem 5.17 and Proposition 5.19 tell us that oK5 (M*(A, N)) is
an U, (g)-weight module. By Proposition 6.10 we know that o5 (MP(A, N)) is cyclic

N) clic a.
U,(g ) module, with highest weight generator given by the class of (Rb( ), dn) = (k,0).
Thus K5 (M (A, N)) is a highest weight module.

As in [22], let ¢ : Ry(v) — Ry(v)°® be the map that takes the mirror image of diagrams
along the horizontal axis. Given a left (R, (v), dx)-module M, we obtain a right (Ry(v), dy)-

S

module MY with action given by m¥ - r := (—1)d&n(Mdeen(me)(r) . m for m € M and
r € Ry(v). Then, we define the bifunctor
(=, =) : MP (A, N) x MP (A, N) — DY (K, 0), (M, M) := M¥ Qg .ay) M,

where ®" is the derived tensor product.

Proposition 6.13. The bifunctor defined above respects:
¢ ((Rb(0)7 dN)a (Rb(0)7 dN)) = (k> 0);
o (Ind™** M, M') =~ (M,Res]** M") for all M, M' € MP(A,N);
o (@M, M) = (M,@;M') = @;(M,M') for all f e Z(q, A).

Proof. Straightforward. O
Comparing Proposition 6.13 with Definition 2.5, we deduce that (—, —) is a categorifi-

cation of the Shapovalov form on K35 (Ml°(A, N)). Moreover, it turns S; into the dual of
P; for each 4 € Seqd(v) such that P; is indecomposable. Recall M*(A, N) is the parabolic

Verma module, and we assume A = {¢%|i € I} contains only formal weights.
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Theorem 6.14. The asymptotic Grothendieck group oK 5 (M (A, N)) is a U,(g)-weight
module, with action of E;, F; given by [E;], [F;]. Moreover, there is an isomorphism of
U,(g)-modules

o K5 (MP(A, N)) = MP(A, N).

Proof. We already proved the first claim above. Because of Proposition 4.3, for i € Iy,
both [F;] and [E;] act as locally nilpotent operators. In particular, the U,(l)-submodule of
oK 5 (MP (A, N)) given by

UQ([) ®Uq(9) [(Rb(o)v dN)]v
is an integrable module for the Levi factor U,(l). Since it is an integrable cyclic weight
module, it must be isomorphic to V(A, N) (see [29]). Therefore, there is a surjective
U,(g)-module morphism

v MP(A,N) = K5 (MP(A, N)).
Since MP(A, N) is irreducible and + is non-zero, it must be an isomorphism. O

Let m, = Fyup y be an induced basis element of MP(A, N) with ¢ € Seq(r). Then,
the isomorphism of Theorem 6.14 identifies m, with the class [(Ry(v),dy)1;]. Similarly,
let m), = Fjup n for j € Seqd(v) be a canonical basis element, and let m® be its dual in
the dual canonical basis. Then, the isomorphism identifies m/, with [(P}, dy)] and m® with
[(Sj, dy)]. Moreover, computing the c.b.1.f. composition series of P; (see [32, §7]) or taking
a certain cofibrant replacement of S; (see [32, §9]) gives a categorical version of the change
of basis between canonical and dual canonical basis elements.

7. 2-VERMA MODULES

Let k be a field of characteristic 0. Let U € dg-cat, be a Z-graded pretriangulated dg-
category (see Definition A.23). Let €nduqe(7V) := RH omuqe(V,7") be the dg-category
of quasi-endofunctors on ¥ (see Appendix A.5.1).

Remark 7.1. For example, 7 could be the dg-category D4, (R, d) of cofibrant dg-modules
over a dg-algebra (R, d) (see Definition A.15). Then, the subcategory of €ndpuq(7) con-
sisting of coproduct preserving quasi-functors would be given by the dg-enhanced derived
category of dg-bimodules Dy, ((R, d)” ® (R, d)) (see Theorem A.21).

