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CHROMATIC FRACTURE CUBES

OMAR ANTOLÍN-CAMARENA AND TOBIAS BARTHEL

Abstract. In this note, we construct a general form of the chromatic fracture
cube, using a convenient characterization of the total homotopy fiber, and
deduce a decomposition of the E(n)-local stable homotopy category.
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1. Introduction

The chromatic fracture square can be interpreted as the chromatic analogue of
the arithmetic pullback square

Z //

��

∏

p Zp

��
Q // Q⊗

∏

p Zp

and thus expresses a fundamental local-to-global principle in stable homotopy the-
ory. As such, it has been repeatedly used to first study problems in an appropriate
local context and to then reassemble the results. Most noticeably, this approach is
used in the construction and study of the spectrum of topological modular forms,
see [Beh].

The goal of this note is to construct a higher dimensional version of the chromatic
fracture square, well-known to the experts, which allows to explicitly decompose the
E(n)-localization of a spectrum into its K(t)-local pieces for 0 ≤ t ≤ n. Moreover,
we obtain a decomposition of the E(n)-local category into diagram categories of
K(t)-local categories, for 0 ≤ t ≤ n. In fact, we work in a slightly more abstract
setting, see Proposition 3.2, Theorem 4.4, and Theorem 5.5 for precise statements
of our results.

The proof uses the characterization of the total homotopy fiber of an n-cube as a
right adjoint; since we do not know of a published reference for this fact, we include
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the argument. This then allows to easily deduce the iterative construction of the
total homotopy fiber, as can be found for instance in [Goo92].

Acknowledgments. We thank Rune Haugseng for a helpful conversation about
coCartesian fibrations. The second author would also like to thank the Max Planck
Institute for Mathematics for its hospitality.

2. Cubical homotopy preliminaries

Let C be a pointed ∞-category with finite limits, and let Fun(P(T ), C) be the
category of n-cubes in C. Here, T is a fixed set with n elements and P(T ) is its
poset of subsets, ordered by inclusion. We will also use P 6=∅(T ) for the poset of non-
empty subsets of T . If F ∈ Fun(P(T ), C), then the total homotopy fiber tfib(F) of
F is the fiber of the natural map f : F∅ → lim

(

F|P6=∅(T )

)

= limS 6=∅ F(S). Recall
that F is said to be Cartesian if f is an equivalence; this implies that tfib(F) is
contractible. If C is stable the converse is true: tfib(F) being contractible implies
that F is Cartesian.

Proposition 2.1. The total (homotopy) fiber of a cubical diagram is right adjoint
to the functor

C
in∅ // Fun(P(T ), C)

sending an element X ∈ C to the n-cube with initial vertex X and the terminal
object ∗ elsewhere.

Proof. Let F̃ be an n-cube that is a limit cone over the diagram F 6=∅ := F|P6=∅(T );

note that there is a canonical map F → F̃ . We thus get for X ∈ C:

Hom(X, tfib(F)) = Hom(in∅(X), in∅(tfib(F)))

= Hom(in∅(X), fib(F → F̃))

= fib(Hom(in∅(X),F) → Hom(in∅(X), F̃))

= Hom(in∅(X),F),

because, as we will show, Hom(in∅(X), F̃) is contractible.
Indeed, letting T+ := {∗} ∪ T , we can identify Hom(in∅(X),F) with the space

of (n+ 1)-cubes G ∈ Fun(P(T+), C), such that G restricts to in∅(X) on {S ⊆ T+ :

∗ /∈ S} and restricts to F̃ on {S ⊆ T+ : ∗ ∈ S}. Now, since F̃ is Cartesian, these
(n + 1)-cubes G are determined up to contractible choice by their restrictions to
{S ⊆ T+ : S 6= {∗}}; and the space of these possible restrictions is contractible by
the presence of the terminal objects in in∅(X). �

As a consequence of this proposition we obtain an easy proof of the fact that the
total homotopy fiber can be computed by taking fibers in all the edges of a cube in a
fixed direction and then taking total fibers of the resulting cube. More precisely, let
F ∈ Fun(P(T ), C) be an n-cube and T ′ ⊆ T . For any S′ ∈ P(T ′), we can consider
the cube FT\T ′,S′ ∈ Fun(P(T \ T ′), C) given by S 7→ F(S ∪ S′). This yields a new
cube tfibT ′(F) ∈ Fun(P(T ′), C) whose value on S′ ⊆ T ′ is tfib(FT\T ′,S′).

Corollary 2.2. With notation as above, there is a natural equivalence tfib(F) =
tfib(tfibT ′(F)) for any T ′ ⊆ T
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Proof. Observe that in∅ : C → Fun(P(T ), C) can be decomposed as follows

C
in∅ // Fun(P(T ′), C)

in∅ // Fun(P(T \ T ′),Fun(P(T ′), C))
∼ // Fun(P(T ), C),

so the same is true for the right adjoint tfib. �

Corollary 2.3. If C is stable and F ∈ Fun(P(T ), C) is a Cartesian n-cube and
T ′ = {t} ⊆ T a subset of size 1, then the fiber of (n− 1)-cubes

fib(FT\{t},∅ → FT\{t},{t})

is also Cartesian.

Proof. This follows immediately from Corollary 2.2 and the fact that a cube in a
stable category is Cartesian if and only if its total homotopy fiber is contractible. �

In the same spirit, but moving away from total fibers, we give a formula for
inductively computing limits of partial n-cubes G : P 6=∅(T ) → C.

Proposition 2.4. Let G : P 6=∅(T ) → C be a partial cube in C. Let t ∈ T be
arbitrary and set T ′ = T \ {t}. Then there is a pullback square:

limS∈P6=∅(T ) G(S) //

��

limS∈P6=∅(T ′) G(S)

��
G({t}) // limS∈P6=∅(T ′) G({t} ∪ S)

Proof. Let Q = P 6=∅({a, b})×P 6=∅(T
′) and F : Q → P 6=∅(T ) be the map of posets

defined by F ({a}, I) = {t}, F ({b}, I) = I and F ({a, b}, I) = {t} ∪ I. We will
show that F is (homotopy) initial. It suffices to check that for each I ∈ P 6=∅(T ),
the comma category F ↓ I is contractible. In all cases the comma category is a
subposet of Q:

• If t /∈ I, F ↓ I is the subposet {({b}, J) ∈ Q : J ⊆ I}. This is contractible
because it has a largest element, namely ({b}, I).

• If t ∈ I, F ↓ I is the subposet R = {(K, J) ∈ Q : K = {a} or J ⊆ I}. We
can write R as a pushout of posets:

{{a}} × P 6=∅(I) //

��

{{a}} × P 6=∅(T
′)

��
P 6=∅({a, b})× P 6=∅(I) // R

The geometric realizations of the three posets besides R are cubes (of di-
mensions |I|, n−1 and 2+ |I|) and the top horizontal and left vertical maps
realize to a face inclusion. This shows R is contractible.

Since F is initial, limG can be computed as lim(G ◦ F ). This limit we compute
as an iterated limit:

lim
(K,J)∈Q

G(F (K, J)) = lim
K∈P6=∅({a,b})

(

lim
J∈P6=∅(T ′)

G(F (K, J))

)

.

To conclude we identify the three terms in the pullback with the ones in the
statement of the proposition:
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(1) limJ∈P6=∅(T ′) G(F ({a}, J)) = limJ∈P6=∅(T ′) G({1}) ∼= G({1}), since the in-
dexing category P 6=∅(T

′) is contractible.
(2) limJ∈P6=∅(T ′) G(F ({b}, J)) = limJ∈P6=∅(T ′) G(J).
(3) limJ∈P6=∅(T ′) G(F ({a, b}, J)) = limJ∈P6=∅(T ′) G({1} ∪ J).

