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A COMPUTER ALGEBRA SYSTEM FOR THE STUDY OF COMMUTATIVITY

UP-TO-COHERENT HOMOTOPIES

ANIBAL M. MEDINA-MARDONES

Abstract. The Python package ComCH is a lightweight specialized computer algebra system that provides
models for well known objects, the surjection and Barratt-Eccles operads, parameterizing the product structure

of algebras that are commutative in a derived sense. The primary examples of such algebras treated by ComCH

are the cochain complexes of spaces, for which it provides effective constructions of Steenrod cohomology
operations at all prime.

1. Introduction

All the basic notions of number, from the integers to the complex, are equipped with a commutative product,
and it was believed until Hamilton’s introduction of the quaternions, that the product of any number system
must be commutative. Hamilton’s discovery encouraged the consideration of other algebraic structures where
commutativity was not demanded, and the effect this had on algebra is only comparable to that of non-
euclidean geometries on the study of spaces.1 Around a century later, after the development of topology and
homotopy, commutativity was revisited and additional levels enriching the basic dichotomy were identified.
These correspond to coherent systems correcting homotopically the lack of strict commutativity, and constitute
the focus of much current research on theoretical and applied topology.

After the pioneering work of Steenrod [2, 3], Adem [4], Serre [5], Cartan [6], Araki-Kudo [7], Dyer-Lashof [8],
Stashef [9], Boardman-Vogt [10], May [11, 12], and many others, today there is a rich theory of commutativity
up-to-coherent-homotopies whose modern framework is provided by operads and PROPs, and whereEn-operads
play a central role parameterizing the different levels of homotopical commutativity. In ComCH, we focus on
the category of chain complexes, and consider two models of the E∞-operad equipped with filtrations by
En-operads. These are respectively due to McClure-Smith [13] and Berger-Fresse [14] and are known as the
surjection and Barratt-Eccles operads.

The homology of algebras over En-operads are equipped not only with an induced commutative product but
also with homology operations when the coefficient ring is the field Fp = Z/pZ. The study of these operations
at the chain level has become an important issue in topological data analysis [15], condensed matter physics
[16], category theory [17] and others areas. To provide researchers with effective tools for their study, ComCH
implements the constructions of [18], making available for the first time chain level representations of these
invariants for spaces presented simplicially or cubically. When the prime is 2, describing Steenrod operations
at the chain level is classical and there are implementations for the simplicial [19] and cubical [20] cases in
Sage [21] and ChainCon [22] respectively. For odd primes, we do not know of any previous implementation
either in the simplicial or cubical contexts. In the former case, a different effective approach was developed by
Gonzales-Diaz and Real [23, 24] based on the Eilenberg–Zilber contraction.
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2. Overview of ComCH

In this section we describe the overall structure and main functionalities of ComCH, referring to its documen-
tation for a description of all of its classes and their methods.2

2.1. Free modules and symmetric groups. Let R be the ring of integers or one of its quotients. In ComCH

the class FreeModuleElement serves to model elements in free R-modules, where R is specified by the attribute
torsion. Let Sr be the set of self-bijection of {1, . . . , r} regarded as a group by composition. An element
σ ∈ Sr will be represented by the sequence of its values (σ(1), . . . , σ(r)) and it is modeled in ComCH using the
class SymmetricGroupElement.

2.2. Operads. Operads parameterize algebraic structures on chain complexes. The precise although lengthy
definition can be found for example in [25]. We will present a key example from which the definition can be
abstracted. Let C be a chain complex of R-module, and consider the set EndC(r) = Hom(C,C⊗r) of R-linear
maps as a chain complex in the usual way. The set

EndC =
{
EndC(r)

}
r≥1

is equipped with the following structure: a left action of Sr on EndC(r) and composition chain maps

◦i : EndC(r)⊗ EndC(s) EndC(r + s− 1)

f ⊗ g (id⊗ · · · ⊗ g ⊗ · · · ⊗ id) ◦ f

satisfying forms of equivariance, associativity, and unitality.
An O-coalgebra structure on C is a structure preserving morphism from O to EndC . We remark that it is

also common to consider the operad EndA obtained from the complexes EndA(r) = Hom(A⊗r, A), referring
to operad morphisms O → EndA as O-algebra structures on A. The linear duality functor induces from an
O-coalgebra in C an O-algebra structure on A = Hom(C,R).

