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2-VERMA MODULES

GRÉGOIRE NAISSE AND PEDRO VAZ

Abstract. We construct a categorification of parabolic Verma modules for symmetriz-
able Kac–Moody algebras using KLR-like diagrammatic algebras. We show that our
construction arises naturally from a dg-enhancement of the cyclotomic quotients of the
KLR-algebras. As a consequence, we are able to recover the usual categorification of
integrable modules. We also introduce a notion of dg-2-representation for quantum Kac–
Moody algebras, and in particular of parabolic 2-Verma modules.
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1. Introduction

The study of categorical actions of (quantum enveloping algebras of) Kac–Moody al-
gebras leads to many interesting results. An impressive example is due to Chuang and
Rouquier [11], who introduced categorical actions of sl2 to prove the Broué abelian defect
group conjecture for symmetric groups. Another interesting result is Webster’s construction
of homological versions of quantum invariants of links obtained by the Reshetikhin–Turaev
machinery [45].

Until recently, only categorifications of integrable representations of quantum Kac–
Moody algebras were known. These are given by additive (or abelian) categories, on
which the quantum group acts by (exact) endofunctors respecting certain direct sum
decompositions, corresponding to the defining relations of the algebra (see for exam-
ple [15, 19, 25, 26, 38]). In [34], the authors followed a slightly different approach to
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2 GRÉGOIRE NAISSE AND PEDRO VAZ

construct a categorification of the universal Verma module Mpλq for quantum sl2. The
construction of [34] is given in the form of an abelian, bigraded (super)category, where the
commutator relation takes the form of a (non-split) natural short exact sequence

0 Ñ FE Ñ EF Ñ QK ‘ ΠQK´1 Ñ 0,

where Π is the parity shift functor, and Q a categorification of 1
q´q´1 in the form of an infinite

direct sum. This category is obtained as a certain category of modules over cohomology
rings of infinite Grassmannianns and their Koszul duals. Categorification of Verma modules
appeared independently in the litterature with a strongly different flavor in [12] and in [5].

Studying the endomorphism ring of Fk :“ F ˝ ¨ ¨ ¨ ˝ F yields a (super)algebra Ak that
extends the ubiquitous nilHecke algebra NHk. This superalgebra was studied by the authors
in the follow up [35], where it was used to construct an equivalent categorification of Verma
modules for quantum sl2. The supercenter of Ak was also studied in [4]. The definition of
the superalgebra Ak and is supercenter were extended in [37] to the case of a Weyl group
of type B.

The superalgebra Ak comes equipped with a family of differentials dn for n ě 0. The
corresponding dg-algebras are formal, with homology being isomorphic to the n-cyclotomic
quotients of the nilHecke algebra. These quotients are known to categorify the irreducible
integrable Uqpsl2q-representations V pnq of highest weight n. We interpret this as a categori-
fication of the universal property of the Verma module Mpλq, that is there is a surjection
Mpλq ։ V pnq for all n. This also means the dg-algebra pAk, dnq can be seen as a dg-
enhancement of the cyclotomic nilHecke algebra NHn

k , and in particular, of categorified
V pnq.

In [22, 24] and [38], Khovanov–Lauda and Rouquier introduced generalizations of the
nilHecke algebra for any Cartan datum. These algebras are presented in the form of braid-
like diagrams in [22, 24], with strands labeled by simple roots and decorated with dots. It
is proven in [22, 24, 38] that KLR algebras categorify the half quantum group associated
with the input Cartan datum. Khovanov and Lauda conjectured that certain quotients
of these algebras categorify irreducible, integrable representations of the quantum group.
Due to the isomorphism between these quotient algebras and cyclotomic Hecke algebras
in type A (see [7, 38]), these quotients have become known as cyclotomic KLR algebras.
The corresponding cyclotomic conjecture was first proven in [8, 9, 27] for some special
cases, and then for all symmetrizable Kac–Moody algebras by Kang–Kashiwara in [19],
and independently by Webster in [45].

In this paper, we introduce a version of KLR algebra associated to a pair pp, gq, where p
is a (standard) parabolic subalgebra of a quantum Kac-Moody algebra g. This construc-
tion generalizes the algebra Ak from [34], which we view as associated to the (standard)
Borel subalgebra of sl2. The usual KLR algebra is recovered by taking p “ g. We prove
that certain ‘cyclotomic quotients’ of these p-KLR algebras categorify parabolic Verma
modules induced over the parabolic subalgebra p, with the cyclotomic quotient depending
on the highest weight. The proof goes by showing first that if p “ b is the (standard) Borel
subalgebra of g, then the b-KLR algebra is equipped with a categorical g-action similar
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to the one constructed in [35]. In particular, it categorifies the universal Verma module
of g. Next, we show that the b-KLR algebra can be equipped with a family of differen-
tials, turning it into a dg-enhancement of the cyclotomic p-KLR algebras. This induces a
categorical g-action on the cyclotomic p-KLR algebra. In particular, we recover the usual
categorical action on cyclotomic KLR algebras, and we can reinterpret Kang–Kashiwara’s
proof of Khovanov–Lauda’s cyclotomic conjecture in terms of dg-enhanced KLR algebras.
The world of dg-categories also allows to reinterpret the usual categorical sl2-commutator
relation in terms of mapping cones. More precisely, the derived category of dg-modules
over the dg-enhanced KLR algebra comes equipped with functors Ei, Fi and an autoequiva-
lence Ki for all simple root αi, that categorifies the action of the Chevalley generators Ei, Fi
and of the Cartan element Ki “ qHi

i . Then, the sl2-commutator relation of the categorical
action takes the form of a quasi-isomorphism of mapping cones

ConepFiEi Ñ EiFiq
»
ÝÑ ConepQiKi Ñ QiK

´1
i q,

where Qi is a direct sum of grading shift copies of the identity functor that categories
1

q´1
i ´qi

. Whenever Fi is locally nilpotent, ConepQiKi Ñ QiK
´1
i q is quasi-isomorphic to a

finite direct sum of shifted copies of the identity functor, corresponding to the usual notion
of an integrable categorical g-action (as in [19] for example).

Categorification of parabolic Verma modules have found connections with topology in
the work of the authors in [33]. In particular, they have constructed Khovanov–Rozansky’s
triply graded link homology using parabolic 2-Verma modules of gl2k. On the decategorified
level, the connection between the HOMFPY-PT link polynomial and Verma modules was
not known before. We expect to find in the future more connections between categorified
Verma modules and low-dimensional topology.

Outline of the paper. In Section 2, we recall the basics about quantum groups and their
parabolic Verma modules.

In Section 3, we introduce the b-KLR algebra Rb (Definition 3.3) as a diagrammatic
algebra over a unital commutative ring k, in the same spirit as Khovanov–Lauda’s [22].
We construct a faithful action on a polynomial ring and exhibit a basis, proving Rb is a
free k-module.

In Section 4, we introduce the p-KLR algebra Rp for any (standard) parabolic subalgebra
p of g. We also introduce the corresponding N -cyclotomic quotient RN

p . We introduce a

differential dN on Rb, turning it into a dg-enhancement of RN
p . In particular, we prove the

following theorem:

Theorem 4.4. The dg-algebra pRbpmq, dNq is formal with homology

HpRbpmq, dNq – RN
p pmq.

In Section 5, we construct a categorical action of Uqpgq on Rb, where the action of
the Chevalley generators Fi and Ei is given by functors Fi and Ei which are defined in
terms of induction and restriction functors for the map that adds a strand labeled i. The
sl2-commutator relation takes the form of a non-split natural short exact sequence. Let
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‘rβi´α_
i pνqsqi

Idν be an infinite direct sum of degree shifts of the identity functor that cat-

egorifies the power series pλiq
´α_

i pνq
i ´ λ´1

i q
α_
i pνq

i q{pqi ´ q´1
i q (see Eq. (27) in the beginning

of Section 5).

Corollary 5.2. There is a natural short exact sequence

0 Ñ FiEi Idν Ñ EiFi Idν Ñ ‘rβi´α_
i pνqsqi

Idν Ñ 0,

for all i P I, and there is a natural isomorphism

FiEj – EjFi,

for all i ‰ j P I.

Fix p Ă g, and let If be the set of simple roots for which Fi P p. Let ‘rnsqi
Idν be a finite

direct sum of degree shifts of the identity functor that categorifies the quantum integer
rnsqi. The categorical g-action on Rb lifts to the dg-algebra pRb, dNq, and thus to RN

p by
Theorem 4.4. The short exact sequence of Corollary 5.2 lifts to a short of exact sequence
of complexes, inducing a long exact sequence in homology. This allows us to compute the
action of the functors of induction FNi and restriction ENi on RN

p :

Theorem 5.17. For i R If there is a natural short exact sequence

0 Ñ FNi E
N
i Idν Ñ ENi F

N
i Idν Ñ ‘rβi´α_

i pνqsqi
Idν Ñ 0,

and for i P If there are natural isomorphisms

ENi F
N
i Idν – FNi E

N
i Idν ‘rni´α_

i pνqsqi
Idν , if ni ´ α_

i pνq ě 0,

FNi E
N
i Idν – ENi F

N
i Idν ‘rα_

i
pνq´nisqi

Idν , if ni ´ α_
i pνq ď 0.

Moreover, there is a natural isomorphism

FNi E
N
j – ENj F

N
i ,

for i ‰ j P I.

In Section 6, we compute the asymptotic Grothendieck group of pRb, dNq. The asymp-
totic Grothendieck group is a refined version of Grothendieck group, that was introduced
by the first author in [32]. It allows taking in consideration infinite iterated extensions
of objects, such as infinite projective resolutions and infinite composition series (see Defi-
nition 6.3). Let MppΛ, Nq be the parabolic Verma module of highest weight pΛ, Nq, and
MppΛ, Nq be the c.b.l.f. derived category of pRb, dNq (see Section 6.1).

Theorem 6.14. The asymptotic Grothendieck group QK
∆
0 pMppΛ, Nqq is a Uqpgq-weight

module, with action of Ei, Fi given by rEis, rFis. Moreover, there is an isomorphism of
Uqpgq-modules

QK
∆
0 pMppΛ, Nqq bZ Q – MppΛ, Nq.

In Section 7, we introduce a notion of categorical dg-action of g on a pretriangulated dg-
category (Definition 7.2), and of (parabolic) 2-Verma module (Definition 7.6). In particular,
we show that MppΛ, Nq admits a dg-enhancement Mp

dgpΛ, Nq in the form of a dg-category.
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It yields an example of parabolic 2-Verma module, for which Theorem 6.14 takes the
following form:

Corollary 7.8. For all i P I there is a quasi-isomorphism of cones

Cone
`
FNi E

N
i Idν Ñ ENi F

N
i Idν

˘ »
ÝÑ Cone

`
Qiλiq

´α_
i pνq

i Idν Ñ Qiλ
´1
i qα

_
i pνq Idν

˘
,

in EndHqepDdgpRb, dNqq.

Finally, in Appendix A we recall the construction of the homotopy category of dg-
categories up to quasi-equivalence, based on Toen [42]. We also recall how to compute the
(derived) dg-hom-spaces between pretriangulated dg-categories.

Acknowledgments. G.N. is a Research Fellow of the Fonds de la Recherche Scientifique
- FNRS, under Grant no. 1.A310.16. G.N. is grateful to the Max Planck Institute for
Mathematics in Bonn for its hospitality and financial support. P.V. was supported by the
Fonds de la Recherche Scientifique - FNRS under Grant no. J.0135.16.

2. Quantum groups and Verma modules

We recall the basics about quantum groups and their (parabolic) Verma modules. Our
presentation is close to [18] and [29], where the proofs can be found. References for classical
results about Verma modules are [30] and [17] (and [2] for the quantum case).

2.1. Quantum groups. A generalized Cartan matrix is a finite dimensional square matrix
A “ taijui,jPI P Z|I|ˆ|I| such that

‚ aii “ 2 and aij ď 0 for all i ‰ j P I;
‚ aij “ 0 ô aji “ 0.

One says that A is symmetrizable if there exists a diagonal matrix D with positive entries
di P Zą0 for all i P I, such that DA is symmetric. A Cartan datum consists of

‚ a symmetrizable generalized Cartan matrix A;
‚ a free abelian group Y called the weight lattice;
‚ a set of linearly independent elements Π “ tαiuiPI Ă Y called simple roots ;
‚ a dual weight lattice Y _ :“ HompY,Zq;
‚ a set of simple coroots Π_ “ tα_

i uiPI Ă Y _;

such that

‚ α_
i pαjq “ aij ;

‚ for each i P I there is a fundamental weight Λi P Y such that α_
j pΛiq “ δij for all

j P I.

The abelian subgroup X :“
À

i Zαi Ă Y is called the root lattice. We also write X` :“À
iNαi Ă X for the positive roots. Given a Cartan datum, since A is symmetrizable with

diaij “ djaji, one can construct a symmetric bilinear form

p´|´q : Y ˆ Y Ñ Z,

respecting

‚ pαi|αiq “ 2di P t2, 4, . . . u;
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‚ pαi|αjq “ diaij P t0,´1,´2, . . . u for all i ‰ j;

‚ α_
i pyq “ 2 pαi|yq

pαi|αiq
for all y P Y .

In the end, a Cartan datum is completely determined by pI,X, Y, p´|´qq.

Definition 2.1. The quantum Kac–Moody algebra Uqpgq associated to a Cartan datum
pI,X, Y, p´|´qq is the associative, unital Qpqq-algebra generated by the set of elements
Ei, Fi and Kγ for all i P I and γ P Y _, with relations for all i P I and γ, γ1 P Y _:

K0 “ 1, KγKγ1 “ Kγ`γ1 ,

KγEi “ qγpαiqEiKγ , KγFi “ q´γpαiqFiKγ ,

One also imposes the sl2-commutator relation for all i, j P I:

(1) EiFj ´ FjEi “ δij
Ki ´ K´1

i

qi ´ q´1
i

,

where qi :“ qdi and Ki :“ Kα_
i
.

Finally, there are the Serre relations for i ‰ j P I:
ÿ

r`s“1´aij

p´1qr
„
1 ´ aij
r



qi

Er
iEjE

s
i “ 0,(2)

ÿ

r`s“1´aij

p´1qr
„
1 ´ aij
r



qi

F r
i FjF

s
i “ 0.(3)

This ends the definition of Uqpgq.

Given a sequence i “ i1 ¨ ¨ ¨ im of elements in I, we write Fi :“ Fi1 ¨ ¨ ¨Fim and Ei :“
Ei1 ¨ ¨ ¨Eim . We write SeqpIq for the set of such sequences. Any element of Uqpgq decomposes
as a sum of elements FiKγEj with i, j P SeqpIq.

The half quantum group U´
q pgq of Uqpgq is the subalgebra generated by the elements

tFiuiPI . As a Qpqq-vector space, it admits a basis given by a subset of tFiuiPSeqpIq.

2.2. Weight modules. Let M be an Uqpgq-module with ground ring R Ą Qpqq. Consider
a Z-linear functional

λ : Y _ Ñ Rˆ,

where the group structure on Rˆ is the product. For each such λ and y P Y , we call
pλ, yq-weight space the set

Mλ,y :“ tv P M |Kγv “ λpγqqγpyqv for all γ P Y _u.

Note that EiMλ,y Ă Mλ,y`αi
and FiMλ,y Ă Mλ,y´αi

. A weight module is a module that
decomposes as a direct sum of weight spaces. A highest weight module is a module M
such that M “ Uqpgqvλ for some vλ P Mλ,0 with Eivλ “ 0 for all i P I. In that case, we
call λ the highest weight and we have

M –
à

yPX`

Mλ,´y.
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as R-module.

One says that a Uqpgq-module M is integrable if for each v P M there exists k " 0 such
that Ek

i v “ 0 and F k
i v “ 0 for all i P I. Any finite dimensional module is integrable, and

any integrable module is a weight module with λpΠ_q Ă Zrqs. We consider only type 1
modules, that is λpΠ_q Ă Nrqs.

Let M be a highest weight module with highest weight vector vλ P Mλ,0. Then we set
λi :“ λpα_

i q for each i P I. We are interested in λ such that each λi is either λi “ qni for
some ni P Z or λi is formal. In that case, we write it λi “ qβi where we interpret βi as a
formal parameter.

2.2.1. Parabolic Verma modules. The (standard) Borel subalgebra Uqpbq of Uqpgq is gener-
ated by Kγ and Ei for all γ P Y _ and i P I. A (standard) parabolic subalgebra of Uqpgq is
a subalgebra containing Uqpbq. It is generated by Kγ, Ei and Fj for all γ P Y _, i P I and
j P If for some fixed subset If Ă I. The part given by Kγ, Ej and Fj for j P If is called
the Levi factor and written Uqplq. The nilpotent radical Uqpnq is generated by Ei for all
i P Ir :“ IzIf . Note that parabolic subalgebras are in bijection with partitions I “ If \ Ir.

Let Uqppq be a parabolic subalgebra determined by I “ If\Ir. For each i P If , we choose
a weight ni P N. For each j P Ir we choose a weight λj P tqβj , qnju. We write N “ tniuiPIf
and Λ “ tλjujPIr . Let V pΛ, Nq be the unique (type 1) integrable, irreducible representation
of Uqplq on the ground ring R “ Qpq,Λq, and with highest weight λ determined by

λpα_
k q “

#
qni, if k “ i P If ,

λj, if k “ j P Ir.

We extend it to a representation of Uqppq by setting UqpnqV pΛ, Nq “ 0.

Definition 2.2. The parabolic Verma module of highest weight pΛ, Nq associated to
Uqppq Ă Uqpgq is the induced module

MppΛ, Nq :“ Uqpgq bUqppq V pΛ, Nq.

Whenever Uqppq Ĺ Uqpgq, we have that MppΛ, Nq is an infinite dimensional module.
Moreover, for all parabolic Verma modules, there is a Qpqq-linear surjection

U´
q pgq bQpqq R ։MppΛ, Nq.

Example 2.3. If Uqppq “ Uqpbq, then N “ H, and V pΛ, Nq – Qpq,ΛqvΛ is 1-dimensional,
and such that

EivΛ “ 0, KγvΛ “
ź

jPI

λ
γpΛjq
j vΛ.

In this case, we simply call it Verma module, and denote it MbpΛq. If λj “ qβ is formal
for all j P Ir, then we call it the universal Verma module.