Let Qi := @y ¢ 1d. Tt is a categorification of 1322 = q;llf We start by introducing

a notion of dg-categorical action and dg—2—representati6n.

Definition 7.2. A weak dg-categorical U,(g)-action on ¥V is a collection of quasi-endofunctors
Fi,Ei, K, € Z°(€nduqe(V)) for all i € I and v € YV such that
e there are isomorphisms
Ko = Id, KKy = Koqy,
K,Ei =~ ¢"“EK,, K,Fi = ¢ " @IFK,,
where ¢ denotes the shift in the g-grading;
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e there is a quasi-isomorphism

Uqg

(37) Cone(FiEj — EjFZ-) = 0ij CODe(QiKz‘ LR QiKi_l)7

where K; := Ka;;
e there are isomorphisms

[(d”él)/ﬂ dij +1 anF'Fdij+1_2a ~ ld”@/m dij +1 F2a+1F'Fdij_2a
O 2 | T = 2 +1| "o it

[(dij+1)/2] l

7 a=0 i

D

a=0

[di; /2]
dij +1 2ap pdij+l-2a _ 4\ |dij + 1 2a+1p pdij—2a
2a L- X EjEi N a;$0 2a +1 qi ¥ EjEi ’

for all v # j e I.
We say a weak dg-categorical U,(g)-action on ¥ is a dg-categorical action if in addition
o F; is left adjoint to ¢; 'K;E; in Z°(€nduee(V));
e there is a map of algebras
Ry(i) — Z°(END(Fy)) := (P Z°(Hom(F;, ¢°Fy)),

2€Z
Wlth FZ = Fi1 s Fim7
Ry (1) ®y Z°(ENDs(M)) — Z°(END« (F; M)),

for all M € V;
e 7 is dg-triangulated (i.e. H°(7') is idempotent complete).

for all ¢ € Seq(m), inducing a surjection

Such a ¥ carrying a dg-categorical action is called a dg-2-representation of U,(g).

The following notions are dg-2-categorical lifts of the notions of weight module and
integrable module.

Definition 7.3. We say that a dg-2-representation 7 is a weight dg-2-representation if
there is a map

A:YY 5 Endyg(V),

where A() commutes with the grading shift ¢ for all v € YV and A(y) o A(7/) = Ay + %),
such that

V=D Ty, Kylan, (=) = A(0)g" @ (=)

yeY

Definition 7.4. We say that a weight dg-2-representation ¥ is i-integrable if
e \a) = ¢™ for some n; € N;
e there is a quasi-isomorphism
(38) Cone(QKThy > QiK' y) = @pn—ay (1, 14,
where @), 1d 1= @[_my,, [d[1] whenever m < 0;
e F, and E; are locally nilpotent.
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Under some mild hypothesis, this definition recovers the notion of integrable 2-represen-
tation from [38] and [10].

Proposition 7.5. Suppose V is i-integrable for all i € I. Also suppose that there is some
M € Vg such that EEM = 0 for all i € I and Endy (M) =~ (k,0), and H*(V) is c.b.lf.
generated by {F; M }ieseqry- Then, HY(V) carries an integrable categorical Uy(g)-action in
the sense of [38].