2Currently hosted at https://comch.readthedocs.io/en/latest/

https://comch.readthedocs.io/en/latest/
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2.3. Symmetric ring operad. Let us consider R[S] = {R[Sr]}r≥1 with R[Sr] the group ring of Sr thought
of as a dg R-module concentrated in degree 0. It has the structure of an operad with left action induced from
left multiplication, and compositions induced from the maps

(1) ◦i : Sr × Ss → Sr+s−1

sending a pair (x, y) to the bijection x ◦i y represented diagrammatically by

1 · · · (

y︷ ︸︸ ︷
i · · · i+ s− 1) · · · r + s− 1︸ ︷︷ ︸

x

.

More precisely, x ◦i y is the sequence obtained by applying the following three steps: 1) shift up by s − 1
the values of x greater than s, 2) shift up by i − 1 the values y and, 3) replace the i-th value of x with
the shifted y. We model elements in R[S] using the class SymmetricRingElement which combines the classes
FreeModuleElement and SymmetricGroupElement. For example, we have

>>> x = SymmetricRingElement({(2,3,1): -1, (1,3,2): 1})

>>> y = SymmetricRingElement({(1,3,2): 1, (1,2,3): 2})

>>> print(x * y)

- (2,1,3) - 2(2,3,1) + (1,2,3) + 2(1,3,2)

>>> print(x.compose(y, 2))

- (2,4,3,5,1) - 2(2,3,4,5,1) + (1,5,2,4,3) + 2(1,5,2,3,4)

2.4. E∞-operads. An important class of operads are those defining resolutions of the ground ring R as an
R[Sr]-module. Such operads are called E∞-operads. They typically come equipped with a filtration by so
called En-operads parameterizing different levels of derived commutativity, with E1 corresponding to the lack
of any assumed commutativity, and E∞ to the largest possible degree of homotopical commutativity. ComCH

implements models of two well known E∞-operads equipped with filtrations by En-operads which we now
describe.

2.5. Surjection operad. For a positive integer r let X (r)d be the free R-module generated by all functions
x : {1, . . . , d + r} → {1, . . . , r} modulo the R-submodule generated by degenerate functions, i.e., those which
are either non-surjective or have a pair of equal consecutive values. There is a left action of Sr on X (r) which
is up to signs defined on basis elements by π · x = π ◦ x. We represent a surjection x as the sequences of its
values

(
x(1), . . . , x(n+ r)

)
. The boundary map in this complex is defined up to signs by

∂x =

r+d∑

i=1

±
(
x(1), . . . , x̂(i), . . . , x(n+ r)

)
,

and the i-th composition x ◦i y of x ∈ X (r) and y ∈ X (s) is defined, up to signs, as follows. Let w be the
cardinality of x−1(i). For every collection of ordered indices

(2) 1 = j0 ≤ j1 ≤ j2 ≤ · · · ≤ jw−1 ≤ jw = s

we construct an associated splitting of y

(y(j0), . . . , y(j1)); (y(j1), . . . , y(j2)); · · · ; (y(jw−1), . . . , y(jw)).

The element x ◦i y ∈ X (r + s − 1) is represented as the sum over the set of order indices (2) of the sequence
obtained in the following three steps: 1) shift up by s − 1 the values of x greater than i, then 2) shift up by
i− 1 the values of each sequence in the associated splitting of y, and finally 3) replace in order the occurrences
of i in x by the corresponding sequence in the splitting.