Example 2.4. If Uqppq “ Uqpgq, then Λ “ H and MppΛ, Nq – V pNq is an integrable,
irreducible Uqpgq representation.
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Since q is a generic parameter we can apply Jantzen’s criterion [17, Theorem 9.12], thanks
to the results in [2]. We obtain that MppΛ, Nq is irreducible whenever λj R tqn|n P Nu for
all j P Ir. If λj “ qnj for nj P N, then MppΛ, Nq contains a non-trivial, proper submodule,
which is isomorphic to MppΛ

nj

´nj´2, Nq for Λ
nj

´nj´2 given by exchanging qnj with q´nj´2 in
Λ. Moreover, the quotient

MppΛ, Nq

MppΛ
nj

´nj´2, Nq
– Mp`jpΛztqnju, N \ tnjuq,

is isomorphic to the parabolic Verma module associated to the parabolic subalgebra p ` j

given by adding j to If , that is generated by p and Fj .

Furthermore, whenever λj “ qβj is formal, there is a surjective map

evnj
:MppΛ, Nq ։MppΛ

nj

βj
, Nq,

for all nj P Z, given by evaluating βj “ nj .

These two facts together allow us to define a partial order on parabolic Verma mod-
ules. For this, we say that there is an arrow from MppΛ, Nq to Mp1

pΛ1, N 1q if we have an
evaluation map evnj

such that

evnj
pMppΛ, Nqq – Mp1

pΛ1, N 1q,

or if there is a short exact sequence

0 Ñ MppΛ
nj

´nj´2, Nq Ñ MppΛ, Nq Ñ Mp1

pΛ1, N 1q Ñ 0.

For parabolic Verma modules M and M 1 we say that M is bigger than M 1 if there is a
chain of arrows from M to M 1. In that case, there is an M2, which is either trivial or a
parabolic Verma module, and a short exact sequence

0 Ñ M2 Ñ evpMq Ñ M 1 Ñ 0,

where ev is a composition of evaluation maps evnj
. With this partial order, the universal

Verma module is a maximal element and each integrable, irreducible module is a minimum.
This also means that we can recover any parabolic Verma module from the universal one.

2.2.2. The Shapovalov form. Let ρ : Uqpgq Ñ Uqpgqop be the Qpqq-linear algebra anti-
involution given by

ρpEiq :“ q´1
i K´1

i Fi, ρpFiq :“ q´1
i KiEi, ρpKγq :“ Kγ,(4)

for all i P I and γ P Y _.

Definition 2.5. The Shapovalov form

p´,´q :MppΛ, Nq ˆ MppΛ, Nq Ñ Qpq,Λq,

is the unique bilinear form respecting

‚ pvΛ,N , vΛ,Nq “ 1, for vΛ,N the highest weight vector;
‚ puv, v1q “ pv, ρpuqv1q where ρ is defined in (4);
‚ fpv, v1q “ pfv, v1q “ pv, fv1q,

for all v, v1 P MppΛ, Nq, u P Uqpgq and f P Qpq,Λq.



2-VERMA MODULES 9

2.2.3. Basis. Since parabolic Verma modules are highest weight modules, they admit at
least one basis given in terms of elements of the form FivΛ,N for i P SeqpIq, where vΛ,N is a
highest weight vector. In particular, as R-modules they are all submodules of U´

q pgqbQpqqR,
meaning that these basis lives in a subset of tFivΛ,N |i P SeqpIqu modded out by the
Serre relations. We call such a basis an induced basis and write it tvΛ,N “ m0, m1, . . . u.

Any element in such basis takes the form Fi “ F br
ir

¨ ¨ ¨F b1
i1

for some i1, . . . , ir P I and

b1, . . . , br P N, with iℓ ‰ iℓ`1. Replacing each F b
i by the divided power F

pbq
i :“ F b

i {prbsqi!q
yields another basis tvΛ,N “ m1

0, m
1
1, . . . u. Lusztig’s canonical basis [29] is given by a

certain choice of such a divided power basis characterized by

pm1
i, m

1
iq ´ 1 P Z`

ăJq,ΛK,

for any order such that 0 ă q ă λi (see Section 6 for a definition of Z`
ăJq,ΛK). Whenever

MppΛ, Nq is irreducible, the Shapovalov form is non-degenerate. Therefore, in this case,
there is a dual canonical basis uniquely determined by

pm1
i, m

jq “ δij .

3. The b-KLR algebras

Fix once and for all a Cartan datum pI,X, Y, p´|´qq, and let

dij :“ ´α_
i pαjq P N.

For ν P X` we write
ν “

ÿ

iPI

νi ¨ αi, νi P N,

and we set |ν| :“
ř
i νi, and Supppνq :“ ti|νi ‰ 0u.

We also fix a choice of scalars in a commutative, unital ring k as introduced in [39].
Following the conventions in [10], it consists of:

‚ tij P kˆ for all i, j P I;
‚ stvij P k for i ‰ j, 0 ď t ă dij and 0 ď v ă dji;
‚ ri P kˆ for all i P I,

respecting

‚ tii “ 1;
‚ tij “ tji whenever dij “ 0;
‚ stvij “ svtji ;
‚ stvij “ 0 whenever tpαi|αiq ` vpαj|αjq ‰ ´2pαi|αjq.

In addition, whenever t ă 0 or v ă 0, we put stvij :“ 0. Thus we have spqij “ 0 for p ą dij

or q ą dji. We will also write s
dij0
ij :“ tij and s

0dji
ij :“ tji. Hence if pαi|αjq “ 0 we get

s00ij “ s00ji “ tij “ tji.

Definition 3.1 ([22, 38]). Form P N, the Khovanov–Lauda–Rouquier (KLR) algebra Rpmq
is the k-algebra generated by braid-like diagrams on m strands, read from bottom to top,
such that
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‚ two strands can intersect transversally, but no triple intersections are allowed;
‚ strands can be decorated by dots (we use a dot with a label k to denote k consecutive
dots on a strand);

‚ each strand is labeled by a simple root, written i P I, that we (usually) write at
the bottom;

‚ multiplication is given by concatenation of diagrams, which preserves the labeling
(i.e. connecting two strands with different labels gives zero);

‚ diagrams are taken modulo planar isotopies and the following local relations:

i j

“

$
’’’’’&
’’’’’%

0 if i “ j,

ř
t,v

stvij

i

t

j

v if i ‰ j,
(5)

for all i, j P I,

i j

“

i j i j

“

i j

(6)

i i

“

i i

` ri

i i

,

i i

“

i i

` ri

i i

(7)

for all i ‰ j P I,

i kj

´

i kj

“

$
’’’’’’’&
’’’’’’’%

0 if i ‰ k,

ri
ř
t,v

stvij
ř
u`ℓ“
t´1

j

v

i

u

i

ℓ otherwise,
(8)

for all i, j, k P I. In addition, Rpmq is Z-graded by setting

degq

¨
˝

i j

˛
‚:“ ´pαi|αjq, degq

¨
˝

i

˛
‚:“ pαi|αiq.

Remark 3.2. Note that in Eq. (5) and Eq. (8), the sum
ř
t,v

stvij can be restricted to the

finite number of pairs t, v P N such that tpαi|αiq ` vpαj|αjq “ ´2pαi|αjq. Moreover, it
contains at least two non-zero elements with invertible coefficients, given by t “ dij , v “ 0
and t “ 0, v “ dji.
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As proven in [22, 24] (see also [38]), these algebras categorify the half quantum group
U´
q pgq associated to pI,X, Y, p´|´qq, as a (twisted) bialgebra. The multiplication and

comultiplication are categorified using respectively induction and restriction functors, ob-
tained by putting diagrams side by side.

For each non-negative integral highest weight N :“ tni P N|i P Iu, there is a N -
cyclotomic quotient RNpmq of Rpmq given by modding out the two-sided ideal generated
by all diagrams of the form

i

ni

j

. . .

k

“ 0.

As first conjectured in [22] and proven in [19] and independently in [45], these cyclotomic
quotients categorify the irreducible integrable Uqpgq-module of highest weight N , where
the action of Fi (resp. Ei) is given by induction (resp. restriction) along the map Rpmq ãÑ
Rpm` 1q that adds a vertical strand with label i, at the right.

3.1. b-KLR algebra. Our first goal is to construct a dg-enhancement of the cyclotomic
KLR algebras RNpmq, in the same spirit as in [35]. We introduce the following algebra:

Definition 3.3. For m P N, the b-KLR algebra Rbpmq is the k-algebra generated by
braid-like diagrams on m strands, read from bottom to top, such that

‚ two strands can intersect transversally, but no triple intersections are allowed;
‚ strands can be decorated by dots;
‚ regions in-between strands can be decorated by floating dots, which are labeled by
a subscript in I and a superscript in N;

‚ each strand is labeled by a simple root, written i P I;
‚ multiplication is given by concatenation of diagrams, which preserves the labeling;
‚ diagrams are taken modulo planar isotopies that preserve the relative height of the
floating dots, and modulo the KLR relations Eq. (5 – 8) and the following local
relations:

¨ ¨ ¨
a

i b

j
“ ´ ¨ ¨ ¨a

i

b

j

a

i

a

i

“ 0,(9)

meaning floating dots anti-commute with each other for all i, j P I and a, b P N,

i

a

j
“

$
’’’’’’&
’’’’’’%

i

a´ 1

i
´

i

a´ 1

i
if i “ j and a ą 0,

ř
t,v

p´1qvstvij

i

ta` v

j
if i ‰ j,

(10)
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i j

a

j “

i j

a

j
`
ÿ

t,v

stvij

ÿ

u`ℓ“
v´1

p´1qu

i

t

j

ℓa` u

j
if i ‰ j,(11)

Moreover, a floating dot in the left-most region is zero

a

i

j k

. . .

ℓ

“ 0.

Given a diagram, it is sometimes useful to decorate some of its regions with an element
K :“

ř
iPI ki ¨ αi P X`, where ki denotes the number of strands with label i to the left of

the region. The algebra Rb is Z1`|I|-graded (a q-grading and a λk-grading for each k P I)
with

degq

¨
˝

i j

˛
‚:“ ´pαi|αjq, degq

¨
˝

i

˛
‚:“ pαi|αiq,

degλk

¨
˝

i j

˛
‚:“ 0, degλk

¨
˝

i

˛
‚:“ 0,

and

degq

˜
a

i
K

¸
:“ p1 ` a´ α_

i pKq ` kiqpαi|αiq,

degλk

˜
a

i
K

¸
:“ 2δik.

This ends the definition of Rbpmq.

3.2. Tightened basis. Before going any further, let us introduce some useful notations
borrowed from [22]. First, let Rbpνq be the subalgebra of Rbpmq given by diagrams where
there are exactly νi strands labeled i, for each i P I. We also denote Seqpνq the set of
all ordered sequences i “ i1i2 ¨ ¨ ¨ im with ik P I and i appearing νi times in the sequence.
The symmetric group Sm acts on Seqpνq with the simple transposition σk P Sm acting on
i “ i1i2 ¨ ¨ ¨ im P Seqpνq by permuting ik and ik`1. Sometimes, for K “

ř
iPI ki ¨ αi P X`,

we abuse notation by writing σK instead of σ|K|.

For i “ i1i2 ¨ ¨ ¨ im P Seqpνq, let 1i P Rbpνq be the idempotent given by m vertical strands
with labels i1, i2, . . . , im, that is

1i :“

i1 i2 im

¨ ¨ ¨
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We have 1i1j “ δij for all i, j P Seqpνq, and so there is a decomposition of k-modules

Rbpνq –
à

i,jPSeqpνq

1jRbpνq1i.

Our goal is to construct a basis of 1jRbpνq1i as k-module.

3.2.1. An action of Rbpνq on a polynomial space. We construct a polynomial representation
of Rbpνq with a similar flavor as in [22, §2.3]. We fix ν P X` with |ν| “ m. For each i P I
we define

Qi :“ krx1,i, . . . , xνi,is b
Ź‚xω1,i, . . . , ωνi,iy.

We write QI :“
Â

iPI Qi, where b means the supertensor product in the sense that
ωℓ,iωℓ1,j “ ´ωℓ1,jωℓ,i for all i, j P I and xi,ℓ commutes with everything. Thus, QI is a
supercommutative superring. Then, we construct the ring

Qν :“
à

iPSeqpνq

QI1i,

where the elements 1i are central idempotents. It is Z1`|I|-graded by setting

degqpxℓ,iq “ pαi|αiq, degqpωℓ,iq “ p1 ´ ℓqpαi|αiq,

degλj pxℓ,iq “ 0, degλj pωℓ,iq “ 2δij .

We first construct an action of the symmetric group Sm on Qν by letting the simple
transposition

σk : QI1i Ñ QI1σki,

to act by sending

xp,i1i ÞÑ

$
’’&
’’%

xp`1,i1σki, if ik “ ik`1 “ i and p “ #ts ď k|is “ iu,

xp´1,i1σki, if ik “ ik`1 “ i and p “ 1 ` #ts ď k|is “ iu,

xp,i1σki, otherwise,

for i P I, p P t1, . . . , νiu and i “ i1 . . . im, and by sending

ωp,i1i ÞÑ

#
pωp,i ` pxp,i ´ xp`1,iqωp`1,iq 1σki, if ik “ ik`1 “ i and p “ #ts ď k|is “ iu,

ωp,i1σki, otherwise,

which we extend to Qν by setting σkpfgq :“ σkpfqσkpgq for all f, g P Qν .

Proposition 3.4. The procedure described above yields a well-defined action of Sm on Qν.

Proof. The proof is a straightfoward computation. We leave the details to the reader. �

Then, we define inductively the element ωap,j P QI for a P N as

ω0
p,j :“ ωp,j, ωa`1

p,j :“ ωap´1,j ´ xp,jω
a
p,j.
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For K “
ř
iPI ki ¨ i P X` such that ki ď νi, we define ωaj pKq P QI inductively as

ωaj pKq :“

$
’’&
’’%

0, if kj = 0,

ωakj ,j, if ki “ 0 for all i ‰ j,ř
t,v

p´1qtstvijx
t
ki,i
ωa`v
j pK ´ iq, otherwise,

where K ´ i is a shorthand for K ´ 1 ¨ αi.

Lemma 3.5. The element ωaj pKq is well-defined.

Proof. Take i ‰ i1 ‰ j P I such that ki ą 0 and ki1 ą 0. We can suppose by induction that
ωbjpK ´ i´ i1q is well-defined for all b ě 0. Then we have

ÿ

t,v

p´1qtstvijx
t
ki,i

ÿ

t1,v1

p´1qt
1

st
1v1

i1j x
t1

ki1 ,i1ω
a`v
j pK ´ i´ i1q

“
ÿ

t1,v1

p´1qt
1

st
1v1

i1j x
t1

ki1 ,i1

ÿ

t,v

p´1qtstvijxki,iω
a`v
j pK ´ i1 ´ iq,

for all i ‰ i1 ‰ j P I. �

It will be useful to give ωaj pKq a non-inductive expression. We write Kzj :“
ř
i‰j ki ¨ αi.

For a given non-negative integer ni P N we define

(12) ε
j
ni,i

pxki,iq :“
ÿ

|Vi|“ni

˜
kiź

ℓ“1

svℓtℓji xtℓℓ,i

¸
P Pi,

with the sum being over all partitions Vi : v1 ` ¨ ¨ ¨ ` vki “ vi such that pαi|αiq|vℓpαj|αjq

for each ℓ P t1, . . . , kiu, and with tℓ :“
´2pαi|αjq´vℓpαj |αjq

pαi|αiq
. This is a symmetric polynomial of

q-degree ´2kipαi|αjq ´ vipαj|αjq whenever it is non zero. Clearly, we can suppose vℓ ď dji,
and therefore we can also suppose that ni ď djiki. For n P N we define

(13) εjvpxKq :“
ÿ

|V |“n

˜
ź

i‰j

ε
j
ni,i

pxki,iq

¸
P PI ,

with the sum being over all partitions V :
ř
i‰j ni “ n. Notice that εjvpxKq is a polynomial

of q-degree p´α_
j pKzjq ´ nqpαj|αjq.

Lemma 3.6. We have

(14) ωaj pKq “

´α_
j pKzjqÿ

n“0

p´1qnωa`n
kj ,j

εjnpxKq P PI .

Proof. A straightforward computation shows that the RHS of Eq. (14) respects the recur-
sive definition of ωaj pKq, which proves the equality. �

We now have all the tools we need to define an action of Rppνq on Pν . First, we choose
an arbitrary orientation i Ð j or i Ñ j for each pair of distinct i, j P I. Then, we let
a P Rppνq1j act as zero on PI1i whenever j ‰ i. Otherwise, we declare that
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‚ the dot

i

K

acts as multiplication by xki`1,i1i;
‚ the floating dot

a

j
K

acts as multiplication by ωaj pKq1i;
‚ the crossing

i j
K

acts as

f1i ÞÑ ri
f1i ´ σKpf1iq

xki,i ´ xki`1,i

, if i “ j,

f1i ÞÑ

˜
ÿ

t,v

stvijx
t
ki,i
xvkj`1,j

¸
σKpf1iq, if i Ñ j,

f1i ÞÑ σKpf1iq, if i Ð j.

Proposition 3.7. The rules above define an action of Rbpνq on Qν .

Proof. We have to check the validity of the KLR relations Eq. (5 – 8) and of the relations
involving floating dots Eq. (9 – 11), as well as the relations coming from regular isotopies.

We start by proving the KLR relations. Clearly Eq. (5), Eq. (6) and Eq. (7) are satisfied.
The case i ‰ k of Eq. (8) is also straightforward. For i Ð j and k “ i we compute the
action of the LHS of Eq. (8) on f P Qν as

f ÞÑ
`ÿ

t,v

stvjiy
txv1

˘
σ1B2σ1pfq ´ σ2B1

`ÿ

t,v

stvjiy
txv2σ2pfq

˘

“
`ÿ

t,v

stvjiy
txv1

˘f ´ σ1σ2σ1pfq

x1 ´ x2
´

`ř
t,v s

tv
jiy

txv2
˘
f ´

`ř
t,v s

tv
jiy

txv1
˘
σ2σ1σ2pfq

x1 ´ x2

“
ÿ

t,v

stvjiy
tx

v
1f ´ xv2
x1 ´ x2

“
ÿ

t,v

stvjiy
t
ÿ

r`s“
v´1

xr1x
s
2,

where x1, x2 correspond with the xki,i, xki`1,i and y with xkj ,j. What remains coincides
with the RHS of Eq. (8). A similar computation applies for the case i Ñ j.
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For the relations involving floating dots, we remark that Eq. (9) follows from the super-
commutativity of Qν , and ω

a
j pKq respects Eq. (10) by construction. For relation Eq. (11),

we apply the action of the LHS on some f P Qν and we obtain

f ÞÑ
`ÿ

t,v

stvjiy
txv

˘
ωaj pK ` jqf,

and for the RHS we obtain

f ÞÑ
`
ωaj pK ` i` jq `

ÿ

t,v

stvij

ÿ

u`ℓ“
v´1

p´1quωa`u
j pKqxtyℓ

˘
f

“
`ÿ

t,v

p´1qvstvijx
tωa`v
j pK ` jq `

ÿ

t,v

stvij

ÿ

u`ℓ“
v´1

p´1quωa`u
j pKqxtyℓ

˘
f.