Proof. First, by adjunction, Eq. (37) and Eq. (38), we have
gdim, H°(END« (F;M)) = gdim, R} (%),
for all 4 € Seq(I). In particular, we have that z}"1; acts by 0 on H°(Ends (F;M)) for all
1€ I, and x11; acts non-trivially whenever n; > 1. Thus, there is a map
v : RY (i) - H°(END (F; M)).
Since v is surjective, we obtain R} (¢) =~ H°(END« (F;M)), and the result follows from
Theorem 5.17. U
For a Z"-graded dg-algebra (A, d), we put Qbﬁl]; (A, d) for the dg-category having as objects
the one in DY (A, d) N Dy, (A, d) and the hom-spaces inherited from Dy (A,d). It is a dg-
enhancement of the c.b.l.f. derived category of (A, d).
Definition 7.6. A parabolic 2-Verma module for p is a Z x Z/rl-graded weight dg-2-
representation 7" such that
e the highest weight space V) := 7)o = Q)ﬁlj;(k, 0);
e there exists M = (k,0) € 7, such that 7, is c.b.L.f. generated by {F;M }icseq(y)
for all —y € X*, and 7, , = 0 otherwise ;
e 7 is i-integrable for all 7 € Iy;
o h; =0and Aoy = A; (the degree shift) for all j ¢ I;
o for each j ¢ Iy, n; € N and ¢ € Seq([), after specializing \; = ¢", there exists
a differential d,, anticommuting with the differential d of (Endy (F;M),d) such
that the triangulated dg-category generated by c.b.l.f. iterated extension of the
representable modules of U™ = D;cqeqn) (Ende (F;M),d + d,,;) is j-integrable
with A(a)) = ¢".
Proposition 7.7. Let UV be a parabolic 2-Verma module. There is an isomorphism
(R[,(Z), dN) = ENDoy(F,M),
in D(k,0) for M = (k,0) € 7.
Proof. First, by adjunction together with Eq. (37) and Eq. (38) we have
(39) END+ (F; M) =~ HOM (M, ¢; "K,E;F; M) = RY (i),
in @(k,0) for all i € I. Also,
(40) gdim, H*(ENDs (F;M)) = gdim, R} (),
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for all 4 € Seq([I). In particular, there is a relation up to homotopy

(41) a

in ENDe (F;F;M) for all 7,5 € I, identifying the diagrams with the image of the KLR
elements under the surjection Ry(ij) — Z°(END« (F;F;M)), and the floating dot coming
from the isomorphism Eq. (39). Then, the existence of d,, and d,; forces to have oo = 3.
Thus, by Corollary 3.17, there is an A,-map

(Ryp(2),dn) — ENDy (F; M).
By Eq. (40), we conclude it is a quasi-isomorphism. Thus, there exists an isomorphism
(Rp(2),dy) = ENDs (F; M) in D(k,0). 0

Using Theorem A.21 we can think of FY and EY from Section 5.4 as quasi-endofunctors
of Dyy(Rs, dy,). By Proposition 5.5 we obtain immediately the following:

Corollary 7.8. For all i € I there is a quasi-isomorphism of cones
Cone(FNEN1d, — ENFV1d,) 5> Cone(Qidig; ™/ 1d, — Q:A; '™ ¥ 1d,),
in Enduqge(Dag(Rp, dn)).
Together with Proposition 5.19, it means that the dg-enhancement Jt} (A, N) of M (A, N)

(obtained by replacing D' (Ry(m), dy) with E%éj;(Rb(m), dy)) is a weight dg-2-representation
of U,(g), where

) Ais whenever i € I,
"~ |q™, whenever i€ I;.

Then, by Theorem 5.17, we obtain that ﬂgg(A, N) is a parabolic 2-Verma module.

Corollary 7.9. Let U be a parabolic 2-Verma module. There is a quasi-equivalence
M2 (A, N) =

Proof. Since 7V, is c.b.lL.f. generated by @ieseq(y) F;M, we have that 7, is completely

determined as dg-category by ENDe (F;M). Thus, we conclude by using Proposition 7.7.
O

Remark 7.10. A parabolic 2-Verma module can also be given a ‘2-categorical’ interpreta-
tion as an (00, 2)-category where the hom-spaces are stable (o0, 1)-categories. For this, it is
enough to see D, (Rp(v), dn) as 0-cells in the (o0, 2)-category of A,.-categories constructed
by Faonte [13], and replace # omuqe by the dg-nerve of Lurie [28]. Thanks to [14], we know
that this is a stable (oo, 1)-category.
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APPENDIX A. SUMMARY ON THE HOMOTOPY CATEGORY OF DG-CATEGORIES AND
PRETRIANGULATED DG-CATEGORIES

We gather some useful results on the homotopy category of dg-categories. References for
this section are [20] and [42]. We also suggest [21] and [43] for nice surveys on the subject.