The elements in this operad are modeled using the class SurjectionElement. For example,
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>>> x = SurjectionElement({(1,2,1,3): 1})

>>> print(x.boundary())

(2,1,3) - (1,2,3)

>>> y = SurjectionElement({(1,2,1): 1})

>>> print({x.compose(y, 1))

(1,3,1,2,1,4) - (1,2,3,2,1,4) - (1,2,1,3,1,4)

The signs appearing in these constructions are determined by the attribute convention with possible values
the strings McClure-Smith and Berger-Fresse. We refer to [13] and [14] for details on these distinct sign
conventions.

We will now review the definition of the complexity of a surjection element. The importance of this concept
is that the set of surjection elements with complexity less than n defines an En-suboperad of X [13].

The complexity of a finite binary sequence (i.e. a sequence of two distinct values) is defined as the number of
consecutive distinct elements in it. For example, (1,2,2,1) and (1,1,1,2) have complexities 2 and 1 respectively.
The complexity of a basis surjection element is defined as the maximum value of the complexities of its binary
subsequences. Notice that for elements in X (2), complexity and degree agree. The class SurjectionElement
models this concept with the attribute complexity. For example,

>>> x = SurjectionElement({(1,2,1,3,1): 1})

>>> print(x.complexity)

1

2.6. Barratt-Eccles operad. For a non-negative integer r define the simplicial set E(Sr) by

E(Sr)n = {(σ0, . . . , σn) | σi ∈ Sr},

di(σ0, . . . , σn) = (σ0, . . . , σ̂i, . . . , σn),

si(σ0, . . . , σn) = (σ0, . . . , σi, σi, . . . , σn).

It is equipped with a left Sr-action defined on basis elements by

σ(σ0, . . . , σn) = (σσ0, . . . , σσn).

The chain complex resulting from applying the functor of normalized R-chains to it is denoted E(r), and the
underlying set of the Barratt-Eccles operad is E = {E(r)}r≥0. To define its composition structure we use the
Eilenberg-Zilber map. Let us notice that at the level of the simplicial sets E(Sr) we have compositions

◦i : E(r) × E(s)→ E(r + s− 1)

induced coordinate-wise from (1). We define the composition maps on E by precomposing

N•(◦i) : N•(E(r) × E(s)) −→ N•(E(r + s− 1)) = E(r + s− 1)

with the Eilenberg-Zilber map

E(r) ⊗ E(s) = N•(E(r)) ⊗N•(E(s)) −→ N•(E(r) × E(s)).

For example,

>>> x = BarrattEcclesElement({((1,2),(2,1)):1, ((2,1),(1,2)):2})

>>> print(x.boundary())

((1,2),) - ((2,1),)

>>> y = BarrattEcclesElement({((2,1,3),):3})

>>> print(x.compose(y, 2))

3((1,3,2,4),(3,2,4,1)) + 6((3,2,4,1),(1,3,2,4))

The complexity of a Barratt-Eccles element is define analogously to that of surjection elements. In this case
too the subset of elements with complexity less than n defines an En-suboperad [14].
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An important structure present in the Barratt-Eccles operad missing in the surjection operad is a diagonal
chain map compatible with compositions. It is given by the Alexander-Whitney diagonal which on basis
Barratt-Eccles element is

∆(σ0, . . . , σn) =

n∑

i=1

(σ0, . . . , σi)⊗ (σi, . . . , σn).

For example,

>>> x = BarrattEcclesElement({((1,2), (2,1)): 1})

>>> print(x.diagonal())

(((1, 2),), ((1, 2), (2, 1))) + (((1, 2), (2, 1)), ((2, 1),))

3. Steenrod operations

In this section we effectively describe how to compute Steenrod operations on the mod-p cohomology of
spaces presented as simplicial or cubical sets. The implementation of these algorithms is one of the main novel
contributions of ComCH to the available software used in algebraic topology.

3.1. Steenrod-Adem structures. Let Cr be the cyclic group of order r thought of as the subgroup of Sr
generated by an element ρ. The elements

T = ρ− 1 and N = 1 + ρ+ · · ·+ ρr−1

in R[Cr] define a minimal resolution of R by free R[Cr]-modules

W(r) = R[Cr]
T
←− R[Cr]

N
←− R[Cr]

T
←− · · · .