�

3. The chromatic fracture cube

Let Sp be the stable ∞-category of spectra [Lur14], and denote Bousfield local-
ization [Bou79] at a spectrum E by LE , with associated category SpE of E-local
spectra. Two spectra E and F are said to be Bousfield equivalent if LE = LF ;
in this case, we write 〈E〉 = 〈F 〉. An endofunctor on Sp will be called E-local
if it takes values in the category of E-local spectra. If we are given a collection
{F (1), F (2), . . . , F (n)} of spectra, for any set S = {i1, . . . , ik} with 1 ≤ i1 < i2 <
· · · < ik ≤ n, we write LS for the composite LF (i1) . . . LF (ik). The general form
of the chromatic fracture cube takes the following form, generalizing the fracture
square in [Bau].

Construction 3.1. Suppose {F (1), . . . , F (n)} is any collection of spectra. We
inductively define an n-cube F : P({1, . . . , n}) → End(Sp), whose vertices will
turn out to be given by S 7→ LS , as follows:

• If n = 1, the cube is simply the natural localization morphism id → LF (i).
• For n > 1, inductively construct the cube F ′ on P({2, . . . , n}), and get the
full n-cube F as the morphism of (n− 1)-cubes F ′ → LF (1)F

′ given by the
naturality of the localization morphisms id → LF (1).

Proposition 3.2. Suppose {F (1), . . . , F (n)} is a collection of spectra such that
LF (j)LF (i) = 0 for all j > i. If F ∈ Fun(P({1, . . . , n}),End(Sp)) is the n-cube
given by Construction 3.1 then

lim
S 6=∅

F(S) = LE ,

where E is any spectrum Bousfield equivalent to F (1)⊕ . . .⊕ F (n).

Proof. Let P = limS 6=∅ F(S) be the limit with legs fi : P → LF (i). The localization
maps ηi : LE → LF (i)LE = LF (i) induce a natural map from LE to this limit,

η : LE −→ P.

Since F (i)-locals are clearly E-local and locality is preserved under limits, P is
E-local. It therefore suffices to show that η is an F (i)-equivalence for all 1 ≤ i ≤ n.
To this end, fix i and consider the commutative triangle

LE
η //

ηi
""❋

❋❋
❋❋

❋❋
❋ P

fi

��
LF (i).

Because ηi is an F (i)-equivalence by definition, we only need to show that so is

fi : P → LF (i). To this end, apply LFi
to the limit cube F̃ with P as initial vertex,

F̃(S) = F(S) for S 6= ∅, and the natural maps. This yields a cube LFi
F̃ ∈

Fun(P({1, . . . , n}),End(Sp)) with three properties:

• It is again Cartesian as LFi
is exact.
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• LF (i)F̃(S) = 0 whenever S contains an element smaller than i, because
LF (i)LF (k) = 0 for k < i.

• For S 6= ∅ and i /∈ S, the edges from S to S ∪{i} are all equivalences since
either both vertices are 0 by the previous point or, if min(S) < i, the edge
F(S) → F(S ∪ {i}) of F is equivalent to the localization map F(S) →
LF (i)F(S) by construction, so applying LF (i) will yield an equivalence.

By Corollary 2.3, taking fibers in the {i} direction produces a Cartesian (n− 1)-
cube, which by the third item above is actually just in∅(fib(LF (i)P → LF (i))).
Therefore, LF (i)P ∼= LF (i) and the claim follows. �

Example 3.3. The Morava K-theories K(0), . . . ,K(n) satisfy the conditions of
Proposition 3.2, since K(i)⊗K(j) = 0 whenever i 6= j. In particular, if i < j, then
there is a pullback square

LK(i)⊕K(j)
//

��

LK(j)

��
LK(i)

// LK(i)LK(j).