Our goal is to recall how to construct a category of dg-categories up to quasi-equivalence,
so that the space of functors between two ‘triangulated categories’ is ‘triangulated’.

A.1. Dg-categories. Recall the definition of a dg-category:

Definition A.1. A dg-category 9 is a k-linear category such that:
e Homy(X,Y) is a Z-graded k-vector space ;
e the composition

Homg (Y, Z) ® Homy(X,Y) —— Homg(X, Z),

preserves the Z-degree ;
e there is a differential d : Homy(X,Y)" — Homy (X, Y)""! such that

d* =0, d(fog)=dfog+ (-1)VIfody.

Remark A.2. We use a differential of degree —1 to match the conventions used in the
rest of the paper.

Example A.3. Any dg-algebra (A,d) can be seen as a dg-category BA with a single
abstract object * and Hompa (*, *) := (A4, d).

Example A.4. Let 6 be an abelian, Grothendieck, k-linear category. Consider the cate-
gory C(8) of complexes in 6, and define Cy,(€) as the category where

e objects are complexes in 6;
e hom-spaces are homogeneous maps of Z-graded modules;
o the differential d : Homg, (¢)(X*,Y*)" — Homg, () (X*, Y*)i~1 is given by

df ==dyof—(—=1)/fody.
This data forms a dg-category.

Given a dg-category o, one defines
(1) the underlying category Z°(sd) as
e having the same objects as o;
o Hom o) (X, Y) := ker (Homy (X, Y)° 5 Homgy (X, Y)™);
(2) the homotopy category H°(A) (or [A]) as
e having the same objects as o;
e Hompo ) (X,Y) := H°(Homg(X,Y),d).

Example A.5. For 6 as in Example A.4, we have Z%(Cyy(6)) = C(6) and H(Cyy(B)) =
Kom(®8) the homotopy category of complexes in 6.
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A.2. Category of dg-categories.

Definition A.6. A dg-functor F' : i — 9B is a functor between two dg-categories such
that F(dyf) = dg(F f). We write [F] : H(d) — H°(®) for the induced functor.

We write dg-cat for the category of dg-categories, where objects are dg-categories and
hom-spaces are given by dg-functors.

Let ', G : sl — 9B be a pair of dg-functors between dg-categories. One defines # om(F, G)
as the Z-graded k-module of homogeneous natural transformations equipped with the dif-
ferential induced by d € Homg(FX,GX) for all X € of. Then, we put Hom(F,G) :=
Z%# om(F,Q)).

Definition A.7. A dg-functor o — & is a quasi-equivalence if
e [': Homy(X,Y) = Homg(F X, FY) is a quasi-isomorphism for all X,Y € o;
o [F]: H(d) — H°(B) is essentially surjective (thus an equivalence).
One defines the dg-category # om (s, B) of dg-functors between o and % as

e objects are dg-functors ol — ;
¢ hom-spaces are Homgy oma.m) (£, G) := # om(F, G).

There is also a notion of tensor product of dg-categories o ® 9B defined as
e objects are pairs X ® Y for all X € o and Y € %;
e hom-spaces are Homygg(X ® Y, X' ® Y') := Homy (X, X’) ® Homg(Y,Y”) with
composition
(f'®g)o(f®@g) =D VI(fof)@ (g og);
e the differential is d(f ® ¢) := df ® g + (-1 f @ dg.
Then, there is a bijection

Homyggcat (A @ B, 6) = Homggcat (o, 7 om (B, 6)).