Then we compute

ωa`v
j pK ` jq “

` ÿ

u`ℓ“
v´1

p´1qv´1´uyℓωa`u
j pKq

˘
` p´1qvyvωaj pK ` jq,

which implies that the action of the RHS of Eq. (11) coincides with the one of the LHS.
The only non trivial relation coming from regular isotopies we need to verify is given

by the commutation of a floating dot and a crossing at its left. This is a consequence of
the fact that Eq. (12) is a symmetric polynomial, which commutes with divided difference
operators. �

3.2.2. Left-adjusted expressions. Recall from [35, §2.2.1] that a reduced expression σir ¨ ¨ ¨σi1
of w P Sn is left-adjusted if ir ` ¨ ¨ ¨ ` i1 is minimal. Equivalently, it is left-adjusted if and
only if

min
tPt0,...,ru

σit ¨ ¨ ¨σi1pkq ď min
tPt0,...,ru

σjt ¨ ¨ ¨σj1pkq,

for all k P t0, . . . , nu and all other reduced expression σjr ¨ ¨ ¨σj1 “ w. In this condition, we
write

minwpkq :“ min
tPt0,...,ru

σit ¨ ¨ ¨σi1pkq.

Note that a left adjusted expression always exists and is unique up to distant permutation
( σiσj Ø σjσi for |i´ j| ą 1), so that minwpkq is well-defined. In particular, one can obtain
a left-adjusted reduced expression for any permutation by taking its representative in the
coset decomposition

(15) Sn “
nğ

a“1

Sn´1σn´1 ¨ ¨ ¨σa,

applied recursively. If we think of a reduced expression in terms of string diagrams, then
it is left-adjusted if all strings are pulled as far as possible to the left.
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Example 3.8. The permutation p1 3 2 4q P S4 admits as left-adjusted reduced expres-
sion the word σ1σ2σ1σ3σ2 which comes from the summand S2σ3σ2 in the first step of the
recursive decomposition (15). Note that σ1σ2σ3σ1σ2 is also left-adjusted while σ2σ1σ2σ3σ2
and σ2σ1σ3σ2σ3 are not. In terms of string diagrams, we consider as example the following
reduced expression of the permutation w “ p1 4 3 5 2q P S5 :

It is not left-adjusted since the 4th strand (read at the bottom) can be pulled to the left.
Hence we obtain the following left-adjusted minimal presentation:

Suppose σir ¨ ¨ ¨σi1 is a left-adjusted reduced expression of w. Then we can choose for
each k P t1, . . . , nu an index tk P t1, . . . , ru such that

σitk ¨ ¨ ¨σi1pkq “ minwpkq.

Clearly this choice is not necessarily unique and we can have tk “ tk1 for k ‰ k1. However,
it defines a partial order ă on the set t1, . . . , nu where k ă k1 whenever tk ď tk1. We extend
this order arbitrarily and we write ăt for it. There is a bijective map ζ : t1, . . . , nu Ñ
t1, . . . , nu which sends k ă k1 to ζpkq ăt ζpk1q, so that tζpkq ď tζpk1q. In terms of string
diagrams, the map ζ tells us in which order the strands attain their (chosen) leftmost
position while reading from bottom to top. In particular, ζpkq gives the starting point of
the strand that attains its leftmost position in kth position.

Example 3.9. Consider again the following left-adjusted string diagram:

Both the 1st and 3rd strand attain their leftmost position at the bottom of the diagram,
thus we can choose ζp1q “ 1 and ζp2q “ 3. Then both the 2nd and 4th strand attain their
leftmost position, thus we can take ζp3q “ 4 and ζp4q “ 2. Finally, the 5th strand attains
its leftmost position and we put ζp5q “ 5.

For k P t1, . . . , n` 1u, we put

wk :“ σitζpkq
¨ ¨ ¨σitζpk´1q

,

where it is understood that tζp0q :“ 0 and tζpn`1q :“ r. It defines a partition of the reduced
expression of σir ¨ ¨ ¨σi1 “ w. Moreover, it is constructed so that

wk ¨ ¨ ¨w1pζpkqq “ minwpζpkqq,

for all 1 ď k ď n.
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Example 3.10. Consider again w “ σ1σ2σ1σ3σ2 with i1 “ 2, i2 “ 3, i3 “ 1, i4 “ 2, i5 “ 1.
We can choose for example t1 “ 0, t2 “ 0, t3 “ 3 and t4 “ 5. Then we can put ζp1q “ 1
(or 2), ζp2q “ 2 (or 1), ζp3q “ 3 and ζp4q “ 4, with w1 “ 1, w2 “ 1, w3 “ σ1σ3σ2 and
w4 “ σ1σ2.

3.2.3. A generating set. We say that a floating dot is tight if it is placed immediately to
the right of the left-most strand, and has superscript 0. We can also suppose it has the
same subscript as the label of the strand at its left (otherwise it would slide to the left and
be zero).

Lemma 3.11. The algebra Rbpνq is generated by KLR elements (i.e. dots and crossings)
and tight floating dots.

Proof. We first compute

i i

a

i
“

i i

a

i
´

i i

a

i
(16)

for all a ě 0, i P I. Eq. (16), together with Eq. (11) and Eq. (10) allows to bring all floating
dots to the left. Then applying Eq. (10) recursively allows to transform all floating dots
with superscript bigger than zero into dots and tight floating dots. �

We write ω for a tight floating dot, τa for a crossing between the ath and pa ` 1qth
strands (counting from left), and xa for a dot on the ath strand, where we suppose the
label of the strands given by the context, in the form of an idempotent 1i. We also define
the tightened floating dot in Rbpνq as θa :“ τa´1 ¨ ¨ ¨ τ1ωτ1 ¨ ¨ ¨ τa´1, or diagrammatically

θa :“ . . .

. . .

. . .

. . .

a

We also write θ0a :“ θa and θ´1
a :“ 1.

Lemma 3.12. Tigthened floating dots anticommute with each others, up to adding terms
with a smaller number of crossings, that is

θaθb “ ´θbθa ` R, pθaq
2 “ 0 ` R1,

where R (resp. R1) possesses strictly less crossings than θaθb (resp. pθaq
2), for all 1 ď

a, b ď m.
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Proof. We first compute that

k ℓ

a

i

b

j
`

k ℓ

a

i

b

j

“ 0,(17)

for all i, j, k, ℓ P I and a, b P N. Then we obtain

(8)
“ ` R0

(17)
“ ´ ` R0 ` R1,

where both R0 and R1 have less crossings. �

Fix i, j P Seqpνq. Since they are both sequences of the same elements, there is a subset

jSi Ă Sm of permutations w P Sm such that ik “ jwpkq for all k P t1, . . . , mu. Given such
a permutation w P jSi, we can choose a left-adjusted reduced expression. It comes with a
partition wm`1 ¨ ¨ ¨w2w1 “ w and a bijection ζ : t1, . . . , mu Ñ t1, . . . , mu, such that

wk ¨ ¨ ¨w1pζpkqq “ minwpζpkqq,

for all 1 ď k ď m. Then, consider the collection of elements

jBi :“
 
xamm ¨ ¨ ¨xa11 τwm`1θℓmminwpζpmqqτwm ¨ ¨ ¨ θℓ2minwpζp2qqτw2θℓ1minwpζp1qqτw1|

ai P N, ℓi P t0,´1u, w P jSi

((18)

in 1jRbpνq1i. Diagrammatically, elements in jBi can be constructed using the following
algorithm:

(1) choose a permutation w P jSi, consider its corresponding string diagram and make
it left-adjusted by bringing all strands to the left;

(2) for each strand, choose whether we want to add a floating dot. If so, add a tightened
floating dot where the strand attains its left-most position by pulling the strand to
the far left and adding the floating dot immediately at its right;

(3) for each strand, choose a number of dots to add at the top of the diagram.

Example 3.13. Take i “ i1i2i3i4i5 and j “ i2i5i4i1i3, and consider the following left-
adjusted permutation w P jSi:

w “

i1 i2 i3 i4 i5
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Take ℓ1 “ 1, ℓ2 “ 0, ℓ3 “ 1, ℓ4 “ 0 and ℓ5 “ 0 (for the same ζ as in Example 3.9). Then we
obtain the following element in jBi:

i1

a4

i2

a1

i3

a5

i4

a3

i5

a2

Proposition 3.14. Elements in jBi generate 1jRbpνq1i as a k-vector space.

Proof. The proof is an induction on the number of crossings. By Lemma 3.11, we can
assume that all floating dots are tight. By Eq. (6) and Eq. (7) we can bring all the dots to
the top of any diagram, at the cost of adding diagrams with fewer crossings. Moreover, all
braid isotopies hold up to adding terms with a lower amount of crossings thanks to Eq. (5)
and Eq. (8).

We claim that we can also assume that there is at most one floating dot at the immediate
right of each strand. Indeed, suppose there are two tight floating dots at the right of the
same strand. Then we can apply a braid-isotopy to bring it as most as possible to the
left, until it is possibly blocked by other tight floating dots. We depict it by the following
picture:

. . .

. . .

“

. . .

. . .

`
terms with
fewer crossings,

where the dashed strand in red represents the one we want to pull, and the boxes represent
other elements in Rbpνq. If there is no floating dot in-between, then it is zero by Eq. (9).
Otherwise, we apply Eq. (17) to jump the bottom floating dot over all the floating dots
in-between, until we have two floating dots in the same region at the top, which is zero
by Eq. (9). This proves the claim.

Finally, we observe that given a strand with a single tight floating dot, we can tighten
it by braid isotopy, until we end up with a tightened floating dot. Since by Lemma 3.12
tightened floating dots anticommute, this concludes the proof. �

3.2.4. The basis theorem.

Proposition 3.15. The action in Proposition 3.7 is faithful.

Proof. The proof is inspired by [39, Proposition 3.8] (see also [22, Theorem 2.5] for a differ-
ent approach). We claim that elements of jBi act as linearly independent endomorphisms
on Pν . The action yields morphisms

PI1i Ñ PI1j ,
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that we will consider as endomorphisms of PI .
First we extend the scalars to kpx1,i, . . . , xνi,iq in Pi for all i P I. We claim that different

choices of w P jSi and ℓi P t´1, 0u give linearly independent operators. Notice that since
i, j is fixed, w is given by choices of permutations between strands of the same label.
Since crossings between strands with different labels act as multiplication by a polynomial,
we can ignore them as being multiplication by a scalar. By [35, Corollary 3.9], we know
that different choices of permutations and tightened floating dots for strands with label
i act as linearly independent operators on Pi, hence proving our claim. Finally, taking
into account the multiplication by the polynomial given by the choice of the ai P N as in
Eq. (18) concludes the proof. �

Theorem 3.16. The k-module 1jRbpνq1i is free with basis jBi.

Proof. It follows from Proposition 3.14 and Proposition 3.15. �

From this, we also deduce the following:

Corollary 3.17. The b-KLR algebra admits a presentation given by the KLR-generators
and tight floating dots, subjected to the KLR-relations Eq. (5–8) together with

j i

i

j

`

j i

i

j

“ 0,

i
i

i “ 0,

for all i, j P Ir.

4. Dg-enhancement

We fix a subset If Ă I and consider the associated parabolic subalgebra Uqppq Ă Uqpgq
as defined in Section 2.2. For each j P If , we also choose a weight nj P N, and write
N :“ tnjujPIf .

Definition 4.1. The p-KLR algebra Rppmq is given by forgetting the λj-degree for each
j P If in Rbpmq and modding out by

j

j i1

. . .

im´1

“ 0,

for all j P If . The N-cyclotomic quotient RN
p pmq of Rppmq is given by modding out by

j

nj

i1

. . .

im´1

“ 0,

for all j P If .
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In particular, Rgpmq is the usual KLR algebra Rpmq (see Definition 3.1). Its N -
cyclotomic quotient RN

g pmq is also the usual cyclotomic quotient of the KLR algebra.
Taking If “ H gives p “ b and we recover Definition 3.3.

We equip Rbpmq with a homological Z-grading, denoted h, by setting

degh

¨
˝

i j

˛
‚:“ 0, degh

¨
˝

i

˛
‚:“ 0, degh

˜
a

i
K

¸
“ 1,

for all i, j P I. Then, we equip Rbpmq with a differential dN by setting

dN

¨
˝

i j

˛
‚:“ dN

¨
˝

i

˛
‚:“ 0,

and

dN

¨
˚̊
˚̋

j

j i1

. . .

im´1

˛
‹‹‹‚:“

$
’’’&
’’’%

0, if j R If ,

p´1qnj

j

nj

i1

. . .

im´1

, if j P If .

We extend the definition of dN to the whole algebra using the graded Leibniz rule dNpxyq “
dNpxqy` p´1qdeghpxqxdNpyq and Lemma 3.11. Checking that dN is well-defined is straight-
forward using Corollary 3.17. From this, we derive that for j P Ir we have

dN

˜
a

j
K

¸
“ p´1qnj´kj`1`a

´α_
j pKzjqÿ

r“0

hnj`a´kj`1`rpxkj ,jqε
j
rpxKq,

where xℓ,i is a dot on the ℓth strand with label i, hn is the nth complete homogeneous
polynomial, and εjrpxKq is defined in Eq. (13).

Definition 4.2. We refer to the dg-algebra pRbpmq, dNq as the dg-enhanced KLR algebra.

Proposition 4.3. If nj ´ νj ´ α_
j pνzjq ă 0, then pRbpνq, dNq is acyclic.

Proof. Taking a :“ ´pnj ´ νj ´α_
j pνzjq ` 1q and considering the floating dot placed on the

far right with subscript j and superscript a yields

dN

˜
a

j
ν

¸
“ p´1qα

_
j pνzjq.

Thus, HpRbpνq, dNq – 0. �

Our goal for the rest of the section will be to prove the following:

Theorem 4.4. The dg-algebra pRbpmq, dNq is formal with homology

HpRbpmq, dNq – RN
p pmq.
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4.1. Proof of Theorem 4.4. Denote 1pm,iq :“
ř

jPIm 1ji, or diagrammatically

1pm,iq :“
ÿ

pj1,...,jmqPIm

j1 jm

¨ ¨ ¨

i

.

It is an idempotent of Rbpm ` 1q. We also define 1pν,iq :“
ř

jPSeqpνq 1ji for ν P X`. The

algebra Rbpmq acts on 1pm,iqRbpm ` 1q by first adding a vertical strand labeled i at the
right of D P Rbpmq and then multiplying on the left in Rbpm ` 1q.

We now introduce some other diagrammatic notations as in [35, §3.1]. We draw Rbpmq
(viewed as Rbpmq-Rbpmq-bimodule) as a box labeled by m

Rbpmq “
. . .

. . .
m

and bm :“ bRbpmq becomes stacking boxes on top of each other. Moreover, when Rbpm`1q
is viewed as a leftRbpmq-module, as a rightRbpmq-module or as anRbpmq-Rbpmq-bimodule,
we draw respectively

. . .

m` 1 . . .
m` 1

. . .

. . .

m` 1

Lemma 4.5. As a left Rbpmq-module, 1pm,iqRbpm` 1q is free with decomposition

m`1à

a“1

à

ℓě0

`
Rbpmq1pm,iqτm ¨ ¨ ¨ τax

ℓ
a ‘ Rbpmq1pm,iqτm ¨ ¨ ¨ τaθ

ℓ
a

˘
,

where θℓa :“ τa´1 ¨ ¨ ¨ τ1ωx
ℓ
1τ1 ¨ ¨ ¨ τa´1.

We draw this as

i. . .

m` 1
–

m`1à

a“1

à

ℓě0

¨
˚̊
˚̊
˚̋

. . .

. . .
m

ℓ

i

a

‘

. . .

. . .
m

ℓ

i

a

˛
‹‹‹‹‹‚

Proof. By Theorem 3.16 we obtain

i. . .

m` 1
–

m`1à

a“1

à

ℓě0

¨
˚̊
˚̊
˚̋

. . .

. . .
m ℓ

i

a

‘

. . .

. . .
m ℓ

i

a

˛
‹‹‹‹‹‚

We then apply Eq. (6) and Eq. (7) to bring all the dots to the desired position. It is a
triangular change of basis, concluding the proof. �
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From now on, we will draw boxes with label ‘m, dN ’ to denote the dg-algebra pRbpmq, dNq.
Similarly, a box with label Hpmq denotes its homology HpRbpmq, dNq. Then, the decom-
position in Lemma 4.5 lifts directly to a direct sum decomposition of dg-modules whenever
i R If . Otherwise, for i P If , it lifts to the mapping cone

i. . .

m` 1, dN
(19)

– Cone

¨
˚̊
˚̊
˚̋
m`1à

a“1

à

ℓě0

. . .

. . .
m, dN

ℓ

i

a

d̄NÝÑ
m`1à

a“1

à

ℓě0

. . .

. . .
m, dN

ℓ

i

a

˛
‹‹‹‹‹‚

(20)

where the map d̄N is induced by the differential of pRbpm` 1q, dNq.
We will prove Theorem 4.4 using induction on the number of strands m. Therefore, we

can assume pRbpmq, dNq to be formal.
Following [20], recall that for a dg-algebra pA, dAq, we say that a dg-module is a relatively

projective module if it is a direct summand of a free module in pA, dAq -mod. Moreover,
an pA, dAq-module Y satisfies property (P) if there is an exhaustive filtration of pA, dAq-
modules

0 “ F0 Ă F1 Ă F2 Ă ¨ ¨ ¨ Ă Fr Ă Fr`1 Ă ¨ ¨ ¨ Ă Y,

such that each Fr`1{Fr is isomorphic in pA, dAq -mod to a relatively projective module.
An pA, dAq-direct summand of a property (P) module is called cofibrant. Also recall the
following result of homological algebra:

Lemma 4.6. Let pA, dAq be a dg-algebra, pM, dMq be a right pA, dAq-module, and pN, dNq
a left one. If pM, dMq is formal and pN, dNq is cofibrant, then we have

H
`
pM, dMq bpA,dAq pN, dNq

˘
– H

`
HpM, dMq bpA,dAq pN, dNq

˘
.