Similarly, for F (1) = E(n−1) and F (2) = K(n) we get the usual chromatic fracture
square

LE(n)
//

��

LK(n)

��
LE(n−1)

// LE(n−1)LK(n)

using the identity of Bousfield classes 〈E(n− 1)⊕K(n)〉 = 〈E(n)〉.

4. A description of the category of local objects

As in the previous section, let {F (1), . . . , F (n)} be a collection of spectra such
that LF (j)LF (i) = 0 for all j > i, fixed for the remainder of the section, and
let T = {1, . . . , n}. We will inductively construct a category CS of partial cubes
P 6=∅(S) for S ⊂ T , and prove that CT is equivalent to SpE for any spectrum E
with the same Bousfield class as F (1)⊕ · · · ⊕ F (n).

Construction 4.1. For ∅ 6= S ⊂ T we let CS be the full subcategory of the
diagram category Fun(P 6=∅(S), Sp) spanned by certain partial cubes G chosen as
follows:

• If S = {i} is a singleton, we take all G such that the unique value of G,
namely G(S), is F (i)-local.

• If S = {i} ∪ S′ where i = min(S) /∈ S′, we take all G such that:
(1) G′ := G|P6=∅(S′) belongs to CS′ , and
(2) if we think of G|P(S)\{∅,{i}} as a morphism between diagrams of shape

P 6=∅(S
′), namely G′ → G′|{U⊆S:i∈U}, this morphism is the natural

morphism G′ → LF (i)G
′.

Remark 4.2. From the definitions it is clear that for any G ∈ CT we have that:

• For any S ⊆ T , G(S) is F (min(S))-local.
• For every k, G|{S⊆T :max(S)=k} is just the cube from Construction 3.1 applied
to G({k}).
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This construction becomes much clearer with an example.

Example 4.3. The ∞-category C{1,2,3} is equivalent to the full subcategory of
Fun(P 6=∅({1, 2, 3}), Sp) on the diagrams of the form:

X3

η2
ww♦♦♦

♦♦♦
♦♦♦

♦♦♦
♦

η1

��

X2
f23 //

η1

��

LF (2)X3

η1

��

X1
f13 //

f12

{{✇✇
✇✇
✇✇
✇✇
✇

LF (1)X3

LF (1)η2ww♣♣♣
♣♣♣

♣♣♣
♣♣

LF (1)X2

LF (1)f23 // LF (1)LF (2)X3

where Xi is F (i)-local for i = 1, 2, 3 and the morphisms labeled ηi are the natural
maps Y → LF (i)Y . Notice that the diagram is determined just by X1, X2, X3,
f12, f13, f23 and a homotopy showing the bottom square commutes.

As a simpler example, the ∞-category C{1,2} is the category of cospans of the
form of the left face of the above partial cube. Those cospans are determined by
X1, X2 and f12.

Theorem 4.4. If E is any spectrum Bousfield equivalent to F (1) ⊕ · · · ⊕ F (n),
the ∞-category CT constructed above is equivalent to SpE. Moreover, the following
functors are mutually inverse equivalences:

• lim: CT → SpE given by G 7→ limS 6=∅ G(S), and
• F 6=∅ : SpE → CT given by X 7→ F [X ]|P6=∅(T ) where F is the n-cube of func-
tors from Construction 3.1 and F [X ] denotes the cube obtained by applying
those functors to X.

Proof. First of all let us show those functors are well defined. This is clear for F 6=∅

by construction. For lim it is because all spectra in the image of a given partial
cube G are F (i)-local for some i and thus also E-local.

Now we will show the functors are mutually inverse. First, for any E-local
spectrum X , the canonical map lim (F 6=∅[X ]) → X (coming from the diagram
F [X ], which is a cone over F 6=∅[X ]) is an equivalence by Proposition 3.2.