This defines a symmetric closed monoidal structure on dg-cat. However, the tensor product
of dg-categories does not preserve quasi-equivalences.

A.3. Dg-modules. Let of be a dg-category. The opposite dg-category 4°P is given by

e same objects as in o;

e Homgyer (X,Y) := Homy(Y, X);

e composition g oger f = (=119l f oy g.
A left (resp. right) dg-module M over o is a dg-functor

M :d — Cyy(k), (resp. N : AP — Cyy),

where Cy,(k) is the dg-category of k-complexes. The dg-category of (right) dg-modules is
A°P -mod := # om (AP, Cyy(k)). The category of (right) dg-modules is C'(d) := Z°(sl -mod),
and it is an abelian category. The derived category D () is the localization of Z°(s4°P -mod)
along quasi-isomorphisms.
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Moreover, for any X € of there is a right dg-module
X" := Homgy(—, X).

One calls such dg-module representable. Any dg-module quasi-isomorphic to a repre-
sentable dg-module is called quasi-representable. It yields a dg-enriched Yoneda embedding

A — A°® -mod.

Example A.8. Let (A,d) be a dg-algebra. Then Z°(BA)-mod =~ (A,d)-mod and
D(BA) = D(A,d). The unique representable dg-module Hompga(—, *) is equivalent to
the free module (A, d).

A.4. Model categories. We recall the basics of model category theory from [16]. Model
category theory is a powerful tool to study localization of categories. For example, we can
use it to compute hom-spaces in a derived category. We will mainly use it to describe the
homotopy category of dg-categories up to quasi-equivalence.

Let M be a category with limits and colimits.

Definition A.9. A model category on M is the data of three classes of morphisms

e the weak equivalences W';
e the fibrations Fib;
e the cofibrations Cof;

satisfying

efr XLy L ze M, if two out of three terms in {f, g,go f} are in W, then so is
the third;

e stability along retracts: W, Fib and Cof are stable along retracts, that is if we have
a commutative diagram

Idx

/_\

s Y 5
b

X’ s Y’ 3

\_/‘r
Idy/

and f e W, Fibor Cof then so is g.

e factorization: any X LV factorizes as poi where p e Fiband 1 € Cof n W or
p€ FibnW and i € Cof, and the factorization is functorial in f;
e lifting property: given a commutative square diagram

]

X/

A— X
/7(
Cofazl . lpEFib

s

B——Y
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with ¢ € Cof and p € F'ib, if either : € W or p € W, then there exists h : B - X
making the diagram commute.

We tend to think about fibrations as ‘nicely behaved surjections’, and cofibrations as
‘nicely behaved injections’.

The localization Ho(M) := WM of M along weak equivalences is called the homotopy
category of M. It has a nice description in terms of homotopy classes of maps between
fibrant and cofibrant objects.

Definition A.10. If & — X € Cof, then we say X is cofibrant. If Y — % € Fib, then Y
is fibrant.

One says that f ~ g, that is f : X — Y is homotopy equivalent to g : X — Y, if there
is a commutative diagram

Idx
1
b 2 X
Fi mWapl/ l \
oX) L5y
(/ j
FAN T /
Y X
v
Idx

where i L j: X u X — C(X) € Cof. One calls C(X) the cylinder object of X. When X is
cofibrant and Y fibrant, then ~ is an equivalence relation on Hom;(X,Y’). Moreover, we
have

Hompoan (X, Y) = Homy (X, Y)/ ~

whenever X is cofibrant and Y fibrant. Note that any X € M admits a cofibrant replace-
ment ()X since we have a commutative diagram

%) >y X
COA /d';‘ibﬁw
QX

Similarly, any Y € M admits a fibrant replacement RY .