Proof. Tensoring with a cofibrant dg-module preserves quasi-isomorphisms. �

Therefore we obtain an exact sequence

m`1à

a“1

à

ℓě0

. . .

. . .
Hpmq

ℓ

i

a

d̄NÝÑ
m`1à

a“1

à

ℓě0

. . .

. . .
Hpmq

ℓ

i

a

ÝÑ
i. . .

Hpm`1q
Ñ 0,(21)

thanks to Lemma 4.6 and Eq. (19).

Proposition 4.7. The exact sequence Eq. (21) is a short exact sequence, with d̄N being
injective.
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Theorem 4.4 above is a direct consequence of Proposition 4.7. Therefore, we now focus
on proving this proposition. This is in fact similar to Kang–Kashiwara’s [19, Eq. (4.13)],
with basically only a change of basis, and thus we will follow the same ideas. We introduce
the equivalent of ‘ga’ from the reference and draw it as an undercrossing :

i j

:“

$
’’’’’’&
’’’’’’%

i j

if i ‰ j,

ri

i i

´ ri

i i

´

i i

2
´

i

2

i

` 2

i i

if i “ j.

In order to shorten out our diagrams, we introduce the convenient notation

i i

:“

i i

´

i i

It respects the relation

(22)

i i

“

i i

We also have that

(23)

i i

“ ri

i i

´

i i

Lemma 4.8. ([19, Lemma 4.12]) Undercrossings respect the following relations:

i j

“

i j i j

“

i j

i j k

“

i j k

for all i, j, k P I.

Still as in [19], in order to construct a “nearly inverse” for d̄N , we define the map

P :
m`1à

a“1

à

ℓě0

. . .

. . .
Hpmq

ℓ

i

a

ÝÑ
m`1à

a“1

à

ℓě0

. . .

. . .
Hpmq

ℓ

i

a
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as multiplication on the left (or diagrammatically stacking above) with the element

rθm`1 :“

i

i
. . .

. . .

. . .

Lemma 4.9. The map P defined above is a map of HpRbpmq, dNq-modules.

Proof. We need to verify that rθm`1 commutes with the elements in HpRbpmq, dNq. Cross-

ings and dots slide over the upper part of the pm ` 1qth strand in rθm`1 at the cost of
adding diagrams with fewer crossings. Because there are fewer crossings, we can slide

the floating dot coming from rθm`1 to the part HpRbpmq, dNq of the diagram, which gives
zero. The crossings and dots in the remaining terms then slide over the lower part thanks

to Lemma 4.8. Tight floating dots with subscript j R If also slide over rθm`1 thanks to
Eq. (11). �

Lemma 4.10. The composition P ˝ d̄N is given on HpRbpmq, dNq bm 1pν,iqRbpm ` 1q by
multiplication by

(24) r2νii

2νi´α_
i pνqÿ

p“0

x
ni`p
m`1ε

i
ppxνq,

where εippxνq is as in Eq. (13).

Proof. The proof is similar to [19, Theorem 4.15]. We have

(25)

. . .

. . .
Hpmq

ℓ

i

P˝d̄NÞÝÝÝÝÑ

. . .

. . .
Hpmq

ℓ ` ni

i

We prove by induction on the number of strands m that

. . .

ni

” r2νii

2νi´α
_
i pνqÿ

p“0

x
ni`p
m`1ε

i
ppxνq,

where ” means equality up to adding elements killed in the quotient HpRbpmq, dNq –
RN

p pmq. If m “ 0, then it is trivial. Thus we suppose by induction that it holds for m´ 1.
We fix the label of the strands on the diagram above as ij with j “ j1 ¨ ¨ ¨ jm P Seqpνq, and
we consider the different possible cases.
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If jm ‰ i, then the result follows by applying Eq. (5) with Lemma 4.8, and using the
induction hypothesis.

If jm “ i, we first observe that

(26)

ii

“ ri

i i

Then, we need to consider jm´1. If m “ 1, we have that

ii

ni
“ ri

i

ni

i

´ ri

i

ni

i

“ ri

i

ni

i

´ ri

i

ni`1

i

` r2i

i

ni

i

´ r2i

i i

ni

Moreover, we observe that

i i

ni ” 0,

which finishes the case m “ 1. For jm´1 “ i, we have

. . .

i ii

ni

“ r2i

i ii

ni

´ ri

i ii

ni

using Eq. (26), Eq. (23) and Lemma 4.8. Using Eq. (22) followed by Lemma 4.8 and
Eq. (26) we obtain

r2i

i ii

ni

“ ri

i ii

ni

Keeping in mind Eq. (25), we have

i i i

”

i ii

P

i
Hpmq
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by Eq. (8) and Eq. (7). This means we can apply the induction hypothesis to get

ri

i ii

ni

” r3i

i ii

ni

Similarly, we have

ri

i ii

ni

“ ri

i ii

ni

“

iii

ni

” r2i

iii

ni

“ r3i

i ii

ni

Putting these two results together and using Eq. (7), we obtain

i ii

ni

. . . ” r2i

i ii

ni

. . .

which concludes this case.
For the final case jm´1 “ j ‰ i, we compute

j ii

“ ri

i j i

“ ri

iji

` r2i

ÿ

t,v

stvij

ÿ

u`ℓ“
t´1

i

u

j

v

i

ℓ

using Eq. (8). Then we obtain for the first term on the RHS of the second equality, using
the induction hypothesis together with Eq. (5)

ri

iji

“

j ii

” r2i

i j i

“ r2i

ÿ

t,v

stvij

i j

v

i

t
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On the other hand, we have for all t, v that

ÿ

u`ℓ“
t´1

i

u

j

v

i

ℓ
“

i

t

j

v

i

´

i j

v

i

t

Putting these results together with the case jm ‰ i yields

j ii

ni

” r2i

j ii

ni

which concludes the proof. �

Proof of Proposition 4.7. The polynomial Eq. (24) is monic (up to invertible scalar) with

leading terms x
ni`2νi´α_

i pνq
m`1 . Therefore, multiplication by Eq. (24) yields an injective map.

Thus, Lemma 4.10 tells us that P ˝ d̄N is injective, and so is d̄N . �

As a consequence, this also ends the proof of Theorem 4.4.

5. Categorical action

For each i P I there is a (non-unital) inclusion Rbpmq ãÑ Rbpm`1q1pm,iq, given by adding
a vertical strand with label i to the right of a diagram D P Rbpmq:

j1 j2
. . . jm

D ÞÑ

j1 j2
. . . jm

D

i

This gives rise to induction and restriction functors

Indm`i
m : Rbpmq -mod Ñ Rbpm ` 1q -mod,

Indm`i
m p´q – Rbpm` 1q1pm,iq bm ´,

Resm`i
m : Rbpm` 1q -mod Ñ Rbpmq -mod,

Resm`i
m p´q – 1pm,iqRbpm` 1q bm`1 ´.

which are adjoint.

We write

R
ξi
b pνq :“ Rbpνq b krξis –

à

ℓě0

q2ℓi Rbpνq,

with degqpξiq “ pαi|αiq. We will prove the following theorem in the next subsection:
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Theorem 5.1. There is a short exact sequence

0 Ñ q´2
i Rbpνq1pν´i,iq bm´1 1pν´i,iqRbpνq Ñ 1pν,iqRbpν ` iq1pν,iq

Ñ R
ξi
b pνq ‘ λ2i q

´2α_
i pνq

i R
ξi
b pνqr1s Ñ 0,

of Rbpνq-Rbpνq-bimodules for all i P I. Moreover, there is an isomorphism

q´pαi|αjqRbpνq1pν´i,iq bm´1 1pν1´j,jqRbpν
1q – 1pν1,jqRbpν ` iq1pν,iq,

for all i ‰ j P I and ν 1 ` j “ ν ` i.

As we will see in the proof of Theorem 5.1, we can picture these facts as a short exact
sequence of diagrams

j

i

. . .

m

. . .
m

. . .

ãÑ

i

j

m` 1

. . .

. . .

։
à

ℓě0

¨
˚̊
˚̊
˝

i

ℓ

j

m

. . .

. . .

‘

i

ℓ

j

m

. . .

. . .

˛
‹‹‹‹‚

where the cokernel vanishes whenever i ‰ j. We write π for the projection

π :

i

i

m` 1

. . .

. . .

։
à

ℓě0

i

ℓ

i

m

. . .

. . .

We write Idν :“ Rbpνq bm p´q and we define

Fi :“
à

mě0

Indm`i
m , Ei :“

à

mě0

à

|ν|“m

λ´1
i q

1`α_
i pνq

i Resm`i
m Idν`i .

These are exact functors thanks to Lemma 4.5. Define

(27) ‘rβi´α_
i

pνqsqi
Idν :“

à

ℓě0

q1`2ℓ
i

`
λ´1
i q

α_
i pνq

i Idν ‘λiq
´α_

i pνq
i Idνr1s

˘
.

It is a categorification of the fraction
λiq

´α_
i pνq

i ´λ´1
i q

α_
i pνq

i

qi´q
´1
i

. We obtain:

Corollary 5.2. There is a natural short exact sequence

0 Ñ FiEi Idν Ñ EiFi Idν Ñ ‘rβi´α_
i

pνqsqi
Idν Ñ 0,

for all i P I, and there is a natural isomorphism

FiEj – EjFi,

for all i ‰ j P I.
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Proposition 5.3. For each i, j P I there is a natural isomorphism

tpdij`1q{2uà

a“0

„
dij ` 1
2a



qi

F
2a
i FjF

dij`1´2a
i –

tdij{2uà

a“0

„
dij ` 1
2a` 1



qi

F
2a`1
i FjF

dij´2a
i ,

and in particular for pαi|αjq “ 0 we have FiFj1ν – FjFi1ν . By adjunction, the same
isomorphism exists for the Ei,Ej.

Proof. Similarly as in the case of the usual KLR algebras, it follows from Eq. (7) and Eq. (8)
(the proof of [24, Proposition 6] can be applied directly). �

5.1. Proof of Theorem 5.1. By symmetry along the horizontal axis, we obtain a decom-
position of Rbpm`1q as a right Rbpmq-module similar to the one of Lemma 4.5. Note that
the left and right decompositions are not compatible, and therefore we do not have a de-
composition as a Rbpmq-Rbpmq-bimodule. However, the surjection Rbpm` 1q ։ q2ℓRbpmq
that projects on the summand Rbpmqxℓm`1, given by taking a “ m` 1 in Lemma 4.5, is a
(left-invertible) map of bimodules.

We define the map

πℓL : 1pν,iqRbpm ` 1q1pν,iq ։ λ2i q
2ℓ´2α_

i pνq
i Rbpνqr1s,

as the projection map on the summand Rbpmqθℓn`1 in the left decomposition of Rbpm` 1q
as Rbpmq-module in Lemma 4.5. Similarly, let

πℓR : 1pν,iqRbpm ` 1q1pν,iq ։ λ2i q
2ℓ´2α_

i pνq
i Rbpνqr1s,

be the projection map on θℓn`1Rbpmq in the right decomposition.

Lemma 5.4. We have

πℓLpyq “ p´1qdeghpyqπℓRpyq

for all y P Rbpm` 1q.

Proof. We can suppose y “ θℓm`1y
1 with y1 P Rbpmq. We want to prove that y “

p´1qdeghpyqy1θℓm`1 ` y0 for some y0 R Rbpmqθℓm`1. For this, it is enough to show that

y1θm`1zy2 “ p´1qdeghpzqy1zθn`1y2 ` z0 where y1, y2 P Rbpmq, z0 R Rbpmqθℓm`1 and z is any
generator of Rbpmq (i.e. crossing, dot or tight floating dot).
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If z “ xa and is on a strand labeled j ‰ i, then it slides freely over θm`1 thanks to
Eq. (6). If the strand is labeled i, then we compute

i

ℓ

i

(7)
“

i

ℓ

i

` ri

i

ℓ

i

´ r´1
i

ℓ

ii

(8)
“

i

ℓ

i

` ri

i

ℓ

i

´ r´1
i

ℓ

ii

` R,

where the double strands represent multiple parallel strands (the number depending on m
and a), and R is a sum of terms of the following form:

ℓ

and its mirror along the horizontal axis. Note that it is implicitly assumed that each of
these diagrams have the element y1 at the top and y2 at the bottom. Using Lemma 4.5,
we can rewrite the composition of the last three terms in the equation above with y2 as
elements in ‘n

a“1 ‘pě0 Rbpm´ 1qτmτm´1 ¨ ¨ ¨ τax
p
a Ć Rbpmqθℓm`1. Hence they form the term

z0.
If z “ τi is a crossing, then we obtain the desired property by Eq. (8), and applying a

similar reasoning as above.
Finally if z “ ω and is at right of a strand labeled j ‰ i, it follows directly from Eq. (17).

Otherwise, if the strand is labeled i, we compute

i i

ℓ
p9,7q
“

i i

ℓ

(17)
“ ´

i i

ℓ

“ ´

i i

ℓ ` r´1
i

ÿ

r`s“
ℓ´1 i

r

i

s

Then for all r, s ě 0 we compute using Eq. (7) again

i

r

i

s
“

i

r

i

s
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Looking at these elements in the global picture yields

i

r

i

s

“

i

s

i

r

` R

which is an element not contained in Rbpmqθℓn`1 for the same reasons as before. We see
that together they form the element z0, concluding the proof. �

We now have all the ingredients we need to prove Theorem 5.1.

Proof of Theorem 5.1. We first construct an injective map

(28) uij : q
´pαi|αjqRbpνq1pm´1,iq bm´1 1pm1,jqRbpνq ãÑ 1pν,jqRbpm` 1q1pν,iq

of Rbpmq-Rbpmq-bimodules, by setting (as in [19, Proposition 3.3])

uijpx bm´1 yq :“ xτmy.

In terms of diagrams, it consists of adding a crossing at the right

j

i

. . .

m

. . .

m

. . .

uij
ÞÝÝÝÑ

j

i

. . .

m

. . .

m

. . .

Then, we construct a surjective map

1pν,iqRbpm` 1q1pν,iq ։ R
ξi
b pνq ‘ λ2i q

´2α_
i pνq

i R
ξi
b pνqr1s,

by projecting onto the direct summands
À

ℓě0 x
ℓ
m`1Rbpmq ‘ θℓm`1Rbpmq of the decompo-

sition of Rbpm` 1q as right Rbpmq-module. By Lemma 5.4 we know that this is a map of
Rbpmq-Rbpmq-bimodules. Finally, exactness follows directly from Lemma 4.5, since

Rbpνq1pm´1,iq bm´1 1pm1,jqRbpνq

– Rbpνq1pm´1,iq bm´1

` mà

a“1

à

ℓě0

pRbpm ´ 1q1pm,iqτm´1 ¨ ¨ ¨ τax
ℓ
a1j

‘ Rbpm ´ 1q1pm,iqτm´1 ¨ ¨ ¨ τaθ
ℓ
a1jq

˘
,

and so

uijpRbpνq1pm´1,iq bm´1 1pm1,jqRbpνqq

–
mà

a“1

à

ℓě0

pRbpm´ 1q1pm,iqτmτm´1 ¨ ¨ ¨ τax
ℓ
a1j

‘ Rbpm´ 1q1pm,iqτmτm´1 ¨ ¨ ¨ τaθ
ℓ
a1jq.
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We remark that whenever i ‰ j, we have
à

ℓě0

1pν,jqx
ℓ
m`1Rbpmq1pν,iq ‘ 1pν,jqRbpmqθℓm`11pν,iq “ 0,

and thus uij is an isomorphism, concluding the proof. �

5.2. Long exact sequence. We want to lift Theorem 5.1 to the dg-world of pRbpmq, dNq,
and study the long exact sequence that it induces. Therefore we define

yN :
à

ℓě0

i

ℓ m

. . .

. . .

Ñ
à

ℓě0

i

ℓm

. . .

. . .

as the Rbpmq-Rbpmq-bimodule map given by

yN

¨
˚̊
˚̊
˚̋

i

a . . .

. . .

. . .

˛
‹‹‹‹‹‚
:“ π

¨
˚̊
˚̊
˚̋

i

ni ` a . . .

. . .

. . .

˛
‹‹‹‹‹‚

P
à

ℓě0

i

ℓm

. . .

. . .

whenever i P If , and yN “ 0 for i R If . Then we define
`
R
ξi
b pνq‘λ2i q

´2α_
i pνq

i R
ξi
b pνqr1s, dN

˘

:“ Cone
´

pλ2i q
´2α_

i pνq
i R

ξi
b pνqr1s, dNq

ynÝÑ pRξi
b pνq, dNq

¯
,

and

pRbpνq1pm´1,iq bm´1 1pm´1,iqRbpνq, dNq

:“ pRbpνq1pm´1,iq, dNq bpRbpm´1q,dN q p1pm´1,iqRbpνq, dNq.

Proposition 5.5. There is a short exact sequence of dg-bimodules

0 Ñ q´2
i pRbpνq1pν´i,iq bm´1 1pν´i,iqRbpνq, dNq Ñ p1pν,iqRbpν ` iq1pν,iq, dNq

Ñ
`
R
ξi
b pνq ‘ λ2i q

´2α_
i pνq

i R
ξi
b pνqr1s, dN

˘
Ñ 0

for all i P I. Moreover, there is an isomorphism

q´pαi|αjqpRbpνq1pν´i,iq bm´1 1pν1´j,jqRbpν
1q, dNq – p1pν1,jqRbpν ` iq1pν,iq, dNq

for all i ‰ j P I and ν ` i “ ν 1 ` j.

Proof. It is a straightforward consequence of Theorem 5.1. �

In order to understand the consequences of this short exact sequence in homology, we
need to compute the homology

H
`
R
ξi
b pνq ‘ λ2i q

´2α_
i pνq

i R
ξi
b pνqr1s, dN

˘
,
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for all i P If .
Therefore, we want to compute the projection of the element

π̄

¨
˚̊
˚̊
˚̋

i

p . . .

. . .

. . .

˛
‹‹‹‹‹‚

P
à

ℓě0

i

ℓHpmq

. . .