For the other composite, let G ∈ CT and let P = limG. We must show that
F 6=∅(P ) ∼= G. Extend G to a Cartesian cube G̃ with G̃(∅) = P . First we show

that LF (i)P ∼= G({i}), and moreover, that the ∅ → {i} edge in the n-cube G̃ is the
localization map P → LF (i)P under this equivalence.

To this end, apply LF (i) to G̃. For any i /∈ S ⊆ T consider the edge of LF (i)G̃
from S to S ∪ {i}. There are three cases:

• If S = ∅, the edge has the form LF (i)P → LF (i)G({i}). This is the mor-
phism we wish to show is an equivalence.

• If min(S) < i, we have LF (i)G(S) = LF (i)G(S∪{i}) = 0, because both G(S)
and G(S∪{i}) are F (min(S))-local. Therefore these edges are equivalences.

• If min(S) > i, then the edge G(S) → G({i}∪S) is the natural map G(S) →
LF (i)G(S) because this edge is contained in G|{U⊂T :max(U)=max(S)} which is
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a cube obtained from Construction 3.1 applied to G({max(S)}). This edge,
of course, becomes an equivalence after applying LF (i).

Now the cube LF (i)G̃ is Cartesian because G̃ was and LF (i) is exact. This means
that taking fibers in the direction of {i} must lead to a Cartesian (n− 1)-cube. By
the above case analysis, that (n−1)-cube is simply in∅(fib(LF (i)P → LF (i)G({i}))),
from which we conclude that fib(LF (i)P → LF (i)G({i})) is 0 and thus LF (i)P →
LF (i)G({i}) is an equivalence, as desired.

At this point we are close to showing that G̃ and F(P ) are equivalent n-cubes:
we have shown that they have equivalent objects at all vertices and also many of the
maps agree, but we have not shown for example that the map G({1}) → G({1, i})
is LF (1)(P → G({i})).

To conclude, consider taking fibers of G̃ in the {1} direction to get an (n − 1)-

cube G̃′. From the argument above and the exactness of LF (1), we know that this

(n − 1)-cube vanishes if we apply LF (1) to it, so that the n-cube G̃ when thought

of as a map of (n− 1)-cubes G̃|{S:1/∈S} → G|{S:1∈S} is just LF (1)-localization.

Now applying LF (2) to G̃, we get a Cartesian n-cube whose “bottom” face,

LF (2)G̃|{S:1∈S}, vanishes. This means the top face, LF (2)G̃|{S:1/∈S}, is also Cartesian
and we can recursively apply the argument of the previous paragraph to conclude
that G̃ ∼= F(P ). �

Remark 4.5. The special case n = 2 of the previous result appears as Remark 7 in
[Lur10, Lecture 23].

5. A decomposition of the category of local objects

As in the previous section, let {F (1), . . . , F (n)} be a collection of spectra such
that LF (j)LF (i) = 0 for all j > i, and let T = {1, . . . , n}. In this section we will
describe a partial n-cube of ∞-categories whose limit is SpE where E is Bousfield
equivalent to F (1) ⊕ · · · ⊕ F (n). To do that we will need some combinatorial
preliminaries; an illustration of the construction can be found below in Example 5.4.

Definitions 5.1. For ∅ 6= S ⊆ S′ ⊆ T , define α(S), β(S, S′) and θS,S′ :

α(S) = {U ⊆ T : S ⊆ U,min(S) = min(U)}

β(S, S′) = {V ⊆ [min(S′),min(S)) : S′ ∩ [min(S′),min(S)) ⊆ V }

θS,S′ : α(S′) → β(S, S′)× α(S)

U 7→ (U ∩ [min(S′),min(S)), U ∩ [min(S), n])

where we have repurposed traditional interval notation to denote intervals of inte-
gers.

We will regard α(S) and β(S, S′) as posets, ordering them by inclusion, which
makes θS,S′ a map of posets. Notice that α(S) and β(S, S′) are isomorphic to posets
of all subsets of some set, so that diagrams of shape α(S) or β(S, S′) are cubical
diagrams.