Let M¢/ be the full subcategory of M given by objects that are both fibrant and cofibrant.
Let M<'/ ~ be the quotient of M¢ by identifying maps that are homotopy equivalent.
Then, the localization functor M — Ho(M) restricts to M¢/, inducing an equivalence of
categories

M)~ = Ho(M).
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Example A.11. Let C(k) be the category of complexes of k-modules. It comes with a
model category structure where W is the quasi-isomorphisms, F'ib is the surjective maps,
and Cof is given by the maps respecting the lifting property. All objects are fibrant
and the cofibrant objects are essentially the complexes of projective k-modules. Then
Ho(C(k)) = (k).

A model category on M is a C(k)-model category if it is (strongly) enriched over C'(k),
and the models are compatible (see [43, §3.1] for a precise definition). This definition
means that we have:

e a tensor product —® —: C(k) x M — M;
an enriched dg-hom-space # om(X,Y) € C'(k) for any X,Y € M compatible with
the tensor product:

Homy (E® X,Y) = Homeq (£, # oma (X, Y));
Ho(M) is enriched over & (k) =~ Ho(C'(k));
a derived hom-functor

RI omp (X, Y) :=H ompy(QX, RY) € D(k),

where QX is a cofibrant replacement of X, and RY a fibrant replacement of Y
Homp,i) (X, Y) = HY(RH omp (X, Y)).
Note that in particular for X,Y € M we have Homp,)(X,Y) = H°(# om(X,Y)).

Example A.12. Let o be a dg-category. There is a C(k)-model category on o -mod
where W is given by the quasi-isomorphisms, F'ib are the surjective morphisms, and Cof
is given by the maps respecting the lifting property. Then Ho(d -mod) =~ ().

Remark A.13. In the C(k)-model category sf-mod, all objects are fibrant. Moreover,

P is cofibrant if and only if for all surjective quasi-isomorphism f : L = X (i.e. map in
W n Fib) then there exists h : P — L such that the following diagram commutes:

g —— L

P
l 3’},/ Lz

s

P——X

In a practical way, cofibrant dg-modules are quasi-isomorphic to direct summand of dg-
modules admitting a (possibly infinite) exhaustive filtration where all the quotients are
free dg-modules.

Definition A.14. For M a C(k)-model category, let M (resp. Int(M)) be the dg-category
with

e the same objects as M (resp. M<);

e Homy (X,Y) := H ompy(X,Y).

Then, we have H(Int(M)) =~ Ho(M), and we say that Int(M) is a dg-enhancement of
Ho(M).



2-VERMA MODULES 61

Definition A.15. We write
Dyy(d) := Int(sd -mod)
for the dg-enhanced derived category of A.

Note that Dy, (o) is a dg-enhancement of () since we have H(D,(s)) = D (o).

Example A.16. Let R be a k-algebra viewed as a dg-category with trivial differential.
Then we have that @4,(R) is the dg-category of complexes of projective R-modules.

A.5. The model category of dg-categories. Let W be the collection of quasi-equivalences
in dg-cat. Let F'ib be the collection of dg-functors F': o — % in dg-cat such that
(1) Fxy : Homy(X,Y) — Homg(FX, FY) is surjective;

(2) for all isomorphism v : F'(X) = Y € H°(B) there exists an isomorphism u : X —
Yy € H(dd) such that [F](u) = v.

This defines a model structure on dg-cat where everything is fibrant. One calls
Hqe := Ho(dg-cat)

the homotopy category of dg-categories (up to quasi-equivalence).

How can we compute Homp. (4, 9B) 7 It appears that constructing a cofibrant replace-
ment for of is in general a difficult problem. However, we can do the following:

(1) replace o by a k-flat quasi-equivalent dg-category sf’: meaning it is such that
Homgq: (X, Y) Rk —

preserves quasi-isomorphisms (e.g. when Homg (X,Y) is cofibrant in C'(k), i.e. a
complex of projective k-modules);

(2) define Rep(d,%B) as the subcategory of D (AP ® B) with F' € Rep(d,RB) if and
only if for all X € of there exists Y € 9B such that

XQ"F =g Y,

(in other words, F' is a dg-bimodule sending representable sf-modules to quasi-
representable %-modules);
(3) then

Hompe(sd, B) = Iso(Rep(d, RB)),
where [so means the set of objects up to isomorphism.