. . .

for all p ě ni. Note that we project on the homology of pRbpmq, dNq. This will ease some
of the computations we need to do. We write π̄ when we take the composite of π with the
projection on the homology of pRbpmq, dNq. More precisely, π̄ is given by

π̄ :“ 1 b π :

i

i

Hpmq

m` 1

. . .

. . .

. . .

։
à

ℓě0

i

ℓ

i

Hpmq

m

. . .

. . .

. . .

Similarly, we write ȳN .

Lemma 5.6. If p ě 2νi, then

π

¨
˚̊
˚̊
˝

i

p . . .

. . .

. . .

ν

˛
‹‹‹‹‚

” ζ

i

p´ α_
i pνq. . . `

p´α_
i pνq´1à

ℓ“0
i

ℓm

. . .

. . .

for some invertible element ζ P kˆ. If p ă 2νi, then

π

¨
˚̊
˚̊
˝

i

p . . .

. . .

. . .

ν

˛
‹‹‹‹‚

P
p´α_

i pνqà

ℓ“0
i

ℓm

. . .

. . .

Proof. The proof is an induction on m. If m “ 0, then it is trivial. Suppose the statement
holds for m ´ 1. We fix the labels of the strands as the bottom as j “ j1 ¨ ¨ ¨ jm P Seqpνq.
If j1 “ i, then we compute

i i

p . . .

. . .

. . .

(7)
“ ri

ÿ

r`s
“p´1

i

r

i

s
. . .

. . .

. . .

´ r2i

ÿ

r`s
“p´2

pr ` 1q

i

r

i

s . . .

. . .

. . .
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Then, using Eq. (8) we have

ii

. . .

. . .

. . .

“

i i

. . .

. . .

. . .

`
ÿ

jk‰i

stvijk

ÿ

t,v

ÿ

r`s“
t´1

i

r
v

jk i

s

so that, since s ă dijk , we obtain by the induction hypothesis

π

¨
˚̊
˚̊
˚̋

ii

. . .

. . .

. . .

˛
‹‹‹‹‹‚

P
p´α_

i pνq´1à

ℓ“0

i
i

ℓm

. . .

. . .

Moreover, still by the induction hypothesis, we have

ÿ

r`s
“p´3

pr ` 2q π

¨
˚̊
˚̊
˝

i

r`1

i

s . . .

. . .

. . .

˛
‹‹‹‹‚

P
p´α_

i pνq´1à

ℓ“0

i
i

ℓm

. . .

. . .

Finally, if p ě 2νi, by the induction hypothesis we get for s “ p ´ 2,

π

¨
˚̊
˚̊
˝
i i

s . . .

. . .

. . .

˛
‹‹‹‹‚

” ζ 1

i
i

s´ α_
i pν ´ iq. . . `

s´α_
i pν´iq´1à

ℓ“0

i
i

ℓm

. . .

. . .

which concludes the case by observing that s´α_
i pν´ iq “ p´α_

i pνq, and taking ζ “ r2i ζ
1.

If p ă 2νi, the claim is immediate by the induction hypothesis.
For the case j1 “ j ‰ i, we use Eq. (5) and then the induction hypothesis to get

π

¨
˚̊
˚̊
˚̋

j i

p . . .

. . .

. . .

˛
‹‹‹‹‹‚

“
ÿ

t,v

stvij π

¨
˚̊
˚̊
˚̋

j

v

i

t`p . . .

. . .

. . .

˛
‹‹‹‹‹‚

” tij

j i

dij`p . . .

. . .

. . .

`
p´α_

i pνq´1à

ℓ“0

j
i

ℓm

. . .

. . .
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where we recall that s
dij0
ij “ tij . We conclude by applying the induction hypothesis, ob-

serving that dij ` p ´ α_
i pν ´ jq “ p ´ α_

i pνq. �

Consider also the following result, which is akin to [19, Lemma 5.4].

Lemma 5.7. We have for k ă k1 and t “ k1 ´ k,

ȳN

¨
˚̊
˚̊
˚̋

i

k1 . . .

. . .

. . .

˛
‹‹‹‹‹‚

”

i
i

t

ȳN pξki q

. . .

. . .

`
t´1ÿ

ℓ“0

i
i

ℓHpmq

. . .

. . .

where

i
i

ȳN pξki q

. . .

. . .

“ ȳN

¨
˚̊
˚̊
˚̋

i

k . . .

. . .

. . .

˛
‹‹‹‹‹‚

Proof. First we observe that

i

ni`k
1 . . .

. . .

. . .

“

i

ni`k

t

. . .

. . .

. . .

P

i

i
Hpmq

m` 1

. . .

. . .

. . .

using Eq. (7) and Eq. (6), and the fact that ni dots on the left strand is annihilated in
HpRbpmq, dNq.

Then, using Lemma 4.5 we obtain

(29)

i

ni`k . . .

. . .

. . .

“

i
i

ψk

ϕk

. . .

. . .

. . .

`

i
i

ȳN pξki q

. . .

. . .

for some ϕk, ψk P Rbpmq. We conclude by observing that

(30)

i

t

i

ϕk

ψk

. . .

. . .

. . .

“

i

t

i
ϕk

ψk
. . .

. . .

. . .

´ ri
ÿ

r`s
“t´1

i

r

i

s

ϕk

ψk
. . .

. . .

. . .

thanks to Eq. (7). �
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Proposition 5.8. Putting ρi :“ ni ´ α_
i pνq, we have

ȳN

¨
˚̊
˚̊
˚̋

i

k . . .

. . .

. . .

ν

˛
‹‹‹‹‹‚

” ζ

i
i

k`ρi. . . `
k`ρi´1à

ℓ“0

i
i

ℓHpmq

. . .

. . .

which is 0 whenever k ` ρi ă 0, and where ζ P kˆ.

Proof. If ni ě 2νi, then the result follows from Lemma 5.6. Otherwise, we take k1 “ 2νi´ni
and the result follows from Lemma 5.6 for k ě k1. Suppose k ă k1 and put t “ k1 ´ k.
Then, by Lemma 5.7 we obtain

ȳN

¨
˚̊
˚̊
˚̋

i

k1 . . .

. . .

. . .

˛
‹‹‹‹‹‚

”

i
i

t

ȳNpξki q

. . .

. . .

`
t´1ÿ

ℓ“0

i
i

ℓHpmq

. . .

. . .

Therefore, we have

i
i

t

ȳN pξki q

. . .

. . .

” ζ

i
i

k1`ρi. . . `
maxpk1`ρi,tq´1à

ℓ“0

i
i

ℓHpmq

. . .

. . .

From this, we deduce

i
i

ȳN pξki q

. . .

. . .

” ζ

i
i

k`ρi. . . `
k`ρi´1à

ℓ“0

i
i

ℓHpmq

. . .

. . .

which concludes the proof. �

We now have all the tools we need to compute the homology of the cokernel of the short
exact sequence of Proposition 5.5.

Proposition 5.9. There is an isomorphism of RN
p pνq-RN

p pνq-bimodules

H
`
R
ξi
b pνq ‘ λ2i q

´2α_
i pνq

i R
ξi
b pνqr1s, dN

˘

–

#Àρi´1
ℓ“0 q2ℓi R

N
p pνq, if ρi ě 0,

λ2i q
´2α_

i pνq
i

À´ρi´1
ℓ“0 q2ℓi R

N
p pνqr1s, if ρi ď 0,

where ρi “ ni ´ α_
i pνq.
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Proof. First suppose ρi ě 0. Then, Proposition 5.8 tells us that ȳNpξki q is a monic poly-

nomial (up to invertible scalar) with leading terms ξk`ρi
i . This gives us the first case. If

ρi ď 0, then we have ȳNpξki q “ 0 for k ă ´ρi. Moreover, ζ´1ȳNpξ´ρi
i q “ 1, and in general

ȳNpξki q is a monic polynomial with leading term ξ
k`ρi
i for k ą ´ρi. This concludes the

proof. �

5.3. Strongly projective dg-modules. The following notions were originally introduced
by Moore [31]. We use the presentation given in [41], which is best suited for our notations.

Definition 5.10 ([41, Definition 8.5]). Let pR, 0q be a ring R viewed as a dg-Z-algebra
concentrated in degree zero. An pR, 0q-module pQ, dQq is strongly projective if HpQ, dQq
and im dQ are both projective R-modules.

Lemma 5.11 ([44, Theorem 9.3.2]). Let pP, dP q be a strongly projective right pR, 0q-module
and pN, dNq any left pR, 0q-module, then

H
`
pP, dP q bpR,0q pN, dNq

˘
– HpP, dP q bR HpN, dNq.

Definition 5.12 ([41, Definition 8.17]). Let pA, dAq be a dg-R-algebra. A left (resp. right)
pA, dAq-module pP, dP q is strongly projective if it is a dg-direct summand of pA, dAq bpR,0q

pQ, dQq (resp. pQ, dQq bpR,0q pA, dAq) for some strongly projective pR, 0q-module pQ, dQq.

Proposition 5.13 ([41, Lemma 8.23]). If pP, dP q is a strongly projective right pA, dAq-
module and pN, dNq is any left pA, dAq-module, then

H
`
pP, dP q bpA,dAq pN, dNq

˘
– HpP, dP q bHpA,dAq HpN, dNq.

Note that if pP, dP q is a strongly projective pA, dAq-module, then HpP, dP q is a projective
HpA, dAq-module. Indeed, we can assume pP, dP q “ pA, dAq bpR,0q pQ, dQq, and we have

HpP, dP q – HpA, dAq bR HpQ, dQq.

Since HpQ, dQq is a projective R-module, it is a direct summand of a free R-module F .
ThereforeHpP, dP q is a direct summand ofHpA, dAqbRF , which is a freeHpA, dAq-module.

Remark 5.14. This result does not hold in general. As a counterexample we can take
pA, dq “ pQrxs, 0q and consider the dg-module pX, dXq “ ConepQrxs

x
ÝÑ Qrxsq. In this case

we have that HpX, dXq – Q but HppX, dXq bpA,dq pX, dXqq – Q ‘ Qr1s.

5.3.1. Strong projectivity of Rbpm` 1q. Our next goal is to show the following:

Proposition 5.15. The pRbpmq, dNq-module p1pm,iqRbpm ` 1q, dNq is strongly projective.

It is obvious for i R If by Lemma 4.5, and thus we can assume i P If . We first construct
the mapping cone

pQ,dQq :“

Cone
`m`1à

a“1

à

ℓě0

Rgpmq1pν,iqτm ¨ ¨ ¨ τaθ
ℓ
a

dQ
ÝÑ

m`1à

a“1

à

ℓě0

Rgpmq1pν,iqτm ¨ ¨ ¨ τax
ℓ
a

˘
,
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where we think of τm ¨ ¨ ¨ τaθ
ℓ
a as a formal symbol that represents a degree shift corresponding

to the degree of the element 1pν,iqτm ¨ ¨ ¨ τaθ
ℓ
a in Rbpm ` 1q. The map dQ is given by first

embedding Rgpmq into Rbpm` 1q through the diagrams

Rgpmq1pν,iqτm ¨ ¨ ¨ τaθ
ℓ
a ãÑ

. . .

. . .
m

ℓ

i

a

then applying dN of pRbpm`1q, dNq, then decomposing the image in the left-decompositionÀm`1
a“1

À
ℓě0Rbpmq1pm,iqτm ¨ ¨ ¨ τax

ℓ
a, and finally projecting unto the part in homogical degree

zero of Rbpmq, which is trivially isomorphic to Rgpmq. Moreover, pRbpmq, dNq is a (right)
module over pRg, 0q which acts by gluing KLR diagrams on the bottom. Then, we have,
as pRbpmq, dNq-modules

pRbpm ` 1q, dNq – pRbpmq, dNq bpRgpmq,0q pQ, dQq.

Therefore, we want to show that pQ, dQq is strongly projective as pRgpmq, 0q-module. We
write

Q1rξis :“
m`1à

a“1

à

ℓě0

Rgpmq1pν,iqτm ¨ ¨ ¨ τaθ
ℓ
a,

Q0rξis :“
m`1à

a“1

à

ℓě0

Rgpmq1pν,iqτm ¨ ¨ ¨ τax
ℓ
a,

where we identify ξi with xa in Q0, and ξ
ℓ
i with x

ℓ
1 in θℓa. Note that dQ is not krξis-linear.

Lemma 5.16. The map
dQ : Q1rξis Ñ Q0rξis

defined above is injective.

Proof. Recall the map P of Lemma 4.9 given by multiplication by rθm`1. Since floating

dots are also annihilated in Rgpmq, multiplication by rθm`1 also defines a map

P 1 : Q0rξis Ñ Q1rξis.(31)

We reconsider the proof of Lemma 4.10 to show that P 1 ˝dQ is injective. First, we introduce

an order on the summands of Q1rξis “
Àm`1

a“1

À
ℓě0Rgpmq1pν,iqτm ¨ ¨ ¨ τaθ

ℓ
a by declaring that

Rgpmq1pν,iqτm ¨ ¨ ¨ τaθ
ℓ
a ă Rgpmq1pν,iqτm ¨ ¨ ¨ τaθ

ℓ1

a ,

Rgpmq1pν,iqτm ¨ ¨ ¨ τaθ
ℓ
a ă Rgpmq1pν,iqτm ¨ ¨ ¨ τa1θℓ

2

a1 ,

for all a ą a1, ℓ ă ℓ1, and for all ℓ2. In other words, if there are more crossings under
the floating dot, then the term is smaller. If there is the same amount of crossings, then
we consider the amount of dots at the left of the floating dot, and lesser dots meaning a
smaller term.
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We claim that if Z P Rgpmq1pν,iqτm ¨ ¨ ¨ τaθ
ℓ
a then

P 1 ˝ dQpZq “ r2νii

2νi´α_
i pνqÿ

p“0

Zx
ni`p
m`1ε

i
ppxνq ` H,

where H ă Zx
ℓ`ni`2νi´α_

i pνq
m`1 . This implies that P 1 ˝dQ is in echelon form (with pivot being

invertible scalars), and thus is injective. By consequence, so is dQ.
In order to prove our claim, we need to tweak the proof of Lemma 4.10. We need to

keep track of the terms that are annihilated when working over the cyclotomic quotient,
and show these appear as lower terms in the order defined above. The case jm ‰ i remains
the same. The case jm “ i and m “ 1 becomes

ii

p

“ r2i

i

p

i

´ r2i

i

p

i

` ri

i

p

i

´ ri

i

p`1

i

where p “ ni ` ℓ. The first term is the leading term. The second term possesses less dots
on the left of the floating dot, and so it is smaller. If a “ 0, then the last two terms possess
one more crossing at the bottom of the floating dot, and therefore they are smaller. If
a “ 1, then they are annihilated by Eq. (5). Finally, the two remaining cases jm´1 ‰ i and
jm´1 follow from the same arguments as in the proof of Lemma 4.10, with the lower terms
in the induction hypothesis only adding lower terms because:

ii

“

ii

by (8), and,

i i

“ 0,

by Eq. (8) and Eq. (5). This concludes the proof of the claim, and therefore of the
proposition. �

Proof of Proposition 5.15. The proof is a revisit of the proof of [19, Lemma 4.18] that
applies to our particular case.

Recall the map P 1 from Eq. (31). We know that P 1 ˝ dQ is given by multiplying by a

monic polynomial with leading term x
ni`2νi´α_

i pνq
m`1 plus some remaining map giving lower

terms. In particular, it is injective and we have a short exact sequence

0 Ñ Q1rξis
P 1˝dQ
ÝÝÝÑ Q1rξis Ñ cokpP 1 ˝ dQq Ñ 0.
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Moreover, since P 1 ˝dQ is in echelon form, it means that cokpP 1 ˝dQq is a projective Rgpmq-
module. Thus, the sequence splits as Rgpmq-modules with splitting map σ : Q1rξis Ñ
Q1rξis, and we get σ ˝ P 1 ˝ dQ “ IdQ1rξis. Then, the short exact sequence

0 Q1rξis Q0rξis HpQ, dQq, 0,
dQ

σ˝P 1

obtained thanks to Lemma 5.16 splits with splitting map given by σ ˝ P 1. Since Q0rξis is
a projective Rgpmq-module, so is HpQ, dQq. Finally, dQpQ1rξisq is also projective since dQ
is injective and Q1rξis is projective. �

5.4. Functors. We define for all i P I the functors

FNi p´q :“
à

mě0

RN
p pm ` 1q1pm,iq bRN

p pmq p´q,

ENi p´q :“
à

mě0

à

|ν|“m

λ´1
i q

1`α_
i pνq

i 1pν,iqR
N
p pm` 1q bRN

p pm`1q p´q,

where we interpret λi “ qni whenever i P If . Thanks to Proposition 5.15, these are exact.
For n P N, we write

‘rnsqi
Idν :“

n´1à

ℓ“0

q1´n`2ℓ
i Idν ,

for the finite direct sum that categorifies rnsqi.

Theorem 5.17. For i R If there is a natural short exact sequence

(32) 0 Ñ F
N
i E

N
i Idν Ñ E

N
i F

N
i Idν Ñ ‘rβi´α_

i pνqsqi
Idν Ñ 0,

and for i P If there are natural isomorphisms

(33)
ENi F

N
i Idν – FNi E

N
i Idν ‘rni´α_

i pνqsqi
Idν , if ni ´ α_

i pνq ě 0,

FNi E
N
i Idν – ENi F

N
i Idν ‘rα_

i pνq´nisqi
Idν , if ni ´ α_

i pνq ď 0.

Moreover, there is a natural isomorphism

(34) FNi E
N
j – ENj F

N
i ,

for i ‰ j P I.

Proof. The short exact sequence Eq. (32) and the isomorphism Eq. (34) are immediate
consequences of Proposition 5.5 and Proposition 5.15. For the isomorphisms Eq. (33),
Proposition 5.5 and Proposition 5.15 give a long exact sequence ofRN

p pνq-RN
p pνq-bimodules.

By Proposition 5.9 it truncates to a short exact sequence

0 Ñ FNi E
N
i Idν Ñ ENi F

N
i Idν Ñ ‘rρis Idν Ñ 0,

if ρi “ ni ´ α_
i pνq ě 0, and a short exact sequence

0 Ñ ‘r´ρis Idν Ñ FNi E
N
i Idν Ñ ENi F

N
i Idν Ñ 0,
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if ρi “ ni ´ α_
i pνq ď 0. In the first case, we can identify

‘rρis Idν – q
1´ρi
i

ρi´1à

ℓ“0

i
i

ℓν

. . .