We denote a preferred basis element of W(r)i by ei.
A Steenrod structure on an operad O is a collection, indexed by r > 0, of Cr-equivariant chain maps

W(r)
ψr

−→ O(r) for which there exists a factorization through an E∞-operad W(r) → R(r) → O(r) such that
the first map is a quasi-isomorphism and the second is an Sr-equivariant chain map. If the maps R(r)→ O(r)
define a morphism of operads R → O, we say the Steenrod structure is a Steenrod-Adem structure. For any
pair of integers r and i, a Steenrod structure produces a preferred element ψr(ei) in O(r)i.

Steenrod-Adem structures for the surjection and Barratt-Eccles operads are implemented in ComCH following
their introduction in [18]. Some examples of ψr(ei) are

>>> r, i = 3, 2

>>> y = Surjection.steenrod_adem_structure(r, i)

>>> print(y)

(1,2,3,1,2) + (1,3,1,2,3) + (1,2,3,2,3)

>>> x = BarrattEccles.steenrod_adem_structure(r, i)

>>> print(x)

((1,2,3),(2,3,1),(3,1,2)) + ((1,2,3),(3,1,2),(1,2,3))

3.2. Steenrod operations. Let A be a chain complex of Z-modules. Let us assume the operad EndA is
equipped with a Steenrod structure ψ : W → EndA. For any prime p, define the linear mapDd : A⊗Fp → A⊗Fp
by

Dd(a) =

{
ψ(ed)(a

⊗p) d ≥ 0,

0 d < 0.

As in [11], for any integer s the Steenrod operations

Ps : H•(A;F2)→ H•+s(A;F2)

and, for p > 2,

Ps : H•(A;Fp)→ H•+2s(p−1)(A;Fp),

βPs : H•(A;Fp)→ H•+2s(p−1)−1(A;Fp),
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are defined for a class [a] of degree q respectively by

Ps
(
[a]

)
=

[
Ds−q(a)

]

and

Ps
(
[a]

)
=

[
(−1)sν(q)D(2s−q)(p−1)(a)

]
,

βPs
(
[a]

)
=

[
(−1)sν(q)D(2s−q)(p−1)−1(a)

]
,

where ν(q) = (−1)q(q−1)m/2(m!)q and m = (p− 1)/2.

3.3. Surjections as linear maps. In this subsection we describe a Steenrod structure on the cochains of sim-
plicial and cubical sets, which defines, by the previous subsection, Steenrod operations on their mod-p cohomol-
ogy. Using the linear duality functor, it suffices to define a Steenrod structure on chains. Furthermore, by nat-
urality, it suffices to define it on the universal endomorphism operad EndC• with EndC•(r) = Hom(C•, C

⊗r
• ),

the chain complex of natural transformations from the functor of normalized simplicial or cubical chains to
an r-iterated tensor product of itself. An element f in this abstract chain complex can be more concretely
described as a set {fn}n≥0 of elements in C•(∆

∞)⊗r and C•(I
∞)⊗r respectively, with fn being the element

f
(
[0, . . . , n]

)
or f

(
[0, 1]×n

)
respectively. In ComCH, elements in C•(∆

∞)⊗r and C•(I
∞)⊗r are modeled using the

SimplicialElement and CubicalElement classes. For example,

>>> x = SimplicialElement({((0,1), (1,2,3), (2,3)): 1})

>>> print(x._latex_())

[0,1] \otimes [1,2,3] \otimes [2,3]

>>> y = CubicalElement({((0,1), (2,1), (2,2)): 1})

>>> print(y._latex_())

[0][1] \otimes [01][1] \otimes [01][01]

To define the Steenrod structure on the universal operad EndC• it suffices to construct a collection of natural
Sr-equivariant chains maps X (r)→ Hom(C•, C

⊗r
• ) since we already have a Steenrod-Adem structure on X . To

describe the Sr-equivariant chain map X (r)→ Hom(C•, C
⊗r
• ) we follow [26, 27]. Represent a basis surjection

element in X (r)n as the labeled directed graph

1

1 2 ... k1
...