Remark A.17. Note that whenever k is a field, all dg-categories are k-flat.

We refer to elements in Rep(sf, B) as quasi-functors. Note that a quasi-functor F' : of —
9B induces a functor

[F]: H(sA) — H(%).

Thus, we can think of Rep(sf, %) as the category of ‘representations up to homotopy’ of
o in 9B.
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A.5.1. Closed monoidal structure. If of is cofibrant, then —®sf preserves quasi-equivalences
and one can define the bifunctor

— ®" — : Hqe x Hqe — Hge, A Q@B := Qd @ QB,

where Qo and Q9B are cofibrant replacements. Then, as proven by Toen [42], there exists
an internal hom-functor R# ompqe(—, —) such that

Homye (4 @ B, 6) = Homyge (A, RH 0mige (B, 6)).
Therefore, Hqe is a symmetric closed monoidal category.

Remark A.18. Note that the internal hom can not simply be the derived hom functor
(because tensor product of cofibrant dg-categories is not cofibrant in general).

Define the dg-category of quasi-functors Rep,, (s, B) as
e the objects in Rep(d, B) N (4°P ® B -mod)/;
e the dg-homs # om(X,Y") of Int(A°? ® B -mod).
In other words, Rep,, (s, %) is the full subcategory of quasi-functors in Dg, (AP ® B),

thus of cofibrant dg-bimodules that preserves quasi-representable modules. It is a dg-
enhancement of Rep(sf, %).

If of is k-flat, then
RI omirge(A, B) =g Repy, (A, RB).
Thus HY(RH omuge(t, B)) =~ Homyge (A, B).

Remark A.19. If k is a field of characteristic 0, then the dg-category RH ompqe(d, B)
is equivalent to the A,-category of strictly unital A,-functors [13].

Example A.20. We have Rep,, (o, Int(C(k))) = Int(d°? -mod) = Dy, ().

Recall that classical Morita theory says that for A and B being k-algebras, there is an
equivalence

Hom®”?(A-mod, B-mod) =~ A’ ®, B-mod,
where Hom“” is given by the functors that preserve coproducts.
Similarly, we put Repg"(Day (), Dag(B)) for the subcategory of Repy, (Day (), Day(B))
where I € Repy”(Dag(A), Dag(RB)) if and only if [F] : D(d) — D(B) preserves coprod-
ucts.

Theorem A.21. If d is k-flat, then we have
RI omige,(Dag (), Dag(B)) := Repy,” (Dag(A), Dig(B)) Zrge Dag(A? @ B).

Hqe

Under the hypothesis of Theorem A.21, the internal composition of dg-quasifunctors
preserving coproducts is given by taking a cofibrant replacement of the derived tensor
product over .
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A.6. Pretriangulated dg-categories. Basically, a triangulated dg-category is a dg-cate-
gory such that its homotopy category is canonically triangulated. But before being able to
give a precise definition, we need to do a detour through Quillen exact categories, Frobenius
categories and stable categories.

A.6.1. Frobenius structure on C(sf). Recall a Quillen exact category [36] is an additive
category with a class of short exact sequences

0-XxLy%zoo,
called conflations, which are pairs of ker-coker, where f is called an inflation and ¢ a

deflation, respecting some axioms:

e the identity is a deflation;
e the composition of deflations is a deflation;
e deflations (resp. inflations) are stable under base (resp. cobase) change.