. . .

and the map ENi F
N
i Idν Ñ ‘rρisqi

Idν is induced by the projection π. Thus the sequence

splits with the splitting map ‘rρisqi
Idν Ñ ENi F

N
i Idν , given by the sum of maps RN

p pνqξℓ Ñ

RN
p pν ` iq that add a vertical strand labeled i carrying ℓ dots at the right of a diagram in

RN
p pνq. In the second case, we also identify

‘r´ρisqi
Idν – q

1`ρi
i

´ρi´1à

ℓ“0

i
i

ℓν

. . .

. . .

Moreover the map ‘r´ρis Idν Ñ FNi E
N
i Idν is induced by the connecting homorphism δ.

Using the notations of Eq. (29) it takes the form

δ

¨
˚̊
˚̊
˚̋

i
i

k. . .

˛
‹‹‹‹‹‚

“ u´1
ij

¨
˚̊
˚̊
˚̋

i

k . . .

. . .

. . .

˛
‹‹‹‹‹‚

“

i

ϕk

ψk
. . .

where uij is the monomorphism defined in Eq. (28), and 0 ď k ă ´ρi. We also note
that Eq. (30) tells us that

(35)

i

ϕk`t

ψk`t

. . . “

i

t

ϕk

ψk
. . .

Moreover since ȳNpξ´ρi
i q “ ζ and ȳNpξℓi q “ 0 for ℓ ă ´ρi, we obtain by Eq. (30) again that

(36)

i

ϕk

ψk
. . .

i

“

#
´r´1

i ζ, if k “ ´ρi ´ 1,

0, if k ă ´ρi ´ 1.
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As in [19, Proof of Theorem 5.2], we construct a map Φ: FNi E
N
i Idν Ñ ‘r´ρisqi

Idν induced
by the morphism of bimodules

Φ :

i

x

y

. . .

. . .

. . . ÞÑ
ÿ

r`s“
´ρi´1

i

r

i

s

x

y
. . .

. . .

. . .

for all x, y P RN
p pνq.

Then we compute

Φ ˝ δ

¨
˚̊
˚̊
˚̋

i
i

k. . .

˛
‹‹‹‹‹‚

(35)
“

ÿ

r`s“
´ρi´1

i
i

s

ϕk`r

ψk`r

. . .

. . .

. . .

(36)
“ ´r´1

i ζ

i
i

k. . . `
´ρi´1ÿ

r“´ρi´k

i
i

´ρi ´ 1 ´ r

ϕk`r

ψk`r

. . .

. . .

. . .

Therefore, Φ ˝ δ is given by a triangular matrix with invertible elements on the diagonal,
and thus is an isomorphism. In particular, δ is left invertible, concluding the proof. �

Corollary 5.18. For i P If , then 1νEi and Fi1ν are biadjoint (up to shift).

Proof. By the results in [6], we know the splitting map ENi F
N
i Idν Ñ FNi E

N
i Idν of Theo-

rem 5.17 together with the unit and counit of the adjunction Fi % Ei allow to construct a
unit and counit for the adjunction Ei % Fi. �

Proposition 5.19. For each i, j P I there is a natural isomorphism

tpdij`1q{2uà

a“0

„
dij ` 1
2a



qi

pFNi q2aFNj pFNi qdij`1´2a

–
tdij{2uà

a“0

„
dij ` 1
2a` 1



qi

pFNi q2a`1FNj pFNi qdij´2a.

By adjunction, the same isomorphism exists for the ENi ,E
N
j .

Proof. This follows from Proposition 5.3. �

In particular, there is a strong 2-action of the 2-Kac–Moody algebra of [23, 38] associated
to xEi, Fi, KiyiPIf on ‘νPX`RN

p pνq -mod through FNi ,E
N
i .
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5.5. A differential on RN
p . We fix a subset If Ă I 1

f Ă I and consider the parabolic
subalgebras Uqppq Ă Uqpp

1q Ă Uqpgq. For each j P I 1
fzIf we choose a weight n1

j P N. For
j P If we take n1

j :“ nj P N , and we write N 1 :“ tn1
jujPI 1

f
. Then, we equip the cyclotomic

p-KLR algebra RN
p pmq with a differential dNN 1 which is zero on dots and crossings and

dNN 1

¨
˚̊
˚̋

j

j i1

. . .

im´1

˛
‹‹‹‚:“

$
’’’&
’’’%

0, if j R I 1
f ,

p´1qnj

j

nj

i1

. . .

im´1

, if j P I 1
fzIf .

As before, we extend using the graded Leibniz rule, and verifying that dNN 1 is well-defined
is straightforward.

Theorem 5.20. The dg-algebra pRN
p pmq, dNN 1q is formal with homology

HpRN
p pmq, dNN 1q – RN 1

p1 pmq.

Proof. We have RN
p pmq – HpRbpmq, dNq and RN 1

p1 pmq – HpRbpmq, dN 1q by Theorem 4.4.

Moreover, dNN 1 can be lifted to Rbpmq. We split the homological grading of Rbpmq in three:
a first one that counts the amount of floating dots with subscript in If , a second one for the
floating dots with subscript in I 1

fzIf , and a third one for IzI 1
f that we ignore for the moment.

Then, we have that dNN 1 has degree p0,´1q and dN has degree p´1, 0q, and they commute
with each other. Thus we have a (bounded) double complex pRb, dN , d

N
N 1q with total com-

plex being pRb, dN 1q, since dN 1 “ dN ` dNN 1. In particular, there is a spectral sequence from
HpRN

p pmq, dNN 1q to HpRb, dN 1q – RN 1

p1 pmq. Now, Theorem 4.4 tells us that HpRb, dNq is con-
centrated in homological degree zero (for the first homological grading). Thus, the spectral
sequence converges at the second page, and in particular HpRN

p pmq, dNN 1q – RN 1

p1 pmq. �

We interpret this result as a categorical version of the fact that if there is an arrow from a
parabolic Verma module MppΛ, Nq to Mp1

pΛ1, N 1q (see Section 2.2), then there is a surjec-
tion MppΛ, Nq ։Mp1

pΛ1, N 1q. Indeed, in that case there is a surjective quasi-isomorphism

pRN
p , dN 1q

»
ÝÑ pRN 1

p1 , 0q, inducing equivalences of derived categories that commute up to
quasi-isomorphism with the categorical actions of Uqpgq.

6. The categorification theorems

Recall that the k-algebra of formal Laurent series kppx1, . . . , xnqq (as constructed in [3],
see also [32, §5]) is given by first choosing a total additive order ă on Zn. One says that
a cone C :“ tα1v1 ` ¨ ¨ ¨ ` αnvn|αi P Rě0u Ă Rn is compatible with ă whenever 0 ă vi for
all i P t1, . . . , nu. Then, we set

kppx1, . . . , xnqq :“
ď

ePZn

xekăJx1, . . . , xnK,

where kăJx1, . . . , xnK consists of formal Laurent series in kJx1, . . . , xnK such that the terms
are contained in a cone compatible with ă. We will also write k`

ăJx1, . . . , xnK for the
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elements in kăJx1, . . . , xnK with terms contained in a cone without the 0 element (i.e. series
with the degree zero term being zero). We obtain a ring by equipping kppx1, . . . , xnqq with
the usual addition and multiplication of series. Requiring that all series are contained in
cones compatible with ă ensures that the product of two elements in kppx1, . . . , xnqq is well-
defined. Indeed, under these conditions, any coefficient in the product can be determined
by summing only a finite amount of terms.

6.1. C.b.l.f. derived category. We fix an arbitrary additive total order ă on Zn. We
say that a Zn-graded k-vector space M “

À
À

gPZn
Mg is c.b.l.f. (cone bounded, locally

finite) dimensional if

‚ dimMg ă 8 for all g P Zn;
‚ there exists a cone CM Ă Rn compatible with ă and e P Zn such that Mg “ 0
whenever g ´ e R CM .

In other words, M is c.b.l.f. dimensional if and only if

gdimqM :“
ÿ

gPZn

xg dimpMgq P xekăJx1, . . . , xnK.

Let pA, dq be a Zn-graded dg-k-algebra, where A “
À

ph,gqPZˆZn Ahg, and dpAhgq Ă Ah´1
g .

Suppose that pA, dq is concentrated in non-negative homological degrees, that is Ahg “ 0

whenever h ă 0. Let DpA, dq be the derived category of pA, dq. Let DlfpA, dq be the full
triangulated subcategory of DpA, dq consisting of pA, dq-modules having homology being
c.b.l.f. dimensional for the Zn-grading. We call Dlf pA, dq the c.b.l.f. derived category of
pA, dq.

Definition 6.1 ([32]). We say that pA, dq is a positive c.b.l.f. dimensional dg-algebra if

(1) A is c.b.l.f.dimensional for the Zn-grading;
(2) A is non-negative for the homological grading;
(3) Ah0 “ 0 for h ą 0;
(4) pA, dq decomposes into a direct sum of shifted copies of relatively projective modules

Pi :“ Aei for some idempotent ei P A, such that Pi is non-negative for the Zn-
grading and A0

0Pi is semisimple.

Remark 6.2. As explained in [32, Remark 9.5], condition (3.) cannot be respected when-

ever Pi :“ Aei is acyclic. However, in this case there is a quasi-isomorphism pA, dq
»
ÝÑ

pA{AeiA, dq and we can weaken hypothesis (3.) so that it is respected only after removing
all acyclic Pi. This is the case of pRb, dNq.

6.1.1. Asymptotic Grothendieck group. As already observed in [1] (see also [34, Appendix]),
one caveat of the usual definition of the Grothendieck group is that it does not allow to
take into consideration infinite iterated extensions of objects. We need to introduce new
relations in the Grothendieck groups to handle such situations. One solution is to use
asymptotic Grothendieck groups, as introduced by the first author in [32].
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Let Cbe a triangulated subcategory of some triangulated category T. Suppose Tadmits
countable products and coproducts, and these preserve distinguished triangles. Let K∆

0 pCq
be the triangulated Grothendieck group of C.

Recall the Milnor colimit MColimrě0pfrq of a collection of arrows tXr
fr
ÝÑ Xr`1urPN in T

is the mapping cone fitting inside the following distinguished triangle
ž

rPN

Xr
1´f‚ÝÝÝÑ

ž

rPN

Xr Ñ MColimrě0pfrq Ñ

where the left arrow is given by the infinite matrix

1 ´ f‚ :“

¨
˚̊
˝

1 0 0 0 ¨ ¨ ¨
´f0 1 0 0 ¨ ¨ ¨
0 ´f1 1 0 ¨ ¨ ¨
...

. . .
. . .

. . .
. . .

˛
‹‹‚

There is a dual notion of Milnor limit. Consider a collection of arrows tXr`1
frÝÑ Xrurě0

in T. The Milnor limit is the object fitting inside the distinguished triangle

MLimrě0pfrq Ñ
ź

rě0

Xr
1´f‚ÝÝÝÑ

ź

rě0

Xr Ñ

Definition 6.3. The asymptotic triangulated Grothendieck group of CĂ T is given by

K∆
0 pCq :“ K∆

0 pCq{T pCq,

where T pCq is generated by

rY s ´ rXs “
ÿ

rě0

rErs

whenever both
À

rě0Conepfrq P C and
À

rě0Er P C, and

Y – MColim
`
X “ F0

f0ÝÑ F1
f1ÝÑ ¨ ¨ ¨

˘
,

is a Milnor colimit, or

X – MLim
`
¨ ¨ ¨

f1ÝÑ F1
f0ÝÑ F0 “ Y

˘
,

is a Milnor limit, and
rErs “ rConepfrqs P K∆

0 pCq,

for all r ě 0.

In a Zn-graded triangulated category T, we define the notion of c.b.l.f. direct sum as
follows:

‚ take a a finite collection of objects tK1, . . . , Kmu in T;
‚ consider a direct sum of the form

à

gPZn

xgpK1,g ‘ ¨ ¨ ¨ ‘ Km,gq, with Ki,g “
ki,gà

j“1

Kirhi,j,gs,

where ki,g P N and hi,j,g P Z such that:
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‚ there exists a cone C compatible with ă, and e P Zn such that for all j we have
kj,g “ 0 whenever g ´ e R C;

‚ there exists h P Z such that hi,j,g ě h for all i, j, g.

If T admits arbitrary c.b.l.f. direct sums, then K0pTq has a natural structure of
Zppx1, . . . , xnqq-module with

ÿ

gPC

agx
e`grXs :“ r

à

gPC

xg`eX‘ag s,

where X‘ag “
À|ag |

ℓ“1Xrαgs and αg “ 0 if ag ě 0 and αg “ 1 if ag ă 0.

Theorem 6.4 ([32, Theorem 9.15]). Let pA, dq be a positive c.b.l.f. dg-algebra, and let
tPjujPJ be a complete set of indecomposable cofibrant pA, dq-modules that are pairwise non-
isomorphic (even up to degree shift). Let tSjujPJ be the set of corresponding simple modules.
There is an isomorphism

K∆
0

`
D
lfpA, dq

˘
–
à

jPJ

Zppx1, . . . , xℓqqrPjs,

and K∆
0

`
D
lfpA, dq

˘
is also freely generated by the classes of trSjsujPJ .

Proposition 6.5 ([32, Proposition 9.18]). Let pA, dq and pA1, d1q be two c.b.l.f. positive
dg-algebras. Let B be a c.b.l.f. dimensional pA1, d1q-pA, dq-bimodule. The derived tensor
product functor

F : Dlf pA, dq Ñ D
lfpA1, d1q, F pXq :“ B bL

pA,dq X,

induces a continuous map

rF s : K∆
0 pDlfpA, dqq Ñ K∆

0 pDlfpA1, d1qq.

We will need the following definitions in Section 7:

Definition 6.6. Let tK1, . . . , Kmu be a finite collection of objects in C, and let tErurPN

be a family of direct sums of tK1, . . . , Kmu such that
À

rPNEr is a c.b.l.f. direct sum of
tK1, . . . , Kmu. Let tMrurPN be a collection of objects in Cwith M0 “ 0, such that they fit
in distinguished triangles

Mr
fr
ÝÑ Mr`1 Ñ Er Ñ

Then, we say that an object M P C such that M –T MColimrě0pfrq in T is a c.b.l.f.
iterated extension of tK1, . . . , Kmu.

Definition 6.7. We say that V is c.b.l.f. generated by tXjujPJ for some collection of
elements Xj P V if for any object Y in V we can take a finite set tYkukPK of retracts
Yk Ă Xjk such that Y is isomorphic to a c.b.l.f. iterated extension of tYkukPK .
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6.2. Categorification. In this section we assume that Rbpνq is a k-algebra over a field k.
We also choose an abritrary order ă for constructing Zppq,Λqq such that 0 ă q ă λi for all
formal λi “ qβi P Λ. We assume that the parabolic Verma moduleMppλ,Nq is constructed
over the ground ring R :“ QppΛ, qqq (instead of QpΛ, qq).

Every idempotent of Rbpνq is the image of an idempotent of the classical KLR algebra
Rgpνq under the obvious inclusion Rgpνq ãÑ Rbpνq. Thanks to [22, Section 2.5] we know
all the idempotents of Rgpνq. We define the element

ei,n :“ τϑnx
n´1
1 xn´2

2 ¨ ¨ ¨xn´11ii¨¨¨i P Rgpnq,

where ϑn is the longest element in Sn. Let Seqdpνq be the set of expressions i
pm1q
1 i

pm2q
2 ¨ ¨ ¨ i

pmrq
r

for different r P N and mℓ P N such that
řr
ℓ“1mℓ ¨ αiℓ “ ν. For each i P Seqdpνq we define

the idempotent

ei :“ ei1,m1
b ei2,m2

b ¨ ¨ ¨ b eir ,mr
P Rgpνq,

where xb y means we put the diagram of x at the left of the one of y. Identifying ei with
its image in Rbpνq, as in [22], we define a projective left Rbpνq-module

Pi :“ Rbpνqei,

Then, we put

xiy :“ ´
rÿ

ℓ“1

mℓpmℓ ´ 1q

2
dia .

and we define P̃i :“ q´xiyPi.

When writing . . . i . . . and . . . j . . . we mean we take two sequences i1ii2 and i1ji2
in Seqdpνq that coincide everywhere except on i and j. From the decomposition of the
nilHecke algebra [22, §2.2] we get an isomorphism of RN

p -modules

P̃...im... – ‘prmsqi !q
P̃...ipmq....

Mimicking the arguments in [22, Proposition 2.13] and [24, Proposition 6] we have the
following:

Proposition 6.8. There are isomorphisms

tpdij`1q{2uà

a“0

P̃
...ip2aqji

pdij`1´2aq
...

–
tdij{2uà

a“0

P̃
...ip2a`1qji

pdij´2aq
...

for all i ‰ j P I.

Equipping Rbpνq with dN induces a differential on P̃i, and Proposition 6.8 holds for the

dg-version pP̃i, dNq. We put

M
ppΛ, Nq :“

à

mě0

D
lfpRbpmq, dNq,

with the particular case MpΛq meaning p “ b and N “ H, and therefore dN “ 0. Note
that Dlf pRbpmq, dNq – DlfpRN

p pmq, 0q. Let QK
∆
0 p´q :“ K∆

0 p´q bZppq,Λqq Qppq,Λqq.
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Proposition 6.9. The Z1`|Λ|-graded dg-algebra pRbpmq, dNq is a positive c.b.l.f. dimen-
sional dg-algebra.

Proof. Clearly, Rbpmq is c.b.l.f. dimensional for the Z1`|Λ|-grading, and is non-negative for
the homological grading. We can also assume we have applied Remark 6.2. Recall that the
part in homological degree zero of Rbpmq is isomorphic to the usual KLR algebra Rgpmq.
As explained in [22, §3.3], for each monomial f P U´

q pgq, we have a projective Rgpmq-

module Pf (defined similarly as Pi for f “ F
pm1q
i1

¨ ¨ ¨F
pmrq
ir

). Moreover, by [22, Proposition
3.22] extended for any g, Pf is indecomposable if and only if f is a canonical basis element.
Also, the quadratic form in [29, §14.2] corresponds with the graded dimension of the graded
hom-spaces between these projective Rgpmq-modules. The same applies for the homological
degree zero part of the graded hom-spaces between our Pi’s. Then, by [29, Theorem 14.2.3],
we obtain that

gdimHOMRbpmqpPi, Pjq ´ δi,j P Z`
ăJq,ΛK,

which concludes the proof. �

Proposition 6.10. There is an isomorphism of Qppq,Λqq-modules

U´
q pgq bQpqq Qppq,Λqq – QK

∆
0 pMpΛqq,

and a Qppq,Λqq-linear surjection

U´
q pgq bQpqq Qppq,Λqq ։ QK

∆
0 pMppΛ, Nqq,

both sending F
pm1q
i1

F
pm2q
i2

¨ ¨ ¨F
pmrq
ir

to rpP̃i, dNqs for i “ i
pm1q
1 i

pm2q
2 ¨ ¨ ¨ i

pmrq
r .