· · ·

· · · r

1 2 ... kr
...

1

1 2 3 n+ r· · ·

...

where there are no hidden vertices and the strands at the top are joined to the strands at the bottom using the
information prescribed by the surjection. Any such graph gives rise to a map in Hom(C•, C

⊗r
• ) after associating

appropriate maps to the generating pieces and in Hom(C•, C
⊗2
• ) and Hom(C⊗2

• , C•) respectively. Such
maps where associated to these generating pieces in [26] for the simplicial case and [18] for the cubical one.3

In ComCH we implement these constructions allowing for surjection elements to act on simplicial and cubical
chains. For example, we have

3We remark for the interested reader that both of these structures are induced from an E∞-bialgebra structure on the cellular
chains of the interval.
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>>> x = SurjectionElement({(1,2,1): 1}, convention=’McClure-Smith’)

>>> a = Simplicial.standard_element(2)

>>> print(x(a))

- ((0,1,2),(0,1)) + ((0,2),(0,1,2)) - ((0,1,2),(1,2))

>>> b = Cubical.standard_element(2)

>>> print(x(b))

- ((2,2),(1,2)) + ((2,1),(2,2)) + ((0,2),(2,2)) - ((2,2),(2,0))

We remark that in the simplicial context the action of the unique non-degenerate surjection si : {1, . . . , i+2} →
{1, 2} with si(1) = 1 agree up to sign with the cup-i coproducts originally introduced by Steenrod [2] and
axiomatized in [28].

3.4. Examples. We remark that cochains, being defined as Hom(C•, R), are concentrated in non-positive
degrees. We will only give examples in the simplicial context since, in general, the corresponding cubical
expressions involve many more terms. We refer to the documentation of ComCH and its Jupyter notebooks for
examples in the cubical context.

1) Let us consider the prime 2. The value P−1(x)
(
[0, 1, 2, 3, 4]

)
for x homogeneous of degree −3 is the value

of x⊗2 on the following output

>>> p, s, q = 2, -1, -3

>>> print(Surjection.steenrod_chain(p, s, q))

((0,1,2,3),(0,1,3,4)) + ((0,2,3,4),(0,1,2,4)) +

((0,1,2,3),(1,2,3,4)) + ((0,1,3,4),(1,2,3,4))

2) Let us consider the prime 3. The value βP−1(x)
(
[0, 1, . . . , 8]

)
for x homogeneous of degree −3 is the value

of x⊗3 on the following output

>>> p, s, q = 3, -1, -3

>>> print(Surjection.steenrod_chain(p, s, q, bockstein=True))

2((0,6,7,8),(0,1,2,3),(3,4,5,6)) + ((0,1,7,8),(1,2,3,4),(4,5,6,7))

+ 2((0,1,2,8),(2,3,4,5),(5,6,7,8))

3) Let us consider the prime 3 again. The value P−2(x)
(
[0, 1, . . . , 12]

)
for x homogeneous of degree −4 is

the value of x⊗3 on the following output

>>> p, s, q = 3, -2, -4

>>> print(Surjection.steenrod_chain(p, s, q, bockstein=False))

((0,1,2,3,4),(4,5,6,7,8),(8,9,10,11,12))

4. Outlook

Operations on the homology of algebras that are only En for a finite n are well understood homologically
[29] but not at the chain level for n > 2. The case n = 2 has been studied by Tourtchine [30] and will be
implemented in ComCH.

Secondary cohomology operations result from relations among primary. The Cartan and Adem Relations
are of particular importance, and constructing cochains enforcing them is open problem for p > 2. The case
p = 2 was treated by Brumfiel, Morgan and the author [31, 32] and will soon be implemented in ComCH.

Cubical chains appear naturally from simplicial sets through the cobar construction [33] and in ComCH we
have implemented an E∞-structure on them. To model the double cobar construction one needs to study
permutahedral chains [34]. In forthcoming work we describe an E∞-structure on permutahedral sets suitable
for implementation on ComCH.
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