A Frobenius category is a Quillen exact category having enough injectives and projectives,
and where injectives coincide with projectives. The stable category € of a Frobenius cat-
egory 6 is given by modding out the maps that factor through an injective/projective
object. It carries a canonical triangulated structure where:

e the suspension functor S is obtained by taking the target of a conflation
0->X—->IX—>SX -0,

where I A is an injective hull of X, for all X € 6;
e the distinguished triangles are equivalent to standard triangles

xLy%zhsx,
obtained from conflations by the following commutative diagram:

0 s X Y —2 v 7 s 0

N N

0 s X s T X s SX —— 0.

Example A.22. Let 9 be a small dg-category. One can put a Frobenius structure on
C(sd)(:= Z°(A°P -mod)) by using split short exact sequences as class of conflations. Then
there is an equivalence C(d) =~ H°(°?-mod), and the suspension functor coincides with
the usual homological shift. Moreover, @(sf) inherits the triangulated structure from
H°(sd-mod), where distinguished triangles are equivalent to distinguished triangles ob-
tained from all short exact sequences in C'(d).

A.6.2. Pretriangulated dg-categories. Remark for any dg-category ol there is a Yoneda
functor

Z20() — C(sh), X v Homy(—, X).
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Definition A.23. A dg-category I is pretriangulated if the image of the Yoneda functor is
stable under translations and extensions (for the Quillen exact structure on C'(J) described
in Example A.22).

This definition implies that

e Z%(J) is a Frobenius subcategory of C(7);
e H°(J) inherits a triangulated structure, called canonical triangulated structure,
from H°(J -mod).

Example A.24. Let o be a dg-category. We have that @4, (o) is pretriangulated with
Z%(Day(sAd)) = C(sA)/. Moreover, the canonical triangulated structure of H®(Dg,(d))
coindices with the usual on @ (o).
Then, it is possible to show that
e any dg-category o admits a pretriangulated hull pretr(s) such that

RH omiptge (A, T ) = RI omuge(pretr(sl), T),

for all pretriangulated dg-category I ;
o RH ompqe(d,T) is pretriangulated whenever J is pretriangulated;

e any dg-functor ' : I — I’ between pretriangulated dg-categories induces a trian-
gulated functor [F]: HY(T) — H°(J').

Note that for of being k-flat, the pretriangulated structure of R# omuge(Dag (), Day(B))
restricts to the one of Dy, (AP @ B) (viewed as sub-dg-category). In particular, we obtain
distinguished triangles of quasi-functors from short exact sequences of dg-bimodules.

Definition A.25. For a morphism f : X — Y € Z°%J) in the underlying category of
pretriangulated dg-category 7, one calls mapping cone an object Cone(f) € J such that

Cone(f)" = Cone(X" 1, Y*)e H(T -mod).
A.6.3. Dg-Morita equivalences.

Definition A.26. A dg-functor F : o — 9B is a dg-Morita equivalence if it induces an
equivalence

LF : D(d) > D(B): X — F(QX),

where (Q.X is a cofibrant replacement of X.

Example A.27. In particular, a quasi-equivalence is a dg-Morita equivalence and the
functor that sends dg-categories to their pretriangulated hull of — pretr(sf) is a dg-Morita
equivalence.

Theorem A.28 ([40]). There is a model structure dg-cat,,,. on dg-cat where the weak-
equivalences are the dg-Morita equivalences and the fibrations are the same as before.

Definition A.29. We say that J is triangulated if it is fibrant in dg-cat,,,,, .
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Equivalently, J is triangulated if and only if the Yoneda functor induces an equivalence
H°(J -mod) = 2%J) (i.e. every compact object is quasi-representable). Also equiva-
lently, F is triangulated if and only if I is pretriangulated and H°(J -mod) is idempotent
complete.

In particular, any category admits a triangulated hull ¢r(sf) (i.e. fibrant replacement).
It is given by tr(d) := Dg, (o), the dg-category of compact objects in D4(d).

Example A.30. Let R be a k-algebra viewed as a dg-category. Then ngg(R) is the
dg-category of perfect complexes, i.e. bounded complexes of finitely generated projective
R-modules.

1]
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