Proof. Since projective modules of Rbpνq are in bijection with the ones of the classical KLR
algebra Rgpνq and respect the categorified Serre relations (see Proposition 6.8), both claims
are a direct consequence of the main results in [22, 24], together with Theorem 6.4. �

Consider the subring P pνq of Rbpνq consisting of dots on vertical strands (without float-
ing dots). It admits an action of the symmetric group permuting the strands (with labels)
and dots on them (not to be confused with the action of Sm on Pν from Section 3.2). We
write Sympνq :“ P pνqSm for the subring of invariants under this action. Clearly it lies in
the center of Rbpνq but this inclusion is strict (see [35] or [4] for a study of the center in
the case of sl2).

The supercenter of Rbpνq contains Sympνqb
Â

iPI

Ź‚xω̃0
i , . . . , ω̃

νi´1
i y where ω̃ai is a floating

dot with subscript i, superscript a and placed in the rightmost region:

ω̃ai :“ . . . a

i

We conjecture that the supercenter contains no other elements.

Conjecture 6.11. There is an isomorphism of rings

ZpRbpνqq – Sympνq b
â

iPI

Ź‚xω̃0
i , . . . , ω̃

νi´1
i y,

where ZpRbpνqq is the supercenter of Rbpνq.
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In general Rp,µpνq is not a free module over Sympνq b
Â

iPI

Ź‚xω̃0
i , . . . , ω̃

νi´1
i y, but we

have the following.

Proposition 6.12. Rbpνq is a free module over Sympνq of rank 2mpm!q2.

Proof. It follows from Theorem 3.16 and the fact P pνq is a free module of rank m! on
Sympνq. �

Since Sympνq lies in the center of Rbpνq, any simple Rbpνq-module is annihilated by
Sym`pνq, where Sym`pνq consists of the elements in Sympνq with non-zero degree. In
particular, a simple Rbpνq-module must be a finite dimensional Rbpνq{ Sym`pνqRbpνq-
module. Since Rbpνq{ Sym`pνqRbpνq has finite dimension over k, we only have finitely
many simple modules, up to shift and isomorphism. For each i P Seqdpνq such that Pi

is indecomposable, we let Si be the unique simple quotient of Pi. We put S̃i :“ q´xiySi.
If pPi, dNq is not acyclic, then it lifts automatically to a dg-version pS̃i, 0q because of
Proposition 6.9.

By Lemma 4.5 and Proposition 5.15 we know that Ei Idν and Fi Idν are exact. Moreover,
they respect the conditions of Proposition 6.5. Therefore, they induce maps

rEi Idνs : K0

`
D
lf pRbpνq, dNq

˘
Ñ K∆

0

`
D
lfpRbpν ´ iq, dNq

˘
,

rFi Idνs : K0

`
D
lf pRbpνq, dNq

˘
Ñ K∆

0

`
D
lfpRbpν ` iq, dNq

˘
.

Then, Theorem 4.4, Theorem 5.17 and Proposition 5.19 tell us that QK
∆
0 pMppΛ, Nqq is

an Uqpgq-weight module. By Proposition 6.10 we know that QK
∆
0 pMppΛ, Nqq is cyclic as

Uqpgq-module, with highest weight generator given by the class of pRbp0q, dNq – pk, 0q.
Thus QK

∆
0 pMppΛ, Nqq is a highest weight module.

As in [22], let ψ : Rbpνq Ñ Rbpνqop be the map that takes the mirror image of diagrams
along the horizontal axis. Given a left pRbpνq, dNq-moduleM , we obtain a right pRbpνq, dNq-
module Mψ with action given by mψ ¨ r :“ p´1qdeghprqdeghpmqψprq ¨ m for m P M and
r P Rbpνq. Then, we define the bifunctor

p´,´q : MppΛ, Nq ˆ M
ppΛ, Nq Ñ D

lfpk, 0q, pM,M 1q :“ Mψ bL
pRb,dN q M

1,

where bL is the derived tensor product.

Proposition 6.13. The bifunctor defined above respects:

‚ ppRbp0q, dNq, pRbp0q, dNqq – pk, 0q;
‚ pIndm`i

m M,M 1q – pM,Resm`i
m M 1q for all M,M 1 P MppΛ, Nq;

‚ p‘fM,M 1q – pM,‘fM
1q – ‘fpM,M 1q for all f P Zppq,Λqq.

Proof. Straightforward. �

Comparing Proposition 6.13 with Definition 2.5, we deduce that p´,´q is a categorifi-

cation of the Shapovalov form on K∆
0 pMppΛ, Nqq. Moreover, it turns S̃i into the dual of

P̃i for each i P Seqdpνq such that P̃i is indecomposable. Recall MppΛ, Nq is the parabolic
Verma module, and we assume Λ “ tqβi |i P Iru contains only formal weights.
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Theorem 6.14. The asymptotic Grothendieck group QK
∆
0 pMppΛ, Nqq is a Uqpgq-weight

module, with action of Ei, Fi given by rEis, rFis. Moreover, there is an isomorphism of
Uqpgq-modules

QK
∆
0 pMppΛ, Nqq – MppΛ, Nq.

Proof. We already proved the first claim above. Because of Proposition 4.3, for i P If ,
both rFis and rEis act as locally nilpotent operators. In particular, the Uqplq-submodule of

QK
∆
0 pMppΛ, Nqq given by

Uqplq bUqpgq rpRbp0q, dNqs,

is an integrable module for the Levi factor Uqplq. Since it is an integrable cyclic weight
module, it must be isomorphic to V pΛ, Nq (see [29]). Therefore, there is a surjective
Uqpgq-module morphism

γ :MppΛ, Nq ։ QK
∆
0 pMppΛ, Nqq.

Since MppΛ, Nq is irreducible and γ is non-zero, it must be an isomorphism. �

Let mr “ FivΛ,N be an induced basis element of MppΛ, Nq with i P Seqpνq. Then,
the isomorphism of Theorem 6.14 identifies mr with the class rpRbpνq, dNq1is. Similarly,
let m1

s “ FjvΛ,N for j P Seqdpνq be a canonical basis element, and let ms be its dual in

the dual canonical basis. Then, the isomorphism identifies m1
s with rpP̃j, dNqs and ms with

rpS̃j, dNqs. Moreover, computing the c.b.l.f. composition series of P̃i (see [32, §7]) or taking

a certain cofibrant replacement of S̃i (see [32, §9]) gives a categorical version of the change
of basis between canonical and dual canonical basis elements.

7. 2-Verma modules

Let k be a field of characteristic 0. Let V P dg-catk be a Z-graded pretriangulated dg-
category (see Definition A.23). Let EndHqepVq :“ RHomHqepV, Vq be the dg-category
of quasi-endofunctors on V (see Appendix A.5.1).

Remark 7.1. For example, V could be the dg-category DdgpR, dq of cofibrant dg-modules
over a dg-algebra pR, dq (see Definition A.15). Then, the subcategory of EndHqepVq con-
sisting of coproduct preserving quasi-functors would be given by the dg-enhanced derived
category of dg-bimodules DdgppR, dqop b pR, dqq (see Theorem A.21).

Let Qi :“
À

ℓě0 q
1`2ℓ
i Id. It is a categorification of qi

1´q2i
“ 1

q´1
i ´qi

. We start by introducing

a notion of dg-categorical action and dg-2-representation.

Definition 7.2. A weak dg-categorical Uqpgq-action on V is a collection of quasi-endofunctors
Fi,Ei,Kγ P Z0pEndHqepVqq for all i P I and γ P Y _ such that

‚ there are isomorphisms

K0 – Id, KγKγ1 – Kγ`γ1 ,

KγEi – qγpαiqEiKγ, KγFi – q´γpαiqFiKγ,

where q denotes the shift in the q-grading;
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‚ there is a quasi-isomorphism

(37) Cone
`
FiEj

uij
ÝÝÑ EjFi

˘ »
ÝÑ δij Cone

`
QiKi

hiÝÑ QiK
´1
i

˘
,

where Ki :“ Kα_
i
;

‚ there are isomorphisms

tpdij`1q{2uà

a“0

„
dij ` 1
2a



qi

F2a
i FjF

dij`1´2a
i –

tdij{2uà

a“0

„
dij ` 1
2a` 1



qi

F2a`1
i FjF

dij´2a
i ,

tpdij`1q{2uà

a“0

„
dij ` 1
2a



qi

E2a
i EjE

dij`1´2a
i –

tdij{2uà

a“0

„
dij ` 1
2a` 1



qi

E2a`1
i EjE

dij´2a
i ,

for all i ‰ j P I.

We say a weak dg-categorical Uqpgq-action on V is a dg-categorical action if in addition

‚ Fi is left adjoint to q
´1
i KiEi in Z

0pEndHqepVqq;
‚ there is a map of algebras

Rgpiq Ñ Z0pENDpFiqq :“
à

zPZ

Z0pHompFi, q
zFiqq,

with Fi :“ Fi1 ¨ ¨ ¨Fim , for all i P Seqpmq, inducing a surjection

Rgpiq bk Z
0pENDVpMqq ։ Z0pENDVpFiMqq,

for all M P V;
‚ V is dg-triangulated (i.e. H0pVq is idempotent complete).

Such a V carrying a dg-categorical action is called a dg-2-representation of Uqpgq.

The following notions are dg-2-categorical lifts of the notions of weight module and
integrable module.

Definition 7.3. We say that a dg-2-representation V is a weight dg-2-representation if
there is a map

λ : Y _ Ñ EndHqepVq,

where λpγq commutes with the grading shift q for all γ P Y _ and λpγq ˝ λpγ1q – λpγ ` γ1q,
such that

V–
à

yPY

Vλ,y, Kγ|Vλ,yp´q “ λpγqqγpyqp´q.

Definition 7.4. We say that a weight dg-2-representation V is i-integrable if

‚ λpα_
i q “ qni for some ni P N;

‚ there is a quasi-isomorphism

(38) Cone
`
QiKiVλ,y

hiÝÑ QiK
´1
i Vλ,y

˘ »
ÝÑ ‘rni´α_

i pyqsqi
Id,

where ‘rmsqi
Id :“ ‘r´msqi

Idr1s whenever m ă 0;
‚ Fi and Ei are locally nilpotent.
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Under some mild hypothesis, this definition recovers the notion of integrable 2-represen-
tation from [38] and [10].

Proposition 7.5. Suppose V is i-integrable for all i P I. Also suppose that there is some
M P Vλ,0 such that EiM “ 0 for all i P I and EndVpMq – pk, 0q, and H0pVq is c.b.l.f.
generated by tFiMuiPSeqpIq. Then, H0pVq carries an integrable categorical Uqpgq-action in
the sense of [38].

Proof. First, by adjunction, Eq. (37) and Eq. (38), we have

gdimqH
0pENDVpFiMqq – gdimq R

N
g piq,

for all i P SeqpIq. In particular, we have that xni

1 1i acts by 0 on H0pEndVpFiMqq for all
i P I, and x11i acts non-trivially whenever ni ą 1. Thus, there is a map

γ : RN
g piq Ñ H0pENDVpFiMqq.

Since γ is surjective, we obtain RN
g piq – H0pENDVpFiMqq, and the result follows from

Theorem 5.17. �

For a Zn-graded dg-algebra pA, dq, we put Dlf
dgpA, dq for the dg-category having as objects

the one in DlfpA, dq X DdgpA, dq and the hom-spaces inherited from DdgpA, dq. It is a dg-
enhancement of the c.b.l.f. derived category of pA, dq.

Definition 7.6. A parabolic 2-Verma module for p is a Z ˆ Z|Ir|-graded weight dg-2-
representation V such that

‚ the highest weight space Vλ :“ Vλ,0 – D
lf
dgpk, 0q;

‚ there exists M – pk, 0q P Vλ such that Vλ,y is c.b.l.f. generated by tFiMuiPSeqpyq

for all ´y P X`, and Vλ,y “ 0 otherwise ;
‚ V is i-integrable for all i P If ;
‚ hj “ 0 and λα_

j
“ λj (the degree shift) for all j R If ;

‚ for each j R If , nj P N and i P SeqpIq, after specializing λj “ qnj , there exists
a differential dnj

anticommuting with the differential d of
`
EndVpFiMq, d

˘
such

that the triangulated dg-category generated by c.b.l.f. iterated extension of the
representable modules of Vnj :“

À
iPSeqpIq

`
EndVpFiMq, d ` dnj

˘
is j-integrable

with λpα_
j q “ qnj .

Proposition 7.7. Let V be a parabolic 2-Verma module. There is an isomorphism

pRbpiq, dNq – ENDVpFiMq,

in Dpk, 0q for M – pk, 0q P Vλ.

Proof. First, by adjunction together with Eq. (37) and Eq. (38) we have

(39) ENDVpFiMq – HOMVpM, q´1
i KiEiFiMq – RN

p piq,

in Dpk, 0q for all i P I. Also,

(40) gdimqH
˚pENDVpFiMqq “ gdimq R

N
p piq,
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for all i P SeqpIq. In particular, there is a relation up to homotopy

α

j i

i

j

` β

j i

i

j

“ 0,(41)

in ENDVpFiFjMq for all i, j P Ir, identifying the diagrams with the image of the KLR
elements under the surjection Rgpijq ։ Z0pENDVpFiFjMqq, and the floating dot coming
from the isomorphism Eq. (39). Then, the existence of dni

and dnj
forces to have α “ β.

Thus, by Corollary 3.17, there is an A8-map

pRbpiq, dNq Ñ ENDVpFiMq.

By Eq. (40), we conclude it is a quasi-isomorphism. Thus, there exists an isomorphism
pRbpiq, dNq – ENDVpFiMq in Dpk, 0q. �

Using Theorem A.21 we can think of FNi and ENi from Section 5.4 as quasi-endofunctors
of DdgpRb, dnq. By Proposition 5.5 we obtain immediately the following:

Corollary 7.8. For all i P I there is a quasi-isomorphism of cones

Cone
`
FNi E

N
i Idν Ñ ENi F

N
i Idν

˘ »
ÝÑ Cone

`
Qiλiq

´α_
i pνq

i Idν Ñ Qiλ
´1
i qα

_
i pνq Idν

˘
,

in EndHqepDdgpRb, dNqq.

Together with Proposition 5.19, it means that the dg-enhancement Mp
dgpΛ, Nq ofMppΛ, Nq

(obtained by replacing Dlf pRbpmq, dNq with D
lf
dgpRbpmq, dNq) is a weight dg-2-representation

of Uqpgq, where

λpα_
i q :“

#
λi, whenever i P Ir,

qni, whenever i P If .

Then, by Theorem 5.17, we obtain that Mp

dgpΛ, Nq is a parabolic 2-Verma module.

Corollary 7.9. Let V be a parabolic 2-Verma module. There is a quasi-equivalence

M
p

dgpΛ, Nq
»
ÝÑ V.

Proof. Since Vλ,y is c.b.l.f. generated by
À

iPSeqpyq FiM , we have that Vλ,y is completely

determined as dg-category by ENDVpFiMq. Thus, we conclude by using Proposition 7.7.
�

Remark 7.10. A parabolic 2-Verma module can also be given a ‘2-categorical’ interpreta-
tion as an p8, 2q-category where the hom-spaces are stable p8, 1q-categories. For this, it is
enough to see DdgpRbpνq, dNq as 0-cells in the p8, 2q-category of A8-categories constructed
by Faonte [13], and replace HomHqe by the dg-nerve of Lurie [28]. Thanks to [14], we know
that this is a stable p8, 1q-category.
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Appendix A. Summary on the homotopy category of dg-categories and

pretriangulated dg-categories

We gather some useful results on the homotopy category of dg-categories. References for
this section are [20] and [42]. We also suggest [21] and [43] for nice surveys on the subject.

Our goal is to recall how to construct a category of dg-categories up to quasi-equivalence,
so that the space of functors between two ‘triangulated categories’ is ‘triangulated’.

A.1. Dg-categories. Recall the definition of a dg-category:

Definition A.1. A dg-category A is a k-linear category such that:

‚ HomApX, Y q is a Z-graded k-vector space ;
‚ the composition

HomApY, Zq bk HomApX, Y q
´˝´

ÝÝÝÝÑ HomApX,Zq,

preserves the Z-degree ;
‚ there is a differential d : HomApX, Y qi Ñ HomApX, Y qi´1 such that

d2 “ 0, dpf ˝ gq “ df ˝ g ` p´1q|f |f ˝ dg.

Remark A.2. We use a differential of degree ´1 to match the conventions used in the
rest of the paper.

Example A.3. Any dg-algebra pA, dq can be seen as a dg-category BA with a single
abstract object ‹ and HomBAp‹, ‹q :“ pA, dq.

Example A.4. Let C be an abelian, Grothendieck, k-linear category. Consider the cate-
gory CpCq of complexes in C, and define CdgpCq as the category where

‚ objects are complexes in C;
‚ hom-spaces are homogeneous maps of Z-graded modules;
‚ the differential d : HomCdgpCqpX

‚, Y ‚qi Ñ HomCdgpCqpX
‚, Y ‚qi´1 is given by

df :“ dY ˝ f ´ p´1q|f |f ˝ dX .

This data forms a dg-category.

Given a dg-category A, one defines

(1) the underlying category Z0pAq as
‚ having the same objects as A;

‚ HomZ0pAqpX, Y q :“ ker
`
HomApX, Y q0

d
ÝÑ HomApX, Y q´1

˘
;

(2) the homotopy category H0pAq (or rAs) as
‚ having the same objects as A;
‚ HomH0pAqpX, Y q :“ H0pHomApX, Y q, dq.

Example A.5. For C as in Example A.4, we have Z0pCdgpCqq – CpCq and H0pCdgpCqq –
KompCq the homotopy category of complexes in C.
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A.2. Category of dg-categories.

Definition A.6. A dg-functor F : A Ñ B is a functor between two dg-categories such
that F pdAfq “ dBpFfq. We write rF s : H0pAq Ñ H0pBq for the induced functor.