Construction 5.2. We construct a partial n-cube of ∞-categories G : P 6=∅(T ) →
Cat∞ as follows:

• The vertices are given by G(S) = Sp
α(S)
F (min(S)) := Fun(α(S), SpF (min(S))).



8 OMAR ANTOLÍN-CAMARENA AND TOBIAS BARTHEL

• For S ⊂ S′, the functor G(S ⊆ S′) : G(S) → G(S′) is given by the composite

Fun(α(S), SpF (min(S)))
ι◦−
−−→Fun(α(S), Sp)

F|β(S,S′)◦−
−−−−−−−−→Fun(α(S),Fun(β(S, S′), SpF (min(S′))))

∼=
−→Fun(β(S, S′)× α(S), SpF (min(S′)))

−◦θ
−−→Fun(α(S′), SpF (min(S′)))

where ι : SpF (min(S)) → Sp denotes the natural inclusion functor and F is essentially

the cube of functors from Construction 3.1 restricted to β(S, S′) ⊆ P(T ): this
restriction is a functor β(S, S′) → End(Sp), which we can think of instead as a
functor Sp → Fun(β(S, S′), Sp) and then replace Sp in the target by SpF (min(S′))

since all V ∈ β(S, S′) satisfy min(V ) = min(S′).

Remark 5.3. Unwinding the definitions in Constructions 5.2 and 3.1, we see that
for, ∅ 6= S ⊆ S′, the functor G(S) → G(S′) sends a cube X : α(S) → SpF (min(S))

to the cube X ′ : α(S′) → SpF (min(S′)) given on vertices by

X ′(U) = LU∩[min(S′),min(S))X(U ∩ [min(S), n]).

Notice that if min(S′) < min(S), the formula shows X ′(U) is LF (min(S′))-local,
as it should be. Also, when min(S′) = min(S), there is no localization at all and
X ′ is simply the restriction of X to the face α(S′) ⊆ α(S) (this inclusion does not
hold when min(S) 6= min(S′)).

This definition also becomes much clearer with an example:

Example 5.4. Let n = 3. The diagram G looks like:

SpE
//

��

xxqqq
qqq

qqq
qqq

Sp
{3}
F (3)

��

zz✉✉
✉✉
✉✉
✉✉
✉

Sp
{2,23}
F (2)

//

��

Sp
{23}
F (2)

��

Sp
{1,12,13,123}
F (1)

//

xxqqq
qqq

qqq
q

Sp
{13,123}
F (1)

zz✉✉
✉✉
✉✉
✉✉
✉

Sp
{12,123}
F (1)

// Sp{123}F (1)

where we have used shorthand for the elements of the various α(S): 13 denotes the
set {1, 3}, for example.

Though G(∅) is not defined, we have put SpE in that corner, since Theorem 5.5
will show that this produces a Cartesian cube for anyE which is Bousfield equivalent
to F (1)⊕ F (2)⊕ F (3).
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A square in Sp
{1,12,13,123}
F (1) should be though of as being

LF (1)X //

��

LF (1)LF (3)X

��
LF (1)LF (2)X // LF (1)LF (2)LF (3)X

for some spectrum X , and the two functors out of Sp
{1,12,13,123}
F (1) are projection to

the faces
LF (1)LF (2)X // LF (1)LF (2)LF (3)X

and
LF (1)LF (3)X // LF (1)LF (2)LF (3)X .

The vertical functor Sp
{3}
F (3) → Sp

{13,123}
F (1) sends a F (3)-local spectrum X to the

morphism LF (1)X → LF (1)LF (2)X you get by applying LF (1) to the localization
map X → LF (2)X .

Our decomposition of the category of
⊕n

i=1 F (i)-local objects can now be stated
as follows.

Theorem 5.5. If E is any spectrum Bousfield equivalent to F (1)⊕ . . .⊕F (n), then
there is an equivalence of stable presentable ∞-categories

SpE
∼ // limS 6=∅ G(S)

where G is given by Construction 5.2.

Proof. For any S ∈ T , observe that there is a natural functor

ΦS : CT // Spα(S)
F (min(S)),

sending a partial T -cube X to the cube given by restriction, ΦS(X ) = X|α(S). The
collection of these functors induces a natural functor

Φ: CT // limS 6=∅ G(S)

and it suffices to show that this is an equivalence by Theorem 4.4.
We will now argue by induction on n, the case n = 1 being trivial. Proposition 2.4

applied with t = 1 shows that there is a pullback diagram

limS 6=∅ G(S) //

��

limS∈α(1)\{1} G(S \ 1)

��
Sp

α(1)
F (1)

// limS∈α(1)\{1} G(S)

(where again 1 = {1}) and the inductive hypothesis gives limS∈α(1)\{1} G(S \ 1) =
C{2,...,n}. Also, since all the edges in the bottom face of G are restrictions:

lim
S∈α(1)\{1}

G(S) = lim
S∈α(1)\{1}

Sp
α(S)
F (1)

= Sp
colimS∈α(1)\{1}α(S)

F (1)

= Sp
α(1)\{1}
F (1) ,
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so it suffices to show that the following commutative square is a pullback:

CT
p //

f

��

C{2,...,n}

LF(1)

��

Sp
α(1)
F (1) q

// Spα(1)\{1}
F (1) .

This is intuitively clear: objects of the pullback can be described by giving a

diagram Y ∈ C{2,...,n}, a diagram X ∈ Sp
α(1)
F (1), and an equivalence X|α(1)\{1} →

LF (1)Y. That data clearly assembles to make a diagram in Z ∈ CT with top
(partial) face Z|P({2,...,n}) = Y and bottom face Z|α(1) = X .

More formally, first note that it is easy to check that the horizontal arrows p and
q in the above diagram are coCartesian fibrations and that the left vertical map f
preserves coCartesian morphisms. Therefore, we can make use of [Lur09, 2.4.4.4]
to reduce the claim to checking that, for every Y ∈ C{2,...,n}, the fiber over Y in the
horizontal direction are equivalent via f , i.e.,

(CT )Y
∼

f
// (Spα(1)F (1))LF (1)Y .

Let us first consider the case n = 2. The fiber over Y = Y ∈ SpF (2) is given by
the full subcategory of C{1,2} on object of shape

Y

��
X // LF (1)Y,

which are thus determined by the bottom morphism X → LF (1)Y . This category is

then easily seen to be equivalent to the fiber (Sp
α(1)
F (1))LF (1)Y , hence the claim holds

for n = 2. Now we can explain how to deduce the general case from here. We have
a commutative diagram of fiber sequences:

(CT )Y //

∼

  

④
�

✆
✡
✏
✕
✤

✮
✳
✹
✾
❃

∼

��

CT //

∼

��

f

  

④
�

✆
✡
✏
✕
✤

✮
✳
✹
✾
❃

C{2,...,n}

lim ∼

��

LF (1)

~~

❃
✾
✹
✳
✮

✤

✕
✏
✡

✆
�

(SpE)limY
//

∼

��

SpE //

��

SpF (2)⊕···⊕F (n)

LF(1)

��
(Sp

P(1)
F (1))limLF (1)Y

// SpP(1)
F (1)

ev1 // SpF (1)

(Sp
α(1)
F (1))LF (1)Y

//

∼

OO

Sp
α(1)
F (1)

//

OO

Sp
α(1)\{1}
F (1) .

lim

OO

where the top right square is a pullback by Theorem 4.4, the middle right one is
by the induction hypothesis applied to the pair (F (1), F (2)⊕ · · · ⊕ F (n)), and the
the bottom right one is by construction. The claim follows. �
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