We write dg-cat for the category of dg-categories, where objects are dg-categories and
hom-spaces are given by dg-functors.

Let F,G : AÑ Bbe a pair of dg-functors between dg-categories. One defines HompF,Gq
as the Z-graded k-module of homogeneous natural transformations equipped with the dif-
ferential induced by d P HomBpFX,GXq for all X P A. Then, we put HompF,Gq :“
Z0pHompF,Gqq.

Definition A.7. A dg-functor AÑ B is a quasi-equivalence if

‚ F : HomApX, Y q
»
ÝÑ HomBpFX, FY q is a quasi-isomorphism for all X, Y P A;

‚ rF s : H0pAq Ñ H0pBq is essentially surjective (thus an equivalence).

One defines the dg-category HompA,Bq of dg-functors between A and B as

‚ objects are dg-functors AÑ B;
‚ hom-spaces are HomHompA,BqpF,Gq :“ HompF,Gq.

There is also a notion of tensor product of dg-categories Ab B defined as

‚ objects are pairs X b Y for all X P A and Y P B;
‚ hom-spaces are HomAbBpX b Y,X 1 b Y 1q :“ HomApX,X 1q bk HomBpY, Y 1q with
composition

pf 1 b g1q ˝ pf b gq :“ p´1q|g1||f |pf 1 ˝ fq b pg1 ˝ gq;

‚ the differential is dpf b gq :“ df b g ` p´1q|f |f b dg.

Then, there is a bijection

Homdg-catpAb B, Cq – Homdg-catpA,HompB, Cqq.

This defines a symmetric closed monoidal structure on dg-cat. However, the tensor product
of dg-categories does not preserve quasi-equivalences.

A.3. Dg-modules. Let A be a dg-category. The opposite dg-category Aop is given by

‚ same objects as in A;
‚ HomAoppX, Y q :“ HomApY,Xq;
‚ composition g ˝Aop f :“ p´1q|f ||g|f ˝A g.

A left (resp. right) dg-module M over A is a dg-functor

M : AÑ Cdgpkq, (resp. N : Aop Ñ Cdg),

where Cdgpkq is the dg-category of k-complexes. The dg-category of (right) dg-modules is
Aop -mod :“ HompAop, Cdgpkqq. The category of (right) dg-modules is CpAq :“ Z0pA-modq,
and it is an abelian category. The derived category DpAq is the localization of Z0pAop -modq
along quasi-isomorphisms.



58 GRÉGOIRE NAISSE AND PEDRO VAZ

Moreover, for any X P A there is a right dg-module

X^ :“ HomAp´, Xq.

One calls such dg-module representable. Any dg-module quasi-isomorphic to a repre-
sentable dg-module is called quasi-representable. It yields a dg-enriched Yoneda embedding

AÑ A
op -mod .

Example A.8. Let pA, dq be a dg-algebra. Then Z0pBAq -mod – pA, dq -mod and
DpBAq – DpA, dq. The unique representable dg-module HomBAp´, ‹q is equivalent to
the free module pA, dq.

A.4. Model categories. We recall the basics of model category theory from [16]. Model
category theory is a powerful tool to study localization of categories. For example, we can
use it to compute hom-spaces in a derived category. We will mainly use it to describe the
homotopy category of dg-categories up to quasi-equivalence.

Let M be a category with limits and colimits.

Definition A.9. A model category on M is the data of three classes of morphisms

‚ the weak equivalences W ;
‚ the fibrations Fib;
‚ the cofibrations Cof ;

satisfying

‚ for X
f
ÝÑ Y

g
ÝÑ Z P M , if two out of three terms in tf, g, g ˝ fu are in W , then so is

the third;
‚ stability along retracts : W,Fib and Cof are stable along retracts, that is if we have
a commutative diagram

X Y X

X 1 Y 1 X 1

IdX

g f g

IdX1

and f P W,Fib or Cof then so is g.

‚ factorization: any X
f
ÝÑ Y factorizes as p ˝ i where p P Fib and i P Cof X W or

p P Fib X W and i P Cof , and the factorization is functorial in f ;
‚ lifting property : given a commutative square diagram

A X

B Y

CofQi pPF ibDh
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with i P Cof and p P Fib, if either i P W or p P W , then there exists h : B Ñ X

making the diagram commute.

We tend to think about fibrations as ‘nicely behaved surjections’, and cofibrations as
‘nicely behaved injections’.

The localization HopMq :“ W´1M ofM along weak equivalences is called the homotopy
category of M . It has a nice description in terms of homotopy classes of maps between
fibrant and cofibrant objects.

Definition A.10. If H Ñ X P Cof , then we say X is cofibrant. If Y Ñ ˚ P Fib, then Y
is fibrant.

One says that f „ g, that is f : X Ñ Y is homotopy equivalent to g : X Ñ Y , if there
is a commutative diagram

X

CpXq Y

X

IdX

i
f

h

F ibXWQp

p

IdX

j
g

where i\ j : X \X Ñ CpXq P Cof . One calls CpXq the cylinder object of X . When X is
cofibrant and Y fibrant, then „ is an equivalence relation on HomMpX, Y q. Moreover, we
have

HomHopMqpX, Y q – HomMpX, Y q{ „

whenever X is cofibrant and Y fibrant. Note that any X P M admits a cofibrant replace-
ment QX since we have a commutative diagram

H X

QX

CofQi pPF ibXW

Similarly, any Y P M admits a fibrant replacement RY .

LetM cf be the full subcategory ofM given by objects that are both fibrant and cofibrant.
Let M cf{ „ be the quotient of M cf by identifying maps that are homotopy equivalent.
Then, the localization functor M Ñ HopMq restricts to M cf , inducing an equivalence of
categories

M cf{ „
»

ÝÝÑ HopMq.
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Example A.11. Let Cpkq be the category of complexes of k-modules. It comes with a
model category structure where W is the quasi-isomorphisms, Fib is the surjective maps,
and Cof is given by the maps respecting the lifting property. All objects are fibrant
and the cofibrant objects are essentially the complexes of projective k-modules. Then
HopCpkqq – Dpkq.

A model category on M is a Cpkq-model category if it is (strongly) enriched over Cpkq,
and the models are compatible (see [43, §3.1] for a precise definition). This definition
means that we have:

‚ a tensor product ´ b ´ : Cpkq ˆ M Ñ M ;
‚ an enriched dg-hom-space HomMpX, Y q P Cpkq for any X, Y P M compatible with
the tensor product:

HomMpE b X, Y q – HomCpkqpE,HomMpX, Y qq;

‚ HopMq is enriched over Dpkq – HopCpkqq;
‚ a derived hom-functor

RHomMpX, Y q :“ HomMpQX,RY q P Dpkq,

where QX is a cofibrant replacement of X , and RY a fibrant replacement of Y ;
‚ HomHopMqpX, Y q – H0pRHomMpX, Y qq.

Note that in particular for X, Y P M cf we have HomHopMqpX, Y q – H0pHompX, Y qq.

Example A.12. Let A be a dg-category. There is a Cpkq-model category on A-mod
where W is given by the quasi-isomorphisms, Fib are the surjective morphisms, and Cof
is given by the maps respecting the lifting property. Then HopA-modq – DpAq.

Remark A.13. In the Cpkq-model category A-mod, all objects are fibrant. Moreover,

P is cofibrant if and only if for all surjective quasi-isomorphism f : L
»
ÝÑ X (i.e. map in

W X Fib) then there exists h : P Ñ L such that the following diagram commutes:

H L

P X

»Dh

In a practical way, cofibrant dg-modules are quasi-isomorphic to direct summand of dg-
modules admitting a (possibly infinite) exhaustive filtration where all the quotients are
free dg-modules.

Definition A.14. ForM a Cpkq-model category, letM (resp. IntpMq) be the dg-category
with

‚ the same objects as M (resp. M cf );
‚ HomMpX, Y q :“ HomMpX, Y q.

Then, we have H0pIntpMqq – HopMq, and we say that IntpMq is a dg-enhancement of
HopMq.
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Definition A.15. We write

DdgpAq :“ IntpA-modq

for the dg-enhanced derived category of A.

Note that DdgpAq is a dg-enhancement of DpAq since we have H0pDdgpAqq – DpAq.

Example A.16. Let R be a k-algebra viewed as a dg-category with trivial differential.
Then we have that DdgpRq is the dg-category of complexes of projective R-modules.

A.5. The model category of dg-categories. LetW be the collection of quasi-equivalences
in dg-cat. Let Fib be the collection of dg-functors F : AÑ B in dg-cat such that

(1) FX,Y : HomApX, Y q ։ HomBpFX, FY q is surjective;

(2) for all isomorphism v : F pXq
»
ÝÑ Y P H0pBq there exists an isomorphism u : X

»
ÝÑ

Y0 P H0pAq such that rF spuq “ v.

This defines a model structure on dg-cat where everything is fibrant. One calls

Hqe :“ Hopdg-catq

the homotopy category of dg-categories (up to quasi-equivalence).

How can we compute HomHqepA,Bq ? It appears that constructing a cofibrant replace-
ment for A is in general a difficult problem. However, we can do the following:

(1) replace A by a k-flat quasi-equivalent dg-category A1: meaning it is such that

HomA1pX, Y q bk ´

preserves quasi-isomorphisms (e.g. when HomA1pX, Y q is cofibrant in Cpkq, i.e. a
complex of projective k-modules);

(2) define ReppA,Bq as the subcategory of DpAop b Bq with F P ReppA,Bq if and
only if for all X P A there exists Y P B such that

X bL F –DpBq Y
_,

(in other words, F is a dg-bimodule sending representable A-modules to quasi-
representable B-modules);

(3) then

HomHqepA,Bq – IsopReppA,Bqq,

where Iso means the set of objects up to isomorphism.

Remark A.17. Note that whenever k is a field, all dg-categories are k-flat.

We refer to elements in ReppA,Bq as quasi-functors. Note that a quasi-functor F : AÑ
B induces a functor

rF s : H0pAq Ñ H0pBq.

Thus, we can think of ReppA,Bq as the category of ‘representations up to homotopy’ of
A in B.
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A.5.1. Closed monoidal structure. If A is cofibrant, then ´bApreserves quasi-equivalences
and one can define the bifunctor

´ bL ´ : HqeˆHqe Ñ Hqe, AbL
B :“ QAb QB,

where QA and QB are cofibrant replacements. Then, as proven by Toen [42], there exists
an internal hom-functor RHomHqep´,´q such that

HomHqepAbL
B, Cq – HomHqepA,RHomHqepB, Cqq.

Therefore, Hqe is a symmetric closed monoidal category.

Remark A.18. Note that the internal hom can not simply be the derived hom functor
(because tensor product of cofibrant dg-categories is not cofibrant in general).

Define the dg-category of quasi-functors RepdgpA,Bq as

‚ the objects in ReppA,Bq X pAop b B-modqcf ;
‚ the dg-homs HompX, Y q of IntpAop b B-modq.

In other words, RepdgpA,Bq is the full subcategory of quasi-functors in DdgpA
op b Bq,

thus of cofibrant dg-bimodules that preserves quasi-representable modules. It is a dg-
enhancement of ReppA,Bq.

If A is k-flat, then

RHomHqepA,Bq –Hqe RepdgpA,Bq.

Thus H0pRHomHqepA,Bqq – HomHqepA,Bq.

Remark A.19. If k is a field of characteristic 0, then the dg-category RHomHqepA,Bq
is equivalent to the A8-category of strictly unital A8-functors [13].

Example A.20. We have RepdgpA, IntpCpkqqq – IntpAop -modq – DdgpAq.

Recall that classical Morita theory says that for A and B being k-algebras, there is an
equivalence

HomcoppA -mod, B -modq – Aop bk B -mod,

where Homcop is given by the functors that preserve coproducts.

Similarly, we put Repcopdg pDdgpAq, DdgpBqq for the subcategory of RepdgpDdgpAq, DdgpBqq
where F P Repcopdg pDdgpAq, DdgpBqq if and only if rF s : DpAq Ñ DpBq preserves coprod-
ucts.

Theorem A.21. If A is k-flat, then we have

RHomcop
HqepDdgpAq, DdgpBqq :“ Repcopdg pDdgpAq, DdgpBqq –Hqe DdgpA

op b Bq.

Under the hypothesis of Theorem A.21, the internal composition of dg-quasifunctors
preserving coproducts is given by taking a cofibrant replacement of the derived tensor
product over A.
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A.6. Pretriangulated dg-categories. Basically, a triangulated dg-category is a dg-cate-
gory such that its homotopy category is canonically triangulated. But before being able to
give a precise definition, we need to do a detour through Quillen exact categories, Frobenius
categories and stable categories.

A.6.1. Frobenius structure on CpAq. Recall a Quillen exact category [36] is an additive
category with a class of short exact sequences

0 Ñ X
f
ÝÑ Y

g
ÝÑ Z Ñ 0,

called conflations, which are pairs of ker-coker, where f is called an inflation and g a
deflation, respecting some axioms:

‚ the identity is a deflation;
‚ the composition of deflations is a deflation;
‚ deflations (resp. inflations) are stable under base (resp. cobase) change.

A Frobenius category is a Quillen exact category having enough injectives and projectives,
and where injectives coincide with projectives. The stable category C of a Frobenius cat-
egory C is given by modding out the maps that factor through an injective/projective
object. It carries a canonical triangulated structure where:

‚ the suspension functor S is obtained by taking the target of a conflation

0 Ñ X Ñ IX Ñ SX Ñ 0,

where IA is an injective hull of X , for all X P C;
‚ the distinguished triangles are equivalent to standard triangles

X
f
ÝÑ Y

g
ÝÑ Z

h
ÝÑ SX,

obtained from conflations by the following commutative diagram:

0 X Y Z 0

0 X IX SX 0.

f

Id

g

h

Example A.22. Let A be a small dg-category. One can put a Frobenius structure on
CpAqp:“ Z0pAop -modqq by using split short exact sequences as class of conflations. Then
there is an equivalence CpAq – H0pAop -modq, and the suspension functor coincides with

the usual homological shift. Moreover, DpAq inherits the triangulated structure from
H0pA-modq, where distinguished triangles are equivalent to distinguished triangles ob-
tained from all short exact sequences in CpAq.

A.6.2. Pretriangulated dg-categories. Remark for any dg-category A there is a Yoneda
functor

Z0pAq Ñ CpAq, X ÞÑ HomAp´, Xq.
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Definition A.23. A dg-category T is pretriangulated if the image of the Yoneda functor is
stable under translations and extensions (for the Quillen exact structure on CpTq described
in Example A.22).

This definition implies that

‚ Z0pTq is a Frobenius subcategory of CpTq;
‚ H0pTq inherits a triangulated structure, called canonical triangulated structure,
from H0pT-modq.

Example A.24. Let A be a dg-category. We have that DdgpAq is pretriangulated with
Z0pDdgpAqq – CpAqcf . Moreover, the canonical triangulated structure of H0pDdgpAqq
coindices with the usual on DpAq.

Then, it is possible to show that

‚ any dg-category A admits a pretriangulated hull pretrpAq such that

RHomHqepA,Tq
»
ÝÑ RHomHqeppretrpAq,Tq,

for all pretriangulated dg-category T;
‚ RHomHqepA,Tq is pretriangulated whenever T is pretriangulated;
‚ any dg-functor F : TÑ T1 between pretriangulated dg-categories induces a trian-
gulated functor rF s : H0pTq Ñ H0pT1q.

Note that forAbeing k-flat, the pretriangulated structure ofRHomHqepDdgpAq, DdgpBqq
restricts to the one of DdgpA

op b Bq (viewed as sub-dg-category). In particular, we obtain
distinguished triangles of quasi-functors from short exact sequences of dg-bimodules.

Definition A.25. For a morphism f : X Ñ Y P Z0pTq in the underlying category of
pretriangulated dg-category T, one calls mapping cone an object Conepfq P T such that

Conepfq^ – ConepX^ f̄
ÝÑ Y ^q P H0pT-modq.

A.6.3. Dg-Morita equivalences.

Definition A.26. A dg-functor F : A Ñ B is a dg-Morita equivalence if it induces an
equivalence

LF : DpAq
»
ÝÑ DpBq : X ÞÑ F pQXq,

where QX is a cofibrant replacement of X .

Example A.27. In particular, a quasi-equivalence is a dg-Morita equivalence and the
functor that sends dg-categories to their pretriangulated hull A ÞÑ pretrpAq is a dg-Morita
equivalence.

Theorem A.28 ([40]). There is a model structure dg-catmor on dg-cat where the weak-
equivalences are the dg-Morita equivalences and the fibrations are the same as before.

Definition A.29. We say that T is triangulated if it is fibrant in dg-catmor.
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Equivalently, T is triangulated if and only if the Yoneda functor induces an equivalence
H0pT-modq

»
ÝÑ DcpTq (i.e. every compact object is quasi-representable). Also equiva-

lently, T is triangulated if and only if T is pretriangulated and H0pT-modq is idempotent
complete.

In particular, any category admits a triangulated hull trpAq (i.e. fibrant replacement).
It is given by trpAq :“ Dc

dgpAq, the dg-category of compact objects in DdgpAq.

Example A.30. Let R be a k-algebra viewed as a dg-category. Then Dc
dgpRq is the

dg-category of perfect complexes, i.e. bounded complexes of finitely generated projective
R-modules.
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[22] M. Khovanov and A. D. Lauda. A diagrammatic approach to categorification of quantum groups I.
Represent. Theory, 13:309–347, 2009, 0803.4121.

[23] M. Khovanov and A. D. Lauda. A categorification of quantum slpnq. Quantum Topol., 1(1):1–92,
2010.

[24] M. Khovanov and A. D. Lauda. A diagrammatic approach to categorification of quantum groups II.
Trans. Amer. Math. Soc., 363(5):2685–2700, 2011.

[25] A. Lauda. A categorification of quantum slp2q. Adv. Math., 225(6):3327–3424, 2010.
[26] A. Lauda. Categorified quantum slp2q and equivariant cohomology of iterated flag varieties. Algebr.

Represent. Theory, 14(2):253–282, 2011.
[27] A. Lauda and M. Vazirani. Crystals from categorified quantum groups. Adv. Math., 228(2):803–861,

2011.
[28] J. Lurie. Higher algebra. http://www.math.harvard.edu/„lurie/papers/HA.pdf.
[29] G. Lusztig. Introduction to quantum groups. Birkhäuser/Springer, 2010. Reprint of the 1994 edition.
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